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ABSTRACT

BERT is one of the greatest contributions to the field of natural language processing, and
many applications based on it are increasingly used. Every day more and more models
are created based on this technology and its various variations. RoBERTa is one of them
and is the main tool on which this work was based. We therefore present two models
based on this architecture, trained on Greek language data. Examining their performance
and comparing it with the existing model GREEK-BERT in the tasks of Part-of-Speech
Tagging and Named Entity Recognition, we conclude that one of the ones we created has
the best performance.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: RoBERTa, BERT, Deep Learning, Neural Networks,
Natural Language Processing



ΠΕΡΙΛΗΨΗ

Το μοντέλο BERT αποτελεί μια από τις μεγαλύτερες συνεισφορές στον τομέα της επεξερ-
γασίας φυσικής γλώσσας και πολλές εφαρμογές βασισμένες σε αυτό χρησιμοποιούνται
όλο και περισσότερο. Κάθε μέρα δημιουργούνται όλο και περισσότερα μοντέλα βασισμένα
σε αυτή την τεχνολογία και σε διάφορες παραλλαγές της. Το RoBERTa αποτελεί μία από
αυτές και είναι και το κύριο εργαλείο στο οποίο βασίστηκε αυτή η πτυχιακή εργασία. Παρου-
σιάζουμε λοιπόν δύο μοντέλα βασισμένα σε αυτή την αρχιτεκτονική, εκπαιδευμένα σε ελ-
ληνικά δεδομένα. Εξετάζοντας την απόδοσή τους και συγκρίνοντάς τα με το ήδη υπάρχον
μοντέλο GREEK-BERT σε δοκιμές Part-of-Speech Tagging και Named Entity Recognition,
καταλήγουμε πως ένα από αυτά που δημιουργήσαμε έχει τις καλύτερες επιδόσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: RoBERTa, BERT, Βαθιά Μάθηση, Νευρωνικά Δίκτυα,
Επεξεργασία Φυσικής Γλώσσας
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Greek-RoBERTas: Two Language Models for Greek

1. INTRODUCTION

A subfield of Artificial Intelligence called Natural Language Processing (NLP) [3] enables
computers to comprehend, analyze, and use human languages. NLP enables machines
and people to communicate using human language. Computers can read text, hear
speech, and interpret it with the aid of NLP.

After BERT [6] model was introduced, only four years ago, the area of NLP witnessed
a significant shift. The model managed to achieve cutting-edge results in a wide vari-
ety of challenging NLP tasks, including Question Answering, Natural Language Infer-
ence, and others. The primary technological advancement of BERT is the application
of Transformer’s [33] bidirectional training, a popular attention model, to language mod-
eling. Transformer-based language models, acquire the characteristics of languages by
unsupervised pretraining methods on massive amounts of text.

In order to improve the performance of BERT some researchers at Facebook tried to
train the model longer, with larger batches and with more data and they did succeed in
improving scores on downstream NLP tasks. They named the model RoBERTa [12] and
this is the architecture we used in this certain research work.

The main target of this thesis is to develop a model based on the RoBERTa architecture
and compare it to a BERT-based model in the same tasks. The team of Athens University
of Economics and Business have already published a model called GREEK-BERT [10],
which is trained on 29 GB of Greek text data and has achieved great performance in the
tasks of Greek PoS tagging, Named Entity Recognition (NER), and Natural Language
Inference (NLI). So, our challenge is to create a RoBERTa-based model and examine if it
can perform better.

This thesis is divided in the following five chapters:

• In chapter 2, we provide some details of the theoritical background needed to fully
understand the content of this thesis.

• In chapter 3, we analyze how the BERT and RoBERTa models work, we give a look
into the GREEK-BERT model and we make some references to RoBERTa based
models for other languages.

• In chapter 4, we introduce twomodels based on the architecture of RoBERTa trained
on different combinations of Greek datasets.

• In chapter 5, we examine the tasks we evaluated our models with and the data we
needed.

• In chapter 6, we present the results of this research and we make some conclusions
based on it.

M. Iglezou 13
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2. BACKGROUND

2.1 Machine Learning

Machine learning [17] (ML) is a subfield of artificial intelligence (AI) which focuses on
optimizing algorithms in order to perform complex tasks in a way that is similar to how
humans solve problems. Nowadays the approaches used in ML are widely applied in
a variety of applications such as in computer vision, speech recognition, autonomous
driving, medicine, economics and manufacturing.

The term Machine Learning was coined in 1959 by Arthur Samuel [29], an IBM employee
and pioneer in the field of computer gaming and artificial intelligence. But, the very first
idea of combining the way human brain works and machines was published by Warren
S. McCulloch, a neuroscientist, and Walter Pitts, a logician in 1943. In their paper, ”A
logical calculus of the ideas immanent in nervous activity” [15], they tried to understand
how the brain could produce highly complex patterns by using many basic cells that are
connected together. So, they gave a highly simplified model of a neuron. After these two
contributions, many others followed in order for machine learning and artificial intelligence
to become so integrated into our daily lives.

The models build through machine learning algorithms are based on sample data, known
as training data, in order to make predictions or decisions without being expressly pro-
grammed to do so. This is one among the factors that has contributed to the rapid growth
of ML in recent years. There is presently a surplus of data in many fields.

There are three subcategories of machine learning [16]:

• Supervised machine learning, which is defined by the use of labeled datasets in
the training procedure. For example, an algorithm would be trained with pictures of
cats and dogs, all labeled by humans, and the machine would learn ways to identify
pictures of cats and digs on its own.

• Unsupervised machine learning, which uses unlabeled data. From that data, mod-
els discover patterns that help solve clustering or association problems. For ex-
ample, an unsupervised machine learning program could look through online sales
data and identify different types of clients making purchases.

• Reinforcement machine learning. In this area, machines learn to achieve a goal in
an uncertain and usually complex environment. They are called to take an action,
given the state of the environment, and then they take rewards or penalties for the
actions they perform. The final goal is to maximize the total reward. Some examples
where reinforcement learning is used are game playing and autonomous driving.

Some implementations of machine learning use data and algorithms in a way that they
imitate the way of a biological brain works. That area is called Deep Learning and the
tools used are named Neural Networks, two terms we will analyse in the next sections.

M. Iglezou 14
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2.2 Deep Learning

Deep Learning [11] is a subfield of machine learning concerned with algorithms inspired
by the structure and function of the brain called artificial neural networks. It has the ability
to perform really well with unlabeled data. Deep learning can automatically identify the
collection of features that separate several types of data from one another and can ingest
unstructured data in its raw form (such as text and photos). We can scalemachine learning
in more interesting ways since it doesn’t require human intervention to handle data, unlike
machine learning. Progress in fields like computer vision, natural language processing,
and speech recognition is mostly attributed to deep learning and neural networks.

Figure 2.1: Machine Learning vs Deep Learning (Source)

2.3 Neural Networks

Neural networks [15], or artificial neural networks (ANNs), are computing systems inspired
by the biological neural networks of humans. Basically, they are consist of several con-
nected units or nodes called artificial neurons. Every node receives signals, then analyzes
them and transmits the processed signal to neurons connected to it. Neurons frequently
group together into layers. Different layers may modify their inputs in different ways. Sig-
nals move through the layers, perhaps more than once, from the first layer to the last
layer.

Figure 2.2: Neuron and myelinated axon (Source)

M. Iglezou 15
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So, ANNs are consist of a node layers, containing an input layer, one or more hidden
layers, and an output layer. Each node, or artificial neuron, connects to another and has
an associated weight and threshold. If the output of any individual node is above the
specified threshold value, that node is activated, sending data to the next layer of the
network. Otherwise, no data is passed along to the next layer of the network.

Figure 2.3: Example of Neural Network Architecture

Lastly, the “deep” in deep learning is referred to the depth of layers in a neural network.
A neural network that has more than three layers can be considered a deep learning
algorithm or a deep neural network. A neural network that only has two or three layers is
just a basic neural network.

Another essential component of neural networks is the activation function [31]. An activ-
ation function in a neural network defines how a node or nodes in a layer of the network
translate the weighted sum of the input into an output. Different activation functionsmay be
used in different regions of the model, and the choice of activation function has a signific-
ant impact on the neural network’s capability and performance. Technically, the activation
function is used within or after the internal processing of each node in the network, al-
though networks are designed to use the same activation function for all nodes in a layer.
All hidden layers typically use the same activation function. Typically, the same activation
function is used by all buried levels. The kind of prediction required by the model will de-
termine what activation function is used in the output layer, which is often different from
the hidden layers.

Figure 2.4: Activation Function Usage

M. Iglezou 16
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2.4 Perceptrons

A perceptron was introduced by F. Rosenblatt [25] in 1958. Is an algorithm for supervised
learning of binary classifiers. A binary classifier is a function which can decide whether
or not an input, represented by a vector of numbers, belongs to some specific class[7]. It
consists of an input layer, followed by the output layer which is a single neuron. The value
of the output neuron can be computed as f(x) = wx + b, where w ∈ R1×n is the weight
vector (signals), x ∈ Rn×1 is the input vector and b ∈ R is the bias. The classifier will then
choose a class according to the sign of the output neuron. We have:

f(x) =

{
1 if wx + b > 0,

0 otherwise.

In the context of neural networks, a perceptron is an artificial neuron that uses the Heav-
iside step function as its activation function. To distinguish it from a multilayer perceptron,
a misleading name for a more complex neural network, the perceptron method is also
known as the single layer perceptron. The single-layer perceptron is the simplest feedfor-
ward neural network and serves as a linear classifier.

For more complicated tasks this model will not perform well, since it only learns a linear
decision boundary. In order to overcome this problem, we need to increase the size of our
model. So, we add more layers between the input and output layers, followed by a non-
linear activation function in order to learn more complex representations of the input data.
These new layers are called “hidden” layers and the model with that kind of architecture
is called “MultiLayer Perceptron” (MLP) [26].

Specifically, an MLP consists of at least three layers of nodes: an input layer, a hidden
layer and an output layer. Except for the input nodes, each node is a neuron that uses a
nonlinear activation function. MLP utilizes a supervised learning technique called back-
propagation [28] for training. Its multiple layers and non-linear activation distinguish MLP
from a linear perceptron. It can distinguish data that is not linearly separable.

Figure 2.5: Perceptrons. (a) Single layer perceptron; (b) multi-layer perceptron.

M. Iglezou 17
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2.5 Recurrent Neural Networks

Recurrent neural networks were based on David Rumelhart’s work in 1986 [27] and the
famous LSTM architecture was invented in 1997 [9] by S. Hochreiter and J. Schmidhuber.

A recurrent neural network (RNN) is a type of artificial neural network which uses se-
quential data or time series data and its connections between nodes form a directed or
undirected graph. They have the concept of ‘memory’ that helps them store the states or
information of previous inputs to generate the next output of the sequence. If the network
features feedback loops or time delays, the storage can be replaced by another network
or graph. Such controlled states are referred to as gated state or gated memory, and are
part of long short-term memory networks (LSTMs) and gated recurrent units (GRUs).

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget
gate. The three gates control the flow of information into and out of the cell, and the cell
remembers values across arbitrary time intervals.

LSTM networks are well-suited to classifying, processing andmaking predictions based on
time series data, since there can be lags of unknown duration between important events
in a time series. LSTMs were developed to deal with the vanishing gradient problem [8]
that can be encountered when training traditional RNNs.

Figure 2.6: (a) Recurrent Neural Networks (b) Non Recurrent Neural Networks

These deep learning algorithms are commonly used for ordinal or temporal problems,
such as language translation, natural language processing (NLP), speech recognition,
and image captioning; they are incorporated into popular applications such as Siri, voice
search, and Google Translate.

M. Iglezou 18
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2.6 Transformers

2.6.1 Introduction

Transformers were proposed from Google in the paper “Attention Is All You Need” in 2017
[33]. Now, is the current state-of-the-art technique in the field of NLP.

Specifically, the Transformer Neural Network is a novel architecture that tries to solve
sequence-to-sequence problems while handling long-range dependencies. Like Recur-
rent Neural Networks, transformers are designed to process sequential input data. How-
ever, unlike RNNs, they are able to handle the entire input all at once. They make use
of an evolving mathematical technique, called attention or self-attention, a mechanism
through which the model determine the significance of the input tokens.

The attention mechanism provides context for any position in the input sequence. For
instance, if the input data is a natural language sentence, the transformer does not need
to process one word at a time. Compared to RNNs, this permits higher parallelization,
which reduces the training time and allows training on larger datasets. This led to the
development of pretrained systems such as BERT (Bidirectional Encoder Representations
from Transformers) [6] and GPT-3 (Generative Pre-trained Transformer 3) [2].

2.6.2 Attention

In neural networks, attention is a technique that imitates cognitive attention. The purpose
of this mechanism is to encourage the network to give greater attention to the little but
significant portions of the input data by enhancing some and reducing others.

An attention function can be described as mapping a query and a set of key-value pairs
of dimension

√
dk to an output, where the query, keys, values, and output are all vectors.

The output is computed as a weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with the corresponding
key. It can be described by the following equation [33]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Q refers to query, K to keys and V stands for values. Additionally, the SoftMax function
is applied to the weights in order to have a distribution between 0 and 1. Those weights
are then applied to all the words in the sequence that are introduced in V .

2.6.3 Architecture

The input data are parsed into tokens by a byte pair encoding tokenizer, and a word em-
bedding converts each token into a vector. Then, positional information of the token is
added to the word embedding.

The original Transformer model uses an encoder–decoder architecture. The encoder con-
sists of encoding layers that process the input iteratively one layer after another, while the
decoder consists of decoding layers that do the same thing to the encoder’s output.
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Both the encoder and decoder layers have a feed-forward neural network for additional
processing of the outputs and contain residual connections and layer normalization steps.

Figure 2.7: Architecture of a transformer [33]

In the above figure, the Encoder is on the left and the Decoder is on the right. Both Encoder
and Decoder are composed of modules that can be stacked on top of each other multiple
times, which is described by Nx in the figure. We see that the modules consist mainly of
Multi-Head Attention and Feed Forward layers.

The function of each encoder layer is to generate encodings that contain information about
which parts of the inputs are relevant to each other. It passes its encodings to the next
encoder layer as inputs. Each decoder layer does the opposite, taking all the encodings
and using their incorporated contextual information to generate an output sequence. To
achieve this, each encoder and decoder layer makes use of an attention mechanism.

For each input, attention weighs the relevance of every other input and draws from them
to produce the output. Each decoder layer has an additional attention mechanism that
draws information from the outputs of previous decoders, before the decoder layer draws
information from the encodings.
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3. RELATED WORK

3.1 BERT

BERT is a model for natural language processing introduced in Devlin et al [6] in 2018
by Google. It learns bi-directional representations of text and it can significantly improve
contextual understanding of unlabeled text across many different tasks. Fine-tuning is
achieved only by replacing the final layer of the core model with the one needed for the
specific task. This makes BERT suitable for many language understanding tasks like
translation, question-answering (Q&A), sentiment analysis, and sentence classification 1.

Figure 3.1: NLP task using BERT1

3.1.1 How it works

BERT is based on a Transformer architecture. As we mentioned before, Transformers
include two separate mechanisms — an encoder that reads the text input and a decoder
that produces a prediction for the task. Since BERT’s goal is to generate a language
model, only the encoder mechanism is necessary.

Directional models read the text input sequentially (left-to-right or right-to-left), the Trans-
former encoder reads the entire sequence of words at once. Therefore it is considered
bidirectional. This characteristic allows the model to learn the context of a word based on
all of its surroundings (left and right of the word).

The input of the encoder is a sequence of tokens, which are first embedded into vectors
and then processed in the neural network. The output is a sequence of vectors of size H,
in which each vector corresponds to an input token with the same index.

1https://jalammar.github.io/illustrated-bert/
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3.1.2 Architecture

As a transformer language model has a variable number of encoder layers and self-
attention heads based on the original implementation. The original English-language
BERT has two models:

1. BERTBASE: 12 encoders with 12 bidirectional self-attention heads, and

2. BERTLARGE: 24 encoders with 16 bidirectional self-attention heads

Both models are pre-trained from unlabeled data extracted from the BooksCorpus[35] with
800M words and English Wikipedia with 2,500M words.

Figure 3.2: BERT architecture overview1

3.1.3 Pre-training

BERT’s vocabulary uses WordPiece embeddings [34] with a 30,000 token vocabulary.
This helps BERT represent every word in existence, by combining learned tokens. As
mentioned before, BERT does not use traditional left-to-right or right-to-left language mod-
els for pre-training. Instead, it uses the two unsupervised tasks described below.

3.1.3.1 Masked LM

For the pre-training procedure some of the input tokens are randomly masked and then
the model attempts to predict the original value of the masked words, based on the context
provided by the other, non-masked, words in the sequence. Training the language model
in BERT is done by predicting 15% of the tokens in the input, that were randomly picked.
These tokens are pre-processed as follows:

• 80% are replaced with a “[MASK]” token

• 10% with a random word and

• 10% use the original word.
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3.1.3.2 Next Sentence Prediction (NSP)

In some tasks such as Question Answering the model has to understand the relationship
between two sentences, an ability difficultly achieved by language modeling. So, BERT
was pre-trained in a next sentence prediction task. Specifically, for each training example
two sentences A, B are chosen, where 50% of the time B is the actual next sentence that
follows A, labeled as IsNext and 50% of the time is a random sentence from the corpus,
labeled as NotNext.

Figure 3.3: Example of Training data (Source)

3.2 GREEK-BERT

GREEK-BERT [10] is a monolingual model for Greek language, introduced by a team in
Athens University of Economics and Business, based on the original BERT architecture,
trained on 29 GB of Greek text data. The model achieved great performance in Greek PoS
tagging, named entity recognition, and natural language inference, outperforming some
multilingual Transformer-based language models (M-BERT [1], XLM-R [4]) and shallower
established neural methods (BILSTM-CNN-CRF [13], DAM [21]) in the last two tasks.

3.2.1 Data

The pre-training corpora of bert-base-greek-uncased-v1 includes:

• The Greek part of Wikipedia2, (0.73GB, 0.08 billion tokens)

• The Greek part of European Parliament Proceedings Parallel Corpus3 (0.38GB, 0.04
billion tokens), and

• The Greek part of OSCAR [19], a cleansed version of Common Crawl4 (27GB, 2.92
billion tokens).

2https://dumps.wikimedia.org/elwiki/
3https://www.statmt.org/europarl/
4https://commoncrawl.org
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3.2.2 Benchmarks

3.2.2.1 Part-of-Speech Tagging

Part-of-Speech (PoS) tagging [22] is a task of labelling each word in a sentence with its
appropriate part of speech. Specifically, a PoS tag is a special label assigned to each token
(word) in a text corpus to indicate the part of speech and often also other grammatical
categories such as tense, number (plural/singular), case etc. PoS tags are used in corpus
searches and in text analysis tools and algorithms.

3.2.2.2 Named Entity Recognition

Named-entity recognition (NER) [18] is a subtask of information extraction that seeks to
locate and classify named entities mentioned in unstructured text into pre-defined categor-
ies such as person names, organizations, locations, medical codes, time expressions,
quantities, monetary values, percentages, etc.

Figure 3.4: NER example (Source)

3.2.2.3 Natural Language Inference

Natural Language Inference (NLI) 5 is a task of determining whether the given “hypothesis”
and “premise” logically follow (entailment) or unfollow (contradiction) or are undetermined
(neutral) to each other.

Figure 3.5: NLI Example5

5https://paperswithcode.com/task/natural-language-inference
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3.3 RoBERTa

RoBERTa [12] stands for Robustly Optimized BERT Pretraining Approach. It was presen-
ted by researchers at Facebook andWashington University in 2019. RoBERTa is based on
the architecture of BERT model, but in order to make some improvements on the results,
the authors made some simple design changes in its architecture and training procedure.
The modifications include:

• Training themodel over a longer period of time, using larger batches, and on a longer
sequence. BERT is initially trained for 256-sequence batches and 1M steps. The
model was trained using 125 steps of 2K sequences and 31K steps of batch size
8K sequences. This has two benefits: the large batches increase end-task accuracy
and perplexity on the masked language modelling objective. Additionally, distributed
parallel training makes it simpler to parallelize large batches.

• Removing the next sentence prediction objective. The model is trained to predict,
using an auxiliary Next Sentence Prediction (NSP) loss, whether the observed doc-
ument segments originate from the same or other documents. The authors tested
numerous versions with and without NSP loss, and they came to the conclusion that
removing the NSP loss matches or slightly improves the performance of downstream
tasks.

• Dynamically changing the masking pattern applied to the training data. The masking
in the BERT architecture is done just once, during the data preprocessing, resulting
to a single static mask. To avoid using the single static mask, training data is duplic-
ated and masked 10 times, each time with a different mask strategy over 40 epochs
thus having 4 epochs with the same mask. This approach is compared to dynamic
masking, which uses a different mask each time input is passed into the model.

3.3.1 Data

The original data of BERT was 16GB, but RoBERTa has 160GB. Specifically, the dataset
includes:

• BOOKCORPUS [35] and EnglishWikipedia dataset: This data also used for training
BERT architecture and contains 16GB of text.

• CC-NEWS 6. This data contains 63 million English news articles crawled between
September 2016 and February 2019. The size of this dataset is 76 GB after filtering.

• OPEN WEB TEXT7: This dataset contains web content extracted from the URLs
shared on Reddit with at least 3 upvotes. The size of it is 38 GB.

• STORIES [32]: This dataset contains a subset of Common Crawl data filtered to
match the story-like style of Winograd NLP task. It contains 31 GB of text.

6http:web.archive.org/save/http:/commoncrawl.org/2016/10/newsdataset-available
7http://web.archive.org/save/http://Skylion007.github.io/OpenWebTextCorpus
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3.3.2 Text Encoding

By combining character- and word-level representations, Byte-Pair Encoding (BPE) is able
to manage the huge vocabulary that is very common in natural language datasets. BPE
depends on subword units rather than whole words, which are derived by statistical ana-
lysis of the training corpus. BERT uses a character level BPE vocabulary size of 30Kwhich
is learned after preprocessing with heuristic tokenization rules. The team of RoBERTa,
uses another implementation of BPE that uses bytes instead of unicode characters at
the base subword units. Here BPE subword vocabulary is increased to 50K units. This
type of encoding was chosen since it is a universal encoding scheme that doesn’t have
tokenization or preprocessing requirements.

3.4 Other RoBERTa models

3.4.1 CamemBERT

CamemBERT [14] is a state-of-the-art language model for French based on the RoBERTa
architecture pretrained on the French subcorpus of the newly available multilingual cor-
pus OSCAR. CamemBERT was evaluated in four different downstream tasks for French:
part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and
natural language inference (NLI); improving the state of the art for most tasks over previ-
ous monolingual and multilingual approaches, which confirms the effectiveness of large
pretrained language models for French.

3.4.2 GottBERT

GottBERT [30] is the German version of RoBERTa. The German portion of the OSCAR
data set was used as text corpus. For the evaluation, its performance was compared
on two Named Entity Recognition (NER) tasks as well as on text classification tasks with
existing German single language BERT models and two multilingual ones. GottBERT
was pre-trained related to the original RoBERTa model using fairseq. All downstream
tasks were trained using hyperparameter presets taken from the benchmark of German
BERT. GottBERT surpassed all other tested German and multilingual models in all NER
and one text classification tests.

3.4.3 RobBERT

RobBERT [5] is a Dutch language model. Its performance was measured on various tasks
as well as its importance of the fine-tuning dataset size. The importance of language-
specific tokenizers and the model’s fairness were also evaluated . RobBERT improves
state-of-the-art results for various tasks, and especially significantly outperforms other
models when dealing with smaller datasets.
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4. TWO ROBERTA LANGUAGE MODELS FOR GREEK

In this chapter we will represent two models based on the RoBERTa architecture, each
with a different size of training data. We will thoroughly examine the training process, the
datasets, and in the end we will be able to judge, based on the results, how big role more
data play for a model to be effective. We will compare these models with the GREEK-
BERT model, mentioned in section 2.2.

4.1 Semi-GrRoBERTa

Semi-GrRoBERTa is a model based on the original architecture of RoBERTa trained on
the exact same data as the GREEK-BERT model (29GB), described in detail in section
2.2.1 . The purpose of this experiment is to check if by applying all the changes described
in the RoBERTa paper, except adding extra data, the results would be better. The model
was trained for 1367 epochs with 13 minutes training time per epoch. So the training
process for this model lasted about 5 days. The loss was 9.815 when the model started
the training and 0.744 when it ended.

4.2 GrRoBERTa

GrRoBERTa is is also based on RoBERTa and is additionally trained on a much larger
volume of Greek data. We wanted to see if this model could be a robustly optimized
version of GREEK-BERT. During the pre-training process we applied all the modifications
mentioned on the RoBERTa approach.

The model was trained again on the same data as GREEK-BERT, but with the addition
of the Greek part of C4 dataset [24] (120GB). The only difference appeared in that extra
dataset, is that we needed to do some more pre-proccessing, because it included many
emojis, a characteristic that did not existed in the previous datasets. So our final dataset
was a size of 149GB, five times bigger than the one of Semi-GrRoBERTa and GREEK-
BERT.

GrRoBERTa was trained for 29 epochs with 15 hours and 30 minutes training time per
epoch. This gives us approximately 18 days of training. The loss was 15.828 when the
model started the training procedure and 1.552 when it ended.

4.3 Server Resources

For the needs of this thesis we used the server facilities of the Cyprus Institute1. Both
models were trained on 4 NVidia V100 GPUs of 32 GB. The only problem we faced with
this facility was the fact that every job we submitted lasted for 24 hours. So, after the end
of it we had to commit resources again, which were often not available. Therefore, the
actual time of the training procedure, was much longer than the one we mentioned.

1https://hpcf.cyi.ac.cy/index.html
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4.4 Pre-training Procedure

4.4.1 Pre-Process

Firstly, we preprocessed the data in the sameway it was handled during theGREEK-BERT
preprocessing procedure. Specifically, the data had only lowercase letters, while special
symbols and emojis were removed. We later discovered that this step was unnecessary
because the tokenizer we used during training already knew how to partition text in order
to maximize the coverage of the dictionary size that we chose at the beginning. In fact,
this is the power of dynamic tokenizers, that they are based on your data rather than static
rules. So, we could have skipped this step, except that the emoji removal is needed in
any case.

4.4.2 Encoding

For the pretraining process of both models we based our approach on the instructions2 of
fairseq [20], which is a sequencemodeling toolkit that enables researchers and developers
to train custom models for translation, summarization, language modeling and other text
generation tasks. In this guide there are two basic steps before training the model:

1. Encode data with the GPT-2 BPE

2. Reprocess/binarize the data using the GPT-2 fairseq dictionary

However, in our case we couldn’t use the GPT-2 BPE encoder from fairseq, because it is
only for English. In order to surpass this obstacle, we talked with the team of UmBERTo
3, a Language model based on RoBERTa architecture for Italian, and they adviced 4 us to
use the SentencePiece5 Tokenizer that is also the same used in Camembert[14]. We first
trained the tokenizer to the whole dataset, a procedure that takes several minutes, and
then we encoded it. For this process, we used the tools for command line. Specifically:

1. We first trained the tokenizer to all the files of the dataset.

# Train SentencePiece Tokenizer on large corpus
spm_train \

--input=[text files] \
--max_sentence_length= [ max length of a sentence you accept ]\
--model_prefix=roberta \
--vocab_size=[50000 in our case] \
--model_type=bpe \
--shuffle_input_sentence=true \
--pad_id=-1 \
--input_sentence_size=[ choose a smaller amount of data randomly ]

2https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.
pretraining.md

3https://github.com/musixmatchresearch/umberto
4https://github.com/musixmatchresearch/umberto/issues/2#issuecomment-585894712
5https://github.com/google/sentencepiece
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2. Then we encoded the data in the format that Fairseq training requires.

# Encode Data with SentencePiece Tokenizer
spm_encode \

--model=roberta.model \ [ model that is from output of sp training ]
--extra_options=bos:eos \ [ saying that you want begin of sequence and

end of sequence encoded ]
--output_format=piece \ [ here you are telling that encoded data will

be as tokens of spm ]
< file.txt \ [ data in input]
> file.bpe [ encoded data in output ]

The final bpe file has the following format:

Figure 4.1: Example of pbe encoding

3. After that, in the dictionary that is created, we only had to change the seperator from
tab to space, because this is the notation expected by fairseq. The final dictionary has the
above format. The #fiarseq:overwrite is a message for fairseq, that these particular units
might appear again in the file.

Figure 4.2: Example of the dictionary

M. Iglezou 29



Greek-RoBERTas: Two Language Models for Greek

4. Finally, after we had all of our data encoded to Byte-Pair Encoding (BPE) format, we
preprocessed the encoded data according to fairseq. After this step inside the DATA_DIR
the binarized files have been created for every data file.

# Preprocess Data
fairseq-preprocess \

--only-source \
--srcdict roberta.vocab \
--trainpref train.bpe \
--validpref valid.bpe \
--testpref test.bpe \
--destdir $DATA_DIR \
--workers $N_WORKERS

4.5 Training Procedure

4.5.1 Training Parameters

Due to the long time and high computing power required by the training, we could not train
for 500K steps as the original RoBERTa model. So, we had to choose a smaller number
of steps. UmBERTo’s 6 team had quite good results with 125K and that’s why we chose to
adjust our options in line with theirs. Moreover, RoBERTa model had similar performance
at both 100K and 500Κ steps.

TOTAL_UPDATES=125000 # Total number of training steps
WARMUP_UPDATES=10000 # Warmup the learning rate over this many updates
PEAK_LR=0.0005 # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512 # Max sequence length
MAX_POSITIONS=512 # Num positional embeddings
MAX_SENTENCES=16 # Number of sequences per batch (batch size)
UPDATE_FREQ=32 # Increase the batch size 32x
ATTENTION_DROPOUT=0.1 # The dropout probability for attention
DROPOUT=0.1 # The dropout probability of the model
WEIGHT_DECAY=0.01 # L2 regularization strength.
OPTIMIZER=ADAM # Kind of optimizer

Also, the final training batch size is 2048 (4GPU * 16 * 32).

6https://github.com/musixmatchresearch/umberto
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4.5.2 Training Command

After the pre-processing is done and the data files are in the appropriate format, we used
the fairseq-train command to train the models.

fairseq-train --fp16 $DATA_DIR \
--task masked_lm --criterion masked_lm \
--arch roberta_base --sample-break-mode complete --tokens-per-sample

$TOKENS_PER_SAMPLE \
--optimizer adam --adam-betas '(0.9,0.98)' \
--lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates

$WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
--dropout $DROPOUT --attention-dropout $ATTENTION_DROPOUT --weight-decay

$WEIGHT_DECAY \
--batch-size $MAX_SENTENCES --update-freq $UPDATE_FREQ \
--max-update $TOTAL_UPDATES --log-format simple --log-interval 1 \
--save-dir=$SAVE_DIR --skip-invalid-size-inputs-valid-test
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5. EVALUATION TASKS

For the evaluation of the models we used the tasks of Part-of-Speech (PoS) Tagging and
Named Entity Recognition(NER), with the same data as the GREEK-BERT team had. We
then compared the performance of our two models with theirs in these two tasks.

5.1 Part-of-Speech (PoS) Tagging

For this task, the Greek Universal Dependencies Treebank (GUDT) [23] 1 was used.The
dataset contains 2,521 sentences split in train (1,622), development (403), and test (456)
sets. The sentences have been annotated with PoS tags from a collection of 17 universal
PoS tags (UPoS)2. We ignore the syntactic dependencies of the dataset, sincewe consider
only PoS tagging.

The tags that appear in the dataset are:

Table 5.1: Part-of-Speech Tags

TAG Meaning
ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary

CCONJ coordinating conjunction
DET determiner
NOUN noun
NUM numeral
PART particle
PRON pronoun
PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction
SYM symbol
VERB verb
X other
_ adposition with determiner, for example ”στην”.

1https://github.com/UniversalDependencies/UD_Greek-GDT
2https://universaldependencies.org/u/pos/
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5.1.1 Data

Example of a the conllu file:

Figure 5.1: Example of the Conllu File from PoS Tagging Dataset

For this downstream task we used only the first and fourth columns that refer to each word
of the sentence and its tag respectively. We copied each word and each tag to text files
with a space between them. The end of each sentence is marked with an empty line. Here
is an example of a final file:

Figure 5.2: Part of the test.txt of PoS Tagging

5.2 Named Entity Recognition (NER)

For the second downstream task we used the two unpublished datasets developed by I.
Darras 3and A. Romanou 4 that were used by the GREEK-BERT team. The first one is
based on the conllu format and the second one is a json file. The two datasets contained
1,798 and 2,521 sentence in respect. We then merged them to one with 4,189 unique sen-
tences. As the GREEK-BERT team did, we used only the labels of Person, Organization
and Location, because these are the only common entity types across the two datasets.

3Part of his project for Google Summer of Code 2018 (https://github.com/eellak/gsoc2018-spacy)
4She annotated documents with named entities for another project (http://greekner.me/info)
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5.2.1 Data

The format of the final dataset should be with Inside–outside–beginning (IOB) tagging.
The IOB format is a common tagging format for tagging tokens in a chunking task in com-
putational linguistics. An O tag indicates that a token belongs to no chunk. The B- prefix
before a tag indicates that the tag is the beginning of a chunk that immediately follows
an other chunk without O tags between them. It is used only in that case: when a chunk
comes after an O tag, the first token of the chunk takes the I- prefix. Another similar format
which is widely used is IOB2 format, which is the same as the IOB format except that the
B- tag is used in the beginning of every chunk and this is the format used for this project.
The labels used are as follows: B-LOC, I-LOC, B-PER, I-PER, B-ORG, I-ORG, O. For
example:

Figure 5.3: Example of IOB2 format

Dataset from A. Romanou

This dataset has already separated files of train, test and validation sets in conllu format.
For these files, we read every line and wrote the word and its label to a text file with a
space in between. After the end of each sentence we added an empty line. The labels
are in the feature NameType from the 6th column. Here is an example of a data file:

Figure 5.4: Example of the Conllu File
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Dataset from I. Darras

This dataset includes one json file for training data with the following format:

Figure 5.5: Example of the Json File

As we see, the spans section is needed, because it includes the labels of some tokens.
We can find the word each label refers to, by the ’start’ and the ’end’ of each token. In
the above example we have only the label for a word that has at start the number 3 and
at the end the number 1. If we check in the section of tokens, we can see that it refers to
the word ’ΗΠΑ’. So, we conclude that ’ΗΠΑ’ is labeled as GPE, and because of the BIO2
format to B-LOC. All the other words will be labeled as O - other.

Final Dataset

The first dataset was already splitted to training, validation and test sets. According to
the GREEK-BERT paper, we combined the training part of A. Romanou’s dataset with the
entire dataset from I. Darras in order to create the new training set. For validation and test
sets, we used the validation and test files of the first set respectively. The final dataset
includes three text files: train.txt (1,1 MB), dev.txt (135 KB), test.txt (135 KB) . These files
have the word in each line on the left, then a space and then the corresponding label.
Each sentence stands out from the other, with a blank line between them.
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6. EXPERIMENTAL RESULTS

In this section, we present the scores of the twomodels and we compare their performance
to the GREEK-BERT model. Among the models we created, we expect GrRoBERTa to
perform better since the size of the data plays a decisive role in such cases.

6.1 GREEK-BERT results

In the paper of AUEB team the micro-F1 scores were 98.1 and 85.7 respectively for the
two tasks. We also ran in our own the GREEK-BERT model in the two downdtream tasks
and reported very similar results to the paper:

Table 6.1: GREEK-BERT Micro-F1

Model PoS Tag NER
GREEK-BERT 98.2 86.6

For this procedure we used the same fine-tuning functions as they did in the repository 1

they published. We used the best parameters that occurred from the tuning function, then
trained the BERT model with these and the best scores we had are shown above.

6.2 PoS Tagging

Table 6.2 reports the PoS tagging results. All models have comparable performance, but
GREEK-BERT is marginally (+0.6%) better than GrRoBERTa and 2% better than Semi-
GrRoBERTa. The fact that all models achieve high scores can be explained by the obser-
vation that the correct PoS tag of a word in Greek can often be determined by considering
mostly the word’s suffix, or for short function words (e.g., determiners, prepositions) the
word itself and most rarely the word’s context.

Table 6.2: Models Micro-F1 in PoS Tagging

Model PoS Tag
GREEK-BERT 98.2

Semi-GrRoBERTa 96.2

GrRoBERTa 97.6

We certainly can not characterize this task difficult, because all three model have very
close scores and all above 95%. For a more complete comparison we also report results
in Table 6.3 per PoS tag for the two best models, i.e., GREEK-BERT and GrRoBERTa.
We notice that again the performance is pretty close between the models.

1https://github.com/nlpaueb/greek-bert

M. Iglezou 36

https://github.com/nlpaueb/greek-bert


Greek-RoBERTas: Two Language Models for Greek

Table 6.3: F1 scores per PoS tag for the two best models (GREEK-BERT, GrRoBERTa)

Part-of-Speech Tag GREEK-BERT GrRoBERTa
ADJ 95.6 ± 0.26 94.8
ADP 99.7 ± 0.07 97.9
ADV 97.2 ± 0.34 89.1
AUX 99.9 ± 0.15 97.8

CCONJ 99.6 ± 0.24 97.4
DET 99.8 ± 0.08 97.4
NOUN 97.9 ± 0.28 97.9
NUM 92.7 ± 1.14 91.4
PART 100.0 ± 0.00 97.2
PRON 98.8 ± 0.25 96.6
PROPN 86.0 ± 1.03 89.7
PUNCT 100.0 ± 0.00 99.9
SCONJ 99.4 ± 0.56 97.5
VERB 99.3 ± 0.13 98.6
X 77.3 ± 1.32 79.4

6.3 NER

The NER results are shown in Table 6.4. We find that GrRoBERTa outperforms the other
methods. It outperforms Semi-GrRoBERTa by 9.9% and GREEK-BERT by about 1.5%.
The NER task is clearly more difficult than PoS tagging, as evidenced by the near-perfect
performance of all PoS tagging methods (Table 6.3), compared to the far from perfect
performance of all NER methods (Table 6.4). Because the NER task is more difficult,
better methods have more opportunity to distinguish themselves from weaker methods,
and GrRoBERTa clearly outperforms the other methods, with GREEK-BERT coming in
second. In Table 6.5, we evaluate the two best NER models based on entity type. When

Table 6.4: Models Micro-F1 in NER

Model NER
GREEK-BERT 86.6

Semi-GrRoBERTa 78.2

GrRoBERTa 88.1

it comes to predicting people both models outperform. GREEK-BERT performs better on
people and locations, while GrRoBERTa performs a lot of better on organization. GREEK-
BERT struggles in this case, because some organizations often contain names of people
or locations that appear in italics. One problem, GrRoBERTa seems to overcome.

Table 6.5: F1 scores per Entity Type for the two best models (GREEK-BERT, GrRoBERTa)

Entity Type GREEK-BERT GrRoBERTa
PERSON 88.8 ± 3.06 87.5

ORGANIZATION 69.6 ± 4.28 86
LOCATION 88.4 ± 0.88 83.5
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6.4 Comments

According to the results we presented in the above sections the two best models are, as we
expected, GrRoBERTa and GREEK-BERT. The RoBERTa-based model performs better
in the second task and the BERT-based model at the first one. At first glance, one might
call the two models equivalent. However, as mentioned above, the PoS tagging task is an
easy problem for Greek Language models and the Named Entity Recognition task cannot
be considered to have the same level of difficulty. Consequently, since GrRoBERTa can
perform better in more difficult problems, we can conclude that it is a more powerful model
for Greek Language.

Unfortunately, in the world of Artificial Intelligence and Machine Learning in particular, we
are not only concerned with the final performance of the model, but the training time and
the amount of data required play a very important role too. As mentioned in the previous
chapters the time required to train the model based on RoBERTa’s architecture is quite
long, given the amount of data we had. For the training of the GREEK-BERT model only
29 GB were needed, while for ours 149 GB and the final scores did not have a huge
difference. However, the pre-training process is done once. So, to get a better model it
might be worth spending a little more time.
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7. CONCLUSION

In this thesis we developed two language models for handling Greek and compared their
performance to an existed model with similar architecture.

In the beginning of this process, we examined the datasets that GREEK-BERT was eval-
uated, then we processed them so that we could ran the model in ourselfs and check its
performance. After that, we collected and cleaned all the data needed for our models.
Then, after conducting study on our options for training the models, we chose the fairseq
strategy. The next stage was to choose a server where we could train our models, and
then, after going through the necessary steps, process and encode our data. At this point
we were ready to start the training process. After that phase was done, we developed the
functions needed in order to evaluate our model with the same datasets of GREEK-BERT,
so that we could compare all models to the same tasks.

We came to the conclusion that GrRoBERTa is a more potent model for Greek language
since it could perform better in more challenging problems. However, in the field of ar-
tificial intelligence and machine learning in particular, we are not only concerned about
the model’s final performance; training time and the amount of data needed also play a
significant role.

Finally, we may have succeeded in creating a model that performs better than an existing
one, but as researchers we must ask ourselves what we have sacrificed on the altar of
performance and whether this sacrifice is ultimately worth it. In any case, we ourselves
gained a lot from this process and we hope that this small stone in the branch of science
will help for even greater achievements.
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ABBREVIATIONS - ACRONYMS

ML Machine learning

AI Artificial Intelligence

NLP Natural Language Processing

ANN Artificial Neural Network

MLP MultiLayer Perceptron

LSTM Long Short-term Memory

RNN Recurrent Neural Network

GRU Gated Recurrent Unit

BERT Bidirectional Encoder Representations from Transformers

GPT-3 Generative Pre-trained Transformer 3

Q&A Question & Answering

PoS Part of Speech tagging

NER Named Entity Recognition

NLI Natural Language Inference

RoBERTa Robustly Optimized BERT Pretraining Approach

NSP Next Sentence Prediction

BPE Byte-Pair Encoding

IOB Inside–Outside–Beginning
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