ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

- ΙΔΡΥΘΕΝ ΤΟ 1837 ——

Ιατρική Σχολή

«Μελέτη του μοριακού και ανοσολογικού προφίλ πρωτοπαθών δερματικών Τ-λεμφωμάτων»

Υποψήφιος διδάκτωρ Κίμων Αργυρόπουλος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Ιατρική Σχολή

«Μελέτη του μοριακού και ανοσολογικού προφίλ πρωτοπαθών δερματικών Τ-λεμφωμάτων»

Υποψήφιος διδάκτωρ

Κίμων Αργυρόπουλος

Τριμελής Επιτροπή

Μαρίνα Σιακαντάρη Αναπληρώτρια Καθηγήτρια Τομέας Παθολογίας, Αιματολογική Κλινική

Πηνελόπη Κορκολοπούλου Καθηγήτρια Τομέας Κλινικοεργαστηριακός, Α' Εργαστήριο Παθολογικής Ανατομικής

> **Μαρία Αγγελοπούλου** Αναπληρώτρια Καθηγήτρια Τομέας Παθολογίας, Αιματολογική Κλινική

Αθήνα, 2020

Στους γονείς μου.

Ουλακιοτρόπος σπογγοειδής μυκητίαση, 10Χ. Διπλός ανοσοφθορισμός για τα μόρια CD3 (πράσινο) και YAP1 (κόκκινο).

Όρκος του Ιπποκράτη

«Του πτυχίου της Ιατρικής αξιωθείς, όρκον ομνύω προ του Πρυτάνεως και του Προέδρου της Ιατρικής Σχολής και πίστιν καθομολογώ τήνδε: Από του ιερού περιβόλου του σεπτού τούτου τεμένους των Μουσών εξερχόμενος κατ΄ επιστήμην βιώσομαι, ασκών ταύτην δίκην θρησκείας εν πνεύματι και αληθεία. Ούτω χρήσιμον εμαυτόν καταστήσω προς άπαντας τους δεσμένους της εμής αρωγής, και εν πάση ανθρώπων κοινωνίας αεί προς ειρήνην και χρηστότητα ηθών συντελέσω, βαίνων εν ευθεία του βίου οδώ, προς την αλήθειαν και το δίκαιον αποβλέπων και τον βίον ανυψών εις τύπον αρετής υπό την σκέπην της σοφίας. Ταύτην την επαγγελίαν επιτελούντι είη μοι, συν τη ευλογία των εμών καθηγητών και πεφιλημένων δασκάλων, ο θεόν εν τω βίω βοηθός.»

ΠΕΡΙΕΧΟΜΕΝΑ

А. ТЕЛІКО І МНМА	
Α.1. Εισανωνή	
Α.1.1 Λεμφοϋπερπλαστικά νοσήματα – Ορισμοί και ταξινόμηση	
Α.1.2. Νεοπλάσματα από ώριμα Τ- και ΝΚ-λεμφοκύτταρα	
Α.2. Πρωτοπαθή δερματικά Τ-λεμφοϋπερπλαστικά νοσήματα	
Α.2.1. Γενική επιδημιολογία και ταξινόμηση	
Α.2.2. Ιστολογικοί τύποι CTCL	
Α.2.3. Σταδιοποίηση, πρόγνωση και θεραπεία	3
Α.3. Αιτιοπαθογένεια CTCL	3
Α.3.1. Ανοσολογικό προφίλ των CTCL	3
Α.3.2. Μοριακό προφίλ των CTCL	4
Β. ΕΙΔΙΚΟ ΤΜΗΜΑ	5.
Β.1. Υπόθεση και Πρόταση	5
Β.2. Μεθοδολογία	5
Β.2.1. Ασθενείς και πρωτογενές υλικό	5
Β.2.2. Κυτταρικές Σειρές	5
B.2.3. Στοχευμένη αλληλούχιση DNA	5
Β.2.4. Ιστομορφολογική ανάλυση	8
Β.2.5. Ανοσοϊστοχημεία και Ανοσοφθορισμός	8
B.2.7. Κυτταρομετρία ροής και FACS sorting	8
Β.2.8. Προσδιορισμός κυτταροκινών ορού	8
Β.2.9. Ποσοτικοποίηση έκφρασης mRNA μέσω qPCR	8
Β.2.10. Στατιστική ανάλυση	8
Β.3. Αποτελέσματα	8
Β.3.1. Μοριακός χαρακτηρισμός των CTCL	
B.3.2. Ανεύρεση κλινικά σημαντικών μοριακών υπογραφών στα CTCL	11
Β.3.3. Νεοπλασματικοί ανοσοφαινότυποι και η συσχέτιση τους με μοριακές υπογραφές σε δεί	.γματα CTCL
	12 TCL 12
Β.4. Συζήτηση και Συμπεράσματα	13
Βιβλιογραφία	14
ПЕРІЛНѰН	15
ABSTRACT	15
ΕΥΧΑΡΙΣΤΙΕΣ	15

Α. ΓΕΝΙΚΟ ΤΜΗΜΑ

Α.1. Εισαγωγή

Α.1.1 Λεμφοϋπερπλαστικά νοσήματα – Ορισμοί και ταξινόμηση

Τα λεμφοϋπερπλαστικά νοσήματα αποτελούν μια ευρεία ομάδα νεοπλασμάτων, τα οποία χαρακτηρίζονται από τον κλωνικό πολλαπλασιασμό άωρων ή ώριμων Β-, Τ-, ή ΝΚ-λεμφοκυττάρων. Στην πλειοψηφία τους, ταξινομούνται με βάση τις φαινοτυπικές ομοιότητες που επιδεικνύουν τα νεοπλασματικά κύτταρα σε σχέση με φυσιολογικά στάδια της λεμφοκυτταρικής διαφοροποίησης. Εντούτοις, πολλές κατηγορίες λεμφοϋπερπλαστικών νοσημάτων δεν παρουσιάζουν κάποιο φυσιολογικό ισοδύναμο δεδομένης της διαφοροποιητικής πλαστικότητας και της βιολογικής ετερογένειας των νεοπλασματικών λεμφοκυττάρων. Παράλληλα, με την πρόοδο της κυτταρογενετικής και μοριακής βιολογίας, το μοριακό προφίλ πολλών οντοτήτων έχει χαρακτηριστεί σε επίπεδο χρωμοσωμικών αλλοιώσεων και σωματικών μεταλλάξεων. Η διάγνωση των λεμφοϋπερπλαστικών νοσημάτων βασίζεται στον οδηγό ταξινόμησης όγκων αιμοποιητικών και λεμφικών ιστών του Παγκοσμίου Οργανισμού Υγείας (World Health Organization, WHO classification of tumours of hematopoietic and lymphoid tissues)¹. Me $\beta \alpha \sigma \eta \tau \eta v \pi \sigma \sigma \phi \sigma \eta \tau \eta$ αναθεωρημένη έκδοση του 2016 (International Agency for Research on Cancer, Lyon) ταξινόμηση προκύπτει από το συνδυασμό κλινικών δεδομένων, η ανοσοφαινοτυπικών χαρακτηριστικών, ιστομορφολογίας ενώ πολλές και κατηγορίες ή υποκατηγορίες νεοπλασμάτων απαιτούν ταυτόχρονο κυτταρογενετικό χαρακτηρισμό και τη διερεύνηση ιογενούς αιτιολογίας. Παρά την ευρεία εφαρμογή τεχνολογιών αλληλούχισης του DNA, οι σωματικές μεταλλάξεις δεν αποτελούν ακόμα κριτήριο διάγνωση για τn λεμφοϋπερπλαστικών νοσημάτων, όπως συμβαίνει για παράδειγμα στην περίπτωση των οξειών μυελογενών λευχαιμιών και μυελοϋπερπλαστικών νοσημάτων. Παρόλα αυτά, καθώς αναδεικνύεται η προγνωστική και θεραπευτική σημασία πολλών μεταλλακτικών δεικτών αναμένεται ότι το μοριακό προφίλ των

λεμφοϋπερπλαστικών νοσημάτων θα αρχίσει να συμπεριλαμβάνεται στις επόμενες εκδόσεις του οδηγού ταξινόμησης όγκων αιμοποιητικών και λεμφικών ιστών του WHO. Η παρούσα έκδοση αναγνωρίζει πέντε κατηγορίες λεμφικών νεοπλασμάτων, 1) Λεμφοβλαστικά λεμφώματα/λευχαιμίες από άωρα κύτταρα (Precursor lymphoid neoplasms), 2) Νεοπλάσματα από ώριμα Β-λεμφοκύτταρα (Mature B-cell neoplasms), 3) Νεοπλάσματα από ώριμα Τ- και ΝΚ-λεμφοκύτταρα (Mature T- and NK-cell neoplasms), 4) Λεμφώματα Hodgkin (Hodgkin lymphomas), και 5) Λεμφοϋπερπλαστικά νοσήματα σχετιζόμενα ανοσοανεπάρκεια uε (Immunodeficiency-associated lymphoproliferative disorders).

Α.1.2. Νεοπλάσματα από ώριμα Τ- και ΝΚ-λεμφοκύτταρα

Σύμφωνα με την έκθεση «Global Cancer Facts and Figures» από την Αμερικανική Εταιρεία για τον Καρκίνο (American Cancer Society) για το έτος 2018 τα νέα περιστατικά μη – Hodgkin λεμφωμάτων υπολογίζονται στα 509.600, ενώ οι θάνατοι στους 248.700². Η παγκόσμια επίπτωση των μη – Hodgkin λεμφωμάτων από το 1980, ανεξαρτήτως διαφοροποίησης, παρουσιάζει ανοδική τάση, αν και από τη δεκαετία του 2010 σε πολλές χώρες της Δύσης παρουσιάζει σταθεροποίηση. Η μεγαλύτερη μελέτη για την επιδημιολογία των μη – Hodgkin λεμφωμάτων με περιστατικά από τη Βόρειο Αμερική, Ευρώπη, Ασία και Νότιο Αφρική, υπολογίζει την επί τοις εκατό επίπτωση των νεοπλασμάτων από ώριμα Β-λεμφοκύτταρα στο 88%, ενώ από ώριμα T- και ΝΚ-λεμφοκύτταρα στο 12%³. Γεωγραφικά, τα νεοπλάσματα από ώριμα Bλεμφοκύτταρα εμφανίζουν υψηλότερη επίπτωση στη Βόρειο Αμερική, Ευρώπη και Ωκεανία. Παρά τη σπανιότητα τους, η σχετική επίπτωση νεοπλασμάτων από ώριμα Τ- και ΝΚ-λεμφοκύτταρα είναι υψηλότερη στην Ασία, λόγω της υψηλότερης συχνότητας ορισμένων υποτύπων Τ-λεμφωμάτων, όπως τα λεμφοϋπερπλαστικά νοσήματα σχετιζόμενα με τον ανθρώπινο Τ-λεμφοτροπικό ιό, τύπου 1 (Human Tcell lymphotropic virus-1, HTLV-1)⁴.

Σύμφωνα με την παρούσα έκδοση του WHO, τα νεοπλάσματα από ώριμα T- και NKλεμφοκύτταρα περιλαμβάνουν 30 οντότητες, οι οποίες συνοψίζονται στον **Πίνακα** Από ανατομικής απόψεως, τα νεοπλάσματα αυτά μπορούν αδρά να διαιρεθούν σε λευχαιμικά, λεμφαδενικά, εξωλεμφαδενικά και δερματικά. Στον Πίνακα 1, οι οντότητες 1 - 4 και 9, αντιστοιχούν σε λευχαιμικά νεοπλάσματα, οι οντότητες 10 -15 και 30, αντιστοιχούν σε εξωλεμφαδενικά νεοπλάσματα, οι οντότητες 7,8 και 16
 23 αντιστοιχούν σε δερματικά νεοπλάσματα, ενώ οι οντότητες 24 - 29 αντιστοιχούν σε λεμφαδενικά νεοπλάσματα. Οι ΕΒV-σχετιζόμενες οντότητες 5 και 6, αποτελούν συστηματικά νοσήματα με στοιχεία από πολλαπλές ανατομικές ομάδες. Παρόλο που η κάθε ανατομική ομάδα είναι εξαιρετικά ετερογενής, συνολικά τα δερματικά Τ-λεμφώματα θεωρούνται νοσήματα χαμηλότερης κακοήθειας, σε σύγκριση με τα λεμφαδενικά Τ-λεμφώματα που έχουν σημαντικά χειρότερη πρόγνωση.

	Νεοπλάσματα από ώριμα Τ- και ΝΚ-λεμφοκύτταρα, WHO, αν. έκδοση 2016
1.	Τ-προλεμφοκυτταρική λευχαιμία
	T-cell prolymphocytic leukemia
2.	Λευχαιμία από μεγάλα κοκκιώδη Τ-λεμφοκύτταρα
	T-cell large granular lymphocytic leukemia
З.	Χρόνια λεμφοϋπερπλαστική εξεργασία από ΝΚ-λεμφοκύτταρα
	Chronic lymphoproliferative disorder of NK cells
4.	Επιθετική λευχαιμία <i>από ΝΚ-λεμφοκύτταρα</i>
	Aggressive NK cell leukemia
5.	Συστηματικό, EBV-θετικό Τ-λέμφωμα της παιδικής ηλικίας
	Systemic EBV-positive T-cell lymphoma of childhood
6.	Χρόνια ενεργός EBV λοίμωξη, Τ- και ΝΚ- λεμφοκυτταρικός τύπος, συστηματική μορφή
	Chronic active EBV infection of T- and NK-cell type, systemic form
7.	Λεμφοϋπερπλαστική εξεργασία προσομοιάζουσα ευλογιοειδή ιδρώα
	Hydroa vacciniforme-like lymphoproliferative disorder
8.	Λεμφοϋπερπλαστική εξεργασία από υπερευαισθησία σε τσίμπημα κουνουπιού
	Severe mosquito bite allergy
9.	Τ-λευχαιμία/λέμφωμα των ενηλίκων
	Adult T-cell leukemia/lymphoma
10.	Εξωλεμφαδενικό ΝΚ/Τ-λέμφωμα, ρινικού τύπου

Extranodal NK/T-cell lymphoma, nasal type

11. Τ-λέμφωμα σχετιζόμενο με εντεροπάθεια

Enteropathy-associated T-cell lymphoma

- 12. Μονομορφικό επιθηλιοτροπικό εντερικό Τ-λέμφωμα Monomorphic epitheliotropic intestinal T-cell lymphoma
- 13. Εντερικό Τ-λέμφωμα, μη αλλιώς οριζόμενο

Intestinal T-cell lymphoma, NOS

- **14. Τ-λεμφοϋπερπλαστική εξεργασία του γαστρεντερικού συστήματος, χαμηλής κακοήθειας** Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract
- 15. Ηπατοσπληνικό Τ-λέμφωμα

Hepatosplenic T-cell lymphoma

16. Τ-λέμφωμα τύπου υποδοριίτιδας

Subcutaneous panniculitis-like T-cell lymphoma

17. Σπογγοειδής μυκητίαση

Mycosis Fungoides

18. Σύνδρομο Sézary

Sézary Syndrome

- 19. Πρωτοπαθείς δερματικές CD30-θετικές Τ-λεμφοϋπερπλαστικές εξεργασίες Primary cutaneous CD30-positive T-cell lymphoproliferative disorders
 - Λεμφωματοειδής βλατίδωση Lymphomatoid papulosis
 - Πρωτοπαθές δερματικό αναπλαστικό λέμφωμα από μεγάλα κύτταρα Primary cutaneous anaplastic large cell lymphoma

20. Πρωτοπαθές δερματικό γδ Τ-λέμφωμα

Primary cutaneous γδ T-cell lymphoma

21. Πρωτοπαθές δερματικό CD8-θετικό επιθετικό επιδερμοτροπικό κυτταροτοξικό Τλέμφωμα

Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma

- 22. Πρωτοπαθές δερματικό CD8-θετικό T-λέμφωμα των άκρων Primary cutaneous CD8-positive acral T-cell lymphoma
- 23. Πρωτοπαθής δερματική CD4-θετική Τ- λεμφοϋπερπλαστική εξεργασία από κύτταρα μικρού/μεσαίου μεγέθους

Primary cutaneous CD4-positive small/medium T-cell lymphoproliferative disorder

24. Περιφερικό Τ-λέμφωμα, μη αλλιώς οριζόμενο

Peripheral T-cell lymphoma, NOS

25. Αγγειοανοσοβλαστικό λέμφωμα

Angioimmunoblastic T-cell lymphoma				
26. Οζώδες Τ-λέμφωμα				
Follicular T-cell lymphoma				
27. Λεμφαδενικό περιφερικό Τ-λέμφωμα με φαινότυπο Τ-βοηθητικού κυττάρου του				
βλαστικού κέντρου				
Nodal peripheral T-cell lymphoma with T-follicular helper phenotype				
28. Αναπλαστικό λέμφωμα από μεγάλα κύτταρα, ΑΛΚ-θετικό				
Anaplastic large cell lymphoma, ALK-positive				
29. Αναπλαστικό λέμφωμα από μεγάλα κύτταρα, ΑΛΚ-αρνητικό				
Anaplastic large cell lymphoma, ALK-negative				
30. Αναπλαστικό λέμφωμα από μεγάλα κύτταρα σχετιζόμενο με εμφύτευμα μαστού				
Breast implant-associated anaplastic large cell lymphoma				

Πίνακας 1. Ταξινόμηση νεοπλασμάτων από ώριμα Τ- και ΝΚ- λεμφοκύτταρα. Με πλάγια γραμματοσειρά αναγράφονται ανεπίσημες οντότητες (provisional entities). Προσαρμοσμένο από revised WHO 4th edition¹.

Α.2. Πρωτοπαθή δερματικά Τ-λεμφοϋπερπλαστικά νοσήματα

Α.2.1. Γενική επιδημιολογία και ταξινόμηση

Τα πρωτοπαθή δερματικά λεμφοϋπερπλαστικά νοσήματα (Cutaneous T cell Lymphomas/Lymphoproliferative disorders, CTCL) συνιστούν ομάδα μια νεοπλασμάτων με ετερογενή βιολογία, ιστολογική εικόνα και κλινική συμπεριφορά. Το δέρμα αποτελεί τη δεύτερη σε συχνότητα ανατομική εντόπιση ανάπτυξης λεμφοϋπερπλαστικών εξεργασιών μετά το γαστρεντερικό σύστημα, ενώ το 75% αυτών είναι Τ-κυτταρικής προελεύσεως¹. Ακόμα, τα CTCL εμφανίζουν την υψηλότερη επίπτωση (43%) από τις 4 ανατομικές ομάδες νεοπλασμάτων από ώριμα T- και ΝΚ-λεμφοκύτταρα⁵. Ο WHO και ο Ευρωπαϊκός Οργανισμός για την Έρευνα και Θεραπεία του Καρκίνου (European Organization for Research and Treatment of Cancer – EORTC) κατατάσσει τα CTCL σε νεοπλάσματα χαμηλής και υψηλής κακοήθειας (Πίνακας 2)6.

Ιστολογικός τύπος	Συχνότητα	5-ετής επιβίωση		
Χαμηλής Κακοήθειας				
Σπογγοειδής Μυκητίαση	44%	88%		
- Θυλακιοτρόπος	4%	80%		
 Παζετοειδής Δικτύωση 	< 1%	100%		
 Χαλαρό κοκκιωματώδες δέρμα 	< 1%	100%		
CD30-θετικές Τ-λεμφοϋπερπλαστικές				
εξεργασίες	12%	100%		
 Λεμφωματοειδής Βλατίδωση 	8%	95%		
 Πρωτοπαθές δερματικό αναπλαστικό 				
λέμφωμα από μεγάλα κύτταρα				
Τ-λέμφωμα τύπου υποδοριίτιδας	1%	82%		
CD4-θετική Τ- λεμφοϋπερπλαστική εξεργασία	2%	72%		
από κύτταρα μικρού/μεσαίου μεγέθους				
Υψηλής κακοήθειας				
Σύνδρομο Sézary	3%	24%		
CD8-θετικό επιθετικό επιδερμοτροπικό	< 1%	18%		
κυτταροτοξικό Τ-λέμφωμα				
Πρωτοπαθές δερματικό γδ Τ-λέμφωμα	< 1%	-		
Δερματικό ΝΚ/Τ-λέμφωμα	< 1%	-		
Πρωτοπαθές δερματικό περιφερικό Τ-λέμφωμα,	2%	16%		
άλλα				

Πίνακας 2. Κατάταξη πρωτοπαθών δερματικών νεοπλασμάτων από ώριμα Τ- και ΝΚ- λεμφοκύτταρα κατά WHO-EORTC με συχνότητα εμφάνισης και 5-ετή επιβίωση. *Προσαρμοσμένο από Willemze R.* et al. JCP. 2006⁶.

A.2.2. Ιστολογικοί τύποι CTCL

Α.2.2.1. Σπογγοειδής Μυκητίαση

Ιστορία

Τη Σπογγοειδή Μυκητίαση (Mycosis Fungoides - MF) περιέγραψε για πρώτη φορά το 1806 ο Γάλλος δερματολόγος Jean-Louis Alibert (1768 - 1837), εισάγοντας το 1814 τον όρο «Pian Fungoides» (Κομμιωματώδης Μυκητίαση), λόγω της ομοιότητας της ογκόμορφης νόσου με την τριτογενή σύφιλη, ενώ υιοθέτησε τελικά τον όρο «Mycosis Fungoides» το 1832 (Εικόνα 1α)^{7, 8}. Στο βιβλίο του «Monographie des Dermatoses» ο Alibert περιγράφει την κλινική πορεία ενός ασθενούς 56 ετών ονόματι Lucas (Εικόνα 1β), ο οποίος αρχικά εμφάνισε παχιές δερματικές πλάκες, που στην πορεία εξελίχθηκαν σε ογκόμορφες βλάβες στο πρόσωπο και στον κορμό, έως ότου ο ασθενής κατέληξε 5 χρόνια αργότερα με υψηλό πυρετό, πιθανώς στα πλαίσια λοίμωξης. Ο Lucas ήταν ο μόνος ασθενής που είδε ο Alibert στη σταδιοδρομία του, ενώ πίστευε ότι η MF είναι μεταδοτική νόσος. To 1870 o Pierre-Antoine-Ernest Bazin (1807 – 1878) (Εικόνα 1γ) περιέγραψε τη φυσική πορεία της νόσου και πρότεινε 4 κλινικά στάδια: MF με κηλίδες/βλατίδες, MF με πλάκες, ογκόμορφη MF και συστηματική MF⁷. Η περιγραφή αυτή είναι διαχρονική, καθώς με ελάχιστες παραλλαγές, χρησιμοποιείται ακόμα και σήμερα για την κλινική σταδιοποίηση της νόσου.

Επιδημιολογία

Η MF μαζί με τις ιστολογικές παραλλαγές τις εκπροσωπεί πάνω από το 50% των CTCL^{9, 10}. Παρόλο που αποτελεί ως επί το πλείστον νόσημα των ενηλίκων, και δη άνω των 50 ετών, περιστατικά έχουν σημειωθεί σε παιδιά και εφήβους¹¹. Η αναλογία ανδρών : γυναικών κυμαίνεται από 1.6:1 ως 2:1¹⁰. Η παγκόσμια επίπτωση της MF υπολογίζεται σε 10 περιστατικά ανά πληθυσμό 1.000.000¹². Ανεξαρτήτως γεωγραφίας, υψηλότερη επίπτωση εμφανίζεται στη μαύρη φυλή¹³. Αυξημένος κίνδυνος ανάπτυξης MF έχει επίσης συσχετισθεί με συγκεκριμένα επαγγέλματα,

όπως οι αγρότες, ελαιοχρωματιστές, ξυλουργοί και εργαζόμενοι στη βιομηχανία μετάλλων, πετρελαίου και υφασμάτων¹⁴. Εκτός από περιβαλλοντικούς/εργασιακούς παράγοντες, από το ατομικό ιστορικό, αυξημένο κίνδυνο ανάπτυξης MF επιφέρει ο αυξημένος δείκτης μάζας σώματος (≥ 30 kg/m²), το ιστορικό καπνίσματος άνω των 40 ετών και το ιστορικό εκζέματος¹⁵.

Εικόνα 1. (α) Πορτραίτο του Jean-Louis Alibert⁸, (β) Πορτραίτο του Lucas, του μόνου ασθενούς με MF τον οποίο είδε ο Alibert στην σταδιοδρομία του⁷, (γ) Φωτογραφία του Pierre-Antoine-Ernest Bazin¹⁶

Κλινική Εικόνα

Η MF θεωρείται κατά κανόνα νεόπλασμα χαμηλής κακοήθειας, με βραδεία εξέλιξη σε βάθος χρόνων έως και δεκαετιών¹⁰. Η νόσος, όπως περιέγραψε ο Bazin, περιλαμβάνει αρχικά κηλιδο-βλατιδόμορφες βλάβες οι οποίες μπορούν να εξελιχθούν σε πλάκες και εν τέλει σε όγκους, γεγονός που αντιστοιχεί αυτομάτως σε προχωρημένα στάδια της MF (εδάφιο A.2.3.1). Κατά κανόνα, στα αρχικά στάδια της MF η νόσος περιορίζεται σε περιοχές του δέρματος, οι οποίες δεν είναι εκτεθειμένες στον ήλιο και οι βλάβες μπορεί να είναι ασυμπτωματικές ή να παρουσιάζουν κνησμό. Στα αρχικά στάδια της MF, σπάνια ανιχνεύονται νεοπλασματικά κύτταρα στο αίμα ή στους λεμφαδένες, αλλά σε αυτές τις περιπτώσεις το μη-δερματικό νεοπλασματικό φορτίο είναι χαμηλό. Σε

προχωρημένα στάδια MF, οι ασθενείς εμφανίζουν είτε ογκόμορφη νόσο, συνήθως σε συνδυασμό με κηλίδες, βλατίδες και πλάκες, είτε σπανιότερα γενικευμένο ερυθρόδερμα.

Μορφολογία και ανοσοφαινότυπος

Το κάθε στάδιο της MF παρουσιάζει χαρακτηριστικές ιστολογικές αλλοιώσεις. Η κηλιδοβλατιδόμορφη νόσος χαρακτηρίζεται από διήθηση της χοριο-επιδερμικής συμβολής από άτυπα λεμφοκύτταρα με υπερχρωματικούς πυρήνες, ακανόνιστο πυρηνικό περίγραμμα και διαυγή περι-πυρηνική άλω (Εικόνα 2β)¹⁷. Εντός της επιδερμίδας παρουσιάζεται αραιή διήθηση από άτυπα λεμφοκύτταρα, τα οποία σπανίως κατανέμονται σε συστοιχίες, οι οποίες αποκαλούνται μικροαποστημάτια Pautrier (Εικόνα 2γ). Τα κυτταρικά αυτά αθροίσματα, εμπεριέχουν επίσης αντιγονοπαρουσιαστικά κύτταρα, τα οποία ενεργοποιούν τον πολλαπλασιασμό των νεοπλασματικών λεμφοκυττάρων. Η κηλιδοβλατιδόμορφη νόσος παρουσιάζει επίσης σκλήρυνση του θηλώδους χορίου με αντικατάσταση των φυσιολογικών κολλαγόνων ινών από παχιές, ομογενείς ηωσινόφιλες ίνες. Το θηλώδες χόριο διηθείται από άτυπα λεμφοκύτταρα σε αραιή, ζωνοειδή κατανομή (Εικόνα 2α). Σε κλινικό επίπεδο, το πρώιμο αυτό στάδιο της MF είναι συχνά δύσκολο να διαφοροποιηθεί από φλεγμονώδη δερματικά νοσήματα. Ακόμα και σε παθολογοανατομικό επίπεδο, η διαφοροποίηση παραμένει δύσκολη. Κατά κανόνα, η δερματίτιδες παρουσιάζουν έντονη σπογγίωση και λιγότερα ενδοεπιδερμιδικά λεμφοκύτταρα. Λειχηνοειδείς αντιδράσεις σε φάρμακα προσομοιάζουν συχνά πρώιμη MF, αλλά συνήθως συνοδεύονται από νεκρωτικά κερατινοκύτταρα και ηωσινόφιλα στο χόριο.

Ο συχνότερος ανοσοφαινότυπος των νεοπλασματικών Τ-λεμφοκυττάρων είναι CD3(+), TCRaβ/beta F1 (+) και CD4(+), ενώ περιστατικά CD8(+) MF είναι σπάνια και εμφανίζονται συχνότερα σε παιδιά¹⁸. Παράλληλα, τα νεοπλασματικά κύτταρα παρουσιάζουν πλήρη ή μερική απώλεια έκφρασης κλασικών παν-Τ-κυτταρικών δεικτών, όπως τα μόρια επιφανείας CD7, CD5 και CD2. Τέλος, καθώς η πρώιμη MF παρουσιάζει συχνά μικρούς κλωνικούς πληθυσμούς που δεν είναι ανιχνεύσιμοι εντός του πολυκλωνικού συνόλου ή παρουσιάζει ολιγοκλωνική κατανομή στα πλαίσια μοριακού ελέγχου για αναδιάταξη του Τ-κυτταρικού υποδοχέα (TCR).

Το στάδιο των πλακών ιστολογικά παρουσιάζει πυκνότερη, ζωνοειδή διήθηση του θηλώδους χορίου, εντονότερο επιδερμοτροπισμό, ενώ τα μικροαποστημάτια Pautrier εντός της επιδερμίδας εμφανίζονται συχνότερα σε σχέση με το κηλιδοβλατιδώδες στάδιο (Εικόνα 2δ).

Σε αντίθεση με τα πρώιμα στάδια, το στάδιο των όγκων χαρακτηρίζεται από πυκνή, διάχυτη ή οζώδη διήθηση του θηλώδους και δικτυωτού χορίου (**Εικόνα 2ε**). Ο επιδερμοτροπισμός συχνά απουσιάζει σε αυτό το στάδιο. Τα διήθημα παρουσιάζει έντονη ατυπία και πλειομορφισμό με κύτταρα μικρού, μεσαίου και μεγάλου μεγέθους. Τα μεγάλα κύτταρα, τα οποία συνήθως παρουσιάζουν πυρηνικό πλειομορφισμό ή/και βλαστικού τύπου ποιότητα χρωματίνης, δεν πρέπει να υπερβαίνουν το 25% του διηθήματος, καθώς αυτό σηματοδοτεί μεγαλοκυτταρική μετατροπή της MF (εδάφιο Α.2.2.3). Στο στάδιο των όγκων ο μοριακός έλεγχος για αναδιάταξη του TCR συνήθως αναδεικνύεισαφώς μονοκλωνικούς πληθυσμούς.

Εικόνα 2. (α) Μικροσκοπική εικόνα MF στο στάδιο της βλατίδας με αραιό διήθημα στο θηλώδες χόριο και ήπιο επιδερμοτροπισμό, (β) επιδερμοτροπικό διήθημα από άτυπα λεμφοκύτταρα σε υψηλή μεγέθυνση, (γ) μικροαποστημάτια Pautrier, (δ) μικροσκοπική εικόνα MF στο στάδιο της πλάκας με πθκόντερο διήθημα στο θηλώδες χόριο και έντονο επιδερμοτροπισμό, (ε) μικροσκοπική εικόνα MF στο στάδιο του όγκου με διάχυτο διήθημα του θηλώδους και δικτυωτού χορίου. *Προσαρμοσμένο από Smith BD et al. Oncology. 2003* ¹⁹.

Παραλλαγές MF

Η MF έχει χαρακτηριστεί ως «ο μέγιστος μιμητής», όρος που έχει αποδοθεί και στη σύφιλη, την περίοδο που η τριτογενής σύφιλη ήταν σαφώς πιο διαδεδομένη. Εκτός της κλασικής MF, πολλές παραλλαγές τις νόσου έχουν αναφερθεί, όπως για παράδειγμα υποχρωματική, υπερχρωματική, υπερκερατωτική, μυρμηκιώδης, φλυκταινώδης κ.α. Η παρούσα αναθεωρημένη έκδοση του WHO, αναγνωρίζει τρεις παραλλαγές της MF, τη θυλακιοτρόπο MF, την παζετοειδή δικτύωση και το χαλαρό κοκκιωματώδες δέρμα¹.

Η θυλακιοτρόπος MF χαρακτηρίζεται από θυλακικές βλατίδες και πλάκες στην κεφαλή και τον τράχηλο, που συχνά σχετίζονται με αλωπεκία. Ιστολογικά παρατηρείται διήθηση των τριχοθυλακίων από άτυπα CD4(+) λεμφοκύτταρα, τα οποία συνήθως δεν διηθούν την επιδερμίδα. Το θυλακικό επιθήλιο παρουσιάζει υπερπλασία, βασαλοειδή μορφολογία ή/και εναπόθεση βλέννης (θυλακική βλεννίνωση). Ηωσινόφιλα απαντώνται συχνά στην θυλακιοτρόπο MF, σε αντίθεση με την κλασική MF²⁰.

Η παζετοειδής δικτύωση ή νόσος Woringer-Kolopp εμφανίζεται ως μονήρεις ή πολλαπλές βλατίδες ή/και πλάκες στα άκρα. Ιστολογικά χαρακτηρίζεται από μεγάλα άτυπα CD4(+) ή CD8(+) λεμφοκύτταρα, τα οποία διηθούν εκτενώς την επιδερμίδα, και αντιδραστικούς πληθυσμούς μικρότερων λεμφοκυττάρων, τα οποία βρίσκονται στο θηλώδες χόριο²¹. Αν και παλιότερα χρησιμοποιούνταν ο όρος νόσος Ketron-Goodman για επιθετικές μορφές, εκτεταμένης παζετοειδούς δικτύωσης, σήμερα τα νεοπλάσματα αυτά κατατάσσονται ως CD8-θετικά επιθετικά επιδερμοτροπικά κυτταροτοξικά Τ-λεμφώματα ή ως πρωτοπαθή δερματικά γδ Τλεμφώματα.

Τέλος, το χαλαρό κοκκιωματώδες δέρμα αποτελεί εξαιρετικά σπάνια παραλλαγή της MF, η οποία χαρακτηρίζεται από την ανάπτυξη χαλαρών πτυχώσεων στις μασχάλες και τη βουβωνική χώρα, των οποίων συχνά προηγείται η ανάπτυξη βλατίδων και πλακών που συνάδουν με κλασική MF. Ιστολογικά, χαρακτηρίζεται από εκτενή, κοκκιωματώδη διήθηση του χορίου και του υποδορίου ιστού από CD4(+) λεμφοκύτταρα μικρού μεγέθους, μακροφάγα και πολυπύρηνα γιγαντοκύτταρα, των οποίων οι πυρήνες είναι διατεταγμένοι δίκην στεφάνης. Η χαλαρότητα του δέρματος οφείλεται στο οίδημα και την απώλεια ελαστικών ινών του χορίου²².

Α.2.2.2. Σύνδρομο Sézary

Ιστορία

Ο Γάλλος δερματολόγος Albert Sézary περιέγραψε το 1938 το πρώτο περιστατικό ασθενούς με «ερυθρόδερμα με άτυπα, γιγάντια κύτταρα στο δέρμα και στο αίμα» (*Erythrodermie avec presence de cellules monstrueuses dans le derme et le sang circulant*)²³. Το 1949 περιέγραψε εκτενώς όλα τα περιστατικά που αντιμετώπισε στο βάθος μίας δεκαετίας, συμπεριλαμβάνοντας νεκροτομικό υλικό και μικρογραφίες από το δέρμα και το αίμα. Ο Sézary παρατήρησε ότι ενώ η νόσος προσομοιάζει τη MF, παρουσιάζει χαρακτηριστική γενικευμένη ευθροδερμία, κνησμό και οίδημα, με άτυπα κύτταρα που διηθούν το δέρμα, τους λεμφαδένες και το αίμα. Η νόσος αυτή έχει επίσης επιθετική πορεία με όλους του ασθενείς να καταλήγουν εντός 18 ως 40 μηνών. Τέλος, λόγω της απουσίας άτυπων κυττάρων στο μυελό των οστών και στο σπλήνα, κατέληξε ότι τα κύτταρα στο αίμα δεν αποτελούν προϊόν συστηματικής αιματολογικής νόσου, παρά προέρχονται από το δέρμα (**Εικόνα 3a και** β). Ο όρος σύνδρομο Sézary (SS) αποδόθηκε το 1953 από τους Wilson και Fielding²⁴.

Εικόνα 3. (α) Φωτογραφία του Albert Sézary²⁵ (β) σκίτσο μικρογραφίας διηθήματος Sézary²⁶.

Επιδημιολογία

Το SS αποτελεί μόνο το 2.5-5% όλων των CTCL. Η επίπτωση της νόσου υπολογίζεται στο 0.1 με 0.3 σε πληθυσμό 1.000.000⁹. Είναι νόσος των ενηλίκων/ηλικιωμένων και εμφανίζει διπλάσια συχνότητα στους άνδρες σε σχέση με τις γυναίκες. Λόγω τις σπανιότητας της νόσου παράγοντες επικινδυνότητας για το SS δεν έχουν πλήρως διασαφηνιστεί.

Κλινική Εικόνα

Οι ασθενείς με SS παρουσιάζουν την χαρακτηριστική τριάδα ερυθρόδερμα, γενικευμένη λεμφαδενοπάθεια και κλωνικά-σχετιζόμενα κύτταρα Sézary στο δέρμα, στους λεμφαδένες και στο αίμα. Επιπλέον δερματικές εκδηλώσεις αποτελούν ο κνησμός, η αλωπεκία, η ονυχοδυστροφία και το παλαμοπελματιαίο κερατόδερμα. Παράλληλα για τη διάγνωση του συνδρόμου θα πρέπει να πληρείται ένα ή περισσότερα από τα παρακάτω κριτήρια: απόλυτος αριθμός κυττάρων Sézary \geq 1000/μL, αυξημένη αναλογία CD4:CD8 κυττάρων \geq 10 και απώλεια τουλάχιστον ενός παν-Τ αντιγόνου (CD7, CD5, CD2). Λόγω ιστολογικών ομοιοτήτων στο δέρμα παλαιότερα το SS θεωρείτο λευχαιμική μορφή της MF. Εντούτοις από βιολογική και κλινική άποψη γνωρίζουμε πλέον ότι πρόκειται για δύο διαφορετικά νεοπλάσματα²⁷. Ο όρος λευχαιμικό CTCL, που επικρατεί στη σύγχρονη βιβλιογραφία, περιλαμβάνει όχι μόνο το SS, αλλά οποιοδήποτε ιστολογικό τύπο CTCL, κυρίως MF, με υψηλό φορτίου νόσου στο αίμα. Αξίζει να σημειωθεί ότι παρουσία χαμηλών φορτίων νόσου στο αίμα (<1000/μL, B1, εδάφιο A.2.3.1) σε ασθενείς με MF δεν αλλάζει τη διάγνωση σε SS, ούτε επηρεάζει τη σταδιοποίηση της νόσου. Από την άλλη η παρουσία υψηλών φορτίων νόσου στο αίμα (≥1000/μL, B2, εδάφιο A.2.3.1) επηρεάζει τη σταδιοποίηση αλλά δεν μεταβάλλει τη διάγνωση σε SS.

Μορφολογία και ανοσοφαινότυπος

Η ιστολογική και ανοσοφαινοτυπική εικόνα του SS παρουσιάζει μεγάλη ομοιότητα με αυτή της MF. Το κυτταρικό διήθημα στο SS τείνει να είναι πιο μονότονο και

δεν παρουσιάζεται πάντα έντονος επιδερμοτροπισμός (**Εικόνα 4α**). Επίσης η σπογγίωση αποτελεί συχνό εύρημα στο SS, ενώ στις κλασικές μορφές MF συνήθως απουσιάζει. Παράλληλα σημαντικό ποσοστό βιοψιών δέρματος σε ασθενείς SS δείχνουν μη ειδικά ευρήματα τύπου σπογγιωτικής δερματίτιδας. Τα κύτταρα στο αίμα έχουν συχνά χαρακτηριστικούς εγκεφαλόμορφους πυρήνες (**Εικόνα 4β**). Ο ανοσοφαινότυπος στο αίμα και στο δέρμα είναι CD3(+),CD4(+), με τα νεοπλασματικά κύτταρα να παρουσιάζουν πλήρη ή μερική απώλεια έκφρασης CD7 και του CD26²⁸. Τα κύτταρα Sézary είναι επίσης θετικά για τα μόρια PD-1, CCR4 και CCR7²⁹.

Εικόνα 4. (α) Μικρογραφία επιδερμοτροπικού αραιού διηθήματος σε ασθενή με SS ³⁰(β) κυκλοφορούντα κύτταρα Sézary³¹.

A.2.2.3. Μεγαλοκυτταρική μετατροπή MF/SS

Η μορφολογική μετατροπή (Large cell transformation, LCT) Β-λεμφωμάτων χαμηλής κακοήθειας σε μεγαλοκυτταρικά λεμφώματα συνδυάζεται με επιθετική κλινική συμπεριφορά και μειωμένη επιβίωση. Το αντίστοιχο φαινόμενο στην ομάδα των Τλεμφωμάτων παρουσιάζεται συχνότερα στα πλαίσια της LCT των MF/SS. Σε σύγκριση με τα Β-λεμφώματα, η διάγνωση της LCT των MF/SS είναι συχνά δύσκολη καθώς πρέπει να διαφοροποιηθεί από άλλες μεγαλοκυτταρικές εξεργασίες όπως η ογκόμορφη MF, το αναπλαστικό λέμφωμα από μεγάλα κύτταρα και η λεμφωματοειδής βλατίδωση. Στοιχεία υπέρ της LCT είναι η ταυτόχρονη παρουσία μικρού, μεσαίου και μεγάλου μεγέθους κυττάρων, με τα μεγάλα κύτταρα κύτταρα να ανευρίσκονται σε ποσοστό ≥25% του διηθήματος(**Εικόνα 5**)^{32, 33}. Η LCT συμβαίνει συχνά σε έδαφος ογκόμορφης MF, και μόνο ιστολογικά μπορούν να διαφοροποιηθούν οι δύο οντότητες. Αντιθέτως, καθώς στην LCT τα μεγάλα κύτταρα μπορεί να εκφράζουν CD30, η διαφοροποίηση από CD30+ Tλεμφοϋπερπλαστικές εξεργασίες απαιτεί κλινικές πληροφορίες. Για παράδειγμα η αυτόματη υποχώρηση των βλαβών συνηγορεί υπέρ λεμφωματοειδούς βλατίδωσης, ή το ιστορικό προϋπαρχουσών βλαβών υποδηλώνουν MF. Η επίπτωση της LCT κυμαίνεται από 8 εως 55% των MF, με το 46% των ασθενών με ογκόμορφη νόσο να παρουσιάζει τελικά μετατροπή. Τα επίπεδα LDH και β2 μικροσφαιρίνης, σχετίζονται στατιστικά με την πιθανότητα μετατροπής³⁴.

Εικόνα 5. Μικρογραφία LCT με διήθημα μεγάλων κυττάρων >25% του λεμφωματικού διηθήματος³⁵

Α.2.2.4. CD30-θετικές Τ-λεμφοϋπερπλαστικές εξεργασίες

Οι CD30-θετικές λεμφοϋπερπλαστικές εξεργασίες (primary cutaneous CD30+ T-cell lymphoproliferative disorders, CD30+ LPD) αποτελούν τη δεύτερη πιο συχνή ομάδα CTCL μετά την MF, αντιπροσωπεύοντας το 30% των περιστατικών⁹. Η ομάδα αυτή περιλαμβάνει τη λεμφωματοειδή βλατίδωση (Lymphomatoid Papulosis, LyP), το πρωτοπαθές δερματικό αναπλαστικό λέμφωμα (primary cutaneous anaplastic large cell lymphoma, pc-ALCL) και περιστατικά που επιδεικνύουν στοιχεία και από τις δύο οντότητες. Καθώς ιστολογικά και γενετικά οι οντότητες αυτές έχουν μεγάλη αλληλοεπικάλυψη, η τελική διάγνωση βγαίνει σε κλινικό επίπεδο, πολλές φορές έπειτα από παρακολούθηση της φυσικής πορείας της νόσου³⁶.

Α.2.2.4.1. Λεμφωματοειδής Βλατίδωση

Ιστορία

Το πρώτο περιστατικό LyP περιγράφηκε για πρώτη φορά το 1968 από τον Warren Macauley σε μία ασθενή με βλατίδες που υποτροπίαζαν και αυτοπεριορίζονταν, ενώ ιστολογικά εμφάνιζαν στοιχεία μεγαλοκυτταρικού λεμφώματος³⁷. Η πρώτη ολοκληρωμένη μελέτη για την έκφραση του αντιγόνου CD30 από τα άτυπα κύτταρα της LyP δημοσιεύτηκε το 1986 από τους Kaudewitz P et al³⁸.

Επιδημιολογία

Η LyP εμφανίζεται συχνότερα σε ενήλικες, με διάμεσο ηλικία τα 45 έτη, και η αναλογία ανδρών: γυναικών είναι 2-3:1³⁶.

Κλινική Εικόνα

Η LyP χαρακτηρίζεται από βλατίδες, βλατιδονεκρωτικές βλάβες ή ελκωτικά οζίδια σε διάφορα στάδια ωρίμανσης, που συνήθως κατανέμονται στον κορμό και στα άκρα. Μικρός αριθμός αναφορών υπάρχει για βλεννογονικές βλάβες. Η νόσος περιλαμβάνει ένα φάσμα φαινοτύπων που κυμαίνεται από αυτόματα περιοριζόμενες βλάβες εντός 3-12 εβδομάδων που αφήνουν επιφανειακές ουλές, μέχρι τη έκθυση βλαβών για πάνω από 40 χρόνια. Ως και 20% των ασθενών παρουσιάζουν προηγουμένως, ταυτόχρονα ή μετέπειτα άλλους ιστολογικούς τύπους λεμφωμάτων, όπως MF, pcALCL ή λέμφωμα Hodgkin³⁹.

Μορφολογία και ανοσοφαινότυπος

Η LyP παρουσιάζει μεγάλη ιστολογική ετερογένεια, έχοντας 6 κύριους υποτύπους, οι οποίοι δεν έχουν κάποια προγνωστική αξία. Στον ίδιο ασθενή διαφορετικές βλάβες μπορεί να αντιστοιχούν σε διαφορετικούς ιστολογικούς υποτύπους^{36, 40-42}. Η **εικόνα 6** συνοψίζει την ιστολογία των κυριότερων υποτύπων της LyP. LyP τύπου A: Αποτελεί τον πιο συχνό ιστολογικό τύπο, αντιπροσωπεύοντας πάνω από το 80% των περιστατικών. Χαρακτηρίζεται από μικτό κυτταρικό διήθημα, που σε χαμηλή μεγέθυνση παρουσιάζει σφηνοειδή κατανομή στο χόριο. Το διήθημα αποτελείται από CD30(+) άτυπα κύτταρα, που προσομοιάζουν κύτταρα Reed-Sternberg, καθώς έχουν άφθονο κυτταρόπλασμα, μεγάλους πυρήνες και εμφανή πυρήνια, ενώ το μικροπεριβάλλον είναι πλούσιο σε ουδετερόφιλα, ηωσινόφιλα και μικρά λεμφοκύτταρα.

LyP τύπου Β: Σπάνιος ιστολογικός τύπος (<5%) που χαρακτηρίζεται από επιδερμοτροπικό διήθημα CD30(+) ή CD30(-), αλλά CD3(+) άτυπων λεμφοκυττάρων. Η διαφορική διάγνωση περιλαμβάνει την MF πρωίμων σταδίων.

LyP τύπου C: Αντιπροσωπεύει το 10% των περιστατικών. Εμφανίζει μονότονο, συνεκτικό διήθημα στο χόριο από CD30(+) άτυπα, μεγάλα κύτταρα, με αμελητέο αριθμό φλεγμονωδών κυττάρων. Η διαφορική διάγνωση περιλαμβάνει το pc-ALCL.

LyP τύπου D: Σπάνιος ιστολογικός τύπος (<5%) που χαρακτηρίζεται από επιδερμοτροπικό ή παζετοειδές διήθημα CD30(+), CD8(+) άτυπων λεμφοκυττάρων μικρού-μεσαίου μεγέθους. Η διαφορική διάγνωση περιλαμβάνει το πρωτοπαθές δερματικό CD8-θετικό επιθετικό επιδερμοτροπικό κυτταροτοξικό T-λέμφωμα.

Εικόνα 6. (Αριστερά) Μικρογραφία LyP με διήθημα μεγάλων κυττάρων με μικροπεριβάλλον πλούσιο σε ουδετερόφιλα και ηωσινόφιλα. (Δεξιά) Γράφημα με τους τύπους διηθήματος στις LyP τύπου A, B, C και D⁴³.

LyP τύπου Ε: Σπάνιος ιστολογικός τύπος (<5%) που χαρακτηρίζεται από αγγειοκεντρικά και αγειοδιηθητικά άτυπα CD30(+), CD8(+), EBV(-) λεμφοκύτταρα μικρού-μεσαίου μεγέθους. Η βλάβες εμφανίζουν συχνά αγγειακά έμφρακτα, αιμορραγία και νέκρωση. Η διαφορική διάγνωση περιλαμβάνει το δερματικό NK/Tλέμφωμα, ρινικού τύπου.

LyP με διαμετάθεση DUSP22-IRF4: Σπάνιος ιστολογικός τύπος (<5%) που ορίζεται γενετικά από τη διαμετάθεση DUSP22-IRF4 και ιστολογικά παρουσιάζει διφασικό πρότυπο ανάπτυξης με CD30(+) λεμφοκύτταρα μικρού-μεσαίου μεγέθους στην επιδερμίδα και CD30(+) λεμφοκύτταρα μεσαίου-μεγάλου μεγέθους στο χόριο. Η διαφορική διάγνωση περιλαμβάνει ογκόμορφη MF ή LCT.

Α.2.2.4.2. Πρωτοπαθές δερματικό αναπλαστικό λέμφωμα από μεγάλα κύτταρα

Ιστορία

Το pc-ALCL περιεγράφηκε ως οντότητα για πρώτη φορά το 1987, 20 σχεδόν χρόνια μετά την περιγραφή της LyP και ένα χρόνο μετά την περιγραφή της έκφρασης του CD30 στην LyP, με αναφορές περιστατικών που παρουσιάζαν δερματικά διηθήματα από αναπλαστικά κύτταρα ομοιάζοντα με κύτταρα Reed-Sternberg και τα οποία εξέφραζαν CD30⁴⁴.

Επιδημιολογία

Το pc-ALCL εμφανίζεται σε μεγαλύτερους σε ηλικία ασθενείς σε σχέση με την LyP, με διάμεση ηλικία τα 60 έτη. Η αναλογία ανδρών:γυναικών είναι 2-3:1³⁶.

Κλινική Εικόνα

Σε αντίθεση με τις πολλαπλές βλατιδώδεις αλλοιώσεις της LyP, το pc-ALCL χαρακτηρίζεται από μονήρεις ή τοπικά περιορισμένες ομάδες οζιδίων ή όγκων μικρότερων των 2 εκατοστών. Οι ασθενείς περιγράφουν ταχέως αναπτυσσόμενες, πορφυρές βλάβες που εξελκώνονται. Παρά τη δραματική τους εξωτερική εικόνα οι ασθενείς είναι συνήθως ασυμπτωματικοί, ενώ η παρουσία Β συμπτωμάτων θα πρέπει να εγείρει την υποψία συστηματικού λεμφώματος. Σπάνια οι βλάβες αυτοπεριορίζονται όπως συμβαίνει και στην LyP. Λεμφαδενική διασπορά παρατηρείται στο 10% των ασθενών¹⁰. Σε αυτές τις περιπτώσεις είναι σημαντικό να διαφοροποιηθεί το pc-ALCL από συστηματικό, λεμφαδενικό ALCL με δερματική συμμετοχή, καθώς το δεύτερο έχει σημαντικά χειρότερη πρόγνωση. Προκειμένου να κατοχυρωθεί η διάγνωση του pc-ALCL είναι σημαντικό να αποκλεισθεί ιστορικό MF.

Μορφολογία και ανοσοφαινότυπος

Το pc-ALCL εμφανίζει μονότονο, συνεκτικό διήθημα στο χόριο ή και στο υποδόριο λίπος από CD30(+) άτυπα, μεγάλα κύτταρα. Τα κύτταρα έχουν συνήθως περιορισμένο επιδερμοτροπισμό, παρόλο που περιστατικά με διαμετάθεση DUSP22-IRF4 παρουσιάζουν έντονο επιδερμοτροπισμό. Μικρά λεμφοκύτταρα, μακροφάγα και ηωσινόφιλα εμφανίζονται συχνά αναμεμειγμένα με το νεοπλασματικό διήθημα ή στα όρια του διηθήματος. Έκφραση του CD30 πρέπει να παρουσιάζεται τουλάχιστον στο 75% των νεοπλασματικών λεμφοκυττάρων. Παράλληλα, σχέδον όλα τα pc-ALCL εκφράζουν IRF4/MUM1, ενώ το 40% εκφράζει CD15. Η κινάση του αναπλαστικού λεμφώματος, ALK, είναι αρνητική. Απώλεια παν-Τ λεμφοκυτταρικών δεικτών, όπως το CD3, CD2 και CD5 είναι συχνή^{45, 46}.

Εικόνα 7. Μικρογραφία pcALCL με διήθημα μεγάλων κυττάρων τα οποία παρουσιάζουν ισχυρή έκφραση του μορίου CD30⁴⁷.

Α.2.2.5. Τ-λέμφωμα τύπου υποδοριίτιδας

Ιστορία

Η πρώτη περιγραφή του Τ-λεμφώματος τύπου υποδοριίτιδας (Subcutaneous panniculitis-like T-cell lymphoma, SPTCL) έγινε το 1991 με 8 περιστατικά από τους Gonzalez CL et al, ενώ αναγνωρίστηκε ως ξεχωριστή οντότητα από τον WHO το 2001⁴⁸.

Επιδημιολογία

Το SPTCL είναι σπάνιο λεμφοϋπερπλαστικό νόσημα, που αντιπροσωπεύει λιγότερο από το 1% των μη-Hodgkin λεμφωμάτων. Παρουσιάζει ελαφρώς μεγαλύτερη συχνότητα στις γυναίκες σε σχέση με τους άνδρες. Αποτελεί νόσο των νεαρότερων ηλικιών με διάμεσο ηλικία τα 35 έτη. Υπολογίζεται ότι το 20% των ασθενών παρουσιάζει ταυτόχρονα κάποιο αυτοάνοσο νόσημα, συχνότερα συστηματικό ερυθηματώδη λύκο⁴⁹.

Κλινική Εικόνα

Οι ασθενείς με SPTCL εμφανίζουν πολλαπλές, ανώδυνες, υποτροπιάζουσες και αυτοπεριοριζόμενες πλακόμορφες ή οζιδιακές βλάβες του υποδορίου ιστού. Οι βλάβες εμφανίζονται συνήθως στα άκρα ή στον κορμό. Μεγαλύτερα οζίδια μπορεί να παρουσιάσουν νέκρωση, αλλά σπάνια εξέλκωση. Συστηματικά συμπτώματα εμφανίζονται στο 50% των ασθενών, ενώ οι πιο σοβαρές συστηματικές επιπλοκές περιλαμβάνουν πλευριτικές συλλογές, πανκυτταροπενία και αιμοφαγοκυτταρικό σύνδρομο. Το τελευταίο έχει παρατηρηθεί στο 15-20% των ασθενών με SPTCL. Η λεμφαδενική και οστεομυελική συμμετοχή είναι σπάνια⁴⁸.

Μορφολογία και ανοσοφαινότυπος

Τα νεοπλασματικά λεμφοκύτταρα στην SPTCL εμφανίζουν διαυγές κυτταρόπλασμα, υπερχρωματικούς πυρήνες και εμφανή πυρήνια. Τα άτυπα λεμφοκύτταρα διηθούν τα λόβια του υποδόριου λιπώδους ιστού, χωρίς να διηθούν

τα διαφραγμάτια συνδετικού ιστού που διαχωρίζουν τα λόβια. Χαρακτηριστικό είναι το πρότυπο περιμετρικής ανάπτυξης των νεοπλασματικών λεμφοκυττάρων γύρω από κάθε λιποκύτταρο. Η εκτενής λιποκυτταρική καταστροφή προκαλεί τη συνάθροιση αφρωδών ιστιοκυττάρων που φαγοκυτταρώνουν λίπος. Παράλληλα, εμφανίζονται συχνά μακροφάγα με καρυορρηκτικά θραύσματα. Ο ανοσοφαινότυπος του νεοπλασματικού κυττάρου είναι CD8(+), granzyme B(+), perforin(+) και TIA1(+). Τα κύτταρα πρέπει να είναι αβ φαινοτύπου (betaF1(+)), CD56(-), γδ(-)⁵⁰. Δεδομένου του συσχετισμού της SPTCL με τον συστηματικό ερυθηματώδη λύκο, η διαφορική διάγνωση περιλαμβάνει την υποδοριίτιδα του λύκου, η οποία παρουσιάζει στη χρώση αιματοξυλινης-ηωσίνης πολλά κοινά στοιχεία. Η περιλιποκυτταρική συνάθροιση CD8(+) λεμφοκυττάρων αποτελεί παθογνωμονικό χαρακτηριστικό της SPTCL. Ακόμα, ενώ η επιδερμίδα και το χόριο συνήθως δεν εμφανίζουν ευρήματα στην SPTCL, στο λύκο συνήθως παρατηρείται κενοτοπιώδης εκφύλιση της βασικοκυτταρικής στιβάδας της επιδερμίδας, οίδημα θηλώδους χορίου και εναπόθεση βλέννης. Επίσης του παρουσιάζεται λεμφοκυτταρική αντιδραστική διήθηση του χορίου με άφθονα πλασματοκυτταροειδή δενδριτικά κύτταρα, τα οποία σημαίνονται με το δείκτη CD123⁵¹.

A.2.2.6. EBV(+) Δερματικά Τ-λεμφώματα

Το φάσμα των EBV σχετιζόμενων λεμφοϋπερπλαστικών εξεργασιών είναι εξαιρετικά ετερογενές. Στα πλαίσια των πρωτοπαθών δερματικών νεοπλασμάτων συμπεριλαμβάνονται τα δερματικά NK/T-λεμφώματα, τα οποία ανήκουν στην ευρύτερη κατηγορία των εξωλεμφαδενικών NK/T-λεμφωμάτων (Extranodal NK/T cell lymphoma, ENKTL) και η λεμφοϋπερπλαστική εξεργασία προσομοιάζουσα ευλογιοειδή ιδρώα (Hydroa vacciniforme-like lymphoproliferative disorder, HVLLPD).

Α.2.2.6.1. Δερματικό ΝΚ/Τ-λέμφωμα

Ιστορία

Η πρώτη αναφορά ENKTL έγινε το 1897 από τον McBride, ο οποίος περιέγραψε ένα περιστατικό με ταχεία και εκτενή καταστροφή της μύτης και της μέσης γραμμής του προσώπου από «νεκρωτικά κοκκιώματα», εξού και ο όρος θανατηφόρο κοκκίωμα της μέσης γραμμής, που χρησιμοποιείται μέχρι και σήμερα. Με την εισαγωγή της ανοσοϊστοχημείας στην διάγνωση των λεμφωμάτων τη δεκαετία του 1980, καθιερώθηκε ο NK/T φαινότυπος των νεοπλασματικών κυττάρων. Το 1990 οι Harabuchi Y et al ανίχνευσαν την παρουσία DNA και του πυρηνικού αντιγόνου EBNA-1 του ιού EBV σε λεμφωματικά κύτταρα από Ιάπωνες ασθενείς⁵². Μετά την πιστοποίηση του κυττάρου προέλευσης και της συσχέτισης του νοσήματος με τον EBV, σταδιακά έγινε αντιληπτό, ότι η νόσος μπορεί να αναπτυχθεί και εκτός της ρινικής/ρινοφαρυγγικής κοιλότητας, όπως στο δέρμα, το γαστρεντερικό, τα μαλακά μόρια και τους όρχεις. Τα νεοπλάσματα αυτά ονομάζονται από μερικούς συγγραφείς μη ρινικά, εξωλεμφαδενικά ΝΚ/Τ-λεμφώματα.

Επιδημιολογία

Τα πρωτοπαθή δερματικά ΕΝΚΤL εμφανίζονται με μεγαλύτερη συχνότητα σε Ασιάτες και ιθαγενείς πληθυσμούς της Κεντρικής και Νότιας Αμερικής. Είναι νόσος των ενηλίκων με διάμεση ηλικία τα 53 έτη. Η συχνότητα είναι μεγαλύτερη στους άνδρες⁵³.

Κλινική εικόνα

Οι βλάβες στα πρωτοπαθή δερματικά ΝΚ/Τ-λεμφώματα είναι μονήρεις ή συχνότερα πολλαπλοί όγκοι . Σε πιο προχωρημένες βλάβες παρουσιάζονται εξελκώσεις. Το 72% των ασθενών παρουσιάζει βλάβες στα άνω ή κάτω άκρα.

Μορφολογία και ανοσοφαινότυπος

Σε μικροσκοπικό επίπεδο τα πρωτοπαθή δερματικά ENKTL παρουσιάζουν διάχυτη διήθηση της επιδερμίδας, του χορίου και του υποδορίου ιστού. Οι εξελκώσεις και η νέκρωση των διαμερισμάτων του δέρματος είναι χαρακτηριστικό στοιχείο των ENKTL. Χαρακτηριστικό στοιχείο αποτελεί επίσης το αγγειοκεντρικό και αγγειοκαταστροφικό πρότυπο ανάπτυξης των λεμφωμάτων αυτών, που παρουσιάζεται με λεμφωματική διήθηση των αγγείων του χορίου με ταυτόχρονη ινιδοειδή νέκρωση αυτών. Το διήθημα αποτελείται συνήθως από μεσαίου μεγέθους κύτταρα ή κύτταρα με έντονο κυτταρικό πλειομορφισμό, που κυμαίνονται από μικρά εώς αναπλαστικά. Τα νεοπλασματικά κύτταρα των πρωτοπαθών ENKTL είναι συνήθως CD3(+), CD2(+), CD56(+) και CD5(-). Το CD30 είναι θετικό στο 1/3 των περιστατικών. Ο in situ υβριδισμός για το EBV-encoded small RNA (EBER) σημαίνει έντονα όλα τα νεοπλασματικά κύτταρα.

Α.2.2.6.2. Λεμφοϋπερπλαστική εξεργασία προσομοιάζουσα ευλογιοειδή ιδρώα

Ιστορία

Η κλασική ευλογιοειδής ιδρώα (Hydroa vacciniforme, HV) αποτελεί μία καλοήθη φωτοδερματοπάθεια της παιδικής ηλικίας, η οποία χαρακτηρίζεται από βλατιδοφλυκταινώδεις βλάβες, που αυτοπεριορίζονται αφήνοντας ευλογιοειδείς ουλές. Η νόσος περιγράφηκε το 1862 από τον Albert Bazin (βλ. Α.2.2.1. Σπογγοειδής Μυκητίαση, Ιστορία). Έναν αιώνα αργότερα, το 1999, οι Iwatsuki et al έδειξαν ότι η νόσος σχετίζεται με τον EBV⁵⁴. Παράλληλα, η ίδια ομάδα και ομάδες στη Νότιο Αμερική παρουσίασαν σειρές ασθενών με μία νόσο που προσομοίαζε την κλασική ευλογιοειδή ιδρώα, αλλά με βλάβες που παρουσιάζουν αιμορραγία, έλκη και δεν περιορίζονται σε περιοχές εκτεθειμένες στον ήλιο⁵⁵. Μεταγενέστερες μελέτες έδειξαν ότι η άτυπη αυτή νόσος επίσης σχετίζεται με τον EBV, αλλά χαρακτηρίζεται και από μονοκλωνικό πολλαπλασιασμό Τ λεμφοκυττάρων⁵⁶. Το 2008 η ταξινόμηση του WHO αναγνώρισε την οντότητα αυτή ως HVLLPD.

Επιδημιολογία

Η HVLLPD αποτελεί παιδιατρική νόσο με γεωγραφική κατανομή όμοια του ENKTL. Η διάμεση ηλικία διάγνωσης είναι τα 8 χρόνια και είναι ελαφρώς συχνότερη στα αγόρια⁵⁷.

Κλινική Εικόνα

Η νόσος χαρακτηρίζεται από βλατιδοφλυκταινώδεις βλάβες, που καθώς εξελίσσονται εξελκώνονται και εσχαροποιούνται. Σε αντίθεση με την κλασική ΗV, που είναι αυτοπεριοριζόμενη νόσος, η HVLLPD είναι χρόνια νόσος με συχνές υποτροπές, συχνότερα την άνοιξη και το καλοκαίρι. Σε σοβαρότερες μορφές της νόσου οι ασθενείς παρουσιάζουν συστηματικά συμπτώματα, όπως πυρετό, λεμφαδενοπάθεια και οργανομεγαλία. Ορισμένοι ασθενείς παρουσιάζουν επίσης χαρακτηριστική αλλεργία στο τσίμπημα του κουνουπιού.

Μορφολογία και ανοσοφαινότυπος

Η χαρακτηριστική ιστολογική εικόνα της HVLLPD περιλαμβάνει διήθηση του χορίου και του υποδορίου ιστού από μικρά ή μεσαίου μεγέθους λεμφοκύτταρα, χωρίς σημαντική ατυπία. Τα λεμφοκύτταρα παρουσιάζουν τροπισμό προς τα εξαρτήματα και τα αγγεία του χορίου. Η επιδερμίδα παρουσιάζει συχνά σπογγίωση και κεντοπιώδεις αλλοιώσεις εντός των κερατινοκυττάρων. Τα νεοπλασματικά λεμφοκύτταρα είναι ως επί τω πλείστον CD8(+), αλλά έχουν αναφερθεί περιστατικά CD4(+) HVLLPD. Ανεξαρτήτως του κυττάρου προέλευσης, τα νεοπλασματικά κύτταρα είναι πάντα EBER θετικά.

A.2.2.7. CD8-θετικό επιθετικό επιδερμοτροπικό κυτταροτοξικό Τ-λέμφωμα

Ιστορία

Μέχρι τη δεκαετία του 1990, ως νόσος Ketron-Goodman χαρακτηριζόταν μία σπάνια επιθετική μορφή, εκτεταμένης παζετοειδούς δικτύωσης. Ανοσοϊστοχημικές

μελέτες από τους Agnarsson et al. ανέδειξαν τον CD8(+) κυτταρτοτοξικό φαινότυπο του νεοπλάσματος αυτού, ενώ το 1999 οι Berti et al. απέδωσαν στη νόσο το όνομα CD8-θετικό επιθετικό επιδερμοτροπικό κυτταροτοξικό T-λέμφωμα (primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma, pc-CD8+ AECyTCL)⁵⁸.

Επιδημιολογία

Ta pc-CD8+AECyTCL αποτελούν εξαιρετικά σπάνια λεμφώματα, που αντιπροσωπεύουν λιγότερο από το 1% των CTCL. Δεδομένα από την μεγαλύτερη σειρά ασθενών με pc-CD8+AECyTCL υπολογίζουν τη διάμεσο ηλικία της νόσου στα 77 έτη⁵⁹.

Κλινική Εικόνα

Η πιο συνήθης κλινική εικόνα των λεμφωμάτων αυτών περιλαμβάνει εκτεταμένες και ραγδαίως εξελισσόμενες πλακόμορφες ή ογκόμορφες βλάβες, που συχνά παρουσιάζουν εξελκώσεις και αιμορραγία. Σπανίως, οι βλάβες είναι μονήρεις ή περιορισμένες σε μία ανατομική περιοχή.

Μορφολογία και ανοσοφαινότυπος

Η ιστολογική εικόνα των CD8+ AECyTCL παρουσιάζει δύο κύρια πρότυπα ανάπτυξης. Οι εκτεταμένες μορφές της νόσου αντιστοιχούν σε πιο επιφανειακά διηθήματα, με έντονο παζετοειδή επιδερμοτροπισμό και υποεπιδερμιδικό οίδημα. Οι πιο περιορισμένες μορφές της νόσου αντιστιχούν σε βαθύτερα, οζώδη διηθήματα, που παρουσιάζουν λιγότερο επιδερμοτροποισμό. Η διήθηση των εξαρτημάτων και των αγγείων είναι συχνή. Τα νεοπλασματικά κύτταρα είναι μικρού ή μεσαίου μεγέθους, με πυρήνες που παρουσιάζουν έντονο πλειομορφισμό και ενίοτε βλαστικά χαρακτηριστικά. Ο ανοσοφαινότυπος είναι CD3(+), CD8(+), CD4(-), ενώ χαρακτηριστική είναι η έκφραση κυτταροτοξικών μορίων όπως το Granzyme-B, TIA-1 και Perforin. Η συνεκτίμηση της κλινική εικόνας είναι απαραίτητη προκειμένου να διαφοροποιηθεί CD8+ AECyTCL από την type D LyP και ογκόμορφα στάδια CD8(+) MF⁶⁰. Τα CD8+ AECyTCL αποτελούν προσωρινή οντότητα στην έκδοση του WHO του 2016

Α.2.2.8. Πρωτοπαθές δερματικό CD8-θετικό Τ-λέμφωμα των άκρων

Ιστορία

Το 2007 οι Petrella et al. δημοσίευσαν μια σειρά τεσσάρων ασθενών, οι οποίοι παρουσιάζαν μονήρεις, βραδέως εξελισσόμενες βλάβες στο αυτί, οι οποίες ιστολογικά παρουσιάζαν μονομορφικά, μη επιδερμοτροπικά διηθήματα από κλωνικά CD8(+) λεμφοκύτταρα⁶¹. Το σπάνιο αυτό νεόπλασμα αναγνωρίζεται στην έκδοση του WHO του 2016, ως πρωτοπαθές δερματικό CD8-θετικό T-λέμφωμα των άκρων (Primary cutaneous acral CD8+ T-cell lymphoma, pc-aCD8+TCL) με πάνω από 50 αναφορές στη διεθνή βιβλιογραφία.

Επιδημιολογία

Μόνο περιστατικά σε ενηλίκους έχουν αναφερθεί, με διάμεσο ηλικία τα 53 έτη. Οι άντρες προσβάλλονται συχνότερα από τις γυναίκες σε αναλογία 3.2:1.

Κλινική Εικόνα

Οι δερματικές βλάβες των pc-aCD8+TCL είναι συνήθως μονήρεις ερυθηματώδεις βλατίδες ή οζίδια που κυμαίνονται σε μέγεθος από λίγα χιλιοστά ως 4 εκατοστά. Η συχνότερα τοποθεσία είναι η έλικα ή η κόγχη του αυτιού, ενώ βλάβες μπορεί να σημειωθούν στη μύτη, στο πρόσωπο και τα άκρα.

Μορφολογία και ανοσοφαινότυπος

Το διήθημα χαρακτηρίζεται από διάχυτο πρότυπο ανάπτυξης, άτυπων λεμφοκυττάρων μεσαίου μεγέθους. Ο επιδερμοτροπισμός είναι σπάνιος, ενώ τα εξαρτήματα και τα αγγεία δεν παρουσιάζουν διήθηση. Συχνά ανευρίσκονται αντιδραστικά δευτερογενή λεμφοζίδια Β-λεμφοκυττάρων εντός του διηθήματος. Ο νεοπλασματικός ανοσοφαινότυπος είναι CD3(+), CD8(+), CD4(-). Τα λεμφωματικά κύτταρα εκφράζουν επίσης κυτταροτοξικά μόρια, όπως το Granzyme-B και Perforin, ενώ το μόριο TIA-1 εμφανίζει χαρακτηριστική χρώση δίκην κουκίδας, που αντιστοιχεί στο όργανο του Golgi⁶². Τα pc-aCD8+TCL αποτελούν ανεπίσημη οντότητα στην έκδοση του WHO του 2016

Α.2.2.9. Πρωτοπαθές δερματικό γδ Τ-λέμφωμα

Ιστορία

Η πρώτη αναφορά πρωτοπαθούς δερματικού γδ Τ λεμφώματος (primary cutaneous γδ T-cell lymphoma, pc-γδTCL) έγινε το 1991 από τους Berti et al. σε ένα ασθενή που παρουσιάζε πολλαπλές, ερυθρές πλακόμορφες και ογκόμορφες βλάβες και κατέληξε εντός μηνών από την έναρξη των συμπτωμάτων του⁶³. Μικροσκοπικά το νεόπλασμα χαρακτηριζόταν από μία λεμφοϋπερπλαστική εξεργασία με έντονο παζετοειδή επιδερμοτροπισμό. Ανοσοϊστοχημικές χρώσεις έδειξαν ότι τα νεοπλασματικά κύτταρα ήταν βF1(-), CD4(-) και CD8(-), αλλά TCR-Vδ1(+).

Επιδημιολογία

Τα pc-γδTCL αποτελούν εξαιρετικά σπάνια λεμφώματα του δέρματος και αντιπροσωπεύουν λιγότερο από το 1% του συνόλου των CTCL. Αποτελούν νοσήματα των ενηλίκων. Δεν υπάρχει σαφής υπεροχή φύλου στην εμφάνιση των pc-γδTCL⁶⁴.

Κλινική Εικόνα

Τα pc-γδTCL χαρακτηρίζονται από εκτεταμένες ερυθρές ως πορφυρές παχειές πλάκες ή όγκους, που συχνά νεκρώνονται και εξελκώνονται. Οι βλάβες εντοπίζονται συνήθως στα άκρα. Β-συμπτώματα, όπως πυρετό, νυχτερινό ιδρώτα και απώλεια βάρους, εμφανίζει η πλειοψηφία των ασθενών. Ακόμα, λόγω των κυτταροκινών που εκκρίνουν τα νεοπλασματικά γδ-λεμφοκύτταρα, πολλοί ασθενείς εμφανίζουν αιμοφαγοκυτταρικό σύνδρομο.

Μορφολογία και ανοσοφαινότυπος

Τα pc-γδTCL μικροσκοπικά συνιστώνται από διάχυτα διηθήματα είτε της επιδερμίδας, είτε του χορίου, είτε του υποδορίου ιστού είτε συνδυασμού των παραπάνω^{49, 64}. Τα άτυπα λεμφοκύτταρα είναι μεσαία σε μέγεθος με άτυπους πυρήνες, που σπανιώς εμφανίζουν βλαστικά χαρακτηριστικά. Ο ανοσοφαινότυπος των νεοπλασματικών κυττάρων είναι CD3(+), βF1(-),TCR-Vδ1(+). ενώ τα περισσότερα περιστατικά είναι διπλά αρνητικά για τα μόρια CD8 και CD4. Σπανίως μπορεί να είναι CD8(+). Ισχυρή είναι η έκφραση κυτταροτοξικών μορίων όπως το Granzyme-B, TIA-1 και Perforin.

A.2.2.10. CD4-θετική T- λεμφοϋπερπλαστική εξεργασία από κύτταρα μικρού/μεσαίου μεγέθους

Ιστορία

Η CD4-θετική T- λεμφοϋπερπλαστική εξεργασία από κύτταρα μικρού/μεσαίου μεγέθους (primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder, pc-CD4+SMTCL) προέκυψε ως οντότητα όταν στις αρχές της δεκαετίας του 1990 η ταξινόμηση του Κιέλου εφαρμόστηκε στα πρωτοπαθή δερματικά λεμφώματα που δεν ήταν MF ή SS. Στα πλαίσια της ταξινόμησης αυτής, οι ερευνητές διαπίστωσαν ότι οι μη MF/SS CD4+ μεγαλοκυτταρικές εξεργασίες έχουν σαφώς χειρότερη πρόγνωση από CD4+ λεμφώματα με κύτταρα μικρού/μεσαίου μεγέθους, τα οποία άρχισαν να ταξινομούνται ξεχωριστές οντότητες⁶⁵.

Επιδημιολογία

Οι pc-CD4+SMTCL αποτελούν το 2-3% των CTCL. Περιστατικά έχουν περιγραφεί σε όλες τις ηλικίες, αλλά συχνότερα εμφανίζεται σε ασθενείς 50 – 60 ετών. Δεν υπάρχει σαφής υπεροχή φύλου στην εμφάνιση των pc-CD4+SMTCL.
Κλινική Εικόνα

Οι pc-CD4+SMTCL είναι στην πλειοψηφία τους μονήρεις βλάβες, οι οποίες εμφανίζονται ξαφνικά ως όζοι στην κεφαλή, στον τράχηλο και το ανώτερο τμήμα του κορμού. Η κλινική πορεία ποικίλλει, καθώς οι βλάβες μπορεί να διογκωθούν, μέχρι να σταθεροποιηθούν σε μέγεθος, να υποστραφούν αυτόματα, ή να παρουσιάσουν μία κυκλική υποτροπιάζουσα πορεία. Για τη διάγνωση των pc-CD4+SMTCL, θα πρέπει να μην υπάρχει ιστορικό MF ή ταυτόχρονες δερματικές βλάβες, όπως κηλίδες και πλάκες, συμβατές με MF.

Μορφολογία και ανοσοφαινότυπος

Μικροσκοπικά, οι pc-CD4+SMTCL αποτελούνται από ένα πυκνό διήθημα του χορίου, με διάχυτο ή οζώδες πρότυπο ανάπτυξης. Τα νεοπλασματικά κύττταρα επεκτείνονται στον υποδόριο ιστό, ενώ συνήθως δεν παρουσιάζουν έντονο επιδερμοτροπισμό. Τα κύτταρα είναι CD3(+), CD4(+) και CD8(-), ενώ εκφράζουν τα μόρια PD-1, Bcl-6 και CXCL13, γεγονός το οποίο συνάδει με T- follicular helper φαινότυπο⁶⁶. Το μικροπεριβάλλον του διηθήματος είναι πλούσιο σε Βλεμφοκύτταρα, πλασματοκύτταρα και ιστιοκύτταρα. Μη νεοπλασματικές βλάβες, επονομαζόμενες T- ψευδολεμφώματα, παρουσιάζουν παρόμοια καλοήθη κλινική εικόνα και μικροσκοπική εικόνα με τις βλάβες της pc-CD4+SMTCL, με τη μόνη διαφορά ότι τα πρώτα αποτελούν πολυκλωνικό πολλαπλασιασμό κυττάρων, ενώ τα δεύτερα αποτελούν μονοκλωνικό T-νεόπλασμα. Για αυτό το λόγο οι pc-CD4+SMTCL αποκαλούνται πλέον «λεμφοϋπερπλαστικές εξεργασίες» και όχι λεμφώματα, ενώ αποτελούν ανεπίσημη οντότητα στην έκδοση του WHO του 2016.

Α.2.3. Σταδιοποίηση, πρόγνωση και θεραπεία

Α.2.3.1. Σταδιοποίηση και Πρόγνωση MF και SS

Η MF και το SS σταδιοποιούνται με βάση το σύστημα της διεθνούς εταιρείας δερματικών λεμφωμάτων (International Society for Cutaneous Lymphomas) και του

EORTC (**Πίνακας 3 και 4**)⁶⁷. Το σύστημα αυτό βασίζεται στην έκταση της νόσου στο δέρμα (T), στους λεμφαδένες (N), σε σπλάχνα (M) και στο αίμα (B).

Δέρμα	
T1	Περιορισμένες κηλίδες, βλατίδες ή/και πλάκες, που καλύπτουν
	< 10% της επιφάνειας του σώματος
T2	Κηλίδες, βλατίδες ή/και πλάκες, που καλύπτουν ≥ 10% της επιφάνειας του σώματος
Т3	≥ 1 όγκος, διαμέτρου ≥ 1 εκ.
Τ4	Συρρέον ερύθημα που καλύπτει ≥ 80% της επιφάνειας του σώματος
Λεμφαδένες	
N0	Φυσιολογικοί λεμφαδένες (κλινική εκτίμηση)
N1	Παθολογικοί λεμφαδένες, ιστολογία NCI, LN 0 - 2
	LN 0: Χωρίς άτυπα λεμφοκύτταρα
	LN 1: Σπάνια, απομονωμένα άτυπα λεμφοκύτταρα
	LN 2: Μικρές ομάδες 3 – 6 άτυπων λεμφοκυττάρων
N2	Παθολογικοί λεμφαδένες, ιστολογία NCI, LN 3
	LN 3: Μεγάλες αθροίσματα άτυπων λεμφοκυττάρων, διστήρηση
	αρχιτεκτονικής του λεμφαδένα
N3	Παθολογικοί λεμφαδένες, ιστολογία NCI, LN 4
	LN 4: Μερική ή πλήρης κατάλυση της αρχιτεκτονικής του
	λεμφαδένα από άτυπα λεμφοκύτταρα
Σπλάχνα	
МО	Χωρίς συμμετοχή σπλαχνικών οργάνων
M1	Σπλαχνική συμμετοχή
Αίμα	
B0	Απουσία σημαντικής νόσου στο αίμα:
	Άτυπα λεμφοκύτταρα ≤ 5% των λεμφοκυττάρων
B1	Χαμηλό φορτίο νόσου στο αίμα:

	Άτυπα λεμφοκύτταρα > 5% των λεμφοκυττάρων, χωρίς να
	πληρούνται τα κριτήρια του Β2
B2	Υψηλό φορτίο νόσου στο αίμα:
	Άτυπα, κλωνικά λεμφοκύτταρα ≥ 1000/μL

Πίνακας 3. Υπολογισμός της έκτασης της νόσου σε MF/SS κατά ISCL-EORTC. *Τροποποιημένος* πίνακας από πρωτότυπό, Olsen et al, Blood, 2007⁶⁷.

Στάδιο			
IA	T1, N0, M0, B0-1	IB	T2, N0, M0, B0-1
IIA	T1-2, N1-2, M0, B0-1	IIB	T3, N0-2, M0, B0-1
IIIA	T4, N0-2, M0, B0	IIIB	T4, N0-2, M0, B1
IVA1	T1-4, N0-2, M0, B2	IVB	T1-4, N0-3, M1, B0-2
IVA2	T1-4, N3, M0, B0-2		

Πίνακας 4. Κλινική σταδιοποίηση MF/SS κατά ISCL-EORTC. Τροποποιημένος πίνακας από πρωτότυπό, Olsen et al, Blood, 2007⁶⁷.

Τα κλινικά στάδια ΙΑ εώς ΙΙΑ της MF αντικατοπτρίζουν πρώιμη νόσο (early MF, eMF), σε αντίθεση με τα κλινικά στάδια ΙΙΒ και πάνω, που αντικατοπτρίζουν προχωρημένη νόσο (advanced MF, aMF). Η SS, εξορισμού μπορεί να εμφανιστεί σε στάδια IVA1, IVA2 και IVB. Η έκταση της νόσου στο δέρμα (T) και κυρίως συνολική κλινική σταδιοποίηση της νόσου αποτελούν τους κυριότερους προγνωστικούς δείκτες των νόσων MF/SS (**Εικόνα 8**)⁶⁸. Ειδικά στην MF πρόγνωση αλλάζει ριζικά με την μετατροπή των βλαβών από πλάκες σε όγκους, που σηματοδοτούν την έναρξη προχωρημένης νόσου. Ιδιαίτερη μνεία αξίζει να γίνει για τις ιστολογικές παραλλαγές της MF, καθώς η θυλακιοτρόπος MF παρουσιάζει χειρότερη 5-ετή πρόγνωση σε σχέση με την κλασική MF (70-80%), ενώ η παζετοειδής δικτύωση και το χαλαρό κοκκιωματώδες δέρμα παρουσιάζουν εξαιρετικά καλοήθη πορεία.

Εικόνα 8. Ολική επιβίωση ασθενών με MF/SS σε σχέση με το στάδιο της νόσου68.

Α.2.3.2. Σταδιοποίηση λοιπών CTCL

Τα πρωτοπαθή δερματικά λεμφώματα, συμπεριλαμβανομένων και των Βλεμφωμάτων, που δεν εμπίπτουν στην κατηγορία των MF/SS, σταδιοποιούνται κατά το σύστημα TNM (Πίνακας 5)⁶⁹. Καθώς, αποτελούν ένα ετερογενές σύνολο νοσημάτων, με πολύ ήπια έως πολύ επιθετική κλινική πορεία, η προγνωστική αξία του συστήματος TNM θα πρέπει να εξετάζεται συγκρίνοντας τον κάθε ιστολογικό υπότυπο ξεχωριστά. Δεν υπάρχουν δεδομένα από μεγάλες ομάδες ασθενών για την πρόγνωση του κάθε ιστολογικού υποτύπου με βάση το σύστημα TNM.

Δέρμα	
T1	Μονήρης βλάβη
T2	Τοπικά επεκτεινόμενη νόσος: 1 περιοχή ή 2 ανατομικά συνεχείς περιοχές του σώματος
Т3	Γενικευμένη νόσος

Λεμφαδένες					
N0	Φυσιολογικοί λεμφαδένες (κλινική εκτίμηση)				
N1	1 παθολογικός περιφερικός λεμφαδένας, που παροχετεύει				
	περιοχή με ενεργό ή παρελθούσα δερματική βλάβη				
N2	Άνω των 2 παθολογικοί περιφερικοί λεμφαδένες, που				
	παροχετεύουν περιοχή με ενεργό ή παρελθούσα δερματική				
	βλάβη				
N3	Παθολογικοί κεντρικοί λεμφαδένες				
Μεταστάσεις					
MO	Χωρίς συμμετοχή μη λεμφαδενικών, εξωδερματικών οργάνων				
M1	Συμμετοχή μη λεμφαδενικών, εξωδερματικών οργάνων				

Πίνακας 5. Υπολογισμός της έκτασης της νόσου σε CTCL εκτός MF/SS κατά ISCL-EORTC. Τροποποιημένος πίνακας από πρωτότυπό, Kim et al, Blood, 2007⁶⁹.

Α.2.3.3. Θεραπεία CTCL

Παρότι η παρούσα διατριβή δεν εστιάζει στη θεραπευτική προσέγγιση των CTCL, στην παράγραφο αυτή θα γίνει μία συνοπτική αναφορά στις βασικές διαθέσιμες θεραπείες.

Η MF είναι νόσος που σπάνια παρουσιάζει ολική ύφεση (complete remission, CR), αλλά είτε ολική είτε μερική (partial remission, PR) ύφεση παρουσιάζει το 30% των ασθενών κατά τη διάρκεια της κλινικής τους πορείας. Παρόλα αυτά η MF χαρακτηρίζεται από υποτροπές που αντιμετωπίζονται με συχνή τροποποίηση της θεραπευτικής προσέγγισης ή συνδυασμό θεραπειών. Οι ασθενείς με MF πρωίμων σταδίων, με κηλίδες ή περιορισμένης έκτασης πλάκες, λαμβάνουν τοπική θεραπεία, συμπεριλαμβανομένων στεροειδών, ρετινοειδών, όπως η μπεξαροτένη, ή ανοσοτροποποιητικών φαρμάκων, όπως η ιμικουιμόδη. Σε ασθενείς με ακτινοβολίας, η φωτο-χημειοθεραπεία με ψωραλένιο και UVA ακτινοβολία (PUVA), η εξωσωματική φωταφαίρεση (Extracorporeal photophoresis, ECP) καθώς και συστηματική θεραπεία από το στόμα (μπεξαροτένη, μεθοτρεξάτη, βορινοστάτη), υποδορίως (ιντερφερόνη-α) ή ενδοφλεβίως (ρομιδεψίνη, γεμσιταμπίνη, λιποσωμική δοξορουβικίνη, πραλατρεξάτη). Στην περιορισμένη ογκόμορφη νόσο, οι βλάβες λαμβάνουν τοπική ακτινοβόληση και συνήθως χορηγείται συστηματική θεραπεία. Σε ασθενείς με πολλαπλούς όγκους, δίδεται ολοσωματική ακτινοβόληση με δέσμη ηλεκτρονίων (Total skin electron beam radiotherapy, TSEB) σε συνδυασμό με σχήματα χημειοθεραπείας, όπως το Gem Doxil ή το EPOCH. Είναι σημαντικό να διερευνηθεί η έκφραση του μορίου CD30, καθώς οι ασθενείς αυτοί ωφελούνται από την προσθήκη του μονοκλωνικού αντισώματος μπρεντουξιμάμπη. Στοιχεία επιθετικότητας, όπως η αυξημένη LDH, ή η παρουσία μεγαλοκυτταρικής μετατροπής (LCT), συνηγορούν υπέρ της αλλογενούς μεταμόσχευσης αρχέγονων αιμοποιητικών κυττάρων, εφόσον επιτευχθεί ύφεση. Η θεραπεία του SS περιλαμβάνει την ECP σε συνδυασμό με ανοσοτροποποιητικούς παράγοντες, ιντερφερόνη-α, μπεξαροτένη, μεθοτρεξάτη, ρομιδεψίνη, βορινοστάτη και το μονοκλωνικό αντίσωμα Campath (Εικόνα 9). Τα CD30+LPD, καθώς αποτελούν νοσήματα σχετικά χαμηλής κακοήθειας, αντιμετωπίζονται με χειρουργική εκτομή ή τοπική ακτινοβόληση, συνήθως με άριστα αποτελέσματα, παρόλο που υποτροπές συμβαίνουν στο 40-50% των ασθενών. Χημειοθεραπευτικά σχήματα και μπρεντουξιμάμπη χρησιμοποιούνται λιγότερο συχνά⁷⁰. Παρομοίως, άλλα CTCL χαμηλής κακοήθειας, όπως τα pc-aCD8+TCL και pc-CD4+SMTCL, συνήθως αντιμετωπίζονται με χειρουργική εκτομή και τοπική ακτινοβόληση. Τέλος, επιθετικά κυτταροτοξικά λεμφώματα, όπως τα pc-γδTCL και pc-aCD8+TCL, έχουν εξαιρετικά δυσμενή πρόγνωση, και η αντιμετώπιση τους βασίζεται σε πολυπαραγοντικά χημειοθεραπευτικά σχήματα⁶⁸. Ένα μεγάλο μέρος των κλινικών δοκιμών στα CTCL βασίζεται πλέον σε βιολογικούς παράγοντες που στοχεύουν ενεργά μονοπάτια σηματοδότησης, όπως το μονοπάτι των κινασών JAK, ή την επιγενετική ρύθμιση των γονιδίων, όπως οι αποακετυλάσες των ιστονών. Παράλληλα, όπως και στους συμπαγείς όγκους, πραγματοποιούνται κλινικές

δοκιμές ανοσοθεραπείας με βάση αναστολείς σημείων ελέγχου (checkpoint inhibitors) και θεραπευτικά εμβόλια.

Mycosis Fungoides/Sézary Syndrome Treatment Algorithm

Εικόνα 9. Θεραπευτικό φάσμα σε ασθενείς με MF/SS σε σχέση με το στάδιο της νόσου. 71, 72.

A.3. Αιτιοπαθογένεια CTCL

Α.3.1. Ανοσολογικό προφίλ των CTCL

Παρότι εμπίπτουν στις κακοήθειες, τα CTCL αποτελούν κατά βάση νοσήματα του ανοσοποιητικού συστήματος. Παρότι η ανοσολογία των CTCL έχει περιγραφεί ενδελεχώς, υπάρχει μέχρι και σήμερα μεγάλη δυσκολία αποτύπωσης της ανοσοπαθογένειας των CTCL στα πλαίσια ενός μόνο μοντέλου. Αυτό οφείλεται α) στην τεράστια ετερογένεια μεταξύ δειγμάτων, ακόμα και αν ανήκουν στην ίδια ιστολογική κατηγορία και στάδιο, β) στην ανοσοφαινοτυπική πλαστικότητα των λεμφωματικών κυττάρων και γ) στο γεγονός ότι πολλά δεδομένα βασίζονται σε κυτταρικές σειρές, και όχι σε πρωτογενές υλικό. Παρακάτω αναλύονται συνοπτικά τρεις βασικές ανοσολογικές κατηγορίες CTCL.

A.3.1.1. Ανοσολογία των MF/SS

Οι MF και SS αποτελούν τα πλέον μελετημένα CTCL σε ανοσολογικό επίπεδο. Καθώς πρόκειται για νεοπλάσματα βοηθητικών CD4+ Τ-λεμφοκυττάρων, οι πρώτες έρευνες εστίασαν στον χαρακτηρισμό του T-helper (Th) φαινοτύπου των νεοπλασματικών κυττάρων. Το επικρατές μοντέλο για την MF, όπως έχει προκύψει από ανοσοϊστοχημικές μελέτες, κυτταρομετρία ροής και ανάλυση της ευρύτερης γονιδιακής έκφρασης (gene expression profiling, GEP) των λεμφωματικών κυττάρων είναι ότι το κακόηθες κύτταρο παρουσιάζει ισχυρό Th-2 ανοσοφαινότυπο^{73, 74}. Οι πρώιμες βλάβες χαρακτηρίζονται από αραιό διήθημα κλωνικών Th-2 κυττάρων, τα οποία συνυπάρχουν με μη-κλωνικά CD8+ και Th-1 CD4+ κύτταρα. Καθώς τα κλωνικά κύτταρα πολλαπλασιάζονται, η έκκριση Th-2 κυτταροκινών, όπως οι ιντερλευκίνες-4, -5 και -10 (IL-4, IL-5, IL-10) πολώνουν τα μη-κλωνικά CD4+ κύτταρα προς ένα Th-2 φαινότυπο, ενώ η απουσία Th-1 κυτταροκινών, όπως η ιντερλευκίνη-12 (IL-12) και οι ιντερφερόνες-α και -γ (IFN-α, IFN-γ) εμποδίζει την ανάπτυξη CD8+ κυττάρων, τα οποία θα μπορούσαν να επιτεθούν στο νεοπλασματικό ιστό (Εικόνα **10**)⁷⁵. Αντιστοίχως στο SS έχει βρεθεί ότι τα λεμφωματικά κύτταρα προκαλούν συστηματική Th-2 πόλωση, όχι μόνο σε επίπεδο ιστού, αλλά και στα περισσότερα κυκλοφορούντα μη κλωνικά CD4+ κύτταρα, γεγονός που ισοδυναμεί με γενικευμένη ανοσοκαταστολή⁷⁶. Παρόλο που ο Th-2 φαινότυπος φαίνεται να επικρατεί στην MF και στο SS, μελέτες έχουν αποδώσει χαρακτηριστικά Th-17 και Th-22 στα νεοπλάσματα αυτά, τα οποία συχνά εκφράζουν IL-17 και IL-22⁷⁷⁻⁷⁹. Μελέτες έχουν ακόμα αποδώσει φαινότυπο T-regulatory cell (Treg), καθώς σε ορισμένες περιπτώσεις έχει ανιχνευτεί ο μεταγραφικός παράγοντας FoxP3^{80, 81}. Τέλος, σε υποτύπους της MF και συχνότερα στο SS μπορεί να παρουσιαστεί φαινότυπος T-follicular helper (Tfh), καθώς τα κύτταρα εκφράζουν συχνά το μεταγραφικό παράγοντα Bcl6 και το μόριο επιφανείας PD-1^{51, 82}. Η απόδοση πολλαπλών Th φαινοτύπων οφείλεται στο γεγονός ότι υπάρχει μεγάλη ετερογένεια μεταξύ των ασθενών, αλλά και μεταξύ κυττάρων μέσα στην ίδια δερματική βλάβη, που το πιο πιθανό είναι ότι συνεκφράζουν πρωτεΐνες, που φυσιολογικά δεν θα συνεκφράζονταν στο ίδιο λεμφοκύτταρο. Παράλληλα, ακόμα και σε φυσιολογικά CD4+ κύτταρα ο Th φαινότυπος δεν είναι πάγιος, αλλά παρουσιάζει μεγάλη πλαστικότητα.

Εικόνα 10. Το ανοσοφαινοτυπικό προφίλ των MF/SS κατά την εξέλιξη των δερματικών βλαβών κυριαρχείται από T-helper 2 χαρακτηριστικά⁷⁵.

Σε αντίθεση με τον Th φαινότυπο, μεγαλύτερη σαφήνεια υπάρχει για το κύτταρο προέλευσης των MF και SS. Και τα δύο νεοπλάσματα προκύπτουν από την κακοήθη εξαλλαγή ώριμων Τ-λεμφοκυττάρων με αναδιατεταγμένα τα γονίδια των αλύσων του TCR. Παρόλα αυτά τα κύτταρα της MF προέρχονται από αυτόχθονα ιστικά Tκύτταρα (T-resident memory cells, Trm cells), τα οποία είναι καθηλωμένα στο δέρμα και δεν κυκλοφορούν στο αίμα ή στο λεμφικό σύστημα, παρά σε μικρά ποσοστά, γεγονός το οποίο εξηγεί την ανατομική κατανομή της MF. Τα κύτταρα αυτά είναι CD69(+), CD103(+) ή CD69(+), CD103(-). Στο SS το κύτταρο προέλευσης μπορεί να είναι Τ-κύτταρο κεντρικής μνήμης (T-central memory cells, Tcm cells) ή μεταναστευτικό Τ-κύτταρο μνήμης (T-migratory memory cells, Tmm cells). Και τα δύο κύτταρα επανακυκλοφορούν από το δέρμα στο αίμα. Παρόλα αυτά τα κύτταρα Tcm εκφράζουν τα μόρια τροπισμού CCR7 και L-selectin, και παρουσιάζουν ταχεία μετανάστευση σε τοπικούς και κεντρικούς λεμφαδένες. Αντιθέτως τα κύτταρα Tmm εκφράζουν μόνο το μόριο CCR7 και παρουσιάζουν βραδεία μετανάστευση μόνο σε τοπικούς λεμφαδένες. Στο SS με ερυθρόδερμα και γενικευμένη λεμφαδενοπάθεια, το κύτταρο προέλευσης αντιστοιχεί σε Tcm, ενώ στο SS με πιο περιορισμένες βλάβες και συμμετοχή τοπικών λεμφαδένων, το κύτταρο προέλευσης αντιστοιχεί σε Tmm (Εικόνα 11)⁸³⁻⁸⁵.

Εικόνα 11. Ανοσοφαινοτυπικό προφίλ μνήμης των κυττάρων στην MF και στο SS⁸⁵.

Ένα άλλο στοιχείο με ιδιαίτερο ανοσολογικό ενδιαφέρον στην MF είναι ο λεμφωματικών κυττάρων. Σε επιδερμοτροπισμός των ένα βαθμό, 0 επιδερμοτροπισμός οφείλεται σε χημειοκίνες που εκκρίνονται από τα κερατινοκύτταρα και ενδοεπιδερμιδικά δενδριτικά κύτταρα Langerhans, όπως οι CCL17 και CCL22 οι οποίες προσδένονται στον υποδοχέα CCR4 των λεμφωματικών κυττάρων⁸⁶. Παράλληλα τα κερατινοκύτταρα της επιδερμίδας και των θυλακίων εκκρίνουν κυτταροκίνες όπως οι IL-7 και IL-15, οι οποίες ενεργοποιούν τον πολλαπλασιασμό των νεοπλασματικών Τ-κυττάρων. Η IL-15 συγκεκριμένα παράγεται και από τα ίδια τα νεοπλασματικά κύτταρα και παρέχει αυτοκρινή ερεθίσματα μέσω ενεργοποίησης των JAK κινασών και του μορίου μεταγράφει γονίδια οποίο υπεύθυνα STAT5, to για τον κυτταρικό πολλαπλασιασμό, την κυτταρική επιβίωση και διαφοροποίηση/ενεργοποίηση.

Τέλος, τα μικροαποστημάτια Pautrier αποτελούν συναθροίσεις δενδριτικών κυττάρων Langerhans και νεοπλασματικών Τ-κυττάρων. Στα σύμπλοκα αυτά παρέχεται αντιγονοερεθισμός και μιτωτικά ερεθίσματα. Καθώς η νόσος εξελίσσεται σε ογκόμορφες βλάβες, συχνά χάνεται ο επιδερμοτροπισμός και τα μικροαποστημάτια Pautrier, και τα κύτταρα διηθούν μόνο το χόριο⁸⁶. Αυτό συνιστά ότι τα κακοήθη κύτταρα έχουν αποκτήσει αρκετές μεταλλάξεις προκειμένου να πολλαπλασιαστούν ανεξάρτητα από κυτταροκίνες και αντιγονικά ερεθίσματα από το μικροπεριβάλλον. Αντιστρόφως, για τον ίδιο λόγο φαίνεται ότι το μικροπεριβάλλον της πρώιμης MF έχει μεγάλη βιολογική σημασία για την παγίωση και εξέλιξη των λεμφωματικών βλαβών. Όσον αφορά στη σημασία του αντιγονικού ερεθισμού στην παθογένεια της νόσου φαίνεται να υπάρχει συχνότερη εκπροσώπηση συγκεκριμένων γονιδίων του TCR στην κλασική MF, όπως τα TRAV3 και TRBV3-1, και σε υποτύπους της MF, όπως στην θυλακιοτρόπο MF, οπού εκφράζονται συχνά τα γονίδια TRBJ2-1 και TRBJ2-7^{87, 88}. Τα γονίδια αυτά σχετίζονται με την αντιγονοπαρουσιάση λιπιδικών αντιγόνων μέσω του μορίου CD1a των δενδριτικών κυττάρων. Παρόλα αυτά στην πλειοψηφία τους, τα

41

περιστατικά MF και SS, δεν μπορούν να αναχθούν σε ένα συγκεκριμένο TCR κλωνότυπο που απαντά σε κάποιο μικροβιακό αντιγόνο ή αυτοαντιγόνο, έχει βρεθεί ότι η συχνή επιμόλυνση με χρυσίζοντα σταφυλόκοκκο (S. aureus) που παρατηρείται στις δερματικές βλάβες των ασθενών, παρέχει υπεραντιγόνα που διεγείρουν το σύμπλοκο TCR-MHC στη σύναψη του λεμφοκυττάρου με το δενδριτικό κύτταρο⁸⁹. Παράλλλα, ακόμα και τα μη παθογόνα βακτήρια της χλωρίδας του δέρματος μπορούν να δράσουν ανασταλτικά ή ενισχυτικά για την ανάπτυξη MF. Πειραματικά μοντέλα σε ποντίκια με MF δείχνουν ότι δεν παρουσιάζεται ανάπτυξη λεμφωματικών βλαβών σε ποντίκια στείρα μικροβίων (germ free mice)⁹⁰.

A.3.1.2. Ανοσολογία των CD30+ LPD

Η ανοσολογία των CD30+ LPD διαφέρει σε μεγάλο βαθμό από αυτήν της MF και του SS. Το νεοπλασματικό κύτταρο στην LyP και στο pcALCL παρουσιάζει χαρακτηριστικά Treg κυττάρου, καθώς παρουσιάζει παρόμοιο ανοσοφαινότυπο CD4(+) CD25(+), ενώ εκφράζει συχνά ανοσοκατασταλτικές κυτταροκίνες, όπως ο TGF-β^{91, 92}. Ιστολογικά τα νεοπλάσματα αυτά εμφανίζουν πλούσιο διήθημα από ουδετερόφιλα και ηωσινόφιλα, τα οποία εκφράζουν το μόριο επιφανείας CD30 Ligand (CD30L)⁹³. Στην περίπτωση της LyP η σύνδεση του μορίου CD30L με το μόριο CD30 προάγει την ενεργοποίηση του μονοπατιού σηματοδότησης του NFκΒ και την έκφραση γονιδίων που προάγουν τον κυτταρικό πολλαπλασιασμό. Ακόμα, η υψηλή έκφραση της α-αλύσου του υποδοχέα της IL-2 δρα ως δεξαμενή της κυτταροκίνης (sink effect) και στερεί από τα αντιδραστικά Τ-λεμφοκύτταρα από την απαραίτητη κυτταροκίνη για την επιβίωση και τον πολλαπλασιασμό τους. Παράλληλα ο TGF-β που εκκρίνεται από τα νεοπλασματικά κύτταρα δρα στα αντιδραστικά Τ-λεμφοκύτταρα περιορίζοντας την ανοσοεπιτήρηση των νεοπλασματικών κλώνων. Το παράδοξο είναι ότι ο TGF-β δρα αυτοκρινώς στα ίδια τα κύτταρα της LyP που εκφράζουν υποδοχείς του TGF-β, και επάγει την απόπτωση των νεοπλασματικών κυττάρων. Ο ανοσολογικός μηχανισμός αυτός εξηγεί και την κλινική εικόνα των αυτόματων υποστροφών, που χαρακτηρίζουν την LyP (Εικόνα

12). Στο pcALCL εικάζεται ότι τα νεοπλασματικά κύτταρα έχουν αποκτήσει αρκετές μεταλλάξεις ώστε να είναι ανεξάρτητα από το μικροπεριβάλλον για την ενεργοποίηση του μονοπατιού σηματοδότησης του NF-κB, ενώ παράλληλα να προστατεύονται από τα προ-αποπτωτικά σήματα του TGF-β (**Εικόνα 12**). Σύγχρονες μελέτες έχουν δείξει ότι υπότυποι των CD30+ LPD, παρουσιάζουν χαρακτηριστικά Th17 διαφοροποίησης, όπως η έκφραση της κυτταροκίνης IL-17, γεγονός που δρα χημειοτακτικά για ουδετερόφιλα και ηωσινόφιλα, ενώ ο φαινότυπος αυτός συσχτίζεται με την έκφραση του μορίου οργάνωσης της χρωματίνης SATB1. Σε κλινικό επίπεδο τα SATB1(+) CD30+ LPD παρουσιάζουν καλύτερη απόκριση σε θεραπεία με μεθοτρεξάτη και ιντερφερόνη⁹⁴. Όπως και στην περίπτωση των MF/SS φαίνεται ότι δεν υπάρχει ένας πάγιος Τh φαινοτύπος στα νεοπλασματικά κύτταρα, που να αντιστοιχεί σε φυσιολογικά λεμφοκύττταρα. Όσον αφορά το κύτταρο προέλευσης των CD30+ LPD, εικάζεται ότι γενετική αστάθεια παρουσιάζεται ήδη στο επίπεδο ενός πιο αδιαφοροποίητου λεμφοκυττάρου, καθώς ασθενείς με CD30+ LPD εμφανίζουν συχνά ταυτόχρονες βλάβες MF, ή μη δερματικά λεμφώματα, κυρίως νόσο του Hodgkin, που παρουσιάζουν τουλάχιστον μια κοινή γενετική αλλοίωση⁹¹.

Εικόνα 12. Ανοσοφαινοτυπικό προφίλ Treg και ο δυνητικός του ρόλος στην παθογένεση των CD30+ LPD⁹¹.

A.3.1.3. Ανοσολογία των κυτταροτοξικών CTCL

Ενώ στην πλειοψηφία τους τα CTCL παρουσιάζουν CD4(+) ανοσοφαινότυπο, σπανίως εμφανίζουν φαινότυπο κυτταροτοξικού κυττάρου, είτε πρόκειται για 1) αβ-CD8(+) λεμφοκύτταρα, 2) γδ λεμφοκύτταρα ή 3) NK / NKT λεμφοκύτταρα. Στην 1^η κατηγορία υπάγονται οι CD8(+) MF, SPTCL με αβ φαινότυπο, pc-CD8+AECyTCL και pc-aCD8+TCL. Στη 2^η κατηγορία υπάγονται τα pc-γδCTCL και SPTCL με γδ φαινότυπο. Τέλος στην 3^η κατηγορία ανήκουν τα EBV-σχετιζόμενα ENKTL και HVLLPD. Το μόριο CD8 εκφράζεται πάντα στα νεοπλάσματα της 1^{ης} κατηγορίας, αλλά μπορεί να απουσιάζει στις άλλες δύο κατηγορίες, ιδιαίτερα στα pc-yδCTCL όπου μπορεί να είναι CD4, CD8 διπλά αρνητικό. Κοινό στοιχείο όλων των οντοτήτων αυτών είναι η έκφραση κυτταροτοξικών μορίων όπως τα granzyme B, perforin και TIA1. Ενώ οι διαφορές στο κύτταρο προέλευσης ανάμεσα στα διάφορα αβ-CD8(+) λεμφώματα δεν έχουν διασαφηνιστεί, πρόσφατη μελέτη στα pc-γδCTCL ανέδειξε τις κύριες διαφορές ανάμεσα στα επιφανειακά και εν τω βάθει αναπτυσσόμενα λεμφώματα⁹⁵. Τα επιφανειακά pc-γδCTCL, τα οποία διηθούν μόνο την επιδερμίδα και το χόριο, προκύπτουν από την κακοήθη εξαλλαγή δ1(+) γδ-Τλεμφοκυττάρων, τα οποία απαντώνται φυσιολογικά στις επιφάνειες των βλεννογόνων και αναγνωρίζουν λιπιδικά αντιγόνα μέσω του μορίου CD1a των δενδριτικών κυττάρων. Τα εν τω βάθει pc-γδCTCL διηθούν τον υποδόριο ιστό και προκύπτουν από την εξαλλαγή δ2(+) γδ-Τ-λεμφοκυττάρων, τα οποία φυσιολογικά κυκλοφορούν στο αίμα, αλλά απαντώνται επίσης σε ιστούς, όπως οι λεμφαδένες, οι αμυγδαλές και ο λιπώδης ιστός. Τα δ1(+) επίσης εκφράζουν σημαντικά χαμηλότερα επίπεδα προφλεγμονωδών μορίων σε σχέση με τα δ2(+) εν τω βάθει pc-γδCTCL, γεγονός που εξηγεί τη μεγάλη συχνότητα αιμοφαγοκυτταρικού συνδρόμου στα δεύτερα. Τα δ1(+) παρουσιάζουν καλύτερη πρόγνωση από τα δ2(+) pc-γδCTCL.

Α.3.2. Μοριακό προφίλ των CTCL

Μέσα στην τελευταία δεκαετία η έρευνα στα CTCL μετατοπίστηκε από τον ανοσολογικό χαρακτηρισμό, στον μοριακό χαρακτηρισμό των νοσημάτων αυτών,

σε επίπεδο δομικών αλλοιώσεων, μεταλλάξεων και επιγενετικών τροποποιήσεων. Όπως προκύπτει πέραν της ιστολογικής και κλινικής τους ετερογένειας, τα CTCL παρουσιάζουν τεράστια μοριακή ετερογένεια. Παρόλα αυτά ο μοριακός χαρακτηρισμός των CTCL κερδίζει όλο και περισσότερο έδαφος, καθώς πέραν της κατανόησης της βιολογίας της νόσου, μοριακοί βιοδείκτες αποκτούν διαγνωστική, προγνωστική και θεραπευτική αξία σε κλινικό επίπεδο. Παρακάτω αναπτύσσονται το κυτταρογενετικό, μεταλλακτικό και επιγενετικό προφίλ των CTCL. Καθώς η παρούσα διατριβή εστιάζει στο μεταλλακτικό προφίλ των CTCL γίνεται με ιστορική σειρά, παράθεση των σημαντικότερων δημοσιεύσεων αλληλούχισης, των διαφορετικών προσεγγίσεων που ακολούθησαν και των σημαντικότερων ευρημάτων τους.

Α.3.2.1. Κυτταρογενετικό προφίλ

Τα περισσότερα δεδομένα που έχουμε για τις χρωμοσωμικές αλλοιώσεις στα CTCL, μέσα από μελέτες καρυοτύπου, φθορίζοντα in-situ υβριδισμού (Fluorescent in-situ hybridization, FISH) και συγκριτικού γενωμικού υβριδισμού (Comparative genomic hybridization, CGH), προέκυψαν από τα μέσα της δεκαετίας του 1990 μέχρι τις αρχές της δεκαετίας του 2010. Καμία ισοζυγισμένη διαμετάθεση δεν έχει ανευρεθεί στην MF και το SS, ενώ και τα δύο νοσήματα εμφανίζουν συχνά πολύπλοκες αριθμητικές και δομικές χρωμοσωμικές αλλοιώσεις⁹⁶. Μελέτες CGH έχουν δείξει ότι ογκόμορφες βλάβες MF παρουσιάζουν συχνότερα ενισχύσεις στα 1q, 7p και 7q, και έλλειψη στο 9p21, ενώ στο SS εμφανίζονται συχνότερα ενισχύσεις στα 8q24.3 και 17q, και ελλείψεις στα 10q και 17p⁹⁷. Επίσης, το SS εμφανίζει συχνότερα από άλλα CTCL το ισοχρωμόσωμα 17q (i17q)⁹⁸. Μέσα από τις περιοχές ενίσχυσης και έλλειψης, μέσω FISH ιχνηλατήθηκαν τα πρώτα γονίδια τα οποία συμμετέχουν στην παθογένεση της MF και του SS. Χαρακτηριστικό παράδειγμα αποτελούν τα γονίδια CDKN2A και CDKN2B, τα οποία εδράζονται στην περιοχή 9p21 του βραχέος βραχίονα του χρωμοσώματος 9. Τα γονίδια αυτά κωδικοποιούν τις πρωτεΐνες p16INK4a/p14arf και p15INK4b, αντίστοιχα, που ρυθμίζουν τον κυτταρικό κύκλο, αναστέλλοντας τη μετάβαση από τη φάση G1 στη φάση S. Ελλείψεις στο γονίδιο CDKN2A έχουν συσχετιστεί με αρνητικό προσδόκιμο επιβίωσης σε ασθενείς με MF και SS⁹⁹.

Μία άλλη κατηγορία CTCL που έχει διερευνηθεί σε κυτταρογενετικό επίπεδο είναι τα pcALCL, τα οποία παρουσιάζουν συχνά απώλειες των 6q και 7q⁹⁷. Σε αντίθεση με τα συστηματικά ALCL, τα οποία ανάλογα με τον αν παρουσιάζουν διαμεταθέσεις του γονιδίου ALK, διαχωρίζονται σε ALK(+) και ALK (-), τα pcALCL είναι κατά βάση ALK (-)¹⁰⁰. Η ύπαρξη διαμετάθεσης του ALK σε αναπλαστικό λέμφωμα που εντοπίζεται στο δέρμα, σηματοδοτεί μέχρι αποδείξεως του εναντίου την ύπαρξη συστηματικού λεμφώματος, που μεθίσταται στο δέρμα. Παρόλα αυτά υπάρχουν δημοσιεύσεις εξαιρετικά σπάνιων pcALCL με διαμεταθέσεις του γονιδίου ALK¹⁰¹. Πρόσφατες μελέτες έχουν δείξει ότι τα συστηματικά ALK (-) ALCL εμφανίζουν διαμεταθέσεις στα γονίδια DUSP22 και TP63¹⁰². Τα pcALCL είναι στην πλειοψηφία τους αρνητικά για τις διαμεταθέσεις αυτές, αλλά το 20% εμφανίζει DUSP22 διαμεταθέσεις, που οδηγούν σε σύντηξη με το γονίδιο IRF4¹⁰³. Οι διαμεταθέσειςαυτές δεν είναι ειδικές για τα pcALCL, καθώς ανευρίσκονται και σε βλάβες LyP. Σε ιστομορφολογικό επίπεδο τα DUSP22 αναδιατεταγμένα λεμφώματα εμφανίζουν χαρακτηριστικό πυρήνα δίκην «λουκουμά» (doughnut) και το διήθημα από ουδετερόφιλα και ηωσινόφιλα απουσιάζει¹⁰⁴. Περιστατικά με TP63 διαμεταθέσεις και σχετικά πιο επιθετική πορεία έχουν αναφερθεί, καθώς και περιστατικά και διαμεταθέσεις στο γονίδιο ΤΥΚ2, που οδηγούν σε σύντηξη με το γονίδιο NPM1^{105, 106}.

Α.3.2.2. Μεταλλακτικό προφίλ

Η πρώτη μελέτη αλληλούχισης του DNA (DNA sequencing) σε CTCL δημοσιεύτηκε το 2011 από τους Kiessling MK et al¹⁰⁷. Επρόκειτο για στοχευμένη αλληλούχιση (targeted sequencing) με πάνελ 33 γονιδίων σχετιζομένων με τον καρκίνο σε 90 δείγματα MF, SS και μη-MF/SS CTCL. Λόγω του περιορισμένου εύρους των γονιδίων υπό εξέταση η μελέτη ανέδειξε μεταλλάξεις στο γονίδιο NRAS σε 4 ασθενείς (4.4% των ασθενών), οι οποίες προσέδιδαν in-vitro ευαισθησία σε αναστολείς των κινασών MEK. Η δεύτερη γονιδιωματική μελέτη δημοσιεύτηκε το 2014 από τους Vaque JP et al και εστίασε σε 11 δείγματα MF και SS χρησιμοποιώντας ένα πάνελ στοχευμένης αλληλούχισης με 524 γονίδια σχετιζόμενα με το μονοπάτι σηματοδότησης του TCR¹⁰⁸. Οι συγγραφείς ανίχνευσαν σε δείγματα από 3 ασθενείς μεταλλάξεις στο γονίδιο PLCG1, που κωδικοποιεί μία πρωτεΐνη, κεντρικό κόμβο στην εγγύς σηματοδότηση του TCR. Αλληλούχιση Sanger άλλων 42 ασθενών με CTCL ανίχνευσε μεταλλάξεις στο PLCG1 στο 19% των δειγμάτων.

Η πρώτη μελέτη με εφαρμογή αλληλούχισης ολόκληρου του εξονιώματος δημοσιεύτηκε το 2015 από τους Ungewickell et al¹⁰⁹. Αφού ανιχνεύθηκαν μεταλλάξεις σε επαναλαμβανόμενα γονίδια έπειτα από αλληλούχιση ολόκληρου δειγμάτων, κατασκευάστηκε πάνελ στοχευμένης του εξονιώματος 11 αλληλούχισης με 494 από αυτά τα γονίδια, προκειμένου να αλληλουχηθούν άλλα 91 δείγματα. Μέσα από αυτήν την λιγότερο «προκατειλημμένη» προσέγγιση οι συγγραφείς ανίχνευσαν μεταλλάξεις σε γονίδια που δεν είχαν περιγραφεί προηγουμένως. Οι συχνότερες μεταλλάξεις βρίσκονταν σε ποσοστό 26% των δειγμάτων, στο γονίδιο ΚΜΤ2C, που κωδικοποιεί μία από τις πρωτεΐνες μεθυλίωσης των ιστονών. Παράλληλα, οι ερευνητές ανακάλυψαν μεταλλάξεις σε μόρια που συμβάλλουν στην ενδοκυττάρια σηματοδότηση λεμφοκυττάρων, πέραν του μονοπατιού σηματοδότησης του TCR. Συγκεκριμένα ανευρέθηκαν χιμαιρικά γονίδια που παράγουν πρωτεΐνες σύντηξης όπως οι PDL1-RAD5B και CTLA4-CD2, ενώ σημειακές, ενεργοποιητικές μεταλλάξεις ή ενισχύσεις ανευρέθηκαν σε ποσοστό 18% των δειγμάτων στο γονίδιο TNFR2, που αποτελεί τμήμα του υποδοχέα των κυτταροκινών TNF. Εστιάζοντας μόνο σε δείγματα MF, οι McGuirt et al πραγματοποιήσαν αλληλούχιση ολόκληρου του γονιδιώματος σε 6 δείγματα MF και αλληλούχιση ολόκληρου του εξονιώματος σε 24 δείγματα MF¹¹⁰. Η μελέτη αυτή ανέδειξε πλήθος καινούριων μεταλλάξεων που σε λειτουργικό επίπεδο αφορούν πρωτεΐνες του μονοπατιού σηματοδότησης JAK/STAT των κυτταροκινών, καθώς και πρωτεΐνες που τροποποιούν το επιγονιδίωμα και αναδιατάσσουν τη χρωματίνη.

Ένα εξίσου σημαντικό εύρημα της μελέτης αυτής ήταν η πιστοποίηση ότι οι περισσότερες σημειακές μεταλλάξεις στην MF αφορούν μεταβάσεις C>T, οι οποίες σχετίζονται με μοριακές υπογραφές της υπεριώδους ακτινοβολίας (UV signature, SBS signature 7, COSMIC).

Την ίδια χρονιά, οι Wang L et al δημοσίευσαν τα ευρήματα τους για το SS¹¹¹. Πραγματοποίησαν αλληλούχιση ολόκληρου του εξωνιόματος σε δείγματα από 37 ασθενείς με SS, και στοχευμένη αλληλούχιση σε δείγματα από 68 ασθενείς με SS. Αντίστοιχα με την μελέτη των McGuirt et al βρήκαν επαναλαμβανόμενες μεταλλάξεις σε γονίδια που συμμετέχουν στη λεμφοκυτταρική ενδοκυττάρια σηματοδότηση, στη ρύθμιση του κυτταρικού κύκλου και την τροποποίηση του επιγονιδιώματος. Ο αριθμός των C>T μεταλλάξεων στο SS ήταν επίσης υψηλός, σε ποσοστό εφάμιλλο των ακανθοκυτταρικών καρκινωμάτων του δέρματος, αλλά χαμηλότερο σε σχέση με το κακόηθες μελάνωμα. Τα ευρήματα αυτά για το SS, επαληθεύτηκαν και σε μεταγενέστερη μελέτη των Kiel MJ et al¹¹².

Τέλος, μετα-ανάλυση των προηγούμενων δημοσιεύσεων με 220 δείγματα MF/SS ανέδειξε 55 γονίδια με σημαντική βιολογική σημασία (driver genes) και 14 σημαντικά βιολογικά μονοπάτια, όπως τα μονοπάτια σηματοδότησης του TCR και JAK/STAT, καθώς και η λειτουργία ρύθμισης του επιγονιδιώματος¹¹³. Παρότι πολλές από τις παραπάνω μελέτες έχουν παρουσιάσει in vitro λειτουργικά δεδομένα σε επίπεδο κυτταρικών σειρών, η σημασία του μονοπατιού JAK/STAT έχει αποδειχθεί και in vivo σε πειραματικά μοντέλα ποντικών. Συγκεκριμένα, ποντίκια που εκφράζουν την πρωτεΐνη STAT3 με ενεργοποιητική μετάλλαξη στα CD4+ T- λεμφοκύτταρα (R26STAT3C ^{stopfl/+} CD4Cre) εμφανίζουν βλάβες που προσομοιάζουν κλινικά και ιστολογικά MF⁹⁰. Ενδιαφέρον αποτελεί το γεγονός ότι σε μεγάλο βαθμό οι μεταλλάξεις των MF/SS εμφανίζονται και σε άλλα εξωλεμφαδενικά και λεμφαδενικά T-λεμφώματα από ώριμα T-λεμφοκύτταρα, ενώ

48

Η γνώση για το γενετικό προφίλ των CD30+ LPD περιορίζεται στις διαμεταθέσεις DUSP22, TP63 και TYK2, με λίγα δεδομένα για τις σημειακές μεταλλάξεις που χαρακτηρίζουν αυτήν την ομάδα νοσημάτων⁴⁷. Παράλληλα, έχει διαπιστωθεί ότι τα νεοπλασματικά κύτταρα στις CD30+ LPD φέρουν σημαντικό φορτίο βλαβών του DNA, οφειλόμενων σε ένα βαθμό σε ανεπάρκεια του μηχανισμού επιδιόρθωσης αποτυχημένων συνδυασμών βάσεων (mismatch repair), που συνεπάγεται μεγάλο φορτίο μικροδορυφορικής αστάθειας (microsatellite instability)⁹¹. Τέλος, πρόσφατη μελέτη αλληλούχισης σε pc-γδCTCL από τους Daniels J et al έδειξε συχνές μεταλλάξεις σε γονίδια που ανήκουν στα μονοπάτια σηματοδότησης των JAK/STAT και των MAP κινασών, στο γονίδιο MYC, καθώς και σε γονίδια που είναι υπεύθυνα για τη ρύθμιση της χρωματίνης, συχνές δε ήταν οι ελλείψεις στο γονίδιο CDKN2A⁹⁵.

Εικόνα 13. Μεταλλακτικό προφίλ CTCL υποτύπων σε σχέση με άλλους υποτύπους περιφερικών Τλεμφωμάτων¹¹⁴.

Α.3.2.3. Επιγενετικό προφίλ

Οι εκτεταμένες αλλαγές στην γονιδιακή έκφραση των MF/SS δεν εξηγούνται πάντα από την ύπαρξη χρωμοσωμικών αλλοιώσεων ή μεταλλάξεων. Για παράδειγμα, η ενεργοποίηση των μονοπατιών JAK/STAT, κυρίως μέσω των πρωτεϊνών STAT3, STAT5, STAT6, αποτελεί σχεδόν καθολικό φαινόμενο σε προχωρημένες μορφές MF και στο SS. Αντιθέτως, ο αριθμός μεταλλάξεων σε γονίδια που ελέγχουν την ενεργοποίηση του μονοπατιού, όπως τα γονίδια των οικογενειών JAK, STAT και SOCS, έχουν μεταλλάξεις σε ποσοστό 11-20%^{90, 115}. Οι αλλαγές αυτές στην γονιδιακή έκφραση και η επακόλουθη άτυπη ενεργοποίηση φυσιολογικά ανενεργών κυτταρικών εξεργασιών είναι δυνατόν να εξηγηθούν από επιγενετικές τροποποιήσεις. Οι βασικότερες επιγενετικές τροποποιήσεις συμπεριλαμβάνουν α) τη μεθυλίωση αλληλουχιών CpG του DNA, από DNA μεθυλτρασφεράσες (DNA Methyltransferases, DNMT), β) την απομεθυλίωση αλληλουχιών CpG του DNA, μέσω εξεργασιών στις οποίες συμμετέχουν οι πρωτεΐνες ΤΕΤ, γ) μεθυλίωση, ακετυλίωση ή αποακετυλίωση των ιστονών από μεθυλτρασφεράσες, ακετυλτρασφεράσες ή αποακετυλάσες των ιστονών (Histone methyltrasferases, HMT; Histone acetyltransferases, HAT; Histone deacetylases, HDAC)) και δ) μηχανισμούς αναδιοργάνωσης της χρωματίνης, μέσω του μονοπατιού SWI/SNF (SWItch/Sucrose Non-Fermentable). Γονίδια από όλες τις παραπάνω κατηγορίες εμφανίζουν μεταλλάξεις, ενισχύσεις ή ελλείψεις στην MF και το SS.

Οι περισσότερες μελέτες στο επιγονιδίωμα των CTCL χρησιμοποιούν ως μοντέλο το SS, λόγω της ευκολίας απομόνωσης καθαρού γενωμικού υλικού από νεοπλασματικά CD4(+) κύτταρα του περιφερικού αίματος, χωρίς προσμίξεις κυττάρων του μικροπεριβάλλοντος. Οι van Dorn R et al παρατήρησαν γενικευμένη υπομεθυλίωση στο 7.8% των περιοχών CpG του γονιδιώματος, ενώ παράλληλα ανίχνευσαν υπερμεθυλίωση στο 3.2% των περιοχών CpG του γονιδιώματος, συμπεριλαμβανομένων υποκινητών¹¹⁶. Γονίδια τα οποία παρουσιάζουν σίγαση της έκφρασης τους στο 94-100% των SS, λόγω υπερμεθυλίωσης των υποκινητών τους περιλαμβάνουν τα CMTM2, C2orf40, G0S2, HSPB6, PROM1 και PAM. Ενώ η γενικευμένη υπομεθυλίωση δεν προκαλεί έκπληξη, καθώς αποτελεί γενικότερο χαρακτηριστικό των κακοηθειών, τα υψηλά επίπεδα υπερμεθυλίωσης εξηγούν την απώλεια πολλών ογκοκατασταλτικών γονιδίων, τα οποία δεν παρουσιάζουν γενετικές τροποποιήσεις. Υπερμεθυλίωση έχει επίσης περιγραφεί στα πλαίσια της MF, στους υποκινητές γονιδίων p15, p16, p73, TMS1 και MLH1, και στα πλαίσια των CD30+LPD, στο γονίδιο p16¹¹⁷.

Σε ένα βαθμό η υπερμεθυλίωση στα CTCL οφείλεται σε ενεργοποιητικές μεταλλάξεις σε DNA μεθυλτρασφεράσες, όπως η DNMT3A, ή απενεργοποιητικές μεταλλάξεις σε DNA από-μεθυλτρασφεράσες, όπως η TET1 και 2. Ενδιαφέρον αποτελεί το γεγονός ότι μεταλλάξεις στα γονίδια αυτά σε διαγονιδιακά ποντίκια προκαλούν T-λεμφώματα. Παράλληλα, καθώς οι μεταβάσεις C>T αποτελούν την πλειοψηφία των μεταλλάξεων στα CTCL, αυτό μπορεί να είναι ενδεικτικό μιας γενικότερης διαδικασίας αυτόματης απαμίνωσης μεθυλιωμένων κυτοσινών, που παράγει ουρακίλη και καταλήγει σε μεταβάσεις C>T¹¹⁸. Αυτή η διαδικασία αποτελεί βασικό μηχανισμό μεταλλάξεων λόγω ηλικίας (Automatic deamination signature, SBS signature 1, COSMIC), και αποτελεί σημαντικό ποσοστό των μεταλλάξεων στα CTCL, ενώ δεν σχετίζεται με την υπεριώδη ακτινοβολία (UV signature, SBS signature 7, COSMIC)¹¹⁹.

Εκτός από τη μεθυλίωση του DNA εξίσου σημαντικές για τη βιολογία των CTCL είναι και οι τροποποιήσεις των ιστονών. Μέσα από μεγάλες μελέτες αλληλούχισης στα CTCL, γνωρίζουμε ότι οι ίδιες οι ακετυλάσες και αποακετυλάσες των ιστονών παρουσιάζουν γενετικές τροποποιήσεις¹¹⁰. Συγκεκριμένα όσον αφορά τις αποακετυλάσες, HDAC, η υπερέκφραση της ισομορφής 2 (HDAC2), αλλά όχι άλλων ισομορφών, σχετίζεται με προχωρημένα στάδια MF, χωρίς να είναι σαφής ο μηχανισμός επαγωγής του μορίου αυτού¹²⁰. Παράλληλα στο SS, η αυτοκρινής δράση της IL-15 επάγει την μεταγραφή των γονιδίων HDAC1 και HDAC6, τα οποία με τη σειρά τους επάγουν το micro-RNA, onco-miR-21¹²¹. Σε αρχικά πειράματα, οι

αναστολείς των αποακετυλασών των ιστονών (HDAC inhibitors, HDACi) βορινοστάτη και ρομιδεψίνη παρουσίαζαν μέγιστη κυτταροτοξικότητα in vitro σε κυτταρικές σειρές CTCL, σε σχέση με σειρές από άλλα λεμφώματα ή συμπαγείς όγκους. Αυτό έδωσε ώθηση σε κλινικές δοκιμές των HDACi και στην σχετικά άμεση έγκριση τους για τη θεραπεία υποτροπιαζόντων και ανθεκτικών στη θεραπεία CTCL, εμφανίζοντας τουλάχιστον μερική υποτροπή στο 30-50% των ασθενών¹²². Η θεωρία πίσω από τη δράση των HDACi είναι η επαγωγή ογκοκατασταλτικών γονιδίων. Αν και ακόμα παραμένει ασαφές πως το επιγονιδίωμα των CTCL σχετίζεται με γνωστές γενετικές τροποποιήσεις και ποιοι ασθενείς επωφελούνται από τη θεραπεία με HDACi, οι Qu K et al έδειξαν ότι ασθενείς που απαντούν στη θεραπεία με HDACi παρουσιάζουν πιο δυναμικές αλλαγές στο άνοιγμα της χρωματίνης και την προσβασιμότητα μεταγραφικών παραγόντων στους υποκινητές γονιδίων, σε σχέση με ασθενείς που δεν παρουσιάζουν όφελος από τη θεραπεία¹²³.

Β. ΕΙΔΙΚΟ ΤΜΗΜΑ

Β.1. Υπόθεση και Πρόταση

Τα τελευταία έτη μελέτες αλληλούχισης του γονιδιώματος έχουν αναδείξει ένα ετερογενές προφίλ, μη παθογνωμονικών γενετικών μεταλλάξεων στα CTCL. Συνολικά, οι μεταλλάξεις αυτές συνεισφέρουν ως επί το πλείστον 1) στην ενεργοποίηση της κυτταρικής σηματοδότησης του λεμφοκυττάρου και 2) στον επιγενετικό προγραμματισμό. Παραμένει προβληματικό ωστόσο, ότι οι μελέτες αυτές παρουσιάζουν μικρή αλληλοεπικάλυψη όσον αφορά στα ευρήματα τους, γεγονός που πηγάζει από την εφαρμογή διαφορετικών πρωτοκόλλων αλληλούχισης του DNA και διαφορετικής βιοπληροφορικής ανάλυσης. Ακόμα, δεν υπάρχουν πολλές μελέτες που να καλύπτουν το πλήρες φάσμα των CTCL, καθώς οι περισσότερες δημοσιευμένες μελέτες εστιάζουν σε προχωρημένα στάδια MF ή SS, με αποτέλεσμα να υπάρχει μια αποσπασματική εικόνα για το προφίλ των CTCL. Πέραν του βιολογικού ενδιαφέροντος, παραμένει ασαφές αν η μοριακή ανάλυση των CTCL έχει διαγνωστική αξία σε κλινικό επίπεδο. Επίσης, μέχρι και σήμερα το κλινικό στάδιο της νόσου αποτελεί τον ισχυρότερο προγνωστικό παράγοντα. Ενώ προγνωστικοί ανοσολογικοί βιοδείκτες, έχουν προηγουμένως περιγραφεί, όπως για παράδειγμα η αρνητική προγνωστική αξία της πόλωσης προς Th2 ανοσοφαινότυπο, αυτοί δεν εφαρμόζονται κλινικά. Παράλληλα, παραμένει ασαφές κατά πόσο μοριακές υπογραφές αποτελούν ανεξάρτητους προγνωστικούς βιοδείκτες και πως αυτές συσχετίζονται με ανοσολογικά χαρακτηριστικά των CTCL. Τέλος, παρόλο που το κλωνικό Τ-λεμφοκύτταρο, αλλά και το μη κλωνικό λεμφοκυτταρικό μικροπεριβάλλον των CTCL, έχει περιγραφεί ενδελεχώς, παραμένει ασαφές κατά πόσο υπάρχει διήθηση από άλλα κύτταρα του ανοσοποιητικού, όπως κύτταρα της μυελικής σειράς, και κατά πόσο αυτά έχουν κάποια προγνωστική αξία. Συγκεκριμένα τα κύτταρα Myeloid-derived suppressor cells (MDSC), αποτελούν άωρους πληθυσμού μυελικών κυττάρων, uε ουδετεροφιλική (Granulocytic MDSC, G-MDSC) ή μονοκυτταρική διαφοροποίηση

(Monocytic MDSC, M-MDSC), τα οποία καταστέλλουν την Τ-κυτταρική απόκριση. Ο ρόλος τους δεν έχει διερευνηθεί στα πλαίσια των CTCL.

Στόχος της παρούσας μελέτης είναι:

- Ο χαρακτηρισμός του μεταλλακτικού προφίλ των κυριότερων υποτύπων CTCL, μέσω στοχευμένης αλληλούχισης 585 γονιδίων σχετιζόμενων με τον καρκίνο, προκειμένου να:
 - πιστοποιηθεί ο μεταλλακτικός χάρτης των CTCL, πέραν των προχωρημένων σταδίων MF και του SS.
 - II. αναδειχθούν γενετικές αλλοιώσεις με διαγνωστική αξία, για τη διαφοροποίηση ιστολογικών υποτύπων CTCL.
 - III. αναδειχθούν γενετικές αλλοιώσεις ή μοριακές υπογραφές με προγνωστική αξία, και η συσχέτιση αυτών με συγκεκριμένα ανοσοφαινοτυπικά χαρακτηριστικά.
- Ο χαρακτηρισμός του μυελικού μικροπεριβάλλοντος του όγκου, εστιάζοντας στα MDSC, προκειμένου να διασαφηνιστεί:
 - η συσχέτιση τους με τον ανοσοφαινότυπο και το μεταλλακτικό προφίλ και της νόσου.
 - II. η συσχέτιση τους με την πρόγνωση της νόσου.

Απώτερος σκοπός της παρούσας μελέτης είναι ο χαρακτηρισμός βιολογικών παραμέτρων, είτε μοριακών είτε ανοσολογικών, που έχουν προγνωστική αξία και θα μπορούσαν να αξιοποιηθούν ως συμπληρωματικά στοιχεία στην παρούσα ταξινόμηση WHO-EORTC.

Β.2. Μεθοδολογία

Β.2.1. Ασθενείς και πρωτογενές υλικό

Το πρωτόκολλο έρευνας που χρησιμοποιήθηκε για την παρούσα μελέτη είχε εγκριθεί από την Επιτροπή Βιοηθικής και Δεοντολογίας της Ιατρικής Σχολής του Πανεπιστημίου Αθηνών και την Επιτροπή Βιοηθικής και Δεοντολογίας του νοσοκομείου Memorial Sloan-Kettering Cancer Center (Institutional Review Board). Η συλλογή του υλικού έγινε με ενυπόγραφη συγκατάθεση των ασθενών του αιματολογικού ιατρείου του νοσοκομείου «Λαϊκό» και του νοσοκομείου Memorial Sloan-Kettering Cancer Center, σύμφωνα με τη Διακήρυξη του Ελσίνκι. Το πρωτογενές υλικό που έχει εγκριθεί συμπεριλαμβάνει, κατεψυγμένα δείγματα δέρματος, αίματος και ορού από τη βιοτράπεζα αιματολογικών δειγμάτων του νοσοκομείου Memorial Sloan-Kettering Cancer Center, αρχειακό υλικό του Α' εργαστηρίου Παθολογικής Ανατομικής του Πανεπιστημίου Αθηνών και του εργαστηρίου Παθολογικής Ανατομικής του νοσοκομείου Memorial Sloan-Kettering Cancer Center, και φρέσκο αίμα ασθενών που παρακολουθούνται στη μονάδα ημερήσιας νοσηλείας αιματολογικών ασθενών του από το νοσοκομείο «Λαϊκό».

Για στοχευμένη αλληλούχιση DNA χρησιμοποιήθηκαν φρεσκοκατεψυγμένα δείγματα από 77 ασθενείς με CTCL (Ομάδα ασθενών Α). Συνοπτικά χρησιμοποιήθηκε DNA από δερματικές βλάβες, ενώ σε ασθενείς με SS χρησιμοποιήθηκαν μονοπύρηνα κύτταρα περιφερικού αίματος (Peripheral Blood Mononuclear Cells, PBMC) με υψηλό αριθμό αριθμό κυκλοφορούντων κακοήθων λεμφοκυττάρων. Όσον αφορά τον ιστολογικό τύπο των νεοπλασμάτων χρησιμοποιήσαμε 21 δείγματα eMF, 15 δείγματα aMF-LCT, 17 δείγματα SS, 12 δείγματα CD30+ LPD, 5 δείγματα pc-γδCTCL, και 7 δείγματα από άλλα σπάνια πρωτοπαθή δερματικά λεμφώματα (other CTCL). Τα δημογραφικά στοιχεία και περαιτέρω κλινικά στοιχεία των ασθενών που χρησιμοποιήθηκαν στην ομάδα αυτή αναγράφονται στον Πίνακα 6.

(Ν = ΑΡΙΘΜΟΣ ΔΕΙΓΜΑΤΩΝ, % ΠΟΣΟΣΤΟ)

ΗΛΙΚΙΑ	<65 έτη (n=41, 53.2%)			
ΦΥΛΟ	Άνδρες (n=47, 61%)			
ΦΥΛΗ/ΕΘΝΙΚΟΤΗΤΑ	 Λευκοί (n=59, 76.6%) Αφροαμερικανοί (n=9, 11.6%) Λατινοαμερικάνοι (n=6, 7.7%) Ασιάτες (n=1, 1.2%) Άλλα (n=2, 2.5%) 			
ΠΡΟΗΓΟΥΜΕΝΗ	 Όχι/νέα διάγνωση (n= 26, 33.7%) 			
ΘΕΡΑΠΕΙΑ	 Τοπική (n=14, 18.1%) 			
	 Συστηματική (n=34, 44.1%) 			
	 Ακτινοβολία (n=3, 3.8%) 			
пнгн	 Δέρμα (n=65, 84.4%) 			
ΝΕΟΠΛΑΣΜΑΤΙΚΟΥ	 Αίμα (n=12, 15.58%) 			
ΥΛΙΚΟΥ				
ΥΠΟΤΥΠΟΙ CTCL	• eMF, IA-IB (n=21, 27.2%)			
	• aMF, IIB-IVA (n=15, 19.4%)			
	- Υλικό: Πλάκες από ασθενείς με ογκόμορφη νόσο σε			
	άλλα σημεία, n=3; Όγκοι, n=5; Όγκοι με LCT, n=7			
	• SS (n=17, 22%)			
	• CD30+LPD (n=12, 15.5%)			
	 pc-γδCTCL (n=5, 6.4%) 			
	• Other CTCL (n=7, 9%)			
	- pc- Peripheral T cell lymphoma, n=1			
	- pc-CD4+SMTCL, n=3			
	- pc-CD8+AECyTCL, n=1			
	- CD8+ EBV+ cutaneous T cell lymphoma, n=1			
	- SPTCL, n=1			

ΑΝΟΣΟΦΑΙΝΟΤΥΠΟΣ	• CD4+ (n=67, 87%)
	• CD8+ (n=4, 5.1%)
	 Διπλά αρνητικός φαινότυπος (6, 7.7%)

Πίνακας 6. Ομάδα ασθενών Α.

Από την ίδια ομάδα ασθενών χρησιμοποιήθηκαν δείγματα φυσιολογικού ιστού από 43 ασθενείς (55.8% των ασθενών), είτε κατεψυγμένου αίματος είτε παθολογοανατομικού αρχειακού υλικού χωρίς νεοπλασματικό ιστό, ως δείγματα ελέγχου των αλληλουχιών της γαμετικής σειρά (germline controls). Επίσης, χρησιμοποιήθηκαν αρχειακά παθολογοανατομικά δείγματα από 52 ασθενείς (άβαφα πλακάκια με τομές 5μm, ανά δείγμα) για ανοσοϊστοχημικές μελέτες (βλ. Β.2.4) και μελέτες ανοσοφθορισμού βλ. Β.2.5). Τα παθολογοανατομικά δείγματα προέρχονταν από 17 ασθενείς με eMF, 11 ασθενείς με aMF-LCT, 11 ασθενείς με SS, 6 ασθενείς με CD30+ LPD και 7 ασθενείς με άλλα CTCL. Το παθολογοανατομικό δείγμα επρόκειτο είτε για σύγχρονο δείγμα βιοψίας από την ίδια βλάβη ή το άμεσα προγενέστερο δείγμα από την ίδια βλάβη με το κατεψυγμένο υλικό. Από τα κατεψυγμένα PBMC από 6 ασθενείς με SS της ομάδας αυτής, πραγματοποιήθηκε FACS sorting (βλ. Β.2.6) για απομόνωση νεοπλασματικών κυττάρων SS και μετέπειτα απομόνωση RNA και ποσοτικοποίηση της έκφρασης mRNA μέσω PCR (quantitative PCR, qPCR, βλ. Β.2.8). Τέλος, από την ίδια ομάδα χρησιμοποιήθηκαν 32 κατεψυγμένοι οροί - 10 από ασθενείς με eMF, 17 από ασθενείς με aMF-LCT και 5 από ασθενείς με SS.

Για την ανάλυση κυκλοφορούντων MDSC χρησιμοποιήθηκαν φρέσκα δείγματα περιφερικού αίματος από 29 ασθενείς με διάγνωση MF (Ομάδα Β). Τα δείγματα αυτά χρησιμοποιήθηκαν για ανάλυση των G-MDSC, M-MDSC και Tregs έπειτα από απομόνωση PBMC (βλ.Β.2.6). Τα δημογραφικά στοιχεία και περαιτέρω κλινικά στοιχεία των ασθενών που χρησιμοποιήθηκαν στην ομάδα αυτή αναγράφονται στον Πίνακα 7.

ΗΛΙΚΙΑ	<65 έτη (n=13, 44.8%)		
ΦΥΛΟ	Άνδρες (n=22, 75.8%)		
ΦΥΛΗ/ΕΘΝΙΚΟΤΗΤΑ	Λευκοί (n=29, 100%)		
ΠΡΟΗΓΟΥΜΕΝΗ	 Όχι/νέα διάγνωση (n= 16, 55.1%) 		
ΘΕΡΑΠΕΙΑ	 Φωτοθεραπεία - PUVA (n=2, 6.8%) 		
	 Συστηματική (n=13, 44.8%) 		
пнгн	Αίμα (n=29, 100%)		
ΝΕΟΠΛΑΣΜΑΤΙΚΟΥ			
ΥΛΙΚΟΥ			
ΣΤΑΔΙΑ MF	• eMF, IA-IIA (n=13, 44.8%)		
	• aMF, IIB-IVA (n=16, 55.1%)		
ΕΝΕΡΓΗ ΝΟΣΟΣ	 Ναι (n=17, 58.6%) 		
	 Μερική ύφεση – κάθαρση 85-95% των βλαβών 		
	(n=12, 41.3%)		
ΑΝΟΣΟΦΑΙΝΟΤΥΠΟΣ	CD4+ (n=29, 100%)		

Πίνακας 7. Ομάδα ασθενών Β.

Β.2.2. Κυτταρικές Σειρές

Χρησιμοποιήθηκαν οι κυτταρικές σειρές HUT-78 και HH (American Type Culture Collection), οι οποίες προέρχονται από ασθενείς με CTCL. Και οι δύο κυτταρικές σειρές ελέγχθηκαν για την παρουσία μυκοπλάσματος. Τα κύτταρα αποκαταψύχθηκαν σε ζεστό καλλιεργητικό μέσο αποτελούμενο από RPMI-1640, 10% ορό εμβρυϊκού μοσχαριού (heat-inactivated Fetal Bovine Serum, hi-FBS, Corning), 2% L-Γλουταμίνη (L-glutamine, Thermo Fisher) 1% Πενικιλλίνη - στρεπτομυκίνη (Penicillin-Streptomycin, Thermo Fisher). Τα κύτταρα αναπτύσσονταν σε κάθετα τοποθετημένες φλάσκες T75. Φρέσκο καλλιεργητικό υλικό προστίθετο ανά 3 ημέρες. Τα κύτταρα ανακαλλιεργούνταν ανά 7 ημέρες με φρέσκο

καλλιεργητικό υλικό και καταψύχονταν μετά το πέρας 10 ανακαλλιεργειών (passages) για την αποφυγή καινούριων μεταλλάξεων.

Β.2.3. Στοχευμένη αλληλούχιση DNA

Πραγματοποιήθηκε στοχευμένη αλληλούχιση με το πάνελ HemePACTv.3 (Memorial Sloan Kettering Cancer Center), το οποίο εμπεριέχει 585 γονίδια, τα οποία παρουσιάζουν συχνά γενετικές τροποποιήσεις στα πλαίσια αιματολογικών κακοηθείων (Πίνακας 8). Το πάνελ HemePACTv.3 αποτελεί εξέλιξη του παραπλήσιου πάνελ IMPACT, το οποίο έχει σχεδιαστεί για την αλληλούχιση συμπαγών όγκων για 341 γονίδια και έχει λάβει έγκριση από τον Οργανισμό Τροφίμων και Φαρμάκων της Αμερικής (Food and Drug Administration) για την αλληλούχιση δειγμάτων σε κλινικό επίπεδο. Παρακάτω γίνεται συνοπτική περιγραφή των σταδίων απομόνωσης του DNA, παρασκευής των βιβλιοθηκών, αλληλούχισης και βιοπληροφορικής ανάλυσης.

Γονίδιο	HGNC _ID	Περιγραφή	Χρωμόσωμα
AAMP	18	angio-associated, migratory cell protein	2q
ABL1	76	c-abl oncogene 1, non-receptor tyrosine kinase	9q34.1
ABL2	77	ABL proto-oncogene 2, non-receptor tyrosine kinase	1q25.2
АСТВ	132	actin, beta	7p22
AKT1	391	v-akt murine thymoma viral oncogene homolog 1	14q32.32-q32.33
ΑΚΤ2	392	v-akt murine thymoma viral oncogene homolog 2	19q13.1-q13.2
АКТЗ	393	v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)	1q44
ALK	427	anaplastic lymphoma receptor tyrosine kinase	2p23
ALOX12B	430	arachidonate 12-lipoxygenase, 12R type	17p13.1
APC	583	adenomatous polyposis coli	5q21-q22
APCDD1	15718	adenomatosis polyposis coli down-regulated 1	18p11.21
APH1A	29509	APH1A gamma secreatase subunit	1q21.2
AR	644	androgen receptor	Xq12
ARAF	646	v-raf murine sarcoma 3611 viral oncogene homolog	Xp11.3-p11.23
ARFRP1	622	ADP-ribosylation factor related protein 1	20q13.3
ARHGAP26	17073	Rho GTPase activating protein 26	5q31

ARID1A	11110	AT rich interactive domain 1A (SWI-like)	1p36.1-p35
ARID1B	18040	AT rich interactive domain 1B (SWI1-like)	6q25.3
ARID2	18037	AT rich interactive domain 2 (ARID, RFX-like)	12q13.11
ARID5B	17362	AT rich interactive domain 5B (MRF1-like)	10q11.22
ASMTL	751	acetylserotonin O-methyltransferase-like	Xp22.3 and Yp11.3
ASXL1	18318	additional sex combs like 1 (Drosophila)	20q11
ASXL2	23805	additional sex combs like 2 (Drosophila)	2p24.1
ASXL2	23805	additional sex combs like 2 (Drosophila)	2p24.1
ASXL3	29357	additional sex combs like transcriptional regulator	18q11
		3 (Drosophila)	
АТМ	795	ataxia telangiectasia mutated	11q22-q23
ATR	882	ataxia telangiectasia and Rad3 related	3q22-q24
ATRX	886	alpha thalassemia/mental retardation syndrome X- linked	Xq21.1
AURKA	11393	aurora kinase A	20q13
AURKB	11390	aurora kinase B	17p13.1
AXIN1	903	axin 1	16p13.3
AXIN2	904	axin 2	17q23-q24
AXL	905	AXL receptor tyrosine kinase	19q13.1
B2M	914	beta-2-microglobulin	15q21-q22.2
BACH1	935	BTB and CNC homology 1, basic leucine zipper transcription factor 1	21q22.1
BAP1	950	BRCA1 associated protein-1 (ubiquitin carboxy-	3p21.31-p21.2
	952	BRCA1 associated RING domain 1	2a3/1-a35
BBC3	17868	BCI2 binding component 3	2q54 q55
BCI 10	989	B-cell CLI /lymphoma 10	19915.5 915.4 1n22
BCI11B	13222	B-cell CLL/lymphoma 11B (zinc finger protein)	14a32
BCI2	990	B-cell CLI /lymphoma 2	18g21 3
BCL2L1	992	BCI 2-like 1	20g11.21
BCL2L11	994	BCL2-like 11 (apoptosis facilitator)	2a13
BCL2L2	995	BCL2-like 2	14a11.2-a12
BCL6	1001	B-cell CLL/lymphoma 6	3a27
BCL7A	1004	B-cell CLL/lymphoma 7A	12g24.1
BCOR	20893	BCL6 corepressor	Xp11.4
BCORL1	25657	BCL6 corepressor-like 1	Xq25-q26.1
BIRC2	590	baculoviral IAP repeat containing 2	11q22
BIRC3	591	baculoviral IAP repeat-containing 3	11q22
BLM	1058	Bloom syndrome, RecQ helicase-like	15q26.1
BMPR1A	1076	bone morphogenetic protein receptor, type IA	10q22.3
BRAF	1097	v-raf murine sarcoma viral oncogene homolog B1	7q34
BRCA1	1100	breast cancer 1, early onset	17q21-q24

BRCA2	1101	breast cancer 2, early onset	13q12-q13
BRD4	13575	bromodomain containing 4	19
BRIP1	20473	BRCA1 interacting protein C-terminal helicase 1	17q22.2
BRSK1	18994	BR serine/threonine kinase 1	19q13.4
BTG1	1130	B-cell translocation gene 1, anti-proliferative	12q21.33
BTG2	1131	BTG family, member 2	1q32
ВТК	1133	Bruton agammaglobulinemia tyrosine kinase	Xq21.33-q22
BTLA	21087	B and T lymphocyte associated	3q13.2
C17orf39	28453	GID4: GID complex subunit 4	17p11.2
CAD	1424	carbamoyl-phosphate synthetase 2, aspartate	2p22-p21
		transcarbamylase, and dihydroorotase	
CALR	1455	calreticulin	19p13.3-p13.2
CARD11	16393	caspase recruitment domain family, member 11	7p22
CASP8	1509	caspase 8, apoptosis-related cysteine peptidase	2q33-q34
CBFB	1539	core-binding factor, beta subunit	16q22.1
CBL	1541	Cas-Br-M (murine) ecotropic retroviral	11q23.3-qter
		transforming sequence	
CCND1	1582	cyclin D1	11q13
CCND2	1583	cyclin D2	12p13
CCND3	1585	cyclin D3	6p21
CCNE1	1589	cyclin E1	19q12
ССТ6В	1621	chaperonin containing TCP1, subunit 6B (zeta 2)	17q
CD22	1643	CD22 molecule	19q13.1
CD274	17635	CD274 molecule	9p24.1
CD276	19137	CD276 molecule	15q23-q24
CD36	1663	CD36 molecule (thrombospondin receptor)	7q11.2
CD58	1688	CD58 molecule	1p13
CD70	11937	CD70 molecule	19p13
CD79A	1698	CD79a molecule, immunoglobulin-associated alpha	19q13.2
CD79B	1699	CD79b molecule, immunoglobulin-associated beta	17q23
CDC73	16783	cell division cycle 73, Paf1/RNA polymerase II	1q25
		complex component, homolog (S. cerevisiae)	
CDH1	1748	cadherin 1, type 1, E-cadherin (epithelial)	16q22.1
CDK12	24224	cyclin-dependent kinase 12	17q12
CDK4	1773	cyclin-dependent kinase 4	12q13
CDK6	1777	cyclin-dependent kinase 6	7q21-q22
CDK8	1779	cyclin-dependent kinase 8	13q12
CDKN1A	1784	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	6p21.1
CDKN1B	1785	cyclin-dependent kinase inhibitor 1B (p27, Kip1)	12p13.1-p12
CDKN2A	1787	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	9p21

CDKN2B	1788	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	9p21
CDKN2C	1789	cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	1p32.3
СЕВРА	1833	CCAAT/enhancer binding protein (C/EBP), alpha	19q13.1
CHD2	1917	chromodomain helicase DNA binding protein 2	15q26
CHEK1	1925	CHK1 checkpoint homolog (S. pombe)	11q24.2
СНЕК2	16627	CHK2 checkpoint homolog (S. pombe)	22q12.1
СНИК	1974	conserved helix-loop-helix ubiquitous kinase	10q24-q25
CIC	14214	capicua homolog (Drosophila)	19q13.2
CIITA	7067	class II, major histocompatibility complex, transactivator	16p13
CKS1B	19083	CDC28 protein kinase regulatory subunit 1B	1q21.2
CPS1	2323	carbamoyl-phosphate synthase 1, mitochondrial	2p
CRBN	30185	cereblon	3p26.3
CREBBP	2348	CREB binding protein	16p13.3
CRKL	2363	v-crk sarcoma virus CT10 oncogene homolog (avian)-like	22q11.21
CRLF2	14281	cytokine receptor-like factor 2	Xp22.3 and Yp11.3
CSF1R	2433	colony stimulating factor 1 receptor	5q32
CSF3R	2439	colony stimulating factor 3 receptor (granulocyte)	1p35-p34.3
CTCF	13723	CCCTC-binding factor (zinc finger protein)	16q21-q22.3
CTLA4	2505	cytotoxic T-lymphocyte-associated protein 4	2q33
CTNNA1	2509	catenin (cadherin-associated protein), alpha 1, 102kDa	5q31.2
CTNNB1	2514	catenin (cadherin-associated protein), beta 1, 88kDa	3p21
CUL3	2553	cullin 3	2q36.2
CUL4A	2554	cullin 4A	13q34
CUL4B	2555	cullin 4B	Xq23
CUX1	2557	cut-like homeobox 1	7q22.1
CXCR4	2561	chemokine (C-X-C motif) receptor 4	2q21
CYLD	2584	cylindromatosis (turban tumor syndrome)	16q12.1
CYP17A1	2593	cytochrome P450, family 17, subfamily A, polypeptide 1	10q24.3
D2HGDH	28358	D-2-hydroxyglutarate dehydrogenase	2p25.3
DAXX	2681	death-domain associated protein	6p21.3
DCUN1D1	18184	DCN1, defective in cullin neddylation 1, domain containing 1 (S. cerevisiae)	3q26.3
DDR2	2731	discoidin domain receptor tyrosine kinase 2	1q12-q23
DDX3X	2745	DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked	Xp11.3-p11.23
DICER1	17098	dicer 1, ribonuclease type III	14q32.2

DIS3	20604	DIS3 mitotic control homolog (S. cerevisiae)	13q21.32
DKC1	2890	dyskeratosis congenita 1, dyskerin	Xq28
DNM2	2974	dynamin 2	19p
DNMT1	2976	DNA (cytosine-5-)-methyltransferase 1	19p13.2
DNMT3A	2978	DNA (cytosine-5-)-methyltransferase 3 alpha	2p23
DNMT3B	2979	DNA (cytosine-5-)-methyltransferase 3 beta	20q11.2
DOT1L	24948	DOT1-like, histone H3 methyltransferase (S.	19p13.3
		cerevisiae)	
DTX1	3060	deltex 1, E3 ubiquitin ligase	12q24
DUSP2	3068	dual specificity phosphatase 2	2q11
DUSP9	3076	dual specificity phosphatase 9	Xq28
E2F3	3115	E2F transcription factor 3	6p22
EBF1	3126	early B-cell factor 1	5q34
ECT2L	21118	epithelial cell transforming 2 like	6q24.1
EED	3188	embryonic ectoderm development	11q14.2-q22.3
EGFL7	20594	EGF-like-domain, multiple 7	9q34.3
EGFR	3236	epidermal growth factor receptor	7p12
EIF1AX	3250	eukaryotic translation initiation factor 1A, X-linked	Xp22.13
ELP2	18248	elongator acetyltransferase complex subunit 2	18q12.1
EMSY	18071	chromosome 11 open reading frame 30	11q13.5
EP300	3373	E1A binding protein p300	22q13.2
EPCAM	11529	epithelial cell adhesion molecule	2p21
EPHA3	3387	EPH receptor A3	3p11.2
EPHA5	3389	EPH receptor A5	4q13.1
EPHA7	3390	EPH receptor A7	6q16.3
EPHB1	3392	EPH receptor B1	3q21-q23
ERBB2	3430	v-erb-b2 erythroblastic leukemia viral oncogene	17q11.2-q12
		homolog 2, neuro/glioblastoma derived oncogene	
	2424	nomolog (avian)	12.12
EKBB3	3431	v-erb-b2 erythroblastic leukemia viral oncogene	12013
	2422	North a crythroblastic loukomia viral oncorono	2022.2 024
	5452	homolog 4 (avian)	2433.3-434
ERCC2	3434	excision repair cross-complementing rodent repair	19a13.3
		deficiency, complementation group 2	
ERCC3	3435	excision repair cross-complementing rodent repair	2q21
		deficiency, complementation group 3 (xeroderma	
		pigmentosum group B complementing)	
ERCC4	3436	excision repair cross-complementing rodent repair	16p13.3
		deficiency, complementation group 4	
ERCC5	3437	excision repair cross-complementing rodent repair	13q22-q34
		deficiency, complementation group 5	

ERG	3446	v-ets erythroblastosis virus E26 oncogene homolog (avian)	21q22.3
ESCO1	24645	establishment of sister chromatid cohesion N- acetyltransferase 1	18q11.2
ESCO2	27230	establishment of sister chromatid cohesion N- acetyltransferase 2	8p21.1
ESR1	3467	estrogen receptor 1	6q24-q27
ETS1	3488	v-ets avian erythroblastosis virus E26 oncogene homolog 1	11q23.3
ETV1	3490	ets variant 1	7p22
ETV6	3495	ets variant 6	12p13
EXOSC6	19055	exosome component 6	16q22.1
EZH2	3527	enhancer of zeste homolog 2 (Drosophila)	7q35-q36
FAF1	3578	Fas (TNFRSF6) associated factor 1	1p32.3
FAM123B	26837	family with sequence similarity 123B	Xq11.1
FAM175A	25829	family with sequence similarity 175, member A	4q21.23
FAM46C	24712	family with sequence similarity 46, member C	1p12
FANCA	3582	Fanconi anemia, complementation group A	16q24.3
FANCC	3584	Fanconi anemia, complementation group C	9q22.3
FANCD2	3585	Fanconi anemia, complementation group D2	3p25.3
FANCE	3586	Fanconi anemia, complementation group E	6p22-p21
FANCF	3587	Fanconi anemia, complementation group F	11p15
FANCG	3588	Fanconi anemia, complementation group G	9p13
FANCI	25568	Fanconi anemia, complementation group I	15q26.1
FANCL	20748	Fanconi anemia, complementation group L	2p16.1
FANCM	23168	Fanconi anemia, complementation group M	14q21.3
FAS	11920	Fas cell surface death receptor	10q24.1
FAT1	3595	FAT tumor suppressor homolog 1 (Drosophila)	4q35.2
FAT3	23112	FAT atypical cadherin 3	11q14.3
FBXO11	13590	F-box protein 11	2p16.3
FBXO31	16510	F-box protein 31	16q24
FBXW7	16712	F-box and WD repeat domain containing 7	4q31.23
FGF10	3666	Fibroblast growth factor 10	5p13-p12
FGF12	3668	Fibroblast growth factor 12	3q28
FGF14	3671	Fibroblast growth factor 14	13q34
FGF19	3675	fibroblast growth factor 19	11q13.1
FGF23	3680	Fibroblast growth factor 23	12p13
FGF3	3681	fibroblast growth factor 3	11q13
FGF4	3682	fibroblast growth factor 4	11q13.3
FGF6	3684	Fibroblast growth factor 6	12p13
FGF7	3685	Fibroblast growth factor 7	15q21.2
FGFR1	3688	fibroblast growth factor receptor 1	8p12

FGFR2	3689	fibroblast growth factor receptor 2	10q25.3-q26
FGFR3	3690	fibroblast growth factor receptor 3	4p16.3
FGFR4	3691	fibroblast growth factor receptor 4	5q33-qter
FH	3700	fumarate hydratase	1q42.1
FHIT	3701	Fragile histidine triad	3p14.2
FLCN	27310	folliculin	17p11.2
FLT1	3763	fms-related tyrosine kinase 1 (vascular endothelial	13q12
		growth factor/vascular permeability factor receptor)	
FLT3	3765	fms-related tyrosine kinase 3	13q12
FLT4	3767	fms-related tyrosine kinase 4	5q34-q35
FLYWCH1	25404	FLYWCH-type zinc finger 1	16p13.3
FOXA1	5021	forkhead box A1	14q12-q13
FOXL2	1092	forkhead box L2	3q23
FOXO1	3819	forkhead box O1	13q14.1
FOXO3	3821	Forkhead Box O3	6q21
FOXP1	3823	forkhead box P1	3p14.1
FRS2	16971	Fibroblast growth factor receptor substrate 2	12q15
FUBP1	4004	far upstream element (FUSE) binding protein 1	1p31.1
FYN	4037	FYN oncogene related to SRC, FGR, YES	6q21
GADD45B	4096	Growth arrest and DNA-damage-inducible, beta	19p13.3
GATA1	4170	GATA binding protein 1 (globin transcription factor 1)	Xp11.23
GATA2	4171	GATA binding protein 2	3q21
GATA3	4172	GATA binding protein 3	10p15
GLI1	4317	GLI family zinc finger 1	12q13.2-q13.3
GNA11	4379	guanine nucleotide binding protein (G protein), alpha 11 (Gq class)	19p13.3
GNA12	4380	Guanine nucleotide binding protein (G protein) alpha 12	7p22.3
GNA13	4381	Guanine nucleotide binding protein (G protein) alpha 13	17q24.1
GNAQ	4390	guanine nucleotide binding protein (G protein), q polypeptide	9q21
GNAS	4392	GNAS complex locus	20q13.2-q13.3
GPR124	17849	G protien-coupled receptor 124	8p11.22
GRAF	17073	ARHGAP26: Rho GTPase activating protein 26	5q31
GREM1	2001	gremlin 1	15q13.3
GRIN2A	4585	glutamate receptor, ionotropic, N-methyl D- aspartate 2A	16p13.2
GSK3B	4617	glycogen synthase kinase 3 beta	3q13.3
GTSE1	13698	G-2 and S-phase expressed 1	22q13.2-q13.3

H3F3C	33164	H3 histone, family 3C	12p11.21
HDAC1	4852	Histone deacetylase 1	1p34
HDAC4	14063	Histone deacetylase 4	2q37.3
HDAC7	14067	Histone deacetylase 7	12q13.1
HGF	4893	hepatocyte growth factor (hepapoietin A; scatter factor)	7q21.1
HIF1A	4910	Hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	14q23.2
HIST1H1C	4716	histone cluster 1, H1c	6p21.3
HIST1H1D	4717	Histone cluster 1, H1d	6p21.3
HIST1H1E	4718	Histone cluster 1, H1e	6p22.1
HIST1H2AC	4733	Histone cluster 1, H2ac	6p22.1
HIST1H2AG	4737	Histone cluster 1, H2ag	6p22.1
HIST1H2AL	4730	Histone cluster 1, H2al	6p22.1
HIST1H2AM	4735	Histone cluster 1, H2am	6p22.1
HIST1H2BC	4757	Histone cluster 1, H2bc	6p22.1
HIST1H2BD	4747	Histone cluster 1, H2bd	6p22.1
HIST1H2BJ	4761	Histone cluster 1, H2bj	6p22.1
HIST1H2BK	13954	Histone cluster 1, H2bk	6p22.1
HIST1H2BO	4758	Histone cluster 1, H2bo	6p22.1
HIST1H3B	4776	histone cluster 1, H3b	6p22.1
HLA-A	4931	major histocompatibility complex, class I, A	6p21.3
HLA-B	4932	major histocompatibility complex, class I, B	6p21.3
HMGA2	5009	High mobility group AT-hook 2	12q15
HNF1A	11621	HNF1 homeobox A	12q24.31
HRAS	5173	v-Ha-ras Harvey rat sarcoma viral oncogene homolog	11p15.5
HSP90AA1	5253	Heat shock protein 90kDa alpha (cytosolic), class A member 1	14q32.33
ІСК	21219	Intestinal cell (MAK-like) kinase	6p12.3-p11.2
ICOSLG	17087	inducible T-cell co-stimulator ligand	21q22.3
ID3	5362	inhibitor of DNA binding 3, dominant negative helix-loop-helix protein	1p36.13-p36.12
IDH1	5382	isocitrate dehydrogenase 1 (NADP+), soluble	2q32-qter
IDH2	5383	isocitrate dehydrogenase 2 (NADP+), mitochondrial	15q21-qter
IFNGR1	5439	interferon gamma receptor 1	6q23-q24
IGF1	5464	insulin-like growth factor 1 (somatomedin C)	12q23.2
IGF1R	5465	insulin-like growth factor 1 receptor	15q26.3
IGF2	5466	insulin-like growth factor 2 (somatomedin A)	11p15.5
ІКВКЕ	14552	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon	1q31
IKZF1	13176	IKAROS family zinc finger 1 (Ikaros) 7pter-7qt	
--------	-------	---	----------------
IKZF2	13177	IKAROS family zinc finger 2 (Helios)	2q13.1
IKZF3	13178	IKAROS family zinc finger 3 (Aiolos)	17q11.2
IL10	5962	interleukin 10	1q31-q32
IL7R	6024	interleukin 7 receptor	5p13
INHBA	6066	inhibin, beta A	7p15-p13
INPP4A	6074	inositol polyphosphate-4-phosphatase, type I, 107kDa	2q11.2
INPP4B	6075	inositol polyphosphate-4-phosphatase, type II, 105kDa	4q31.1
INPP5D	6079	Inositol polyphosphate-5-phosphatase, 145kDA	2q37.1
INSR	6091	insulin receptor	19p13.3-p13.2
IRF1	6116	Interferon regulatory factor 1	5q23-q31
IRF4	6119	interferon regulatory factor 4	6p25-p23
IRF8	5358	Interferon regulatory factor 8	16q24.1
IRS1	6125	insulin receptor substrate 1	2q36
IRS2	6126	insulin receptor substrate 2	13q34
JAK1	6190	Janus kinase 1	1p32.3-p31.3
JAK2	6192	Janus kinase 2	9p24
JAK3	6193	Janus kinase 3	19p13-p12
JARID2	6196	Jumonji, AT rich interactive domain 2	6p24-p23
JUN	6204	jun proto-oncogene	1p32-p31
KDM2B	13610	lysine (K)-specific demethylase 2B	12q24.31
KDM4C	17071	lysine (K)-specific demethylase 4C	9p24-p23
KDM5A	9886	lysine (K)-specific demethylase 5A	12p11
KDM5C	11114	lysine (K)-specific demethylase 5C	Xp11.22-p11.21
KDM6A	12637	lysine (K)-specific demethylase 6A	Xp11.2
KDR	6307	kinase insert domain receptor (a type III receptor tyrosine kinase)	4q11-q12
KEAP1	23177	kelch-like ECH-associated protein 1	19p13.2
кіт	6342	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	4q11-q12
KLF4	6348	Kruppel-like factor 4 (gut)	9q31
KLHL6	18653	kelch-like family member 6	3q27.3
КМТ2С	13726	lysine (K)-specific methyltransferase 2C	7q36
KRAS	6407	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	12p12.1
LATS1	6514	LATS, large tumor suppressor, homolog 1 6q25.1 (Drosophila)	
LATS2	6515	LATS, large tumor suppressor, homolog 2 (Drosophila)	13q11-q12
LEF1	6551	lymphoid enhancer-binding factor 1	4q23-q25

LFNG	6560	LFNG O-fucosylpeptide 3-beta-N- 7p22.3		
		acetylglucosaminyltransferase		
LMO1	6641	IM domain only 1 (rhombotin 1) 11p15		
LRP1B	6693	low density lipoprotein receptor-related protein 1B	2q21.2	
LRRK2	18618	leucine-rich repeat kinase 2	12q12	
MAF	6776	v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog	16q22-q23	
MAFB	6408	v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B	20q12	
MAGED1	6813	melanoma antigen family D1	Xp11.23	
MALT1	6819	mucosa associated lymphoid tissue lymphoma translocation gene 1	18q21	
MAP2K1	6840	mitogen-activated protein kinase kinase 1	15q22.1-q22.33	
MAP2K2	6842	mitogen-activated protein kinase kinase 2	19p13.3	
MAP2K4	6844	mitogen-activated protein kinase kinase 4	17p11.2	
MAP3K1	6848	mitogen-activated protein kinase kinase kinase 1	5q11.2	
MAP3K13	6852	mitogen-activated protein kinase kinase kinase 13	3q27	
MAP3K14	6853	mitogen-activated protein kinase kinase kinase 14	17q21-q22	
MAP3K6	6858	mitogen-activated protein kinase kinase kinase 6	1p36.11	
MAP3K7	6859	mitogen-activated protein kinase kinase kinase 7	6q15	
MAPK1	6871	mitogen-activated protein kinase 1	22q11.2	
MAX	6913	MYC associated factor X	14q23	
MCL1	6943	myeloid cell leukemia sequence 1 (BCL2-related)	1q21	
MDC1	21163	mediator of DNA-damage checkpoint 1	6p21.3	
MDM2	6973	Mdm2 p53 binding protein homolog (mouse) 12q13-q14		
MDM4	6974	Mdm4 p53 binding protein homolog (mouse)	1q32	
MED12	11957	mediator complex subunit 12	Xq13	
MEF2B	6995	myocyte enhancer factor 2B	19p13.11	
MEF2C	6996	myocyte enhancer factor 2C	5q14.3	
MEN1	7010	multiple endocrine neoplasia I	11q13	
MET	7029	met proto-oncogene (hepatocyte growth factor receptor)	7q31	
MIB1	21086	mindbomb E3 ubiquitin protein ligase 1	18q11.2	
MIR17HG	23564	miR-17-92 cluster host gene	13q31.3	
MITF	7105	microphthalmia-associated transcription factor	3p14.1-p12.3	
MKI67	7107	marker of proliferation Ki-67	10q26.2	
MLH1	7127	mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)	3p22.3	
MLL	7132	myeloid/lymphoid or mixed-lineage leukemia 11q23 (trithorax homolog, Drosophila)		
MLL2	7133	myeloid/lymphoid or mixed-lineage leukemia 2	12q12-q13	
MLL3	13726	myeloid/lymphoid or mixed-lineage leukemia 3	7q36	

MPL	7217	myeloproliferative leukemia virus oncogene 1p34	
MRE11A	7230	MRE11 meiotic recombination 11 homolog A (S. 11q21	
		cerevisiae)	
MSH2	7325	mutS homolog 2, colon cancer, nonpolyposis type	2p21
		1 (E. coli)	
MSH3	7326	mutS homolog 3	5q11-q12
MSH6	7329	mutS homolog 6 (E. coli)	2p16
MSI1	7330	musashi RNA-binding protein 1	12q24
MSI2	18585	musashi RNA-binding protein 2	17q23.2
ΜΤΑΡ	7413	methylthioadenosine phosphorylase	9p21
MTOR	3942	mechanistic target of rapamycin (serine/threonine kinase)	1p36
MUTYH	7527	mutY homolog (E. coli)	1p34.1
МҮВ	7545	v-myb avian myeloblastosis viral oncogene homolog	6q22-q23
МҮС	7553	v-myc myelocytomatosis viral oncogene homolog (avian)	8q24
MYCL1	7555	v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian)	1p34.3
MYCN	7559	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)	2p24.3
MYD88	7562	myeloid differentiation primary response gene (88)	3p22
MYO18A	31104	myosin XVIIIA	17q11.2
MYOD1	7611	myogenic differentiation 1	11p15
MYST3	13013	KAT6A: K (lysine) acetyltransferase 6A	8p11
NBN	7652	nibrin	8q21-q24
NCOR1	7672	nuclear receptor corepressor 1	17p11.2
NCOR2	7673	nuclear receptor corepressor 2	12q24
NCSTN	17091	Nicastrin	1q22-q23
NF1	7765	neurofibromin 1	17q11.2
NF2	7773	neurofibromin 2 (merlin)	22q12.2
NFE2L2	7782	nuclear factor (erythroid-derived 2)-like 2	2q31
NFKB1	7794	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1	4q24
NFKB2	7795	nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)	10q24
NFKBIA	7797	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha	14q13
NKX2-1	11825	NK2 homeobox 1	14q13.3
NKX3-1	7838	NK3 homeobox 1	8p21.2
NOD1	16390	nucleotide-binding oligomerization domain 7p14.3 containing 1	

NOTCH1	7881	notch 1 9q34.3	
NOTCH2	7882	notch 2	1p13-p11
NOTCH3	7883	notch 3	19p13.2-p13.1
NOTCH4	7884	notch 4	6p21.3
NPM1	7910	nucleophosmin (nucleolar phosphoprotein B23, numatrin)	5q35.1
NRAS	7989	neuroblastoma RAS viral (v-ras) oncogene homolog	1p13.2
NSD1	14234	nuclear receptor binding SET domain protein 1	5q35
NT5C2	8022	5'-nucleotidase, cytosolic II	10q24.32
NTRK1	8031	neurotrophic tyrosine kinase, receptor, type 1	1q21-q22
NTRK2	8032	neurotrophic tyrosine kinase, receptor, type 2	9q22.1
NTRK3	8033	neurotrophic tyrosine kinase, receptor, type 3	15q24-q25
NUP93	28958	nucleoporin 93kDa	16q13
NUP98	8068	nucleoporin 98kDa	11p15
P2RY8	15524	puringenic receptor P2Y, G-protein coupled, 8	Xp22.33; Yp11.3
PAG1	30043	phosphoprotein membrane anchor with	8q21.13
	0500	glycosphingolipid microdomains 1	
	8590	p21 protein (Cdc42/Rac)-activated kinase 1	11q13-q14
РАКЗ	8592	p21 protein (Cdc42/Rac)- activated kinase 3	Xq22.3
РАК7	15916	p21 protein (Cdc42/Rac)-activated kinase 7	20p12
PALB2	26144	partner and localizer of BRCA2	16p12.1
PARK2	8607	parkinson protein 2, E3 ubiquitin protein ligase (parkin)	6q25.2-q27
PARP1	270	poly (ADP-ribose) polymerase 1	1q41-q42
PARP2	272	poly (ADP-ribose) polymerase 2	14q11.2
PARP3	273	poly (ADP-ribose) polymerase family, member 3	3p21.2
PARP4	271	poly (ADP-ribose) polymerase family, member 4	13q11
PASK	17270	PAS domain containing serine/threonine kinase	2q37.3
PAX5	8619	paired box 5	9p13.2
PBRM1	30064	polybromo 1	3p21
PC	8636	Pyruvate carboxylase	11q13.4-q13.5
PCBP1	8647	poly (rC) binding protein 1	2p13-p12
PCLO	13406	Piccolo presynaptic cytomatrix protein	7q21.11
PDCD1	8760	programmed cell death 1	2q37.3
PDCD11	13408	programmed cell death 11	10q24.32
PDCD1LG2	18731	programmed cell death 1 ligand 2	9p24.2
PDGFRA	8803	platelet-derived growth factor receptor, alpha	4q12
PDGFRB	8804	polypeptide 5q33.1 polypeptide	
PDK1	8809	pyruvate dehydrogenase kinase, isozyme 1	2q31.1
PDPK1	8816	3-phosphoinositide dependent protein kinase-1	16p13.3

PDS5B	20418	PDS5 cohesin associated factor B 13q12.3	
PHF6	18145	PHD finger protein 6	Xq26
РНОХ2В	9143	paired-like homeobox 2b	4p13
PIK3C2G	8973	phosphoinositide-3-kinase, class 2, gamma polypeptide	12p12
PIK3C3	8974	phosphoinositide-3-kinase, class 3	18q12.3
РІКЗСА	8975	phosphoinositide-3-kinase, catalytic, alpha polypeptide	3q26.3
РІКЗСВ	8976	phosphoinositide-3-kinase, catalytic, beta polypeptide	3q21-qter
PIK3CD	8977	phosphoinositide-3-kinase, catalytic, delta polypeptide	1p36.2
PIK3CG	8978	phosphoinositide-3-kinase, catalytic, gamma polypeptide	7q22
PIK3R1	8979	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)	5q13.1
PIK3R2	8980	phosphoinositide-3-kinase, regulatory subunit 2 (beta)	19q13.2-q13.4
PIK3R3	8981	phosphoinositide-3-kinase, regulatory subunit 3 (gamma)	1p34.1
PIM1	8986	pim-1 oncogene	6p21
PLCG2	9066	phospholipase C, gamma 2 (phosphatidylinositol- specific)	16q24.1
PLK2	19699	polo-like kinase 2	5q12.1-q13.2
PMAIP1	9108	phorbol-12-myristate-13-acetate-induced protein 1	18q21.32
PMS1	9121	PMS1 postmeiotic segregation increased 1 (S. cerevisiae)	2q31-q33
PMS2	9122	PMS2 postmeiotic segregation increased 2 (S. cerevisiae)	7p22.1
PNRC1	17278	proline-rich nuclear receptor coactivator 1	6q16.1
POFUT1	14988	protein O-fucosyltransferase 1	20q11
POGLUT1	22954	protein O-glucoslytransferase 1	3q13.33
POLE	9177	polymerase (DNA directed), epsilon	12q24.3
POT1	17284	protection of telomeres 1	7q31.33
PPP2R1A	9302	protein phosphatase 2, regulatory subunit A, alpha	19q13
PRDM1	9346	PR domain containing 1, with ZNF domain	6q21
PRKAR1A	9388	protein kinase, cAMP-dependent, regulatory, type 17q23-q24 I, alpha (tissue specific extinguisher 1)	
PRKDC	9413	protein kinase, DNA-activated, catalytic polypeptide	8q11
PRSS8	9491	protease, serine, 8	16p11.2

РТСН1	9585	patched 1 9q22.1-q31	
PTEN	9588	phosphatase and tensin homolog	10q23
PTPN11	9644	protein tyrosine phosphatase, non-receptor type 11	12q24.1
PTPN2	9650	protein tyrosine phosphatase, non-receptor type 2	18p11.3-p11.2
PTPN6	9658	protein tyrosine phosphatase, non-receptor type 6	12p13.31
PTPRD	9668	protein tyrosine phosphatase, receptor type, D	9p24.1-p23
PTPRO	9678	protein tyrosine phophatase, receptor type, O	12p13-p12
PTPRS	9681	protein tyrosine phosphatase, receptor type, S	19p13.3
RAC1	9801	ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)	7p22
RAD21	9811	RAD21 homolog (S. pombe)	8q24
RAD50	9816	RAD50 homolog (S. cerevisiae)	5q23-q31
RAD51	9817	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)	15q15.1
RAD51B	9822	RAD51-like 1 (S. cerevisiae)	14q23-q24.2
RAD51C	9820	RAD51 homolog C (S. cerevisiae)	17q25.1
RAD51D	9823	RAD51-like 3 (S. cerevisiae)	17q11
RAD52	9824	RAD52 homolog (S. cerevisiae)	12p13-p12.2
RAD54L	9826	RAD54-like (S. cerevisiae)	1p32
RAF1	9829	v-raf-1 murine leukemia viral oncogene homolog 1	3p25
RARA	9864	retinoic acid receptor, alpha	17q21.1
RASA1	9871	RAS p21 protein activator (GTPase activating protein) 1	5q13
RASGEF1A	24246	RasGEF domain family, member 1A 10q11.21	
RB1	9884	retinoblastoma 1	13q14.2
RBM10	9896	RNA binding motif protein 10	Xp11.3
RECQL4	9949	RecQ protein-like 4	8q24.3
REL	9954	v-rel reticuloendotheliosis viral oncogene homolog (avian)	2p13-p12
RELN	9957	Reelin	7q22
RET	9967	ret proto-oncogene	10q11.2
RFWD2	17440	ring finger and WD repeat domain 2	1q25.1-q25.2
RHOA	667	ras homolog gene family, member A	3p21.3
RHOH	686	ras homolog family member H	4p13
RICTOR	28611	RPTOR independent companion of MTOR, complex 5p13.1 2	
RIT1	10023	Ras-like without CAAX 1	1q21.2
RMRP	10031	RNA component of mitochondrial RNA processing 9p13.3 endoribonuclease	
RNF43	18505	ring finger protein 43	17q23.2
ROS1	10261	c-ros oncogene 1, receptor tyrosine kinase	6q21-q22

RPA1	10289	replication protein A1, 70kDa 17p13.3	
RPL11	10301	ribosomal protein L11	1p36.1-p35
RPL13	10303	ribosomal protein L13	16q24.3
RPL15	10306	ribosomal protein L15	3p24.1
RPL35A	10345	ribosomal protein L35a	3q29
RPS14	10387	ribosomal protein S14	5q31-q33
RPS19	10402	ribosomal protein S19	19q13.2
RPS26	10414	ribsomal protein S26	12q13
RPS6KA4	10433	ribosomal protein S6 kinase, 90kDa, polypeptide 4	11q11-q13
RPS6KB2	10437	ribosomal protein S6 kinase, 70kDa, polypeptide 2	11q13.1
RPTOR	30287	regulatory associated protein of MTOR, complex 1	17q25.3
RUNX1	10471	runt-related transcription factor 1	21q22.3
RUNX1T1	1535	runt-related transcription factor 1; translocated to, 1 (cyclin D-related)	8q22
RYBP	10480	RING1 and YY1 binding protein	3p14.2
S1PR2	3169	sphingosine-1-phosphate receptor 2	19q13
SBDS	19440	Shwachman-Bodian-Diamond syndrome	7q11.22
SDHA	10680	succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	5p15
SDHAF2	26034	succinate dehydrogenase complex assembly factor 2	11q12.2
SDHB	10681	succinate dehydrogenase complex, subunit B, iron sulfur (Ip)	1p36.1-p35
SDHC	10682	succinate dehydrogenase complex, subunit C, integral membrane protein, 15kDa	1q21
SDHD	10683	succinate dehydrogenase complex, subunit D, integral membrane protein	11q23
SERP2	20607	stress-associated endoplasmic reticulum protein family member 2	13q14.11
SETBP1	15573	SET binding protein 1	18q21.1
SETD2	18420	SET domain containing 2	3p21.31
SF3B1	10768	splicing factor 3b, subunit 1, 155kDa	2q33.1
SGK1	10810	serum/glucocorticoid regulated kinase 1	6q23
SH2B3	29605	SH2B adaptor protein 3	12q24.12
SH2D1A	10820	SH2 domain containing 1A	Xq25
SHQ1	25543	SHQ1 homolog (S. cerevisiae)	3p13
SMAD2	6768	SMAD family member 2	18q21
SMAD3	6769	SMAD family member 3	15q21-q22
SMAD4	6770	SMAD family member 4	18q21.1
SMARCA1	11097	SWI/SNF related, matrix associated, actinXq25dependent regulator of chromatin, subfamily a, member 1	

SMARCA4	11100	SWI/SNF related, matrix associated, actin 19p13.3	
		dependent regulator of chromatin, subfamily a,	
		member 4	
SMARCB1	11103	SWI/SNF related, matrix associated, actin	22q11.23
		dependent regulator of chromatin, subfamily b,	
		member 1	
SMARCD1	11106	SWI/SNF related, matrix associated, actin	12q13-q14
		dependent regulator of chromatin, subfamily d,	
		member 1	
SMC1A	11111	Structural maintenance of chromosomes 1A	Xp11.22-p11.21
SMC3	2468	Structual maintenance of chromosomes 3	10q25
SMO	11119	smoothened homolog (Drosophila)	7q32.1
SOCS1	19383	suppressor of cytokine signaling 1	16p13.13
SOCS2	19382	suppressor of cytokine signaling 2	12q
SOCS3	19391	suppressor of cytokine signaling 3	17q25.3
SOX10	11190	SRY (sex determining region Y)-box 10	22q13.1
SOX17	18122	SRY (sex determining region Y)-box 17	8q11.23
SOX2	11195	SRY (sex determining region Y)-box 2	3q26.3-q27
SOX9	11204	SRY (sex determining region Y)-box 9	17q23
SPEN	17575	spen homolog, transcriptional regulator 1p36	
	(Drosophila)		
SPOP	11254	speckle-type POZ protein	17q21.33
SRC	11283	v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene	20q12-q13
		homolog (avian)	
SRSF2	10783	serine/arginine-rich splicing factor 2	17q25.2
STAG1	11354	stromal antigen 1	3q22.2-q22.3
STAG2	11355	stromal antigen 2	Xq25
STAT3	11364	signal transducer and activator of transcription 3 17q21	
		(acute-phase response factor)	
STAT4	11365	signal transducer and activator of transcription 4	2q32.2-q32.3
STAT5A	11366	signal transducer and activator of transcription 5A	17q11.2
STAT5B	11367	signal transducer and activator of transcription 5B	17q11.2
STAT6	11368	signal transducer and activator of transcription 6, 12q13	
		interleukin-4 induced	
STK11	11389	serine/threonine kinase 11	19p13.3
STK40	21373	serine/threonine kinase 40	1p34.3
SUFU	16466	suppressor of fused homolog (Drosophila)	10q24.32
SUZ12	17101	suppressor of zeste 12 homolog (Drosophila)	17q21
SYK	11491	spleen tyrosine kinase	9q22
TAF1	11535	TAF1 RNA polymerase II, TATA box binding protein	Xq13.1
		(TBP)-associated factor, 250kDa	
TBL1XR1	29529	transducin (beta)-like 1 X-linked receptor 1	3q26.33

ТВХЗ	11602	T-box 3 12q24.1	
TCF3	11633	transcription factor 3 (E2A immunoglobulin	19p13.3
		enhancer binding factors E12/E47)	
TCL1A	11648	T-cell leukemia/lymphoma 1A	14q32.1
TERT	11730	telomerase reverse transcriptase	5p15.33
TET1	29484	tet oncogene 1	10q21
TET2	25941	tet oncogene family member 2	4q24
TET3	28313	tet methylcytosine dioxygenase 3	2p13.1
TGFBR1	11772	transforming growth factor, beta receptor 1	9q22
TGFBR2	11773	transforming growth factor, beta receptor II (70/80kDa)	3p22
TIPARP	23696	TCDD-inducible poly (ADP-ribose) polyermase	3q25.31
TLL2	11844	tolloid-like 2	10q23-q24
TMEM127	26038	transmembrane protein 127	2q11.2
TMEM30A	16667	transmembrane protein 30A	6q14.1
TMPRSS2	11876	transmembrane protease, serine 2	21q22.3
TMSL3	11885	TMS4XP8: thymosin beta 4, X-linked pseudogene 8	4q22.1
TNFAIP3	11896	tumor necrosis factor, alpha-induced protein 3	6q23-q25
TNFRSF11A	11908	tumor necrosis factor receptor superfamily, member 11a, NFKB activator	18q22.1
TNFRSF14	11912	tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator)	1p36.32
TNFRSF17	11913	tumor necrosis factor receptor superfamily, member 17	16p13.1
TNFRSF6	3573	FADD: Fas (TNFRSF6)- associated via death domain	11q13.3
TNFSF9	11939	tumor necrosis factor (ligand) superfamily, member 9	19p13.3
TOP1	11986	topoisomerase (DNA) I	20q12-q13.1
тох	18988	thymocyte selection-associated high mobility group box	8q12.2-q12.3
TP53	11998	tumor protein p53	17p13.1
ТР63	15979	tumor protein p63	3q27-q29
TRAF2	12032	TNF receptor-associated factor 2	9q34
TRAF3	12033	TNF receptor-associated factor 3	14q32.32
TRAF5	12035	TNF receptor-associated factor 5	1q32
TRAF7	20456	TNF receptor-associated factor 7	16p13.3
TRRAP	12347	transformation/transcription domain-associated protein	7q21.2-q22.1
TSC1	12362	tuberous sclerosis 1	9q34
TSC2	12363	tuberous sclerosis 2	16p13.3
TSHR	12373	thyroid stimulating hormone receptor	14q24-q31
TUSC3	30242	tumor suppressor candidate 3	8p22

ТҮК2	12440	tyrosine kinase 2 19p13.2	
U2AF1	12453	U2 small nuclear RNA auxiliary factor 1	21q22.3
U2AF2	23156	U2 small nuclear RNA auxiliary factor 2	19q13.43
VHL	12687	von Hippel-Lindau tumor suppressor	3p25.3
VTCN1	28873	V-set domain containing T cell activation inhibitor 1	1p12
WDR90	26960	WD repeat domain 90	16p13.3
WHSC1	12766	Wolf-Hirschhorn syndrome candidate 1	4p16.3
WISP3	12771	WNT1 inducible signaling pathway protein 3	6q21
WT1	12796	Wilms tumor 1	11p13
wwox	12799	WW domain containing oxidoreductase	16q23.1-q23.2
XBP1	12801	X-box binding protein 1	22q12.1
XIAP	592	X-linked inhibitor of apoptosis	Xq25
XPO1	12825	exportin 1 (CRM1 homolog, yeast)	2p15
XRCC3	12830	X-ray repair complementing defective repair in Chinese hamster cells 3	14q32.3
YAP1	16262	Yes-associated protein 1	11q13
YES1	12841	v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1	18p11.31-p11.21
YY1AP1	30935	YY1 associated protein 1	1q22
ZMYM3	13054	zinc finger, MYM-type 3	Xq13.1
ZNF217	13009	zinc finger protein 217	20q13.2
ZNF24	13032	zinc finger protein 24	18q12
ZNF703	25883	zinc finger protein 703	8p12
ZRSR2	23019	zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2	Xp22.1

Πίνακας 8. Πάνελ γονιδίων στοχευμένης αλληλούχισης HemePact.v3

B.2.3.1. Απομόνωση γενωμικού DNA

Πριν την έναρξη της απομόνωσης DNA από κατεψυγμένα PBMC της ομάδας A (Bλ. B.2.1) τα κύτταρα αποκαταψύχθηκαν σε ζεστό καλλιεργητικό μέσο αποτελούμενο από RPMI-1640, 10% ορό FBS (Corning), 2% L-Γλουταμίνη (L-glutamine, Thermo Fisher) 1% Πενικιλλίνη -στρεπτομυκίνη (Penicillin-Streptomycin, Thermo Fisher). Μετά από 30 λεπτά επώασης στους 37°C τα κύτταρα φυγοκεντρήθηκαν 2 φορές με Phosphate Buffer Saline (PBS) σε 350g για 5 λεπτά κάθε φορά.. Έπειτα στα κύτταρα προστέθηκαν 200 μL PBS, 20 μL πρωτεϊνάσης K (proteinase K) και 200 μL λυτικό ρυθμιστικό διάλυμα AL της Qiagen. Έπειτα τα κύτταρα επωάστηκαν σε αναδευτικό thermoblock στους 56°C για 10 λεπτά προκειμένου να λυθούν τα κύτταρα. Πριν την έναρξη της απομόνωσης DNA από κατεψυγμένα δέρματα ο ιστός αποκαταψύχθηκε σε PBS, με πολλαπλές πλύσεις, προκειμένου να απομακρυνθεί το κρυοκαταψυκτικό υλικό O.C.T (Ted Pella Inc.). Στον ιστό προστέθηκαν 20 μL πρωτεϊνάσης K (proteinase K) και 180 μL λυτικό ρυθμιστικό διάλυμα ATL της Qiagen. Έπειτα ο ιστός επωάστηκε σε αναδευτικό thermoblock στους 56°C για τουλάχιστον 9 ώρες προκειμένου να λυθεί ο ιστός. Η απομόνωση του DNA πραγματοποιήθηκε με το kit απομόνωσης DNA της Qiagen (Qiagen DNeasy blood and tissue isolation kit), ακολουθώντας το πρωτόκολλο του προμηθευτή. Μέτρηση της ποσότητας του DNA πραγματοποιήθηκε σπεκτροφωτομετρικά σε μηχάνημα Nanodrop (Thermo Fisher) και φθοριομετρικά με χρώση PicoGreen χρησιμοποιώντας Plate-reader της Tecan. Όλα τα δείγματα περιείχαν DNA άνω των 250 ng. Τριχοειδική ηλεκτροφόρηση του DNA σε Bioanalyzer 21000 (Agilent), έδειξε ικανοποιητική ποιότητα DNA, χωρίς υπερκατατμήσεις. Στην πορεία το DNA κατακερματίστηκε μέσω υπερήχων (Covaris E200) σε θραύσματα ομοίων μεγεθών, και στην πορεία καταψύχθηκε στους -20 °C, μέχρι το στάδιο προετοιμασίας των βιβλιοθηκών.

B.2.3.2. Προετοιμασία Βιβλιοθηκών (Library preparation) και υβριδισμός (hybrid capture)

Βιβλιοθήκες των αλληλουχιών προετοιμάστηκαν χρησιμοποιώντας το kit ΚΑΡΑ HTP Library Preparation (Kapa Biosystems). Συνοπτικά, πρώτα παράγονται τμήματα DNA με φωσφορυλιωμένα 5'άκρα, ενώ τα 3' άκρα της βιβλιοθήκης αδενυλιώνονται με την προσθήκη dAMP, προκειμένου να σχηματιστεί αδενυλιωμένη-ουρά. Έπειτα, dsDNA αντάπτορες με 3'dTMP άκρα (Illumina) συνδέονται συμπληρωματικά στα τμήματα της βιβλιοθήκης με την αδενυλιωμένη-ουρά. Οι αντάπτορες αυτοί έχουν συμπληρωματικές αλληλουχίες προς εκκινητές (primers), έτσι στο επόμενο βήμα τα τμήματα της βιβλιοθήκης με τις κατάλληλες αλληλουχίες προσδεδεμένων ανταπτόρων ενισχύονται (amplification step) μέσω PCR. Οι αντάπτορες περιείχαν επίσης μοναδικά εξαμερή barcodes τα οποία επιτρέπουν την ανάμιξη δειγμάτων από πολλαπλούς ασθενείς για εξοικονόμηση πόρων. Μετά από αυτό το βήμα όλα τα δείγματα ελέγχθηκαν προκειμένου να παρουσιάζουν κορυφή των τμημάτων αμπλικονίων που κυμαίνεται σε τριχοειδική ηλεκτροφόρηση στα 200bp και με συγκέντρωση μεταξύ 5-300 ng/μL. Στην πορεία οι βιβλιοθήκες με τους προσδεδεμένους αντάπτορες αναμιγνύονται με βιοτινυλιωμένους ανιχνευτές (DNA probes) που στοχεύουν εξόνια και ιντρόνια από 585 γονίδια (**Πίνακας 8**). Στο διάλυμα προστίθενται blocking ολιγονουκλεοτίδια (Integrated DNA Technologies) προκειμένου να περιοριστεί η μη-ειδική πρόσδεση στους ανιχνευτές (non-specific binding). Έπειτα οι βιοτινυλιωμένοι ανιχνευτές που έχουν προσδεθεί στα υπό διερεύνηση εξονικά και ιντρονικά τμήματα των βιβλιοθηκών επιλέγονται με βάση την σύνδεση τους με μαγνητικά σφαιρίδια στρεπταβιδίνης που προστίθενται στο μείγμα. Τα τμήματα αυτά ενισχύονται με PCR και εκλούονται από τα μαγνητικά σφαιρίδια.

B.2.3.3. Αλληλούχιση επόμενης γενιάς (Next generation sequencing) και ανάλυση δεδομένων

Βιβλιοθήκες που περιέχουν ενισχυμένα τμήματα DNA τα οποία έχει εκλουστεί από τα μαγνητικά σφαιρίδια αλληλουχήθηκαν με το σύστημα Illumina HiSeq 2500. Σε πρώτο στάδιο, ο προσδιορισμός των βάσεων (base calls) γίνεται αυτομάτως από την πλατφόρμα της Illumina. Στο στάδιο της πρωτοβάθμιας ανάλυσης παράχθηκαν δύο αρχεία FASTQ ανά δείγμα, το κάθε ένα με την πλήρη αλληλουχία πρόσθιας ή ανάστροφης κατεύθυνσης, αφού είχε προηγηθεί demultiplexing μέσω του προγράμματος BCL2FASTQ (Illumina). Κατάλοιπα από αλληλουχίες ανταπτόρων αποκόπηκαν μέσω του software TrimGalore. Ποιοτικός έλεγχος πραγματοποιήθηκε μέσω της εφαρμογής FASTQC. Στο στάδιο της δευτεροβάθμιας ανάλυσης έγινε χαρτογράφηση των ακολουθιών στο γονιδίωμα αναφοράς hg19 b37 μέσω του προγράμματος Burrows-Wheeler Aligner (BWA-MEM). Όσον αφορά τον προσδιορισμό των παραλλαγών (variant calling): a) για παραλλαγές μονήρους νουκλεοτιδίου/αντικαταστάσεις (single nucleotide variants, SNV) χρησιμοποιήθηκε ο αλγόριθμος CaVEMan, β) για μικρές προσθήκες (insertions) ή ελλείψεις (deletions)

βάσεων χρησιμοποιήθηκε ο αλγόριθμος Pindel. Σε περίπτωση που το δείγμα είχε δείγμα ελέγχου από φυσιολογικό ιστό του ίδιου ασθενή (germline control), αυτό χρησιμοποιούνταν για σύγκριση με τη νεοπλασματική αλληλουχία. Για την οπτικοποίηση των χαρτογραφημένων δεδομένων ως προς το germline control, χρησιμοποιήθηκε το πρόγραμμα Integrated Genome Viewer (IGV, Broad Institute). Ευρετικοί αλγόριθμοι χρησιμοποιήθηκαν για αποκλεισμό ψευδώς θετικών αποτελεσμάτων με βάση κριτήρια του Διεθνούς Συμβουλίου για το Γονιδίωμα του Καρκίνου (International Cancer Genome Consortium, ICGC) και τον Αγωγό του Γονιδιώματος του Καρκίνου (Cancer Genome Pipeline, CGP). Η ανάλυση τροποποιήσεων του αριθμού γενετικών αντιγράφων (Copy Number Alterations, CNA) πραγματοποιήθηκε μέσω του αλγορίθμου GISTIC. Οι CNA με λόγους κάτω του 1.5 έχουν αποκλειστεί από περεταίρω ανάλυση. Σε τριτογενές επίπεδο ανάλυσης, σχολιασμός των παραλλαγών όσον αφορά την πιθανότητα να είναι ογκογόνες, πραγματοποιήθηκε μέσω του συστήματος ANNOVAR. Αξίζει να σημειωθεί οτι σε δείγματα χωρίς germline control πραγματοποίηθηκε καταγραφή μόνο των μεταλλάξεων με συχνότητα παραλλαχθέντος αλληλίου (Variant Allele Frequency) άνω του 4% προκειμένου να περιοριστούν τα ψευδώς θετικά ευρήματα που προκύπτουν σε χαμηλές συχνότητες και κάτω του 44% προκειμένου να περιοριστούν πολυμορφισμοί, καθώς η κατανομή πιστοποιημένα σωματικών SNV σε ασθενείς με germline control κυμαινόταν κάτω του 44% (Εικόνα 14). Παράλληλα τροποποιήσεις που αντιστοιχούσαν σε γενετικούς πολυμορφισμούς ανιχνεύτηκαν προς αποκλεισμό με τις βάσεις δεδομένων dbSNP και 1,000 Genomes Project, ενώ συμπεριλαμβάνονταν μεταλλάξεις που έχουν ήδη περιγραφεί στη βάση δεδομένων σωματικών καρκινικών μεταλλάξεων COSMIC. Η ανίχνευση μεταλακτικών υπογραφών της COSMIC έγινε μέσω του πακέτου του R mmsig. Ανάλυση έγινε μόνο για μεταλλάκτικές υπογραφές που έχουν προηγουμένως περιγραφεί στα CTCL (SBS1, SBS5, SBS7).

Εικόνα 14. Κατανομή των VAF σε υλικό με germline controls και φιλτραρισμένα σωματικά SNV (κόκκινο) και χωρίς germline controls που, εκτός των σωματικών SNV εμπεριέχουν και SNP (μαύρο).

Β.2.4. Ιστομορφολογική ανάλυση

Τομές αιματοξυλίνης-ηωσίνης από όλα τα δείγματα της ομάδας Α ανασύρθηκαν από το παθολογοανατομικό αρχείο προς επιβεβαίωση της διάγνωσης κατά την ταξινόμηση WHO-EORTC. Τα δεδομένα που αναγράφονται στον Πίνακα 6 έχουν ταξινομηθεί με βάση αυτά τα κριτήρια. Καθώς η διάγνωση των CTCL εξαρτάται σε μεγάλο βαθμό και από κλινικά δεδομένα μεταγενέστερα του διαγνωστικού δείγματος, πραγματοποιήθηκε επίσης αναζήτηση στους ηλεκτρονικούς φακέλους όλων των ασθενών προκειμένου να καταγραφεί ή πορεία της νόσου και να επιβεβαιωθεί η τελική διάγνωση. Παράλληλα τα δείγματα βαθμολογήθηκαν σε μορφολογικό επίπεδο όσον αφορά την παρουσία εξέλκωσης, σπογγίωσης, ακάνθωσης, μικροαποστηματίων Pautrier, επιδερμοτροπισμού, θυλακιοτροπισμού, συριγγοτροπισμού, αγγειοτροπισμού, αλλαγών τύπου διάμεσης δερματίτιδας, ηωσινοφίλων, ουδετεροφίλων, ιστιοκυττάρων, γιγαντοκυττάρων και πλασματοκυττάρων. Το κυτταρικό μέγεθος ταξινομήθηκε ως μικρό, μεσαίο ή μεγάλο.

Β.2.5. Ανοσοϊστοχημεία και Ανοσοφθορισμός

Τομές από βιοψίες δέρματος αποπαραφινοποιήθηκαν. Η ανάκτηση των αντιγόνων έγινε με ρυθμιστικά διαλύματα EZPrep και CC1 (Ventana Medical Systems). Σε κάθε πείραμα οι ιστοί επωάστηκαν για 30 λεπτά με blocking πεπτιδικό διάλυμα (Background Buster, Innovex). Τα πρωτογενή αντισώματα εφαρμόστηκαν σε ιδανικές συγκεντρώσεις που είχαν προηγουμένως αξιολογηθεί σε ιστό θετικού control. Μετά από επώαση 60 λεπτών με το πρωτογενές αντίσωμα ακολούθησε επώαση με βιοτινυλιωμενο δευτερογενές αντίσωμα (Vector Laboratories) κατά των ανοσοσφαιρινών του είδους του πρωτογενούς αντισώματος, σε συγκέντρωση 7.5 μg/ml PBS με 2% BSA και 1.5% ορό από το είδος του δευτερογενούς αντισώματος. Η ανίχνευση πραγματοποιήθηκε με σύμπλοκο στρεπταβιδίνης-περοξιδάσης (horse radish peroxidase). Η αντίδραση οπτικοποιήθηκε με το χρωμογόνο DAB και αντίχρωση αιματοξυλίνης.

Για τον T helper ανοσοφαινότυπο των CTCL εξετάσαμε σε 52 δερματικές βιοψίες με ανοσοϊστοχημεία το ποσοστό έκφρασης των μεταγραφικών παραγόντων Tbet, GATA3, FoxP3 και Bcl6 (Santa Cruz) στα κακοήθη κύτταρα. Τα μονοκλωνικά αντισώματα ελέγχθηκαν σε θετικό control δείγμα ανθρώπινης αμυγδαλής. Ως αρνητικό δείγμα χρησιμοποιήθηκε IgG control από ποντίκι. Η χρώση έγινε σε μηχάνημα Bond Max Autostainer (Leica Biosystems). Το ποσοστό έκφρασης του κάθε μεταγραφικού παράγοντα, εκφράζεται ως επί τοις εκατό ως προς όλα τα νεοπλασματικά κύτταρα αναγνωρίζονταν με βάση την πυρηνική τους ατυπία. Για την παρουσία MDSC εξετάσαμε σε 45 δερματικές βιοψίες με ανοσοϊστοχημεία την

παρουσία ουδετεροφίλων ή μονοκυττάρων θετικών στην Αργινάση-1 (Cell Signaling Technologies). Το μονοκλωνικό αντίσωμα ελέγχθηκε σε θετικό control δείγμα ανθρώπινου ήπατος. Ως αρνητικό δείγμα χρησιμοποιήθηκε IgG control από κουνέλι. Η χρώση έγινε σε μηχάνημα Bond Max Autostainer (Leica Biosystems). Τα πλακάκια σαρώθηκαν σε Mirax slide scanner (Zeiss Microscopy). Οι ψηφιακές εικόνες αναλύθηκαν αναλύθηκαν με το πρόγραμμα Panoramic viewer (3DHistech Ltd). Τα δείγματα ταξινομήθηκαν ως θετικά ή αρνητικά με βάση την παρουσία διηθήματος από ουδετερόφιλα ή μονοκύτταρα θετικά στην Αργινάση-1, που εκπροσωπούν πάνω από 1% του διηθήματος στο χόριο.

Για την έκφραση του μεταγραφικού ΥΑΡ σε νεοπλασματικά Τ-λεμφοκύτταρα εξετάσαμε σε 40 δερματικές βιοψίες με διπλό ανοσοφθορισμό για CD3 (DAKO) και ΥΑΡ (Cell Signaling Technologies). Στην περίπτωση διπλού ανοσοφθορισμού μετά την προσθήκη στης στρεπταβιδίνης-περοξιδάσης, πραγματοποιήθηκε επώαση με σύμπλοκο τυραμιδίου-Alexa Fluor-488 για το YAP και σύμπλοκο τυραμιδίου-Alexa Fluor-568 για το CD3 (Invitrogen). Η χρώση πραγματοποιήθηκε σε μηχάνημα Discovery XT (Ventana Medical Systems). Η αντίχρωση έγινε με DAPI (Sigma Aldrich) σε συγκέντρωση 5 μg/ml σε PBS για 10 λεπτά, και η επικαλυπτρίδα τοποθετήθηκε με διάλυμα Mowiol (Calbiochem). Τα πλακάκια διατηρήθηκαν στους –20°C.

B.2.7. Κυτταρομετρία ροής και FACS sorting

Σε κάθε πείραμα με κατεψυγμένα δείγματα της ομάδας Α ακολουθήθηκε το εξής πρωτόκολλο["] τα PBMC αποκαταψύχθηκαν σε ζεστό καλλιεργητικό μέσο αποτελούμενο από RPMI-1640, 10% ορό FBS (Corning), 2% L-Γλουταμίνη (L-glutamine, Thermo Fisher) 1% Πενικιλλίνη -στρεπτομυκίνη (Penicillin-Streptomycin, Thermo Fisher). Μετά από 30 λεπτά επώασης στους 37°C τα κύτταρα φυγοκεντρήθηκαν 2 φορές με Phosphate Buffer Saline (PBS) σε 350g για 5 λεπτά κάθε φορά. Έπειτα πραγματοποιήθηκε χρώση με κοκτέιλ αντισωμάτων, στο σκοτάδι, σε θερμοκρασία δωματίου για 20 λεπτά, η οποία ακολουθήθηκε από 2 πλύσεις. Η λήψη των δειγμάτων έγινε σε κυταρομετρητή LSR II (BD Biosciences).

Η ανάλυση των δεδομένων κυτταρομετρίας ροής έγινε με τα πρόγραμμα FlowJo 9.7.6 (Tree Star).

δείγματα SS με κυκλοφορούντα νεοπλασματικά λεμφοκύτταρα Σε 12 πραγματοποιήθηκε πρώτα έλεγχος του ανοσοφαινοτύπου των κυττάρων SS. Η ύπαρξη κλωνικότητας, έγινε μέσω του kit κυτταρομετρίας ροής Beta Mark TCRVbeta Repertoire (Beckman Coulter). Το kit χρησιμοποιεί 8 φιαλίδια, εκ των οποίων το καθένα έχει 3 αντισώματα, σημασμένα με τις φθορίζουσες χρωστικές FITC, PE ή το συνδυασμό FITC-PE κατά 3 διαφορετικών πρωτεινών TCRVβ. Έτσι είναι δυνατή η ανίχνευση μέχρι και 24 διαφορετικών TCRVbeta ανά δείγμα (70% του φάσματος των TCRVbeta). Σε ανοσοφαινοτυπικά διακριτούς κλωνικούς πληθυσμούς που δεν σημαίνονται από κανένα από τα 24 αντισώματα, η κλωνικότητα διαπιστώνεται από την πλήρη απουσία σήμανσης. Τα αντισώματα του kit συνδυάστηκαν με τα αντισώματα anti-CD3-PerCP-Cy5.5, anti-CD4-PE-Cy7 ή anti-CD4-Brilliant Violet 605 και anti-CD7-Alexa700 (BD Pharmingen). Σε 12 δείγματα SS και τα 11 είχαν διακριτά κλωνικούς πληθυσμούς εντός των CD3(+)CD4(+)CD7(-) ή CD3(+)CD4(+)CD7(dim/-) κυττάρων ενώ σε 1 δείγμα (SS3) τα κλωνικά κύτταρα είχαν φαινότυπο CD3(+)CD4(+/-)CD7(dim/-). Οι νεοπλασματικοί πληθυσμοί από 7 από τα 12 δείγματα έδειξαν σήμανση με 1 εκ των 14 TCRVβ αντισωμάτων, ενώ τα 5 ήταν κλωνικά χωρίς να είναι δυνατός ο προσδιορισμός πρωτεινών TCRVβ. Όλα τα επόμενα πειράματα για περαιτέρω ανάλυση του ανοσοφαινοτύπου των νεοπλασματικών κυττάρων στα 12 αυτά δείγματα SS έγιναν με gating στους κλωνικούς πληθυσμούς βάσει των ευρημάτων αυτών (Εικόνα 15)

Εικόνα 15. Δώδεκα δείγματα SS με τον ανοσοφαινότυπο των κλωνικών κυττάρων, όπως διαπιστώθηκε με την κυτταρομετρική μέθοδο Beta Mark TCRVbeta Repertoire (αριστερά). Κατανομή πρωτεϊνών TCRVβ σε CD3(+)CD4(+)CD7(+) και σε CD3(+)CD4(+)CD7(-) κύτταρα από το δείγμα SS8. Τα τελευταία παρουσιάζουν 97% κλώνο TCRVβ8.

Σε 8 δείγματα SS, ο κλωνικός πληθυσμός αξιολογήθηκε ως προς το επίπεδο διαφοροποίησης Τ-λεμφοκυττάρου μνήμης. Χρησιμοποιήθηκαν του τα αντισώματα anti-CD3-APC, anti-CD4-Brilliant Violet 605, anti-CD7-Alexa700, anti-CD45RA-PE-Cy7, anti-CD62L-PE-Cy5, anti-CD45RO-APC-Cy7, anti-CD95-Brilliant Violet 711, anti-IL2Rβ-PE και anti-IL7Rα-FITC (BD Pharmingen). Η χρώση DAPI προστέθηκε για αποκλεισμό των νεκρών κυττάρων. Σε 7 δείγματα SS, ο κλωνικός πληθυσμός αξιολογήθηκε ως προς το επίπεδο T-helper διαφοροποίησης του Tλεμφοκυττάρου μέσω ενδοκυττάριας χρώσης για τους κύριους μεταγραφικούς παράγοντες που ορίζουν τα T-helper κύτταρα. Η διαδικασία απόψυξης και μεμβρανικής χρώσης με anti-CD3-PerCP-Cy5.5, anti-CD4-PE-Cy7 and anti-CD7-Alexa700 (BD Pharmingen), έγινε όπως έχει περιγραφεί πιο πάνω, με τη διαφορά ότι πριν από τη μεμβρανική χρώση έγινε επώαση με την χρώση live/dead yellow fixable stain σε διάλυμα PBS για 30 λεπτά στον πάγο (Invitrogen). Μετά το πέρας της μεμβρανικής χρώσης έγινε χρήση του eBioscience FoxP3/Transcription Factor kit (ThermoFisher Scientific), προκειμένου πρώτα να μονιμοποιηθούν τα κύτταρα και στην πορεία να καταστεί διαπερατή η μεμβράνη προς τα ενδοκυττάρια αντισώματα. Για την ενδοκυττάρια χρώση χρησιμοποιήθηκαν τα αντισώματα anti-Bcl6-PE, anti-Tbet-Alexa647, anti-GATA3-Alexa488 and anti-FoxP3-PE (BD Pharmingen). Η έκφραση των μεταγραφικών παραγόντων μετρήθηκε σε ζωντανά κλωνικά SS κύτταρα ως το ποσοστό θετικών κυττάρων για τον εκάστοτε μεταγραφικό παράγοντα σε σχέση με FMO (fluorescence minus one) control που παρέμενε άβαφο μόνο για το αντίσωμα του αντίστοιχου μεταγραφικού παράγοντα.

Για την παρουσία MDSC στο περιφερικό αίμα έγινε λήψη περιφερικού αίματος από 29 ασθενείς (Ομάδα Β) και 7 υγιείς δότες, το οποίο επιστρώθηκε σε φικόλη και φυγοκέντρηση για 45 λεπτά σε 400g, προκειμένου να ληφθούν PBMC. Αφού έγινε λήψη των PBMC τα κύτταρα πλύθηκαν δύο φορές σε PBS για 5 λεπτά σε 350g. Έπειτα έγινε χρώση με κοκτέιλ αντισωμάτων, στο σκοτάδι, σε θερμοκρασία δωματίου για 20 λεπτά, η οποία ακουλουθήθηκε από 2 πλύσεις. Τα αντισώματα περιλαμβάνουν anti-CD15 – FITC, anti-CD14 – PE και anti-CD11b – APC (πάνελ G-MDSC), anti-CD14 – FITC, , anti-HLA-DR – PE ($\pi \alpha v \epsilon \lambda$ M-MDSC), anti-CD25 – FITC, anti-CD127 – PE, anti-CD4 – APC, anti-CD3 – PerCP (πάνελ Tregs) (όλα BD Biosciences). Η χρώση 7-AAD προστέθηκε για αποκλεισμό των νεκρών κυττάρων. Συγκεκριμένα, ως Tregs ορίστηκαν τα κύτταρα: CD4+CD25+CD127low/-, ως G-MDSC ορίστηκαν τα κύτταρα: CD11b+CD14-CD15+ και ως M-MDSC ορίστηκαν τα CD11b+CD14+HLADRlow/-. κύτταρα: Н ανίχνευση ανοσοκατασταλτικών κυτταρικών υποπληθυσμών έγινε σε κυταρομετρητή FACS Calibur. Η ανάλυση των δεδομένων κυτταρομετρίας ροής έγινε με τα προγράμματα FCS3 Express (De Novo Software) και FlowJo 9.7.6 (Tree Star).

Με σκοπό να γίνει αξιολόγηση της γονιδιακής έκφρασης των μορίων ΥΑΡ1, ΤΑΖ, FAT1 και FAT3 απομονώθηκαν από PBMC οι εξής υπότυποι Τ-λεμφοκυττάρων: α) Ολικά CD4(+) λεμφοκύτταρα από 3 υγιείς δότες, β) υπότυποι CD4(+) κυττάρων μνήμης από 3 υγιείς δότες και γ) νεοπλασματικά κύτταρα από 6 ασθενείς με SS (ομάδα Α). Τα πρώτα απομονώθηκαν από PBMC με μαγνητικά σφαιρίδια σημασμένα με anti-CD4 (Miltenyi), σύμφωνα με το πρωτόκολλο του παρασκευαστή. Μετά την απομόνωση τα κύτταρα προστέθηκαν σε πιάτο 96-πηγαδιών με επίπεδη επιφάνεια. Σε ορισμένα πηγάδια είχε γίνει προ-επίστρωση με αντίσωμα anti-CD3 (10 μg/mL). Μία ομάδα CD4(+) κυττάρων χρησιμοποιήθηκε ως ομάδα ηρεμίας (resting) και καλλιεργήθηκε (σε απλό καλλιεργητικό μέσο RPMI-1640, 10% ορό FBS (Corning), 2% L-Γλουταμίνη (L-glutamine, Thermo Fisher) 1% Πενικιλλίνη-στρεπτομυκίνη (Penicillin-Streptomycin, Thermo Fisher). Άλλες δύο ομάδες CD4(+) κυττάρων καλλιεργήθηκαν για 3 ή 7 ημέρες στο ίδιο καλλιεργητικό μέσο αλλά στα προεπιστρωμένα πηγάδια με αντίσωμα anti-CD3. Στα πηγάδια αυτά προστέθηκε διαλυτό anti-CD28 (1 μg/mL). Συλλογή των κυττάρων μετά το πέρας του πειράματος έγινε σε ρυθμιστικό διάλυμα RNA later (Qiagen). Οι υπότυποι CD4(+) κυττάρων μνήμης από υγιείς δότες και τα νεοπλασματικά κύτταρα από 6 ασθενείς με SS απομονώθηκαν με FACS sorting. Η διαδικασία απόψυξης και μεμβρανικής χρώσης έγινε όπως περιγράφεται πιο πάνω. Για τη χρώση υποτύπων κυττάρων μνήμης έγινε χρήση των anti-CD4-Brilliant Violet 605, anti-CD45RA-PE-Cy7 και anti-CD62L-PE-Cy5 (BD Pharmingen),. Ως παρθένα (naïve) ορίστηκαν τα CD4(+)CD45RA(+)CD62L(+), ως κύτταρα κεντρικής μνήμης (central memory) ορίστηκαν τα CD4(+)CD45RA(-)CD62L(+), ως δραστικά κύτταρα μνήμης (effector memory) ορίστηκαν τα CD4(+)CD45RA(-)CD62L(-), και ως δραστικά κύτταρα RA(+) (T-effector memory RA+, TEMRA) ορίστηκαν τα CD4(+)CD45RA(+)CD62L(-). Για τα κύτταρα SS έγινε χρήση των αντισωμάτων anti-CD3-PerCP-Cy5.5, anti-CD4-PE-Cy7 and anti-CD7-Alexa700 (BD Pharmingen), και τα νεοπλασματικά κύτταρα ορίστηκαν όπως έχει περιγραφεί προηγουμένως. Το FACS sorting έγινε σε συσκευή FACS Aria (BD). Συλλογή των κυττάρων μετά το πέρας του πειράματος έγινε σε ρυθμιστικό διάλυμα RNA later (Qiagen).

Β.2.8. Προσδιορισμός κυτταροκινών ορού

Για προσδιορισμό κυτταροκινών ορού χρησιμοποιήθηκε kit τον το MILLIPLEX MAP Human TH17 Magnetic Bead Panel - Immunology Multiplex Assay (Millipore), το οποίο επιτρέπει την ταυτόχρονη ποσοτικοποίηση των παρακάτω 25 κυτταροκινών: IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL15, IL-17A, IL-17E/IL-25, IL-17F, IL-21, IL-22, IL-23, IL-27, IL-28A, IL-31, IL-33, GM-CSF, IFNγ, MIP3α, ΤΝFα και ΤΝFβ. Η τεχνολογία αυτή χρησιμοποιεί μαγνητικά σφαιρίδια (MagPlex® -C microspheres) κωδικοποιημένα με φθοριοχρώματα τα οποία είναι μοναδικά για το κάθε σφαιρίδιο, που φέρει στην επιφάνεια του ένα αντίσωμα για κάθε κυτταροκίνη. Όταν η κυτταροκίνες προσδεθούν μέσω των αντισωμάτων στα σφαιρίδια, προστίθεται ένα κοκτέιλ με βιοτινυλιωμένα αντίσωματα κατά όλων των κυτταροκινών. Στην πορεία γίνεται επώαση με σύμπλοκο στρεπταβιδίνης-ΡΕ. Τα πειράματα πραγματοποιήθηκαν με βάση το πρωτόκολλο του προμηθευτή. Η λήψη των δειγμάτων έγινε σε συσκευή Luminex 200. Το εύρος ανίχνευσης για την κάθε κυτταροκίνη έχει ως εξης: IL-17 & IL-4, 24 - 100,000 pg/mL, GM-CSF & IL-27, 61 -250,000 pg/mL, IFNγ, 10 - 40,000 pg/mL, IL-10, 1 - 5000 pg/mL, MIP-3α, IL-1β, IL-12 (p70), IL-15, IL-21 & IL-33, 5 - 20,000 pg/mL, IL-13, 7 - 30,000 pg/mL, IL-17A & IL-2, 12 - 50,000 pg/mL, IL-22 & TNFβ, 37 - 150,000 pg/mL, IL-9, 9 - 35,000 pg/mL, IL-23, 336 -1,500,000 pg/mL, IL-5, 6 - 25,000 pg/mL, IL-6 & TNFa, 3 - 10,000 pg/mL, IL-17E/IL-25, 488 - 2,000,000, IL-28a & IL-31, 49 - 200,000 pg/mL. Για τα πειράματα κυτταροκινών χρησιμοποιήθηκαν οροί από 32 ασθενείς της ομάδας Α και 5 δείγματα υγιών δοτών.

B.2.9. Ποσοτικοποίηση έκφρασης mRNA μέσω qPCR

Τ-λεμφοκύτταρα από υγιείς δότες (υπότυποι μνήμης από FACS sorting και ανενεργά ή ενεργοποιημένα CD4+ λεμφοκύτταρα σε καλλιέργεια), κύτταρα SS (από FACS sorting), οι κυτταρικές σειρές HUT78 και HH, και οργανοειδή ανθρώπινου παχέος εντέρου (control) αποθηκεύτηκαν σε ρυθμιστικό διάλυμα RNA later (Qiagen) στους –80 °C, αφού είχε προηγηθεί μία πλύση σε PBS. Η απομόνωση του RNA έγινε με το RNeasy Plus Mini kit (Qiagen) ακολουθώντας το πρωτόκολλο

του προμηθευτή. Σύνθεση συμπληρωματικού DNA (Complementary DNA, cDNA) πραγματοποιήθηκε με το SuperScript VILO kit (Invitrogen Biosource). Χρησιμοποιήθηκαν οι εξής ανιχνευτές (probes) Taqman: YAP1 (Hs00902712_g1, ThermoFisher Scientific), TAZ (Hs00902887 g1, και ThermoFisher Scientific) και FAT1 (Hs00170627_m1, ThermoFisher Scientific). Н αντίδραση q-RT-PCR πραγματοποιήθηκε σε TaqMan Universal PCR Master Mix (Applied Biosystems) σε συσκευή QuantStudio 7 flex System (ThermoFisher Scientific). Η αντίδραση πραγματοποιήθηκε εις διπλούν για κάθε δείγμα. Η έκφραση τους κάθε γονιδίου υπολογίστηκε με βάση τη συγκριτική μέθοδο ΔCt, χρησιμοποιώντας τη φόρμουλα: σχετική έκφραση(relative expression) = $2^{\Delta Ct}$.

Β.2.10. Στατιστική ανάλυση

Στατιστική ανάλυση πραγματοποιήθηκε με χρήση των προγραμμάτων Prism 6.0 και στο περιβάλλον R. Μη παραμετρικός έλεγχος Mann–Whitney χρησιμοποιήθηκε για τη σύγκριση της ισότητας δύο μέσων μεταξύ ανεξάρτητων δειγμάτων, χωρίς κανονική κατανομή. Για τον έλεγχο συσχέτισης μεταξύ μιας συνεχούς μεταβλητής με μια κατηγορική, στην οποία υπάρχουν πάνω από δύο κατηγορίες και μη κανονική κατανομή χρησιμοποιήθηκε ο έλεγχος Kruskal-Wallis. Για τη σύγκριση συχνότητας εμφάνισης δεδομένων που εκφράζονται ως κατηγορικές μεταβλητές χρησιμοποιήθηκε ο έλεγχος Fisher's exact test. Για τον έλεγχο συσχέτισης μεταξύ δύο μεταβλητών έγινε χρήση του ελέγχου Pearson. Μονομεταβλητή (univariate) ανάλυση ολικής επιβίωσης έγινε με τον έλεγχο LogRank. Πολυμεταβλητή (multivariate) ανάλυση ολικής επιβίωσης έγινε με την τεχνική αναλογικής παλινδρόμησης κινδύνου (proportional hazard regression). Ανάλυση συσταδοποίησης (clustering) έγινε με τη μέθοδο Ward. Ως στατιστικά σημαντικές ορίστηκαν οι διαφορές με P<0.05. Οι εικόνες παρουσιάζουν τη μέση τιμή +/- την τυπικό απόκλισης της μέσης τιμής. Όλοι οι στατιστικοί έλεγχοι αναγράφονται στις υποσημειώσεις των εικόνων.

Β.3. Αποτελέσματα

Β.3.1. Μοριακός χαρακτηρισμός των CTCL

Εντοπίσαμε SNV, CNA και δομικές αλλοιώσεις (Structural Variants, SV) σε 358 γονίδια. Από τις CNA επικρατούν οι ελλείψεις (deletions) με συχνότερες αυτές των γονιδίων CDKN2A και Β, ακολουθούμενες από ελλείψεις στα γονίδια MTAP, CRLF2, P2RY8, SYK, DUSP9, PCD1, JARID2 και ARID2. Οι συχνότερες ενισχύσεις (amplifications) παρουσιάστηκαν στα γονίδια HLA-A και CCND3 (**Εικόνα 16**).

Εικόνα 16. Λόγος των αντιγράφων του γονιδίου στο νεοπλασματικό ιστό προς το φυσιολογικό ιστό (fold change) έναντι των ασθενών που έφεραν CNA στο κάθε γονίδιο.

Η διάμεση τιμή βάθους αλληλούχισης όλων των φιλτραρισμένων SNV ήταν 537X. Όλες οι SNV καταγράφονται αναλυτικά στους **Πίνακες 9-14**.

Sample ID	Gene	cDNA change	Protein change	Effect
LP-S-050-P	AR	c.167T>A	p.L56Q	non synonymous codon
LP-S-050-P	BLM	c.2246T>C	p.1749T	non synonymous codon
LP-S-050-P	ERBB4	c.2344C>T	p.R782W	non_synonymous_codon
LP-S-037-P	STK40	c.29C>T	p.A10V	non synonymous codon
LP-S-037-P	CIC	c.481C>T	p.Q161*	stop gained
LP-S-037-P	CD36	c.1079T>G	p.L360*	stop gained
LP-S-051-P	no mutation	S		
LP-S-053-P	no mutation	S		
LP-S-030-P	no mutation	S		
LP-S-040-P	PTPN6	c 718G>A	n A240T	non synonymous codon
LP-S-040-P	IAK3	c 3007A>G	p.11003V	non_synonymous_codon
1 P-S-040-P	FANCA	c 3427C>G	n l 1143V	non_synonymous_codon
I P-S-040-P		c 998A>G	n D333G	non_synonymous_codon
I P-S-040-P	PBRM1	c 1301+5delg	p.25550	splice site variant
	GUI1	C 865G>C	n V289I	non synonymous codon
L -J-044-F	CREBBD	c 3370-2dela	p.v205L	solice cite variant
		0.3370-2001a	р.: р.Т1246М	pon synonymeus coden
LF-3-UZ1-P			p.1124011	inframe_codon_loss
			p.L303_L307UEIEEE	non synonymeus coden
LP-3-023-P		C.1359G2A	p.107561	non_synonymous_codon
LP-3-023-P			p.12750V	inframe_coden_gain
LP-3-023-P			p.08/0_08/10500	
LP-S-027-P			p.P530A	non_synonymous_codon
LP-S-027-P	ISC2	C.5051_5068+16del34	p.?	complex_change_in_transcript
LP-S-022-P	no mutation	s	0.4001	
LP-S-029-P	PCLO	c.1448A>I	p.Q483L	non_synonymous_codon
LP-S-029-P	NTRK2	c.22221>G	p.1/41S	non_synonymous_codon
LP-S-033-P	no mutation	S		
LP-S-035-P	FAT3	c.10552G>A	p.V3518M	non_synonymous_codon
LP-S-041-P	NCOR1	c.82A>C	p.T28P	non_synonymous_codon
LP-S-041-P	NTRK3	c.976C>T	p.R326C	non_synonymous_codon
LP-S-041-P	APC	c.4332A>C	p.Q1444H	non_synonymous_codon
LP-S-028-P	CHD2	c.551+5A>C	p.?	splice_site_variant
LP-S-038-P	no mutation	S		
LP-S-063-P	no mutation	S		
LP-S-025-P	KLHL6	c.574C>A	p.Q192K	non_synonymous_codon
LP-S-046-P	LRRK2	c.2314C>T	p.R772*	stop_gained
LP-S-046-P	ARHGAP26	c.2284A>C	p.K762Q	non_synonymous_codon
LP-S-046-P	ARHGAP26	c.2285A>G	p.K762R	non_synonymous_codon
LP-S-046-P	ARHGAP26	c.2286A>T	p.K762N	non_synonymous_codon
LP-S-046-P	ARHGAP26	c.2287G>T	p.A763S	non_synonymous_codon
LP-S-061-P	KMT2C	c.967A>G	p.I323V	non_synonymous_codon
LP-S-061-P	KDM5A	c.4336G>C	p.E1446Q	non_synonymous_codon
LP-S-061-P	ASMTL	c.1263C>A	p.S421R	non_synonymous_codon
LP-S-061-P	U2AF1	c.101C>T	p.S34F	non_synonymous_codon
LP-S-061-P	CD58	c.89C>A	p.S30Y	non_synonymous_codon
LP-S-061-P	ECT2L	c.1579-1G>C	p.?	splice_site_variant
LP-S-061-P	ERBB4	c.632C>T	p.T211M	non_synonymous_codon
LP-S-061-P	PMS2	c.2186_2187delTC	p.L729fs*6	frameshift_variant
	THEALDO	a 200, 201 inc A	n G101fc*20	framoshift variant

Πίνακας 9. Ανιχνευθείσες SNV σε δείγματα eMF.

Sample ID	Gene	cDNA change	Protein change	Effect	
LP-S-55-P	no mutations				
LP-S-62-P	no mutations				
LP-S-032-P	POLE	c.6004+5G>T	p.?	splice_site_variant	
LP-S-032-P	NOTCH1	c.7541_7542delCT	p.P2514fs*4	frameshift_variant	
LP-S-070-M	NOTCH3	c.4025C>A	p.A1342D	non_synonymous_codon	
LP-S-070-M	PTPRS	c.1891C>T	p.R631C	non_synonymous_codon	
LP-S-070-M	CDKN2A	c.330G>A	p.W110*	stop_gained	
LP-S-070-M	DNMT3A	c.1969G>A	p.V657M	non_synonymous_codon	
LP-S-070-M	STAT3	c.1842C>G	p.S614R	non_synonymous_codon	
LP-S-070-M	ICK	c.635T>A	p.I212N	non_synonymous_codon	
LP-S-070-M	C11orf30	c.78G>C	p.E26D	non_synonymous_codon	
LP-S-070-M	BLM	c.2452C>T	p.R818C	non_synonymous_codon	
LP-S-070-M	NTRK1	c.2075G>A	p.R692H	non_synonymous_codon	
LP-S-070-M	SMC1A	c.859_861delAAG	p.K287delK	inframe_codon_loss	
LP-S-070-M	RPTOR	c.1179_1180insC	p.T395fs*136	frameshift_variant	
LP-S-034-P	SF3B1	c.1997A>G	p.K666R	non_synonymous_codon	
LP-S-034-P	TGFBR1	c.51_59delGGCGGCGGC	p.A24_A26delAAA	inframe_codon_loss	
LP-S-039-P	TP53	c.637C>T	p.R213*	stop_gained	
LP-S-039-P	JAK2	c.173C>A	p.P58Q	non_synonymous_codon	
LP-S-039-P	JAK3	c.2455G>A	p.E819K	non_synonymous_codon	
LP-S-039-P	NOD1	c.1402C>T	p.H468Y	non_synonymous_codon	
LP-S-039-P	AMER1	c.2030C>T	p.S677F	non_synonymous_codon	
LP-S-039-P	TRRAP	c.4078C>T	p.P1360S	non_synonymous_codon	
LP-S-039-P	TRRAP	c.4079C>T	p.P1360L	non_synonymous_codon	
LP-S-039-P	HSP90AA1	c.1145A>G	p.D382G	non_synonymous_codon	
LP-S-039-P	CHEK1	c.1085C>T	p.T362I	non_synonymous_codon	
LP-S-074-P	KDM5A	c.2443G>A	p.G815R	non_synonymous_codon	
LP-S-074-P	CREBBP	c.2126C>T	p.S709F	non_synonymous_codon	
LP-S-074-P	ALOX12B	c.55C>T	p.R19W	non_synonymous_codon	
LP-S-074-P	PTPN2	c.790C>T	p.Q264*	stop_gained	
LP-S-074-P	SPEN	c.9400C>T	p.P3134S	non_synonymous_codon	
LP-S-074-P	NKX3-1	c.28G>C	p.G10R	non_synonymous_codon	
LP-S-074-P	MYO18A	c.4314G>C	p.E1438D	non_synonymous_codon	
LP-S-074-P	FLT1	c.3928G>A	p.D1310N	non_synonymous_codon	
LP-S-074-P	ELP2	c.2188C>T	p.P730S	non_synonymous_codon	
LP-S-074-P	ELP2	c.2189C>T	p.P730L	non_synonymous_codon	
LP-S-074-P	BRIP1	c.3/36C>1	p.P1246S	non_synonymous_codon	
LP-S-074-P	PIK3R1	c.8/1G>A	p.E291K	non_synonymous_codon	
LP-S-074-P	PCLO	c.14/02A>G	p.K4901R	non_synonymous_codon	
LP-S-074-P	PCLO	C.10681A>1	p.K3561*	stop_gained	
LP-S-074-P	PCLO	C.3505G>A	p.E1169K	non_synonymous_codon	
LP-S-074-P		C.802-1G>1	p.:	splice_site_variant	
LP-S-074-P		C.5761G>A	p.A19211	non_synonymous_codon	
LP-3-074-P	APC		p.32290F	non_synonymous_codon	
LP-5-0/4-P		0.7450>1	p.Q249*	stop_gained	
LP-5-0/4-P		L.32930>A	p.R1098U		
LP-3-074-P			p.c.505/N	stop_gained	
LP-5-0/4-P		1.3400>1	μ.π.1.14 · p. Ε.1.Ε.2fc * 2.Ε	stop_gamed	
L7-3-0/4-P	пla-р	L.433_434IIISL	h'ET2512.52	rramesmit_variant	

LP-S-094-P	GPR124	c.1939G>A	p.V647I	non_synonymous_codon
LP-S-094-P	DOT1L	c.3902C>T	p.S1301L	non_synonymous_codon
LP-S-094-P	MYCN	c.1330A>T	р.К444*	stop_gained
LP-S-094-P	GID4	c.67C>T	p.P23S	non_synonymous_codon
LP-S-094-P	ASXL3	c.6239A>T	p.K2080I	non_synonymous_codon
LP-S-094-P	GTSE1	c.1019C>T	p.S340F	non_synonymous_codon
LP-S-094-P	CD36	c.823A>C	p.I275L	non_synonymous_codon
LP-S-094-P	CD36	c.890C>T	p.S297F	non_synonymous_codon
LP-S-094-P	PCLO	c.4109T>A	р.I1370К	non_synonymous_codon
LP-S-094-P	RELN	c.1906A>C	p.T636P	non_synonymous_codon
LP-S-094-P	ERCC5	c.3106G>A	p.A1036T	non_synonymous_codon
LP-S-094-P	ATM	c.8189A>G	p.Q2730R	non_synonymous_codon
LP-S-094-P	FAM46C	c.120C>G	p.N40K	non_synonymous_codon
LP-S-094-P	NCOR2	c.5702C>T	p.S1901F	non_synonymous_codon
LP-S-094-P	EP300	c.6796_6798delCAG	p.Q2268delQ	inframe_codon_loss
LP-S-094-P	KLF4	c.716_766del51	p.G239_P255delGSEYG	inframe_codon_loss
LP-S-060-P	CDH1	c.499G>A	p.E167K	non_synonymous_codon
LP-S-060-P	KMT2C	c.2351C>A	p.S784Y	non_synonymous_codon
LP-S-060-P	FAT1	c.1559G>A	p.S520N	non_synonymous_codon
LP-S-060-P	DDX3X	c.1575_1576insG	p.V526fs*21	frameshift_variant
LP-S-048-P	LATS2	c.2882G>A	p.R961Q	non_synonymous_codon
LP-S-048-P	ARID1A	c.4687C>T	p.P1563S	non_synonymous_codon
LP-S-048-P	PCLO	c.10380G>C	p.R3460S	non_synonymous_codon
LP-S-048-P	PHF6	c.929A>T	p.K310I	non_synonymous_codon
LP-S-048-P	DKC1	c.508T>A	p.S170T	non_synonymous_codon
1 P_S_0/19_ D		- 272 AT. A	- V1242N	
LI-3-040-F	EKBB4	C.37241>A	p.¥1242N	non_synonymous_codon
LP-S-072-P	ERBB4 ELP2	c.2213A>G	p.Y1242N p.Y738C	non_synonymous_codon
LP-S-072-P LP-S-072-P	ELP2 FAM175A	c.2213A>G c.364C>G	p.Y1242N p.Y738C p.Q122E	non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P	ELP2 FAM175A IRF8	c.37241>A c.2213A>G c.364C>G c.602C>T	p.Y1242N p.Y738C p.Q122E p.A201V	non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	ELP2 FAM175A IRF8 FLYWCH1	c.3724T>A c.2213A>G c.364C>G c.602C>T c.1199C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	ERBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98	c.3724T>A c.2213A>G c.364C>G c.602C>T c.1199C>T c.3640G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B	c.3724T>A c.2213A>G c.364C>G c.602C>T c.1199C>T c.3640G>A c.1591C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400I p.D1214N p.P531S	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD	c.3724T>A c.2213A>G c.364C>G c.602C>T c.1199C>T c.3640G>A c.1591C>T c.4483G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1490C>T C.1163C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400I p.D1214N p.P531S p.V1495I p.G440S p.S497L p.A388V	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543*	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q p.T404M	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3 MAP3K7	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T C.22T>G	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q p.T404M p.S8A	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3 MAP3K7 EPHA7	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T C.22T>G C.457G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q p.T404M p.S8A p.E153K	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3 MAP3K7 EPHA7 RELN	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T C.22T>G C.457G>A C.5534G>A	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q p.T404M p.S8A p.E153K p.G1845E	non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon stop_gained non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3 MAP3K7 EPHA7 RELN FOXO3	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T C.22T>G C.457G>A C.5534G>A C.5534G>A C.269C>G	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A433T p.R262Q p.T404M p.S8A p.E153K p.G1845E p.S90C	non_synonymous_codon non_synonymous_codon
LP-S-072-P LP-S-072-P	EKBB4 ELP2 FAM175A IRF8 FLYWCH1 NUP98 ALOX12B PTPRD APCDD1 APCDD1 NOTCH3 LATS2 BRCA2 CEBPA CD22 RBM10 GATA1 EGFR PCLO IRF8 NTRK3 MAP3K7 EPHA7 RELN FOXO3 KMT2C	C.3724T>A C.2213A>G C.364C>G C.602C>T C.1199C>T C.3640G>A C.1591C>T C.4483G>A C.1591C>T C.4483G>A C.1318G>A C.1318G>A C.1490C>T C.1163C>T C.6347A>G C.286G>A C.1629G>A C.1651C>T C.1141C>T C.2354C>T C.1297G>A C.785G>A C.1211C>T C.22T>G C.457G>A C.5534G>A C.5534G>A C.5534G>A C.269C>G C.11264C>T	p.Y1242N p.Y738C p.Q122E p.A201V p.T400l p.D1214N p.P531S p.V1495l p.G440S p.S497L p.A388V p.H2116R p.G96S p.W543* p.P551S p.P381S p.T785l p.A333T p.R262Q p.T404M p.S8A p.E153K p.G1845E p.S90C p.S3755L	non_synonymous_codon non_synonymous_codon

LP-S-072-P	CPS1	c.589G>A	p.D197N	non_synonymous_codon
LP-S-072-P	TNFAIP3	c.2236_2257del22	p.G746fs*63	frameshift_variant
LP-S-072-P	CTNNA1	c.2295delC	p.H766fs*25	frameshift_variant
LP-S-057-P	MET	c.3496C>T	p.R1166*	stop gained
LP-S-057-P	PAK7	c.742G>A	p.E248K	non_synonymous_codon
LP-S-057-P	CDKN2A	c.172C>T	p.R58*	stop gained
LP-S-057-P	MDC1	c.2015G>A	p.R672K	non synonymous codon
LP-S-057-P	ASXL3	c.2858G>T	p.R953I	non synonymous codon
LP-S-057-P	STK40	c.305T>G	p.L102R	non synonymous codon
LP-S-057-P	BRIP1	c.1315C>T	p.R439*	stop gained
LP-S-057-P	MITF	c.979G>A	p.E327K	non synonymous codon
LP-S-057-P	АТМ	c.8665G>C	, p.D2889H	non synonymous codon
LP-S-057-P	BRAF	c.1406G>C	p.G469A	non synonymous codon
LP-S-057-P	LRP1B	c.209C>T	p.P70L	non synonymous codon
LP-S-045-P	TUSC3	c.686C>T	p.T229I	non synonymous codon
LP-S-045-P	PIK3C2G	c.3496C>T	p.P1166S	non_synonymous_codon
LP-S-045-P		c 4804G>A	n G1602S	non_synonymous_codon
LP-S-045-P	FRBB2	c 3104C>T	n P10351	non_synonymous_codon
LP-S-045-P	STΔT5Δ	c 1945C>T	n R649W	non_synonymous_codon
LP-S-045-P	BRCA1	c 5069C>T	n A1690V	non_synonymous_codon
LP-S-045-P	FANCA	c 3802C>G	n 1268V	non_synonymous_codon
LP-S-045-P		c 248G>A	p.E1200V	non_synonymous_codon
LP-S-045-P		c 103C>T	p.R05Q n P35S	non_synonymous_codon
LP_S_069_P		c 2127+16>T	p.1 555	splice site variant
		c.2137+1G>1	μ.: p.D10EU	splice_site_vallant
		c.5150/C	p.D105H	
		c.1222C/T	p.r4003	stop_gained
			p.Q370	stop_gameu
		c.627C>1	μ.3270F	
			p.K1000P	
		C.4146C>1	p.51565F	
		c.1301G/A	p.E301K	
			p.E203K	
		C.555G2A	μ.0103K	non_synonymous_codon
		C.073G2A	p.AZZ51	
		C.10085G2A	p.03502E	
LP-S-069-P	PCLO	C.10438G>A	p.D3480N	
LP-S-069-P	PCLO	0.2377C>1	p.P7935	non_synonymous_codon
LP-S-069-P		1500 C	p.L345P	
LP-S-069-P	FANCI	C.158G>C	p.G53A	non_synonymous_codon
LP-S-069-P	PTCH1	C.1813G>A	p.D605N	non_synonymous_codon
LP-S-069-P		C.104C>1	p.535F	non_synonymous_codon
LP-S-069-P	SUFU	C.601G>A	p.V2011	non_synonymous_codon
LP-S-069-P	PDCD11	c.34/9A>G	p.N1160S	non_synonymous_codon
LP-S-069-P			p.A25245	non_synonymous_codon
LP-S-069-P		C.504G>I	p.E168D	non_synonymous_codon
LP-S-069-P	IVIE I		p.51388L	non_synonymous_codon
LP-S-069-P	NCOR2	c.3236C>1	p.P10/9L	non_synonymous_codon
LP-S-069-P	SMO	c.1454G>A	p.R485Q	non_synonymous_codon
LP-S-069-P	ARID1B	c.4420C>T	p.P1474S	non_synonymous_codon
LP-S-069-P	BCOR	c.4820_4852del33	p.E1607_L1617delEPDD	intrame_codon_loss
LP-S-069-P	EP300	c.6567_6578delGCAACAGCAGC/	p.Q2192_Q2195delQQ0	inframe_codon_loss

LP-S-069-P	ATM	c.492_493insT	p.L165fs*20	frameshift_variant
LP-S-069-P	POT1	c.1163+3_1163+6delgagt	p.?	splice_site_variant
LP-S-042-P	PTPN6	c.901T>C	p.Y301H	non_synonymous_codon
LP-S-042-P	PTPN6	c.1484G>A	p.R495H	non_synonymous_codon
LP-S-042-P	NOTCH3	c.817G>A	p.E273K	non_synonymous_codon
LP-S-042-P	IL7R	c.1025G>A	p.G342E	non_synonymous_codon
LP-S-042-P	LRRK2	c.6623C>T	p.P2208L	non_synonymous_codon
LP-S-042-P	GNAS	c.205C>T	p.Q69*	stop_gained
LP-S-042-P	PC	c.172G>A	p.E58K	non_synonymous_codon
LP-S-042-P	PCLO	c.11287C>T	p.L3763F	non_synonymous_codon
LP-S-042-P	FAT3	c.3221G>A	p.R1074K	non_synonymous_codon
LP-S-042-P	TGFBR1	c.574+2T>G	p.?	splice_site_variant
LP-S-042-P	APC	c.2474A>T	p.Y825F	non_synonymous_codon
LP-S-042-P	HNF1A	c.629C>T	p.S210F	non_synonymous_codon
LP-S-042-P	CPS1	c.1804G>A	p.G602S	non_synonymous_codon
LP-S-042-P	CPS1	c.1805G>A	p.G602D	non_synonymous_codon
LP-S-042-P	SOX9	c.1102_1122del21	p.A371_P377delAAPPQ	inframe_codon_loss

Πίνακας 10. Ανιχνευθείσες SNV σε δείγματα aMF & LCT.

Sample ID	Gene	cDNA change	Protein change	Effect
LP-S-056-P	no mutation	S		
LP-S-18-P	no mutation	S		
LP-S-019-P	PMS1	c.1501G>A	p.G501R	non_synonymous_codon
LP-S-064-P	TP53	c.1043T>G	p.L348W	non_synonymous_codon
LP-S-064-P	FAT1	c.12538G>A	p.A4180T	non_synonymous_codon
LP-S-064-P	ERCC5	c.3454_3464delGATGACGATGG	p.D1152fs*48	frameshift_variant
LP-S-001-T1	FLT1	c.2797-2A>G	p.?	splice_site_variant
LP-S-001-T1	INSR	c.1049C>T	p.S350L	nonsynonymous_SNV
LP-S-001-T1	KDM6A	c.3835C>T	p.R1279*	stop_gained
LP-S-003-T1	PTPRO	c.3365G>T	p.R1122L	non_synonymous_codon
LP-S-003-T1	CREBBP	c.3370-2dela	p.?	splice_site_variant
LP-S-004-T	NOTCH3	c.6164C>T	p.A2055V	non_synonymous_codon
LP-S-004-T	HIST1H2BK	c.272C>T	p.T91I	non_synonymous_codon
LP-S-004-T	RELN	c.3983G>A	p.G1328D	non_synonymous_codon
LP-S-005-T1	EXOSC6	c.5C>T	p.P2L	non_synonymous_codon
LP-S-005-T1	TET1	c.770C>T	p.T257I	non_synonymous_codon
LP-S-005-T1	KRAS	c.535G>A	p.G179S	non_synonymous_codon
LP-S-005-T1	FLT3	c.1073A>T	p.D358V	non_synonymous_codon
LP-S-005-T1	TRAF3	c.352C>T	p.R118W	non_synonymous_codon
LP-S-005-T1	PTPRT	c.2795G>A	p.R932H	non_synonymous_codon
LP-S-005-T1	FAT3	c.818C>T	p.P273L	non_synonymous_codon
LP-S-005-T1	ROS1	c.6572G>A	p.W2191*	stop_gained
LP-S-005-T1	PIK3CA	c.2912G>C	p.C971S	non_synonymous_codon
LP-S-005-T1	PIK3CA	c.2928A>T	p.E976D	non_synonymous_codon
LP-S-005-T1	TGFBR1	c.51_59delGGCGGCGGC	p.A24_A26delAAA	inframe_codon_loss
LP-S-006-T	DNMT3A	p.C557*		stop_gained
LP-S-006-T	TET2	p.Q1083*		stop_gained

LP-S-007-T2	TP53	c.298C>T	p.Q100*	stop gained
LP-S-007-T2	PAK7	c.263A>C	p.D88A	non synonymous codon
LP-S-007-T2	TLL2	c.1592A>C	p.E531A	non_synonymous_codon
LP-S-008-T3	DIS3	c.2339G>A	p.R780K	non_synonymous_codon
LP-S-008-T3	SPEN	c.3912_3913delAG	p.E1305fs*5	frameshift_variant
LP-S-009-T	STAT3	c.1847A>G	p.E616G	non_synonymous_codon
LP-S-009-T	BCOR	c.2752C>A	p.Q918K	non_synonymous_codon
LP-S-009-T	EGFR	c.1774G>A	p.V592I	non_synonymous_codon
LP-S-009-T	FAT3	c.9295T>A	p.Y3099N	non_synonymous_codon
LP-S-009-T	PASK	c.3541C>T	p.L1181F	non_synonymous_codon
LP-S-009-T	PTPRS	c.3274C>T	p.H1092Y	non_synonymous_codon
LP-S-009-T	HLA-A	c.535C>T	p.Q179*	stop_gained
LP-S-009-T	MED12	c.97G>A	p.E33K	non_synonymous_codon
LP-S-009-T	FAS	c.857G>A	p.G286E	non_synonymous_codon
LP-S-009-T	IFNGR1	c.32T>C	p.M11T	non_synonymous_codon
LP-S-010-T	TP53	c.747G>C	p.R249S	non_synonymous_codon
LP-S-010-T	ΡΑΚ7	c.1535G>A	p.S512N	non_synonymous_codon
LP-S-010-T	PTPRT	c.2162G>A	p.R721H	non_synonymous_codon
LP-S-010-T	AR	c.2512G>T	p.E838*	stop_gained
LP-S-010-T	TRRAP	c.2165C>T	p.S722F	non_synonymous_codon
LP-S-010-T	NSD1	c.1067C>T	p.S356F	non_synonymous_codon
LP-S-010-T	FAT1	c.8806G>A	p.V2936M	non_synonymous_codon
LP-S-010-T	ERBB4	c.2713A>T	p.S905C	non_synonymous_codon
LP-S-011-T1	PTPRD	c.2113C>T	p.R705*	stop_gained
LP-S-011-T1	CTCF	c.1120A>G	p.T374A	non_synonymous_codon
LP-S-011-T1	FAT1	c.3769C>T	p.R1257W	non_synonymous_codon
LP-S-013-T3	RYBP	c.941G>T	p.*314L	stop_lost
LP-S-013-T3	LRP1B	c.4170-1_4170delgA	p.?	complex_change_in_transcript
LP-S-014-P	no mutation	S		
LP-S-015-T	TSC1	c.1079C>A	p.T360N	non_synonymous_codon
LP-S-015-T	TP53	c.794T>C	p.L265P	non_synonymous_codon
LP-S-015-T	DNMT3A	c.1903C>T	p.R635W	non_synonymous_codon

Πίνακας 11. Ανιχνευθείσες SNV σε δείγματα SS.

Sample ID	Gene	cDNA change	Protein change	Effect
LP-S-36-P	no mutatio	ns		
LP-S-054-P	GRIN2A	c.2780G>A	p.R927K	non_synonymous_codon
LP-S-054-P	SETBP1	c.2824C>T	p.R942W	non_synonymous_codon
LP-S-054-P	RET	c.3152C>T	p.A1051V	non_synonymous_codon
LP-S-054-P	MAP3K7	c.242T>C	p.L81S	non_synonymous_codon
LP-S-054-P	RELN	c.3548A>G	p.Y1183C	non_synonymous_codon
LP-S-054-P	PRDM1	c.347T>G	p.L116R	non_synonymous_codon
LP-S-054-P	ROS1	c.6935A>G	p.D2312G	non_synonymous_codon
LP-S-054-P	ROS1	c.6925C>G	p.P2309A	non_synonymous_codon
LP-S-054-P	TGFBR1	c.51_59delGGCGGCGGC	p.A24_A26delAAA	inframe_codon_loss

LP-S-058-P	FAM46C	c.769C>T	p.P257S	nonsynonymous SNV
LP-S-058-P	CXCR4	c.275C>T	p.P92L	nonsynonymous SNV
LP-S-058-P	WHSC1	c.1163A>G	p.K388R	nonsynonymous SNV
LP-S-058-P	PRDM1	c.1651delA	p.K551fs	frameshift deletion
LP-S-058-P	SYK	c 583C>T	n R195*	stopgain SNV
LP-S-058-P	TP53		n N210fs	frameshift deletion
LP-S-058-P		c 443C>T	n \$148F	
LP-S-079-P	PMS2		p.51401	non synonymous codon
LP-S-079-P		c 1082G>A	p.E3711	non_synonymous_codon
LP-S-079-P		c 2525A>G	p.R501Q n O842B	non_synonymous_codon
LP-S-079-P		c 6650C>G	n \$2217C	non_synonymous_codon
LP-S-079-P		c 8522G>A	p.52217C	non_synonymous_codon
LP-S-079-P		c 1/38A>G	n \$480G	non_synonymous_codon
LP-S-079-P	DIK3CG	c 262T\C	p.54000 n V88H	non_synonymous_codon
LF-5-075-F	BRAE	c.20212C	p.10011	non_synonymous_codon
LF-3-079-P	KMT2C	c.7520G>A	p.0403K	
LP-3-079-P	KIVITZC VATGA	c.7520G/A	p.02507E	inframe_coden_loss
LP-3-079-P		c.4935_49700e124	p.P1052_P10590eiPPPP	framochift variant
LP-3-079-P		C.815_810IIISG	p.327315-51	
LP-S-083-P	PDCDILG2	C.472G>A	p.v158i	non_synonymous_codon
LP-S-083-P		C.14A>I	p.K5I	non_synonymous_codon
LP-S-083-P	JAK3		p.S44F	non_synonymous_codon
LP-S-083-P	BACH1	c.139G>A	p.A471	non_synonymous_codon
LP-S-083-P	ССТ6В	c.725+5G>A	p.?	splice_site_variant
LP-S-083-P	RICTOR	c.4387-1G>A	p.?	splice_site_variant
LP-S-083-P	PIK3C3	c.1604T>G	p.V535G	non_synonymous_codon
LP-S-083-P	PTPRT	c.3326G>A	p.R1109Q	non_synonymous_codon
LP-S-083-P	SETBP1	c.470G>C	p.S157T	non_synonymous_codon
LP-S-083-P	PLK2	c.819G>C	p.M273I	non_synonymous_codon
LP-S-083-P	TCL1A	c.31G>A	p.V11I	non_synonymous_codon
LP-S-083-P	FAT1	c.12288A>C	p.E4096D	non_synonymous_codon
LP-S-083-P	CALR	c.1132_1134delGAG	p.E381delE	inframe_codon_loss
LP-S-083-P	HLA-B	c.477_488delCGCGGACACGGC	p.D161_A164delDTAA	inframe_codon_loss
LP-S-084-P	PCLO	c.1448A>T	p.Q483L	non_synonymous_codon
LP-S-084-P	BRSK1	c.2291C>T	p.P764L	non_synonymous_codon
LP-S-084-P	AXIN2	c.1573C>G	p.P525A	non_synonymous_codon
LP-S-084-P	CD36	c.975T>G	p.Y325*	stop_gained
LP-S-084-P	PTCH1	c.1942C>G	p.H648D	non_synonymous_codon
LP-S-084-P	RELN	c.2954C>G	p.A985G	non_synonymous_codon
LP-S-084-P	IFNGR1	c.472G>A	p.E158K	non_synonymous_codon
LP-S-084-P	KMT2C	c.2914G>A	p.G972R	non_synonymous_codon
LP-S-088-P	MET	c.3496C>T	p.R1166*	stop_gained
LP-S-088-P	NCOR1	c.3145C>T	p.P1049S	non_synonymous_codon
LP-S-088-P	LATS2	c.3074T>C	p.L1025P	non_synonymous_codon
LP-S-088-P	FLT1	c.1644A>G	p.I548M	non_synonymous_codon
LP-S-088-P	LRRK2	c.7555G>A	p.E2519K	non_synonymous_codon
LP-S-088-P	JAK1	c.1550C>T	p.P517L	non_synonymous_codon
LP-S-088-P	TET1	c.5798C>T	p.P1933L	non_synonymous_codon
LP-S-088-P	PTEN	c.286C>T	p.P96S	non_synonymous_codon
LP-S-088-P	LRP1B	c.8750G>T	p.G2917V	non_synonymous_codon
LP-S-088-P	ERBB4	c.2614G>A	p.E872K	non_synonymous_codon
LP-S-088-P	XPO1	c.1864_1866delATT	p.I622dell	inframe_codon loss
LP-S-088-P	TP53	c.965_984del20	p.P322fs*8	frameshift_variant

LP-S-089-P	MKI67	c.4198G>T	p.V1400L	non_synonymous_codon
LP-S-089-P	NBN	c.37+5G>A	p.?	splice_site_variant
LP-S-089-P	BTLA	c.370A>G	p.I124V	non_synonymous_codon
LP-S-089-P	POLE	c.1559A>G	p.Q520R	non_synonymous_codon
LP-S-089-P	SDHC	c.430G>C	p.E144Q	non_synonymous_codon
LP-S-089-P	PMS1	c.1706G>A	p.R569Q	non_synonymous_codon
LP-S-047-P	TP53	c.949C>T	p.Q317*	stop_gained
LP-S-047-P	ARID1A	c.2231C>G	p.S744*	stop_gained
LP-S-047-P	HIST1H2AG	c.263T>A	p.188N	non_synonymous_codon
LP-S-047-P	FOXA1	c.1025C>T	p.A342V	non_synonymous_codon
LP-S-047-P	PTCH1	c.2105C>T	p.P702L	non_synonymous_codon
LP-S-047-P	PRDM1	c.801C>A	p.Y267*	stop_gained
LP-S-047-P	PRDM1	c.802C>T	p.R268C	non_synonymous_codon
LP-S-090-P	ERBB4	c.502C>T	p.R168W	non_synonymous_codon
LP-S-090-P	PRDM1	c.407G>A	p.W136*	stop_gained
LP-S-090-P	ATR	c.3043C>T	p.R1015*	stop_gained
LP-S-095-P	MSH6	c.3283C>T	p.R1095C	non_synonymous_codon
LP-S-095-P	CBL	c.2269G>A	p.A757T	non_synonymous_codon
LP-S-095-P	CCND3	c.870_871insTA	p.H291fs*14	frameshift_variant
LP-S-095-P	RASA1	c.272_292del21	p.A100_A106delAGVA0	inframe_codon_loss
LP-S-020-P	ATM	c.1073A>G	p.N358S	non_synonymous_codon
LP-S-020-P	NOTCH4	c.2240G>A	p.S747N	non_synonymous_codon
LP-S-020-P	TET2	c.2946G>T	p.K982N	non_synonymous_codon
LP-S-020-P	TET2	c.2736delG	p.Q913fs*8	frameshift_variant

Πίνακας 12. Ανιχνευθείσες SNV σε δείγματα CD30+ LPD.

Sample ID	Gene	cDNA change	Protein change	Effect
LP-S-101-P	MGA	c.3454C>T	p.Q1152*	stop_gained
	MGA	c.6896dupT	p.L2299Ffs*7	frameshift_variant
	SMC3	c.3289G>A	p.G1097R	non_synonymous_codon
	TNFAIP3	c.950G>A	p.W317*	stop_gained
LP-S-102-P	ARHGEF28	c.4024G>A	p.G1342R	non_synonymous_codon
	FYN	c.287G>T	p.R96L	non_synonymous_codon
	KDM6A	c.3688G>C	p.A1230P	non_synonymous_codon
	KDR	c.2971+2T>C	p.X991_splice	splice_site_variant
	LCK	c.1099delG	p.A367Lfs*10	frameshift_variant
	NKX2-1	c.485C>T	p.A162V	non_synonymous_codon
	RARA	c.814C>T	p.R272W	non_synonymous_codon
	RARA	c.850A>G	p.M284V	non_synonymous_codon
	VAV1	c.1666G>A	p.E556K	non_synonymous_codon
LP-S-103-P	ATM	c.4673C>T	p.T1558M	non_synonymous_codon
	GNB1	c.346G>A	p.G116S	non_synonymous_codon
	KMT2A	c.7819C>T	p.P2607S	non_synonymous_codon

LP-S-017-P	TSC2	c.2386C>T	p.L796F	non_synonymous_codon
LP-S-017-P	CIITA	c.1706T>C	p.F569S	non_synonymous_codon
LP-S-017-P	SOCS1	c.436T>C	p.C146R	non_synonymous_codon
LP-S-017-P	PTPRO	c.721G>A	p.E241K	non_synonymous_codon
LP-S-017-P	HIST1H1D	c.556G>A	p.A186T	non_synonymous_codon
LP-S-017-P	NOD1	c.583+5G>A	p.?	splice_site_variant
LP-S-017-P	STAT5B	c.1254T>A	p.N418K	non_synonymous_codon
LP-S-017-P	NTRK3	c.2233C>T	p.R745W	non_synonymous_codon
LP-S-017-P	NTRK3	c.1749G>T	p.K583N	non_synonymous_codon
LP-S-017-P	FAT3	c.3269G>A	p.R1090K	non_synonymous_codon
LP-S-017-P	TRRAP	c.8305T>C	p.C2769R	non_synonymous_codon
LP-S-017-P	CBL	c.1373A>T	p.D458V	non_synonymous_codon
LP-S-017-P	PARK2	c.218C>T	p.P73L	non_synonymous_codon
LP-S-017-P	FAT1	c.12772C>T	p.P4258S	non_synonymous_codon
LP-S-017-P	EGFR	c.2623_2625+10delAAAgtaagga	p.?	complex_change_in_transcript
LP-S-026-P	FLYWCH1	c.1202A>G	p.Q401R	non_synonymous_codon
LP-S-026-P	SOCS1	c.308T>C	p.V103A	non_synonymous_codon
LP-S-026-P	JAK3	c.2872G>A	p.E958K	non_synonymous_codon
LP-S-026-P	JAK3	c.598G>A	p.D200N	non_synonymous_codon
LP-S-026-P	CAD	c.6596C>T	p.P2199L	non_synonymous_codon
LP-S-026-P	CBFB	c.338G>A	p.W113*	stop_gained
LP-S-026-P	PCLO	c.12802G>A	p.G4268R	non_synonymous_codon
LP-S-026-P	SMC3	c.940G>A	p.D314N	non_synonymous_codon
LP-S-026-P	NOTCH1	c.4817T>G	p.F1606C	non_synonymous_codon
LP-S-026-P	SOCS1	c.285_312del28	p.E96fs*13	frameshift_variant

Πίνακας 13. Ανιχνευθείσες SNV σε δείγματα pc-γδCTCL.

Sample ID	Gene	cDNA change	Protein change	Effect
LP-S-031-P	HIST1H1C	c.146C>T	p.A49V	non_synonymous_codon
LP-S-031-P	ZNF703	c.539C>T	p.S180F	non_synonymous_codon
LP-S-031-P	GPR124	c.316G>A	p.G106R	non_synonymous_codon
LP-S-031-P	BRIP1	c.2999T>G	p.V1000G	non_synonymous_codon
LP-S-031-P	EPHA5	c.440G>C	p.C147S	non_synonymous_codon
LP-S-031-P	CD36	c.763C>T	p.P255S	non_synonymous_codon
LP-S-031-P	MEF2C	c.349A>T	p.K117*	stop_gained
LP-S-031-P	FGF14	c.5C>T	p.A2V	non_synonymous_codon
LP-S-031-P	TNFAIP3	c.1966C>T	p.P656S	non_synonymous_codon
LP-S-031-P	TNFAIP3	c.1967C>T	p.P656L	non_synonymous_codon
LP-S-031-P	INPP4B	c.1220C>T	p.T407I	non_synonymous_codon
LP-S-031-P	FGF12	c.538G>A	p.E180K	non_synonymous_codon
LP-S-043-P	FAS	c.346G>T	p.E116*	stop_gained
LP-S-043-P	FAS	c.418T>G	p.C140G	non_synonymous_codon
LP-S-043-P	ARID1B	c.1371_1382delGGCGGCGGCGC	p.A462_G465delAAAG	inframe_codon_loss
LP-S-043-P	NFKBIA	c.873_874insA	p.E292fs*15	frameshift_variant
LP-S-052-P	no mutation	S		

LP-S-016-P	JAK3	c.1718C>T	p.A573V	non_synonymous_codon
LP-S-016-P	BLM	c.2119C>T	p.P707S	non_synonymous_codon
LP-S-016-P	MAP2K4	c.832A>T	p.R278W	non_synonymous_codon
LP-S-016-P	WT1	c.284C>T	p.P95L	non_synonymous_codon
LP-S-016-P	MAFB	c.563C>T	p.P188L	non_synonymous_codon
LP-S-016-P	PDGFRA	c.429T>G	p.D143E	non_synonymous_codon
LP-S-016-P	TET1	c.4461+1G>A	p.?	splice_site_variant
LP-S-016-P	RUNX1T1	c.1786G>C	p.A596P	non_synonymous_codon
LP-S-016-P	RELN	c.7369C>T	p.R2457C	non_synonymous_codon
LP-S-016-P	ERCC5	c.3464G>T	p.G1155V	non_synonymous_codon
LP-S-016-P	ATM	c.6247G>A	p.G2083R	non_synonymous_codon
LP-S-016-P	LRP1B	c.11012G>A	p.G3671E	non_synonymous_codon
LP-S-016-P	FAT1	c.12934C>T	p.P4312S	non_synonymous_codon
LP-S-049-P	CARD11	c.1844C>T	p.S615F	non_synonymous_codon
LP-S-049-P	VHL	c.241C>T	p.P81S	non_synonymous_codon
LP-S-049-P	NOTCH3	c.6448C>T	p.R2150C	non_synonymous_codon
LP-S-049-P	CHEK2	c.494A>T	p.E165V	non_synonymous_codon
LP-S-049-P	ASXL1	c.3200_3201insT	p.R1068fs*19	frameshift_variant
LP-S-097-P	CD22	c.443C>A	p.P148H	non_synonymous_codon
LP-S-097-P	LRRK2	c.4883G>C	p.R1628P	non_synonymous_codon
LP-S-097-P	MPL	c.22A>G	p.M8V	non_synonymous_codon
LP-S-097-P	RPTOR	a 2420C> A		
		C.3439G>A	p.V1147I	non_synonymous_codon
LP-S-097-P	PCLO	c.13891G>A	p.V11471 p.V46311	non_synonymous_codon non_synonymous_codon
LP-S-097-P LP-S-097-P	PCLO FANCA	c.13891G>A c.1777-1G>C	p.V11471 p.V46311 p.?	non_synonymous_codon non_synonymous_codon splice_site_variant
LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1	c.13891G>A c.13891G>A c.1777-1G>C c.2451A>C	p.V1147I p.V4631I p.? p.Q817H	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1 APC	c.13893G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G	p.V11471 p.V46311 p.? p.Q817H p.T1160A	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1 APC MET	c.13893G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G c.4141G>A	p.V11471 p.V46311 p.? p.Q817H p.T1160A p.A1381T	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon non_synonymous_codon
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1 APC MET ARID1B	c.13893G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G c.4141G>A c.2879+5G>A	p.V11471 p.V46311 p.? p.Q817H p.T1160A p.A1381T p.?	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon non_synonymous_codon splice_site_variant
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1 APC MET ARID1B CPS1	c.13893G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G c.4141G>A c.2879+5G>A c.3644T>C	p.V11471 p.V46311 p.? p.Q817H p.T1160A p.A1381T p.? p.M1215T	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P	PCLO FANCA PRDM1 APC MET ARID1B CPS1 DNMT3A	c.3439G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G c.4141G>A c.2879+5G>A c.3644T>C c.939G>A	p.V11471 p.V46311 p.? p.Q817H p.T1160A p.A1381T p.? p.M1215T p.W313*	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon stop_gained
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-066-P LP-S-066-P	PCLO FANCA PRDM1 APC MET ARID1B CPS1 DNMT3A FOXA1	c.3439G>A c.13891G>A c.1777-1G>C c.2451A>C c.3478A>G c.4141G>A c.2879+5G>A c.3644T>C c.939G>A c.572T>C	p.V1147/ p.V4631/ p.? p.Q817H p.T1160A p.A1381T p.? p.M1215T p.W313* p.L191P	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon stop_gained non_synonymous_codon
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-066-P LP-S-066-P LP-S-066-P	PCLO FANCA PRDM1 APC MET ARID1B CPS1 DNMT3A FOXA1 SETD2	C.3439G>A C.13891G>A C.1777-1G>C C.2451A>C C.3478A>G C.4141G>A C.2879+5G>A C.3644T>C C.939G>A C.572T>C C.3667C>T	p.V1147/ p.V4631I p.? p.Q817H p.T1160A p.A1381T p.? p.M1215T p.W313* p.L191P p.Q1223*	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon stop_gained non_synonymous_codon stop_gained
LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-097-P LP-S-066-P LP-S-066-P LP-S-066-P LP-S-066-P	PCLO FANCA PRDM1 APC MET ARID1B CPS1 DNMT3A FOXA1 SETD2 TRAF2	C.3439G>A C.13891G>A C.1777-1G>C C.2451A>C C.3478A>G C.4141G>A C.2879+5G>A C.3644T>C C.939G>A C.572T>C C.3667C>T C.191C>T	p.V1147/ p.V4631I p.? p.Q817H p.T1160A p.A1381T p.? p.M1215T p.W313* p.L191P p.Q1223* p.S64F	non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon non_synonymous_codon splice_site_variant non_synonymous_codon stop_gained non_synonymous_codon stop_gained non_synonymous_codon

Πίνακας 14. Ανιχνευθείσες SNV σε δείγματα άλλων σπανιότερων CTCL.

Οι περισσότερες σημειακές μεταλλάξεις ήταν μη-συνώνυμες, παρανοηματικές (non synonymous, missense). (Εικόνα 17). Δείγματα eMF παρουσίασαν χαμηλό μεταλλακτικό φορτίο, ενώ στο 33.3% των δειγμάτων δεν ανιχνεύθησαν γενετικές τροποποιήσεις. Αντίθετα, τα δείγματα από aMF και LCT παρουσίασαν το υψηλότερο μεταλλακτικό φορτίο συγκριτικά με όλους τους ιστολογικούς υποτύπους CTCL. Όσον αφορά τις αλλοιώσεις στον αριθμό αλληλικών αντιγράφων, δείγματα από πρωτοπαθή δερματικά CD30+ LPD παρουσίασαν τον μεγαλύτερο αριθμό αλλοιώσεων, με 4 από τα 12 δείγματα να παρουσιάζουν υψηλού βαθμού χρωμοσωμική αστάθεια (Εικόνα 18). Οι δομικές αλλοιώσεις ήταν εξαιρετικά σπάνιες και αφορούσαν τμηματικές, ενδο-εξωνικές ελλείψεις, ενώ δεν ανευρέθησαν γονιδιακές μίξεις (fusions).

Εικόνα 17. Ανιχνευθείσες SNV σε υπότυπους CTCL. Την πλειοψηφία αποτελούν μησυνώνυμες παρανοηματικές μεταλλάξεις (non-synonymous, missense).

Εικόνα 18. Ανιχνευθείσες SNV, CAN και SV σε υπότυπους CTCL.

Δεν ανευρέθησαν διαφορές στο μεταλλακτικό φορτίο και στον τύπο σημειακών μεταλλάξεων δειγμάτων όταν αυτά αναλύθηκαν ως προς την ηλικία, το φύλο ή τη φυλή/εθνότητα (**Εικόνα 19**).

Εικόνα 19. Δημογραφικά στοιχεία CTCL ως προς τον αριθμό των μεταλλάξεων και το είδος υποκαταστάσεων (α,β, δ, ε: έλεγχος Mann-Whitney test, γ, στ: έλεγχος Kruskal-Wallis).

Μεταβάσεις C>T αποτέλεσαν τον κύριο τύπο υποκατάστασης σε όλους τους ιστολογικούς τύπους (Εικόνα 20)

Εικόνα 20. Κατανομή υποκαταστάσεων σε ιστολογικούς υποτύπους CTCL.

Στα πλαίσια της eMF, ανάλυση των σημειακών μεταλλάξεων σε νέες διαγνώσεις/μη θεραπευόμενες βλάβες και τοπικά θεραπευόμενες πρώιμες βλάβες έδειξε ότι μεταβάσεις C>T είναι πιο συχνές στις δεύτερες (**Εικόνα 21**).

early MF unTx vs Tx types of substitutions

Εικόνα 21. Κατανομή υποκαταςτάσεων σε νέες διαγνώσεις και τοπικά θεραπευόμενες βλάβες eMF.
Η διαφορά αυτή δεν σχετιζόταν με το στάδιο των βλαβών, καθώς και στις δύο ομάδες eMF παρουσιαζόταν παρόμοια κατανομή ασθενών σταδίων IA και IB (Εικόνα 22).

Εικόνα 22. Κατανομή σταδίων ΙΑ και ΙΒ σε νέες διαγνώσεις και τοπικά θεραπευόμενες βλάβες eMF (έλεγχος Fisher).

Παράλληλα, οι δύο ομάδες δεν παρουσιάζαν διαφορές στις τιμές των VAF, οι οποίες αντικατοπτρίζουν το νεοπλασματικό φορτίο της βλάβης (**Εικόνα 23**).

Εικόνα 23. Κατανομή VAF σε νέες διαγνώσεις και τοπικά θεραπευόμενες βλάβες eMF (έλεγχος Kruskal-Wallis).

Καθώς οι υποκαταστάσεις C>T συσχετίζονται με τη γήρανση αλλά και με την UV ακτινοβολία περεταίρω ανάλυση των μεταλλακτικών υπογραφών με βάση γνωστές μοριακές υπογραφές της COSMIC (single base substitution/SBS mutational signatures, COSMIC), οι υποκαταστάσεις σε όλα τα δείγματα CTCL, σχετίζονταν με την UV ακτινοβολία (SBS 7) σε ποσοστό 34.8%, ενώ οι υπόλοιπες συσχετιζόταν με υπογραφές της γήρανσης (SBS1, SBS59) (**Εικόνα 24**).

Εικόνα 24. Ανάλυση μεταλλακτικών υπογραφών SBS, (α) κατανομή τριών βασικών μεταλλακτικών υπογραφών, πλούσιων σε C>T, που έχουν προηγουμένως περιγραφεί σε CTCL. (β) αναπαράσταση όλων (96) των συνδυασμών υποκαταστάσεων που ανευρέθησαν στο δείγμα ασθενών. Το μεσαίο νουκλεοτίδιο είναι αυτό που υφίσταται την αντικατάσταση, ενώ αριστερά και δεξιά του εμφανίζονται όλοι οι πιθανοί συνδυασμού νουκλεοτιδίων.

Παρόλο που η ανάλυση μεταλλακτικών υπογραφών δεν ήταν εφικτή για τους επιμέρους υποτύπους CTCL, λόγω χαμηλού αριθμού δειγμάτων και χαμηλού αριθμού μεταλλάξεων, ανάλυση για τη παρουσία διμερών θυμίνης, που επίσης προκαλούνται από τη UV ακτινοβολία, έδειξε την παρουσία διμερών μόνο σε δείγματα aMF&LCT και SS (**Εικόνα 25**). Τέλος, παρόλο που το 44.1% των δειγμάτων προέρχονταν από ασθενείς που είχαν λάβει στο παρελθόν συστηματική θεραπεία, δεν ανευρέθησαν SBS υπογραφές σχετιζόμενες με χημειοθεραπεία.

Εικόνα 25. Κατανομή διμερών θυμίνης στους τέσσερις βασικούς τύπους CTCL, σε σχέση με όλες τις υποκαταστάσεις C>T

Από τα 358 τροποποιημένα γονίδια που ανευρέθηκαν, τα 46 παρουσίασαν γενετικές τροποποιήσεις με συχνότητα άνω του 5% των δειγμάτων (Εικόνα 26). Ανεξαρτήτως ιστοπαθολογίας, γενετικές τροποποιήσεις με συχνότητα άνω του 10% ανευρέθηκαν σε 4 γονίδια, τα *CDKN2A* ή *B*, *PCLO*, *FAT1* και *TP53*. Οι τροποποιήσεις στα *CDKN2A* ή *B* εμφανίστηκαν στο 16.9% των δειγμάτων (n=13, σημειακές μεταλλάξεις, n=2; έλλειψη του γονιδίου, n=11). Το γονίδιο *PCLO* παρουσίασε τη μεγαλύτερη συχνότητα SNV (14.9%, n=11), οι οποίες ήταν όλες μη συνώνυμες, παρανοηματικές, με ένα δείγμα να εμφανίζει και μία δεύτερη μετάλλαξη τύπου κέρδους κωδικονίου τερματισμού (Εικόνα 27). Το γονίδιο *FAT1* εμφάνισε μεταλλάξεις στο 13% των δειγμάτων (n=10, σημειακές μεταλλάξεις, n=9;

Έλλειψη γονιδίου, n=1) (**Εικόνα 27**), ενώ το ομόλογο γονίδιο *FAT3* εμφάνισε σημειακές μεταλλάξεις στο 6.5% των δειγμάτων (n=5). Τέλος, το γονίδιο *TP53* εμφάνισε μεταλλάξεις στο 10.4% των δειγμάτων (n=8; μη-συνώνυμες, παρανοηματικές, n=3; κέρδος κωδικονίου τερματισμού, n=3; ελλείψεις με αλλαγή του πλαισίου ανάγνωσης, n =2) (**Εικόνα 27**). Άλλα συχνά μεταλλαγμένα γονίδια (συχνότητα άνω του 7%) ήταν τα *RELN, ERBB4, APC, ATM, NOTCH3, JAK3, PRDM1, ASMTL* και *TGFBR1*. Πάρα την ετερογένεια του γονιδιακού χάρτη των CTCL και παρόλο που δεν ανευρέθηκαν γονίδια ειδικά για ένα συγκεκριμένο ιστολογικό τύπο, καθώς εμφανίζονταν σε πολλαπλούς υποτύπους, παρατηρήσαμε ότι τα γονίδια αυτά εμφανίζονταν με μεγαλύτερη συχνότητα ή απουσίαζαν σε ορισμένους υποτύπους.

Οι τροποποιήσεις στα *CDKN2A* ή *B* ήταν παρούσες σε δείγματα από aMF-LCT, SS, και pc-γδCTCL (40%, 17.6% and 80%, αντίστοιχα). Αντίθετα οι τροποποιήσεις αυτές απουσίαζαν σε δείγματα από eMF, CD30+ LPD και άλλα σπάνια CTCL. Το γονίδιο *PCLO* ήταν μεταλλαγμένο στο 40% των δειγμάτων από aMF-LCT, ενώ δεν ανευρέθηκαν μεταλλάξεις σε κανένα δείγμα από SS. Αντίθετα, συχνά μεταλλαγμένο σε δείγματα από SS και CD30+ LPD ήταν το γονίδιο *TP53* (23.5% and 25% αντίστοιχα). Εκτός του TP53, τα CD30+ LPD παρουσίαζαν τροποποιήσεις στο 25% των δειγμάτων στα γονίδια *TGFBR1, PRDM1, CCND3, PTCH1* και *POLE*. Τέλος, όσον αφορά τη σπάνια κατηγορία των pc-γδCTCL, εκτός από τροποποιήσεις στα *CDKN2A* ή *B*, ανευρέθηκαν συχνές (40%) μεταλλάξεις στα γονίδια *ATM, MTAP, TNFAIP3, SOCS1* και *SMC3*.

Εικόνα 26. Χάρτης (oncoprint) των συχνότερων γενετικών τροποποιήσεων στα CTCL. Ο χάρτης έχει αναστραφεί για λόγους ευκρίνειας. Το πάνελ αριστερά έχει ενσωματωμένα δημογραφικά, κλινικά και ιστολογικά στοιχεία για τον κάθε ασθενή. Στο πάνελ δεξιά, κάθε ανεστραμμένη σειρά αντιστοιχεί σε ένα γονίδιο, ενώ κάθε ανεστραμμένη κολώνα σε ένα ασθενή, κατά φθίνουσα συχνότητα (σειρές από αριστερά προς δεξιά)

Εικόνα 27. Γραφήματα lollipop που απεικονίζουν τις θέσεις των SNV στα γονίδια *PCLO, FAT1* και *TP53*.

Τα γονίδια *FAT1* και *FAT3* αποτελούν ογκοκατασταλτικά γονίδια που χαρακτηρίζονται από μακρές, επαναλαμβανόμενες περιοχές τύπου καδχερίνης (πράσινες περιοχές στο γονίδιο *FAT1*, **Εικόνα 27**), γι'αυτό και οι πρωτεΐνες που κωδικοποιούν τα γονίδια αυτά ονομάζονται πρωτοκαδχερίνες. Οι πρωτεΐνες FAT1 και FAT3 εδράζονται στην κυτταρική μεμβράνη και μέσω ομοφιλικών δεσμών με τις ίδιες πρωτεΐνες σε γειτονικά κύτταρα δημιουργούν στενές συνάψεις, ενώ παράλληλα το ενδοκυττάριο τμήμα των πρωτεϊνών αλληλεπιδρά με την ακτίνη του κυτταροσκελετού. Το ενδοκυττάριο τμήμα της πρωτεΐνης επίσης ρυθμίζει την ενεργοποίηση του αρχέγονου μονοπατιού σηματοδότησης Hippo, το οποίο συνεισφέρει στη διαμόρφωση της πολικότητας του κυττάρου, την οργάνωση της αρχιτεκτονικής των ιστών, την κυτταρική διαφοροποίηση και τον κυτταρικό πολλαπλασιασμό. Εκτός των μορίων FAT, πολλοί υποδοχείς ενεργοποιούν το μονοπάτι, κοινό συντελεστή όλων δε, αποτελεί το άπω τμήμα του μονοπατιού το οποίο απαρτίζεται από τα μόρια ΥΑΡ και ΤΑΖ. Τα μόρια αυτά είναι μεταγραφικοί παράγοντες που όταν ενεργοποιούνται, μεταπηδούν από το κυτταρόπλασμα στον πυρήνα για την μεταγραφή γονιδίων υπεύθυνα για την κυτταρική διαφοροποίηση και πολλαπλασιασμό. Τα γονίδια FAT1 και FAT3 παρουσιάζουν γενετικές τροποποιήσεις σε πολλούς συμπαγείς όγκους (Εικόνα 28), καθώς και σε αιματολογικές κακοήθειες όπως τα διάχυτα μεγαλοκυτταρικά Β-λεμφώματα.

Ενώ η έκφραση και ο ρόλος τους στο φυσιολογικό και νεοπλασματικό επιθήλιο έχει σε ένα βαθμό διασαφηνιστεί, παραμένει ασαφές αν τα μόρια αυτά εκφράζονται σε αιμοποιητικούς ιστούς και ποια είναι η λειτουργικότητα τους. Καθώς και τα δύο γονίδια είναι εξαιρετικά μεγάλα, κωδικοποιώντας πρωτεΐνες άνω των 4.500 αμινοξέων, είναι πιθανό οι μεταλλάξεις αυτές να αποτελούν επιφαινόμενο μεγάλης μεταλλακτικής δραστηριότητας, και να μην είναι βιολογικά σημαντικά για την παθογένεση των CTCL. Προκειμένου να αξιολογήσουμε την έκφρση του FAT1, αλλά και των μεταγραφικών παραγόντων YAP και TAZ, πραγματοποιήσαμε ποσοτικοποίηση του mRNA από α) CD4(+) λεμφοκύτταρα σε κατάσταση ηρεμίας από υγιείς δότες, β) CD4(+) λεμφοκύτταρα σε κατάσταση ενεργοποίησης (3 και 7 ημέρες καλλιέργειας με anti-CD3 και anti-CD28) από υγιείς δότες, γ) naïve CD4(+)CD45RA(+)CD62L(+), central memory CD4(+)CD45RA(-)CD62L(+), effector memory CD4(+)CD45RA(-)CD62L(-), TEMRA και CD4(+)CD45RA(+)CD62L(-) κύτταρα από υγιείς δότες, δ) νεοπλασματικά κύτταρα από 6 ασθενείς με SS (οι 3 με μεταλλάξεις στο FAT1) και ε) τις κυτταρικές σειρές HUT78 και HH, μέσω q-RT-PCR. Ως controls χρησιμοποιήθηκαν ανθρώπινα οργανοειδή από το παχύ έντερο.

Εικόνα 28. Απεικόνιση από το cBioPortal (MSKCC) των συχνοτήτων γενετικών τροποποιήσεων στα γονίδια FAT1 και FAT3 σύμφωνα με μεγάλες μελέτες αλληλούχισης του Άτλαντα του Γονιδιώματος του Καρκίνου (The Cancer Genome Atlas, TCGA).

Το μόριο FAT1 παρουσίασε μηδενικά ή σχεδόν μηδενικά επίπεδα έκφρασης σε φυσιολογικά και πρωτογενή νεοπλασματικά κύτταρα, ενώ εξαιρετικά χαμηλά επίπεδα έκφρασης σε σχέση με το control παρουσίασαν τα Τ-κύτταρα μνήμης και οι κυτταρικές σειρές HU78 και HH. Το μόριο YAP παρουσίασε χαμηλά επίπεδα έκφρασης σε σχέση με το control, ενώ το μόριο TAZ παρουσίασε αμελητέα επίπεδα έκφρασης σε φυσιολογικά και πρωτογενή νεοπλασματικά κύτταρα σε σχέση με το control (**Εικόνα 29**).

Εικόνα 29. Έκφραση σε επίπεδο mRNA των μορίων FAT1, YAP και TAZ

Καθώς τα μόρια FAT1 και YAP εμφάνισαν ελάχιστα ποσά έκφρασης σε ορισμένους υποτύπους κυττάρων, παραγματοποιήσαμε διπλό ανοσοφθορισμό για τα μόρια CD3 και YAP σε βιοπτικό υλικό από 40 ασθενείς. Το σήμα του YAP ήταν πολύ ισχυρό πρωτογενώς στο κυτταρόπλασμα, και δευτερογενώς στον πυρήνα κερατινοκυττάρων, κυττάρων των θυλακίων και ενδοθηλιακών κυττάρων. Αντιθέτως τα νεοπλασματικά Τ-λεμφοκύτταρα, εμφάνισαν ισχνό σήμα, ως επί το πλείστον στον κυτταρόπλασμα. Επίσης πολλά κύτταρα του μικροπεριβάλλοντος, εμφάνισαν ισχυρό κυτταροπλασματικό σήμα. Μέτρηση του πυρηνικού σήματος του YAP σε CD3(+) κύτταρα, δεν παρουσίασε στατιστικά σημαντική διαφορά ανάμεσα σε FAT1 μεταλλαγμένα και μη δείγματα (**Εικόνα 30**).

WT 0 10000 20000 30000 40000 50000 YAP nuclear intensity

Εικόνα 30. Διπλός ανοσοφθορσιμός για CD3 (πράσινο χρώμα) και YAP (κόκκινο χρώμα) σε FAT1 μη μεταλλαγμένο (WT) και FAT1 μεταλλαγμένο (MUT) δείγμα, σε χαμηλή και υψηλή μεγέθυνση, με μέτρηση του πυρηνικού σήματος για το YAP σε CD3(+) κύτταρα (έλεγχος Mann-Whitney).

Λόγω της μοριακής αυτής ετερογένειας προχωρήσαμε σε ανάλυση των συχνότερων βιολογικών μονοπατιών στα οποία εμπίπτουν όλες οι ανιχνευθείσες γενετικές τροποποιήσεις. Η ανάλυση ανέδειξε 19 διακριτά βιολογικά μονοπάτια τα οποία διευκολύνουν την κατανόηση της κυτταρικής τοπογραφίας των γενετικών τροποποιήσεων στα δερματικά Τ λεμφώματα. Η διαδικασία της ενδοκυττάριας σηματοδότησης αποτέλεσε την κύρια δεξαμενή γενετικών τροποποιήσεων, συμπεριλαμβάνοντας τα μονοπάτια GPCR/RTK/MAPK, PI3K/AKT/mTOR, JAK/STAT, TCR, Wnt, Hippo, NOTCH, Sonic-Hedgehog και TNF/NF-κB.

Εικόνα 31. Γράφημα CIRCOS που απεικονίζει τα 19 διακριτά βιολογικά μονοπάτια που φέρουν γενετικές τροποποιήσεις στα CTCL. Η κάθε κορδέλα που ενώνει δύο μονοπάτια αντιστοιχεί στην συνύπαρξη (co-occurrence) δύο μονοπατιών στο ίδιο δείγμα, ενώ το πάχος της κορδέλλας αντιστοιχεί στη συχνότητα της συνύπαρξης αυτής.

Συνολικά, α) το μονοπάτι σηματοδότησης GPCR/RTK/MAPK, β) μεταγραφικοί παράγοντες/ρυθμιστές και γ) επιγενετικοί παράγοντες παρουσίασαν γενετικές τροποποιήσεις με συχνότητα άνω του 50% των δειγμάτων (**Εικόνα 31**).

Αναζητώντας κοινά βιολογικά σημεία ανάμεσα σε όλους τους ιστολογικούς υποτύπους CTCL, διαπιστώσαμε ότι το μονοπάτι σηματοδότησης GPCR/RTK/MAPK εμφάνιζε σταθερά υψηλές συχνότητες τροποποιήσεων ανεξαρτήτως ιστολογίας. Αντίθετα, εστιάζοντας στις βιολογικές διαφορές ανά ιστολογικό υπότυπο, τροποποιήσεις σε ρυθμιστές του κυτταρικού κύκλου δεν εμφανίστηκαν σε δείγματα από eMF, αλλά ήταν πολύ συχνές σε ογκόμορφες βλάβες και βλάβες LCT (**Εικόνα 32**). Τέλος, υψηλή συχνότητε σε βλάβες CD30+ LPD (**Εικόνα 32**).

Εικόνα 32. Χάρτης (heatmap) των συχνοτήτων με τις οποίες εμφανίζεται το κάθε βιολογικό μονοπάτι σε κάθε ιστολογικό υπότυπο CTCL. Η συχνότητες απεικονίζονται ως φάσμα από το 0% ως το 80%, με τις μικρότερες συχνότητες να αντιστοιχούν σε μπλε χρώμα και τις μεγαλύτερες σε κόκκινο χρώμα.

B.3.2. Ανεύρεση κλινικά σημαντικών μοριακών υπογραφών στα CTCL

Αναδρομική ανάλυση της ολικής επιβίωσης των ασθενών των οποίων τα δείγματα αλληλουχήθηκαν, έδειξε ότι με εξαίρεση ασθενείς με eMF που έχουν στατιστικά σημαντική καλύτερη ολική επιβίωση, όλες οι υπόλοιπες υποκατηγορίες CTCL, δεν παρουσιάζουν διαφορές (Εικόνα 33). Πέραν της σταδιοποίησης, το σύστημα ταξινόμησης WHO-EORTC αδυνατεί να παρέχει πληροφορίες ως προς την πρόγνωση των ασθενών με CTCL, μόνο με τη διάγνωση της ιστολογικής κατηγορίας. Εξαιρώντας τα δείγματα eMF που έχουν διαφορετική κλινική πορεία και εξαιρετικά χαμηλό μεταλλακτικό φορτίο, υποθέσαμε ότι εφόσον το μοριακό προφίλ όλων των CTCL παρουσιάζει μεγάλη αλληλοεπικάλυψη μεταξύ υποτύπων, θα μπορούσε να παρέχει ένα νέο σύστημα πρόγνωσης, επικουρικό του συστήματος WHO-EORTC.

Εικόνα 33. Αναδρομική ανάλυση της ολικής επιβίωσης ασθενών με διαφορετικούς ιστολογικούς υποτύπους CTCL με βάση το σύστημα ταξινόμησης WHO-EORTC (έλεγχος Log rank).

Αρχικά πραγματοποιήθηκε ανάλυση μη-επιβλεπόμενης, συσταδοποίησης (unsupervised clustering analysis) με τη μέθοδο Ward με βάση όλες τις τροποποιήσεις που ανιχνεύθηκαν. Εξαιτίας όμως του μεγάλου αριθμού μηεπαναλαμβανόμενων γενετικών τροποποιήσεων, η συσταδοποίηση των δειγμάτων δεν ήταν ικανή να ταξινομήσει τα δείγματα σε ομάδες με ικανό μέγεθος για περεταίρω ανάλυση (**Εικόνα 34**).

Εικόνα 34. Χάρτης μη-επιβλεπόμενης συσταδοποίησης (μέθοδος Ward) με βάση όλες τις γενετικές τροποποιήσεις που ανευρέθηκαν σε δείγματα CTCL, εξαιρουμένης της eMF. Ο χάρτης έχει αναστραφεί για λόγους ευκρίνειας. Κάθε ανεστραμμένη σειρά αντιστοιχεί σε ένα γονίδιο, το οποίο εάν φέρει γενετικές τροποποίησεις συμβολίζεται με κόκκινο. Κάθε ανεστραμμένη κολώνα αντιστοιχεί σε ένα ασθενή. Οι διαφορετικοί ιστολογικοί υπότυποι συμβολίζονται με διαφορετικό χρώμα.

Μη-επιβλεπόμενη συσταδοποίηση, καθώς και επιβλεπόμενη συσταδοποίηση με βάση τα 4 πιο συχνά τροποποιημένα γονίδια CDKN2A/B, PCLO, FAT1 ή TP53 ανέδειξε δύο μοριακές υπογραφές, με βάση την απουσία (υπογραφή A, n=28) ή παρουσία (υπογραφή B, n=28) τουλάχιστον ενός από τα 4 γονίδια (Εικόνα 35). Η κατανομή ιστολογικών υποτύπων στις δύο μοριακές ομάδες δεν παρουσίασε σημαντική διαφορά.

Εικόνα 35. Χάρτης επιβλεπόμενης συσταδοποίησης με βάση τις 4 συχνότερες τροποποιήσεις που ανευρέθηκαν σε δείγματα CTCL, εξαιρουμένης της eMF. Οι δύο μοριακές υπογραφές ορίζονται με βάση την απουσία (υπογραφή Α) ή παρουσία (υπογραφή Β) τουλάχιστον ενός από τα 4 γονίδια. Κάθε σειρά αντιστοιχεί σε ένα γονίδιο, το οποίο εάν φέρει γενετικές τροποποίησεις συμβολίζεται με πράσινο. Κάθε κολώνα αντιστοιχεί σε ένα ασθενή. Οι διαφορετικοί ιστολογικοί υπότυποι συμβολίζονται με διαφορετικό χρώμα και η κατανομή τους στην κάθε υπογραφή απεικονίζεται στο γράφημα με τα ιστογράμματα. Δείγματα από τις δύο υπογραφές είχαν στατιστικά σημαντική διαφορά στο μεταλλακτικό φορτίο, με την υπογραφή Β να παρουσιάζει ένα υπερμεταλλαγμένο γονότυπο (**Εικόνα 36**).

Εικόνα 36. Ανάλυση του συνολικού αριθμού μεταλλάξεων σε δείγματα CTCL, εξαιρουμένης της eMF, που εμπίπτουν στη μοριακή υπογραφή Α ή Β (έλεγχος Mann-Whitney).

Σε μορφολογικό επίπεδο, δείγματα με την υπογραφή Β παρουσίαζαν πιο συχνά, με στατιστικά σημαντική διαφορά, επιδερμοτροπισμό, μικροαποστημάτια Pautrier και καρρυορηξία, η οποία είναι δείκτης αποπτωτικής δραστηριότητας (**Εικόνα 37**).

Εικόνα 37. Σύγκριση συχνότητας εμφάνισης επιδερμοτροπισμού, μικροαποστηματίων Pautrier και καρυορρηξίας σε δείγματα CTCL εξαιρουμένης της eMF, που εμπίπτουν στη μοριακή υπογραφή Α ή B (έλεγχος Fisher).

Αναδρομική, μονομεταβλητή (univariate) ανάλυση ολικής επιβίωσης για το κάθε γονίδιο ξεχωριστά έδειξε ότι κανένα γονίδιο δεν προσδίδει στατιστικά σημαντική διαφορά επιβίωσης όταν φέρει γενετικές τροποποιήσεις, με εξαίρεση τα γονίδια CDKN2A ή B, τα οποία παρουσίασαν μια οριακή τάση χειρότερης επιβίωσης (**Εικόνα 38**).

Εικόνα 38. Αναδρομική, μονομεταβλητή (univariate) ανάλυση ολικής επιβίωσης σε ασθενείς με CTCL εξαιρουμένης της eMF, και γενετικές τροποποιήσεις στα γονίδια CDKN2A/B, PCLO, FAT1 ή TP53 (έλεγχος Log rank).

Αντίθετα, αναδρομική, μονομεταβλητή (univariate) ανάλυση ολικής επιβίωσης με βάση των συνδυασμό των 4 γονιδίων έδειξε ότι ασθενείς που εμπίπτουν στην μοριακή υπογραφή Β έχουν χειρότερη ολική επιβίωση με στατιστικά σημαντική διαφορά σε σχέση με ασθενείς που εμπίπτουν στην υπογραφή Α (**Εικόνα 39**).

Εικόνα 39. Αναδρομική, μονομεταβλητή (univariate) ανάλυση ολικής επιβίωσης σε ασθενείς με CTCL εξαιρουμένης της eMF, που εμπίπτουν στις μοριακές υπογραφές A και B (έλεγχος Log rank).

Παρομοίως αναδρομική, πολυμεταβλητή (multivariate) ανάλυση ολικής επιβίωσης έδειξε ότι ασθενείς που εμπίπτουν στην μοριακή υπογραφή Β έχουν στατιστικά σημαντικά χειρότερη ολική επιβίωση, ανεξάρτητα από ιστολογικό υπότυπο, την ηλικία και το ιστορικό προηγούμενης θεραπείας (**Εικόνα 40**).

Εικόνα 40. Αναδρομική, πολυμεταβλητή (multivariate) ανάλυση ολικής επιβίωσης (τεχνική αναλογικής παλινδρόμησης κινδύνου) σε ασθενείς με CTCL εξαιρουμένης της eMF, που εμπίπτουν στις μοριακές υπογραφές Α και Β.

B.3.3. Νεοπλασματικοί ανοσοφαινότυποι και η συσχέτιση τους με μοριακές υπογραφές σε δείγματα CTCL

Καθώς ο ανοσοφαινότυπος T-helper 2 έχει αρνητική προγνωστική αξία στα περιφερικά Τ λεμφώματα, εξετάσαμε με ανοσοϊστοχημεία (δερματικές βλάβες) και κυτταρομετρία ροής (κυκλοφορούντα νεοπλασματικά κύτταρα) το ποσοστό έκφρασης των μεταγραφικών παραγόντων Tbet (Th1 ανοσοφαινότυπος), GATA3 (Th2 ανοσοφαινότυπος), FoxP3 (Treg ανοσοφαινότυπος) και Bcl6 (Tfh ανοσοφαινότυπος) στα κακοήθη κύτταρα. Παρά την μεγάλη ετερογένεια στα επίπεδα έκφρασης, ο κυρίαρχος μεταγραφικός παράγοντας στο σύνολο των δειγμάτων ήταν ο GATA3 με στατιστικά σημαντική διαφορά (**Εικόνα 41a**). Παρομοίως, ανάλυση ανά ιστολογικό υπότυπο έδειξε ότι ο παράγοντας κυριαρχεί σε δείγματα eMF, aMF/LCT και SS (**Εικόνα 41**γ). Αντιστρόφως, όταν εξετάστηκαν τα επίπεδα έκφρασης των παραγόντων ως επί τοις εκατό των νεοπλασματικών κυττάρων ανά ιστολογικό υπότυπο, παρατηρήσαμε ότι τα επίπεδα των Tbet, GATA3 και FoxP3 δε διαφέρουν ανά ιστολογικό υπότυπο, ενώ ο παράγοντας Bcl6 παρουσίαζε υψηλότερα επίπεδα έκφρασης σε δείγματα SS (**Εικόνα 41δ**).

Παράλληλα, σε επίπεδο ανοσοϊστοχημείας οι 4 παράγοντες παρουσίαζαν συνέκφραση εντός της ίδιας περιοχής, ενώ μέσω κυτταρομετρίας ροής με μεγαλύτερη ακρίβεια μπορέσαμε να επιβεβαιώσουμε τη συνέκφραση εντός τους ίδιου κυττάρου (**Εικόνα 42α και β**). Αντίθετα, υπήρχαν δείγματα αρνητικά και για τους 4 παράγοντες. Ανάλυση μη-επιβλεπόμενης, συσταδοποίησης (unsupervised clustering analysis) με τη μέθοδο Ward όλων των T-helper ανοσοφαινοτυπικών δεδομένων, κατηγοριοποίησε τα δείγματα σε δύο συστάδες, εκ των οποίων η μία χαρακτηριζόταν από υψηλά επίπεδα GATA3 και μία που χαρακτηριζόταν από χαμηλά ή μηδενικά επίπεδα GATA3 (**Εικόνα 42γ**).

Εικόνα 41. Ανοσοφαινοτυπική ανάλυση έκφρασης T-helper μεταγραφικών παραγόντων σε νεοπλασματικά κύτταρα. (α) Ποσοτικοποίηση έκφρασης μεταξύ όλων των CTCL (έλεγχος Kruskal-

Wallis), (β) ενδεικτικές μικρογραφίες ανοσοϊστοχημικών χρώσεων, (γ,δ) ποσοτικοποίηση έκφρασης μεταξύ υποτύπων CTCL (έλεγχος Kruskal-Wallis).

Εικόνα 42. (α) Ενδεικτικές μικρογραφίες ανοσοϊστοχημικών χρώσεων Tbet και GATA3 από την ίδια περιοχή του ίδιου δείγματος, που δείχνει μερική συνέκφραση των δύο παραγόντων, (β) ενδεικτική ανάλυση ενδοκυττάριας κυτταρομετρίας ροής. Τα ιστογράμματα απεικονίζουν την μερική συνέκφραση των παραγόντων Tbet και GATA3 στα ίδια κύτταρα (κόκκινο) σε σχέση με FMO control σε νεοπλασματικά κύτταρα SS, gated ως CD3(+)CD4(+)CD7(-). (γ) χάρτης μη-επιβλεπόμενης συσταδοποίησης (μέθοδος Ward) με βάση τη συνέκφραση των παραγόντων Tbet, GATA3, FoxP3 και Bcl6. Οι δύο κύριες συστάδες χαρακτηρίζονται είτε από υψηλά επίπεδα GATA3 είτε από χαμηλά/μηδενικά επίπεδα GATA3.

Δεδομένης της ετερογένειας της έκφρασης των T-helper παραγόντων και της μερικής συνέκφρασης τους, η οποία δεν απαντάται σε φυσιολογικά λεμφοκύτταρα, αξιολογήσαμε το προφίλ T-helper πραγματοποιώντας αυτή τη φορά μέτρηση 25 κυτταροκινών στον ορό 32 ασθενών και 5 υγιών δοτών. Οι κυτταροκίνες που μετρήθηκαν ήταν οι IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL15, IL-17A, IL-17E/IL-25, IL-17F, IL-21, IL-22, IL-23, IL-27, IL-28A, IL-31, IL-33, GM-CSF, IFNγ, MIP3a, TNFa και TNFβ. Τέσσερις (4) κυτταροκίνες είχαν υψηλότερη διάμεσο τιμή σε ορούς ασθενών σε σχέση με τους ορούς υγιών δοτών, αντίθετα 8 κυτταροκίνες είχαν χαμηλότερη διάμεσο τιμή σε ορούς υγιών δοτών, με τις IL-12p70, IL-13, IL-17E/IL-25 και IL-21 να δείχνουν στατιστικά σημαντική διαφορά (Εικόνα 44). Παρόλη την υψηλή ευαισθησία της μεθόδου, 13 από τις κυτταροκίνες ήταν μη ανιχνεύσιμες (διάμεσος τιμή).

Εικόνα 43. Spider plot που απεικονίζει τις διαμέσους τιμές της κάθε ομάδας δειγμάτων για 25 κυτταροκίνες. Με μπλε απεικονίζονται τα δείγματα υγιών δοτών και με κόκκινο ασθενών CTCL.

Εικόνα 44. Απεικόνιση μίας κυτταροκίνης με στατιστικά σημαντικά υψηλότερα επίπεδα και τεσσάρων κυτταροκινών με στατιστικά σημαντικά χαμηλότερα επίπεδα σε ασθενείς με CTCL σε σχέση με υγιείς δότες (HD) (έλεγχος Mann-Whitney)

Από τους 32 ασθενείς των οποίων αναλύθηκαν οι οροί είχαν ταυτοχρόνως χαρακτηριστεί ανοσοφαινοτυπικά για τους 4 T-helper μεταγραφικούς παράγοντες. Ανάλυση με βάση τις συστάδες υψηλής η χαμηλής έκφρασης GATA3 φανέρωσαν στατιστικά σημαντικά υψηλότερα επίπεδα IL-17F και μία τάση για υψηλότερα επίπεδα CCL20, TNFa, IL-12/p70, IFN-γ και IL-13 (**Εικόνα 45**).

Εικόνα 45. Απεικόνιση 6 κυτταροκινών με υψηλότερα επίπεδα σε ασθενείς με CTCL και υψηλή έκφραση GATA3 σε σχέση με ασθενείς με χαμηλή/μηδενική έκφραση GATA3. Μόνο η IL-17F έδειξε στατιστικά σημαντική διαφορά (έλεγχος Mann-Whitney)

Επιστρέφοντας στο μοριακό προφίλ, εξετάσαμε τα επίπεδα έκφρασης των τεσσάρων μεταγραφικών παραγόντων ως προς τη συσχέτιση τους με τις υπογραφές Α και Β. Τα δείγματα της υπογραφής Β παρουσίασαν με στατιστικά σημαντική διαφορά υψηλότερα επίπεδα έκφρασης GATA3 και χαμηλότερα επίπεδα έκφρασης Tbet, ενώ δεν παρουσιάστηκαν διαφορές στα επίπεδα έκφρασης των FoxP3 και Bcl6 (**Εικόνα 46**).

Εικόνα 46. Επίπεδα έκφρασης των μεταγραφικών παραγόντων Tbet, GATA3, FoxP3 και Bcl6 σε ασθενείς που εμπίπτουν στην μοριακή υπογραφή A και B (έλεγχος Mann-Whitney).

Αξίζει να αναφερθεί ότι σε 8 δείγματα SS, ο κλωνικός πληθυσμός αξιολογήθηκε και ως προς το επίπεδο διαφοροποίησης του Τ-λεμφοκυττάρου μνήμης, αλλά όλα τα δείγματα παρουσίασαν ομοιογενή ανοσοφαινότυπο central memory με συγκρίσιμα επίπεδα των μορίων επιφανείας CD62L, CD45RO, CD95, IL2Rβ και IL7Ra ανεξαρτήτως μοριακής υπογραφής.

B.3.4. Ανάλυση του μυελικού μικροπεριβάλλοντος και συσχέτιση με το μοριακό προφίλ των CTCL

Μελετώντας μορφολογικά βιοψίες CTCL διαπιστώσαμε ότι ουδετεροφιλικοί πληθυσυμοί ανευρίσκονται σε συχνότητα 35.5% εντός του λεμφωματικού διηθήματος. Τα κύτταρα μυελικής προέλευσης στους όγκους συχνά αποτελούν ανοσοκατασταλτικούς πληθυσμούς MDSC και με βάση τη διαφοροποίηση τους ορίζονται ως μονοκυτταρικά M-MDSC ή ουδετεροφιλικά G-MDSC. Και οι δύο υποπληθυσμοί χαρακτηρίζονται από την έκφραση του ενζύμου Αργινάση-1.

Ανοσοϊστοχημική χρώση για Αργινάση-1 σε βιοπτικό υλικό ανέδειξε την παρουσία Αργινάση-1(+) πολυμορφοπύρηνων κυττάρων, ενώ τα Αργινάση-1(+) μονοπύρηνα κύτταρα ήταν εξαιρετικά σπάνια (Εικόνα 47). Τα κύτταρα τα οποία εξέφραζαν Αργινάση-1 συνέπιπταν με ουδετερόφιλα στην απλή χρώση αιματοξυλίνηςηωσίνης και όχι με ηωσινόφιλα.

Τα κύτταρα MDSC ήταν παρόντα σε 6 από 31 βλάβες MF και 10 από 14 βλάβες μη-MF CTCL (**Εικόνα 48α**). Παράλληλα το διήθημα ήταν σημαντικά πιο εμπλουτισμένο σε MDSC σε βλάβες μη-MF CTCL σε σχέση με βλάβες MF(**Εικόνα 48β**). Παρόλο που υπήρχαν λιγότερες MDSC θετικές βλάβες σε ασθενείς με eMF (2 από τις 1, 12.5%), σε σχέση με MDSC θετικές βλάβες σε ασθενείς με aMF (5 από τις 15, 33%), αλλά χωρίς στατιστικά σημαντική διαφορά (**Εικόνα 48γ**).

Εικόνα 48. (α) Σύγκριση συχνότητας MDSC θετικών δειγμάτων σε βλάβες MF και μη-MF (έλεγχος Fisher), (β) ανάλυση των Αργινάση-1 (+) κυττάρων ως επί τοις εκατό του διηθήματος σε βλάβες MF και μη-MF (έλεγχος Mann-Whitney), (α) σύγκριση συχνότητας MDSC θετικών δειγμάτων σε βλάβες eMF και aMF (έλεγχος Fisher).

Καμία συσχέτιση δεν παρατηρήθηκε με το ανοσοφαινοτυπικό T-helper προφίλ των κακοηθών κυττάρων και την παρουσία MDSC (**Εικόνα 49**).

Εικόνα 49. Ανάλυση των Tbet, GATA3, FoxP3 ή Bcl6 (+) κυττάρων ως επί τοις εκατό του διηθήματος σε βλάβες MDSC αρνητικές (μαύρο) και MDSC θετικές (κόκκινο) (έλεγχος Mann-Whitney).

Τέλος, αναδρομική, μονομεταβλητή ανάλυση της ολικής επιβίωσης σε ασθενείς με MF όλους τους ασθενείς με CTCL, ανεξάρτητα από την ιστολογία τους, ανέδειξε στατιστικά σημαντικά χειρότερη πρόγνωση σε ασθενείς που είχαν διήθημα MDSC στη διαγνωστική τους βιοψία (**Εικόνα 50α και β**).

Εικόνα 50. Αναδρομική, μονομεταβλητή ανάλυση ολικής επιβίωσης σε ασθενείς με (α) MF και (β) όλα τα CTCL ανεξάρτητα από την ιστολογία τους, που παρουσιάζουν ή όχι διήθημα MDSC (έλεγχος Log rank).

Παρόλο που η βλάβες MF παρουσίασαν χαμηλά ποσοστά διήθησης από MDSC, οι ασθενείς αυτοί παρουσιάζουν γενικευμένη ανοσοκαταστολή στα πλαίσια της οποίας εμφανίζουν συχνές λοιμώξεις. Ο πλήρης μηχανισμός ανάπτυξης ανοσοκαταστολής δεν έχει πλήρως διευκρινιστεί. Κατ'επέκταση αναλύσαμε με κυτταρομετρία ροής τα ποσοστά κυκλοφορούντων MDSC (G-MDSC: CD11b+CD14CD15+, M-MDSC: CD11b+CD14+HLA-DRlow/-) καθώς και των ανοσοκατασταλτικών κυττάρων Tregs αποκλειστικά σε ασθενεις με MF. Μελετώντας τους βασικούς ανοσοκατασταλτικούς πληθυσμούς στο περιφερικό αίμα, ενώ τα Tregs και τα M-MDSC δεν παρουσίασαν στατιστικά σημαντική διαφορά συγκριτικά με τους ομόλογους τους πληθυσμούς στο αίμα υγιών δοτών, αντικατοπτρίζοντας τα αποτελέσματα στο δέρμα, τα G-MDSC ανιχνεύτηκαν σε σημαντικά υψηλότερα ποσοστά (**Εικόνα 51**), εντυπωσιακή ήταν δε η ετερογένεια που παρουσίασαν σε σχέση με την κατανομή των υγιών δοτών.

Εικόνα 51. Σύγκριση συχνότητας (α) G-MDSC ως επί τοις εκατό ποσοστό των PBMC, (β) M-MDSC ως επί τοις εκατό ποσοστό των PBMC, (γ) Tregs ως επί τοις εκατό ποσοστό των CD4(+) λεμφοκυττάρων, μεταξύ υγιών δοτών και ασθενών με MF (έλεγχος Mann-Whitney).

Παρόλο που τα ποσοστά των M-MDSC δεν ήταν σημαντικά αυξημένα, τα ποσοστά αυτά παρουσίασαν στατιστικά σημαντική συσχέτιση με τα ποσοστά των G-MDSC. Στατιστικά σημαντική συσχέτιση μεταξύ ποσοστών G-MDSC και Tregs δεν ανιχνεύτηκε (**Εικόνα 52**).

Δεδομένης της ετερογένειας των ποσοστών κυκλοφορούντων G-MDSC, διερευνήσαμε τη συσχέτιση τους με κλινικές παραμέτρους. Σε πρώτο επίπεδο, ενώ ασθενείς με eMF παρουσίαζαν λιγότερα G-MDSC σε σχέση με ασθενείς με aMF, η διαφορά αυτή δεν ήταν στατιστικά σημαντική, γεγονός συμβατό με τα αποτελέσματα στο δέρμα (**Εικόνα 53**).

Εικόνα 52. Συσχέτιση ποσοστών (α) G-MDSC και M-MDSC (β) G-MDSC και Tregs, σε δείγματα ασθενών με MF (έλεγχος Pearson).

Εικόνα 53. Ανάλυση ποσοστών G-MDSC σε δείγματα υγιών δοτών, ασθενών με eMF και ασθενών με aMF (έλεγχος Mann-Whitney).

Παράλληλα τα ποσοστά κυκλοφορούντων G-MDSC ήταν υψηλότερα σε νεοδιαγνωσθέντες ή υποτροπιάζοντες ασθενείς, σε σχέση με ασθενείς, οι οποίοι κλινικά βρίσκονταν σε πλήρη ύφεση (**Εικόνα 54α**). Τα 10 από τα 12 δείγματα σε μερική ύφεση, προέρχονταν από ασθενείς που λάμβαναν θεραπεία με ιντερφερόνη-α2b. Παρόλο που οι ασθενείς βρίσκονταν σε ύφεση τα G-MDSC παρέμεναν ανιχνεύσιμα και σε επίπεδα σημαντικά υψηλότερα από υγιείς δότες. Αντίστροφη σχέση παρουσίασαν τα κύτταρα Tregs των οποίων τα ποσοστά ήταν αυξημένα σε ασθενείς με ύφεση, ενώ ο λόγος G-MDSC/ Tregs φάνηκε να αντικατοπτίζει την ενεργότητα της νόσου με λιγότερο εύρος κατανομής σε σχέση με τον απόλυτο αριθμό των ποσοστών G-MDSC (Εικόνα 54β και γ).

Εικόνα 54. Ανάλυση (α) ποσοστών G-MDSC (β) ποσοστών Tregs (γ) του λόγου G-MDSC/ Tregs σε δείγματα υγιών δοτών, ασθενών με ενεργό νόσο MF (AD-MF) και ασθενών MF σε μερική ύφεση (PR-MF) (έλεγχος Mann-Whitney). Σε ασθενείς με ύφεση οι κύκλοι χωρίς σκίαση αντιπροσωπεύουν ασθενείς που έλαβαν ιντερφερόνη- α2b, ο κύκλος με την γκρι σκίαση αντιπροσωπεύει ασθενή με θεραπεία δέσμης ηλεκτρονίων και ο κύκλος με τη μαύρη σκίαση αντιπροσωπεύει ασθενή με

Προοπτική ανάλυση της ολικής επιβίωσης ασθενών με υψηλά G-MDSC στο αίμα (τιμές στο αίμα > διάμεσης τιμής) έδειξε ότι τα G-MDSC φέρουν στατιστικά σημαντική αρνητική πρόγνωση σε ασθενείς με MF (**Εικόνα 55**).

Εικόνα 55. Προοπτική, μονομεταβλητή ανάλυση ολικής επιβίωσης σε ασθενείς με MF και υψηά ή χαμηλά ποσοστά κυκλοφορούντων G-MDSC (έλεγχος Log rank).

Τέλος, τα δεδομένα MDSC στο δέρμα αναλύθηκαν ως προς τη συσχέτιση τους με μοριακά δεδομένα από τους ίδιους ασθενείς. Παρόλο που η παρουσία MDSC δεν έδειξε στατιστικά σημαντική συσχέτιση με τις μοριακές υπογραφές Α ή Β, ούτε με συγκεκριμένα γονίδια, σε επίπεδο βιολογικών μονοπατιών συσχετίστηκαν σε στατιστικά σημαντικό βαθμό με την παρουσία μεταλλάξεων της επιδιόρθωση βλαβών του DNA (**Εικόνα 56**).

Εικόνα 56. Σύγκριση συχνότητας MDSC θετικών δειγμάτων σε βλάβες CTCL με ή χωρίς γενετικές τροποποιήσεις σχετιζόμενες με μηχανισμούς επιδιόρθωσης βλαβών του DNA (έλεγχος Fisher).

Β.4. Συζήτηση και Συμπεράσματα

Παρόλη την σπανιότητα τους, σε σχέση με τα υπόλοιπα λεμφοϋπερπλαστικά νοσήματα, τα CTCL συνιστούν από μόνα τους μία ομάδα νεοπλασμάτων με μεγάλη ετερογένεια σε επίπεδο ιστοπαθολογικής και κλινικής συμπεριφοράς, ενώ η ετερογένεια αυτή επεκτείνεται και στο επίπεδο των βιολογικών τους χαρακτηριστικών.

Το προφίλ γονιδιακής έκφρασης των CTCL χαρακτηρίζεται από ισχυρή έκφραση γονιδίων σχετιζόμενων με κυτταρική ενεργοποίηση και σηματοδότηση μέσω του TCR ή τους υποδοχείς κυτταροκινών, και από ταυτόχρονο αντιαποπτωτικό επαναπρογραμματισμό, που καθιστά τα καρκινικά κύτταρα λιγότερο ευάλωτα στον μετα-ενεργοποιητικό λεμφοκυτταρικό θάνατο. Παρόλα αυτά, μελέτες του ρεπερτορίου του TCR έχουν αποτύχει να συνδέσουν την πλειοψηφία των CTCL με συγκεκριμένα ανασυνδυασμένα TCR γονίδια, καταρρίπτοντας την υπόθεση καρκινογένεσης στα πλαίσια ερεθισμού από διακριτούς αντιγονικούς παράγοντες. Σύμφωνα με μελέτες αλληλούχισης η ενεργοποίηση που διαπιστώνεται στα κακοήθη Τ λεμφοκύτταρα, οφείλεται σε μεγάλο βαθμό σε γενετικές συνεισφέρουν στην ενεργοποίηση της τροποποιήσεις που κυτταρικής σηματοδότησης του λεμφοκυττάρου. Παράλληλα μέσω μεταλλάξεων και άλλων μηχανισμών τα CTCL χαρακτηρίζονται από πρωτοφανή επιγενετικό επαναπρογραμματισμό. Καθώς οι περισσότερες μελέτες εστιάζουν σε δείγματα MF/SS ο μεταλλακτικός χάρτης των CTCL δεν έχει διερευνηθεί στο πλήρες κλινικοπαθολογοανατομικό τους εύρος. Πέραν της κατανόησης της βιολογίας των CTCL, παραμένει ασαφές κατά πόσο η ανίχνευση συγκεκριμένων μεταλλάξεων ή μοριακών προφίλ έχει θέση στην καθημερινή κλινική πράξη για τη διάγνωση και αντιμετώπιση των CTCL.

Κύριος στόχος της παρούσας μελέτης ήταν η ανίχνευση γενετικών τροποποιήσεων σε δείγματα CTCL διαφόρων ιστολογικών υποτύπων μέσω στοχευμένης αλληλούχισης προκειμένου να ανιχνευθούν μοριακά προφίλ τα οποία θα μπορούσαν να συνεισφέρουν σε επίπεδο διάγνωσης και πρόγνωσης, ως επικουρικά συστήματα στο υπάρχον σύστημα ταξινόμησης WHO-EORTC. Παράλληλα, δευτερεύον στόχος ήταν η συσχέτιση συγκεκριμένων μοριακών μονοπατιών με ανοσοφαινοτυπικά χαρακτηριστικά των νεοπλασματικών κυττάρων και την παρουσία ανοσοκατασταλτικών κυττάρων του μικροπεριβάλλοντος.

Όπως έχει γίνει πλέον κατανοητό από πολλαπλές μελέτες αλληλούχισης, τα CTCL παρουσιάζουν μεγάλη μοριακή ετερογένεια. Στην ομάδα 77 ασθενών που αλληλουχίσαμε ανιχνεύσαμε 358 σωματικές γενετικές τροποποιήσεις, από τις οποίες μόνο 46 ανευρέθηκαν σε συχνότητα άνω του 5%. Οι βλάβες aMF/LCT παρουσίαζαν τον υψηλότερο αριθμό μεταλλάξεων, ενώ αντιθέτως το ένα τρίτο των βλάβων eMF ήταν μεταλλακτικά σιωπηρές. Αυτό μπορεί να οφείλεται στη χαμηλή κυτταροβρίθεια των δειγμάτων με eMF, ή στο γεγονός ότι η πρώιμες βλάβες αναπτύσσονται σε ένα βαθμό μέσω μη-γενετικά καθορισμένων μηχανισμών, αλλά πιθανώς από επιγενετικές τροποποιήσεις ή σήματα του μικροπεριβάλλοντος και της χλωρίδας του δέρματος. Η κυρίαρχη υποκατάσταση σε δείγματα CTCL ήταν οι μεταβάσεις C>T, οι οποίες έχουν περιγραφεί και προηγουμένως σε δείγματα MF/SS. Ενδιαφέρον αποτελεί το γεγονός ότι νεοδιαγνωσθείσες βλάβες eMF είχαν χαμηλότερο φορτίο μεταβάσεων C>T σε σχέση με βλάβες eMF που λάμβαναν τοπική θεραπεία. Οι νεοδιαγνωσθείσες βλάβες δεν αποτελούσαν βλάβες με κάποια «εγγενώς χαμηλότερη κακοήθεια», καθώς οι δύο ομάδες ήταν ισοσκελισμένες όσον αφορά το στάδιο της νόσου και παρουσίαζαν παρόμοιο μέσο φορτίο νόσου, όπως φαίνεται από τις μέσες τιμές VAF. Αυτό το εύρημα επομένως, πιθανώς να συνηγορεί υπέρ της απόκτησης μεταλλάξεων στα πλαίσια της θεραπείας.

Ανάλυση των παθογενετικών μοριακών υπογραφών που ήταν παρούσες στα δείγματα CTCL με βάση τη βάση δεδομένων COSMIC mutational signatures, έδειξε ότι οι μεταβάσεις C>T προέκυπταν στα πλαίσια των υπογραφών SBS1 και SBS5, που συσχετίζονται με μεταλλάξεις στα πλαίσια της φυσιολογικής γήρανσης, ενώ

σε 34.8% οφείλονταν στην UV ακτινοβολία (SBS7). Παρόλο που το 44.1% των ασθενών είχε λάβει προηγουμένως συστηματική θεραπεία, δεν ανιχνεύτηκαν μεταλλακτικές υπογραφές σχετιζόμενες με χημειοθεραπευτικά σχήματα. Η ύπαρξη υπογραφών UV έχει περιγραφεί και σε προηγούμενες μελέτες MF και SS. Στη μελέτη αυτή, βλέποντας τη μοριακή εξέλιξη βλαβών MF διαφορετικών σταδίων, φαίνεται ότι η UV ακτινοβολία συνεισφέρει κατά ένα μέρος στην εξέλιξη της MF σε πιο προχωρημένα στάδια, αλλά όχι απαραίτητα στην de novo γένεση των πρώτων πρώιμων βλαβών. Όπως φαίνεται οι μεταβάσεις C>T είναι περισσότερες σε βλάβες που έχουν λάβει τοπική θεραπεία, ενώ συναθροίζονται εκθετικά, παρουσία διμερών θυμίνης, σε προχωρημένες βλάβες MF. Αντιθέτως, μικρός αριθμός μεταλλάξεων σχετιζόμενος με τη γήρανση, σε συνδυασμό με σήματα από το περιβάλλον, είναι πιθανόν να κατευθύνουν τη γένεση των πρώιμων βλαβών.

Ανεξαρτήτως ιστοπαθολογίας, γενετικές τροποποιήσεις με συχνότητα άνω του 10% ανευρέθηκαν σε 4 γονίδια, τα CDKN2A ή B, PCLO, FAT1 και TP53. Παρόλο που τα γονίδια CDKN2A/B και TP53 είναι γνωστά για το ρόλο τους στη βιολογία των περισσοτέρων συμπαγών και αιματολογικών κακοηθειών, τα γονίδια FAT1 και δεν έχουν διερευνηθεί εκτενώς, ειδικά στα πλαίσια αιματολογικών PCLO κακοηθειών. Εξετάζοντας την έκφραση του μορίου FAT1 σε πρωτογενή φυσιολογικά Τ-λεμφοκύτταρα και υπότυπους αυτών, νεοπλασματικά κύτταρα από ασθενείς με SS και κυτταρικές σειρές CTCL, ανιχνεύσαμε ελάχιστα ως μηδενικά επίπεδα έκφρασης του μορίου. Πράγματι το μόριο FAT1 εκφράζεται κατά βάση σε επιθηλιακούς ιστούς και αποτελεί μέρος της διακυτταρικής σύνδεσης Παράλληλα, λειτουργικό επιθηλιακών κυττάρων. σε επίπεδο χρώσεις ανοσοφθορισμού για το μεταγραφικό παράγοντα ΥΑΡ που ενεργοποιείται από το μονοπάτι Hippo στα πλαίσια μεταλλάξεων στα γονίδια FAT, δεν έδειξαν διαφορές στα επίπεδα του ενεργοποιημένου παράγοντα YAP ανάμεσα σε FAT1 μεταλλαγμένα ή μη δείγματα. Αυτό πιθανώς να σημαίνει ότι οι μεταλλάξεις στο FAT1 δεν έχουν άμεσες βιολογικές συνέπειες, παρά αποτελούν «επιβατικές» μεταλλάξεις (passenger mutations), που απλά αντικατοπτρίζουν ένα μεγάλο

μεταλλακτικό φορτίο. «Επιβατικές» μεταλλάξεις είναι επίσης συχνές σε μεγάλα γονίδια όπως το γονίδιο FAT1, του οποίου η πρωτεΐνη ξεπερνά το 4.500 αμινοξέα. Όσον αφορά το γονίδιο PCLO, δεν πραγματοποιήσαμε πειράματα έκφρασης ή λειτουργικής ενεργοποίησης, αλλά αντίστοιχα το μόριο PCLO εκφράζεται κατά βάση από νευρώνες και εντοπίζεται στην σύναψη ως στηρικτική πρωτεΐνη των εκκριτικών κυστιδίων που φέρουν τον νευροδιαβιβαστή, ενώ δεν έχει αναφερθεί η έκφραση του σε αιμοποιητικούς ιστούς. Παράλληλα, το γονίδιο PCLO είναι εξίσου μεγάλο και η πρωτεΐνη που κωδικοποιεί υπερβαίνει τα 5.000 αμινοξέα. Είναι λοιπόν πιθανόν οι μεταλλάξεις στο γονίδιο PCLO να εμπίπτουν στην ίδια κατηγορία.

Ανεξαρτήτως της βιολογικής σημασίας του κάθε γονιδίου ξεχωριστά, δεδομένης της μεγάλης βιολογικής ετερογένειας κατηγοριοποιήσαμε τα δείγματα με βάση τις 4 αυτές συχνές μεταλλάξεις και διαπιστώσαμε ότι η ύπαρξη τουλάχιστον μίας γενετικής τροποποίησης στα γονίδια *CDKN2A/B, PCLO, FAT1* και *TP53* (μοριακή υπογραφή B) αντιστοιχεί σε λεμφώματα με μεγαλύτερο μεταλλακτικό φορτίο, επιθετικά ιστολογικά στοιχεία, όπως αυξημένη καρρυορηξία, και δραματικά χειρότερη ολική επιβίωση, σε σχέση με λεμφώματα χωρίς μία από τις προαναφερθείσες τροποποιήσεις (μοριακή υπογραφή A). Η προγνωστική αξία της υπογραφής B ήταν ανεξάρτητη από ιστολογικούς υποτύπους, ηλικία και το ιστορικό προηγούμενης θεραπείας. Γενετικές τροποποιήσεις στο κάθε γονίδιο ξεχωριστά δεν παρείχαν στατιστικά σημαντικές διαφορές σε επίπεδο ολικής επιβίωσης.

Ανάλυση του ανοσοφαινοτύπου των δειγμάτων CTCL έδειξε επικράτηση του μεταγραφικού παράγοντα GATA3, ο οποίος έχει συσχετιστεί με αρνητική πρόγνωση σε λεμφαδενικά λεμφώματα από ώριμα Τ-λεμφοκύτταρα. Παραδόξως, τα δείγματα που παρουσίασαν ισχυρή έκφραση GATA3, συνεξέφραζαν και άλλους μεταγραφικούς παράγοντες, γεγονός μη συμβατό με το καθεστώς αποκλειστικής έκφρασης του κάθε παράγοντα σε φυσιολογικά CD4(+) Τ-λεμφοκύτταρα. Ομοίως,
δείγματα με υψηλά επίπεδα GATA3 παρουσίασαν υψηλά επίπεδα κυτταροκινών, όπως η κυτταροκίνη IL-17F, που δε σχετίζεται με κλασικό Th2 φαινότυπο, αλλά με Th17 φαινότυπο. Καθώς η υπογραφή Β σχετίζεται με υψηλά επίπεδα GATA3, είναι πιθανόν οι βλάβες αυτές να οδηγούνται από το υψηλό μεταλλακτικό φορτίο σε ενεργοποίηση πολλαπλών μονοπατιών κυτταρικής διαφοροποίησης, που δεν απαντώνται σε φυσιολογικά λεμφοκύτταρα.

Τέλος, διαπιστώσαμε ότι το μικροπεριβάλλον των CTCL συχνά χαρακτηρίζεται από την παρουσία ουδετεροφιλικών πληθυσμών G-MDSC. Τα κύτταρα αυτά ανιχνεύονται συχνότερα και σε υψηλότερα επίπεδα σε μη-MF δερματικές βλάβες και σπανιότερα σε MF βλάβες, ενώ δεν συσχετίζονται με το στάδιο της νόσου. Το γεγονός αυτό επισημαίνει τη σημασία των πληθυσμών αυτών στην παγίωση των πρώιμων βλαβών, πιθανώς καταστέλλοντας αντιδραστικά λεμφοκύτταρα που κατευθύνονται κατά των νεοπλασματικών κυττάρων. Η παρουσία των G-MDSC δε συσχετιζόταν παρόλα αυτά με τον T-helper ανοσοφαινότυπο των νεοπλασματικών κυττάρων.

Παρά την σπανιότητα τους σε δερματικές βλάβες MF τα κύτταρα G-MDSC ανιχνεύονται σε υψηλά ποσοστά και στο περιφερικό αίμα ασθενών με MF. Καθώς τα κύτταρα Tregs και M-MDSC δεν είναι σημαντικά αυξημένα στο περιφερικό αίμα, είναι πιθανό τα κύτταρα G-MDSC να συνεισφέρουν στα πλαίσια της συστηματικής ανοσοκαταστολής που χαρακτηρίζει τη νόσο, αλλά χρειάζονται περισσότερα λειτουργικά πειράματα με απομονωμένα κύτταρα G-MDSC προκειμένου να αποδειχθεί αυτό. Παράλληλα παραμένει άγνωστο κατά ποιο τρόπο τα κύτταρα G-MDSC αλληλεπιδρούν με νεοπλασματικά, αλλά και αντιδραστικά T-λεμφοκύτταρα. Ενώ αντίστοιχα με το δέρμα η παρουσία G-MDSC δε σχετίζεται με το στάδιο της νόσου, σχετίζεται με την ενεργότητα της νόσου, καθώς βλάβες σε μερική ύφεση παρουσιάζουν χαμηλότερα επίπεδα G-MDSC, που παραμένουν δε υψηλότερα από τα επίπεδα G-MDSC σε υγιείς δότες. Ενδιαφέρον αποτελεί το γεγονός ότι σε κατάσταση ύφεσης επάγονται κύτταρα Tregs και ο λόγος G-MDSC/Tregs αντικατοπτρίζει την ενεργότητα της νόσου. Τέλος, καθώς τα επίπεδα G-MDSC στον διαγνωστικό ιστό ή στο αίμα προσδίδουν αρνητική πρόγνωση σε ασθενείς με MF, τα κύτταρα αυτά θα μπορούσαν να αποτελέσουν ένα καινούριο βιοδείκτη για την ενεργότητα και την επιθετικότητα της νόσου, που θα σηματοδοτούσαν την ανάγκη για έναρξη ισχυρότερων θεραπειών.

Σε μοριακό επίπεδο η παρουσία G-MDSC δε σχετιζόταν με τις υπογραφές Α ή Β, ούτε με συγκεκριμένες μεταλλάξεις, αλλά ανάλυση σε επίπεδο βιολογικών μονοπατιών ανέδειξε ισχυρή συσχέτιση με μεταλλάξεις στο μονοπάτι επιδιόρθωσης βλαβών του DNA. Χρειάζονται περαιτέρω πειράματα σε κυτταρικές σειρές και πρωτογενές υλικό με μεταλλάξεις στο εν λόγω μονοπάτι προκειμένου να διαπιστωθεί ο μηχανισμός μέσω του οποίου έλκονται και ενεργοποιούνται κατασταλτικά κύτταρα G-MDSC.

Βιβλιογραφία

[1] Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127:2375-90.

[2] Society AC: Global Cancer Facts & Figures 4th Edition ed, 2018. pp. 28-9.

[3] A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project. Blood 1997, 89:3909-18.

[4] Vose J, Armitage J, Weisenburger D, International TCLP: International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008, 26:4124-30.

[5] 1975-2011 SCSRC: All Lymphoid Neoplasms With Detailed Non-Hodgkin Lymphoma Subtypes.

[6] Willemze R, Meijer CJ: Classification of cutaneous T-cell lymphoma: from Alibert to WHO-EORTC. J Cutan Pathol 2006, 33 Suppl 1:18-26.

[7] Karamanou M, Psaltopoulou T, Tsoucalas G, Androutsos G: Baron Jean-Louis Alibert (1768-1837) and the first description of mycosis fungoides. J BUON 2014, 19:585-8.

[8] Tilles G: Maladies d'Alibert. Quelques cas historiques en dermatologie. Paris: Springer, 2011. [9] Bradford PT, Devesa SS, Anderson WF, Toro JR: Cutaneous lymphoma incidence patterns in

the United States: a population-based study of 3884 cases. Blood 2009, 113:5064-73.

[10] Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM, Grange F, Harris NL, Kempf W, Kerl H, Kurrer M, Knobler R, Pimpinelli N, Sander C, Santucci M, Sterry W, Vermeer MH, Wechsler J, Whittaker S, Meijer CJ: WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105:3768-85.

[11] Fink-Puches R, Chott A, Ardigo M, Simonitsch I, Ferrara G, Kerl H, Cerroni L: The spectrum of cutaneous lymphomas in patients less than 20 years of age. Pediatr Dermatol 2004, 21:525-33.

[12] Korgavkar K, Xiong M, Weinstock M: Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol 2013, 149:1295-9.

[13] Hinds GA, Heald P: Cutaneous T-cell lymphoma in skin of color. J Am Acad Dermatol 2009, 60:359-75; quiz 76-8.

[14] Cocco P, t'Mannetje A, Fadda D, Melis M, Becker N, de Sanjose S, Foretova L, Mareckova J, Staines A, Kleefeld S, Maynadie M, Nieters A, Brennan P, Boffetta P: Occupational exposure to solvents and risk of lymphoma subtypes: results from the Epilymph case-control study. Occup Environ Med 2010, 67:341-7.

[15] Aschebrook-Kilfoy B, Cocco P, La Vecchia C, Chang ET, Vajdic CM, Kadin ME, Spinelli JJ, Morton LM, Kane EV, Sampson JN, Kasten C, Feldman AL, Wang SS, Zhang Y: Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014, 2014:98-105.

[16] Al-Aboud NM: Eponyms in Tuberculosis. wwwodermatolcom, 2016. p. 356.

[17] Massone C, Kodama K, Kerl H, Cerroni L: Histopathologic features of early (patch) lesions of mycosis fungoides: a morphologic study on 745 biopsy specimens from 427 patients. Am J Surg Pathol 2005, 29:550-60.

[18] Martinez-Escala ME, Kantor RW, Cices A, Zhou XA, Kaplan JB, Pro B, Choi J, Guitart J: CD8(+) mycosis fungoides: A low-grade lymphoproliferative disorder. J Am Acad Dermatol 2017, 77:489-96.

[19] Smith BD, Wilson LD: Management of mycosis fungoides. Part 1. Diagnosis, staging, and prognosis. Oncology (Williston Park) 2003, 17:1281-8.

[20] Cerroni L, Fink-Puches R, Back B, Kerl H: Follicular mucinosis: a critical reappraisal of clinicopathologic features and association with mycosis fungoides and Sezary syndrome. Arch Dermatol 2002, 138:182-9.

[21] Haghighi B, Smoller BR, LeBoit PE, Warnke RA, Sander CA, Kohler S: Pagetoid reticulosis (Woringer-Kolopp disease): an immunophenotypic, molecular, and clinicopathologic study. Mod Pathol 2000, 13:502-10.

[22] Kempf W, Ostheeren-Michaelis S, Paulli M, Lucioni M, Wechsler J, Audring H, Assaf C, Rudiger T, Willemze R, Meijer CJ, Berti E, Cerroni L, Santucci M, Hallermann C, Berneburg M, Chimenti S, Robson A, Marschalko M, Kazakov DV, Petrella T, Fraitag S, Carlotti A, Courville P, Laeng H, Knobler R, Golling P, Dummer R, Burg G, Cutaneous Lymphoma Histopathology Task Force Group of the European Organization for R, Treatment of C: Granulomatous mycosis fungoides and granulomatous slack skin: a multicenter study of the Cutaneous Lymphoma Histopathology Task Force Group of the European Organization For Research and Treatment of Cancer (EORTC). Arch Dermatol 2008, 144:1609-17.

[23] Steffen C: The man behind the eponym dermatology in historical perspective: Albert Sezary and the Sezary syndrome. Am J Dermatopathol 2006, 28:357-67.

[24] Wilson HT, Fielding J: Sezary's reticulosis with exfoliative dermatitis. Br Med J 1953, 1:1087-9.

[25] Halioua B, Revuz, J: Albert Jean Antoine Sézary et le syndrome de Sézary. Paris: Springer, 2011.

[26] Sézary A BY: Érythrodermie avec présence de cellules monstrueuses dans le derme et le sang circulant. Bull Soc Fr Dermatol Syph 1938, 45:254.

[27] Vonderheid EC: On the diagnosis of erythrodermic cutaneous T-cell lymphoma. J Cutan Pathol 2006, 33 Suppl 1:27-42.

[28] Narducci MG, Scala E, Bresin A, Caprini E, Picchio MC, Remotti D, Ragone G, Nasorri F, Frontani M, Arcelli D, Volinia S, Lombardo GA, Baliva G, Napolitano M, Russo G: Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 2006, 107:1108-15.

[29] Cetinozman F, Jansen PM, Vermeer MH, Willemze R: Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol 2012, 148:1379-85.

[30] Mario L. Marques-Piubelli MD, Carlos A. Torres-Cabala, M.D., Roberto N. Miranda, M.D.: Sézary syndrome. Pathology Outlines, 2020.

[31] A N: Erythroderma. ASAPA 2018 Fall Conference. Tucson, AZ, 2018.

[32] Cerroni L, Rieger E, Hodl S, Kerl H: Clinicopathologic and immunologic features associated with transformation of mycosis fungoides to large-cell lymphoma. Am J Surg Pathol 1992, 16:543-52.

[33] Kadin ME, Hughey LC, Wood GS: Large-cell transformation of mycosis fungoidesdifferential diagnosis with implications for clinical management: a consensus statement of the US Cutaneous Lymphoma Consortium. J Am Acad Dermatol 2014, 70:374-6. [34] Pulitzer M, Myskowski PL, Horwitz SM, Querfeld C, Connolly B, Li J, Murali R: Mycosis fungoides with large cell transformation: clinicopathological features and prognostic factors. Pathology 2014, 46:610-6.

[35] Robert E. LeBlanc MD: Mycosis Fungoides. Pathology Outlines, 2020.

[36] Bekkenk MW, Geelen FA, van Voorst Vader PC, Heule F, Geerts ML, van Vloten WA, Meijer CJ, Willemze R: Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 2000, 95:3653-61.

[37] Macaulay WL: Lymphomatoid papulosis. A continuing self-healing eruption, clinically benign--histologically malignant. Arch Dermatol 1968, 97:23-30.

[38] Kaudewitz P, Stein H, Burg G, Mason DY, Braun-Falco O: Atypical cells in lymphomatoid papulosis express the Hodgkin cell-associated antigen Ki-1. J Invest Dermatol 1986, 86:350-4.

[39] de Souza A, el-Azhary RA, Camilleri MJ, Wada DA, Appert DL, Gibson LE: In search of prognostic indicators for lymphomatoid papulosis: a retrospective study of 123 patients. J Am Acad Dermatol 2012, 66:928-37.

[40] Saggini A, Gulia A, Argenyi Z, Fink-Puches R, Lissia A, Magana M, Requena L, Simonitsch I, Cerroni L: A variant of lymphomatoid papulosis simulating primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma. Description of 9 cases. Am J Surg Pathol 2010, 34:1168-75.

[41] Kempf W, Kazakov DV, Scharer L, Rutten A, Mentzel T, Paredes BE, Palmedo G, Panizzon RG, Kutzner H: Angioinvasive lymphomatoid papulosis: a new variant simulating aggressive lymphomas. Am J Surg Pathol 2013, 37:1-13.

[42] Karai LJ, Kadin ME, Hsi ED, Sluzevich JC, Ketterling RP, Knudson RA, Feldman AL: Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am J Surg Pathol 2013, 37:1173-81.

[43] Lee SCaY-M: To be a "Lymphomatoid Papulosis Type E" or not to be? That Is a Question. Auctores 2019.

[44] Ralfkiaer E, Bosq J, Gatter KC, Schwarting R, Gerdes J, Stein H, Mason DY: Expression of a Hodgkin and Reed-Sternberg cell associated antigen (Ki-1) in cutaneous lymphoid infiltrates. Arch Dermatol Res 1987, 279:285-92.

[45] Kummer JA, Vermeer MH, Dukers D, Meijer CJ, Willemze R: Most primary cutaneous CD30-positive lymphoproliferative disorders have a CD4-positive cytotoxic T-cell phenotype. J Invest Dermatol 1997, 109:636-40.

[46] Wasco MJ, Fullen D, Su L, Ma L: The expression of MUM1 in cutaneous T-cell lymphoproliferative disorders. Hum Pathol 2008, 39:557-63.

[47] Prieto-Torres L, Rodriguez-Pinilla SM, Onaindia A, Ara M, Requena L, Piris MA: CD30positive primary cutaneous lymphoproliferative disorders: molecular alterations and targeted therapies. Haematologica 2019, 104:226-35.

[48] Gonzalez CL, Medeiros LJ, Braziel RM, Jaffe ES: T-cell lymphoma involving subcutaneous tissue. A clinicopathologic entity commonly associated with hemophagocytic syndrome. Am J Surg Pathol 1991, 15:17-27.

[49] Willemze R, Jansen PM, Cerroni L, Berti E, Santucci M, Assaf C, Canninga-van Dijk MR, Carlotti A, Geerts ML, Hahtola S, Hummel M, Jeskanen L, Kempf W, Massone C, Ortiz-Romero PL, Paulli M, Petrella T, Ranki A, Peralto JL, Robson A, Senff NJ, Vermeer MH, Wechsler J, Whittaker S, Meijer CJ, Group ECL: Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 2008, 111:838-45.

[50] Kumar S, Krenacs L, Medeiros J, Elenitoba-Johnson KS, Greiner TC, Sorbara L, Kingma DW, Raffeld M, Jaffe ES: Subcutaneous panniculitic T-cell lymphoma is a tumor of cytotoxic T lymphocytes. Hum Pathol 1998, 29:397-403.

[51] Bosisio F, Boi S, Caputo V, Chiarelli C, Oliver F, Ricci R, Cerroni L: Lobular panniculitic infiltrates with overlapping histopathologic features of lupus panniculitis (lupus profundus) and subcutaneous T-cell lymphoma: a conceptual and practical dilemma. Am J Surg Pathol 2015, 39:206-11.

[52] Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T, Mizuno F, Osato T: Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 1990, 335:128-30.

[53] Au WY, Ma SY, Chim CS, Choy C, Loong F, Lie AK, Lam CC, Leung AY, Tse E, Yau CC, Liang R, Kwong YL: Clinicopathologic features and treatment outcome of mature T-cell and natural killer-cell lymphomas diagnosed according to the World Health Organization classification scheme: a single center experience of 10 years. Ann Oncol 2005, 16:206-14.

[54] Iwatsuki K, Ohtsuka M, Akiba H, Kaneko F: Atypical hydroa vacciniforme in childhood: from a smoldering stage to Epstein-Barr virus-associated lymphoid malignancy. J Am Acad Dermatol 1999, 40:283-4.

[55] Ruiz-Maldonado R, Parrilla FM, Orozco-Covarrubias ML, Ridaura C, Tamayo Sanchez L, Duran McKinster C: Edematous, scarring vasculitic panniculitis: a new multisystemic disease with malignant potential. J Am Acad Dermatol 1995, 32:37-44.

[56] Iwatsuki K, Xu Z, Takata M, Iguchi M, Ohtsuka M, Akiba H, Mitsuhashi Y, Takenoshita H, Sugiuchi R, Tagami H, Kaneko F: The association of latent Epstein-Barr virus infection with hydroa vacciniforme. Br J Dermatol 1999, 140:715-21.

[57] Sangueza M, Plaza JA: Hydroa vacciniforme-like cutaneous T-cell lymphoma: clinicopathologic and immunohistochemical study of 12 cases. J Am Acad Dermatol 2013, 69:112-9.

[58] Robson A, Assaf C, Bagot M, Burg G, Calonje E, Castillo C, Cerroni L, Chimenti N, Dechelotte P, Franck F, Geerts M, Gellrich S, Goodlad J, Kempf W, Knobler R, Massone C, Meijer C, Ortiz P, Petrella T, Pimpinelli N, Roewert J, Russell-Jones R, Santucci M, Steinhoff M, Sterry W, Wechsler J, Whittaker S, Willemze R, Berti E: Aggressive epidermotropic cutaneous CD8+ lymphoma: a cutaneous lymphoma with distinct clinical and pathological features. Report of an EORTC Cutaneous Lymphoma Task Force Workshop. Histopathology 2015, 67:425-41.

[59] Guitart J, Martinez-Escala ME, Subtil A, Duvic M, Pulitzer MP, Olsen EA, Kim E, Rook AH, Samimi SS, Wood GS, Girardi M, Junkins-Hopkins J, Ivan DS, Selim MA, Sable KA, Virmani P, Pincus LB, Tetzlaff MT, Kim J, Kim YH: Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lymphomas. Mod Pathol 2017, 30:761-72.

[60] Berti E, Tomasini D, Vermeer MH, Meijer CJ, Alessi E, Willemze R: Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas. A distinct clinicopathological entity with an aggressive clinical behavior. Am J Pathol 1999, 155:483-92.

[61] Petrella T, Maubec E, Cornillet-Lefebvre P, Willemze R, Pluot M, Durlach A, Marinho E, Benhamou JL, Jansen P, Robson A, Grange F: Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma? Am J Surg Pathol 2007, 31:1887-92.

[62] Wobser M, Roth S, Reinartz T, Rosenwald A, Goebeler M, Geissinger E: CD68 expression is a discriminative feature of indolent cutaneous CD8-positive lymphoid proliferation and distinguishes this lymphoma subtype from other CD8-positive cutaneous lymphomas. Br J Dermatol 2015, 172:1573-80.

[63] Berti E, Cerri A, Cavicchini S, Delia D, Soligo D, Alessi E, Caputo R: Primary cutaneous gamma/delta T-cell lymphoma presenting as disseminated pagetoid reticulosis. J Invest Dermatol 1991, 96:718-23.

[64] Toro JR, Liewehr DJ, Pabby N, Sorbara L, Raffeld M, Steinberg SM, Jaffe ES: Gamma-delta T-cell phenotype is associated with significantly decreased survival in cutaneous T-cell lymphoma. Blood 2003, 101:3407-12.

[65] Beltraminelli H, Leinweber B, Kerl H, Cerroni L: Primary cutaneous CD4+ small-/mediumsized pleomorphic T-cell lymphoma: a cutaneous nodular proliferation of pleomorphic T lymphocytes of undetermined significance? A study of 136 cases. Am J Dermatopathol 2009, 31:317-22.

[66] Rodriguez Pinilla SM, Roncador G, Rodriguez-Peralto JL, Mollejo M, Garcia JF, Montes-Moreno S, Camacho FI, Ortiz P, Limeres-Gonzalez MA, Torres A, Campo E, Navarro-Conde P, Piris MA: Primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma expresses follicular T-cell markers. Am J Surg Pathol 2009, 33:81-90.

[67] Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, Zackheim H, Duvic M, Estrach T, Lamberg S, Wood G, Dummer R, Ranki A, Burg G, Heald P, Pittelkow M, Bernengo MG, Sterry W, Laroche L, Trautinger F, Whittaker S, Iscl/Eortc: Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007, 110:1713-22.

[68] Whittaker S, Hoppe R, Prince HM: How I treat mycosis fungoides and Sezary syndrome. Blood 2016, 127:3142-53.

[69] Kim YH, Willemze R, Pimpinelli N, Whittaker S, Olsen EA, Ranki A, Dummer R, Hoppe RT, Iscl, the E: TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007, 110:479-84.

[70] Shinohara MM, Shustov A: How I treat primary cutaneous CD30(+) lymphoproliferative disorders. Blood 2019, 134:515-24.

[71] Duvic M: Choosing a systemic treatment for advanced stage cutaneous T-cell lymphoma: mycosis fungoides and Sezary syndrome. Hematology Am Soc Hematol Educ Program 2015, 2015:529-44.

[72] al Ze: CTCL. 13th edition ed, 2013.

[73] Girardi M, Heald PW, Wilson LD: The pathogenesis of mycosis fungoides. N Engl J Med 2004, 350:1978-88.

[74] Papadavid E, Economidou J, Psarra A, Kapsimali V, Mantzana V, Antoniou C, Limas K, Stratigos A, Stavrianeas N, Avgerinou G, Katsambas A: The relevance of peripheral blood T-helper 1 and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sezary syndrome. Br J Dermatol 2003, 148:709-18.

[75] Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM, Ubriani R, Vittorio CC, Junkins-Hopkins JM, Wysocka M, Rook AH: Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 2005, 115:798-812.

[76] Guenova E, Watanabe R, Teague JE, Desimone JA, Jiang Y, Dowlatshahi M, Schlapbach C, Schaekel K, Rook AH, Tawa M, Fisher DC, Kupper TS, Clark RA: TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 2013, 19:3755-63.

[77] Wolk K, Mitsui H, Witte K, Gellrich S, Gulati N, Humme D, Witte E, Gonsior M, Beyer M, Kadin ME, Volk HD, Krueger JG, Sterry W, Sabat R: Deficient cutaneous antibacterial competence in cutaneous T-cell lymphomas: role of Th2-mediated biased Th17 function. Clin Cancer Res 2014, 20:5507-16.

[78] Ehrentraut S, Schneider B, Nagel S, Pommerenke C, Quentmeier H, Geffers R, Feist M, Kaufmann M, Meyer C, Kadin ME, Drexler HG, MacLeod RA: Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma. Oncotarget 2016, 7:34201-16.

[79] Miyagaki T, Sugaya M, Suga H, Kamata M, Ohmatsu H, Fujita H, Asano Y, Tada Y, Kadono T, Sato S: IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. Clin Cancer Res 2011, 17:7529-38.

[80] Fried I, Cerroni L: FOXP3 in sequential biopsies of progressive mycosis fungoides. Am J Dermatopathol 2012, 34:263-5.

[81] Alcantara-Hernandez M, Torres-Zarate C, Perez-Montesinos G, Jurado-Santacruz F, Dominguez-Gomez MA, Peniche-Castellanos A, Ferat-Osorio E, Neri N, Nambo MJ, Alvarado-Cabrero I, Moreno-Lafont M, Huerta-Yepez S, Bonifaz LC: Overexpression of hypoxia-inducible factor 1 alpha impacts FoxP3 levels in mycosis fungoides--cutaneous T-cell lymphoma: clinical implications. Int J Cancer 2014, 134:2136-45.

[82] Meyerson HJ, Awadallah A, Pavlidakey P, Cooper K, Honda K, Miedler J: Follicular center helper T-cell (TFH) marker positive mycosis fungoides/Sezary syndrome. Mod Pathol 2013, 26:32-43.

[83] Campbell JJ, Clark RA, Watanabe R, Kupper TS: Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 2010, 116:767-71.

[84] Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, Dorosario AA, Chaney KS, Cutler CS, Leboeuf NR, Carter JB, Fisher DC, Kupper TS: Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med 2012, 4:117ra7.

[85] Hochheiser K, Bedoui S, Gebhardt T: Multilayered T-cell memory in human skin. Ann Transl Med 2015, 3:311.

[86] Hwang ST, Janik JE, Jaffe ES, Wilson WH: Mycosis fungoides and Sezary syndrome. Lancet 2008, 371:945-57.

[87] de Masson A, O'Malley JT, Elco CP, Garcia SS, Divito SJ, Lowry EL, Tawa M, Fisher DC, Devlin PM, Teague JE, Leboeuf NR, Kirsch IR, Robins H, Clark RA, Kupper TS: High-throughput sequencing of the T cell receptor beta gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med 2018, 10.

[88] Mantaka P, Malecka A, Troen G, Helsing P, Gjersvik P, Beiske K, Delabie J: Folliculotropic Mycosis Fungoides with Skewed T-cell Receptor CDR3 Motif: Suggestive of Lipid-antigen Selection? Acta Derm Venereol 2017, 97:1081-6.

[89] Krejsgaard T, Willerslev-Olsen A, Lindahl LM, Bonefeld CM, Koralov SB, Geisler C, Wasik MA, Gniadecki R, Kilian M, Iversen L, Woetmann A, Odum N: Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood 2014, 124:761-70.

[90] Fanok MH, Sun A, Fogli LK, Narendran V, Eckstein M, Kannan K, Dolgalev I, Lazaris C, Heguy A, Laird ME, Sundrud MS, Liu C, Kutok J, Lacruz RS, Latkowski JA, Aifantis I, Odum N, Hymes KB, Goel S, Koralov SB: Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis of Cutaneous T-Cell Lymphoma. J Invest Dermatol 2018, 138:1116-25.

[91] Kadin ME: Pathobiology of CD30+ cutaneous T-cell lymphomas. J Cutan Pathol 2006, 33 Suppl 1:10-7.

[92] Newcom SR, Kadin ME, Ansari AA: Production of transforming growth factor-beta activity by Ki-1 positive lymphoma cells and analysis of its role in the regulation of Ki-1 positive lymphoma growth. Am J Pathol 1988, 131:569-77.

[93] Mori M, Manuelli C, Pimpinelli N, Mavilia C, Maggi E, Santucci M, Bianchi B, Cappugi P, Giannotti B, Kadin ME: CD30-CD30 ligand interaction in primary cutaneous CD30(+) T-cell lymphomas: A clue to the pathophysiology of clinical regression. Blood 1999, 94:3077-83.

[94] Sun J, Yi S, Qiu L, Fu W, Wang A, Liu F, Wang L, Wang T, Chen H, Wang L, Kadin ME, Tu P, Wang Y: SATB1 Defines a Subtype of Cutaneous CD30(+) Lymphoproliferative Disorders Associated with a T-Helper 17 Cytokine Profile. J Invest Dermatol 2018, 138:1795-804.

[95] Daniels J, Doukas PG, Escala MEM, Ringbloom KG, Shih DJH, Yang J, Tegtmeyer K, Park J, Thomas JJ, Selli ME, Altunbulakli C, Gowthaman R, Mo SH, Jothishankar B, Pease DR, Pro B, Abdulla FR, Shea C, Sahni N, Gru AA, Pierce BG, Louissaint A, Jr., Guitart J, Choi J: Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas. Nat Commun 2020, 11:1806.

[96] Karenko L, Hahtola S, Ranki A: Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res 2007, 118:353-61.

[97] Laharanne E, Oumouhou N, Bonnet F, Carlotti M, Gentil C, Chevret E, Jouary T, Longy M, Vergier B, Beylot-Barry M, Merlio JP: Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol 2010, 130:1707-18.

[98] Thangavelu M, Finn WG, Yelavarthi KK, Roenigk HH, Jr., Samuelson E, Peterson L, Kuzel TM, Rosen ST: Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sezary syndrome. Blood 1997, 89:3371-7.

[99] Laharanne E, Chevret E, Idrissi Y, Gentil C, Longy M, Ferrer J, Dubus P, Jouary T, Vergier B, Beylot-Barry M, Merlio JP: CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol 2010, 23:547-58.

[100] Xing X, Feldman AL: Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015, 22:29-49.

[101] Lamant L, Pileri S, Sabattini E, Brugieres L, Jaffe ES, Delsol G: Cutaneous presentation of ALK-positive anaplastic large cell lymphoma following insect bites: evidence for an association in five cases. Haematologica 2010, 95:449-55.

[102] Pedersen MB, Hamilton-Dutoit SJ, Bendix K, Ketterling RP, Bedroske PP, Luoma IM, Sattler CA, Boddicker RL, Bennani NN, Norgaard P, Moller MB, Steiniche T, d'Amore F, Feldman AL: DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood 2017, 130:554-7.

[103] Wada DA, Law ME, Hsi ED, Dicaudo DJ, Ma L, Lim MS, Souza A, Comfere NI, Weenig RH, Macon WR, Erickson LA, Ozsan N, Ansell SM, Dogan A, Feldman AL: Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 2011, 24:596-605.

[104] King RL, Dao LN, McPhail ED, Jaffe ES, Said J, Swerdlow SH, Sattler CA, Ketterling RP, Sidhu JS, Hsi ED, Karikehalli S, Jiang L, Gibson SE, Ondrejka SL, Nicolae A, Macon WR, Dasari S, Parrilla Castellar E, Feldman AL: Morphologic Features of ALK-negative Anaplastic Large Cell Lymphomas With DUSP22 Rearrangements. Am J Surg Pathol 2016, 40:36-43.

[105] Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, Viswanatha DS, Law ME, Kip NS, Ozsan N, Grebe SK, Frederick LA, Eckloff BW, Thompson EA, Kadin ME, Milosevic D, Porcher JC, Asmann YW, Smith DI, Kovtun IV, Ansell SM, Dogan A, Feldman AL: Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 2012, 120:2280-9.

[106] Velusamy T, Kiel MJ, Sahasrabuddhe AA, Rolland D, Dixon CA, Bailey NG, Betz BL, Brown NA, Hristov AC, Wilcox RA, Miranda RN, Medeiros LJ, Jeon YK, Inamdar KV, Lim MS, Elenitoba-Johnson KS: A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood 2014, 124:3768-71.

[107] Kiessling MK, Oberholzer PA, Mondal C, Karpova MB, Zipser MC, Lin WM, Girardi M, Macconaill LE, Kehoe SM, Hatton C, French LE, Garraway LA, Polier G, Suss D, Klemke CD, Krammer PH, Gulow K, Dummer R: High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood 2011, 117:2433-40.

[108] Vaque JP, Gomez-Lopez G, Monsalvez V, Varela I, Martinez N, Perez C, Dominguez O, Grana O, Rodriguez-Peralto JL, Rodriguez-Pinilla SM, Gonzalez-Vela C, Rubio-Camarillo M, Martin-Sanchez E, Pisano DG, Papadavid E, Papadaki T, Requena L, Garcia-Marco JA, Mendez M, Provencio M, Hospital M, Suarez-Massa D, Postigo C, San Segundo D, Lopez-Hoyos M, Ortiz-Romero PL, Piris MA, Sanchez-Beato M: PLCG1 mutations in cutaneous T-cell lymphomas. Blood 2014, 123:2034-43.

[109] Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A, Zehnder A, Ohgami R, Kulkarni S, Armstrong R, Weng WK, Gratzinger D, Tavallaee M, Rook A, Snyder M, Kim Y, Khavari PA: Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet 2015, 47:1056-60.

[110] McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, Zwerner JP, Hucks D, Dave U, Zhao Z, Eischen CM: Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 2015, 126:508-19.

[111] Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, Xi L, Meng Q, Langridge T, Drummond J, Donehower LA, Doddapaneni H, Muzny DM, Gibbs RA, Wheeler DA, Duvic M: Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 2015, 47:1426-34.

[112] Kiel MJ, Sahasrabuddhe AA, Rolland DC, Velusamy T, Chung F, Schaller M, Bailey NG, Betz BL, Miranda RN, Porcu P, Byrd JC, Medeiros LJ, Kunkel SL, Bahler DW, Lim MS, Elenitoba-Johnson KS: Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun 2015, 6:8470.

[113] Park J, Yang J, Wenzel AT, Ramachandran A, Lee WJ, Daniels JC, Kim J, Martinez-Escala E, Amankulor N, Pro B, Guitart J, Mendillo ML, Savas JN, Boggon TJ, Choi J: Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 2017, 130:1430-40.

[114] Van Arnam JS, Lim MS, Elenitoba-Johnson KSJ: Novel insights into the pathogenesis of T-cell lymphomas. Blood 2018, 131:2320-30.

[115] Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M: Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 2014, 13:3331-5.

[116] van Doorn R, Slieker RC, Boonk SE, Zoutman WH, Goeman JJ, Bagot M, Michel L, Tensen CP, Willemze R, Heijmans BT, Vermeer MH: Epigenomic Analysis of Sezary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers. J Invest Dermatol 2016, 136:1876-84.

[117] van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, van der Velden PA, Vermeer MH, Willemze R, Yan PS, Huang TH, Tensen CP: Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol 2005, 23:3886-96.

[118] Whittaker S: Global Patterns of Methylation in Sezary Syndrome Provide Insight into the Role of Epigenetics in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2016, 136:1753-4.

[119] Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, Group PMSW, Getz G, Rozen SG, Stratton MR, Consortium P: The repertoire of mutational signatures in human cancer. Nature 2020, 578:94-101.

[120] Marquard L, Gjerdrum LM, Christensen IJ, Jensen PB, Sehested M, Ralfkiaer E: Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology 2008, 53:267-77.

[121] Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, Curphey DP, Wen J, McConnell K, Qi J, Wong H, Russo G, Zhang J, Marcucci G, Bradner JE, Porcu P, Caligiuri MA: Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discov 2016, 6:986-1005.

[122] Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17:330-9.

[123] Qu K, Zaba LC, Satpathy AT, Giresi PG, Li R, Jin Y, Armstrong R, Jin C, Schmitt N, Rahbar Z, Ueno H, Greenleaf WJ, Kim YH, Chang HY: Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer Cell 2017, 32:27-41 e4.

ΠΕΡΙΛΗΨΗ

Εισαγωγή: Τα πρωτοπαθή δερματικά λεμφώματα (cutaneous T-cell lymphoma, CTCL) έχουν πολύπλοκο μεταλλακτικό προφίλ, το οποίο απαρτίζεται πρωτίστως από μεταλλάξεις σε γονίδια που συμμετέχουν στην ενδοκυττάρια σηματοδότηση των λεμφοκυττάρων καθώς και ρυθμιστών του επιγονιδιώματος. Παρά την πληθώρα μοριακών δεδομένων στα CTCL από το 2011, μέχρι στιγμής παραμένει ασαφές ποια είναι η χρησιμότητα του μοριακού προφίλ στην κλινική αντιμετώπιση των CTCL. Κύριος στόχος της μελέτης αυτής ήταν η ανίχνευση μοριακών υποτύπων CTCL, εντός του πλήρους εύρους ιστολογιών CTCL, και η αξιολόγηση της διαγνωστικής και προγνωστικής τους αξίας. Δευτερεύον στόχος ήταν η συσχέτιση μοριακών υπογραφών με ανοσοφαινοτυπικά χαρακτηριστικά των νεοπλασματικών κυττάρων και του μιροπεριβάλλοντος των δερματικών βλαβών, εστιάζοντας στα ανοσοκατασταλτικά κύτταρα μυελικής προέλευσης (myeloid-derived suppressor cells, MDSC).

Μεθοδολογία: Πραγματοποιήσαμε στοχευμένη αλληλούχιση σε 585 γονίδια, τα οποία είναι συχνά μεταλλαγμένα σε συμπαγείς όγκους και αιματολογικές MSKCC) σε 77 κακοήθειες (HemePACT, δείγματα CTCL, στα οποία περιλαμβάνονταν βλάβες από πρώιμα στάδια Σπογγοειδούς Μυκητίασης (early Mycosis Fungoides, eMF), προχωρημένα στάδια Σπογγοειδούς Μυκητίασης/μεγαλοκυτταρικής μετατροπής, advanced Mycosis Fungoides/Large Cell Transformed MF, aMF/LCT), CD30+ λεμφοϋπερπλαστικές εξεργασίες (CD30+ Lymphoproliferative disorders, CD30+ LPD), γδCTCL και άλλα σπάνια CTCL. Στατιστική συσχέτιση uε ιστολογικές και κλινικές παραμέτρους πραγματοποιήθηκε για τα μοριακά δεδομένα. Ανοσοφαινοτυπικές μελέτες συσχέτισης πραγματοποιήθηκαν στο δέρμα, αίμα και ορούς ασθενών. Συγκεκριμένα, αξιολογήσαμε την Th-πόλωση των νεοπλασματικών κυττάρων για

150

τους 4 βασικούς Th-μεταγραφικούς παράγοντες μέσω ανοσοϊστοχημείας και κυτταρομετρίασ ροής, την κατάσταση T-μνήμης των νεοπλασματικών κυττάρων μέσω κυτταρομετρίας ροής, επίπεδα κυκλοφορούντων κυτταροκινών μέσω multiplex μεθοδολογίας Luminex για 25 κυτταροκίνες, και την παρουσία ιστικών και κυκλοφορούντων MDSC μέσω ανοσοϊστοχημείας και κυτταρομετρίασ ροής, αντίστοιχα.

Αποτελέσματα: Ανιχνεύσαμε γενετικές τροποποιήσεις σε 358 γονίδια. Οι βλάβες eMF παρουσίασαν τον χαμηλότερο αριθμό μεταλλάξεων, ενώ βλάβες aMF/LCTπαρουσίασαν τον υψηλότερο αριθμό μεταλλάξεων ανάμεσα σε όλους τους υποτύπους CTCL. Οι μεταβάσεις C>T αποτέλεσαν την κύρια υποκατάσταση. Οι βλάβες eMF ήταν μεταλλακτικά σιωπηρές στο ένα τρίτο των δειγμάτων, με μεταβάσεις C>T να επικρατούν σε βλάβες που είχαν λάβει τοπική θεραπεία, συγκριτικά με νεοδιαγνωσθείσες βλάβες.Μεταλακτικές υπογραφές UV ακτινοβολίας αντιπροσώπευαν το 34.8% των μεταλλακτικών εξεργασιών στα δείγματα CTCL. Παρόλη την μοριακή ετερογένεια ανάμεσα στα δείγματα, σε επίπεδο βιολογικών μονοπατιών, όλοι οι ιστολογικοί υπότυποι CTCL εμφάνιζαν μεταλλάξεις στο μονοπάτι ενδοκυττάριας σηματοδότησης GPCR/RTK/MAPK. Μόνο 4 γονίδια παρουσίαζαν επαναλαμβανόμενες μεταλλάξεις σε ποσοστό άνω του 10% των δειγμάτων: τα γονίδια CDKN2A/B, PCLO, FAT1 και TP53. Η ύπαρξη μεταλλάξεων έστω και σε ένα από αυτά τα γονίδια (μοριακή υπογραφή Β) συσχετιζόταν με ένα υπότυπο CTCL με υψηλό μεταλλακτικό φορτίο, επιθετικά παθολογοανατομικά χαρακτηριστικά, συμπεριλαμβανομένης της υψηλής έκφρασης GATA3, και σημαντικά χειρότερη ολική επιβίωση, ανεξάρτητα από ηλικία, ιστολογικό τύπο και το ιστορικό προηγούμενων θεραπειών. Τα δείγματα, αξιολογήθηκαν επίσης για την παρουσία MDSC στους ιστούς και στο αίμα. Παρόλο που η παρουσία ουδετεροφιλικών MDSC g(ranulocytic-MDSC, G-MDSC) ήταν συχνότερη σε δερματικές βλάβες από μη-MF υλικό, G-MDSC ανιχνεύθηκαν σε υψηλά ποσοστά στο περιφερικό αίμα ασθενών με MF, τα οποία συσχετίζονταν με την ενεργότητα της νόσου. Η παρουσία ιστικών G-MDSC και τα υψηλά επίπεδα κυκλοφορούντων G-MDSC σχετίζονταν με πτωχή πρόγνωση σε ασθενείς με MF. Ανάλυση του μοριακού προφίλ βλαβών με G-MDSC ανέδειξε συσχέτιση με την παρουσία μεταλλάξεων στη μηχανή επιδιόρθωσης βλαβών του DNA.

Συμπεράσματα: Παρόλο που το μεταλλακτικό και ανοσολογικό προφίλ των CTCL είναι εξαιρετικά πολύπλοκο, η μοριακή υπογραφή B, η πόλωση προς Th-2-like φαινοτύπους και η παρουσία G-MDSC, θα μπορούσαν να αποτελέσουν κλινικά χρήσιμους βιοδείκτες, στη διάγνωση και πρόγνωση ασθενών με CTCL, σε συνδυασμό με το υπάρχον σύστημα ταξινόμησης WHO-EORTC.

ABSTRACT

Introduction: Cutaneous T-cell Lymphomas (CTCLs) have a complex mutational landscape, which is primarily composed of genetic alterations in immune signaling elements and epigenetic modulators. Despite the availability of molecular data by multiple studies since 2011 it is still unclear whether these mutations have any clinical utility in the management of CTCL. The primary goal of this study was to identify molecular subgroups within the entire range of CTCL histologies and assess their diagnostic and prognostic impact. Secondarily, we assessed whether specific mutational signatures correlate with immunophenotypic features of the malignant T-cell clone and the tumor microenvironment, focusing on myeloid-derived suppressor cells (MDSC).

Methodology: We performed targeted sequencing for 585 genes that are frequently mutated in solid and hematological malignancies (HemePACT, MSKCC) in 77 CTCL samples, including lesions from early Mycosis Fungoides (eMF), advanced Mycosis Fungoides/Large Cell Transformed MF (aMF/LCT), Sezary Syndrome (SS), CD30+ Lymphoproliferative disorders (CD30+ LPD), $\gamma\delta$ CTCL and other rare CTCL. Correlative histologic and clinical analyses were performed. Correlative immunophenotypic studies were performed on diagnostic skin, blood and serum specimen. We assessed Thpolarization of the neoplastic cells with immunohistochemistry and flow cytometry for the 4 major Th polarization master regulatory transcription factors, T-cell memory status of the neoplastic cells with flow cytometry, circulating cytokine levels with a Luminex-based multiplex assay for 25 cytokines and the presence of infiltrating and circulating MDSC with immunohistochemistry and flow cytometry and flow cytometry.

Results: We identified genetic alterations in 358 genes with eMF lesions showing the lowest mutational burden, while aMF/LCT lesions showed the highest mutational burden among all subtypes. C>T transitions were the predominant substitution

among all subsets. eMF lesions were mutationally silent in one third of cases with C>T transitions predominating in topically treated specimen as opposed to treatment naïve specimen. UV mutational signatures composed 34.8% of mutational processes in CTCL. Although there was remarkable pathway heterogeneity, at the pathway level all CTCL histological subsets carried mutations in the GPCR/RTK/MAPK signaling pathway. Only 4 genes were recurrently mutated in more than 10% of CTCLs, CDKN2A/B, PCLO, FAT1 and TP53.We identified that the presence of mutations in at least one of those genes (Signature B) defined a disease subset with increased tumor mutational burden, aggressive pathological features, including increased GATA3 expression, and significantly worse overall survival, independently of age, histological diagnosis or prior treatment. Samples were also assessed for the presence of MDSC in the tissue and blood. In skin lesions, granulocytic-MDSC (G-MDSC) predominated in non-MF lesions and were seen to a lesser extent in MF lesions. Paradoxically, despite the paucity of skin lesions in infiltrating G-MDSC, blood specimen showed a significant expansion of circulating G-MDSC, which correlated with disease activity. Both tissue infiltrating and circulating G-MDSC, conferred a poor prognosis to MF patients. Analysis of the molecular profile of G-MDSC rich lesions revealed a significant association with the presence of DNA-damage response element mutations.

Conclusions: Despite being complex, the genomic and immune landscape of CTCL, including molecular signature B, skewing towards a Th-2-like phenotype and the presence of G-MDSC, can serve as clinically relevant biomarkers for the diagnosis and prognosis of CTCL, when used in conjunction with the current WHO-EORTC classification system.

ΕΥΧΑΡΙΣΤΙΕΣ

Τελειώνοντας την εκπόνηση της διατριβής μου θα ήθελα να ευχαριστήσω την ομάδα ανθρώπων που συνεισέφεραν στην περάτωση αυτού του ταξιδιού. Πρώτα από όλα, θέλω να ευχαριστήσω από τα βάθη της καρδιάς μου και τα τρία μέλη της επιτροπής μου και κυρίως την κυρία Σιακαντάρη για την γνήσια συμπαράσταση, τους ατέρμονες επιστημονικούς διαλόγους, και την καθοδήγηση της για την πλεύση μου στον ακαδημαϊκό στίβο. Παράλληλα θα ήθελα να ευχαριστήσω το κέντρο Ανοσολογίας και Ανοσοθεραπείας του Καρκίνου, του νοσοκομείου Άγιος Σάββας, για την προσφορά του εργαστηριακού τους χώρου και υλικών προκειμένου να πραγματοποιηθούν τα πειράματα στα MDSC. Ιδιαίτερα θα ήθελα να σταθώ και να ευχαριστήσω την κυρία Σόνια Περέζ, για την τεράστια βοήθεια στο στήσιμο πειραμάτων, όταν ήμουν ακόμη άπειρος απόφοιτος της Ιατρικής, χωρίς μεγάλη εργαστηριακή εμπειρία, και την μύηση μου στον κόσμο της Ανοσολογίας του Καρκίνου, αλλά και τον κόσμο της επιστημονικής έρευνας γενικότερα. Τα εφόδια που μου έχει αφήσει η εμπειρία μου στον Άγιο Σάββα θα τα κρατάω σε όλη μου τη ζωή ως ερευνητής. Ακόμα, θα ήθελα να ευχαριστήσω τον Marcel van den Brink που με υποδέχτηκε στο εργαστήριο του στο Memorial Sloan Kettering Cancer Center και με φιλοξένησε σε ένα χώρο που έγινε το δεύτερο σπίτι μου για 6 χρόνια μέχρι να τελειώσω τα πειράματα μου και τη διατριβή μου. Μαζί με την Lia Palomba μου άνοιξαν τα μάτια σε ένα καινούριο κόσμο, όπου όλα είναι εφικτά αρκεί να το θέλεις. Παράλληλα, θέλω να ευχαριστήσω όλους τους ερευνητές στο εργαστήριο των οποίων η συμβολή ήταν κύριας σημασίας, όπως ο Enrico Velardi, Jennifer Tsai, Tobias Wertheimer, Melody Smith, Σωτήρης Φόρτης και Ελευθερία Αναστασοπούλου. Τέλος, θα ήθελα να ευχαριστήσω το ίδρυμα Μποδοσάκη, το SASS Foundation και το Greenberg Foundation, χωρίς την βοήθεια των οποίων δεν θα ήταν εφικτή η παρούσα μελέτη.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Προσωπικά στοιχεία

Όνομα: Κίμων Αργυρόπουλος Διεύθυνση: 68 E 93rd street, apt 5R, New York, NY 10128 Ημερομηνία Γέννησης: 21/05/1987 Τόπος γέννησης: Αμαρούσιο Αττικής Εθνικότητα: Ελληνική, Μόνιμος κάτοικος Ηνωμένων Πολιτειών Αμερικής (Green Card holder) Αριθμός τηλεφώνου: (+1) 646-255-5794 email: Kimon.Argyropoulos@nyumc.org, Kimon.Argyropoulos@gmail.com

Ιατρική εξειδίκευση

- Ιούλιος 2021 Ιούλιος 2023: Εξειδίκευση στην Παθολογική Ανατομική Νοσημάτων Αιμοποιητικού και Λεμφικού ιστού (Hematopathology) Memorial Sloan-Kettering Cancer Center Νέα Υόρκη, NY, ΗΠΑ
- Ιούλιος 2018 Ιούνιος 2021: Ειδικότητα Παθολογικής Ανατομικής (Anatomic Pathology)
 New York University, School of Medicine
 Νέα Υόρκη, ΝΥ, ΗΠΑ

Πανεπιστημιακές Σπουδές

- Υποψήφιος διδάκτωρ, Ιούνιος 2012- σήμερα
 Τίτλος διδακτορικής διατριβής: Μελέτη του μοριακού και ανοσολογικού προφίλ πρωτοπαθών δερματικών Τ-λεμφωμάτων
 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
- Πτυχίο Ιατρικής, Σεπτέμβριος 2005 Ιούλιος 2011 Βαθμός: 8.84, Άριστα Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Ερευνητική Εμπειρία

- Σεπτέμβριος 2012 Ιούλιος 2018: Διδακτορικός ερευνητής van den Brink laboratory, Department of Immunology Memorial Sloan-Kettering Cancer Center, New York, NY
 - Ανοσοβιολογία και γονιδιωματικός χαρακτηρισμός εξωλεμφαδενικών μη-Hodgkin λεμφωμάτων

- ο Δερματικά Τ-λεμφώματα
- ο Μακροσφαιριναιμία Waldenstrom
- Αναγεννητική βιολογία του θύμου αδένα στα πλαίσια οξείας και χρόνιας υποστροφής
- Αύγουστος 2011 Αύγουστος 2012: Διδακτορικός ερευνητής Κέντρο Ανοσολογίας και Ανοσοθεραπείας του Καρκίνου Νοσοκομείο Άγιος Σάββας, Αθήνα
 - Ανοσολογία του μικροπεριβάλλοντος δερματικών Τ-λεμφωμάτων
- Αύγουστος 2007 Αύγουστος 2011: Προπτυχιακός ερευνητής Κέντρο Ανοσολογίας και Ανοσοθεραπείας του Καρκίνου Νοσοκομείο Άγιος Σάββας, Αθήνα
 - Ο ρόλος των γλυκοκορτικοειδών στη βιολογία ανθρώπινων ΝΚ-λεμφοκυττάρων

USMLE

- Step 1 (3 Οκτωβρίου 2016): 251
- Step 2 CS (6 louvíou 2017): Pass (first attempt)
- STEP 2CK (22 Αυγούστου 2017): 237
- ECFMG Certified

Βραβεία και υποτροφίες

- 2016-2018 American Society of Blood and Marrow Transplantation Young Investigator Award
- 2016-2018
 Steven Greenberg Lymphoma Research Award
 Memorial Sloan Kettering Cancer Center Internal Grant
 PI: Lia Palomba, MD; Research Fellow: Kimon Argyropoulos, MD
- 2014-2015 SASS Foundation for Medical Research Research Fellowship
- 2012-2014
 Ίδρυμα Μποδοσάκη
 Μεταπτυχιακή υποτροφία
- 2008-2011
 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
 Προπτυχιακή υποτροφία

Επιστημονικές δημοσιεύσεις

• Citation number (11/22/2020): 1,041

- h-index: 10
- i10-index: 10
- 1. Argyropoulos KV, Pulitzer M, Mohanty A, Mondello P, Horwitz S, Myskowski P, Moskowitz A, Dogan A, Querfeld C, Rapaport F, Siakantaris M, Galasso N, van den Brink M, Palomba ML. Targeted genomic analysis of Cutaneous T cell Lymphomas identifies a subset with aggressive clinicopathological features.

Blood Cancer Journal. 2020 Nov;10(11):116

 Maurano MT, Ramaswami S, Zappile P, Dimartino D, Boytard L, Ribeiro-Dos-Santos AM, Vulpescu NA, Westby G, Shen G, Feng X, Hogan MS, Ragonnet-Cronin M, Geidelberg L, Marier C, Meyn P, Zhang Y, Cadley J, Ordoñez R, Luther R, Huang E, Guzman E, Arguelles-Grande C, Argyropoulos KV, Black M, Serrano A, Call ME, Kim MJ, Belovarac B, Gindin T, Lytle A, Pinnell J, Vougiouklakis T, Chen J, Lin LH, Rapkiewicz A, Raabe V, Samanovic MI, Jour G, Osman I, Aguero-Rosenfeld M, Mulligan MJ, Volz EM, Cotzia P, Snuderl M, Heguy A. Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region

<u>Genome Research</u>. 2020 Oct 22 (online ahead of print)

 Argyropoulos KV, Serrano A, Hu J, Black M, Feng X, Shen G, Call M, Kim MJ, Lytle A, Belovarac B, Vougiouklakis T, Lin LH, Moran U, Heguy A, Troxel A, Snuderl M, Osman I, Cotzia P, Jour G. Association of initial viral load in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients with outcome and symptoms.

American Journal of Pathology. 2020 Sep;190(9):1881-1887

 Taki F, Lopez K, Zupan B, Bergin P, Docampo MD, Alves-Bezerra M, Toth JG, Chen Q, Argyropoulos KV, Barboza L, Pickup E, Fancher N, Hiller A, Gross S, Cohen DE, van den Brink MRM, Toth M. Maternal Programming of Social Dominance via Milk Cytokines.

iScience. 2020 Aug 21;23(8):101357

5. Argyropoulos KV, Pulitzer M, Perez S, Korkolopoulou P, Angelopoulou M, Baxevanis C, Palomba ML, Siakantaris MP. Tumor-infiltrating and Circulating Granulocytic Myeloid-Derived Suppressor Cells correlate with disease activity and adverse clinical outcomes in Mycosis Fungoides.

Clinical and Translational Oncology. 2020, 22: 1059–1066

 Munshi M, Liu X, Chen JG, Xu L, Tsakmaklis N, Demos MG, Kofides A, Guerrera ML, Jimenez C, Chan GG, Hunter ZR, Palomba ML, Argyropoulos KV, Meid K, Keezer A, Gustine J, Dubeau T, Castillo JJ, Patterson CJ, Wang J, Buhrlage SJ, Gray NS, Treon SP, Yang G. The BCR component SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas.

Blood Cancer Journal. 2020 Jan 31;10(1):12

 Ziegler CGK, Kim J, Piersanti K, Oyler-Yaniv A, Argyropoulos KV, van den Brink MRM, Palomba ML, Altan-Bonnet N, Altan-Bonnet G. Constitutive Activation of the B Cell Receptor Underlies Dysfunctional Signaling in Chronic Lymphocytic Leukemia

Cell Reports. 2019 Jul 23;28(4):923-937.e3

8. Zumrut HE, Batool S, **Argyropoulos KV**, Williams N, Azad R, Mallikaratchy PR. Integrating Ligand-receptor Interactions and In Vitro Evolution for Streamlined Discovery of Artificial Nucleic Acid Ligands

Molecular Therapy Nucleic Acids. 2019 Jun 4;17:150-163

 Tsai JJ, Velardi E, Shono Y, Argyropoulos KV, Holland AM, Smith OM, Yim NL, Rao UK, Kreines FM, Lieberman SR, Young LF, Lazrak A, Youssef S, Fu YY, Liu C, Lezcano C, Murphy GF, Na IK, Jenq RR, Hanash AM, Dudakov JA, van den Brink MRM. Nrf2 regulates CD4+ T cell-induced acute graft-versus-host disease in mice.

Blood. 2018 Dec 27;132(26):2763-2774

10. Batool S, **Argyropoulos KV**, Azad R, Okeoma P, Zumrut H, Bhandari S, Dekhang R, Mallikaratchy PR. Dimerization of an aptamer generated from Ligand-guided selection (LIGS) yields a high affinity scaffold against B-cells.

Biochim Biophys Acta Gen Subj. 2019 Jan;1863(1):232-240

11. Argyropoulos KV and Palomba ML. First-Generation and Second-Generation Bruton Tyrosine Kinase Inhibitors in Waldenström Macroglobulinemia.

Hematol Oncol Clin North Am. 2018 Oct;32(5):853-864

12. Velardi E, Tsai JJ, Radtke S, Cooper K, **Argyropoulos KV**, Jae-Hung S, Young LF, Lazrak A, Smith OM, Lieberman S, Kreines F, Shono Y, Wertheimer T, Jenq RR, Hanash AM, Narayan P, Lei Z, Moore MA, Kiem HP, van den Brink MRM, Dudakov JA. Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury.

Nature Medicine. 2018 Feb;24(2):239-246

13. Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, Gunset G, Perna F, Kreines FM, Levy ER, Lieberman S, Jay HV, Tuckett AZ, Zakrzewski JL, Tan L, Young LF, Takvorian K, Dudakov JA, Jenq RR, Hanash AM, Motta AC, Murphy GF, Liu C, Schietinger A, Sadelain M, van den Brink MR. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity.

Nature Medicine. 2017 Feb;23(2):242-249

14. Castillo JJ, Hunter ZR, Yang G, **Argyropoulos K**, Palomba ML, Treon SP. Future therapeutic options for patients with Waldenström macroglobulinemia.

Best Practice & Research Clinical Haematology. 2016 Jun;29(2):206-215

15. Mitchell E, Klein SL, Argyropoulos KV, Sharma A, Chan RB, Toth JG, Barboza L, Bavley C, Bortolozzi A, Chen Q, Liu B, Ingenito J, Mark W, Dudakov J, Gross S, Di Paolo G, Artigas F, van den Brink M, Toth M. Behavioural traits propagate across generations via segregated iterative-somatic and gametic epigenetic mechanisms

Nature Communications. 2016 May 13;7:11492

16. Argyropoulos KV, Vogel R, Ziegler CG, Altan-Bonnet G, Velardi E, Dogan A, Arcila M, Patel M, Knapp K, Hunter ZR, Treon SP, van den Brink MRM and Palomba ML. Clonal B-cells in Waldenström's Macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling.

Leukemia. 2016 May 30(5):1116-25

17. Xu L, Hunter ZR, Tsakmaklis N, Cao Y, Yang G, Chen J, Liu X, Kanan S, Castillo JJ, Tai YT, Zehnder JL, Brown JR, Carrasco RD, Advani R, Sabile JM, Argyropoulos K, Lia Palomba M, Morra E, Trojani A, Greco A, Tedeschi A, Varettoni M, Arcaini L, Munshi NM, Anderson KC, Treon SP. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia.

British Journal of Haematology. 2016 Mar;172(5):735-44

18. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, Argyropoulos KV, Yang G, Cao Y, Xu L, Patterson CJ, Rodig S, Zehnder JL, Aster JC, Harris NL, Kanan S, Ghobrial I, Castillo JJ, Laubach JP, Hunter ZR, Salman Z, Li J, Cheng M, Clow F, Graef T, Palomba ML, Advani RH. Ibrutinib in previously treated Waldenström's macroglobulinemia.

New England Journal of Medicine. 2015 Apr 9;372(15):1430-40

19. Siakantaris MP, Argyropoulos KV, Ioannou S, Papadopoulou V, Tzeletas G, Tsonis J, Dimitrakopoulou A, Yiannopoulou KG, Pangalis GA, Vaiopoulos G. Cytomegalovirus meningoencephalitis after rituximab treatment for primary central nervous system lymphoma.

The Neurologist. 2015 Jan; 19(2):35-7

20. Siakantaris M, Tsirigotis P, Stavroyianni N, **Argyropoulos KV**, Girkas K, Pappa V, Chondropoulos S, Papadavid E, Sakellari I, Anagnostopoulos A, Antoniou C, Dervenoulas J. Management of Cutaneous T-Cell Lymphoma Patients With Extracorporeal Photopheresis. The Hellenic Experience.

Transfusion and Apheresis Science. 2012 Apr;46(2):189-93

21. Moustaki A, **Argyropoulos KV**, Baxevanis CN, Papamichail M, Perez SA. Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function.

Cancer Immunology Immunotherapy. 2011 Dec;60(12):1683-95

Προφορικές ανακοινώσεις

- 1. Argyropoulos KV, Velardi E, Tsai JJ, Lazrak A, Jahn K, Dudakov J, van den Brink MRM. The Damage Sensory Molecule TRPA1 Positively Regulates Endogenous Thymic Regeneration after Damage. 59th American Society of Hematology Annual Meeting, December 9-12 2017, Atlanta, GA USA
- Argyropoulos KV, Velardi E, Tsai JJ, Lazrak A, Jahn K, Dudakov J, van den Brink MRM. The Damage Sensory Molecule TRPA1 Positively Regulates Endogenous Thymic Regeneration after Damage. Regeneration, Nature Conference, November 16-18 2017, Milan, Italy
- 3. Argyropoulos KV, Vogel R, Ziegler CG, Altan-Bonnet G, Velardi E, Dogan A, Arcila M, Patel M, Knapp K, Hunter ZR, Treon SP, van den Brink MRM and Palomba ML. Does aberrant BCR signaling contribute to WM survival signaling? 9th International Workshop on Waldenström's Macroglobulinemia, Invited Talk, October 5-9, 2016, Amsterdam, the Netherlands
- 4. Argyropoulos KV, Ziegler CG, Altan-Bonnet G, Dogan A, van den Brink MR and Palomba ML. Multiparameter Phosphoprofiling of the B-Cell Receptor Pathway in Waldenström's Macroglobulinemia. 56th American Society of Hematology Annual Meeting, December 6-9, 2014, San Fransisco, CA, USA
- Treon SP, Palomba ML, Tripsas C, Meid K, Warren D, Varma G, Green R, Argyropoulos KV, Yang G, Cao Y, Xu L, Patterson C, Rodig C, Zehnder J, Aster JC, Lee Harris N, Kanan S, Ghobrial I, Castillo J, Laubach J, Hunter ZR, Advani R. Ibrutinib in previously treated patients with Waldenström's

Macroglobulinemia. 8th International Workshop on Waldenström's Macroglobulinemia, August 13-17, 2014, London, UK

 Argyropoulos KV, Ziegler GK, Altan-Bonnet G, Dogan A, van den Brink MR, Palomba ML. Mulitiparameter single cell phosphoprofiling of the BCR signaling pathway in Waldenström's Macroglobulinemia. 8th International Workshop on Waldenström's Macroglobulinemia, Young Investigator Award, August 13-17, 2014, London, UK

Αναρτημένες ανακοινώσεις

- Argyropoulos KV, Horwitz SM, Rapaport F, Velardi E, Myskowski P, Querfeld C, Pulitzer M, Dogan S, Gallagher M, Socci ND, Levine RL, Patel M, Galasso N, van den Brink MRM, Palomba ML. High-Depth, Targeted, Next Generation Sequencing Identifies Novel Genetic Alterations in Cutaneous T-Cell Lymphoma. 57th American Society of Hematology Annual Meeting, December 5-8, 2015, Orlando, USA
- Argyropoulos KV, Ziegler C, Horwitz S, Altan-Bonnet G, van den Brink M.R, Palomba M. Multiparameter phosphoflow-cytometric analysis of the IL-4/STAT6 axis in Leukemic-Cutaneous T-cell Lymphoma. T-Cell Lymphoma Forum, January 23-25, 2014, San Fransisco, USA
- Management of Cutaneous T-Cell Lymphoma Patients With Extracorporeal Photopheresis. The Hellenic Experience. Siakantaris M, Tsirigotis P, Stavroyianni N, Argyropoulos KV, Girkas K, Pappa V, Chondropoulos S, Papadavid E, Sakellari I, Anagnostopoulos A, Antoniou C, Dervenoulas J. Panhellenic Conference of Hematology, November 24-26, 2011, Athens
- NK Cells and Glucocorticoids in Cancer Immunotherapy. Moustaki A Iliopoulou EG, Argyropoulos KV, Stranjalis G, Baxevanis CN, Sakas DE, Papamichail M, Perez SA, Recent Advanvces In Cancer Immunotherapy With An Emphasis On Vaccines, 9-October 11, 2008, Athens

Γλώσσες

- Ελληνικά
- Αγγλικά (Certificate of Proficiency in English of Cambridge)
- Γερμανικά (C1 Diplom, Goethe Institut)

Μέλος σε επιστημονικές οργανώσεις

- College of American Pathologists
- European Society of Pathology
- Medical Association of Athens, Greece