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ABSTRACT 
 
Mobile devices are currently significantly becoming part of our daily lives due to the 
wireless communication capabilities have enabled a series of high level services. These 
Wi-Fi equipment are continuously sending packets stated as probe requests that can be 
captured using wireless sniffers. In this thesis, we tried to solve the problem of exploiting 
such a methodology to complete occupancy estimation by considering how many people 
exist in a specific space. At first, we discussed collecting Wi-Fi probe request packets 
using the Raspberry Pi device and analysing them with packet analyzer tools. We 
operated data collection in different environments, ranges in different level densities and 
used the mobile camera as the ground truth value. Afterwards, we represented how we 
can use MAC addresses and power level information for indoor prediction in the proposed 
linear ridge regression model using different approaches. We introduced a cheap and 
precise occupancy estimation model based on the capture of Wi-Fi frames user’s devices. 
The model is applied on low-cost hardware and utilized a supervised learning model to fit 
different environments. The experiments of such indoor estimations have been 
implemented in different scenarios to demonstrate the validity of the proposed solution 
and evaluate its results. The outcomes specify that mobile devices have good potential 
for predictin of the number of people in the space.  
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1.INTRODUCTION 

A crowd is described as a large number of people gathering for some reason, such as 
religious occasions, sports events, or political gatherings. Crowd counting's purpose is to 
count the number of objects, such as people or cars, that are part of a selected space. 
The purpose of this project is to design and develop a count of people in the spaces at a 
low cost. The crowd counting methods may be used for many other purposes as well, for 
instance, recurring events such as festivals or parades. The same approach could be 
helpful for estimating the boarding time delay in airports or understanding people's 
behavior while shopping at malls. In summary, estimating the distribution of people in a 
given place has become an effective tool for social and business intelligence studies. 
Nowadays, it is really important to count crowds for safety reasons and to create routes 
for crowds to exit different areas in case of an emergency. Crowd counting methods have 
many challenges, such as high mess-up and varying object density. These problems can 
increase prediction errors and reduce estimation. This work presents occupancy 
detection in indoor spaces that relies on Wi-Fi measurements using the machine learning 
(ML) method. It is important to find the number of people to improve the suitability when 
using services. For instance, there are many challenges to improving their services by 
counting people in lines, airports, stadiums, and shopping malls. It leads to preparing 
useful guidance in emergency situations. The current works have achieved such 
estimations with image recognition or Wi-Fi signal techniques [1]. Subsequently, Wi-Fi 
signal-based methods are less affected by light intensity or high density than image 
recognition. In this study, we focused on Wi-Fi signal-based techniques. 

Many works about counting people based on sensors and cameras have been presented 
[2]. The Wi-Fi based methods have many advantages over sensors and cameras such 
as very cheap tools, low instalment costs, cleaning or maintenance is not required every 
day, with linking tools areas can be set up and controlled individually, compliant to EU 
data privacy regulations as all data is anonymous and independent from outside 
circumstances like humidity and temperature. Conversely, there are a lot of things to 
consider such that other signals that might be received from the outside venue, short 
visiting time to receive a ping from a certain phone, inappropriate timeouts and people 
will keep crowding the location. 
Estimation of the number of people with Wi-Fi signal techniques based on the probe 
request (PR), with their unique MAC (Media Access Control) addresses [3]. Recently, the 
number of Wi-Fi embedded devices such as smartphones has increased. The Wi-Fi 
signal methods can easily estimate the number of people by counting the unique MAC 
addresses in PRs. Nonetheless, a single smartphone might have more than one MAC 
address when MAC address randomization is applied to the smartphone, which means 
an original MAC address is replaced by numerous bogus MAC addresses to avoid 
attackers from tracking people. This conclusion means a greater number of unique MAC 
addresses than the real number of people. 

Hence, the final result must have the signal level of the ping. We need to pick up as many 
pings as possible by surfing through channels. We need a well-worked algorithm that 
must be applied to get the most accurate counting rate and the fastest reaction time 
without any mistakes. Crowd estimation is an important research topic in artificial 
intelligence applications as it provides an effective way for crowd control and 
management. It is difficult to satisfy the accuracy and speed requirements of engineering 
applications with the current methods. In this paper, we suggest counting crowds by an 
optimized ML technique. 
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2.STATE OF THE ART 
 

2.1. Use Cases of the Wi-Fi Method 
 
In this section, we will see the Wi-Fi method use cases. Prasertsung and Horanont (2017) 
used the Wi-Fi PR frames as a monitoring method to categorize the number of customers 
visiting a coffee shop [4]. They claim that the number of customers increases by an 
average of 30% on a promotion day this can be used to search how a promotion can push 
customers into stores. Shen (2018) et al. proposed a group detection system using Wi-Fi 
in the mall [5]. Experimental results show that this method could be capable of detecting 
over 90% of the groups with an accuracy of 91%. The particular case of people estimation 
on public transport such as buses is a difficult application because, unlike the estimation 
in a static place such as a shop, it is necessary to consider that the vehicle is in motion.  

Although there are many examples of solutions that analyze Wi-Fi traffic to count people 
and track devices in the literature, most of them do not consider the MAC address 
randomization effect. Currently, since the diffusion of MAC address randomization 
adopted by manufacturers has increased, it is essential to present methods for the fact of 
randomization. 

2.2. Crowd Counting Technique: Wi-Fi Probe Request Frames 

There are many techniques to estimate the number of people indoors and outdoors, such 
as Wi-Fi, Bluetooth, other radio frequency (RF) technology, video, and audio recording. 
There were several methods that have been studied for this project in the literature. 
However, the approach chosen to solve this problem is to use the Wi-Fi probe request 
frames for estimating crowd density in different places of application. There are 
management frames to cope with the connection between (Access Point) APs and 
devices in the 802.11 standards. One of them is the PR frame. With PR frames, it is 
possible to estimate the number of smartphones in an environment without having 
installed any software on the device itself. Since PRs are not encrypted and can be 
captured and decoded with the help of wireless sniffers passively, without connecting to 
a network, it is preferred. It is possible to extract the MAC address of the device, the RSSI 
(Received Signal Strength Indicator), the SSID (Service Set IDentifier), the sequence 
counter, and the time with this type of frame. Occupancy of people is practical for 
businesses in providing better services while saving money. Our goal is to address the 
problem through a solution that is resistant to MAC addressing randomization strategies. 

In this section, it is described how the system is designed for collecting Wi-Fi probes, as 
well as how we deal with anonymized the collected data, how we collect the data, and 
how we process it to obtain people's occupancy. The system consists of three elements: 
people, a wireless monitor (Wi-Fi monitor), and a data process [6]. For example, people 
have their own smartphones in an indoor environment, and it continually sends PRs that 
record randomized MAC addresses. The Wi-Fi monitor continuously collects the PRs and 
sends them to a storage. The collected probes are stored and we made them available 
through an interface to the processing service. The algorithm estimates the number of 
people within a crowded venue. It should be noted that some devices that are in 
neighbouring rooms or approach the monitored room for a few seconds may be detected 
during monitoring. It is necessary to design a mechanism that, filters out unwanted 
detections and counts only people who actually enter and remain in the monitored 
environment. The processing service makes the collected probes via the interface and 
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processes them. The goal of the processing is to filter probes from devices that are in an 
indoor environments. 

 

2.3. Wi-Fi Probe Request Frames Implementations 
 
It is possible to estimate the number of people in a certain place with lower costs with Wi-
Fi PR frames. This method does not store errors over time, does not require a predefined 
path where users must be and can cover a large area. Moreover, it is possible to 
anonymize the MAC address to guarantee user privacy. 
Handte et al. (2014) introduced one of the first methods to estimate crowd density by 
monitoring Wi-Fi PR frames. They modified the firmware of some existing APs and 
created a web service that allows the upload of the latest crowd density measurements. 
The system was able to always detect around 20% of the people on average since in 
2014 there were fewer mobile devices than the present [6]. Yet, they didn't implement the 
method in current years. 
Schmidt (2014) worked on social density estimation by exploiting captured Wi-Fi PR 
packets [7]. The method works by capturing Wi-Fi packets from smartphones using a 
dedicated scanning device: a Raspberry Pi with a battery and D-Link WiFi module. In 
order to avoid a false result that comes from neighbouring devices, the database of MAC 
addresses is created to filter out PRs. Four directions photos are taken every 10 minutes 
for validation. They claim that the method has good results however it is not suitable for 
high accuracy applications. 
Yaik et al. introduced (2016) the correlation of crowd density with Wi-Fi PRs. The 
experiment was performed in the university during an open day event for 8 hours. As a 
ground truth checking, the authors used manual people counting using a counter at the 
entrance of the event. A Wi-Fi monitor is placed close to the entrance of the venue. The 
study shows a strong correlation coefficient of 0.893 [8]. 
Heitor et al. introduced (2018) a method without MAC randomization that trained 
classifiers to segment mobile from motionless appliances through its Wi-Fi performance 
pattern. Thus, they used data collected from various devices and in another environment 
and evaluated by using some ML algorithms. The best outcomes were with logistic 
regression achieving 0.99 (ROC area) according to their work [1].  
Mikkelsen and Madsen (2016) presented a system to anonymize the MAC address of the 
sniffed PR frames. They put two thresholds to send them to a server and to analyze them: 
minimum value of the RSSI and minimum detection time. The ratio between the estimated 
number of devices is achieved at around 50% by setting the two thresholds. They claimed 
that it can give good results by using ML techniques [9]. 
Wang (2019) et al. used the random forest approach to find occupants using the Wi-Fi 
connection. The method was tested in an office with an occupancy of 22-27 people and 
a peak occupancy of 48-74 people and the RMSE (Root Mean Square Error) is four 
people on the test set. For more than 70% of estimations, the errors are within two people 
counts, and for more than 90% of estimations, the errors are within six people counts. 
Usage of ML techniques has a good impact on estimating the number of people but this 
approach does not have a communication system for the transmission of data in real time 
[10]. 
 

2.4. Related Works 
 
MAC addresses can be used for beneficial activities such as crowdedness estimation, 
marketing, and risk maps. The MAC addresses randomization systems presented around 
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2014. It makes all standard MAC address based crowd monitoring systems count the 
same device more than once [11]. Thus, it is essential to create a new crowd monitoring 
system tolerant to MAC address randomization to estimate the number of devices 
accurately. There are many works regarding counting crowds Wi-Fi based however none 
of them explore the impact of MAC randomization. In fact, most applications focus on 
solving the device user mapping directly by using ground truth data and raw PR 
observations instead of trying to solve the fake devices and detection latency problems 
first. Nowadays, analyzing and defeating MAC randomization was studied by many recent 
papers. The operating systems (OS) for mobile devices have now implemented MAC 
randomization to protect user privacy before associating with the wireless APs. 
Vanhoef et al. studied (2016) different methods for linking a single or multiple observed 
randomized MAC to its source device enabling location tracking and counting [12]. They 
use various packet fields which provide useful information about device identity. For 
example, the Wi-Fi protected setup (WPS) field of a PR can be applied to connect 
randomized PRs to their source device. To avoid such derandomization works, device 
manufacturers removed the WPS content field and increased sequence numbers.  
Marco et al. (2020) presented an approach to find the limitations introduced by the 
randomization procedures that allow for extracting useful data for smart cities 
development [16]. They obtained the most relevant information elements within PRs and 
utilized clustering algorithms such as DBSCAN and OPTICS to find the exact number of 
devices. As a result, the accuracy of 65.2% and 91.3% using the DBSCAN and the 
OPTICS algorithms has been achieved in the experiment, respectively. 
Matte et al. (2016) represented a method to fingerprint the PRs sent by one device. The 
device’s fingerprint is computed using the (information equipment) IEs contained within 
the PRs [13]. Inter burst times were also included in this information which improved 
accuracy. The identification of the single fingerprint was calculated using the k-nearby 
neighbors (KNN) algorithm. Each fingerprint corresponds to one device. The results 
showed that counting the detected devices with an accuracy of 75%.  
Franklin et al. (2006) introduced a system that analyzes the interframe time of packets 
allowing the making of a device driver fingerprint. Usage of timing as a feature could add 
errors in clustering and classification [14].  
As seen in the studies usage of timing as the primary feature is problematic, we can 
discard inter burst and inter frame times but take into account the IEs content and how it 
varies according to the circumstance. 
Another study has used fingerprinting also in the ISO/OSI (Open Systems 
Interconnection) physical layer (PHY). Brik et al. (2008) suggest a method that is able to 
identify the origin interface of an 802.11 frame by presenting a passive analysis of radio 
frequencies [15]. Particularly, ML tools are used to have an accuracy of 99% for device 
counting, but this approach is good only in a laboratory environment and it is useless if 
applied to a real world environment since the high radio interference and the necessity of 
a complicated setup to collect data. 
Freudiger et.al. (2015) studied probing behaviour in various experimental settings [16]. 
He showed that probing frequency is depend on different factors like manufacturer, 
battery level, user interaction and number of stored SSIDs of AP. During the time of the 
experiments,  MAC randomization was not widely established across manufacturers but 
they noted randomized PRs by an Apple IOS 8 device. Additionally, they studied the first 
possibilities for relating a randomized probe to its original device by using precise packet 
fields like SN or WPS information. 
Ribeiro et al. worked on centring around eliminating MAC randomization used by most 
phones to anonymize the user [17]. They used an RSSI based approach in combination 
with trilateration to locate smartphones. Based on the location estimated, they managed 
to find, whether a new MAC address seen matches a new device or is just a new MAC 
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address of a device doing MAC randomization for privacy purposes. They claimed that 
this RSSI based localization approach is accurate to decide whether a new faced address 
in the same area corresponds to a new device or the already seen one. 
Yuyi et. al. (2021) represented Vision and TrueSight, two new crowd monitoring 
algorithms that estimate the number of devices based on MAC address crowd monitoring 
[18]. As well as PRs, Vision uses data packets and beacon packets to moderate the effect 
of randomization. Besides, TrueSight uses SNs and clustering to estimate the number of 
devices. As a result of this study, Vision can pick 440 randomly generated MAC 
addresses into one group and count only once without installation of software and 
TrueSight can estimate the number of devices with an 75% accuracy. 
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3.FUNDAMENTALS 
 

3.1. Background of Wi-Fi Theory: Wi-Fi, MAC Structure  and Probe Request  
 

3.1.1. IEEE 802.11 (Wi-Fi) 
 
The Institute of Electrical and Electronics Engineers (IEEE) has developed 802 sets of 
standards, which specify the requirements and recommendations for networking (IEEE). 
Relevant standards contain Ethernet, LAN (Local Area Networks) and WLAN (Wireless 
Local Area Networks). It describes a set of the PHY and MAC protocols being used to 
perform computer communication in WLAN. The IEEE 802.11 standard series defines 
the protocols that account for WLAN and is a subset of the IEEE 802 collection of LAN 
technical standards. The standard is constantly developing in order to improve 
performance and reliability [19]. The Wi-Fi alliance uses the IEEE 802.11 standard set to 
approve equipment as Wi-Fi. As a consequence, all Wi-Fi registered devices follow the 
802.11 specifications. 
 
When data or information is transferred between several locations without the use of an 
optical or electrical conductor that serves as a medium for the transmission, this is 
referred to as wireless communication. The utilization of electromagnetic radiation, 
sometimes known as radio waves (RW), is the technique for wireless communication that 
is most frequently utilized. Different frequency bands have been created for these RWs. 
The frequency bands utilized for Wi-Fi are the super high frequency (SHF) band, which 
varies from 3 to 30 GHz, and the ultrahigh frequency (UHF) band, which ranges 300 MHz 
to 3 GHz. IEEE 802.11 operates at a variety of frequencies, including the 2.4 GHz, 5 GHz, 
6 GHz, and 60 GHz bands. 
In order to reduce interference frequency bands are splited into overlapping channels. In 
the 2.4 GHz band, there are 14 channels with a spacing of 5 MHz except channel 14, 
which has a space of 12 MHz as seen in the figure 1. In Europe, channels 1 to 13 are 
frequently used. The 2.4 GHz band has 20 MHz wide channels. The full spectrum is only 
100 MHz wide and the channel centers are 5 MHz apart. As an outcome, the 11 channels 
must eventually overlapping in to fit inside the 100 MHz available. There are numerous 
frequency methods used by each standard [20]. 

 

 
Figure 1. Non-Overlapping Channels 

On the 2.4 GHz band, nonetheless, channels 1, 6, and 11 are separated enough from 
one another so that they have enough space between their channel centers and do not 
overlap. Channels 1, 6, or 11 will need you to share the channels with other networks (co-
channel interference) but this is still a much better choice than having to cope with 
adjacent channel interference which affects all other channels. 
When a device looks for a nearby network, PRs are delivered in bursts across several 
channels consecutively. The number of probes sent out varies depending on a number 
of variables, including the OS, screen condition, and the manufacturer of the device. 
When the battery is running low, a device makes every effort to conserve power and 
lowers the frequency of PRs [21]. Considering all of these limitations, the Wi-Fi sniffer 
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system needs to be capable of efficiently cover multiple channels in order to 
simultaneously collect more frames. It is certain that increasing sniffer density surely 
provide more data. 
Before joining any network, clients, stations or mobile stations must first detect it. Simply 
putting the cable into the wired connection will locate the network. Before the joining 
process can start using a wireless connection, the compatible network must be identified. 
This network discovering is referred as scanning.  Finding an appropriate AP for the client 
to connect to now or in the future is the goal of client scanning. 
Massive amount of information are carried in each Wi-Fi packet that is sent between a 
mobile device and a wireless AP. That offers new opportunities to learn location 
information and mobility behaviour related to mobile users using existed Wi-Fi 
infrastructure. Each radio in a wireless AP is constantly searching for new RF 
transmitters. While 802.11b/g/n radios operate between 2.4 and 2.4835 GHz, 802.11a 
radios operate between 5.15 and 5.85 GHz. 
Passive scanning and active scanning are the two types of scanning. The regulatory 
domain chosen during the initial deployment of the AP is the country of operation and 
radios by default carry out both sorts of scans on all channels permitted by that authority. 
While both types of scanning are enabled by default, active scanning is only carried out 
on channels where it is permitted to transmit by local laws. Active scanning is not 
permitted on channels that need radar detection with dynamic frequency selection (DFS) 
or that are not permitted for unlicensed usage. 
 
APs serve as a means of communication between mobile stations and other networked 
devices. A mobile station must be in the appropriate connection state before it can 
broadcast traffic through an AP. 
The three 802.11 connection states are: 

• Not authenticated or associated. 

• Authenticated but not yet associated. 

• Authenticated and associated.  

Before bridging to take place, a mobile station needs to be in an authenticated and 
associated condition. To achieve an authenticated and associated state, the mobile 
station and AP will transfer many 802.11 management frames. The 802.11 association 
process starts with PR from mobile station (MS) and then the AP respond with probe 
response, the MS will try to authenticate to the AP depending on the authentication used 
and the AP can ask for a second round of authentication from the MS. When the 
authentication is done MS will send an association request to the AP, the AP will then 
respond with an association response packet. Once this is done data transmission finally 
take place figure 2. 

 

Figure 2. 802.11 Association Process 

The two options for channel sniffing that are most frequently discussed in the literature 
are fixed single channel monitoring and channel hopping, which involves rapid switching 
between channels at regular intervals. Fixed channel monitoring captures more packets 
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than channel hopping according to a test campaign that specifically used three non-
overlapping channels [21]. The wireless adapter's limited ability to capture on more than 
one channel at once explains the circumstance. Channels 1, 6, and 11  may be the 
channel on which it is preferable to sniff. Although channel 1 is typically preferred for 
sniffing other research have declared that no in-depth information of statistics on which 
channel is the most used is available [22]. While it is expected that the test results won't 
be much impacted by the channel selection. 
 

3.1.2. 802.11 MAC 
 
The 802.11 specifications were developed to establish wireless connections by utilizing 
the wired networking standards that had already been established. It is improving to 
satisfy the requirements of wireless data transport. As a result, the MAC for WLAN has 
been adjusted to consider the wireless transmission.  
Each Wi-Fi device has a MAC address that only identifies itself in the local network which 
is created of six octets of bits. The first three octets are named by the IEEE to the device 
manufacturer and establish the Organization Unique Identifier (OUI). The other three 
octets are called Network Interface Controller (NIC) and are named by the manufacturer 
[24] as depicted in the figure 3. 

 
Figure 3. MAC Address Format 

In Wi-Fi applications, if the second least bit of the first octet is adjusted to 0, then the MAC 
address should be globally unique. Else, when this bit is adjusted to 1, the MAC address 
should be locally administered as a result the MAC address is randomly created. 

 

 
Figure 4. Locally Administered MAC Addresses 

In other word, any device that produces MAC addresses at random must set the locally 
managed bit. As shown in the figure 4 there are four different locally administered address 
that can be used, where ‘X’ can be any hex value.  
The figure 5 shows how the sniffer examines the address fields in a management frame 
utilizing wireshark.  
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Figure 5. Address Fields in Wireshark 

3.1.3. Probe Requests 
 
PRs are signals that are constantly broadcast by Wi-Fi enabled devices like smartphones, 
laptops, and tablets. When a Wi-Fi client tries to connect to a Wi-Fi network, the first 
technique is to scan for beacon frames, which are frames broadcast by Wi-Fi routers to 
inform Wi-Fi clients of their presence. The second method is to send PRs, which include 
the device's unique MAC address as well as its type, manufacturer, and model. Because 
a Wi-Fi client can connect to a Wi-Fi router without waiting for a beacon frame from the 
router, using probe requests is preferable. 
WLAN clients or stations use PR frames to scan the area for the presence of a WLAN 
network. PRs are made up of two components: the SSID to be probed and the supported 
rates of the device transferring the PR. Stations receiving these PR frames must decide 
whether or not the PR transmitters can join the network. To have successful PRs, stations 
transmitting them should have rates supported by the network which they wish to join. As 
a result, the network's SSID should be included in the PR frame. 
Freudiger [21] performed a thorough experiment of how various factors, such as monitor 
channel configurations, the number of SSIDs stored in the PNL, and device 
configurations, influence Wi-Fi PRs. It has been illustrated that three antennas, each set 
to a fixed nonoverlapping channel, collect the most probes. 
 

3.2. Monitor Mode 
 
WNICs (Wireless Network Interface Controllers) can operate in different modes: 
managed mode, promiscuous mode and monitor mode. In this work we are focusing the 
monitor mode that is a listening mode that only exists for wireless adapters. 

Monitor mode, also known as RFMON (Radio Frequency Monitor) mode, is a defined 
mode for wireless cards in the IEEE 802.11 standards [23]. Whenever a wireless card is 
setted to monitor mode, it can’t connect to other networks because it is monitoring all 
networks around it, so we can't utilize the interface for usual networking. We can use a 
wireless card to monitor networks around us or for standard networking tasks like web 
browsing, but not both at the same time. Using a supplemental network card, one for 
standard networking and one for monitoring is one way around this limitation. To sniff 
traffic in a wireless network, we must first set the wireless adapter to monitor mode. In 
theory, we also could set it to promiscuous mode to achieve the same result, but this is 
not always the case. Monitor mode is a wireless interface operation mode in which the 
interface passively collects information sent wirelessly. 
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3.3. Machine Learning  

An ANN first experiences a training phase during which it learns to identify patterns in 
data. The network compares its actual output to what it was supposed to create during 
this supervised phase in order to produce the desired output. The backpropagation 
method is used to adjust the difference between the two results. This means that the 
network adjusts the weight of its connections between the units backward, from the output 
unit to the input unit, until the difference between the actual and expected outcome 
creates the least amount of error [25]. 
They are different in terms of how the models have been trained and the quality of the 
necessary training data. Each technique has particular advantages, during the learning 
stage of the ML lifecycle, supervised ML requires labelled input and output data. Once 
the model has figured out how the input and output data are related, it may be used to 
categorize previously unexplored datasets and estimate results. The requirement for 
labelled training data differentiates supervised learning from unsupervised learning. 
Unsupervised machine learning processes unlabeled or raw data, whereas supervised 
machine learning utilizes labelled input and output training data. 
In our circumstance, we want to use ML to estimate or predict the number of people in an 
area based on the Wi-Fi packets we collect over time. There are two types of supervised 
machine learning algorithms such as regression and classification. While the 
classification predicts discrete outputs, regression predicts continuous value outputs.  
Classification identifies input data as part of a learned group such as determining if a 
tumour is benign or malignant. Regression predicts outcomes from continuously changing 
data such as estimating the price of a house in euros. Linear regression finds a straight 
line that represents the relationship. Thus,  in this section, the linear regression algorithm 
is demonstrated and selected for occupancy estimation.  
 

3.3.1. Linear Regression Definition & Working Principle 
 

The goal of the linear regression is to obtain the best fit line that can accurately predict 
the output for the continuous dependent variable. Simple linear regression is used when 
only one independent variable is utilized to make a prediction and multiple linear 
regression is used when there are more than two independent variables. The algorithm 
establishes the relationship between the dependent variable and the independent 
variable by locating the best fit line. Additionally, the relationship must be linear. 

A linear regression algorithm is used to study relationships between two continuous 
variables first is the independent variable (x) also referred to as the predictor and the 
second is the dependent variable (y) also referred to as an outcome. The straight line 
equation can be used to fit a line. The equation gives the output variable based on the 
input variable and slope of the line. The equation 1 below can be used to identify the line. 
 

y= b+θ1X+e                  (1) 
 
In the above equation, y is the dependent output variable, X is the independent input 
variable, b is point at which the line meets the y-axis also called as an (intercept) bias and 
θ1 is the weights (slope of the line). 

The best fit line as the line that minimizes the sum of squared errors (SSE) or mean 
squared error (MSE) between our target variable (y) and our predicted output is used to 
determine the relationship between the dependent variable and one or more independent 
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variables. In Linear Ridge Regression with Ordinary Least Squares (OLS), the main 
purpose of the best fit line is that our predicted values should be closer to our actual value. 
In other words, we minimize the error (least square cost function) which is the difference 
between the predicted and the observed values. These errors are also called as 
residuals. The residuals are specified by the vertical lines displaying the difference 
between the actual and estimated value. We first optimize this cost function to determine 
the weight parameters. Either the gradient descent (GD) algorithm or the (OLS) approach 
can be used for this process. These methods will allow us to determine the parameter 
weights for our model [26]. 

3.3.2. Different Approaches to Ridge Regression  
 
We can implement a ridge regression model by using the following methods: 

1. Solving model parameters (closed form equations) [27] 
2. Usage of optimization algorithm (gradient descent, stochastic gradient, etc.) [28] 

If computing matrix inverse is not a concern, the closed form solution may be preferred 
for smaller datasets. The GD or SGD approaches are preferred for very large datasets or 
datasets where the inverse of XTX might not even exist  for example the matrix is non-
invertible as in the case of perfect multicollinearity. 

When using OLS, an analytical solution or a closed form solution with an exact answer 
can be obtained. The reason for using GD rather than OLS is in simple statistical models 
with small data sizes and a small number of independent variables. Furthermore, when 
the dependent and independent variables have a nonlinear relationship, a simple 
statistical model is inadequate to solve the issue. 

If there are more features and a larger data set, OLS is especially difficult to implement. 
Since  we need matrix inversion in that case, which requires more computational power. 
The magnitude of the available features will influence computation speed. The solution 
will be challenging to determine. The GD is considerably faster than the OLS. GD is 
typically used in conjunction with regularization-based models (L2-L1). Because there are 
no closed-form solutions for nonlinear complicated issues, OLS does not perform well in 
this situation. Another requirement for OLS is that the number of data points exceed the 
number of features. As GD does not have this restriction, it is decided to build model with 
GD and compared with other models. Instead of solving the normal equation, we can 
differentiate the ridge cost function to achieve its partial derivatives and then use GD to 
iteratively approach the optimal solution however we also implemented close form 
solutions. 

Normal equations are a method of solving the quadratic equation for the weights that 
decrease the MSE directly. However, solving normal equations require inverting a N x N 
features matrix, which is an O(N features3) operation. Therefore, when N features 
exceeds 1000, it begins to slow down, whereas GD is O(N). For that reason we wanted 
to implement directly GD algorithm in order to be not have problem of close for equation 
method. On the other hand in the experiment we had compare the result of the close form 
solutions as well. 

GD is an optimization technique for minimizing a function's value. Mostly in ML, we 
typically define some cost function J(w) that informs us how well the model fits our data 

https://towardsai.net/p/machine-learning/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa
https://towardsai.net/p/data-science/gradient-descent-algorithm-for-machine-learning-python-tutorial-ml-9ded189ec556
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and w= [w1 . . . wn ] are the model parameters that we want to change, such as the 
coefficients in a linear regression problem (y=w0 + w1x).   
After the weight updates and assign of the learning rate, which indicates how quickly we 
update our model parameters or how large steps we take when changing the values of 
the model's parameters, as shown in the paraboral curve in figure 6. The algorithm 
iterates until convergence is reached or when the gradient is so small that weights do not 
change. 

 
Figure 6. Weights Update by Learning Rate in Paraboral Curve 

In the above scenario, we only have one parameter 'w' and our goal is to reduce the cost 
function J(w). The intuition is that the gradient's sign indicates the direction we must move 
to minimize J. 
To solve a specific derivative of loss with respect to a specific weight, GD considers all of 
the data points in the data set. That is, at each epoch, we take all records and estimate 
the y, and backpropagation updates the weight. The function that will be applied is known 
as GD. When we use the GD optimizer, we take into account all of the data points in our 
dataset. When considering all data points, the weights converge quickly since it considers 
all data points. GD is classified into three types. We will discuss three of them in this 
section since we applied all of them. 

1.Gradient Descent (GD) is also referred to as batch gradient descent. It requires 
computing the gradient by using entire dataset or training set to determine the best 
solution. The objective is to achieve the optimal solution which could be the local or global 
optimal solution. Utilizing derivative of the model to update a parameter in a specific 
iteration requires moving all of the samples in our training set each time to generate a 
single update. However, when we required to run through large numbers of samples, this 
could be a significant challenge. Since a GD requires moving through the whole data set 
during each iteration that expends a significant amount of time and computational power 
[25]. 

2.Stochastic Gradient Descent (SGD) is an optimization algorithm variant that saves time 
while searching for the best optimal solution. In SGD, the dataset is shuffled properly to 
avoid pre-existing orders before splitted into m examples. As a result, the SGD algorithm 
can randomly select one example from the dataset per iteration instead of going through 
the entire dataset at once. This random estimation of the data set eliminates the 
computational cost linked with GD while achieving faster iteration and a lower 
convergence rate. The process simply takes one random SGD sample and iterates it. 
SGD makes use of this concept to accelerate the GD process. In most circumstances, 
the close estimation that SGD provides for parameter values is sufficient since they reach 
the ideal values and continue to oscillate there.  However, since it takes and iterates one 
example at a time, it produces more noise than we would prefer. Although using the entire 
dataset is extremely useful for locating global minimum in a less noisy or random way, 
the problem occurs when datasets become extremely large.  In SGD, since only one 
sample from the dataset is chosen at random for each iteration, the path taken by the 
algorithm to reach the minimum is usually noisier than your typical GD algorithm. 
However is not a issue that much since the path taken by the algorithm does not matter 
as long as we get the minimum and with a importantly shorter training time. 
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3. Averaged Stochastic Gradient Decent (ASGD) is to do regular stochastic gradient 

descent  θi
n+1= θi

n – α 
∂Jθi

n

∂ θi
   however then choose the mean as the final solution. In the 

case that GD is working well θ̅i = 
1

N
  ∑ θi

N
t=1     then this approach will converge to the 

optimal solution lim
N→∞

 θ̅i = θopt . Averaging is applied to decrease the impact of noise. In 

practice, GD may approach the optimal but not actually converge to it, instead oscillating 
it around. Averaging the results of SGD will offer a solution that is more likely to be close 
to the optimal in this case. 
 

3.4.  Model evaluation of Ridge Regression 
 
To determine how good a model is, we must first define evaluation. This is almost always 
the root mean square error in linear regression (RMSE). This is simply the root of the sum 
of square errors between our prediction and the true observation. Using our model 
parameter for the dataset, we will predict the value for the target variable. The predicted 
value is then compared to the actual value in the dataset. Using a formula in equation 7, 
we compute the cost function. Using a cost function, we can assess the accuracy of our 
estimated function. The built model aims to minimize this loss function or error in order to 
bring the prediction value closer to the actual value. 
Ridge regression decrease estimation variance. The ridge regression has the potential to 
improve predictive accuracy. The estimations become more stable and accurate. Ridge 
regression is also better than linear regression at handling nonlinear relationships 
between predictor and outcome variables. 
Ridge regression is superior to linear regression in several ways. First, it is less sensitive 
to collinearity than linear regression. Second, It can be used even when the data contains 
outliers. Third, it does not need perfectly normalized data. Finally, even when the number 
of variables exceeds the number of observations, ridge regression can be used. However, 
ridge regression has some drawbacks. First, if the data set is large, it can be 
computationally costly. Second, since the Ridge term (L2 norm) modifies the coefficients, 
the results of ridge regression can be difficult to interpret. This is because the cost function 
contains a quadratic term (non-linear), which makes optimization more difficult. This can 
make defining the model's results difficult. Finally, the L2 norm is sensitive to outliers and 
can produce unstable results in the presence of outliers in the data. 
The first step in learning a neural network is to define a cost function also known as a 
loss function that measures how well the network predicts outputs on the test set. The 
next step is to find a set of weights and biases that minimizes the cost. The mean squared 
error (MSE) is a commonly used function that measures the difference between the actual 
and estimated values of prediction. The coefficient of determination, or R2, is a metric 
that indicates the goodness of fit of a model. It is a statistical measure of how closely the 
regression line approximates the actual data in the context of regression. It is thus critical 
when a statistical model is used to predict future results or to test hypotheses. 

Numerous regression models use distance metrics to evaluate convergence to the best 
possible result. Even the definition of the best result must be measured by some metric. 
Typically, the (MSE) or Root Mean Squared Error (RMSE) are used. The square root of 
the MSE error is used to return it to the original unit, while keeping the property of 
penalizing higher errors. Therefore, the square root of the mean of these residuals is 
denoted by equation 2: 
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RMSE= √
∑ (Predicted−Actual)2N

i=1

N
                           (2) 

where predicted is the value predicted by us h(x) =Θ1X + Θ0, actual is the actual values 
and N is the number of rows in the training set (observations). To improve our prediction, 
we must c the cost function.  
 

3.5. Types of Model Fit 
 
The capability of a model must be balanced to reduce bias and variation (prediction 
errors).  These errors would assist us not only for accurate models but also to avoid the 
fault of underfitting and overfitting. The bias is the difference between our model's average 
prediction and the actual number we are aiming to predict. High bias models oversimplify 
the model and pay insignificant attention to the training data. It always clues to extreme 
errors in testing and training data. The variance is the variability of a model's prediction 
for a certain data point or value which indicates how widely distributed our data are. A 
model with a large variance pays close attention to the training data and does not apply 
to new data. As a result, these models have significant error rates on test data yet perform 
quite well on training data. Assume we have a very accurate model, thus the error of the 
model will be low, implying a low bias and variance. Similarly, when the variance 
increases, the spread of data points increases which results in less accurate prediction. 
And when the bias increases the error between our predicted value and the observed 
values rises. 
 
Underfitting occurs when the data has a high bias thus the model does not perform correctly 
in the training data. Overfitting occurs when the data has a high variance meaning that the 
model performs well on training data but not accurately on the evaluation set as depicted in 
figure 7.  

 

Figure 7. Overfitting and Underfitting Diagram 

Overfitting occurs in the following ways when the training data is not cleaned and includes 
unwanted values when the model has a significant variance, when the training data size is 
insufficient and when in the case of high variance and low bias occurs. There exist two 
ways to overcome overfitting either reducing the model complexity or regularisation 
method. In regularization, we typically keep the same number of features while decreasing 
the magnitude of the coefficients. Underfitting occurs in the following ways when the model 
makes accurate but incorrect predictions at first when in the case of high bias and low 
variance occurs when the size of the training dataset used is not enough. To solve 
underfitting or high bias, We can eliminate underfitting by increasing the amount of 
training data used. Another approach is to expand the number of features 
which increases model complexity and thus decreases high bias. 
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While using linear regression, particularly with small datasets, there is a high risk of 
overfitting the model. This is due to the low bias, a smaller training set increases the 
variability in how the model performs on testing sets.  
 

3.6. Model Improvements 
 

3.6.1. Selecting the Right Features for Model 
 
When dealing with a high-dimensional dataset, it would be inefficient to use all of the 
variables because some of them may be presenting unnecessary information. We would 
need to choose the right set of variables that provide an accurate model.  It should be 
considered the variables that are chosen should not be correlated with one another. 
Instead of selecting the variables by hand, we can set any statistical measure like R-
square, t-stat etc. to a selecting criterion. 

3.6.2. Regularization in Machine Learning 
 

The issue we usually experience is that we always optimize the cost function on the 
training data. When we build an ML model, we divided the samples into two groups such 
as training and test data. We do not demonstrate the testing data portion of the model, 
which causes a problem known as overfitting. Although the model will fit well on training 
data, it may not fit well on test data. This means that any new data we use for model 
output will either be inefficient or ineffective. As a result, avoiding overfitting is a critical 
aspect of training the ML model. If the model is overfitting, its accuracy will be low. This 
occurs because the model is trying to capture too much noise in the training dataset.  

Ridge regression (L2) and lasso regression (L1) are two well-known shrinking methods 
that are frequently used in linear regression [25]. Both regularizations are of the same 
type, but the formulation of the loss function differs between the two. In the case of L2, 
we take the square of the errors, while in the case of L1, we take the modulus of the 
errors. We can have multiple answers with a lasso but only one solution with ridge type. 
They basically work by introducing some bias into the model to reduce the variability of 
how the model performs on test sets. This is particularly useful when the linear regression 
model's coefficients are spread out. Ridge regression comes into play here. 

Large weights are not expected in the model. If the weights are very large, even minor 
changes in the weights can possibly make a big difference in the target variable. The 
difficulty is to determine the optimum weights because we want to make the target 
variable more resistant to changes in the parameters. The goal of using regularization is 
to select the most appropriate set of features for the model to ensure that the prediction 
accuracy is high. In regularization, we typically keep the same number of features while 
decreasing the magnitude of the coefficients. 

3.7. Proposed Ridge Regression Model 
 
The regularization methods add a penalty term to the model's loss function that 
maximizes accuracy means minimizing the loss function.  Ridge regression is a type of 
linear regression in which coefficients are penalized. This method can be used to 
decrease the effects of multicollinearity in L2, which can be caused by high correlations 
between predictors or between predictors and independent variables. 
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L2 is used in ML to decrease linear model overfitting. L2 is used when there are several 
highly correlated variables. It helps to avoid overfitting by penalizing variable coefficients. 
L2 decreases overfitting by including a penalty term in the error function that causes the 
coefficients to shrink in size. L2 is similar to ordinary least squares regression (OLS), 
except that the penalty term prevents the coefficients from becoming too large. This is 
useful in situations where there is a lot of noise in the data because it keeps the model 
from being sensitive to individual data points. L2 is frequently used associated with other 
ML methods such as cross-validation to reduce overfitting even further. In addition, L2 is 
less sensitive to outliers than linear regression. L2 has the disadvantage of being 
computationally costly and requiring more data to produce accurate results. 

The variance of the coefficients is significantly reduced when they are shrunk. When we 
shrink the coefficient estimates, we principally bring them closer to zero. The need for a 
shrinkage method arises from issues with data underfitting or overfitting. 

J(Θ) =
1

T
[∑ (ΘT X(t) − y(t))2 +  λ∑ θi

2n

i=1
]

T

t=1
                      (3) 

Equation 3 is divided into two parts: the least square function and the term regularization 
to the optimization function. This is a new and improved cost function. The advantage of 
L2 over Linear Regression is that it takes advantage of the bias variance. As λ increases, 
the coefficients get closer to zero. 

The fundamental flaw of Ridge Regression is that it produces a model that contains all (t) 
predictors, regardless of the size of their coefficients, which can be challenging for models 
with a lot of features. This problem is solved via variable selection in L2 by utilizing the L2 
penalty. In contrast to L1 penalty, which considers the coefficient's absolute value rather 
than squaring it. 

3.8. Fundamentals of the Ridge Regression 
 
The scaling of features is an important step in modelling algorithms with datasets.  The 
obtained data includes features of various dimensions and scales. Different scales of data 
features have a negative impact on dataset modelling. It results in a biased prediction 
outcome in terms of misclassification error and accuracy rates. Therefore, prior to 
modelling, the data must be scaled. 

Normalization and standardization are the two most commonly used techniques for 
scaling numerical data before modelling. Standardization is a scaling methodology that 
converts the statistical distribution of the data into the following format to make it scale-
free in equation 4. 

z= 
x− µ

σ
     where µ= 

∑ xn
i=0

count x 
   and σ= 

∑ (xn
i=0 − µ)2

count x
    (4) 

As a result, the whole data set scales with a zero mean (µ) and unit variance. To shift the 
distribution to have a mean of zero and a standard deviation (σ) of one, standardization 
scales each input variable separately by subtracting the mean and dividing by the 
standard deviation. 
Linearity considers that the independent variables and dependent variables have a linear 
relationship. It is significant to validate its performance after building the model. In this 
project, we will focus on residuals and R2 scores. 
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Multicollinearity is based on the assumption that there is no correlation between the 
predictors used in the regression. Using the corr() function from pandas dataframe, we 
can compute the pearson correlation coefficient between each column in our data to see 
if there is any correlation between our predictors. After that, we can use seaborn's 
heatmap() function to display it as a heatmap. 
Because we wouldn't be able to differentiate between the individual effects of the 
independent variables on the dependent variable, multicollinearity can be problematic in 
a regression model. Multicollinearity might not have as much of an impact on the model's 
accuracy. However, we risk losing accuracy in identifying the contributions of specific 
features in our model, which can be trouble for interpretability. 
The following issues could lead to multicollinearity: the issues with the dataset at the time 
it was created may have caused multicollinearity. A lack of ability to manipulate the data 
or poorly designed experiments may be the cause of these issues. If new variables are 
created that depend on other variables, multicollinearity may also happen. Making the 
dataset's identical variables available, a multicollinearity issue can also result from the 
incorrect use of dummy variables and multicollinearity issues can occasionally result from 
a lack of data. 
To assess how well one independent variable is described by the other independent 
variables, the R2 value is calculated. When R2 is high, that means a variable's 
relationship to other variables is highly correlated. As it becomes closer to 1, the 
correlation between the target and estimated variables is considered to be higher. 
To evaluate prediction performance objectively, it is necessary to divide the dataset. Most 
of the time, it is enough to randomly divide the dataset into two subsets: First, we used the 
training set to train or fit our model. For instance, we could use the training set to identify 
the ideal weights for linear regression. Second, a true statement of the final model 
requires the test set. It is not recommended for fitting. Although there are numerous 
packages for data science and ML, for the purposes of this tutorial, we'll concentrate on 
the model selection package's function train test split () from sklearn. 
We can reach the intended behaviour by using optional keyword arguments. The quantity 
of train size specifies the size of the training set. If we provide a float, it must be between 
0.0 and 1.0 and specifies how much of the dataset will be used for testing. If we set it 
to one, the total number of training samples will be defined by an integer. The default 
value is none. Test size is the number that specifies the size of the test set. It is 
comparable to train size. Either the train size or the test size must be specified. If neither 
is provided, 0.25, or 25%, of the dataset will be used for testing by default. We should 
use data that hasn't been used for model fitting to estimate ML models' predictive 
performance objectively. Because of this, we must divide our dataset into training, test, 
and occasionally validation subsets using sklearn's train test split() function. 
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4. METHODOLOGY PROPOSED SYSTEM 
 

4.1. Wi-Fi sniffing 
 
The device sends a specific message which is called Probe Request (PR) which is used 
to recognize the accessible Wi-Fi networks around the device and their information. 
Mobile Wi-Fi devices broadcast straightforward packets known as PRs to discover nearby 
802.11 APs. The MAC address supported data rate, and supported connection to an AP 
are all provided within those unencrypted communications. Packet filtering is the process 
of collecting data on a Wi-Fi channel; it requires a Wi-Fi antenna which supports monitor 
mode and particular software to record packets. It receives answers to connect to the 
network when it sends a burst of these messages with associated a time period. Every 
APs receive PRs within time and replies to the device by sending a probe response frame 
to start the connection. Capturing PR frames is simple like receiving any other Wi-Fi 
frame. It can be done via a compliant receiver set in monitor mode.  
The PRs broadcast management packets by Wi-Fi enabled devices. These are broadcast 
by all Wi-Fi enabled devices regardless of the manufacturer or model of the devices. 
While some devices even utilize the PRs as a less accurate form of localisation, they 
continuously send PRs when Wi-Fi has been switched off. Therefore, these signals can 
be used to identify the occurrence of Wi-Fi enabled mobile devices. The sniffer will 
capture the wireless traffic in the network with the help of a NIC placed into monitor mode. 
Although it is very easy to implement to capture data, such a system must deal with 
several problems [29]. 
Wi-Fi PR records can be passively collected by sensing signals sent by mobile devices 
over the air, that do not need any actions from event participants, in contrast to GPS data, 
which are captured actively [30]. It can reduce manpower costs for data collection while 
covering a much larger population of participants. Furthermore, while GPS can only be 
utilized outside, Bluetooth and Wi-Fi systems can be utilized to monitor crowds both inside 
and outside. Indoor museums examples are studied in [31] and hospitals are studied in 
[32]. Outdoor examples include such that pedestrian commercial districts and 
streets [33]. Bluetooth sensing and Wi-Fi PR records are better suited for monitoring and 
comprehending crowds at a large social gathering. Bluetooth detection records are more 
accurate than Wi-Fi PR records because Bluetooth has a smaller range [34]. However, 
since a mobile device is more likely to have Wi-Fi turned on than Bluetooth, Bluetooth 
detection records have a much lower detection rate, which can be as low as 3% of Wi-Fi 
PR records, based on the research [35]. As a result, in order to ensure the detection rate 
and scalability of this work, Wi-Fi PR records are collected and analysed in order to 
understand crowd behaviours at a large social event. Also since Wi-Fi signal-based 
methods are less affected by light intensity than image recognition-based approaches, 
therefore we applied the Wi-Fi signal-based method. 
Prior studies that used Wi-Fi PRs at social events or in specific environments can be 
divided into two groups based on according to whether the researched areas are outdoor 
or indoor. We are primarily concerned with indoor space in this work. Although previous 
studies have shown the efficiency of mining Wi-Fi PRs to comprehend crowd behaviours 
in both outdoor and indoor settings, the collected data has not been critically analysed. 
Particularly, in previous studies methods used to evaluate the collected data mostly 
include domain knowledge-based processing, visualization and statistics [36]. With the 
fast evolution of ML algorithms, we believe that more supervised learning algorithms for 
mining Wi-Fi PRs should be discovered. As a result, the purpose of this paper is to fill that 
gap. 
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The typical Wi-Fi communication range is approximately 35 meters indoors and more 
than 100 meters outdoors. One can be specified that the location information of devices, 
and consequently of people, by combining the time at which PRs were received, the MAC 
addresses they contained, and the locations of the sensors. For privacy reasons, several 
recent mobile devices have begun to use randomly generated local MAC addresses while 
they are not connected to Wi-Fi, but not all of them have this schema. Less than 50% of 
the sample's devices have randomized MAC addresses, and there is no way to map PRs 
to specific people using just MAC addresses, according to a 2017 study by Martin et al. 
[37]. Additionally, it has been demonstrated that it is still possible to derive important 
conclusions about crowd behaviours from datasets that contain a significant portion of 
randomly generated MAC addresses [38]. 
Each Wi-Fi-enabled device is assigned a physical address by the manufacturer or a 
random address by the software as a security function. This address is also the source 
address property of the PR frame, which can be learned from the packet. The 
randomization of MAC addresses is the development of producing virtual MAC addresses 
by end devices while scanning for AP in the Wi-Fi framework. This is presented to devices 
whose real MAC address remains unknown which stops tracking. The device and AP 
adjust the connection when they find themselves. Afterwards, the device uses its real 
MAC address since only starting from that moment the whole communication is 
encrypted. Some manufacturers send PRs with a randomized MAC address to avoid 
device tracking.  
Subsequent steps have been taken by mobile device developers to make it more difficult 
for someone to be tracked. The timeline in figure 8  shows how Apple and Android have 
implemented security measures in recent years. By 2017, both businesses were scanning 
and searching for potential network connections while randomly generating the MAC 
addresses of mobiles. In 2018, Android introduced randomization when connecting to a 
network, and by 2019, its operating system (OS) had adopted this practice generally. 
Apple recently made progress by randomizing all MAC addresses upon connection and 
rotating randomized MAC addresses every day during 2020. By making any serious 
efforts to crack MAC randomization temporary, the representation of this concept 
assists in further discouraging attackers who can do so. 
 

 
Figure 8. Timeline of Recent MAC Randomization Improvements Made by Apple and Android 

It has become required to hide MACs since, even though these addresses don't 
include any personal details, data cross-checking could still associate it with private 
details. By using disposable interface identifiers users’ privacy has improved. This means 
that PRs do not use the real MAC address of the device. For instance, a new MAC 
address can be used for each scan repetition, where one scan repetition is based on 
sending PRs in all usable channels. It is important to differentiate valid MAC addresses 
from randomized ones to estimate occupancy precisely and avoid overestimation. We 
can use the OUI part of the MAC address to test if the address is authentic or not by 
considering the OUI in the IEEE table of registered vendors. If the OUI is not in the table, 
the MAC address is considered randomized else it is non-random. [37].  
Moreover, as the local bit, when this is set (1) it means that the MAC address is locally 
assigned and does not need to be unique(locally administrative). More than 99% of locally 
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assigned MAC addresses are actually randomized, according to a recent study by Martin 
et al. [37]. As a result, the local bit's presence as in OUI is a significant indicator of 
randomization. 
The MAC address randomization process is managed by the device OS and there aren’t 
standard algorithms for this procedure and each OS applies its own randomization 
operations. The counting methods that use MAC addresses as device identifiers are put 
to the test by MAC address randomization. Such kinds of methodologies have evolved 
as a result of this functionality. 
Linux OS presented the MAC address randomization starting from version 3.18 of its 
kernel. Most Wi-Fi drivers are arranged to change the MAC address every 60 seconds. 
Though, the Linux OS has three methods for assigning a MAC address: use the real MAC 
address, use a totally virtual MAC address or use a partly virtual MAC address keeping 
the first three octets equivalent to the real OUI of the network card manufacturer. 
In Windows OS, the random MAC addresses are used in the PRs and also during the 
authorisation and association periods before the network connection. 
Google announced the randomization of the MAC addresses starting with version 6 of 
Android OS.  This is enabled by default on every device in version 8. Google’s 
implementation uses a set of bogus MAC addresses for network discovery.  
Apple presented the MAC address randomization in iOS version 8. based on laboratory 
works with different models. The iOS devices randomize the MAC address for each burst 
of PRs. In this case, the level of privacy guaranteed is very high. Overall, each 
manufacturer implements special algorithms; the result is a high variability of the MAC 
addresses randomization process. 
A method to avoid Wi-Fi enabled devices from being tracked is MAC randomization. The 
device won't display its actual MAC address while in the air when this option is set. The 
random MAC will be used for all MAC layer operations. The unique MAC address may 
be used by some locations, like malls, shops, or other open spaces, to monitor visitor 
movement. The position tracking and information metrics will suffer from a device's MAC 
address being changed regularly. Few devices will produce various random MAC each 
time when they scan based on the randomly generated MAC lifetime, and they will create 
a different MAC each time they connect to the AP seen in figure 9. Furthermore, only just 
a few devices will produce the same random MAC address each time they connect to the 
same SSID. 

 

Figure 9. Random MAC and Non-random MAC Display in Wireshark 

We expect to capture PRs only from the devices that are around. Though, a sniffer is able 
to capture PRs from all devices in its communication range. That range may be 150 
meters for Wi-Fi [2]. Hence, It is important to decrease the communication range of the 
sniffer to match the threshold of the place. This can be done by setting an RSS threshold 
and considering only probe requests with an RSS higher than such a threshold. 
Nowadays it is common that always carry one Wi-Fi enabled device but this may not be 
always the case. Some people may not have a device or carry a device off or even have 
more than one Wi-Fi device. The number of unique MAC addresses observed from the 
captured PRs can’t be mapped directly to the number of occupants in a space. To solve 
these problems, we can use ML algorithms as a supervised learning model that is able to 
adapt to the specific area under consideration and to its specific conditions. Furthermore, 
randomized Wi-Fi MAC addresses have a many to one relationship with the source 
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devices. To address this issue, we employ a supervised learning model that takes as 
input the two sets of previously described features as well as ground truth occupancy 
data provided manually. 
 

4.2. Capturing Probe Request Data with Wi-Fi Sniffer 
 
In this section, we will now discuss the Wi-Fi sniffing process. PRs are plain text packets 
broadcasted by Wi-Fi mobile devices to discover 802.11 APs in their nearby area [1]. This 
unencrypted message includes source data. Sniffing is the method of collecting data on 
a Wi-Fi channel and needs a Wi-Fi antenna that supports monitor mode and specific 
software to collect packets [39]. 
Many devices can be used to activate monitor mode either out of the box or with modified 
firmware. In addition to enabling packet capture, the monitor mode also allows the capture 
of other physical data means that each record contains fields including MAC address, 
time of detection and RSSI.  No other information about the devices is held to protect 
people's privacy, making it impossible to trace back to specific people [30]. 
Wireless adapters that are installed by default in a computer can not be set in monitor 
mode thus we may need to purchase an external wireless adapter compatible with 
monitor mode that can be connected through a computer port [39]. The packets can be 
captured on a Wi-Fi interface either in managed mode or if the hardware supports it, 
monitor mode as well. The usage of monitor mode is not needed if we are not interested 
in IEEE 802.11 management/control frames or radiotap headers and we only care about 
traffic to/from your capture device. What we'll get instead are packets that have fake IEEE 
802.3 framing. However, in the case of we do care about radiotap information or capturing 
all traffic on a particular channel, we will either require to fit our interface card to monitor 
mode or utility an external device capable of collecting IEEE 802.11 traffic. Note that not 
all Wi-Fi cards support monitor mode and support may vary depending on OS. 

The tcpdump sniffer is used to record Wi-Fi packets. All other packets are filtered out so 
that only Wi-Fi PRs are received which are the only ones in which we are interested. 
These frames are typically transmitted in bursts on each of the Wi-Fi frequency channels 
that are currently in use, with a temporal periodicity that depends on the device's 
manufacturer, OS, and operational mode like active vs. stand-by. In this project, we take 
into account the use of Wi-Fi PRs, which are constantly transmitted from Wi-Fi enabled 
smart devices to accomplish occupancy estimation [19]. Wi-Fi sniffer equipment is utilized 
for passively capturing indoor PRs from Wi-Fi devices such as smartphones and tablets 
that do not require connectivity to a Wi-Fi network. This data is then used to determine 
the occupancy count for each zone [40]. 
Much prior studies in the research have successfully used Wi-Fi sniffers for passive Wi-
Fi packet collection. Nevertheless, there isn't a standard for how to utilize the channel or 
how to listen for packets containing implementation details. When the device searches 
for a nearby network, PRs are sent in bursts across multiple channels. The frequency of 
probes differs depending on a number of factors, including device manufacturer, OS, and 
screen status. When a device's battery is low, it tries to conserve as much power as 
possible by setting a low frequency of PRs [16]. 

Given these limitations, the Wi-Fi sniffer should be able to cover multiple channels and 
receive more frames at the same time. It is unquestionable that rising sniffer density would 
result in more data. A three channel sniffer is typically recommended in an 802.11b/g/n 
(2.4GHz) environment. This requires the sniffing device to have three wireless adapters 
(antennas), with the antennas set to channels 1, 6, and 11; but, this increases the cost 



Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  23 
 
 

and design complexity of these devices. We are especially interested in creating and 
understanding the principles of a channel monitoring scheme. We first only use one Wi-
Fi module for our prediction of the number of people in space, rather than changing the 
number of sniffers or the coverage area [2]. 

Wi-Fi adapters are devices that connect to the internet. Most laptops, tablets, and 
smartphones include a Wi-Fi card. Data is sent from the device to the internet by way of 
packets in a wireless environment by sending a packet request to the router. 

The router receives the requested packet from the internet, and once it has obtained the 
webpage, it sends the information back to the device in the form of packets, controlling 
all traffic to connected devices. Although the promiscuous mode is used for packet 
sniffing, monitor mode (IEEE 802.11) allows you to access all data packets, even if they 
were not sent through this mode and controls traffic received on wireless only networks. 
Monitor mode can collect all of these packets, which are not only directed to their device 
but also to other network connected devices. 
The data captured by the Wi-Fi sniffer contains time stamps that provide the time of 
captured data, the MAC address of the Wi-Fi enabled device and the signal strengths of 
the Wi-Fi device. The Kali Linux OS has been installed to capture data information from 
the equipped Wi-Fi sniffer equipment. The information is saved on the Wi-Fi sniffer 
device's SD card. Although most Wi-Fi devices are used to link to an AP, they can also 
be configured to monitor Wi-Fi traffic, including PRs. Such capacity can be easily obtained 
by using a Linux laptop, empowering the monitor mode on a wireless network interface 
card (NIC), and installing linux based software Wireshark for packet capturing which 
enables to collect all of traffic between adjacent APs and client devices without requiring 
a network connection or data transmission. This means that passively collecting PRs is 
possible using off the shelf hardware. There are numerous portable and small Wi-Fi 
sniffers available that use off the shelf hardware. However, not all data collected during 
PRs is relevant and useful for further analysis. Because not every method works for every 
device, we set the wireless interface to monitor mode by allowing iw configuration using 
airmon-ng, tcpdump to collect and obtain the most relevant elements of PRs efficiently. 
We established the wireless card into monitor mode to be capable of detecting nearby 
devices passively. This study proposes a simple model based on the following steps to 
capture and extract probe requests are illustrated in figure 10. 
 

 
Figure 10. Steps to Collect Wi-Fi Probe Requests 

While collecting PRs, the wireless adapter adds extra information such as radiotap 
headers [11]. Radiotap is a de facto standard that includes data like RSSI, timestamp, 
and channel frequency. However, storing or sending the raw captured data to an SD card 
directly is inefficient because only the following elements are relevant for passive Wi-Fi 
tracking: The Source MAC Address is used as a unique identifier when not randomized, 
while the RSSI can be utilized to predict the distance (that will be useful to set threshold 
value). Due to privacy reasons, the MAC address is randomized on the collecting device 
itself and never sent as clear text. 
 

4.2.1. Configure Interface 
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The sniffing is operating in the Raspberry and the interface has been configured to 
monitor mode and assigned to a particular channel afterwards the data collection has 
begun. This setup configures the sniffing interfaces, begins the sniffing in the indicated 
interface, and saves the captured data in a file for the specified channel. 
 

4.2.3. Data Filtering 
 
Several related works observe that Wi-Fi PRs frames are transmitted with a periodicity of 
2–5 min by most personal devices [41]. The value of the minimum Time to Live (TTL) in 
this work is set to 2 at first. This has the impact of removing inaccurate MAC addresses 
from the estimate for example people passing by the environments. Thus, each PR in a 
burst differs only slightly from the next. This implies that an aggregation duration is 
preferred for more precise measurements. 
Depending on the type of measurement, data should be captured in shorter time periods 
to create a heatmap of nearby devices. While only receiving basic usage statistics, such 
as the number of devices present, the data can be aggregated in a short amount of time. 
It should also be noted that smartphones frequently send PRs in bursts. Such bursts can 
contain up to 50 PRs per second [2] and are utilized to probe for various SSID. 
 

4.3. System Specification 
 
The new approaches use ML models to solve the MAC address randomization issues. 
The objective of counting people is the safety and privacy of information collection and 
generation. Therefore, recognized access and use of the platform should be ensured 
accordingly to the operator’s role and allowed permissions [12]. Furthermore, the 
anonymization methods and therefore the remainder of the protection features should 
provide the chance for compliance with information and data privacy or data protection 
regulations. The platform must be affordable in terms of cost and straightforward to use. 
From the purpose of view of the precision requirement of the system, when estimating 
the number of individuals it’s difficult to determine an actual value. The requirement to 
hide different styles of events and environments suggests that the platform should be 
scalable and versatile, making it possible to update the hardware and software when 
necessary. The design and implementation of the platform should be supported by 
standardizations and open solutions. 
 

4.4. System Requirements 
 
The initial purpose of this research is to collect a series of probe requests and process 
them for counting people. We can do this by using a Wi-Fi receiver to capture and analysis 
of PR frames, data extraction, transmission and storage, analysis of PR frames patterns 
and provide an estimation of the number of people. Finally, we can compare the 
processed people counts to the ground truth. 
 

4.5. System Design 
 
The methodology and system design choices are presented in this chapter. 
We explained the system's aspects and their functionalities, and then explained how the 
developed system works. Because the objective is to reduce costs while increasing 
the accuracy of the solution. Thus we should rely on a radio-based method. Our design 
requires an indoor sniffing device (which is Raspberry Pi in our case). This device would 
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then measure the PRs frames on a timeframe, and compute the estimated number of 
people in each environment using a trained model. 
Despite the fact that each obtained PR allows for the processing of a variety of data from 
the device, two of the most significant for this work are the device's MAC address and the 
RSS indicator. The RSSI measures the power of the received packet in decibel milliwatts. 
These two types of data may be sufficient for trying to perform occupancy estimation: a 
sniffer device receives PR frames for a set period of time, counts the number of individual 
MAC addresses discovered with RSS greater than a certain threshold, and returns its 
prediction. 
We can simply identify features of our samples by integrating these two characteristics. 
As an example, each sampling would collect several PR packets and we would then set 
as a feature the number of unique MAC addresses found with power less than a certain 
threshold. These could be used as features to train the model. 
It takes a few steps to collect and aggregate Wi-Fi PRs. It is essentially divided into three 
major parts, which are discussed in the sections that follow. 
1. The first step includes passively capturing Wi-Fi data with IoT devices. 
2. The second part is the preparation process, which includes cleaning unnecessary 
information and aggregating information over a variable time period. The data can then 
be saved in CSV (Comma separated value) files. 
3. The final step is to process the captured data, which is accomplished by utilizing ML 
algorithms. 
 
The system is described in figure 11 as follows and the detail of the component in the 
block has been discussed in this section. 

 
Figure 11. System Architecture 

The first system component is a data collector which is situated in the area of interest. 
With its implementations, it accomplishes data preprocessing by sniffing Wi-Fi packets, 
capturing PR frames, extracting useful information from these, detecting the current 
timestamp, using anonymized MAC addresses which leads to no privacy issues, and 
saving the data in storage. 
At first, the pre-processing stage is concerned with receiving and storing collected data 
in storage. Then it focuses on data cleaning: RSSI thresholding, creating two different 
features from randomized and non-randomized MAC addresses and calculating the 
number of devices existing in the area of interest. Ultimately, it addresses data analysis 
using ML to determine the number of devices detected and the number of people 
existing.  At the completion of this process, the consumer receives the results of the 
preprocessing such as the number of people in the place and may use this data to 
enhance its business. 
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Figure 12. Flowchart Representing the Data Collector Logic 

Figure 12 depicts the flowchart of the data collector logic. When the data collector is 
turned on and in monitor mode, packet sniffing can begin. Just after that, the Wi-Fi packet 
analyzer will enable us to obtain the data that we captured. It records PR frames. The 
RSSI as well as MAC address information is extracted when a PR frame is 
captured.  When a packet is detected, the timestamp and other details are saved. The 
OUI is used to determine the device's manufacturer, and the local bit is used to determine 
whether the MAC address is random. 
To eliminate other wireless devices and receive only smartphone devices, the list of well-
known smartphone manufacturers is used and checked against. This is achieved by 
comparing the OUI portion of the MAC address to the manufacturer's known OUI. The list 
is created using the manufacturer registered MAC addresses from the IEEE's public 
listing. The list that was used is included in appendix b at the conclusion of this thesis. 
We chose to clean this set as well because we reviewed the OUI table from the IEEE 

standard1 the dataset contains different shapes of MAC addresses as shown in table 1. 
It is required that use some algorithm, that cleans the dataset for the OUI table and we 
checked the 0.000706019 MAC address case which the Python script ignores by 
checking different conditions such as 
         Check 1: ':' is not present in MAC 
         Check 2: '.' is present in MAC 
         Check 3: there is no alphabet in MAC 
 
Apart from that, we checked the first 3 octets of the MAC address in both columns in the 
dataset as seen in table 1. There was a case that combined one column with a comma. 
We also need to ignore empty cells in the dataset since before that we received many 
times errors about the dataset containing “nan” which means that it has an empty cell. 
We ignored the empty current cell in the OUI table by checking if a current cell in the OUI 
table is "empty". After some research, we found a clearer OUI table which consists of 
separately all the MAC addresses and vendor names, the python script work for that as 
well. 

Table 1. List of OUI Mac Address and Vendors 

 
The captured data is received and stored in the pre-processing section. Data cleaning 
and data analysis are the two primary pre-processing functions. Figure 13 depicts the 
diagram representing the pre-processing and cleaning logic. At first, data is received in 
pre-processing when it is posted by the data collector. The information is then saved in 
storage. To remove data from devices that are too far away from the data collector, an 
RSSI-based threshold is used.  The position of the data collector has to be taken into 
account, as well as the space where they are located for cleaning and analysis of the 
data. 
The unique devices are extracted with their existence time. The following parameters 
must be suited to the study case: minimum time and power threshold which helps remove 
the randomized MAC addresses. Ultimately, data analysis is used to estimate the number 

 
1 OUI Table from IEEE standard 

https://github.com/mfatihkoc/master_thesis/blob/main/mac_vendors.csv
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of people who appear in the area of interest. To obtain the final outcomes for example the 
number of people in the space, we implemented ML into this project.  
We searched for randomized unique MAC addresses that have an RSSI greater than 
certain power thresholds. To evaluate randomization, the MAC address's OUI is looked 
it up within the most recent OUI table accessible on the IEEE. 
 

 
Figure 13. Flowchart Representing Cleaning Logic 

If it is not found or if the local bit is set (1), the address is labelled as random otherwise it 
is not random. For instance in column C, there is Apple which will be checked from the 
OUI table and set as a non-random MAC address while ae:2a:79:d1:93:26 will be a 
random MAC address which can be confirmed through local bit is set to 1. Based on the 
power threshold settings, this process will not consider anything beyond that threshold as 
well as a feature. 

Table 2. Filtered Data Samples 

 
Within an aggregation period, multiple RSSI values for a single MAC address are 
possible.  We created a python script for filtering data and we set the power threshold -
70dBm for filtering which leads us to ignore the far distance MAC address since they will 
have less than -70dBm. 
Moreover, by extracting values such as the OUI or the local bit from the MAC address, 
data can already be filtered on the capturing device. This enables us to exclude frames 
with OUI from manufacturers known for producing more connectivity hardware such as 
Apple or Cisco as seen in table 2.  
 

4.6. System Algorithm in Python    
 
There exist two type of MAC addresses in the captured CSV files which are 
Apple_62:8d:05 and 1e:0d:63:d0:0f:59. We indicate if vendorname_xx:xx:xx as a first 
type and xx:xx:xx:xx:xx. And if we see in the dataset “vendorname_” as the first type of 
MAC address and if we see “:” colon as the second type of MAC address. 
We checked these type of MAC address that we collected during our experiments existed 
in the OUI table or not in the both columns. We search for the first type of MAC address 
till “_” underline and the first three octect of the entire MAC address for the second type 
of the MAC address. We converted the second type of MAC addresses to the binary 
format from the hexadecimal since we need to check the first octets' last second bit for 
the local bit assigned. 
In order to avoid collecting distance mobile receivers' MAC addresses, initially, we set the 
alpha power threshold to -70dBm. As we decide to have two features, one feature is 
assigned for the randomized unique MACs greater than alpha power threshold and as an 
another feature non randomized unique MACs greater than alpha threshold power. We 
ignore the current MAC and move to the next MAC address in the case of power less 
than a specific threshold that we set before. In the case of type 1 MAC address, we 
checked whether it is in the OUI table or not and based on that we decided that it is 
random when it is not in the list of OUI table or it is non-random when it is in the list of 
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OUI table. In the second type of MAC addresses case, we check whether the local bit is 
on (1) or off (0) and then based on that we decided whether it is random or non-random 
respectively. 
Pandas package is the most widespread data manipulation in python. The basic process 
of loading data from a CSV file into a Pandas DataFrame is achieved using the “read_csv” 
function in Pandas.  We read both columns of the OUI table to check MAC addresses 
with the help of pandas. We cleaned the dataset of the OUI table since it included not 
clear MAC addresses shapes such as 0.001087963 and empty cell that we ignored both 
cases by checking it consists of “:”, “.” any alphabet or empty cell respectively. 
When we collected the data in CSV files, we observed the different looks of MAC 
addresses as well and need to clean them. There were “192.168.. “ and “fe80:: “ those 
come from networks that we want to ignore. We checked if the MAC addresses not 
includes “:” or include “::” and set them to the empty cell since the Python script will 
already ignore that lines.  
We brought all CSV files we collected in one folder for each experiment and read all CSV 
files in the folder. Since each CSV file indicated like groundtruth_people_vx and in this 
case we were able to take ground truth value y(t) from file names automatically. And for 
the input samples which are our two features we either append values to the end of an 
array or stack arrays in sequence vertically based on the number of elements in the array 
(size). 
As we remove duplicates in datasets afterwards we decide to implement a Python code 
for filtering out duplicates as well. The filtering process works as follows we check the 
power level column and MAC addresses to remove duplicated MAC addresses based on 
the power levels. When we have power less than or equal to the power level threshold, 
we considered that the last of MAC address else sort the column includes power level 
and keep the last after sorting in ascending in this case we were able to keep the closest 
one to the threshold.  
In the ridge regression section, we have alpha, the number of iterations and L2 penalty 
parameters. Initially, we set the weights and bias to zero after that applied gradient 
descent learning. We calculate the gradients with the help of another function for updating 
weights in gradient descent. 
 

4.7. Proposed model for occupancy with Ridge Regression 
Since a smartphone connected to an AP constantly transmits data packets, the number 
of people can be estimated using these packets. When a smartphone is not connected to 
an AP, it typically periodically sends PRs to look for other APs. Every Wi-Fi probe packet 
sent by a customer is captured along with its time, RSS and corresponding transmitter 
address. Every sensor's collected data would be stored on the sniffer itself. A CSV file is 
used to store the data that was obtained. For a simpler method, the data is manually 
copied to a computer and fed to the counting algorithm. The complete system is shown 
in figure 14. 

 
Figure 14. Proposed Model Principle 

https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
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We implemented occupancy estimation employing a single piece of hardware capable of 
sniffing Wi-Fi frames. The market already offers several affordable options for this task 
for instance the €60 Raspberry PI3 model B + is equipped with Broadcom’s BCM2837B0 
chipset capable of 802.11ac/b/g/n. The intended deployment scenario is illustrated in 
figure 15. 

 

 
Figure 15. Implementation of Occupancy Estimation 

As mentioned in section 3, we obtained from the Wi-Fi PRs recorded during time interval 
t mainly two types of features to address the MAC Randomization and RSSI threshold 
issues. 
• randomx(t), xmin < x <xmax a group of features, each of which counts the number of 
randomized unique MAC addresses with RSSIs greater than x dBm in their collected PRs. 
To evaluate randomization, the OUI of the MAC address is searched in the most recent 
IEEE OUI table. The address is labeled as random if it is not found or if the local bit is set. 
• nonrandomx(t),  xmin  < x <xmax  each feature in this set, like the others, counts the 
number of non-randomized unique mac addresses collected in the interval whose RSSI 
is greater than x dBm. It is obvious that selecting the proper threshold is critical for 
accurate occupancy estimation. 

We decrease the RSS with a penalty term in the ridge regression. Vectorization is one of 
the most effective techniques for improving the efficiency of the ML code. ML algorithms 
need a lot of calculations and that can be time-consuming. Assume that we have a 
dataset with 100,000 data points and want to perform some type of operation on each of 
them. If we utilize a regular loop for this, situations will quickly become very inefficient. 
Our code will run much faster if we vectorize our operation and only perform a few large 
vector or matrix operations using something like NumPy. There are 2 different classes 
of ways to solve the parameters to fit the best possible model. In this section, we 
determined two approaches for the ridge regression parameters calculation such as in 
closed form (normal equation) and using an iterative gradient descent algorithm. 

4.7.1. The closed form (Normal Equation) 
 
The linear function (ridge regression model) is defined as: y=f(X)+ ε 
f(X) is a statistical formula written in vectorized form, where it takes the form of the sum 
of p covariance and coefficient products. 

f(X)= θ0 + θ1X1  +  θ2X2 … +  θpxp where X0 = 1 

That is identical to the case of linear regression, except with more covariance. We need 
n × (p − 1)2 for n data samples with p covariance each to compute the response variable 
for a given sample iteratively. 

ŷ=θ̂0 + θ̂1X1+ θ̂2X2 + ⋯ θ̂pXp 
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Consider the following regression problem with N observations (rows) and p predictors 
(columns); 

y=[

y
1

y
2
.

y
n

],   X= [

1 X1,1 ⋯ X1,p

⋮ ⋱ ⋮
1 Xn,1 ⋯ Xn,p

],  θ=[

θ0

θ1

.
θp

],   ε=[

ε1

ε2

.
εn

]   and ŷ =θ̂ X + ε 

where y (vector of outcomes for each of N observations) is n × 1 vector or n dimensional 
column vector, x is n × (p + 1) design matrix each of the N observations is represented 
in a row. We also add in an additional 1 to each observation to account for the intercept 
or ‘bias’ term.  θ is (p+1) × 1 dimentional vector of weigths and  ε is an n dimensional 
column vector. Note that θ0 represents the y-axis intercept of the model and 
therefore x0=1. 
To get our predictions, we multiply our weights by our observations X, a process known 
as matrix multiplication. Each entry of the vector in matrix multiplication takes multiple 
regression equation form. 

ŷ =[

ŷ1

ŷ2

.
ŷn

]=[

θ̂0 + θ̂1 X1,1 + ⋯ θ̂p X1,p + ε1

⋮ ⋱ ⋮
θ̂0 + θ̂1 Xn,1 + ⋯ θ̂p Xn,p + εn

] 

We compute the coefficients using this matrix form by minimizing the sum of squares of 
residuals with the L2 norm. Considering the matrix for the residual n dimensional vector 
for all n samples, which is equivalent to the difference of vectors y and ŷ (our real 
value minus our estimate).   It is worth noting that the prediction is obtained by multiplying 
the weights by the number of observations. The 'e' symbol represents the residual vector. 
 

e=[

e1

e2

.
en

]= 

[
 
 
 
y
1−

ŷ1

y
2−

ŷ2

.
y

n−
ŷn]

 
 
 

= y- ŷ 

In general, pre-multiplying a vector by its transpose yields a sum of squares. RSS close 

form solution can be rewritten as a product of eT e 

RSS = eT e 

RSS = (y −  ŷ)T (y −  ŷ) 
RSS =  (y − Xθ̂)T (y − Xθ̂) 

RSS = (yT −XT θ̂T) (y − Xθ̂) 

RSS = yTy − yTX θ̂ −θ̂
T
XT y +   θ̂

T
XT X θ̂ 

To minimize the RSS, a stationary point referring to a minima is formed when the slop 

with respect to a variable at that point is zero. We need to determine the estimation of θ̂ 

which the partial derivative of the RSS with respect to θ̂ is 0. Since we are in the ridge 
regression case we have following regularized cost function,  

J(θ) = RSS + λ  θ̂
T
θ̂ (vector form) 

Where RSS is residual sum of square comes from least square are in the linear 
regression case. 

J(θ) = (y − Xθ̂  )
T
(y − Xθ̂ ) + λ θ̂

T
θ̂      

J(θ) = (yT −   θ̂
T
XT)(y − Xθ̂ ) +  λ θ̂

T
θ̂     

J(θ) = (yTy −   θ̂
T
XT)(y − Xθ̂ ) + λθ̂

T
θ̂      

J(θ) = yTy −  2 θ̂
T
XTy +   θ̂

T
XT X θ̂+   λ θ̂

T
θ̂      



Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  31 
 
 

We can obtain the above equation by setting the derivative of the linear regression cost 
function (the MSE) to zero and solve for our model parameters. Taking derivative to try 
to estimate of coefficients as following 
 

∂J(θ)

∂ θ
=−2 XTy + 2 θ̂ XT X + 2 λ θ̂ 

θ̂=2 XTy + 2 θ̂ XT X + 2 λ θ̂=0 

−XTy + θ̂ XT X +  λ θ̂=0 

XTy =  θ̂XT X +  λ θ̂ 

XTy =  θ̂( XT X +  λ I) 
The inverse of X−1 of a square matrix X is the unique matrix such that  X−1X = I =
XX−1 . Using the closed form solution we compute the weights of the model by 

differentiating this function, set it equal to zero and solved for θ̂ and we get following 
expression in equation 5. 

θ̂ =

[
 
 
 
 

θ̂0

θ̂1

.
θ̂p−1]

 
 
 
 

  = ( XT X +   λ I)−1  XTy   (5) 

This approach eliminates the need to select a learning rate (α), as GD does not. Since 
identity matrix is scaler with dimensions (n+1) x (n+1) is added with a zero in the top left 
corner to account for the bias (or intercept) term. The solution to this equation, like the 

normal equation for ridge regression, gives us the ideal parameters for our θ̂  
immediately, in one step that solving the normal equation is our best choice in most 
cases. Coefficients are calculated by solving the unknown equation of y and predicting 
the value ŷ. However, if there is a large amount of features, an iterative algorithm such 
as GD may be preferable. 
Instead of solving the normal equation, we can differentiate the ridge cost function to 
achieve its partial derivatives (its gradient) and then use GD to iteratively approach the 
optimal solution. 
 

4.7.2. Ridge Regression with Gradient Descent 
 
We want to implement a low cost system that can predict the number of people. We used 
the ridge regression approach for this. The cost function is also represented by J. Ridge 
regression, like linear regression aims to minimize the RSS however with a slight 
change to fit the training examples as perfectly as possible [28]. As we know, linear 
regression estimates the coefficients using the values that minimize the following 
equation 6. 
 

J(Θ) =
1

T
[∑ (ΘT X(t) − y(t))2]

T

t=1
      (6) 

 
Linear regression adjusts all features and determines unbiased weights to minimize the 
cost function that could lead to the issue of overfitting.  Linear regression is also 
incapable of dealing with collinear data.  In a summary, linear regression is a high 
variance model. Ridge regression is used to solve this problem.  Ridge regression adds 
an L2 penalty (square of the magnitude of weights) to the linear regression cost function. 
This is done to prevent the model from overfitting the data. We use the multiple linear 
ridge regression method because first, we had two independent variables (features) 
later we had more features to overcome underfitting.  
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We have some data as we observed the independent variables xi1 , xi2. . xin and the 
dependent variable (or response variable) y along with it. In our datasets, we had a 
different number of observations for each testbed. Let X(t) be an “n-dimensional” column 
vector achieved by grouping all extracted features from Wi-Fi sniffing during time frame 
t. 

 X(t) = [randomx min(t),… . , randomx max(t) , nonrandomx min(t),… . , nonrandomx max(t)] 
T 

We have n independent variable j=1,2,3.....n and  xij is ith training example of jthfeature.  

xij=(xi1  xi2  . . . xin) 

Now we combined all available individual vectors into a single input matrix of size (t, n) 
and refer to it as the X input matrix, which contains all training examples. 

X(t)= (

x11 x12 ⋯ x1n

⋮ ⋮ ⋮
xt1 xt2 xtn

) 

 
We are trying to determine the best θ and b values. It is used the deep learning (DL) 
conventions θ  and b, which stand for weights and biases respectively. We propose 
estimating the occupancy ŷ(t) using the weighted sum in vectorized form: 

ŷ(t) =  ΘTX(t) =  θ0xi0 + θ1xi1  +  θ2xi2 + ⋯ θjxij … .+  θnxtn 

The relationship between independent and dependent variables is associated by this 
equation because we had two features at first and it is easy to show calculation with that 
in our model that are generalized as follows. 

ŷ(t)  =  b + θ1xi1  +  θ2xi2 
Its significance is that it provides flexibility. Thus, using such an equation, the model 
attempts to estimate a value y, which could be a value we required, such as the number 
of people in the indoor environment. We tried to compare to the ordinary least squares 
(OLS) cost function, ridge regression works with an improved cost function due to the 
effect of the sum of the squares of the coefficients in the L2 term. The optimization 
technique will become easier to solve and shrink the coefficients. This penalty term 
motivates the model to achieve a balance between well fitting the training data and being 
simple. As a result, ridge regression can assist in enhancing an ML model's 
generalizability. 
This function is now lowered to estimate the coefficients. Here, λ is the tuning parameter 
that determines how much we want to penalize our model's flexibility. A model's flexibility 
is represented by an increment in its coefficients, and if we want to reduce the cost 
function, these coefficients must be small. This is how the ridge regression technique 
prevents coefficients from becoming excessively large. 
Notice that except for the intercept β0 we shrink the estimated association of each variable 
with the response. This intercept is a measure of the mean value of the response when 
xi1 = xi2 = …= xip  = 0. If λ = 0, the penalty term has no effect, and the estimates produced 

by ridge regression will be equal to least squares. However, as λ→∞, the impact of the 
shrinkage penalty becomes more significant and the ridge regression coefficient 
predictions will approach zero.  
We essentially used a loss function to compare the predicted ŷ and observed y. The loss 
function can be defined in a variety of forms, however in this work, we specified it as the 
squared difference between ŷ and y. The ground truth occupancy values y(t),  t = 1 . . . T 
is provided to the system when available. In general, the lower the J(Θ) is the better. The 
reconfigured cost function for ridge regression, which includes a penalty term (lambda) 

is given below, where Θ = [ θ1 . . . θn ] T are the weights achieved across regularized 
linear regression as follows; Ridge regression's loss function is: 
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J(Θ) =
1

T
[∑ (ΘT X(t) − y(t))2 +  λ∑ θi

2n

i=1
]

T

t=1
           (7) 

 
This cost is the normalized sum of the individual loss functions. The weights are penalized 
by a positive parameter lambda in this cost function. The cost function is composed of 
two functions. The first is the cost function which is the same as the one used in the linear 
regression model. This term assures that the training data fits correctly. The L2 penalty 
or regularization term is the second term. The goal of this term is to keep the parameters 
as small as possible. 

The calculation in equation 7 depicts ridge regression, in which the RSS is adjusted by 
adding the shrinkage quantity. This function is now minimized to estimate the coefficients. 
The GD method is essential for minimizing the loss function and achieving our goal of 
predicting close to the original value. 

The objective is to make an effort to reduce the difference between ŷ and y because we 
want it to be small. This is accomplished using the (GD) optimization algorithm, the 
weights are updated incrementally after each epoch. To reduce our cost function, we can 
take the partial derivative of J(θ) with respect to θ and equalize it to 0. The derivative of a 
function is nothing more than the change in output of a function caused by a small change 
in input. 

∂J(θi)

∂ θi
   where i=0,1,2, .. , n 

Because this model has n parameters, we have a gradient with n different partial 
derivative components. Each of these will appear as follows: 

∂J(θi)

∂ θi
   = −

2

T
∑  X(t) ( y(t) − ΘT X(t)) +  2λθi

T

t=1
 

GD is an effective optimization algorithm that aims for a local or global minimum of the 
function. An update rule is each iteration of a GD determined parameter weight. This rule 
is determined by the prior weight, the learning rate (alpha) and the gradient of the function 
with respect to n.  To solve the regression coefficient, the normal equation improves the 
loss function. When the model becomes complex, the solution speed becomes 
insufficient to find the regression coefficient. The optimization algorithm was changed to 
the GD method, and its recursive equation is: 
It is basically renewing the values of θ1 and θ2 using the value of gradient, as in this 
equation 8. This algorithm is trying to find the appropriate weights by constantly updating 
them, keeping in mind that we are looking for values that minimize the loss function. 

θi
n+1= θi

n – α 
∂Jθi

n

∂ θi
    (8) 

The equation depicts the steps for training our parameters (weights). This implies 
subtracting the derivative of the cost function with respect to the weight multiplied by the 
learning rate and updating each weight. We compute the derivative of each parameter 
with respect to the cost function for each epoch or iteration and take a step in 
that direction. This makes sure that we reach a minimum. 
In the real world, it is not simple, because the learning rate can be too high or too low, 
causing the system to become stuck in local optima. We set an initial value of θ0 to begin 
iterating in the direction of the negative gradient, moving from θnto the next point θn+1, 
until the function's extreme point is reached (where the gradient value is 0). If we use the 
GD method to find the minimum value of the loss function of ridge regression, the 
expression of each round of iteration is simplified. 
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θi
n+1= (1-2λα) θi

n+ 2 (-
∂J(θi)

∂ θi
) 

The right side of this equation is simply the OLS update rule. The only difference between 
ridge and OLS is in the first term [(1−2λα)θi

n]. Therefore ridge regression is equivalent to 
minimizing the weight by a factor of these multiple terms and then using the same update 
rule as OLS. The regularization causes coefficients to shrink. The GD as shown in the 
equation is dependent on the learning rate, which controls the step size. 
The methodology for training our model is straightforward, with forwarding and 
backpropagation. Training simply includes updating our weight values on a regular basis. 
The graph for the linear regression model with gradient descent is shown in figure 16. 

 
Figure 16. Computation Graph for Linear Regression Model with Gradient Descent 

Here θ1 and θ2  are the weights of their corresponding features like xi1, xi2 and b is a 
constant called the bias as illustrated in figure x. We can review this diagram from top to 
bottom for forwarding propagation and bottom to top for backpropagation. 
Because GD is all about updating the weights, they should begin with some values which 
is known as initialising weights. The GD  model sets these values to zero with np.zeros. 
Weights can be set up in a wide range of ways (zeros, ones, uniform distribution, normal 
distribution, truncated normal distribution, etc.) In this project, we initialised the weights by 
using zeros and the bias with zero. 
 
We can distribute our dataset into equal sized smaller groups. Each group is known as a 
batch and it contains a number of examples known as the batch size. We should obtain 
the number of observations in our data when we multiply these two numbers. For example, 
the test1 dataset contains 26 examples, and because we set the batch size to 1 in this 
training, we get 26 batches in total.  
Since we have the values of xi1 , xi2, θ1, θ2  and b ready, we can compute ŷ(t) .  

ŷ(t)  =  b + θ1xi1  +  θ2xi2 
We can compare how far  ŷ(t) and y(t) data from each other by calculating the loss 

function J(Θ) as defined earlier. 

Let's first compute all the partial differentials before adjusting the weights and biases (θ1, 
θ2 and b). These will be required later when we update the weight. 

                    
∂J(Θ)

∂ŷ(t)  
 = 2{ŷ(t)  -y(t})               Partial derivative w.r.t  ŷ(t) 

       
∂ŷ(t)

∂b  
 = 1                                 Partial differential of ŷ w.r.t. b 

         
∂ŷ(t)

∂θ1 
 = xi1                              Partial differential of ŷ w.r.t. θ1 

         
∂ŷ(t)

∂θ2 
 = xi2                              Partial differential of ŷ w.r.t. θ2 

It should be noted that the partial differentials follow the values from the current batch. 
 

https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843#d864
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Pay close attention to the path from the dark green node to the light green node from the 
figure 16. They collaborate their way up from the bottom. This is GD updating the weights 
with backpropagation and the gradient values. 

       b′= b – α 
∂J(Θ)

∂b 
                   Gradient descent update for b 

Where, b is current value, b’ is value after update, α is learning rate and  
∂J(Θ)

∂b 
 is gradient 

(partial differential of L w.r.t. b). To obtain the gradient, multiplying the paths from L to b 
using the chain rule as following in the equation 9. 

∂J(Θ)

∂b
  = 

∂J(Θ)

∂ŷ(t
  X 

∂ŷ(t)

∂b
                                    (9) 

If we want to write both coefficients and intercepts from our model in one general 
equation, we can compute as follows; 

θi
n+1= (1-2λα) θi

n+ 2 (-
∂J(θi)

∂ θi
) 

After dealing with the first batch, we must repeat the preceding steps for the remaining 
batches, namely examples 2 to 26 for the test1 experiment. When the model has iterated 
through all of the batches once, we complete one epoch. In practice, we extend the epoch 
beyond 1. When our configuration has seen all of the observations in our dataset once, 
we call this an epoch. However, one epoch is almost never sufficient for the loss to 
converge. This number is manually tuned in practice. 
Nevertheless, there is one drawback when our data exceeds 1 million (noisy data), which 
will require more time to upload data and more computational power. We want to 
overcome it, we aim to use GD rather than a close form equation. We also used from 
sklearn library SGD, which takes one random data point and quickly updates the weights 
using that gradient, which has side effects such as a longer convergence time. It may not 
be practical in order to use the normal equation formula.   Although the close form solution 

works in most cases, it becomes computationally infeasible to compute ( XT X +   λ I)−1 
in some cases, such as when the number of features (value of n) is large. Because the 
inverse operation has an O(n3) runtime complexity, it becomes computationally infeasible 
for large values of n.  In some cases, due to a mathematical property known as a 

singularity, (XT X) becomes non-invertible. As a result, the equation's value can not be 
calculated mathematically. It could happen in scenarios where many more features exist 
than the number of observations (T ≤n). 
Since there is the advantage of using an iterative algorithm like GD over a closed form 
solution in general we implement the algorithm that we described before section 4.7.2 in 
python. Because our data was limited, we used our own GD approach in python. 
Following that, we continue to use python sklearn.linear model.Ridge and SGDregressor 
library, which employs linear least squares with L2 regularization. 
 

4.8. Evaluation of Gradient Descent Algorithm  
 
Since it was really challenging to directly implement the model to the estimation task 
therefore before trying our model in our estimation, first we decided to check whether our 
multivariate regression approach is working or not to do that we created two input features 
and a true output value. When we compare the actual and predicted values, it is observed 
that they are close enough to each other which means their predicted values are good.  
When we tried directly to our ridge regression model in estimation before, there were very 
significant error differences between the actual and predicted values. Therefore we 
decided to implement a simple example of our model by creating random values and 
observing at that time we need to clean our dataset more. Because the model indicated 
to us when we had a very significant difference between input samples (features) and 
output labels (actual value) because we developed these datasets specifically to test it. 
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Figure 17. Gradient Descent Algorithm Testing Evaluation 

We observed from figure 17 the actual value versus our predicted value and the 
differences among them. As RMSE is 38.77 and R2 score is 90% which is in the case of 
12 test and 3 train splitting. Since the R2 scores is close to 1 which presents our model 
is good. 90% of the variation in the y values is accounted for by the x values. 
 

4.9. Ethical Considerations  
 
When capturing data about people, we should keep two major concerns in mind: privacy 
and security. Data collection is a controversial topic, particularly since the implementation 
of the general data protection regulation (GDPR) in Europe. In this project, we are only 
interested in obtaining the total number of customers rather than tracking any individual 
customer or person's movement through a store. The protection of privacy has been 
newly followed in compulsory laws like the data protection law of the EU by declaring 
MAC addresses as personal data. Many device manufacturers introduced MAC 
randomization as a preventive privacy method. 
Since our collection method is passive, we do not try to decrypt any data or take any 
active measures to stimulate or alter normal network behaviour while outside of our lab 
environment.   We do not observe personally identifiable information since we limit our 
analysis to 802.11 management frames and unencrypted packets. Even though we 
analyse IP addresses, we do not use these layer 3 addresses in our experiment. Even 
with an IP address, there is no way to match the address to a specific person. There is 
no way to map MAC addresses to specific individuals. Finally, in terms of beneficence 
and respect for people, our work stands with no risk of destroy, while the opportunity for 
network measurement and security gives a general advantage. To sum up, our 
experiments were ruled ineligible for person subject research. 
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5. IMPLEMENTATION 
 

5.1. Occupancy monitoring in indoors using Wi-Fi Probe Requests 
 
This chapter describes how the system's components were carried out. Occupancy 
monitoring is essential because it can be used for things like energy management, 
surveillance, and security. We passively capture PR messages using Wi-Fi Raspberry Pi 
equipment and the information is used to compute the occupancy count at various time 
intervals. 
The implementation is divided into two parts: (a) the data collection device and (b) the 
data processing device. After this chapter , it'll be clear how the system was applied for 
testing and validation, which will be discussed in the following section. 
 

5.1.1. Hardware 
 
Formerly, we aimed to utilize a Raspberry Pi Model 3 B+2 as seen in the figure 18, which 
we already had, and then purchase supplementary Wi-Fi dongles that could be used in 
monitor mode. We then used Raspberry Pi (RPi) 3 Model B +, which has a 1.4GHz Quad-
Core Broadcom BCM2837B0 processor and a 2.4GHz IEEE 802.11b/g/n/ac wireless 
LAN. The Raspberry Pi 3 Model B+ outperforms the Model B in many aspects, including 
a faster CPU speed (1.4 GHz vs. 1.2 GHz), risen Ethernet throughput, and dual-band 
WiFi. 
The Raspberry Pi is a small, inexpensive computer the size of a credit card that connects 
to a computer monitor or TV and operates with a regular keyboard and mouse. With the 
help of this capable little handset, people of all ages can learn about computing how to 
program in Scratch or Python. 32 GB microSD card was also used as mass storage. After 
further research, however we installed the off-the-shelf Kali Linux OS on the RPi. The in-
built Wi-Fi module supports monitor mode, so an external USB WiFi adapter is not 
needed. 
As we were already planning to purchase additional adapter, for that reason we did not 
purchase an additional adapter. With this advancement, we were able to lower the cost 
of the units we needed to purchase. It was decided to use the Raspberry Pi Model 3 B+ 
because it meets many of the requirements: it is relatively inexpensive, has outstanding 
online support, has Wi-Fi capabilities, and we can set it up as a monitor without 
purchasing any additional equipment. Only PRs were logged to persistent memory, while 
the received data frames were collected using tcpdump. 
The resulting dumps were sent to an external computer and transformed to .pcap files 
(packet capture) which Wireshark can open. Each PR message contains the following 
information: the source MAC address, the OUI that identifies the radio chip vendor, the 
RSS of the collected probe packet, and the probe frame timestamp. 
 

 
Figure 18. Raspberry Pi (RPi) 3 Model B + 

 
2 Raspberry Pi Model 

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
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5.2. Ground Truth Management 
 
We created python scripts to manage the ground truth and collect it in the interest area. 
The quantity of people in the room is written on each dataset csv file in a folder, such as 
5 people v1, which indicates the data collected at a specific time as previously dedicated 
with an actual 5 people in the room and v1 is the first sample in  2 minutes. It then saves 
this data as a ground truth value for model estimation. 

 

5.3. Choice of Operating System 
 
Kali Linux3 is a Linux distribution based on Debian that is maintained and funded by 
offensive security. Kali Linux includes hundreds of tools for various information security 
tasks like penetration testing, security research, computer forensics, and reverse 
engineering. Kali Linux is a multi-platform solution that information security professionals 
and nonprofessionals can use. We chose the Linux distribution Kali because it already 
includes a kernel (Re4son-Pi-Kernel)4  that enables us to use the Raspberry Pi in monitor 
mode. 
Therefore a kernel with the firmware patch was used. This produced an image that can 
be captured using the additional new wireless interface wlan0mon. Kali Linux comes with 
a number of useful tools that are ready to use. A complete list of Kali's tools5 can be found 
at the website. We're especially interested in a few wireless-specific tools, as shown in 
the table. Airmon-ng is used to allow wireless interface monitor mode, and tcpdump is 
used to capture Wi-Fi packets [44]. 
List of wireless specific tools is introduced in the table 3. The Airdump-ng can record raw 
802.11 frames to a capture file. Wireshark6 can then be used to analyze this file. The 
airdump-ng is used to list all networks in our nearby area and display valuable information 
about them. Because it is a packet sniffer, it is designed to capture all of the packets that 
surround us while we are in monitor mode. We can operate it against all of the networks 
in our proximity to obtain useful information such as the mac address, channel name, 
encryption type, and number of clients connected to the network before aiming the target 
network. We can also perform it against a specific AP to only collect packets from a 
specific Wi-Fi network.  

Table 3. List of Wireless Specific Tools 

Tools Description 

Airmon-ng  Airmon-ng7 is used to allow and 
deactivate monitor mode on wireless 
interfaces. 

Tcpdump  Tcpdump8 is a robust command line 
packet analyzer. 

Wireshark Wireshark is a network traffic monitoring 
software that operates on a network 
interface 

 
 

 
3 KaliLinux 
4 Re4son Pi Kernel 
5 KaliTools 
6 Wireshark 
7 Airomon-ng 
8 Tcpdump 

https://www.kali.org/
https://re4son-kernel.com/re4son-pi-kernel/
https://tools.kali.org/tools-listing
https://www.wireshark.org/
https://www.aircrack-ng.org/doku.php?id=airodump-ng
https://www.tcpdump.org/


Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  39 
 
 

5.4. Testbed 
 
The first of a four-story office building in Aalborg University's connectivity section was 
chosen as a testbed. We concentrated on a single lab guest office with a floor space of 
about 20 m2. This project's data collection period is on June 2022. Every two minutes, 
data on occupant counts was captured. The Xiaomi mi lite 8 mobile phone was used to 
collect ground truth data at the lab's entrance. The camera's occupant counts would 
represent as the ground truth data. We manually count the net number of people passing 
through each entrance to validate the camera's measurement accuracy. Further, we did 
another test in the canteen with more crowded space. 
 

5.5. Data Capturing 
 
Tcpdump is a command-line packet analyzer for capturing network traffic. While it 
appears standard with many UNIX systems, we also include configuration command in 
our installation script to ensure compatibility with lightweight Linux distributions. Tcpdump 
can not only publish network traffic to the console, however it can also save it to PCAP 
files. The first method was to capture Wi-Fi packets using airodump-ng. Airodump-ng can 
record raw 802.11 frames to a capture file. Wireshark can then be used to analyze this 
file. Tcpdump and airmon-ng were used in combination, and the configurations are 
included in the appendix. Aside from that, the figure 19 shows IEEE informations details. 

 
Figure 19. IEEE Informations Illustration via Wireshark 

We discovered raw 802.11 packets frames in Kali with some configuration9. Interface 
configuration in the appendix tcpdump functions do the following; 

1. check if the interfaces support monitor mode or not 

2. set to monitor mode the interfaces that supports it; 

3. in our case we created wlan0mon wireless interface in wlan0 with the help of 
airmon-ng tool which enables packet capturing and exporting data to text file as 
well without this tool configuration we were not able to see IEEE informations. 
Basically the airmon-ng software to start monitoring on the wlan0mon connection 

4. specifying the channel 6 to the monitor interface that helps us to capture raw 
802.11 frames from the chosen channel 6 

We collect in monitor mode because we are interested in radio layer information about 
packets. We plan to set up Wi-Fi interfaces and capture pcaps of Wi-Fi management 
messages on fixed channel 6, which is in the center of the Wi-Fi spectrum and one of the 
non-overlapping channels. The reason for selecting a fixed channel is that it receives 
more packets [21]. 
The system is designed to produce a dataset containing radio interference captures of 
devices in space. It can collect Wi-Fi packets through interfaces that support monitor 

 
9 Appendix A 
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mode. In monitor mode, the card can listen to all packets that pass by. The mode of 
wireless devices is set to managed by default, which means that the wireless device will 
only capture packets with our device's MAC address as the destination MAC. It will only 
collect packets that are intended for my Kali machine. It's also worth noting that the 
interface's name has changed from wlan0 to wlan0mon as seen in the figure 20. 

 

 

Figure 20. Interface in Monitor Mode 

Regarding this configuration, we capture PRs every 2 minutes and save them in a pcap 
file in wireshark, which is then converted to a csv file and saved in a single folder for 
uploading in a python script. While collecting data, everyone turned on the Wi-Fi network, 
but we had no idea if they were associated or not. The data file includes Wi-Fi channel 
messages in PCAP format as well as CSV tables. Various recording were made for 
different cases (for example, a file named 5 people v1 which indicates 5 number of people 
as an actual data in this case) as seen in the figure 21. The python code will accept the 
first integer as a ground truth. Files were collected in the Connectivity lab at Aalborg 
University in an area with no specific shielding. 
 

 
Figure 21.Captured Data with Tcpdump 

The Wireshark10 OUI lookup tool as seen in the figure 22 makes it simple to find OUIs 
and other MAC address prefixes. It makes use of the Wireshark manufacturer dataset, 
which is a collection of OUIs and MAC addresses compiled from various sources. One 
example is seen 28:a0:2b MAC of first 3 octect addresses to the Apple company. 

  

Figure 22. Wireshark OUI lookup 

The wireshark screen is divided into three sections: the packet list pane, the packet details 
pane, and the packet bytes pane. The 802.11 contains only the 802.11 information, 
whereas the 802.11 radio tap header contains the 802.11 information as well as some 
additional radio information provided by the WLAN interface driver. In Kali Linux, we 
receive 802.11 headers in monitor mode, as shown in the figure 23. 
 

 
10 Wireshark OUI lookup 

https://www.wireshark.org/tools/oui-lookup.html
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Figure 23. Wireshark GUI 

The captured data from the Wi-Fi sniffer is captured and loaded to the computer aimed 
for evaluation in the form of a CSV file. The data sets are then labelled with the ground 
truth value at the start of the CSV file that contains the data. The data sets must then be 
combined into a single large folder. We observed 74 different Wi-Fi mac addresses for 
the case of 7 people in the room, with 495 of Cisco f3:53:80 address among each different 
mac address during test1 case. This means that we had the same Cisco f3:53:80 MAC 
address 495 times. Which meant that we tested the model's performance with a large 
number of observations python script has been implemented for that11. 
 

5.6. Packet Analyzing 
 
Wireshark is a popular network sniffing tool with a GUI for decoding many protocols and 
filters. Wireshark is a network traffic monitoring software that operates on a network 
interface. It is now the most widely used network management software [21]. 
Tcpdump is also a popular network analysis tool because it combines simplicity and 
effectiveness in a single interface. It is a free and open-source network functionality 
licensed under the BSD license. Tcpdump makes use of a commandline interface (CLI) to 
provide packet content concepts in a variety of formats depending on the command. In 
Linux, tcpdump is a network packet sniffer. Essentially, it listens on an interface and 
dumps any packets that pass through it. 
PCAP is an useful tool for file analysis and network monitoring. Wireshark and other 
packet collection software assist you in collecting network traffic and converting it to a 
human-readable format. This pcap file can be established on any device by capturing files 
on that system, sharing them with another device, and analyzing the captured packets 
from this pcap file. Both tcpdump and Wireshark can read pcap files. 
Although wireshark appears to be more efficient than tcpdump in regards to efficiency, 
tcpdump is preferred for its speed in capturing packets. Tcpdump's performance accuracy 
is ideal for rapid scans and packet capture. However wireshark is always the first choice 
for complex scans. 
The reason for using tcpdump instead of wireshark to capture is that capturing requires 
administrative privileges. For example, if you run wireshark as sudo, all of its other 
features will be in administrative mode or at a higher privilege level. As a result, there 
may be some security benefits to running tcpdump as pseudo and then loading the 

 
11 Python script for virtualization MAC addresses 

https://github.com/mfatihkoc/master_thesis/blob/main/virtualization_MAC_addresses_for%20one_dataset_mode_channel.py
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captures into wireshark once the captures are complete. Eventually, Wireshark was used 
to analyze the data, but tcpdump was used to collect it. 
To read and manage the data in the analyzer, we used the Pandas library. Pandas 
DataFrame is used to clean the data and calculate the number of devices. The Sklearn 
library is used to analyze the cleaned data and train the regressor with the help of the 
ground truth. The ML component is implemented using this library. 
Ultimately, we created a script to compute metrics, such as error information, and graphs, 
such as histograms, error distribution, and comparison of detected devices and people 
estimated with the actual number of people present. 
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6.EVALUATION 
 

6.1. Comparison of our model and Python sklearn models  
 
In this section we will demonstrate the evalutaion with different model has been used to 
do this we will use the test1 testbed initially. The first experiment is conducted in an indoor 
university laboratory. The environment has an area of about 20 sqm and is characterized 
by 9 fixed seats and a daily number of occupants between 1 and 7. The measurement 
campaign lasted for several days, and a total of 26 ground truth observation were 
collected. Since the laboratory focus is on wireless communication technologies, with 
daily activities on wireless device testing and experimentation, a great amount of 
background noise in terms of Wi-Fi packets is present in the dataset. The residents were 
also leaving time to time from the laboratory. In addition some of them were carrying more 
than one smartphone. 
 
Also in this section we will be performing linear ridge regression both our model and 
sklearn libraries in Python.  We builded the algorithm that has been introduced in the 
section 4.7.2 close form equation and GD algoritm. The used scikit learn libraries are 
Ridge with cholesky, Ridge with sag, SGDRegressor and lastly SGDRegressor with 
avarege SGD and our own model for the first experiment. Here in ridge library, the 
‘cholesky’ uses the standard scipy.linalg.solve function to achieve a closed form solution 
and the ‘sag’ uses a stochastic average gradient descent. We used our model and 
sklearn.linear model for evaluation. The Python models were created to illustrate 
multilinear ridge regression analysis. 

For the random state working principle, we used Scikit-train test split() and 
LinearRegression() functions. We used the train test split() function to divide the dataset 
into train and test sets . By default, the function shuffles the data before splitting (with 
shuffle=True). The shuffling process is controlled by the random state hyperparameter in 
the train test split() function. When we obtained different train and test sets across different 
executions with random state=None and the shuffling process was out of control. We kept 
random_state = 0 for each experiment. 

We got the same train and test sets across multiple executions when random state=1. We 
got the same train and test test sets across different executions with random state=2, but 
the train and test sets are different from the previous case with random state=1. 

The train and test sets have a direct impact on the model's performance score. Since the 
train test split() function returns different train and test sets with different integer values for 
random state, the random state hyperparameter indirectly influenced the model's 
performance score. 

We got three different RMSE values for the model depending on the integer value used in 
the random state hyperparameter. That brings us an important discussion that which value 
we will accept as the correct RMSE value. We will not accept any single value. Instead, 
we got the average of these RMSE values. It is better to re-run the code as many times 
as possible for example 10 times and get the average RMSE. We did automaticaly this 
with Scikit-learn cross_val_score() function instead of manually. 

Depending on the problem and the dataset, we can use a different algorithm to determine 
the learning rate. The most basic algorithm is to choose a constant, such as 10e-3. 
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We begun by using it and gradually increase or decrease it based on how quickly or slowly 
GD finds the minimum. 

The StandardScaler() function in the python sklearn library allows us to standardize data 
values into a standard format. We begin by constructing an object of the StandardScaler() 
function. Furthermore, we use fit transform() in conjunction with the assigned object to 
transform and standardize the data. 

To avoid overfitting we splited the data into the training set and the testing set. We train 
our model on the training set first, and then use data from the testing set to assess the 
accuracy of the resulting model. Studies have shown that using 20-30% of the data for 
testing and the remaining 70-80% for training yields the best results. Therefore we chose 
the train size and test size with 80% and 20% respectively. 

The same factor lambda is applied to all weights. The hyperparameter lambda can be 
used to control the strength of regularization. There are different cases for tuning 
lambda values such as ridge regression equals linear regression in the case of the 
lambda is set to be 0 also all weights are reduced to zero if lambda is set to infinity. As 
a result, we should choose lambda value in between 0 and infinity. 

The learning rate for GD is an important hyperparameter to set when training a model. 
This parameter, as previously stated, scales the magnitude of our weight updates in order 
to minimize the network's loss function. If learning rate is too low, training will move very 
slowly since of making very small changes to the weights in the model. However, setting 
learning rate too high can result in undesirable divergent behavior in the loss function. 
These examples are depicted below. A small learning rate requirements many updates 
before getting the minimum point. The optimal learning rate swiftly reaches the minimum 
point. A very high learning rate causes extrem updates that points the divergent 
performances. 
We moved through a complete ML pipeline. We begun by loading and displaying the 
information from which we will be learning, while also performing exploratory data 
analysis (EDA). The data then pre-processed, and models built to fit it. This method is 
then evaluated and if it is satisfactory we used it to estimate new values based on new 
input. The dataset contain 18 features input variable and 1 target variable. Since the data 
inputs contains very large number without cleaning and recevied ValueError: Input 
contains NaN, infinity or a value too large for dtype('float64') in our model implementation 
therefore for 18 features we scaled the input samples.  
In the experiments we subdivided power levels in order to increase the number of feature 
as following which previously was considering only -70 dBm and higher power levels as 
seen in the table 4. Apart from that at each power level range we have 2 feature (random 
and non random) same as previously. We did not consider above -75 dbm since above 
this range signals are not probably coming from outside because the size of the room is 
around 20 meter square. 
 
 
 
 
 
 
 
 
 



Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  45 
 
 

Table 4. Features Selection with Power Thresholds 

 
Python12 file is for our new experiment has been created. The dataset details can be 
reached out by following file13 that we had the grouth truth value between 1 and 7.   
In order to decrease the underfiting we increased the number of features to the 18, tried 
to remove some noisy data as described in the section 4.6. Since when number of 
iteration increase the underfitting reduces we pick the value for that 1000 for all the time 
as generally used value. 
The main focus in our work was avoiding the overfitting as we describe in the section 
for that ridge regularization method was used. It depends on the training data size is 
high or not, we increased the training data size to %80 in order to reduce the overfitting. 
This is the one of our reason as well to chose high training set.  
In this section we will represent the data analysis with test 1 experiment other experiments 
result includes same plots simply updating the csv files for each different test the folder 
named14 will show the data analysis. The Python script contains several plots, including 
how the records are distributed for each column and how the actual output is obtained by 
plotting with the features. We begin by analyzing exploratory data. We should first 
familiarize with your data, which contains loading it in, displaying features, examining their 
relationships and formulating hypotheses based on the observations. The dataset is a 
CSV file that includes the features as well as the real output obtained as a ground truth 
value. 
We loaded the data into a data frame using pandas and peek at the first 5 values using 
the head() method as seen in the figure 24. The shape of our dataset is (26,19) checked 
by df.shape property. We have 26 rows and 19 columns that's 26 entries containing a 18 
features and 1 real value. 

 
Figure 24. First 5 values of Data Frame of Test1 

Correlations among numeric values in a DataFrame are calculated and displayed using 
the corr() method. This implies that the predictors in the regression are unrelated to one 
another. To see if there is any correlation between our predictors, we can use the corr() 
function from pandas dataframe to compute the pearson correlation coefficient between 
each column in the dataset. In this figure 25, the first feature has a 1.0 (100%) correlation, 
while the second feature has a 100% correlation to the second feature, and so on. Any 

 
12 Test1 evaluation python script 
13 Dataset for test1 
14 Plot test 1 

https://github.com/mfatihkoc/master_thesis/blob/main/mse_with_duplicates_18_features.py
https://github.com/mfatihkoc/master_thesis/blob/main/test1_18_features_with_duplicates.csv
https://github.com/mfatihkoc/master_thesis/tree/main/plots_test1_EDA
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variable will have a one-to-one mapping to itself. The correlation between the first and 
third features, on the other hand, is 0.29.  Being closer to -1 or 1 is considered a strong 
positive correlation. A high linear correlation indicates that we will be able to predict the 
value of one feature based on the value of another. We also used seaborn's heatmap() 
to identify the strongest and weakest correlations based on (warmer) red and 
(cooler) black tones 

 
Figure 25. Pearson Correlation Coefficients 

We can observe the pairwise correlation between all variables after plotting the correlation 
matrix and color scaling the background. We also included the dependent variable 
real here. This is because selecting the independent variables to include in the model is a 
secret trick for us. In the case of uncertanity about which variables to include in the model, 
simply created a correlation matrix and chose the independent variables that have a high 
correlation with the dependent variable. 

Back to the multicollinearity problem, it is clear from the correlation matrix that is quite a 
few variables are correlated to each other with higher value. There is one pair of 
independent variables with 0.86 correlation which are X10 and X12. "X10" and "X12" 
columns are highly correlated which might cause multicollinearity therefore we may 
remove that one of them however it can cause the remove of the actual MAC address 
and may give us more error at the end for that reason we leave number of feature with 
18. 

In order to improve the accuracy more feature selection can ben improved more in depth. 
Although we already try the model with 2 number of features we did not choose them in 
our model. The reason behind that is with 2 features we were not considering the power 
range, at the beginning we were only setting the power threshold with some value. 
Afterward we decide to increase number of features to 18 as describe in the table 4 
because of the underfitting issue.  

When dealing with a high dimensional dataset, it would be inefficient to use all of the 
variables because some of them may be presenting unnecessary information. We would 
need to choose the right set of variables that provide an accurate model.  It should be 
considered the variables that chosen should not be correlated with one another. 
Using the describe() function to examine the min and max columns of the describe table, 
we can observe that the minimum value in our data is 0 and the maximum value is 1264. 
This means that our data range is very large that implies our data variability is also high. 
Furthermore, it is observed that the means are significantly different from the standard 
deviations by comparing the values of the mean and standard deviation columns, such 
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as 101,42 and 136.25, 256.15 and 333.21, and so on,  That implies our data is far from 
the mean which adds to the variability. 
We already have two indications that our data is spread out, which is not in our favor, 
since it makes it more difficult to have a line that can fit from 0 to 9226 in statistical terms, 
to explain that variability. We improve this by scaling. Because linearity states a linear 
relationship between the dependent and independent variables. In our case since we 
have multiple independent variables, we can do this by using a scatter plot to see our 
predicted values versus the actual values as seen in the figure 26. 

 
Figure 26. Linear Relationship Between the Actual and Predicted Value 

As seen in the figure 27(a) and 27(b) from dataset with 1 actual people counted case 
show us the observations with respect to power level for the non random and random 
MAC addresses. We had 5 sample for 1 actual people for this experiment and plotted for 
each of them seperately. The left and right figure is for random observations  and non 
random observations are presented respectivaly with respect to power levels. The most 
observations are observed between -70dbm and -50dbm in this case with the help of 
python script15.  
 

 
Figure 27 Figure 27 (a). Random Number of Observations       Figure 27 (b). Non-random Number 

of Observations 

We loaded some python libraries we will be using, such as pandas, numpy, matplotlib, 
sklearn, etc. We will also load our dataset into a dataframe by using the pandas library. 
Our dataset consist of 19 columns with 18 features and actual value and 27 rows. We will 
try to predict the number of people depending on its features. 

After setting our X and y sets, we can divide our data into train and test sets. We will be 
using the same random state 0 and 80% of our data for training. After splitting the data, 
we can train our multiple regression model. To train our model we can execute the same 
code as before, and use the fit() method of the ridge. 
After fitting the model and finding our optimal solution, we can also look at the 18 
coefficients of the features in the test1 experiment. In the multiple linear regression model, 

 
15 Python script for plotting random and non random number of observations 

https://github.com/mfatihkoc/master_thesis/blob/main/before_cleaning_dataset_updated_test1_plot_pwr_obs.py


Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  48 
 
 

we have 18 variables and 18 coefficients. Those coefficients meaning that following the 
same interpretation of the coefficients of the linear regression, this means that for a unit 
increase in the first feature, there is a decrease of -0.019 in real value since weight 1 of 
the test1 is depicted -0.019 from our GD algorithm result for more informations we will 
see the comparison of weights in figures later. 
The final step of preprocessing is standardizing. It is essential to bring the values of each 
predictor to a similar scale. Otherwise, some columns will be dominating over others. For 
this context, StandardScaler() is used where the columns are scaled in respect to their 
variance. It is an essential step before applying ridge regression. 
 

6.2. Evaluating the Multivariate Model 
 
In this project, we used a few libraries: pandas to read the dataset file, sklearn.model 
selection to seperate the training and testing datasets, and matplotlib to draw the 
regression line. Following that, we loaded our CSV file to discover the dataset by using 
pd as a pandas reference variable and calling the read csv() function with the file name. 
Before splitting the dataset into training and testing datasets, we must first identify the 
dependent and independent variables. When these variables are ready, we can begin 
splitting up the dataset. 
Then we fited our x and y into a ML model to predict the output,  however before that, we 
have to import the Ridge from the sklearn.linear_model and create an object of the 
Ridge class. 
We will compare the result in different scenario with the behavor of the lamda, learning 
rates. After exploring, training and looking at our model predictions  our final step is to 
evaluate the performance of our multiple linear ridge regression. We want to understand 
if our predicted values are too far from our actual values or not. We did this by calculating 
the RMSE metrics. Our  RMSE value (using GD method) is  1.25 that means that our 
model might get its prediction wrong by adding or subtracting 1.25 from actual value. 
Below figure shows that the result after tuning parameters and achieved best RMSE by 
taking into acount of the L2 term and learning rate. In this work we did not tune the 
iterations, we fixed it always with 1000. The model parameters are setted as test size=0.2, 
random state=0. In order to get not different result each time that is because dataset 
splitting is random by default therefore random state is setted to the zero.  After running 
the function, the output varies. The dataset's samples are shuffled at random and then 
divided into training and test sets based on the size specified. 
The comparison of the models illustrated in the table 5. The model we build by using GD 
achieved lowest RMSE value as 1.25.   
 
A line of best fit is a graph that depicts the general direction that a set of points appears to 
follow. The main goal of line of best fit is to get our predicted value closer to the actual 

value. The better the fit, the higher the R2 value. The testing data yields a higher coefficient 
in this case as seen in the figure 28 higher the R2 with higher the weights. 

 

Figure 28. R2 Score Comparison with Weights 

https://realpython.com/python-random/
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We observed that performance of our model with in given excel16 file is good on test set 
compare to the train set, it is not creating overfitting or underfitting problem (train RMSE: 
1.17) that much but the error might be decrease by tuning more in the future. We observed 
that since during our experiment it was noisy environment, there were some people with 
more than 1 smartphone and some people were moving out time to time therefore the 
error 1.25 is quite expected. 

The illustrations in the figure 29 represented for our model (figure a) and 
sklearn.linear_model libraries such as sgdregressor (figure b),  average sgdregressor 
(figure c), ridge cholesky (figure d) and ridge sag (figure e) respectively in best of line. For 
example, the graphs below demonstrate two sets of simulated data: The observations are 
shown as dots. The model’s predictions (the line of best fit) are shown as a different color 
line. The distance between the observations and their predicted values (the residuals) are 
presented. 

It is known that the larger R2 and the smaller RMSE show the better performance of 
models. We observed that when the R2 is high, the observations are close to the model’s 
predictions. In other words, most points are close to the line of best fit. The model we 
build with GD has quite high R2 value that means the our model prediction is better than 
the other models that been used. 

         
Figure 29 (a)                                  Figure 29 (b)                                    Figure 29 (c) 

                               
                                                Figure 29 (d)                                   Figure 29 (e) 

 
Figure 29. Illustration of 5 Different Models in Best of Line 

Because the scatter plots demonstrate residual points evenly distributed around the 
diagonal line, we can assume that our independent and dependent variables have a linear 
relationship. Since our model RMSE error reached minimum value compare to the other 
relevant model, it is obvious that from the figure 29 of residual points are more closer to 
the diagonal line as expectedly. 
To use the sag solver from Ridge sklearn library, we do not set the step size (learning 
rate) since the solver computes the step size based on your data and alpha.  The step 
size is set to 1 / (alpha_scaled + L + fit_intercept) where L is the maximum sum of squares 
for over all samples. While in the random state hyperparameter is shuffled we obtained 

 
16 Excel file for test1 

https://github.com/mfatihkoc/master_thesis/blob/main/model_parameters_test1.xlsx
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significantly different RMSE values for the model depending on the integer value used. 
We can not accept any single correct RMSE value. Instead, we used the average of these 
RMSE values. It is better to re-execute the code as many times as possible (e.g. 10 times) 
and get the average RMSE. Doing this manually is time comsuming. Instead, we can 
automate this with sklearn cross_val_score() function by setting cross to the 10 and then 
take average of 10 RMSE values and achieved following result in the case of use of ridge 
with ‘sag’ as seen in the figure 30. As a result among 10 different RMSE values average 
RMSE 1.64 is obtained. 

 
Figure 30. Average of 10 RMSE Value 

6.3. Model Parameters 
 
After building our model, we reached few significant values from our model. Those values 
are the coefficients and intercept values of the models. After spliting the dataset we used 
the training set to fit the model. Ridge/sgdregressor creates the object that represents the 
model that fits the model and returns it. With ridge regression, fitting the model means 
determining the best intercept (model.intercept_) and slope (model.coef_) values of the 
regression line. 

The intercept value is the estimated average value of our dependent variable when all of 
our independent variables values is 0. In our case this means that in the case all features 
are 0 we will have about 3.935 real value as seen in the figure 31. 

 

Figure 31. Model Parameters 

The value of θ0 is approximately 3.935. This illustrates that model predicts the response 
3.935 when 𝑥=x1=x2,..,=x17 = 0. An increase of 𝑥 by 1 yields a rise of the predicted 

response by 0.036. Similarly, when 𝑥1 grows by 1, the response decreases by -0.036 and 
so on so far.  

We have 18 coefficients (weights) that represent the relationship of our independent 
variable to the dependent variable, where a change of exactly one in the independent 
variable changes the value of our dependent variable by the same amount as the 
coefficient. 

When using ridge regularization, we must choose the optimal penalty coefficient, 
represented by lambda (alpha in the sklearn library). The penalty for coefficients becomes 
stronger as lambda increases as shown in figure 32. This represents the coefficients 
getting smaller (shrinking) when lambda decreases. The smaller the value of lambda, the 
higher would be the magnitude of the coefficients17.  

 
17 Python script for weights comparison with lamda 

https://github.com/mfatihkoc/master_thesis/blob/main/sag_weights_lamda_comparison.py
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Figure 32. Weights in Change with Lamda Value 

For the stopping criteria, the tol (tolerance) is used. This parameter uses the stopping 
criterion for iterations. This instructs scikit to stop looking for a minimum (or maximum) 
once a certain level of tolerance is reached when it close enough. The value of tol will 
vary depending on the objective function being minimized and the algorithm used to find 
the minimum. 

In the case of SGDregressor we examined the tolerance value for minimum RMSE for 
that we tune the tol parameter, in the case of different lamda and learning rate in different 
tolerance value as seen in the excel file18 we found the minimum 1.772 RMSE value with 
lamda=1 and learning rate= 0.01 and plot in the other tol value as well and observed that 
when tol value is decreases our RMSE value also decreases in this experiment.  We 
stoped when the norm of the gradient is below some threshold19 (tol) is 0.0001 to avoid 
overfitting as seen in the figure 33. 
 

 
Figure 33. RMSE Value Changes with Tolerance Values 

6.4. Model Validation 
 
It is critical that we validate the model's performance after we have built it. We can assess 

a model by examining its coefficient of determination (R2) as we discussed before. The 
coefficient of determination is the percentage of total variation in the dependent variable 
explained by variation in the independent variable. R2 values are calculated as follows in 
the equation 10. 
 

               R2 = 1 − 
∑(outputactual−outputpredicted)2

∑(outputactual−outputmean)2
                    (10) 

 

 
18 https://github.com/mfatihkoc/master_thesis/blob/main/tol_rmse_sgd.xlsx 
19 Python script for RMSE value changes with tolerance values 

https://github.com/mfatihkoc/master_thesis/blob/main/tol_rmse_sgd.xlsx
https://github.com/mfatihkoc/master_thesis/blob/main/comp_tol_rmse_test1.py
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where outputmean is the mean of the actual value of output variable for all data points in 
the training or testing datasets. The indications of other parameters 
(outputactual and outputpredicted ) are the same as the corresponding ones in equation 3. 

Although using input and output trains to test goodness of fit is possible, it is not 
recommended. Test data is used to generate an unbiased estimate of the predictive 
performance of the model. 
In this case, we achieved the R² value is 72.8% for testing and 75.9% for training as seen 
in the figure 34. R² ranges between 0 and 1, where R² =0 means there are no linear 
relationship between the variables and R² =1 shows a perfect linear relationship. In our 
case, we obtained R² score about 0.728 which means 72.8% of our dependent variable 
can be explained using our independent variables. 
 

 
Figure 34. Obtained R2 Score Values in Testing and Training Sets 

Noting that value of lamda which is hyperparameter of ridge model means that they are 
not automatically learned by the model instead they have to be set manually. 
 

 

Figure 35. Predicted Performance in Training (a)  & Predicted Performance in Testing (b) 

The red dots represent the features and real output pairs used for training as seen in the 
above figure 35. The red line, known as the estimated regression line, is defined by the 
intercept and slope of the model fitting results as seen in the figure 35(a). That means 
that it is reflecting only the positions of the red dots. The blue dots show the test set that 
we splitted. It is used to predict the performance of the model with data not used for 
training as seen in the figure 35(b). 

Here is the regression line are fitted in to the actual and predict number of people plot. In 
this experiment we tried to minimize the errors with different models. We measured the 
residuals by implementing the equation 7  with root of the sum of squared of residuals 
(RMSE) with L2 term (ridge regression cost function). 
If the regularization coefficient is too small, the regularization term has no effect on 
training, and thus overfitting may occur. If the regularization coefficient is too large, the 
minimization decreases the values of the parameters regardless of the modeling error, 
and thus underfitting may occur. We observered that in the figure 36 when lamda= 0.01, 
RMSE test is 1.7 and RMSE train is 0.39 and when lamda=10 , RMSE test is 1.015 and 
RMSE train is 1.0759 in ridge cholesky model from sklearn library. As it is seen that 
increase of the lamda reduces the overfitting which means train and test set get closer 
and low bias. 
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Figure 36. Comparison of Testing and Training Data with Lamda 

Similarly, SGDRegressor (loss='squared_error', penalty='l2') and Ridge solves the same 
optimization problem, via different means. For regression with a squared loss and a l2 
penalty, another variant of SGD with an averaging strategy is available with Stochastic 
Average Gradient (SAG) algorithm, available as a solver in Ridge. The concrete loss 
function can be set via the loss parameter. SGDRegressor supports 
loss="squared_error" through ordinary least squares with depends on the lamda value. 
Here, we compared the our model with ridge sklearn library that using the SGD and SAGD 
respectively. Initially, our model had higher error with higher lamda value and the reached 
the less RMSE value with lower lamda value at the end. The other model were tuned with 
tol value and then the figure is depicted. The other two model errors were close to each 
other since they did not use the learning rate and 1000 number of iterations as GD as 
discussed in the section 4.7.2. In contrast to our model they used maximum 1000 number 
of iterations. SGDregressor with average computes the averaged SGD weights across all 
updates and stores the result in the coef_  attribute. If set to an int greater than 1, 
averaging will begin once the total number of samples seen reaches average. Therefore 
average=1000 will begin averaging after seeing 1000 samples. We observered from the 
figure 37 that with SGD higher lamda lower the RMSE in compare to the SAGD, with 
SAGD lower the lamda lower the RMSE. 
 

 
Figure 37. Comparison of Best RMSE with Each Lamda Value 

We compared the result with in different test space that we collected the data and 
observed the details. Ridge model used sag solver that does not include learning rate 
tuning parameter has been done based on the lamda (alpha) value that is 10 and 
tol=0.0001 is reached almost same weigths with our model when we use the  learning 
rate=0.1, lamda=10). As expected, it seems it is surronded to the zero in the figure 38. 

 
Figure 38. Weights Comparison with Our GD Model and Ridge Sklearn Library 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.SGDRegressor
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In order to confirm the final performance comparisons are sincere, we compared the 
models based on errors calculated with the ground truth occupancy data from the testing 
set. Table 5 shows the performance of occupancy estimation models for both training and 
testing sets. 
Based on the research [42] models have a lower variance than OLS models. We 
observed as seen in the table 5, the variance is very low. However, due to the penalty 
term (L2), they usually have a slightly higher bias than OLS models which the model had 
high RMSE value first and then by tuning with lamda value we reduced the bias as well. 
Our model reached the following RMSE values as depicted in the table 5 with the same 
0.001 learning rate value. It shows that increase of the lamda reduces the RMSE with 
same learning rate. 

Table 5. RMSE Value in Training and Testing Sets 

Model (Our GD) Performance 
(Training Set) RMSE 

Performance 
(Testing Set) RMSE 

Lamda=10 14.633 14.979 

Lamda=1 3.277 3.224 

Lamda=0.1 1.445 1.373 

Lamda=0.01 1.25 1.177 

Since after tuning the parameters we reached the lowest RMSE20 value 1.25 in our model 
with lamda 0.01. In the table 6 we observed that how it effect the RMSE value within 
different learning rate between 0.00001 and 0.0121. The table shows that with the 0.001 
learning rate it reached the minimum RMSE on test set and it fits the linear line more 
better that the other case, that conclues that with this learning rate it genarly fit the best 
line of fit22. 

Table 6. RMSE Value in Training and Testing Sets 

Model (Our GD) Performance 
(Training Set) RMSE 

Performance 
(Testing Set) RMSE 

Learning rate=0.00001 5.094 4.998 

Learning rate=0.0001 4.125 4.092 

Learning rate=0.001 1.25 1.177 

Learning rate=0.01 1.452 0.543 

Learning rate=0.1 1.783 0.531 

Oscillating performance can be caused by weights that diverge. Since a learning rate is 
too small it seem in the table 6 it is not converge or may get stuck on a suboptimal solution 
because the error is high. While we increased the learning rate step by step, it seems that 
GD  inadvertently increase rather than decrease the training error even after some point 
we got infinite value. 

Here we plotted the comparison of RMSE value with learning rate and lamda values 
respectively by implementing our GD model to the experiment 1. Figures 39(a), 39(b) 
show the values of RMSE with the increments of learning rate, regularization coefficient 
respectively. It is obvious that RMSE decreases firstly and then increases with the 
increments of learning rate. On the other hand, RMSE stay around same band firstly and 
then increases with the increments of regularization cofficient (lamda). For the moment, 
when regularization coefficient is smaller the regularization term has no impact on training 
that causes overfitting on the contrary, when regularization coefficient gets larger, the 

 
20 Excel file for learning rate vs RMSE comparison table 
21 Excel file for lamda vs RMSE comparison table 
22 Python script for comparison learning rate with RMSE 

https://github.com/mfatihkoc/master_thesis/blob/main/learnin_rate_vs_RMSE_Test1.xlsx
https://github.com/mfatihkoc/master_thesis/blob/main/lamda_rmse_test1.xlsx
https://github.com/mfatihkoc/master_thesis/blob/main/comparison_learning_Rate_RMSE_test1.py


Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  55 
 
 

minimization reduces the values of the parameters regardless of the modelling error that 
causess underfitting. Therefore the model is reached minimum error with 0.003 learning 
rate and 0.1 lamda. 
 

 
Figure 39(a).RMSE with Learning Rate               Figure 39(b). RMSE with Lamda 

 

6.5. Conclusion of Model for the Experiment 1 
 
Our model passed the model validation steps that allows us to conclude that our model 
can predict future population numbers using the 18 independent variables [f1,..,f18]. 
However, our model has an R²  score of 72.8%, implying that there are approximately 
27.2% unknown factors influencing our real value. In addition compare to the other model 
as seen in the table 5. our proposed model achieved 1.25 RMSE value which means that 
we had 1.25 error with actual number of people in the space. 
 

6.6. Performance of Occupancy Prediction Models 
 
In this section we will evaluate the models that we have been used for our experiments. 
In addition to the experiment 1 as before we tested it, we had other experiment scenarios 
as following 
Experiment 2: The second experiment is conducted in the same laboratory as experiment. 
The daily number of occupants were between 1 and 5. The measurement campaign 
lasted for several days, and a total of 49 ground truth observation were collected23. 
Experiment 3: This experiment is also conducted in an indoor university laboratory. We 
call some other people from their office to our lab and the maximum number of actual 
people in the laboratory was reached to 10 this time as seen in the blured picture for 
privacy concern in figure Figure 40 (b). The total of 85 ground truth observation were 
collected in one day. It was challeging the find do capturing experiments since people 
mostly was in vocation.  
Experiment 4: This experiment is conducted in the canteen of university. The environment 
has an area of about 40 sqm and is characterized by around 60 fixed seats and a daily 
number of occupants between 1 and 19. As seen in the figure 40(a) due to fact of privacy 
concern the testbed area picture captured before people coming to the canteen. The 
space was included with kitchen without door and there were an another office just in the 
canteen with other people that we did not count for them as a ground truth. They joined 
the canteen from time to time that caused great amount of background noise in terms of 
Wi-Fi packets is present in the dataset.   The measurement campaign lasted for around 
24 minutes and a total of 32 ground truth observation were collected24. For example while 
recording actual number of people in the room since lastly we were 2 people but at the 
end the dataset I wrote the actual number of people was 4. That is because of that the 
people were moving to the canteen time to time which we were not able to distunguish 

 
23 CSV file for collected data test2 
24 CSV file for collected data in experiment 4 (canteen scenario) 

https://github.com/mfatihkoc/master_thesis/tree/main/csv_files_test2
https://github.com/mfatihkoc/master_thesis/tree/main/test_csv_files_canteen


Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods 
 

F. Koç  56 
 
 

that. This could be improve in the future by using camera or other model to achive the 
ground truth value properly. 

              
         Figure 40(a).  Testbed Experiment 4 (Canteen)      Figure 40(b) Testbed Experiment 3                                    

6.6.1. Final performance comparisons among all models 
 
In this section25 we compared our model with the SGDRegressor library which used SGD 
and SAGD respectively as seen in the figure 41. First we observed that both 
SGDRegressor values quite close to each other as seen in the figure. However SGD itself 
reaches less error compare to the averaged SGD till 0.001 learning rate in each lamda 
afterward they matched among each other perfectly and errors becomes same in both 
model. In the figure 41(b) it is obvious that RMSE reduces initialy and after that increases 
with the increments of learning rate similary with figure 41(c) and figure 41(d). In the figure 
it is observed that in some case the difference is quite far it may occur in the case of the 
tuning parameters with different model may varries the oscillation. Our model reaches the 
optimal (less) error with 0.01 lamda 0.001 learning rate as seen in the figure 41(d). 
 

                 
                               Figure 41 (a)                                                     Figure 41 (b) 

                                   
                                  Figure 41 (c)                                                     Figure 41 (d) 

Figure 41. Comparison of The RMSE Values vs Learning Rate with Different Lamda Value 

According to [43] if the learning rate is too slow, the loss function decreases very slowly, 
whereas if the learning rate is too fast, the cost increases or oscillates as also seen in the 
figure 41. We observed from figure 41 that after we set the learning rate to the 0.3 it 
oscillated which does not seen in the plot. It is clear from the figure that at first our model 
has higher error compare to the other models (SGD and SAGD) although it reaches 

 
25 Python script for plotting learning rate vs RMSE, comparison of model 

https://github.com/mfatihkoc/master_thesis/blob/main/plot_learning_Rate_rmse_comparison%20of_models.py
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lowest error with lamda 0.01 and learning rate 0.001. At last, therefore these tuned 
parameters have been chosen for the optimal value of the RMSE. 
We compared the RMSE with learning rate in 4 different test experiment with our GD 
model in the figure 42. The figure show the values of RMSE with the increments of 
learning rate and regularization coefficient in combine with 4 different test scenarios.  We 
plotted the comparison of RMSE value with learning rate and lamda values respectively 
by implementing our GD model to the 4 different test bed scenarios. Figure 42(a), figure 
42(b), figure 42(c) and figure 42(d) show the values of RMSE with the increments of 
learning rate, regularization coefficient respectively. It is obvious that RMSE decreases 
firstly and then increases with the increments of learning rate with lamda range 1 and 
0.01. And the RMSE increases with the increments of regularization cofficient (lamda). 
The model is reached minimum error with 0.001 learning rate and 0.01 lamda.  
The RMSE26 values of the 4 different test experiments experiment 1, experiment 2, 
experiment 3 and experiment 4 are 1.25, 1.18, 2.0329 and 3.4781, respectively. We had 
higher error in last experiment with maximum number of people 19 in the dataset. That 
was because of the number of people was changing very quickly and while taking 
manually notes we did not matched with the actual number of people at the end. For 
example, while doing experiment we noted 4 people at the end and put that value to the 
algorithm as a real value however it was 2 people. In the experiment 3 the maximum 
actual number of people was 10, the model had higher error compare to the experiment 
1 and 2 where maximum number of people was 7 and 5 respectively. But the second 
experiment includes higher number of samples compare to the first experiment. We 
observed that when the samples and maximum number of the actual people increases 
cause the more error in our experiment but this may not be the case as always. 
 

                          
                      Figure 42 (a)                                                                Figure 42 (b) 

 

                           
                       Figure 42 (c)                                                                Figure 42 (d) 

Figure 42. Comparison of the RMSE with Learning Rate in 4 Different Test Experiment 

 

 
26 Python script for 4 different experiments 

https://github.com/mfatihkoc/master_thesis/blob/main/RMSE_test_value__learning_rate_for_4_of_Tests_using_our_GD_model.py
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7. CONCLUSION 
 
According to the literature review presented in chapter 2, smartphone sensors can be 
used to predict the social density level of the enviroment. We described the some 
fundemantals in the chapter 3. We described our model and data collection processing 
in the chapter 4. The occupancy monitoring in indoors using Wi-Fi Probe Requests has 
been discussed and also carried out experiments, which are described in chapter 5, to 
evaluate the hypothesis. In the chapter 6 we evaluated the model and compared of our 
model and Python sklearn models with in different kind of testbeds. In chapter 7, we 
discussed our results, limitations and future works. 
As smart devices equipped with WLAN communication technologies are becoming more 
and more widespread, the research focus is directed on the opportunities for utilizing 
signaling messages of such communication technology for estimation of number of 
people. The way how a mobile device searches for nearby APs with Wi-Fi probes device 
discovery procedure are transmitted can be exploited to estimate the number of active 
devices in a certain area. This approach allow discovery and counting people carrying a 
Wi-Fi capable device. Since the number of smart devices is constantly growing, that 
makes utilizing Wi-Fi communication technologies realistic and promising for people 
density estimation. 
In this thesis, occupancy prediction is studied by passively monitoring Wi-Fi probe 
requests captured from smartphones. We used a linear ridge least squares technique to 
estimate the number of people for smartphones based on PR data collected at different 
testbeds. Our results demonstrate that PRs can be a practical key for occupancy 
estimation in future smart buildings, which can have application such as surveillance and 
energy management. 
Finally, we conducted occupancy experiments in an indoor environment and conducted 
a detailed study on mission planing which assisted us in capturing various information by 
passively monitoring Wi-Fi PRs captured from smartphones. Our study found that PRs 
could be a practical solution for occupancy monitoring. 
At the first we considered the problem we wanted to solve. And we reseached that there 
have been different approaches using different environment characteristics to find a 
solution. But when accuracy and performance and speed is one of the most significant 
demands for the final solution, there are many limitations with the traditional methods as 
we discussed before.  
For that reason in the experiment section, we tried to tune our model to have low error 
and using an ML lets us modify our configuration dynamically. This distinguishes our 
approach from traditional methods. 
 

7.1. Different Factors Influence the Wi-Fi Probe Requests 
 
We need to collect data and estimate algorithm accuracy as we already discussed. 
Analysis of indoor surroundings has indicated that there are two main challenges of the 
estimation using Wi-Fi probes. The algorithm may give the wrong estimation due to the 
inclusion of Wi-Fi devices that are outside and due to exclusion of people without an 
active Wi-Fi enabled device. We need to show how probes received from people outside 
can be filtered out thus reducing the underestimation problem.  
Many studies have proved that more PRs are captured when channel hopping is not used 
since wireless adapters can only capture on a single channel at any given time. 
As descried in the previous section, the choice of channel is expected not to have an 
important influence on the tests. Freudiger et.al. (2015) experimentally studied how 
different factors have an impact on the WiFi PRs, including monitor channel 
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configurations, number of SSIDs stored in the PNL and device configurations [16]. They 
captured the largest number of probes with three antennas with each set to a fixed non-
overlapping channel. The performance of probes depends on the device manufacturers 
since the number of probes is dependent on the number of known SSIDs. The open 
device screen shows that a fake Wi-Fi beacon in the vicinity will drive more PRs. 
The other possible factors that have impact on the number of received probe packets are 
a number factors including signal strength of the AP, channel utilization frequency and 
the number of devices in the space. 
 

7.2. Constraint of Wi-Fi sniffer 
 
There are factors such as channel capacity and link quality that affect the overall sniffing 
performance. Wi-Fi sniffer limitations are as follows; some people may not carry devices 
with a wireless interface, some people may not have their Wi-Fi enabled device, some 
people may hold more than one device, some devices might have numerous Wi-Fi 
adapters and as the mobile device goes through different venues rapidly some 
transmissions may not be noticed. 
 

7.3. System improvements 
 
We could improve in the future the model while collecting the data in different mode such 
as active-screen modes and inactive-screen modes, power-saving modes, with the 
device keeping the Wi-Fi interface switched off,etc.  
We may be do experiment in following conditions; a group of people was periodically 
checking their smartphones, a group was moving around the place while using their 
devices, a group remained seated, a group was moving around the place without using 
their devices, decision of time duration (etc. 30 mins - 1hour), some group carry not only 
one smartphone, decision of places indoor which can have PR from outside even or check 
outdoor as well seperately, crowdness of area (10-100 people), analyze the behavior of 
system for less and more crowd places respectively, conduct tests in different wireless 
environments to investigate the possible factors that affect the received number of 
packets, compare the sniffing performance with different sniffers in terms of numbers of 
packets, number of devices captured and RSS levels recorded, situations the counting 
task is affected by the number of static devices in the same area (etc. tablet, smart TV) 
collect in some certain period of time of data and manually annotated ground truth to 
validate and evaluate the functioning [21]. 
 

7.4. Future Work 
 
Increasing the Wi-Fi scanning time of 2 to 5 intervals results in more consistent results 
because the sensor device can pick up more PRs. However we may get a higher delay 
from real time. One method for determining an optimal scanning period is to configure 
four identical RP is with the only difference being the time between scans. Furthermore, 
we could also do classification analysis to analyze whether we can improve the   
performance of the prediction. We could expand the range of the area and number of 
occupants in indoor and do experiment. This project can be implemented for public 
transportations, stadiums or hospitals where supporting social distance since the 
nowadays the covid problems rises.  
Also this work can be evaluated to the mobile version by developing a mobile version of 
sensors since the mobile sensors ara part of the same working principle as the Wi-Fi 
sniffer based static sensors.  
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APPENDIX A 
 
Wifi sniffing configuration in Kali Linux with TCPDUMP 
 
$ifconfig     # showing interfaces that are supported 
$sudo ifconfig wlan0 
$airmon-ng start wlan0 # set the wireless interface into monitor mode 
#$iwconfig     # To list the wireless interfaces on the system, Wlan0: wireless line 
interface, eth0, lo will apper, command shows that the mode is set to Monitor 
$sudo ifconfig wlan0mon down   #turn interface down, command is used for disabling 
the #Managed mode 
$sudo iwconfig wlan0mon mode monitor   # command is used to enable interface 
wlan0mon #monitor mode 
$sudo ifconfig wlan0mon up    #interface device up, command is used to enable the 
interface 
$sudo iwconfig wlan0mon chan 6    # set the channel 6 
$ sudo tcpdump -i wlan0mon -w   #captureing packets that specificly specified 
wlan0mon #interface  
$sudo tcpdump -i wlan0mon -w /home #to the file directory 
$sudo timeout 120 tcpdump -i wlan0mon -w    # capturing data till 2 minutes  
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APPENDIX B 
 
List of known smartphone manufacturers 
A list of known smartphone manufacturers [] used to filter out other wireless peripherals. 
The list is compiled from the public listing of the manufacturer-registered MAC 
addresses of IEEE (found at http://standards-oui.ieee.org/oui/oui.txt). 
 

MacPrefix Vendor Name 

00:00:0C Cisco Systems, Inc 

00:00:0D FIBRONICS LTD. 

00:00:0E FUJITSU LIMITED 

00:00:1B Novell, Inc. 

00:00:23 ABB INDUSTRIAL SYSTEMS AB 

00:00:31 QPSX COMMUNICATIONS, LTD. 

00:00:37 OXFORD METRICS LIMITED 

00:00:3C AUSPEX SYSTEMS INC. 

00:00:3E SIMPACT 

00:00:3F SYNTREX, INC. 
  .     . 
  .     . 
  .     . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://standards-oui.ieee.org/oui/oui.txt
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ABBREVIATIONS - ACRONYMS 

IEEE Institute of Electrical and Electronics Engineers 

Wi-Fi Wireless Fidelity 

TCPDUMP TCP/IP Data-Network Packet Analyzer 

WLAN Wireless Local Area Network 

MAC Media Access Control Address 

RFMON Radio Frequency Monitor 

ML Machine Learning 
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