
Department of Mathematics

Master of Science in Mathematics
Direction: Applied Mathematics

Dynamics of Structured Equations
of

Infectious Diseases

Foteini Stoila
M.Sc. Thesis

September 2022





I would like to express my deepest gratitude to my supervisor Prof. Ioannis G.
Stratis and co-supervisor Dr. Vasiliki Bitsouni for their valuable assistance through-
out the preparation process, the guidance, the important advice, but mainly for the
trust they showed me. I would also like to thank my family for their support and
encouragement in any possible way. Finally, I would like to thank Prof. Gerassimos
Barbatis in particular, for his participation in the committee.

This Thesis is dedicated to
Silia, Eleanna, Nick & Luna



Master Thesis Committee

Prof. Gerassimos Barbatis

Dr. Vasiliki Bitsouni (co-supervisor)

Prof. Ioannis G. Stratis (supervisor)



Contents

1 Introduction 1
1.1 Historical note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A brief description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Some simple models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Deterministic Models 5
2.1 Basic elements and notations . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SIR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The classic Kermack - McKendrick model . . . . . . . . . . . . 6
2.2.2 A more realistic scenario . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 The SIR model with demography . . . . . . . . . . . . . . . . . . 19

2.3 SIS models (without immunity) . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 The simplest SIS model . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 The SIS model with demography . . . . . . . . . . . . . . . . . . 24

2.4 SEIR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Venereal diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 R0: herd immunity, vaccination, estimation . . . . . . . . . . . . . . . . 28
2.7 Distributed infection period & variable infectiousness . . . . . . . . . . 29

3 Age-Structured Models 33
3.1 The age of the disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The classical Kermack - McKendrick model . . . . . . . . . . . . . . . . 33
3.3 SI age-dependent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 The SIS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Endemic state and stability . . . . . . . . . . . . . . . . . . . . . 44
3.5 The basic SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Modeling variable populations . . . . . . . . . . . . . . . . . . . 46
3.5.2 The extended Kermack - McKendrick SIR model . . . . . . . . 48
3.5.3 Endemic states for SIR model . . . . . . . . . . . . . . . . . . . . 51

4 Conclusions 55

iii



Abstract

From the smallpox model of Daniel Bernoulli in 1760 to recent COVID-19 pan-
demic, Mathematics have been used in population biology to explain and predict
the infectious diseases outbreaks. With infectious diseases being a leading cause
of death worldwide, particularly in low income countries, especially in young chil-
dren, the study of population models and especially, structured population models
in Epidemiology remains an urgent need. Structured equations distinguish individ-
uals from one another according to characteristics such as age, location, status, and
movement.

This M.Sc. Thesis is an introduction to the Mathematical Models of Epidemi-
ology. The central theme is the study of various epidemiological models, based on
which an infectious disease can develop and spread in a closed population. So, we
will present and analyze such models of ordinary differential equations and struc-
tured epidemiological models of partial differential equations to explain how these
characteristics affect the dynamics of the models and consequently the epidemiolog-
ical processes.



Περίληψη

Από το μοντέλο ευλογιάς του Daniel Bernoulli το 1760 έως την πρόσφατη παν-
δημία COVID-19, τα Μαθηματικά έχουν χρησιμοποιηθεί στην Πληθυσμιακή Βιολογία
για να εξηγήσουν και να προβλέψουν τα ξεσπάσματα μολυσματικών ασθενειών. Με

τις μολυσματικές ασθένειες να αποτελούν την κύρια αιτία θανάτου παγκοσμίως, ιδιαί-

τερα στα μικρά παιδιά σε χώρες χαμηλού εισοδήματος, η μελέτη μοντέλων πληθυσμού

και ιδιαίτερα μοντέλων «με διάκριση πληθυσμού κατά ένα χαρακτηριστικό» στην Ε-

πιδημιολογία παραμένει επιτακτική ανάγκη. Οι εξισώσεις των τελευταίων μοντέλων

διακρίνουν τα άτομα το ένα από το άλλο σύμφωνα με χαρακτηριστικά όπως η ηλικία, ο

τόπος κατοικίας, η κοινωνικο-οικονομική κατάσταση και οι μετακινήσεις.

Η παρούσα μεταπτυχιακή διπλωματική εργασία αποτελεί μια εισαγωγή στα Μαθη-

ματικά Μοντέλα Επιδημιολογίας. Κεντρικό θέμα είναι η μελέτη διαφόρων επιδημιολο-

γικών μοντέλων, βάσει των οποίων μπορεί να αναπτυχθεί και να εξαπλωθεί μια λοι-

μώδης νόσος σε έναν κλειστό πληθυσμό. ΄Ετσι, θα παρουσιάσουμε και θα αναλύσουμε

τέτοια μοντέλα συνήθων διαφορικών εξισώσεων και επιδημιολογικά μοντέλα μερικών

διαφορικών εξισώσεων για να εξηγήσουμε πώς αυτά τα χαρακτηριστικά επηρεάζουν τη

δυναμική των μοντέλων και κατά συνέπεια τις επιδημιολογικές διαδικασίες.



Chapter 1

Introduction

1.1 Historical note

Every year, millions of people all over the world die of infectious diseases, like
influenza, smallpox, tuberculosis, HIV etc. Diseases cause more deaths in the world
than anything else, even wars and famines. The study of epidemics dates back a
long time ago, from the plague of Athens (440 - 428 BC) and the Black Death (14th
century), to AIDS, SARS and the most recent COVID-19. It has led to a wide
variety of epidemiological models and explanations for the cause and the spread of
epidemics.

Some historic pandemics

• Plague of Justinian, from 541 to 542, killed approximately half of Europe’s
population.

• The Black Death of 1347 to 1352 killed 25 million in Europe over 5 years.
The plague reduced the old world population from an estimated 450 million
to between 350 and 375 million in the 14th century.

• The introduction of smallpox, measles, and typhus to the areas of Central
and South America by European explorers during the 15th and 16th centuries
caused pandemics among the native inhabitants. Between 1518 and 1568 dis-
ease pandemics are said to have caused the population of Mexico to fall from
20 million to 3 million.

• The first European influenza epidemic occurred between 1556 and 1560, with
an estimated mortality rate of 20%.

• Smallpox killed an estimated 60 million Europeans during the 18th century
(approximately 400,000 per year). Up to 30% of those infected, including 80%
of the children under 5 years of age, died from the disease, and one-third of
the survivors went blind.

1



2 1.2. A BRIEF DESCRIPTION

• In the 19th century, tuberculosis killed an estimated one-quarter of the adult
population of Europe; by 1918 one in six deaths in France were still caused by
TB.

• The influenza pandemic of 1918 (or the Spanish flu) killed 25–50 million people
(about 2% of world population of 1.7 billion). Today influenza kills about
250,000 to 500,000 worldwide each year.

• The COVID-19 pandemic, also known as the coronavirus pandemic, is an
ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel
virus was first identified from an outbreak in Wuhan, China, in December 2019.
Attempts to contain it there failed, allowing the virus to spread worldwide.
The World Health Organization (WHO) declared a Public Health Emergency
of International Concern on 30 January 2020 and a pandemic on 11 March
2020. As of 5 April 2022, the pandemic had caused more than 494 million
cases and 6.17 million deaths, making it one of the deadliest in history.

1.2 A brief description

The study of the occurrence of a disease is called epidemiology. An epidemic is an
unusually large disease outbreak. If it persists in a population, it is called endemic.
The spread of an infectious disease involves factors which are related to the disease,
such as the infectious agent, the latent and the infectious period, the infectiousness
etc. It also involves social, demographic, geographic and economic factors.

Epidemic models are of great importance since their main goal is to predict the
evolution over time of an infectious disease. We focus on the population of the
infected individuals of the host species and not on the populations of the pathogens
(such as viruses or bacteria). In general, we consider that pathogens invade and grow
within an individual faster than the infection is transmitted from one individual to
another.

A question that arises in any case of epidemic is, given some parameters, the
initial number of infectives and the total size of the population, whether the infection
will spread or not, and if it does, how it evolves over time and when it will start
to decline. For this, we focus on the deterministic models for the single outbreak,
on the endemic infections and mainly, on the age structured models that are more
realistic related to the progression of the disease.

The purpose of the mathematical modeling of epidemics is to identify the pat-
terns of disease, logically describe such events, and provide tools for the investigation
of treatment, for the prevention methods, for estimating the level of population vac-
cination and generally for the control of the disease.

The origin of the models in interest is the early 20th century. Important works
are these of Ross (1916) [46], Ross and Hudson (1917) [47], [48], Kermack and
McKendrick (1927) [33], and Kendall (1956) [34].
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For extensive discussion of topics in Mathematical Biology, the reader may refer
to the corresponding bibliography: [3], [9], [10], [12], [13], [16], [17], [18], [20], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [32], [35], [40], [41], [42]. [43], [44], [45], [50],
[51]. For topics related to ODEs, the reader can refer to the bibliography: [2], [5],
[6], [8], [11], [19], [49], while for topics related to PDEs: [1], [4], [21]. For topics
related in general with concepts and techniques of Applied Mathematics, one can
see: [7], [38], [39]. As for topics related with concepts and techniques of Integral
Equations, one can see [14], [36], [52], [53], while for integrodifferential equations
[15], [37].

1.3 Some simple models

There are some basic types of models for infectious diseases which are spread by
direct contact of individuals in a population. Such simple models are

• SI models, where the infected individuals cannot be cured. Schematically

S → I

• SIR models, where the infected individuals acquire immunity. Schematically

S → I → R

• SIS models, where the infected individuals do not acquire immunity, but after
recovery they become susceptible again. Schematically

S → I → S

• SEIR models, where the infected individuals cannot transmit the disease for
some time, that is the disease is latent. Schematically

S → E → I → R

where

S represents the individuals that are susceptible

I represents the individuals that are infected

R represents the individuals that are recovered, and

E represents the individuals that are infected but they can not transmit the
disease



4 1.3. SOME SIMPLE MODELS

Starting with the classic SIR model named after W.O. Kermack and A.G. McK-
endrick, which has been the main tool for analyzing epidemics, we focus on deter-
ministic models, first for a single outbreak and then on endemic infections. They
are the classical models for epidemic description, which are expressed as initial value
problems based on ODEs.

Subsequently, the models are structured by class-age, that is the time elapsed
since an individual becomes infected, which are expressed as initial value problems
based on PDEs.

In all cases, the basic reproduction number is estimated and the the behavior of
most of the solutions is determined.



Chapter 2

Deterministic Models

There are some basic types of deterministic models, which are formulated as initial
value problems of systems of ODEs. Their mathematical analyses are elementary,
but they provide concepts, intuition and basis for examining more sophisticated
models.

2.1 Basic elements and notations

When we are interested in the infection spread at the population level, we take into
account that the timescale of the pathogen invasion dynamics and the growth within
the host, is negligible compared to the timescale of infection transmission from an
individual to another. At first, we consider a disease such that we can divide the
population into distinct epidemiological classes:

• the susceptibles S, those who are healthy and they can be infected, with S(t)
the corresponding number of susceptibles at time t,

• the infectious, or infective, or infected I, those who have the disease and they
can transmit it, with I(t) the corresponding number of infectious at time t.

• the recovered R, those who have had the disease, or they are immune or they
have been isolated, with R(t) the corresponding number of recovered at time
t,

• the exposed E, that is, the incubation class which consists of the infected
individuals, with the disease being latent between the time an individual is
infected and the time he/she becomes infectious, with E(t) the corresponding
number of exposed individuals at time t.

In order to describe the transmission and the progression of the disease, we
assume that

• susceptibles are infected after getting in contact with an infectious,

5



6 2.2. SIR MODELS

• transitions to classes other than the infectives depend on the progression of the
infection within an individual and not on the interactions between individuals,

• the size of the population is very large (typical of deterministic population
size).

2.2 SIR models

2.2.1 The classic Kermack - McKendrick model

Let S(t) the number of susceptibles, I(t) the number of infectious and R(t) the
number of recovered. We have the following assumptions

i. The rate of removal of the susceptibles is proportional to the number of the
susceptibles and the infectious, namely

dS

dt
= −βSI,

where β > 0 is a constant. It is the per capita rate at which susceptibles
become infected, that is, the rate that the infective class increases (force of
infection).

ii. The rate of removal of infectious to the recovered is proportional to the number
of infectious, namely,

dR

dt
= γI,

where γ > 0 is a parameter called recovery or removal rate and its reciprocal
1

γ
= τ is a measure of the average time spent in the infectious state (average

infectious period).

iii. The period of incubation is considered negligible.

iv. It is just likely for an individual to get in contact with another.

Considering all these assumptions we get the classic (1927) Kermack - McK-
endrick model, [33],

dS

dt
= −βSI, (2.1a)

dI

dt
= βSI − γI, (2.1b)

dR

dt
= γI, (2.1c)

where β > 0 and γ > 0 are the infection rate and the removal rate of infectious,
respectively.



CHAPTER 2. DETERMINISTIC MODELS 7

Adding the equations (2.1a)-(2.1c) and integrating the resulting equation, we get
the total population size N

dS

dt
+ dI
dt

+ dR
dt

= 0 ⇒ S(t) + I(t) +R(t) = N, (2.2)

where
S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0, (2.3)

are the initial numbers of the susceptibles, the infectious and the recovered, respec-
tively.

The threshold phenomenon

Consider a population consisting of I(0) = I0 infectives and S(0) = S0 susceptibles.
From (2.1b), given β, γ,S0 and I0, we get

[dI
dt

]
t=0

= I0(βS0 − γ)
⎧⎪⎪⎨⎪⎪⎩

> 0

< 0
if S0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> γ
β

< γ
β

. (2.4)

From (2.1a) we have
dS

dt
≤ 0⇒ S ≤ S0.

If S0 < Sc =
γ

β
, then S < γ

β
, and

dI

dt
= I(βS − γ) ≤ 0, ∀ t ≥ 0 (2.5)

so I(t) < I0 as t→∞. That is, the population of infectious decreases and an epidemic
can be avoided (the infection dies out).

If S0 > Sc =
γ

β
, then

dI

dt
≥ 0, so I(t) > I0 for some t > 0,

that is, the population of infectious initially increases and an epidemic may occur.
So, we have the threshold phenomenon.

The critical parameter ρ = γ
β

is called the relative removal rate and its reciprocal

σ = β

γ
is called the contact rate of the infection. We define the basic reproduction

number of the infection

R0 =
βS0

γ
,

which is a very important number in epidemiology. It is defined as the average
number of secondary infections by a single infective individual during the infection,
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in a population of susceptibles. It measures the maximum reproductive potential
for an infectious disease. The value R0 > 1 indicates that the infection growth is
positive, R0 = 1 indicates flattening of the infection, while R0 < 1 indicates that the
outbreak will gradually disappear.
Indicatively, the value of R0 for various infectious diseases is shown in the following
table:

DISEASE R0

Measles 12.0 - 18.0
Chickenpox 10.0 - 12.0
COVID-19 (Omicron variant) 9.4 - 9.6
Polio 5.0 - 7.0
COVID-19 (Delta variant) 5.0 - 5.2
Smallpox 3.5 - 6.0
COVID-19 (Alpha variant) 4.0 - 5.0
HIV/AIDS 2.0 - 5.0
SARS 2.0 - 4.0
Common cold 2.0 - 3.0
Monkeypox 1.5 - 2.7
Influenza (1918 pandemic strain) 1.9 - 2.1
Ebola (2014 outbreak) 1.4 - 1.8
Influenza (2009 pandemic strain) 1.3 - 2.0
Influenza (seasonal strains) 1.2 - 1.4

In reality, both β and γ are functions of time since they change with hygiene, lock-
down, medication, vaccination, and other measures. However, the biggest limita-
tion of this model is that it assumes these parameters to be constant. Likewise, it is
worthwhile to compute and track the reproductive number at all time points instead
of computing only at the beginning. This tracking can be very helpful because it
shows whether the epidemic is increasing (R > 1) or decreasing (R < 1) and hence,
corrective measures can be taken.

Dividing (2.1b) by (2.1a), we get

dI

dS
= −(βS − γ)I

βSI
= −1 + γ

βS
. (I ≠ 0) (2.6)

Since all the singularities lie on the I = 0 axis, we consider I ≠ 0. We can get the
(S, I) phase plane trajectories by integrating (2.6)

I + S − γ
β

lnS = const. = c.

Using (2.3) we get

c = I0 + S0 −
γ

β
lnS0,

so

I + S − γ
β

lnS = I0 + S0 −
γ

β
lnS0 ⇒ I = N − S + γ

β
ln
S

S0

, (2.7)
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where I0 + S0 = N,R(0) = 0, and for t > 0 we have 0 ≤ S(t) + I(t) < N,R(t) > 0.
Figure 2.1 illustrates the susceptibles - infectious phase plane trajectories.

Figure 2.1: Phase plane trajectories for problem (2.1).

One of the questions that arise is how severe an epidemic that bursts can be.
First, we can calculate the maximum I, from (2.5)

dI

dt
= 0 ⇒ I(βS − γ) = 0 ⇒ S = γ

β

so (2.7) becomes

Imax = N − γ
β
+ γ
β

ln( γ

βS0

) . (2.8)

From (2.1a)
dS

dt
< 0, S ≠ 0, I ≠ 0, that is, S decreases. Dividing (2.1a) by

(2.1c), we get

dS

dR
= −βS

γ

⇒S = S0 exp(−βR
γ

) ≥ S0 exp(−βN
γ

) > 0

⇒0 < S(∞) ≤ N.

(2.9)
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Since the infectious population decreases as t → ∞, that is, I(∞) = 0, we get from
(2.2)

S(∞) = S0 exp [−βR(∞)
γ

]

⇒ S(∞) = S0 exp [−β(N − S(∞))
γ

] , (2.10)

so, S(∞) is the positive root of (2.10).
The total number of infected individuals is

Itotal = I0 + S0 − S(∞). (2.11)

It is clear that I(t)→ 0 and S(t)→ S(∞) > 0.
In order to apply a model to actual epidemic situations, it is important to know

the removal rate of the infectious to the recovered, that is
dR

dt
. So, from (2.9), (2.2)

and (2.1c), we get

dR

dt
= γI = γ(N −R − S) = γ (N −R − S0 exp [−βR

γ
]) , R(0) = R0. (2.12)

If
βR

γ
is small (that is, a small epidemic), we approximate (2.12) by

dR

dt
= γ [N − S0 + (βS0

γ
− 1)R − S0R2β2

2γ2
] ,

[33], which ends up to the solution

R(t) = β
2

S0

[(βS0

γ
− 1) + α tanh(αγt

2
− φ)]

α = [(βS0

γ
− 1)

2

+ 2β2S0(N − S0)
γ2

]
1/2

, φ =
tanh−1 (βS0

γ
− 1)

α

(2.13)

and then
dR

dt
= γα

2γ2

2β2S0

sech2 (αγt
2

− φ) (2.14)

with three parameters, that is,
α2γ3

2β2S0

, αγ, and φ.

If
βR

γ
is large, we determine R(t) solving numerically (2.12).

Summarizing, there are the following limitations of the classical SIR model:

1. Generally, the SIR model assumes all parameters β, γ, and R0 to be constant,
while in real scenario, these parameters would be changing with time.



CHAPTER 2. DETERMINISTIC MODELS 11

2. The solution to the model is computed numerically and hence, the model has
limited tracking and prediction ability.

3. The initial infected population I(0) is small at the beginning of the epidemic.
At the end of the epidemic, its final value should be zero, i.e., I(∞) = 0, which
is not ensured in the classical SIR model.

4. The initial removed population is R(0) = 0, because there is no recovery at
the very beginning of the epidemic. Once the epidemic is over, there must
be complete removal by recovery and deaths. Thus, R(∞) = K, where K =
∫
∞

0 I(t)dt, is the total size of the population infected over the entire period of
the epidemic. However, this is also not ensured in the classical SIR model.

5. The initial susceptible population, S(0) = N − I(0), is close to the total pop-

ulation N . Since
dS(t)
dt

≤ 0 is a negative-valued function of time, S(t) ≥ 0 is

also a decreasing function of time. Therefore, its final value must be zero, i.e.,
S(∞) = 0. However, this is not ensured in the classical SIR model.

2.2.2 A more realistic scenario

In a more realistic scenario the parameters that denote the per capita rate at which
susceptibles become infected and the rate at which infectives recover from disease
are functions of time t. Let

• λ(t) = the per capita rate at which susceptibles become infected (force of
infection). It is related to the mechanisms individuals contact each other and
to the infectivity of the pathogen that causes the disease.

• γ(t) = the rate at which infectives recover from disease, (removal rate). It is
inherent in the disease progression in each infected individual.

In order to conclude in a simple form of the force of infection adopted by the
most models, we make the following assumptions

i. the population is mixing homogeneously,

ii. the whole population is active,

iii. the contact rate is independent of the size of the active population,

iv. all contacts with infectives are equally infectious.

So, we get

λ(t) = c(t)χ I(t)
N(t) ⇒ (2.15)

λ(t) = β

N
I(t), (2.16)

where
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• c(t) = the per capita contact rate, that is the average number of contacts per
individual per unit time

• χ = infectiousness of one contact with an infectious, which shows the proba-
bility of transmission per contact of an infectious with a susceptible.

• β = cχ = the average number of individuals infected in unit time, given that
the contact rate c is constant.

• N(t) = S(t)+ I(t)+R(t) = N = total population, and it is a parameter of the
problem.

•
I(t)
N(t) = prevalence, denotes the probability that a random contact is infec-

tive.

• j(t) = λ(t)S(t) = incidence, that is the number of new infections at time t

We also assume, as in the simplest form of the SIR model, that the progression
of the disease is the same in any infective individual, and that the probability for an
individual to recover in any time is independent of how long he has been infected.
So, the removal rate, which measures the average fraction of individuals that recover
per unit time, is a constant. Furthermore, the probability for an individual to be
still infectious for time t after he was infected is

Π(t) = e−γt,

and, the average duration of the infection, namely the infectious period is

τ = 1

γ
.

Assuming that there are no births or deaths in the population during the epi-
demic outbreak due to demographic dynamics or the disease, that is the demographic
changes are negligible, the SIR model is sketched in Figure 2.2 and it is described
by the following system of ODEs:

dS

dt
= −λ(t)S(t), (2.17a)

dI

dt
= λ(t)S(t) − γI(t), (2.17b)

dR

dt
= γI(t), (2.17c)

where

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0, and N(t) = S0 + I0 +R0 = N, t ≥ 0.
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Figure 2.2: The SIR model for diseases which impart immunity. Suscptibles are
infected at a rate λ(t) and infected individuals recover at a rate γ(t).

Using (2.16) for the force of infection, the (2.17) becomes

dS

dt
= − β

N
I(t)S(t), (2.18a)

dI

dt
= β

N
I(t)S(t) − γI(t), (2.18b)

dR

dt
= γI(t). (2.18c)

Concerning the duration of the infection as time unit, the susceptibles, the in-
fectives and the recovered as fractions of the total population N , and renaming t̃ as
t, we can scale the system with the transformation

t↦ t̃ = γt, S ↦ u = S

N
, I ↦ ν = I

N
, R ↦ w = R

N
, (2.19)

and finally, we get

du

dt
= −R0u(t)ν(t), u(0) = u0, (2.20a)

dν

dt
= R0u(t)ν(t) − ν(t), ν(0) = ν0, (2.20b)

dw

dt
= ν(t), w(0) = w0, (2.20c)

where
R0 =

cχ

γ
(2.21)

is the basic reproduction number, and u0, ν0,w0 are the initial conditions for which
we have

u0 > 0, ν0 > 0, w0 ≥ 0, u0 + ν0 +w0 = 1. (2.22)

The system (2.20) has a unique positive solution. Furthermore, for any solution we
have u(t) + ν(t) +w(t) = 1. From (2.20a) we get

du

dt
< 0 (2.23)

that is, u(t) is a decreasing function, so

u(t)→ u∞ ≥ 0 as t→ +∞ (2.24)
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In addition, from (2.20c) and the initial conditions (2.22) we get

w(t) −w(0) = ∫
t

0
ν(s)ds ⇒ w(t) = w0 + ∫

t

0
ν(s)ds = 1 − u(t) − ν(t) ≤ 1

so ∫
∞

0
ν(s)ds < +∞ and

ν(t)→ ν∞ =1 − u∞ − ∫
∞

0
ν(s)ds +w0 ≤ 1, as t→ +∞

⇒ ν(t)→ 0 as t→ +∞

since ν(t) is integrable in (0,+∞) and it converges.
Although we conclude that the number of susceptible individuals is reduced to

u∞ and that the epidemic extincts, we are interested in the way it behaves. Consider
(2.20b)

dν

dt
= R0u(t)ν(t) − ν(t) = (R0u(t) − 1)ν(t),

and let

u0 ∶ the initial susceptible fraction,

R0u0 ∶ the initial number of secondary cases produced by a single infectious,
which must be greater than 1, in order for an epidemic to breaks out.

R0u(t) ∶ the number of individuals infected as the infection goes on. Since u(t)
decreases, R0u(t) decreases too. So, there is t∗ such that R0u(t∗) = 1, and for
t > t∗ it becomes R0u(t) < 1.

So,

if R0u0 ≤ 1 ⇒ dν

dt
< 0 for t > 0,

if R0u0 > 1 ⇒
dν

dt
> 0 for t < t∗,

dν

dt
< 0 for t > t∗,

respectively. So, ν(t) maximizes at t∗, when R0u(t∗) = 1. The corresponding thresh-
old criterion for an outbreak, that is, an epidemic occurs if and only if

R0u0 > 1 (2.27)

At the same time t∗, the fraction of susceptibles becomes

u(t∗) = 1

R0

. (2.28)

For t > t∗ ⇒ u(t) < u(t∗) the infection is no longer maintained.
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Figure 2.3: Solution for problem (2.20) and the threshold condition for an outbreak.
(a) IfR0u0 < 1, the infective fraction ν(t) decreases, independently the initial fraction
ν0. (b) If R0u0 > 1, the infective fraction increases before dying out; the maximum
prevalence occurs at t∗ such that R0u(t∗) = 1.

The size of the epidemic, that is the fraction of individuals that has been infected
during the epidemic, if ν0 ≈ 0, is

w∞ −w0 = 1 − u∞ − (1 − u0 − ν0) = u0 + ν0 − u∞ ≈ u0 − u∞.

In order to estimate the final size of the fraction of susceptibles u∞, we work on
(2.20a), and we have

u(t) = u0e
−R0 ∫

t
0 ν(s)ds,

where

∫
t

0
ν(s)ds = 1 − u(t) − ν(t) −w0,

concluding that

u(t) = u0e
−R0(1−u(t)−ν(t)−w0), (2.29)

from which we get

ν − 1

R0

lnu + u = c, (2.30)

where the constant

c = ν0 + u0 −
1

R0

lnu0

depends on the initial values. Figure 2.4 illustrates a (u, ν) phase plane trajectories.
Also, as t→∞,

u∞ = u0e
−R0(1−u∞−w0). (2.31)

Define

H(z) ∶= z − u0e
−R0(1−z−w0). (2.32)
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Figure 2.4: Phase plane trajectories for problem (2.20). Different trajectories (2.30)
are drawn for the same value of R0 and different values of the constant. The feasible
region is the triangle delimited by the line u + ν = 1. The curves are described from
right to left. At the critical value u∗ for which R0u∗ = 1, the infected fraction u
begins to decrease. If a solution starts at a point with u0 < u∗, there is no epidemic
outbreak. Each curve ends on the u axis, at u = u∞.

Then u∞ is a root of H(z) in [0, u0] and, since

u(t)↘ ⇒ u∞ < u0,

we have

H(0) < 0, H(u0) > 0 and H ′′(z) < 0,∀z,

hence, (2.32) has the unique solution u∞ in the interval (0, u0).
Plotting the function H(z), we come to some conclusions about the size of u∞

and the way threshold influences it, and so,

(a) if

R0u0 < 1⇒ u∞ → u0,

(b) if

R0u0 > 1⇒ u∞ → 0.



CHAPTER 2. DETERMINISTIC MODELS 17

Figure 2.5: H(z) graph and the final size of the susceptible fraction (a) if R0 < 1 and
(b) if R0 > 1.

The pandemic case
In case that an infection enters a population with no immunity, i.e.

w0 = 0, u0 ≈ 1, ν0 << 1,

the function (2.32) gets the form

H(z) ∶= z − u0e
−R0(1−z). (2.33)

From the corresponding plots 2.6, 2.7, we have that as u0 → 1, ν0 → 0, the size
u∞ that the susceptible fraction finally gets, is the root of

z − e−R0(1−z) = 0. (2.34)

Particularly, we have the threshold theorem for a pandemic

• if R0 ≤ 1 then u∞ = 1, i.e as ν0 → 0⇒ ν∞ → 0,
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Figure 2.6: The pandemic case if R0 < 1.

Figure 2.7: The pandemic case if R0 > 1.

• if R0 > 1 then u∞ is the smallest solution to (2.34), which means that as
ν0 → 0⇒ ν∞ → w̃∞ = 1 − ũ∞ > 0. This represents the population fraction that
recovers after an infection is introduced by a very small fraction of infected in
a population consisting of susceptibles.

The quantity w∞ is a function of R0.
The parameter R0, which defines the final impact of a pandemic, along with

the knowledge of the initial immune fraction w0, it defines the final impact of any
epidemic, as u∞ is a root of (2.32). Linearizing (2.20b) near an initial condition
(u0, ν0) we have

dν

dt̃
≈ (R0u0 − 1)ν(t̃).

The fraction of infected has exponential initial growth, and knowing the parameter
R0 and the susceptible fraction we can determine whether or not an epidemic can
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be avoided.

2.2.3 The SIR model with demography

There are cases that we are interested in exploring the longer-term persistence and
endemic dynamics of an infectious disease. Two different mechanisms may lead to
disease endemicity. One of them is the demographic processes, especially the new-
borns susceptibles, and the other is related to diseases that do not impart immunity.

In order to analyze the effect of demographic dynamics, we consider the SIR
model with a simple Malthusian dynamics included. Assuming that

• births and deaths have the same rate µ in any class, which does not depend on

the disease (then,
1

µ
years is the natural host ”lifespan”), and so the population

size does not change through time,

• the newborns enter the susceptible class,

a more generalized SIR model is:

dS

dt
= µN − β

N
S(t)I(t) − µS(t), (2.35a)

dI

dt
= β

N
S(t)I(t) − γI(t) − µI(t), (2.35b)

dR

dt
= γI(t) − µR(t), (2.35c)

Since R(t) = N − S(t) − I(t) we get the reduced system

dS

dt
= µN − β

N
S(t)I(t) − µS(t), (2.36a)

dI

dt
= β

N
S(t)I(t) − γI(t) − µI(t), (2.36b)

where

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0,

the initial conditions.
In this case, the total exit rate from the class of infectives is γ + µ, and so, the

number of secondary infections in a population consisting of susceptibles, namely,
the reproduction number R0, is given by

R0 =
cχ

γ + µ,

and it is smaller than R0 for a closed population, because the average time an indi-

vidual is infectious, τ = 1

γ + µ , is reduced by the natural mortality rate.
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In order to scale the system we perform the transformation

t↦ t̃ = (γ + µ)t, S ↦ u = S

N
, I ↦ ν = I

N
, R ↦ w = R

N
,

and then we have

du

dt
= α(1 − u(t)) −R0u(t)ν(t), (2.37a)

dν

dt
= (R0u(t) − 1)ν(t), (2.37b)

where
α = µ

γ + µ (2.38)

is the demographic mortality.

The equilibrium state

From (2.37a) and (2.37b) we get

du

dt
= 0

dν

dt
= 0

⇒
α(1 − u∗) −R0u

∗ν∗ = 0

(R0u
∗ − 1)ν∗ = 0

⇒

• u∗ = 1, ν∗ = 0, the disease free equilibrium F, which always exists, and

• u∗ = 1

R0

, ν∗ = α(1 − 1

R0

), the endemic equilibrium E, which is feasible for

R0 > 1, and it belongs to the region {u ≥ 0, ν ≥ 0, u + ν ≤ 1}.

Linearizing (2.37), we have the Jacobian matrix

J = (−α −R0ν −R0u
R0ν R0u − 1

) .

i. At F ≡ (1,0), it becomes

J(F ) = (−α −R0

0 R0 − 1
) .

The corresponding eigenvalues are

λ1 = −α and λ2 = R0 − 1,

so,

for R0 < 1, the equilibrium F is asymptotically stable,
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for R0 > 1, the equilibrium F is unstable.

ii. At E ≡ ( 1

R0

, α(1 − 1

R0

)), which exists only for R0 > 1, the Jacobian matrix

becomes

J(E) = ( −αR0 −1
α(R0 − 1) 0

) ,

for which

traceJ(E) = −αR0 < 0, and detJ(E) = α(R0 − 1) > 0,

so, the corresponding eigenvalues have negative real parts, and consequently,
equilibrium E is asymptotically stable.

The computation of the eigenvalues of J(E) leads to the characteristic polynomial

λ2 + αR0λ + α(R0 − 1) = 0,

from which

λ± =
−αR0 ± i

√
4αR0 − α2R2

0 − 4α

2
,

for R0 ∈ (R−
0 ,R

+
0), where

R±
0 =

2

α
(1 ±

√
1 − α) > 1.

The approximate time (T̃ = 2π/ω in the scaled time units) elapsed from one maxi-
mum to another, and the corresponding damping of the solution after one oscillation,
∆, can be taken by the eigenvalues λ± = b ± iω.

T = 2πτ

ω
= 4π

(µ + γ)
√

4αR0 − α2R2
0 − 4α

, (2.39)

and
∆ = ebT̃ = e−αR0T̃ /2. (2.40)

For most diseases in common, α ≈ 10−2 − 10−4, that is, the average period an in-

dividual is infected is much sorter than the average life - time. Thus, R−
0 ≈ 1+ α

4
≈ 1,

and R+
0 ≈

4

α
is very large, so the convergence to equilibrium will be oscillatory.

Returning to the original variables, and since S∗ + I∗ +R∗ = N , the free and the
endemic equilibrium result

• disease free equilibrium (S∗, I∗,R∗) = (N∗,0,0),

• endemic equilibrium

(S∗, I∗,R∗) = (N
R0

,
µ

β
(R0 − 1)N, [1 − 1

R0

− µ
β
(R0 − 1)]N) ,

respectively.
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2.3 SIS models (without immunity)

2.3.1 The simplest SIS model

Some infectious diseases, such as influenza, sexually transmitted infections, etc, do
not confer immunity upon recovery. Individuals from infectives return to susceptible
class and they can be infected many times throughout their lives. This class of
models is called SIS and they can be schematically described as in Figure 2.8.

Figure 2.8: The SIS model for diseases which do not impart immunity. Susceptibles
are infected at a rate λ(t) and infected individuals become susceptible at a rate γ(t).

The simplest SIS model can be described by the system of the ordinary differ-
ential equations:

dS

dt
= − β

N
S(t)I(t) + γI(t), (2.41a)

dI

dt
= β

N
S(t)I(t) − γI(t), (2.41b)

The difference between this and the SIR model is that the recovered individuals
instead of passing to recovered class R, they return to the susceptible class S at
a rate γI. Assuming that there are no deaths due to the disease, and that the
population total size is constant, we get from (2.41)

dS

dt
+ dI
dt

= 0 ⇒ S(t) + I(t) = S(0) + I(0) = N,

with S(0) = S0 > 0 and I(0) = I0 > 0 as initial conditions.
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Since S = N − I and using (2.41a), equation (2.41b) gives

dI

dt
= β

N
(N − I)I − γI = (β − γ)I − β

N
I2 = (β − γ)I

⎛
⎜⎜
⎝

1 − I

(1 − γ
β
)N

⎞
⎟⎟
⎠
, (2.42)

which is a logistic differential equation of the form

dI

dt
= rI (1 − I

K
)

with r = β − γ and K = (1 − γ
β
)N .

If β − γ < 0 ⇒ β

γ
< 1 ⇒ dI

dt
≤ 0, then I(t)→ 0, as t→∞.

If β − γ > 0 ⇒ β

γ
> 1 ⇒ dI

dt
≥ 0, then I(t)→ (1 − γ

β
)N , as t→∞.

The dimensionless quantity R0 = β

γ
is the basic reproduction number for the

disease, and the value R0 = 1 defines a threshold. So,

• If R0 < 1, the infection dies out, and the equilibrium (S∗, I∗) = (N,0) is called
the disease - free equilibrium.

• If R0 > 1, the infection spreads, I = (1 − 1

R0

)N ⇒ S = N

R0

, and the equilibrium

(S∗, I∗) = (N
R0

,(1 − 1

R0

)N) is called an endemic equilibrium.

A different approach

We can come to the same conclusions using the dimensionless variables as in previous
cases. The equation for the infectious fraction (ν) becomes

dν

dt
= R0(ν∗ − ν(t))ν(t),

and the endemic state, which exists only for R0 > 1, is

ν∗ = 1 − 1

R0

.

One can see that it increases as R0 increases.

From the above equation for
dν

dt
, we get

• if R0 ≤ 1 then
dν

dt
< 0 and ν(t)→ 0 as t→ +∞,

• if R0 > 1 then ν(t)→ ν∗ as t→ +∞.

As shown in Figure 2.9, in this case the extinction of the disease is opposed to
the existence of a globally attractive endemic state ν∗.
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Figure 2.9: The infected fraction w0 as a function of R0.

2.3.2 The SIS model with demography

Consider a disease from which infectives recover without immunity and that includes
demography (that is, births and deaths). Let

• Λ be the birth rate per unit time,

• µ be a death rate in each class,

• γ be a removal rate from the infective class through recovery or disease death.

Then, a simple SIS model with demography is

dS

dt
= ΛN − β

N
S(t)I(t) − µS(t) + γI(t),

dI

dt
= β

N
S(t)I(t) − γI(t) − µI(t).

(2.43)

Working as in SIS model without demography and assuming constant population
size, it is easy to verify that the basic reproduction number R0 is

R0 =
β

γ + µ .

If R0 < 1, the system has only the disease free equilibrium, which is asymptotically
stable.
If R0 > 1, there is the endemic equilibrium, which is asymptotically stable too.
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2.4 SEIR models

In a more general model pathogen load is very low, so it can’t be transmitted to other
susceptibles, that is the infected individuals are exposed before becoming infective.
In other words they are in the incubation phase. The length of this period depends
on the disease.

Let σ be the constant rate that the exposed individuals become infective, then

the average duration of the latent period is
1

σ
. An SEIR model with demography is

given by the following equations

dS

dt
= µN − ( β

N
I + µ)S, (2.44a)

dE

dt
= β

N
SI − (µ + σ)E, (2.44b)

dI

dt
= σE − (µ + γ)I, (2.44c)

dR

dt
= γI − µR. (2.44d)

Adding the above equations we conclude that

S +E + I +R = N,

so, using the relation
R = N − (S +E + I)

we can reduce the system to a 3-dimensional equivalent system.
As with previous disease models, the SEIR model has a disease free equilibrium

solution (1, 0, 0, 0) and an endemic equilibrium solution (S∗,E∗, I∗,R∗), which is
of greater interest and it is is given by

S∗ = (µ + γ)(µ + σ)
βσ

N = N

R0

, (2.45a)

E∗ = µ(µ + γ)
βσ

(R0 − 1)N , (2.45b)

I∗ = µ
β
(R0 − 1)N , (2.45c)

with
R∗ = N − (S∗ +E∗ + I∗).

The reproduction number R0 is defined as

R0 =
βσ

(µ + σ)(µ + γ) .

It can be shown that for R0 > 1 the disease free equilibrium is unstable and the
endemic equilibrium is stable.
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2.5 Venereal diseases

For most of the sexually transmitted diseases the incubation period is usually short.
For the models here, we assume that the population consists of two interacting
classes, males and females. An individual of one class transmits the infection to an
individual of the other class. So, we divide the population into:

• Susceptible males S and females S∗,

• Infectious males I and females I∗,

• Recovered males R and females R∗.

In the simplest form, i.e., in case that no recovered individual can return to
susceptibles, the infection dynamics is figured in Figure 2.10.

Figure 2.10: An individual of one class transmits the infection to an individual of
the other class. No recovered individual can become susceptible.

An even simpler model that involves only susceptibles and infectious, is a criss-
cross SI model, which schematically is figured in Figure 2.11.

In this model we assume that the infectious that have recovered, rejoin the
susceptibles.

Let N and N∗ be the total size of male and female population respectively. Then

S(t) + I(t) = N, S∗(t) + I∗(t) = N∗. (2.46)

We consider that the decrease rate of male susceptibles is proportional to the
male susceptibles and the female infectious. So, we get

dS

dt
= −βS(t)I∗(t) + γI(t), dS∗

dt
= −β∗S∗(t)I(t) + γ∗I∗(t), (2.47a)

dI

dt
= βS(t)I∗(t) − γI(t), dI∗

dt
= β∗S∗(t)I(t) − γ∗I∗(t), (2.47b)
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Figure 2.11: The criss - cross SI model.

where β, γ, β∗, γ∗ positive parameters, and

S(0) = S0, I(0) = I0, S∗(0) = S∗0 , I∗(0) = I∗0 , (2.48)

the given initial conditions.
Using (2.46) in (2.47) we get

dI

dt
= βI∗(N − I) − γI,

dI∗

dt
= β∗I(N∗ − I∗) − γ∗I∗,

(2.49)

for the equilibrium points we have

βI∗(N − I) − γI = 0,

β∗I(N∗ − I∗) − γ∗I∗ = 0,
(2.50)

so
I = I∗ = 0,

and

Is =
ββ∗NN∗ − γγ∗
β∗γ + β∗βN∗

, I∗s =
ββ∗NN∗ − γγ∗
βγ∗ + β∗βN∗

.

Setting

ρ = γ
β
, ρ∗ = γ

∗

β∗
,

we get

Is =
NN∗ − ρρ∗
ρ +N∗

, I∗s =
NN∗ − ρρ∗
ρ +N∗

. (2.51)
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For the existence of non negative equilibrium points, it should be

NN∗ − ρρ∗ > 0 ⇔ NN∗

ρρ∗
> 1 ⇔ βN

γ

β∗N∗

γ∗
> 1.

The interpretation for this condition is that if every man is susceptible, then
βN

γ
is the average number of men that are infected by a woman for the period she is

infectious. The corresponding quantity
β∗N∗

γ∗
refers to women.

2.6 R0: herd immunity, vaccination, estimation

The parameter R0, the basic reproduction number, may be considered as the thresh-
old beyond which the infection manages to enter the disease free-state. If R0 > 1, the
entrance of a single infective into a disease free but fully susceptible population, can
make an infection endemic. In case that the number of individuals in susceptible
class is too low at the beginning an epidemic outbreak is not going to happen. That
is in case that part of the population is immune, and it is called herd immunity.
Since newborn individuals enter the susceptible class, or the immunity declines over
time, herd immunity cannot be maintained for long time.

Another effective measure in order to protect a population from an infection,
is vaccination, which is not always available. The purpose of vaccination is to
maintain the reproduction number below 1, so herd immunity can be guaranteed.
So, the knowledge of R0 can help us to estimate the size of vaccinated fraction.

Assume a total susceptible population and an available vaccine. If the vaccine
has worked for fraction

w0 ≥ 1 − 1

R0

,

and the vaccinated individuals are immune (effectively vaccinated) before the infec-
tive agent enters the population, then the fraction of susceptibles becomes

u0 = (1 −w0) ≤
1

R0

⇐⇒ R0u0 ≤ 1,

and an epidemic is avoided.
Many times, measures such as restriction of gathering or topical lock-downs, can

be taken for the reduction of contact rate. Let ρ be a factor that reduces the average
of contacts to c̃ = ρc. Then, the basic reproduction number becomes

R̃0 = ρR0 ,

and an epidemic will be avoidable if and only if

R̃0 ≤ 1 ⇐⇒ ρ ≤ 1

R0

.
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Assuming that a fraction p is effectively vaccinated, (2.37a) becomes

du

dt
= α(1 − p − u(t)) −R0u(t)ν(t).

If p < 1 − 1

R0

, the fraction of infected at the endemic equilibrium becomes

ν∗ = α(1 − p − 1

R0

) .

If p ≥ 1 − 1

R0

, the infection free state becomes asymptotically stable. The threshold

value

pc = 1 − 1

R0

,

is called the critical vaccination ratio. It indicates that in order to eradicate an
infectious disease, we have to reach the effective vaccination fraction.

In general, since R0 depends on contact rates and the probability of infecting
contacts, a direct measurement of it is very difficult. There are a few methods for
estimating R0, but they require data coming from previous epidemics. That is not
always useful, especially under the threat of a new infection outbreak.

2.7 Distributed infection period & variable infec-

tiousness

In case of modeling diseases that have a non negligible incubation period or in cases
of long - lasting infections where the infectiousness and the probability that an
individual recovers or dies differ considering the time since one is being infected, it
is important to take into account this time, called infection period.

Starting with the SIR model (2.17), we replace I(t) with the incidence j(t), i.e.
the number of new infections at time t. So, (2.18b) becomes

dI

dt
= j(t) − γI(t) ⇒

I(t) = ∫
t

−∞
Π(t − s)j(s)ds, (2.52)

where Π(t) is the probability an individual is still infectious after time t since the
infection. Using (2.16) we get for the incidence

j(t) = cχ
N
I(t)S(t),

and we convert the system in integro-differential system

dS

dt
= −j(t), S(0) = S0, (2.53a)

j(t) = S(t)∫
t

−∞

cχ

N
Π(t − s)j(s)ds, j(t) = φ(t) t ∈ (−∞,0]. (2.53b)
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It is clear that the system at time t depends on the past history of the incidence,
weighted by the probability Π(t) computed at the time (t−s) elapsed since infection.

Modifying the probability Π(t) and replacing the constant infectiousness χ with
one that depends on the time elapsed since infection, we can get a kernel

K(t) = c

N
χ(t)Π(t),

and the model becomes

dS

dt
= −j(t), S(0) = S0, (2.54a)

j(t) = S(t)∫
t

−∞
K(t − s)j(s)ds, j(t) = φ(t) t ∈ (−∞,0]. (2.54b)

(2.54b) is a Volterra convolution equation.
(2.54b) through (2.54a) gives

1

S(t)
dS(t)
dt

= −∫
t

−∞
K(t − s)j(s)ds = ∫

t

0
K(t − s)dS(t)

dt
ds − ∫

0

−∞
K(t − s)φ(s)ds.

Integrating the above equation in (0,∞), and using u(t) = S(t)
N

,u∞ = S∞
N

, we get

ln (u∞
u0

) = ∫
+∞

0
∫

t

0
K(t − s)dS

ds
dsdt − ∫

+∞

0
∫

0

−∞
K(t − s)φ(s)dsdt

= ∫
+∞

0

dS

ds ∫
+∞

s
K(t − s)dtds −Λ0 = R0(u∞ − u0) −Λ0,

(2.55)

where

R0 = ∫
+∞

0
K(s)ds = c∫

+∞

0
χ(s)Π(s)ds, (2.56)

Λ0 = ∫
+∞

0
∫

0

−∞
K(t − s)φ(s)dsdt,

are the basic reproduction number and the probability an individual of susceptible
class is getting infected by one of the original class of infectives, respectively. In
case of constant infectiousness and removal rate, R0 and Λ0 become

R0 = cχ∫
+∞

0
e−γsds = cχ

γ
,

Λ0 =
cχ

N ∫
+∞

0
∫

0

−∞
e−γ(t−s)φ(s)dsdt = R0

N ∫
0

−∞
eγsφ(s)ds. (2.57)

So
Λ0 = R0ν0. (2.58)

From (2.55) we get
u∞ = u0e

−R0(u0−u∞)−Λ0 . (2.59)

When χ and γ are constant (2.59) gives (2.31).
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In case of pandemic, (w0 = 0,Λ0 ≪ 1), (2.59) comes as root of (2.34) (R0 from
(2.56)).

As in the previous case, we approximate the fraction of susceptibles u(t) by the
number of susceptibles initially (u0). (2.54b) becomes

j(t) = u0N ∫
t

−∞
K(t − s)j(s)ds, (2.60)

We are looking for roots of the form j(t) = eλt, so if we plug into (2.60) we get

eλt = u0N ∫
t

−∞
K(t − s)eλsds ⇒

eλt = u0N ∫
+∞

0
K(s)eλ(t−s)ds ⇒

1 = u0N ∫
+∞

0
e−λsK(s)ds,

which is a characteristic equation for λ called the Lotka characteristic equation[28],
and for which we know that it has a unique real solution α∗. So, we have

j(t) ≈ j(0)eα∗t.

Furthermore, α∗ is positive if and only if

u0N ∫
+∞

0
K(s)ds = R0u0 > 1.

So, the threshold condition determines the outbreak of an epidemic with initial
exponential growth at a rate α∗.



32 2.7. DISTRIBUTED INFECTION PERIOD & VARIABLE INFECTIOUSNESS



Chapter 3

Age-Structured Models

3.1 The age of the disease

It is not always easy for an infected to perceive his condition, since one of the last
stages in the development of a disease is the onset of symptoms. This means that
the “disease clock”, that it is activated in an individual the moment she/he gets
infected, effects in different ways the mechanism an infection is transmitted, since it
may run for a long time. That is why it is of vital importance to take it into account
in epidemic modeling.

3.2 The classical Kermack - McKendrick model

There are many cases that we have to consider of the individual age in order to
estimate how vulnerable and infectious a disease can be (demographic age). In some
other cases we consider that age is the time elapsed since the individual infected
(class-age). In some epidemic models, where a drug is used, we consider that age is
the time within the drug users class.

In case we are modeling a long-lasting disease for which infected individuals
have different possibilities to recover or die, and their infectiousness depends on the
time they were infected, it is important to consider class-age. Assuming a single
outbreak of an epidemic through a short time period so that demographic changes
can be neglected, we consider a population that is closed, without migration, and
that there are no births or deaths from natural causes (the “disease clock” is faster
the demographic processes). So, the population size N is constant, and it is divided
into the three distinct classes of susceptibles, infectious and recovered individuals.
Furthermore, in this case the infectious class is structured by class-age, and we
denote by

• S(t) = the number of susceptibles at time t,

• i(θ, t) = the class-age density of the infected individuals (that is, the distribu-
tion of the infected with respect to θ),

33
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• R(t) = the number of recovered individuals at time t.

Note that θ ∈ [0, θ†] is the class-age, that is, the time elapsed since infection, and θ†

is the maximum duration of infection. Obviously, all the above must satisfy

S(t) + I(t) +R(t) = N, ∀ t ≥ 0,

where

I(t) = ∫
θ†

0
i(θ, t)dθ,

is the total number of infected.
We also consider the following parameters

• γ(θ) = class-age specific removal rate,

• λ(t) = per capita infection rate at time t (force of infection).

The number of infectious with class-age in the interval [θ, θ +dθ] that move into
the the class of recovered during the time interval [t, t + dt], is

γ(θ)i(θ, t)dθdt

The average number of susceptibles that become infectious per unit time, that
is the incidence rate, is

λ(t)S(t)

Figure 3.1: Kermack- McKendrick model. Susceptibles are infected at a rate λ(t)
and enter the class of infective individuals at class - age θ = 0. Infective individuals
progress through the disease and exit their class at a rate γ(θ) dependent on the
class - age, to enter the recovered class.

Extending the form of the unstructured case for the force of infection, we have

λ(t) = ∫
θ†

0
λ0(θ)i(θ, t)dθ, (3.1)
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where

λ0(θ) =
c(θ)χ(θ)

N
, (3.2)

with the per capita contact rate and the infectiousness possibly depend on the pro-
gression of the disease. The simplest extension from ODEs to class - age structured
model is

dS

dt
= −λ(t)S(t), (3.3a)

∂i(θ, t)
∂t

+ ∂i(θ, t)
∂θ

+ γ(θ)i(θ, t) = 0, (3.3b)

i(0, t) = λ(t)S(t), (3.3c)

dR

dt
= ∫

θ†

0
γ(θ)i(θ, t)dθ, (3.3d)

with
S(0) = S0, i(θ,0) = i0(θ), R(0) = R0.

the initial conditions.
The progression of the disease that is described by (3.3b), and the condition

(3.3c) which is a non-local boundary condition that models the input of new infec-
tives at age θ = 0, are derived from the balance equation

∫
θ+h

0
i(σ, t+h)dσ = ∫

θ

0
i(σ, t)dσ+∫

t+h

t
λ(σ)S(σ)dσ−∫

h

0
∫

θ+s

0
γ(σ)i(σ, t+s)dσds,

(3.4)
where the term

∫
t+h

t
λ(σ)S(σ)dσ

gives the input of new infectives in the interval [t, t + h]. Since

∫
θ+s

0
γ(σ)i(σ, t + s)dσ

is the number of infected individuals that recover at the time t + s with class-age
less than or equal to θ + s, the term

∫
h

0
∫

θ+s

0
γ(σ)i(σ, t + s)dσds

gives the loss from the initial group of ∫
θ

0 i(σ, t)dσ individuals through the time
interval [t, t + h].

Differentiating (3.4) with respect to h and setting h = 0, we get

i(θ, t) + ∫
θ

0
it(σ, t)dσ = λ(t)S(t) − ∫

θ

0
γ(σ)i(σ, t)dσ,

whereby, setting θ = 0, we have

i(0, t) = λ(t)S(t).
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Differentiating the above equation with respect to θ, we get

iθ(θ, t) + it(θ, t) + γ(θ)i(θ, t) = 0.

During the whole process, we consider the following minimal assumptions that
the functions λ and γ are assumed to satisfy in order to be biologically significant

γ(θ) ≥ 0, λ0(θ) ≥ 0 a.e. in [0, θ†], (3.5a)

γ ∈ L1
loc[0, θ†), ∫

θ†

0
γ(σ)dσ = +∞, (3.5b)

λ0 ∈ L∞(0, θ†), λ0(θ) > 0 a.e. in [θ1, θ2]. (3.5c)

We define the recovery probability

B(θ) = e− ∫ θ0 γ(σ)dσ, θ ∈ [0, θ†],

that is the probability for an individual to recover after being infected for θ units of
time. It must be B(θ†) = 0. Then,

L = ∫
θ†

0
B(θ)dθ.

is the mean value of the time-infected of an individual.
We set

q(θ, t) = e∫ θ0 γ(σ)dσi(θ, t) = i(θ, t)
B(θ) , (3.6)

which satisfies

∂q(θ, t)
∂t

+ ∂q(θ, t)
∂θ

= 0, (3.7a)

q(0, t) = λ(t)S(t), (3.7b)

q(θ,0) = q0(θ) ∶= e∫
θ
0 γ(σ)dσi0(θ), (3.7c)

where
i0(θ) = i(θ,0),

and
i(0, t) = λ(t)S(t) ∶= σ(t)

is the incidence, that is the number of infectives in the unit of time.
Assuming σ(t) is given, then q can be viewed as the solution to the first-order

partial differential equation (3.7a) in the strip {θ ∈ [0, θ†] , t ≥ 0}, with the boundary
conditions (3.7b) on the half-line {θ = 0 , t > 0} and (3.7c) on the segment {θ ∈
[0, θ†] , t = 0}. By integrating the equation along the characteristic lines t − θ =
constant, as sketched in Figure 3.2, we see that q has the following form

q(θ, t) = φ(θ − t),
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where φ is determined by the boundary conditions. So,

q(θ, t) =
⎧⎪⎪⎨⎪⎪⎩

q0(θ − t), θ ≥ t,
σ(t − θ), θ < t,

which via (3.6) provides the formula for i(θ, t)

i(θ, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i0(θ − t)
B(θ)

B(θ − t) , θ ≥ t,

i(0, t − θ)B(θ), θ < t.

Figure 3.2: Integration of the first-order partial equation (3.7a) along the charac-
teristic lines t − θ = const.

For the incidence σ(t) we have

σ(t) = [∫
θ†

0
λ0(θ)i(θ, t)dθ]S(t)

= [∫
t

0
λ0(θ)B(θ)σ(t − θ)dθ + ∫

∞

t
λ0(θ)

B(θ)
B(θ − t)i0(θ − t)dθ]S(t),

where λ0,B, i0 are extended by zero outside of [0, θ†]. Thus, (3.3) becomes

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t)
dt

= −σ(t),
σ(t) = [∫

t

0 A(t − s)σ(s)ds + F (t)]S(t),
(3.8)
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where
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A(t) = λ0(t)B(t),

F (t) = ∫
∞

0 λ0(t + s)
B(t + s)
B(s) i0(s)ds,

(3.9)

with S(0) = S0 > 0 as initial condition.
A solution to the system is a pair σ ∈ C(R+), S ∈ C1(R+).

The following Theorems and Propositions are from [27].

Theorem 3.2.1. Let (3.5) be satisfied and let i0 ∈ L1(0, θ†), i0(θ) ≥ 0. Then, problem
(3.8) - (3.9) has a unique solution.

Proof. We transform (3.8) into a single equation. Since

dS(t)
dt

= − [∫
t

0
A(t − s)σ(s)ds + F (t)]S(t),

we have

S(t) = e−[∫ t0 A1(t−s)σ(s)ds+F1(t)], (3.10)

where

A1(t) = ∫
t

0
A(s)ds ≥ 0, F1(t) = ∫

t

0
F (s)ds ≥ 0.

Then (3.8) is equivalent to the integral equation

σ(t) = S0 [∫
t

0
A(t − s)σ(s)ds + F (t)] e−[∫ t0 A1(t−s)σ(s)ds+F1(t)]. (3.11)

This equation can be solved as usual by proving convergence of the iterates

σk+1(t) = S0 [∫
t

0
A(t − s)σk(s)ds + F (t)] e−[∫ t0 A1(t−s)σ

k(s)ds+F1(t)],

initialized by σ0 ≡ 0. Indeed, since F,F1 are non-negative, continuous, and bounded
on [0,+∞), while A,A1 are non-negative a.e., and belong to L∞(R+), we have

σk ∈ C(R+); 0 ≤ σk(t) ≤ S0 ∥ F ∥∞ eS0∥A∥∞t.

Moreover, we can prove the estimate

∣σk+1(t) − σk∣ ≤ C
kT k

k!
∥ σ1 − σ0 ∥C ,

for any T > 0, and prove convergence. Thus, existence and uniqueness of a continu-
ous σ follows exactly as in the case of the total birth rate. Finally, from (3.10), we
obtain S(t), so the pair (σ,S) is a solution to (3.8).
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The outbreak and the extinction of an epidemic

Theorem 3.2.2. Let (σ,S) be the solution to (3.3) provided by Theorem 3.2.1.
Then,

lim
t→+∞

σ(t) = 0, lim
t→+∞

S(t) = S∞, (3.12)

where S∞ satisfies

S∞ = S0 exp[(S∞ − S0)∫
∞

0
A(s)ds + ∫

∞

0
F (s)ds]. (3.13)

Proof. We note that from (3.3) we get

S(t) = S0 − ∫
t

0
σ(s)ds > 0,

so that

∫
∞

0
σ(s)ds ≤ S0, (3.14)

and

lim
t→+∞

S(t) = S∞ = S0 − ∫
∞

0
σ(s)ds ≥ 0.

Also,

F (t) = 0 for t > θ†,

A(t) = 0 for t > θ†,

so that, since σ ∈ L1(0,+∞) by (3.14), we have

lim
t→+∞

∫
t

0
A(t − s)σ(s)ds = 0.

In conclusion, passing to the limit in (3.11), we prove (3.12).
Concerning the final size of the susceptible class, from (3.10) we obtain

S(t) = S0 exp [∫
t

0
A1(t − s)

dS(t)
dt

ds + F1(t)]

= S0 exp [∫
t

0
A(s)S(t − s)ds + F1(t) −A1(t)S0],

because σ(t) = −dS(t)
dt

. Thus, passing to the limit, we have (3.13).

From the above, it comes that finally, for a single epidemic, the infection dies
out and the class of susceptibles is not decreased by the infection. We have,

lim
t→+∞

I(t) = lim
t→+∞

∫
θ†

0
i(θ, t)dθ = lim

t→+∞
∫

∞

0
σ(t − θ)B(θ)dθ = 0,

and from (3.13) we obtain S∞ > 0.
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In order to determine a threshold value for the infection maintenance, we define
the basic reproduction number as

R0 = ∫
θ†

0
c(θ)χ(θ)B(θ)dθ = N ∫

θ†

0
A(θ)dθ, (3.15)

which still represents the number of secondary infections an individual produces as
long as he is infected, and it is involved in the threshold condition for the infection
outbreak.

Proposition 3.2.1. Under the assumptions of Theorem 3.2.1, let (σ,S) be the
solution to (3.3). Then, σ is either identically zero, or eventually positive. If, in
addition

λ0(θ) > 0 a.e in [0, θ†], (3.16)

then σ(t) is positive for all t ≥ 0.

Proof. If σ is not identically zero, let

σ(t) > 0 for t ∈ [α,β].

Then, for t ∈ [α + θ1, β + θ2] and θ2 > α + θ1 − β, we have

σ(t) ≥ S(t)∫
t

0
A(t − θ)σ(θ)dθ ≥ S(t)∫

t∧β

α
A(t − θ)σ(θ)dθ

≥ S(β + θ2) min
θ∈[α,β]

σ(θ)∫
t∧β

α
A(t − θ)dθ

= S(β + θ2) min
θ∈[α,β]

σ(θ)∫
t−α

0∨(t−β)
λ0(θ)B(θ)dθ > 0,

where we have used the facts that (θ1, θ2)∩ (θ ∨ (t− β), t−α) ≠ ∅ and S(β + θ2) > 0.
Iterating this argument, we see that

σ(t) > 0 for t ∈ [α + nθ1, β + nθ2],

for any positive integer n and, consequently, σ(t) is eventually positive.
Let now (3.16) be satisfied, then F (0) > 0 and, consequently, σ(0) > 0. If σ(t)

vanishes somewhere, there must exist a t0 such that

σ(t0) = 0, σ(t) > 0 for t ∈ [0, t0).

Then,

0 = σ(t0) = S(t0) [∫
t0

0
A(t0 − s)σ(s)ds + F (t0)]

≥ S(t0)∫
t0

0
A(t0 − s)σ(s)ds > 0,

which is impossible. Hence, it must be σ(t) > 0 for all t ≥ 0.
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We define

Ik = [kθ†, (k + 1)θ†], 1 ≤ k ∈ Z,

and

mk = min
t∈Ik

σ(t), Mk = max
t∈Ik

σ(t), Sk = S(kθ†).

We have the following

Proposition 3.2.2. Under the assumptions of Theorem 3.2.1, let (σ,S) be the
solution to (3.3). If σ is not identically zero, then

Mk > 0, ∀k ≥ 0, and mk > 0 eventually.

If (3.16) is satisfied, then mk > 0, ∀k ≥ 0.

Proof. Since F (t) is not identically zero on [0, θ†], neither is σ(t), and we have
M0 > 0.

Assume Mk > 0 and let [α,β] ⊂ Ik be such that σ(t) > 0 on [α,β]. Then, by the
proof of Proposition 3.2.1, σ(t) > 0 on [α + nθ1, β + nθ2]. Because it is possible to
find n such that (k + 1)θ† < α + nθ1 < (k + 2)θ†, then σ(t) > 0 somewhere in Ik+1 and
consequently, also Mk+1 > 0.

The last part of the result is a direct consequence of Proposition 3.2.1.

In the following Theorem, the conditions concerning the outbreak of an epidemic
are quoted.

Theorem 3.2.3. Let assumptions (3.5) and (3.16) be satisfied, and let (σ,S) be the
solution to (3.3), provided by Theorem 3.2.1. Then, for k > 0 we have

Mk <Mk−1 if R0
Sk
N

< 1, (3.17)

mk >mk−1 if R0
Sk+1

N
> 1. (3.18)

Moreover, in the second case, we have

R0
S∞
N

< 1. (3.19)

Proof. Let k > 0 and t ∈ Ik; then

σ(t) = S(t)∫
θ†

0
A(s)σ(t − s)ds,

and, since (t − s) ∈ Ik ∪ Ik−1 for s ∈ [0, θ†], it follows that

σ(t) ≤ S(t)∫
θ†

0
A(s)ds (Mk ∨Mk−1),



42 3.3. SI AGE-DEPENDENT MODEL

and

Mk ≤ R0
Sk
N

(Mk ∨MK−1),

so that, since Mk > 0, we have

Mk < (Mk ∨Mk−1),

and (3.17) is proved. The proof of (3.18) is analogous. Concerning (3.19), assume,

by contradiction, that R0
Sk
N

> 1, for all k. Then, by (3.18), the sequence mk is

increasing, which is impossible by (3.12).

The last theorem describes the way an epidemic evolves through time intervals of
length θ†. For example, the epidemic will not maintain if the number of susceptibles
is under the threshold value N

R0
at the end of the first interval.

3.3 SI age-dependent model

There are some diseases, such as herpes, for which infectives remain infective for
life, but do not affect the life span. In these cases, the appropriate models are SI
models, which are the simplest, since they can be described with only two individual
classes.

We assume an infectious disease for which there is no incubation period neither
cure. Let θ be the age from exposure to the disease. Then, we can divide the pop-
ulation into two classes, the susceptibles, S(t), and the infectious, i(θ, t). As above,
the population of the susceptibles, after the exposure to the infection, decreases at
a rate

dS

dt
= −λ(t)S(t) ⇒ dS

dt
= − [∫

θ†

0
λ0(θ)i(θ, t)dθ]S(t), S(0) = S0, (3.20)

where, as above, λ0(θ) =
c(θ)χ(θ)

N
indicates the infectiousness of the infectious, and

θ† is the time that an individual can be infectious. Obviously,

dS

dt
≤ 0 ⇒ S(t)→ S(∞), where 0 ≤ S(∞) ≤ S0.

For the population of infectious i(θ, t) we have

∂i

∂t
+ ∂i

∂θ
= −γ(θ)i(θ, t). (3.21)

For the boundary conditions, we have

• at time t = 0, there is a number of infectious i(0, θ) = i0(θ),

• at θ = 0, the rate of new infectious is equal to the rate that the susceptible

population decreases, that is
dS

dt
.
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So,

i(θ,0) = i0(θ),

i(0, t) = −dS
dt
, t > 0.

(3.22)

For the model which consists of the equations (3.20) - (3.22), i0(θ), S0 are given,
and γ(θ), λ(t) are considered to be known.

Let R0 be the number of initial susceptibles we expect to be infected by each
infectious, then

R0 = S0∫
θ†

0
λ0(θ)i(θ, t)B(θ)dθ, (3.23)

where B(θ) = e− ∫ a0 γ(σ)dσ is the probability of an initial infectious surviving to age
θ. If R0 > 1, the infection will spread. If R0 < 1, the infection will not spread. So,
R0 = 1 is the threshold value for an epidemic.

3.4 The SIS model

In order to study those cases that lead to disease endemicity within the same context
of class - age structure, we consider the structured version of the SIS model, and then
we investigate the existence of endemic steady states and their stability. Starting
with the modification of the structured SIR model, we get the equation system

dS

dt
= −λ(t)S(t) + ∫

θ†

0
γ(θ)i(θ, t)dθ, (3.24a)

∂i(θ, t)
∂t

+ ∂i(θ, t)
∂θ

+ γ(θ)i(θ, t) = 0, (3.24b)

i(0, t) = λ(t)S(t), (3.24c)

with the initial conditions

S(0) = S0, i(θ,0) = i0(θ),

and the force of infection

λ(t) = ∫
θ†

0
λ0(θ)i(θ, t)dθ.

Let

I(t) = ∫
θ†

0
i(θ, t)dθ

be the total number of infectives. Integrating (3.24b) with respect to θ, we have

dI(t)
dt

+ i(θ†, t) − i(0, t) + ∫
θ†

0
γ(θ)i(θ, t)dθ = 0⇒

dI(t)
dt

= λ(t)S(t) − ∫
θ†

0
γ(θ)i(θ, t)dθ.
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Figure 3.3: The SIS model with age structure. Susceptibles are infected at a rate λ(t)
and enter the class of infective individuals at class - age θ = 0. Infective individuals
progress through the disease and exit their class at a rate γ(θ) dependent on the
class - age to go back to the susceptible class.

Considering (3.24a), we have

d (S(t) + I(t))
dt

= 0⇒

S(t) + I(t) = N = const. (3.25)

So, we can reduce the problem (3.24) to a single equation in terms of the variable

u(θ, t) = i(θ, t)
N

.Thisis

ut(θ, t) + uθ(θ, t) + γ(θ)u(θ, t) = 0, (3.26a)

u(0, t) = (1 − ∫
θ†

0
u(θ, t)dθ)∫

θ†

0
c(θ)χ(θ)u(θ, t)dθ, (3.26b)

u(θ,0) = u0(θ). (3.26c)

3.4.1 Endemic state and stability

Except for the trivial solution u∗ ≡ 0, which corresponds to the disease-free state,
we look for nonzero endemic steady-states. These must be the solutions of

u′(θ) + γ(θ)u(θ) = 0, (3.27a)

u(0) = (1 − ∫
θ†

0
u(θ)dθ)∫

θ†

0
c(θ)χ(θ)u(θ)dθ. (3.27b)

Then, from (3.27a) we get

u′(θ) = −γ(θ)u(θ) ⇒ u∗(θ) = u∗(0)e− ∫ θ0 γ(σ)dσ ⇒ u∗(θ) = u∗(0)B(θ).



CHAPTER 3. AGE-STRUCTURED MODELS 45

Then, (3.27b) gives

u∗(0) = (1 − ∫
θ†

0
u∗(0)B(θ)dθ)∫

θ†

0
c(θ)χ(θ)u∗(0)B(θ)dθ

⇒ 1 = (1 − u∗(0)B)R0 (3.28)

where

B = ∫
θ†

0
B(θ)dθ,

and

R0 = ∫
θ†

0
c(θ)χ(θ)B(θ)dθ,

is the basic reproduction number. From (3.28)

u∗(0) = 1

B
(1 − 1

R0

) ,

so,

u∗(θ) = 1

B
(1 − 1

R0

)B(θ)

is the unique endemic steady state, provided that

R0 > 1,

i.e., the threshold condition is satisfied.

Linearizing (3.26) at u∗ we get

wt(θ, t) +wθ(θ, t) + γ(θ)w(θ, t) = 0, (3.29a)

w(0, t) = (1 − ∫
θ†

0
u∗(θ)dθ)∫

θ†

0
c(θ)χ(θ)w(θ, t)dθ

− ∫
θ†

0
c(θ)χ(θ)u∗(θ)dθ∫

θ†

0
w(θ, t)dθ, (3.29b)

w(θ,0) = w0(θ). (3.29c)

Then, we have the eigenvalue problems for the disease-free equilibrium (u∗ = 0)
and for the endemic one (R0 > 1) respectively.

For the disease-free equilibrium we set u∗(θ) = 0, and we have

⎧⎪⎪⎨⎪⎪⎩

(i) λw(θ) + γ(θ)w(θ) = 0,

(ii) w(0) = ∫
θ†

0 c(θ)χ(θ)w(θ)dθ,
(3.30)

and, for the endemic equilibrium we set u∗(θ) = 1

B
(1 − 1

R0

)B(θ), in (3.29b) and
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we have

w(0) = (1 − ∫
θ†

0

1

B
(1 − 1

R0

)B(θ)dθ)∫
θ†

0
c(θ)χ(θ)w(θ)dθ

− ∫
θ†

0
c(θ)χ(θ) 1

B
(1 − 1

R0

)B(θ)dθ∫
θ†

0
w(θ)dθ

= ∫
θ†

0
c(θ)χ(θ)w(θ)dθ − R0 − 1

R0B
∫

θ†

0
B(θ)dθ∫

θ†

0
c(θ)χ(θ)w(θ)dθ

− R0 − 1

R0B
∫

θ†

0
c(θ)χ(θ)B(θ)dθ∫

θ†

0
w(θ)dθ

= ∫
θ†

0
c(θ)χ(θ)w(θ)dθ − R0 − 1

R0
∫

θ†

0
c(θ)χ(θ)w(θ)dθ

− R0 − 1

B ∫
θ†

0
w(θ)dθ,

so, we conclude

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(i) λw(θ) + γ(θ)w(θ) = 0,

(ii) w(0) = 1

R0
∫
θ†

0 c(θ)χ(θ)w(θ)dθ − R0 − 1

B ∫
θ†

0 w(θ)dθ.
(3.31)

Setting

K0(t) =
c(t)χ(t)B(t)

R0

, K1(t) =
B(t)
B

, (3.32)

and normalizing the kernels so that K̂0(0) = K̂1(0) = 1, the eigenvalue problems lead
to the characteristic equations

1 = R0K̂0(λ), (3.33)

and
1 = K̂0(λ) − (R0 − 1)K̂1(λ), (3.34)

respectively.
It is proved that, if R0 < 1 the disease-free state is asymptotically stable, and if

R0 > 1 it is unstable. That is, R0 = 1 is the critical value where the endemic arises,
since it is the value that the disease-free equilibrium loses its stability. In addition,
the endemic steady state is stable at least as long as R0 > 1 is close enough to 1, that
is, it inherits the stability that the disease-free equilibrium loses. For values of R0

that are larger, and depending on the kernels K0(t) and K1(t) form, destabilization
of endemic steady-state may occur.

3.5 The basic SIR model

3.5.1 Modeling variable populations

Demographic changes may be responsible for disease endemicity through the intro-
duction of newborn susceptibles. We also need to study the ways the population
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size and the epidemiological classes affect the mechanisms of contact. In the seminal
SIR model Kermack and McKendrick assumed a contact mechanism based on the
mass-action law, expressed by the form (3.1) and (3.2) of the per capita infection
rate λ. Taking into account the variability of the population size due to demographic
changes and the increased mortality rates due to the disease, we introduce a general
form of infection rate

λ(t) = ∫
θ†

0

C (θ,N(t))
N(t) χ(θ)i(θ, t)dθ, (3.35)

where

• N(t) = S(t) + I(t) + R(t),

• χ = the variable infectivity,

• C (θ, x) = the number of contacts per individual of class - age θ per unit time,
when the total size of the active population is x.

We assume for the contact rate

C (θ, x) = c(θ)K (x), (3.36)

where the function K is a function such that

K (⋅) ∈ C1(R+), K (x) ≥ 0, K ′(x) ≥ 0, K ′(0) > 0. (3.37)

So, the force of infection gets the constitutive form:

λ(t) = K (N(t))
N(t) ∫

θ†

0
ϕ(θ)i(θ, t)dθ, (3.38)

with kernel

ϕ(θ) = c(θ)χ(θ),
ϕ(θ) ≥ 0 a.e. in [0, θ†],

ϕ ∈ L∞(0, θ†), ϕ(θ) > 0 a.e. in [θ1, θ2].

Considering a simple demographic process, where the rate that individuals enter
the susceptible class and the mortality rate are constant, we introduce

• Λ = the number of individuals who enter the susceptible-class per unit time.

• µ = the rate at which individuals die, not due to the disease (natural per
capita mortality rate).

• v = the rate at which infected individuals die due to the disease, namely the
per capita mortality due to the disease.

So, Λ and µ are related to all relevant input and output mechanisms and not only
to births and deaths, and v is the possible lethal effect of the disease.
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3.5.2 The extended Kermack - McKendrick SIR model

All the above assumptions may be included into an extended Kermack - McKendrick
model of the form:

dS

dt
= Λ − λ(t)S(t) − µS(t), (3.39a)

∂i(θ, t)
∂t

+ ∂i(θ, t)
∂θ

+ γ(θ)i(θ, t) + (µ + ν)i(θ, t) = 0, (3.39b)

i(0, t) = λ(t)S(t), (3.39c)

dR

dt
= ∫

θ†

0
γ(θ)i(θ, t)dθ − µR(t), (3.39d)

with the initial conditions

S(0) = S0 > 0, i(θ,0) = i0(θ) ≢ 0, R(0) = R0 ≥ 0,

where λ is given by (3.38) and γ(θ) is the age-specific per capita removal rate.
Integrating (3.39b) with respect to θ, for 0 ≤ θ ≤ θ†, we have

∫
θ†

0

∂i(θ, t)
∂t

dθ = −∫
θ†

0

∂i(θ, t)
∂θ

dθ − ∫
θ†

0
γ(θ)i(θ, t)dθ − (µ + ν)∫

θ†

0
i(θ, t)dθ,

and using (3.39c) we get

dI(t)
dt

= λ(t)S(t) − ∫
θ†

0
γ(θ)i(θ, t)dθ − (µ + ν)I(t). (3.40)

The total population dynamics is

dN(t)
dt

= Λ − µN(t) − νI(t), (3.41)

with

N(0) = S0 +R0 + ∫
θ†

0
i0(θ)dθ,

as initial condition.
Considering that

R(t) = N(t) − S(t) − I(t),
and using (3.39a) and (3.40), we can replace (3.39d) by (3.41). So the problem
becomes

dS

dt
= Λ − λ(t)S(t) − µS(t), (3.42a)

∂i(θ, t)
∂t

+ ∂i(θ, t)
∂θ

+ γ(θ)i(θ, t) + (µ + ν)i(θ, t) = 0, (3.42b)

i(0, t) = λ(t)S(t), (3.42c)

dN

dt
= Λ − µN(t) − νI(t). (3.42d)
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As in previous case, we can transform the above system into an integrodifferential
system, using the disease incidence σ(t). Integration along characteristics gives

i(θ, t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i0(θ − t)e−(µ+ν)t
B(θ)

B(θ − t) , θ ≥ t,

σ(t − θ)e−(µ+ν)θB(θ), θ < t
(3.43)

where B(θ) is the recovery probability. Then, the problem becomes

dS

dt
= Λ − µS(t) − σ(t), (3.44a)

dI

dt
= σ(t) − ∫

t

0
A1(t − s)σ(s)ds − F1(t) − (µ + ν)I(t), (3.44b)

dN

dt
= Λ − µN(t) − νI(t), (3.44c)

σ(t) = S(t)K (N(t))
N(t) [∫

t

0
A2(t − s)σ(s)ds + F2(t)] , (3.44d)

with

A1(t) = e−(µ+ν)tγ(t)B(t), A2(t) = e−(µ+ν)tϕ(t)B(t),

F1(t) = e−(µ+ν)t∫
∞

0
γ(t + s)B(t + s)

B(s) i0(s)ds,

F2(t) = e−(µ+ν)t∫
∞

0
ϕ(t + s)B(t + s)

B(s) i0(s)ds,

where γ,ϕ,B, i0 are extended by zero outside [0, θ†].
From theory, there exists a unique global solution of (3.44), such that the func-

tions
S, S′, I, N, N ′ and σ

are continuous, and they satisfy

σ(t) ≥ 0, S(t) ≥ 0, I(t) ≥ 0, N(t) ≥ S(t) + I(t) ≥ 0.

Solving (3.44a) we get

S(t) = S0e
−µt + Λ

µ
(1 − e−µt) − ∫

t

0
e−µ(t−s)σ(s)ds, (3.45)

and therefore

lim sup
t→+∞

∫
t

0
e−µ(t−s)σ(s)ds ≤ Λ

µ
,

and from (3.44c) we get

N(t) = N(0)e−µt + Λ

µ
(1 − e−µt) − ν ∫

t

0
e−µsI(t − s)ds, (3.46)
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and hence

lim sup
t→+∞

N(t) ≤ Λ

µ
.

We also have

lim sup
t→+∞

∫
t

0
A2(t − s)σ(s)ds ≤∥ ϕ ∥∞ lim sup

t→+∞
∫

t

0
e−µ(t−s)σ(s)ds ≤∥ ϕ ∥∞

Λ

µ
,

and S(t) ≤ N(t), so
lim sup
t→+∞

σ(t) < +∞. (3.47)

So, we get the following theorem

Theorem 3.5.1. Let the assumptions

γ ∈ L1
loc([0, θ†)), γ(θ) ≥ 0, a.e. in [0, θ†] ∫

θ†

0
γ(σ)dσ = +∞,

ϕ ∈ L∞(0, θ†), ϕ(θ) ≥ 0 a.e. in [0, θ†], ϕ(θ) > 0 a.e. in [θ1, θ2],
K (⋅) ∈ C1(R+), K (x) ≥ 0, K ′(x) ≥ 0, K ′(0) > 0,

(3.48)

hold, and let (S, I,N,σ) be the solution to (3.44). If

K (Λ

µ
)∫

θ†

0
e−(µ+ν)θϕ(θ)B(θ)dθ < 1, (3.49)

then,

lim
t→+∞

I(t) = lim
t→+∞

σ(t) = 0, lim
t→+∞

N(t) = lim
t→+∞

S(t) = Λ

µ
. (3.50)

Proof. By (3.44d) we have

σ(t) ≤ K (N(t)) [∫
t

0
A2(t − s)σ(s)ds + F2(t)] ,

and since

lim sup
t→+∞

∫
t

0
A2(t − s)σ(s)ds ≤ ∫

∞

0
A2(s)ds lim sup

t→+∞
σ(t),

we see that

lim sup
t→+∞

σ(t) ≤ K (Λ

µ
)∫

∞

0
A2(s)ds × lim sup

t→+∞
σ(t),

so that, from (3.47) and (3.49), we have

lim
t→+∞

σ(t) = 0.

From this relation and (3.43), we have

lim
t→+∞

I(t) = lim
t→+∞

∫
θ†

0
e−(µ+ν)θB(θ)σ(t − θ)dθ = 0.

Finally, using (3.45) and (3.46), these last limits imply that

lim
t→+∞

N(t) = lim
t→+∞

S(t) = Λ

µ
. (3.51)
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We should note that the parameter

R0 = K (Λ

µ
)∫

θ†

0
e−(µ+ν)θϕ(θ)B(θ)dθ, (3.52)

is the basic reproduction number of the epidemic, that is (3.49) is a threshold crite-
rion. As in previous cases, R0 gives the average number of new infections that an

infective will produce in an active population of size
Λ

µ
. Furthermore, the disease-

free equilibrium of model (3.39) is

S∗ = N∗ = Λ

µ
, i∗(θ) ≡ 0.

Thus, we have the following result:
If R0 < 1, the epidemic extincts asymptotically and the population approaches the
disease - free state.

It is expected that if R0 > 1, the disease-free state is unstable. So, it is a condition
for the existence of non - trivial stationary states.

3.5.3 Endemic states for SIR model

Looking for positive stationary solutions to problem (3.42) is like we are looking for
solutions (S∗, i∗(θ),N∗) to the following problem:

Λ − µS − λS = 0, (3.53a)

i′(θ) + γ(θ)i(θ) + (µ + ν)i(θ) = 0, i(0) = λS, (3.53b)

Λ − µN − νI = 0, (3.53c)

λ = K (N)
N ∫

θ†

0
ϕ(θ)i(θ)dθ, (3.53d)

I = ∫
θ†

0
i(θ)dθ. (3.53e)

The disease-free equilibrium (Λ

µ
,0,

Λ

µ
) is a solution to (3.53). To study the

endemic states of the disease, that is the existence of non - trivial solutions (i∗(θ) ≢
0), we set the incidence at the endemic state σ = λS. From (3.53b) we have

i(θ) = σe−(µ+ν)θB(θ), (3.54)

and substituting it into (3.53) we get

Λ − µS − σ = 0, (3.55a)

Λ − µN − νBσ = 0, (3.55b)

SK (N)Bϕ

N
= 1, (3.55c)

I = λSB, (3.55d)
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where

B = ∫
θ†

0
e−(µ+ν)θB(θ)dθ, Bϕ = ∫

θ†

0
ϕ(θ)e−(µ+ν)θB(θ)dθ, (3.56)

In case that ν = 0, that is the disease does not affect the population mortality, so
(3.42d) is independent of the other equations in (3.42), and the endemic equilibrium
becomes

S∗ = Λ

µK (Λ

µ
)Bϕ

, σ∗ = Λ

⎛
⎜⎜⎜
⎝

1 − 1

µK (Λ

µ
)Bϕ

⎞
⎟⎟⎟
⎠
, N∗ = Λ

µ
. (3.57)

Furthermore, we want

σ∗ > 0 ⇒ R0 = K (Λ

µ
)Bϕ > 1. (3.58)

If ν > 0, then from (3.55b) we get

σ = 1

νB
(Λ − µN) ,

and then (3.55a) gives

S = 1

νB
(N − (1 − νB) Λ

µ
) .

Since we want positive σ and S, we get N ∈ ((1 − νB) Λ

µ
,
Λ

µ
). Substituting the

above equations into (3.55c) we get

1 = 1

νB
(1 − (1 − νB) Λ

µN
)K (N)Bϕ. (3.59)

which is an equation of single variable N .
The right hand side of (3.59) is increasing and positive for N in the interval that

lies, so the equation has a unique solution (N∗) if and only if (3.58) is satisfied.
Thus, corresponding to it, from (3.55) for total disease-incidence and susceptibles
respectively, we get

σ∗ = 1

νB
(Λ − µN∗), S∗ = 1

νB
(N∗ − (1 − νB) Λ

µ
) . (3.60)

So,

I∗ = 1

ν
(Λ − µN∗).

Theorem 3.5.2. Let assumption (3.48) hold. If R0 < 1, system (3.42) admits only
the disease - free equilibrium

(Λ

µ
,0,

Λ

µ
) ,

which is asymptotically stable. If R0 > 1, there exists a unique endemic equilibrium,

(S∗, σ∗e−(µ+ν)θB(θ),N∗),
where (S∗, σ∗,N∗) are given by (3.57) or (3.60) depending on the value of ν.
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In order to analyze the stability of the endemic steady - state, we linearize (3.42)
at the endemic state (S∗, i∗(θ),N∗) and we are looking for solutions of the form

eλt(S0, y(θ),N0).

Furthermore, setting

Ψ(x) = K (x)
x

,

we get the eigenvalue problem

λS0 + λ∗S0 + µS0 + S∗Ψ′(N∗)σ∗BϕN0 + S∗Ψ(N∗)∫
θ†

0
ϕ(θ)y(θ)d(θ) = 0, (3.61a)

λy(θ) + y′(θ) + γ(θ)y(θ) + (µ + ν)y(θ) = 0, (3.61b)

y(0) = λ∗S0 + S∗Ψ′(N∗)σ∗BϕN0 + S∗Ψ(N∗)∫
θ†

0
ϕ(θ)y(θ)dθ = 0, (3.61c)

λN0 + µN0 + ν ∫
θ†

0
y(θ)dθ = 0. (3.61d)

From (3.61b) we get

y(θ) = y(0)e−λθe−(µ+ν)θB(θ),

and we substitute into (3.61a), (3.61c) and (3.61d) to conclude

(λ + µ)S0 + y(0) = 0, (3.62)

− βS0 + (1 − K̂0(λ))y(0) − S∗Ψ′(N∗)σ∗BϕN0 = 0, (3.63)

νBK̂1(λ)y(0) + (λ + µ)N0 = 0, (3.64)

where the kernels K0(t) and K1(t) have the form

K0 =
ϕ(t)e−(µ+ν)tB(t)

Bϕ

, K1(t) =
e−(µ+ν)tB(t)

B
, β = σ

∗

S∗
,

that is, they are like those for the SIS model. The computation of the determinant
of the system leads to the characteristic equation

(λ + µ)2 [1 − K̂0(λ) +
νS∗Ψ′(N∗)BBϕσ∗K̂1(λ) + β

λ + µ ] = 0. (3.65)

For λ = −µ, the above equation has a double negative real root. For

1 = K̂0(λ) −
νS∗Ψ′(N∗)BBϕσ∗K̂1(λ) + β

λ + µ , (3.66)

we have, if ν = 0, that

K̂0(λ) =
λ + µ + β
λ + µ . (3.67)
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If there is a root λ with positive real part, then it should be

∣K̂0(λ)∣ < 1,

and

∣λ + µ + β
λ + µ

∣ > 1,

that is, λ is not a root of (3.67).
If ν > 0 sufficiently small, the endemic state is stable. Destabilization may occur

for sufficiently large ν.



Chapter 4

Conclusions

Epidemics are a serious problem for the world’s population. Each year millions of
people die from infectious diseases.
Mathematical models can help us understand the spread and the spatial distribution
of the diseases that lead to an epidemic and predict the spread or eradication of it.
The important parameters which determine the outbreak of an epidemic are the
initial size of susceptible individuals S0, the infection rate λ of a disease (force of
infection), and the removal rate γ (the rate of isolation or mortality or acquisition
of immunity). These, along with the contact rates and the probability of infecting
contacts, determine the basic reproduction number R0, which constitutes the thresh-
old criterion for the spread or elimination of an epidemic.
Several times, it is of particular interest to study the cases in which a disease ends
up becoming endemic. We arrive at such conclusions by searching for endemic equi-
librium points and their stability.
In practice, many of the factors that determine the above parameters are difficult
to calculate or measured directly and therefore the exact prediction of the evolution
of an epidemic becomes impossible.
Nevertheless, mathematical models can help authorities be more effectively prepared
to deal with the consequences of a possible epidemic. They can also help us find the
optimal strategies for the vaccination of the population. For these reasons, they are
important tools that are worth studying and developing.
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Birkhäuser, 2nd ed.

[32] Keeling M. J., Rohani P. (2011) Modeling Infectious Diseases in Humans and
Animals, Princeton University Press.

[33] Kermack W. O., McKendrick A. G. (1927) Contributions to the mathematical
theory of epidemics, Proceedings of Royal Society of London, Series A 115,
700-721.
http://www.math.utah.edu/∼bkohler/Journalclub/kermack1927.pdf

[34] Kendall D. G. (1956) Deterministic and Stochastic epidemics in closed popula-
tions, Proceedings of the Third Berkeley Symposium on Mathematical Statistics
and Probability: Contributions to Biology and Problems of Health. 149–165.
https://www.degruyter.com/document/doi/10.1525/9780520350717-011/html

[35] Kot M. (2001) Elements of Mathematical Ecology, Cambridge University Press.

[36] Kress R. (2014) Linear Integral Equations, Springer, 3rd ed.

[37] Lakshmikantham V., Rama Mohana Rao M. (1995) Theory of Integrodifferential
Equations, Gordon and Breach.

[38] Lin C. C., Segel L. A. (1988) Mathematics Applied to Deterministic Problems
in the Natural Sciences, SIAM.

[39] Logan J. D. (2013) Applied Mathematics, 4th ed., Wiley.

[40] Logan J. D., Wolesensky W. R. (2009) Mathematical Methods in Biology, Wiley.

[41] Lotka A. J. (1925) Elements of Physical Biology, Williams and Wilkins.
https://archive.org/details/elementsofphysic017171mbp/mode/2up

[42] Martcheva M. (2015) An Introduction to Mathematical Epidemiology, Springer.

[43] Murray J. D. (2011) Mathematical Biology. I: An Introduction, 3rd ed.,
Springer.

[44] Murray J. D. (2011) Mathematical Biology. II: Spatial Models and Biomedical
Applications, 3rd ed., Springer.

[45] Otto S. P., Day T. (2011) A Biologist’s Guide to Mathematical Modeling in
Ecology and Evolution, Princeton University Press.

[46] Ross R. (1916) An application of the theory of probabilities to the study of a
priori pathometry. - Part I, Proceedings of the Royal Society of London, Series
A, 92, 204–230.
https://royalsocietypublishing.org/doi/10.1098/rspa.1916.0007

http://www.math.utah.edu/~bkohler/Journalclub/kermack1927.pdf
https://www.degruyter.com/document/doi/10.1525/9780520350717-011/html
https://archive.org/details/elementsofphysic017171mbp/mode/2up
https://royalsocietypublishing.org/doi/10.1098/rspa.1916.0007


BIBLIOGRAPHY 59

[47] Ross R., Hudson H. (1917), An application of the theory of probabilities to
the study of a priori pathometry. - Part II, Proceedings of the Royal Society of
London, Series A, 93, 212–225.
https://royalsocietypublishing.org/doi/10.1098/rspa.1917.0014

[48] Ross R., Hudson H. (1917) An application of the theory of probabilities to the
study of a priori pathometry. - Part III, Proceedings of the Royal Society of
London, Series A, 93, 225–240.
https://royalsocietypublishing.org/doi/10.1098/rspa.1917.0014

[49] Schaffer D. G., Cain J. W. (2018) Ordinary Differential Equations: Basics and
Beyond, Springer.

[50] Segel L. A. (1984) Modeling Dynamic Phenomena in Molecular and Cellular
Biology, Cambridge University Press.

[51] Segel L. A., Edelstein-Keshet L. (2013) A Primer on Mathematical Models in
Biology, SIAM.

[52] Wazwaz A.-M. (2011) Linear and Nonlinear Integral Equations, Methods and
Applications, Springer.

[53] Zemyan S. M. (2012) The Classical Theory of Integral Equations, Springer.

https://royalsocietypublishing.org/doi/10.1098/rspa.1917.0014
https://royalsocietypublishing.org/doi/10.1098/rspa.1917.0014

	Introduction
	Historical note
	A brief description
	Some simple models

	Deterministic Models
	Basic elements and notations
	SIR models
	The classic Kermack - McKendrick model
	A more realistic scenario
	The SIR model with demography

	SIS models (without immunity)
	The simplest SIS model
	The SIS model with demography

	SEIR models
	Venereal diseases
	R0: herd immunity, vaccination, estimation
	Distributed infection period & variable infectiousness

	Age-Structured Models
	The age of the disease
	The classical Kermack - McKendrick model
	SI age-dependent model
	The SIS model
	Endemic state and stability

	The basic SIR model
	Modeling variable populations
	The extended Kermack - McKendrick SIR model
	Endemic states for SIR model


	Conclusions

