NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Parallelizing control flow in mixed imperative - SQL
analytics using speculation

Evangelos G. Danias

Supervisors: Dimitrios Gunopoulos, Professor (NKUA)
Anastasia Ailamaki, Professor (EPFL)

ATHENS
JULY 2022

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAENIKOINQNIQN

NTYXIAKH EPTAZIA

MapaAAnAiopog eAéyxou pong o€ YEIKTA
TTPOOCTAKTIKA-SQL mwpoypdappata avaAuong dedopévwv
XPNOIMOTTOIWVTAG EIKATIES

EuvayyeAog I. Aavidg

EmiBAémrovreg: AnunRTtpilog MNouvétrouAog, Kabnyntrg (EKIA)
AvaoTtacia Aihapdkn, Kadnyntpia (EPFL)

AOHNA
IOYAIOZ 2022

BSc THESIS

Parallelizing control flow in mixed imperative - SQL analytics using speculation

Evangelos G. Danias
S.N.: 1115201800039

SUPERVISORS: Dimitrios Gunopoulos, Professor (NKUA)
Anastasia Ailamaki, Professor (EPFL)

NTYXIAKH EPTrAZIA

MapaAANAICPOG EAEYXOU POAG O€ PEIKTA TTPOOTAKTIKA-SQL TTpoypdupaTa avaAuong
OeQONEVWV XPNOIUOTIOIWVTAG EIKOTIEG

EuvayyeAog I. Aavidg
A.M.: 1115201800039

EMIBAENMONTEZ: AnuniTtpiog MNouvétroulog, KaBnyntig (EKITA)
AvaoTtacia Aihapdakn, KaBnyntpia (EPFL)

ABSTRACT

Data analysis in the present day is moving at breakneck speed, with an ever increasing
amount of companies and organizations abandoning the structured query languages in
favor of mixed imperative-SQL workflows.

The engines that execute these mixed programs, however, are currently not capable of
resolving dependencies between queries and the imperative constructs (e.g. control flow
dependencies), thus commonly adopting an (almost) query-at-a-time execution fashion
which heavily limits task-parallelism. Instead, the available resources are allocated in or-
der to improve data parallelism, which can quickly lead to diminishing returns depending
on the nature of the workflow being executed.

In this thesis, we propose a unified architecture which bridges the code parsing and exe-
cution with the analytical processing engine. The synergy between these two components
allows the OLAP engine to become code-aware, thus unlocking many opportunities of par-
allelizing queries that would otherwise remain unexploited. Building upon this architecture,
we develop a paradigm that relaxes control-flow dependencies and increases task paral-
lelism, a strategy that was not able to prosper with the current engine architecture.

SUBJECT AREA: Intersection of Programming Language Theory & Data-Intensive
Systems

KEYWORDS: speculation, dependencies, SQL, imperative programming, parallelism

NEPIAHWH

H avaAuon dedopévwv OTIG HEPEG MAG TTPOXWPA HE IANYYIWdN TaxUTNTA, hE £vav oAoéva
QUEAVOPEVO apPIOUO ETAIPEIWV KOl OPYAVIOUWY VA EYKATOAEITTOUV TIG DOUNPEVES YAWOOEG
EPWTNMATWYV UTTEP TWV PEIKTWY POWV EPYACiag TTPOOTAKTIKOU-SQL TTpoypappaTiopou.

QoT1600, TO CUCTAUATA TTOU EKTEAOUV QUTA TA MIKTA TTPOYPANUATA OEV Eival TTI TOU TTAPO-
VTOG IKOVA VO ETTIAUCOUV TIG EEOPTATEIG HETAGU TWV EPWTNUATWV-EVTOAWY KaI TWV TTPOCTA-
KTIKWV oWV (TT.X. £CapTACEIG PONAG EAEYXOU), UIOBETWVTAG £T01 OUVRBWG £vav (OXeOOV)
O€IPIOKO TPOTTO EKTEAECNG EVTOAWV TO OTTOIO TTEPIOPICElI O€ PEYAAO BaBud Tov TTapaAAnAl-
OMO TwV £pywv. AvTiBeTa, ol dIaBéaipol TTOPOI KATAVEUOVTAI TTPOKEINEVOU Va BEATIWOEI O
TTAPAAANAIOUGG BEdOEVWYV, O OTTOIOG UTTOPET YPYOoPa va 0dNnNyNoEl O€ PEIWUEVES ATTODOO-
O€IG avaloya Pe TN QUON TNG EPYATIAG TTOU EKTEAEITAL.

2€ AUTA TN €pyacia, TTPOTEIVOUNE HIa EVOTTOINKEVN QPXITEKTOVIKA TTOU YEQUPUWIVEI TNV EKTE-
AEon TTPOCTOKTIKOU KWOAIKA UE TN Pnxavi avaAuong Twv dedouévwy. H ouvépyeia petagu
QUTWYV TWV OUO CUVICTWOWV ETTITPETTEI OTO cUCTNPA avaAuong dedopévwy (OLAP) va atro-
KTAOEI YVWON TOU TTPOYPAUMATOG, CEKAEIDWVOVTAG £TO1 TTOAEG UKAIPIEG TTAPAAANAIOUOU
EPWTNMATWV-EVTOAWYV TTOU OIOPOPETIKG Ba TTapépevay aveKUETAAEUTEG. Baaoilduevol oe
QUTAV TNV OPXITEKTOVIKH, aQvATITUOOOUUE £VA OKEAETO €TTEEEPYAOIAC TTOU XOAAPWVEL TIG
e€apTnoeIg eEAEyXOU-pong Kal au&dvel Tov TTAPAAANAICUO Epyaciwy, PIO OTPATNYIKA TTOU
OEV UTTOPECE VA EUNPEPNAOEI HE TNV TPEXOUOQ OPXITEKTOVIKI TWV AVTIOTOIXWV CUCTNUATWV.

OEMATIKH NEPIOXH: Topnl petagu Ocwpiag MNwoowv [poypauuaTiohgou Kal
2uoTnuatwyv AvadAluong MeyaAwv Asdouévwy

AEZEIZ KAEIAIA: cikaoia, eEaptioelg, SQL, TTPOOTOKTIKOG TTPOYPAUMATIONOG,
TTAPAAANAIOPOG

ACKNOWLEDGEMENTS

The ideas in this thesis were born and flourished during my Summer 2021 @ EPFL in-
ternship in the Data-Intensive and Applications Systems (DIAS) Lab. | am wholeheartedly
grateful to my supervisors and collaborators Panagiotis Sioulas and Giagkos Mytilinis,
who’s excellent assistance and guidance throughout the entire process played a pivotal
role in my academic research baptism of fire.

CONTENTS

1. INTRODUCTION

1.1

Modern Data Analysis Workflows

2. BACKGROUND

2.1 Flavors of ParallelisminDBMSs
211 Data vs Task Parallelism
2.2 Interpreter Design Run-down
2.21 Lifecycle Components
222 SymbolTable
2.2.3 AST and the Visitor Pattern
2.3 Dependencies in Analytical Workflows . .
2.31 Data vs Control Dependencies
2.3.2 Representing and Scheduling Dependent Tasks
24 Speculation
241 Branch Prediction
2.4.2 Applications in Databases
2.5 Approximate Query Processing.

3. Unified Engine Overview

3.1 Prototype Language
311 Outline 0.
3.1.2 Declaring Variables & Queries
3.1.3 Control Flow Statements

3.2 FrontEnd:Parsing

3.3 Middle End: Speculative Execution
3.3.1 Relaxing Control Flow Dependencies .
3.3.2 Repairing Mispredictions

3.4 Back End: Interpreting & Scheduling Work
4. EVALUATION

42 Benchmarks

5. CONCLUSIONS AND FUTURE WORK
ABBREVIATIONS - ACRONYMS

1"
1
13

13
13

13
13
14
14

15
15
16

16
16
16

17
18

18
18
18
19

20

20
20
21

22
23
23
23
25

26

REFERENCES

27

2.1
2.2

3.1
3.2

4.1
4.2

LIST OF FIGURES

Data Dependency of Listing 1.1
Control Dependency of Listing 1.1

Execution flow of Figure 1.1 snippet
Relaxed execution flow of Figure 1.1 snippet

Execution time of all correct predictions vs Non-Speculative version
Execution time of all incorrect predictions vs Non-Speculative version

Parallelizing control flow in mixed imperative - SQL analytics using speculation

1. INTRODUCTION

1.1 Modern Data Analysis Workflows

Imperative languages such as Python3 and R have seen a huge rise in popularity, espe-
cially for exploratory data analysis applications. The rich ecosystem of frameworks and
libraries surrounding these languages - such as Pandas and MatPlotLib - have made ex-
tracting and visualizing useful insights from big data easier than ever. Performing the same
analysis through an SQL language would require maintaining and extending a monolithic
query, which soon becomes infeasible.

By adding support for injected SQL statements in the imperative paradigm, it is now pos-
sible to divide the analysis in small (but now manageable) queries. These queries per-
form data intensive work, and are thus treated as blackboxes and executed by a back-
end OLAP system. The corresponding intermediate results are returned to the front-end
parsing / interpreting mechanism and stored in variables. Then, the analyst can perform
complex tasks by using these variables in constructs such as loops or control-flow state-
ments.

Thus, it is common to come across code such as in Listing 1.1:

Q0 = SQL('SELECT AVG(col) FROM ... WHERE ... ');
y = 100.0;

IF QO > y THEN

Q1 = SQL('CREATE TABLE ...');
ELSE
Q2 = SQL('SELECT col2 FROM ...');
Q3 = SQL('SELECT SUM(col3) FROM ... WHERE col2 = %q', Q2);

Listing 1.1: Sample ”Under the Hood” Modern Data Analysis Workflow

We can observe that what would be a monolithic query with multiple levels of nested
subqueries, CASE WHEN statements etc, can now be translated in the snippet above
that is magnitudes order easier to comprehend, maintain and extend.

While the mixed workflow has proven more expressive and powerful than the counterpart
structured query languages, the added complex constructs do not come without cost.
More specifically, besides the known data dependencies between queries, such as an
inner nested subquery needing to fully materialize before the outer one can be evaluated,
the imperative constructs also impose new restrictions that can hinder execution.

These dependencies heavily limit the ability of parallelization, if no further action is taken.
That is, the established engines currently do not employ strategies of resolving these lim-
itations in order to increase task parallelism opportunities; Instead, they plan and execute
one query at a time - agnostic to the rest of the code and program state - while pinning
their hopes in increasing data parallelism.

E. Danias 11

Parallelizing control flow in mixed imperative - SQL analytics using speculation

Itis trivial to observe that with these design choices, diminishing returns can appear quickly
if the workload of the program cannot scale properly, as the extra resources cannot further
accelerate the execution of complex queries. For instance, in the Listing 1.1 snippet, the
execution time of the IF/ELSE statement is largely dependent on the QO latency. Thus,
if Q0 does not scale properly by it's nature (e.g is a JOIN heavy query), the engine does
not benefit from allocating additional resources to it (data parallelism). This in turn hurts
concurrency as the program execution is "blocked” until the branch condition is fully eval-
uated, while the resources largely remain idle.

We argue that these limitations originate from the current engine architecture, that has de-
coupled the code execution component from the OLAP system, making it impossible for
the engine to have global information about the code and make truly optimal choices. The
goal of this work is to explore ways in which we can boost task parallelism, when data par-
allelism combined with the unresolved control-flow dependencies hinder execution. We
believe that this will be achieved by unifying the (currently) separated components, thus
enabling all sorts of known optimizations in both the fields of compilers (e.g Dead Code
Elimination) and databases (e.g Data Sharing between queries). Then, we will employ a
novel speculation technique that will relax control flow dependencies, thus unlocking new
parallelization opportunities.

E. Danias 12

Parallelizing control flow in mixed imperative - SQL analytics using speculation

2. BACKGROUND

2.1 Flavors of Parallelism in DBMSs

2.1.1 Data vs Task Parallelism

Modern main-memory analytical DBMSs continuously strive to maximize processing through-
put by harnessing the power of the underlying (highly parallel) hardware. A batch of con-
current queries can be processed in two fashions:

Data / Intra-Query Parallel: The available processing resources are allocated such that
the DBMS executes the operations of a single query in parallel, thus decreasing the latency
for long-running queries, especially if they are naturally scalable.

Task / Inter-Query Parallel: The available processing resources are allocated such that
the DBMS executes different queries in parallel. If the queries are independent, then
the overall performance is improved in contrast to Data / Intra-Query Parallelism DBMSs.
However, if the queries form dependencies with each other (e.g updating the same table
concurrently), more complicated conflicts arise that reduce the system’s throughput.

2.2 Interpreter Design Run-down

2.21 Lifecycle Components

A typical interpreter can be divided in multiple distinct components that collaborate in order
to take a program as input and output the result. These are explained in order:

» Lexer: The imperative program is read in string form and the source code is turned
into a stream of tokens. This term is actually a shortened version of “lexical ana-
lysis”; A token is essentially a representation of each item in the code, along with
information about it’s position, line number etc.

» Parser: The tokens are conformed to the appropriate grammar rules in the order
they arrive, generating the equivalent nodes for the abstract syntax tree (explained
in detail at the end of the section).

» Semantic Analyzer: The only errors that could be caught until this phase are gram-
mar related; Thus, before moving on to interpreting the source code, the AST will be
semantically examined such that no rule of the language is violated; For example,
in the event of a binary expression e.g addition between two variables, the semantic
analyzer will check that their types are eligible to partake in the operation.

» Optimizer: The AST is optimized - while preserving the semantics - in a collections of
"passes” over it, each with a unique goal. For example, a pass could remove "dead
code” by removing all the unnecessary code which is never going to be executed.

E. Danias 13

Parallelizing control flow in mixed imperative - SQL analytics using speculation

2.2.2 Symbol Table

The symbol table is a data structure used by both compilers and interpreters, where all
identifiers (symbols), constants, procedures and functions in a program’s source code
are associated with information relating to their declaration or appearance in the source.
In other words, the entries of a symbol table store the information related to the entry’s
corresponding symbol, such as:

* The names of all entities in a structured form at one place.
» The mapping of a name to it’s type and value

* The scope of a name (scope resolution).

That information is utilized at multiple phases of the compilation or interpretation. For
example, in the semantic analysis phase, it is most commonly accessed in order to check
if a variable has been declared and to verify the correctness of assignment statements &
expressions by retrieving and comparing all the types of the variables involved.

2.2.3 AST and the Visitor Pattern

The abstract syntax tree (AST), or just syntax tree, is a tree representation of the abstract
syntactic structure of text (often source code) written in a formal language. Each node of
the tree denotes a construct occurring in the text.

The syntax is "abstract” in the sense that it does not represent every detail appearing in the
real syntax, but rather just the structural or content-related details. For instance, grouping
parentheses are implicit in the tree structure, so these do not have to be represented as
separate nodes. Likewise, a syntactic construct like an if-condition-then statement may
be denoted by means of a single node with three branches.

This distinguishes abstract syntax trees from concrete syntax trees, traditionally desig-
nated parse trees. Parse trees are typically built by a parser during the source code
translation and compiling process. Once built, additional information is added to the AST
by means of subsequent processing, e.g., contextual analysis.

We also want to traverse an AST for many different purposes; We may want to print the
AST, perform semantic analysis, or generate code. Each of these could be accomplished
by refining the notion of tree traversal in extensions of some common superclass.

The Visitor pattern was introduced to address the above scenario. Instead of spreading
all the code for a given traversal throughout the nodes’ classes, the code is concentrated
in a particular traversal class. That code is called by arranging for each node to:

» Accept a call from a visitor that performs the traversal

+ Call the visitor back using a method in that visitor that is customized to the node

E. Danias 14

Parallelizing control flow in mixed imperative - SQL analytics using speculation

2.3 Dependencies in Analytical Workflows

2.3.1 Data vs Control Dependencies

Consider Listing 1.1; One can notice dependencies forming between queries such as Q2
and Q3, that require Q2 to fully materialize before Q3 can evaluate its WHERE clause
(Data Dependency):

Q0 = SQL('SELECT AVG(col) FROM ... WHERE ... ');
y = 100.0;
IF Q0 > y THEN Data
Q1 = SQL('CREATE TABLE "); Dependency
ELSE

Figure 2.1: Data Dependency of Listing 1.1

If the analysis was performed in a monolithic SQL query, Q2 would be a nested subquery
of Q3, but the mixed workflow allows the analyst to simplify the code base by breaking the
work apart and/or potentially reuse Q2’s result.

Besides that, we also observe that dependencies can now also form between queries and
imperative constructs; such example is Q0, that must be fully executed before the branch
condition is evaluated and consequently any of the IF/ELSE branches begin executing
(Control Dependency):

Q0O = SQL('SELECT AVG(col) FROM ... WHERE ... ');

¥ 100.0;

e TR T T e T I
> ¥

v g? :éﬂzlgl":ri“'ﬂ TABLE ") Control I
- CREATE ABLE H]

:ELSE Dependency .

Q2 = SQL('SELECT col2 FROM ...'); I

] Q3 = 3T SUM(col3) FROM ... WHERE col2 hq', Q2); I

Figure 2.2: Control Dependency of Listing 1.1

E. Danias 15

Parallelizing control flow in mixed imperative - SQL analytics using speculation

2.3.2 Representing and Scheduling Dependent Tasks

Representing all the possible dependence relationships of an imperative program is best
done using graph notation. A program dependence graph (PDG) is a directed acyclic
graph (DAG) that makes data and control dependencies explicit, thus capturing the flow
of execution. In this work, the convention that B is dependent on A if the vertex A is con-
nected to the vertex B (A — B) is followed.

As the edges on the PDG represent scheduling constraints, it is vital to make sure the task
nodes are performed only when all their predecessors are completed. For this matter, one
can make use of the topological sort algorithm which produces the natural ordering of the
vertices in a directed acyclic graph G = (V, E) by visiting all vertices v before vertices ¢,
iff:

v—q, Wherev,qeV, (uv)eF

2.4 Speculation

In computer science, speculative execution is an established optimization technique in
which a computer system performs some task that may not be needed, so as to prevent a
delay that would have to be incurred by starting the work after it is known that is needed.
If extra resources are available at a certain time, the system can utilize them to perform
speculative work instead of allowing them to be idle.

2.4.1 Branch Prediction

Predictive execution is a form of speculative execution where some outcome is predicted
and execution proceeds along the predicted path until the actual result is known; If the
prediction is true, the predicted execution is allowed to commit; however, if there is a
misprediction, execution has to be unrolled and re-executed.

When applied to imperative constructs, the predictive execution of if-then-else statements
(branch predictor) attempts to guess which way a branch will go before this is known
definitely. This has proven to be of utmost importance in modern hardware, as it keeps
feeding work on what would otherwise be a blocked pipeline, thus increasing resource
utilization and overall performance.

2.4.2 Applications in Databases

There is a wide variety of speculative techniques employed in the field of databases across
many areas. For instance, when an application is accessing pages in a sequential pat-
tern, it is a common procedure for the database system to prefetch the following pages
in expectation that they will soon be needed by the application. In addition, in transac-
tional systems where concurrency control is of critical importance, a speculative method
of optimistic locking [6] can reduce the expense of managing parallel reads/writes by not
locking resources preemptively, thus increasing performance and concurrency opportun-
ities. In relevant work, Sioulas et al [4] showed how complex analytical workflows can be
accelerated, by relaxing inter-dependent queries using speculation.

E. Danias 16

Parallelizing control flow in mixed imperative - SQL analytics using speculation

2.5 Approximate Query Processing

Approximate Query Processing (AQP) is a technique that provides approximate answers
to queries at a fraction of the time cost. It can do so by executing the query on a statistical
sample of the original data, enabling it to finish magnitudes order faster than the initial
query, albeit returning a probabilistic answer within a confidence interval. As data grows
at an exponential rate with no apparent solution in taming it, the field of AQP is gaining
more and more traction as shown in the BlinkDB query engine by Agarwal et al [2], which
allows users to trade-off query accuracy (within an error margin) for response time.

E. Danias 17

Parallelizing control flow in mixed imperative - SQL analytics using speculation

3. UNIFIED ENGINE OVERVIEW

3.1 Prototype Language

3.1.1 Outline

In order to fully control how the language constructs will behave with the addition of spec-
ulation, we begin by developing a mixed imperative-SQL language with syntax similar to
the Listing 1 snippet.

Initially, support was added for SQL evaluation statements that can also be parameterized,
as can be shown in the relation between Q2 - Q3. Then, the grammar was extended to
allow for variable declaration and for control-flow statements with any level of nesting. It
is important to note that the conditional statements do not include intermediate ELSE IF
statements yet; However, the plain IF/ELSE statements are equally powerful and lead to
an identical (semantically) result. Expressions can be represented as N-ary operations,
with the different precedence levels (e.g multiplication/division having higher precedence
over addition/subtraction) being directly encoded in the grammar.

To quickly build this prototype from scratch, we utilized the libraries JavaCC [1] to generate
the parser and JTB [3] to generate the AST and the matching Visitors.

3.1.2 Declaring Variables & Queries

Currently, the language supports only scalar values, booleans and table variables (where
the information for the queries are stored). Every variable by default is initialized as immut-
able / constant following the logic of functional programming, making variable and query
interpretation trivially parallelizable; This can be overriden by the user by adding the mut-
able type keyword VAR before the declaration:

// Immutable Query, result stored in TableVariable QO
Q0 = SQL('SELECT AVG(col) FROM ... WHERE ... ');

// Immutable Scalar variable
y = 100.0;

// Immutable Scalar variable, parsed as a N-ary operation with different
precedence levels
z =y + 10 - 5*5 + 4/2

// Mutable Scalar variable consisting of variables & literals
VAR x =y + 2z + 5

Listing 3.1: Examples of various declaration statements

E. Danias 18

Parallelizing control flow in mixed imperative - SQL analytics using speculation

If a Table Variable has been declared as mutable and it is defined by 2 or more query
statements throughout the program, then all it’s previous data in it's (main-memory resid-
ent) table gets deleted by the interpreter to allow for the new definition.

// Mutable Query, result stored in tableO
VAR QO = SQL('SELECT AVG(col) FROM ... WHERE ... ');

// Immutable query using the result of QO
Q1 = SQL('SELECT % FROM ... WHERE col2 = %q', QO0);

// Redefinition of (implicitly mutable) QO, once Q1 has finished then tableO
is cleared and the new query gets issued
Q0 = SQL('SELECT SUM(col) FROM ... WHERE ... ');

Listing 3.2: Sample Mutable declarations

3.1.3 Control Flow Statements

A basic branch statement can evaluate arbitrarily complex conditions and contain any
number of nested statements in the two branches:

Q0 = SQL('SELECT AVG(c.acctbal) FROM customer as c WHERE c.salary > 50000');
x = 0;

IF QO > 4495 THEN:
x = 10;

IF (x + 5 > 20)
ELSE
ENDIF;

ELSE

x = 20;
ENDIF;

Listing 3.3: Sample Branch statement

Similarly for the currently supported loop statements WHILE and FOR:

x = 0;

FOR i = 0; i <= 10; i = 1i + 1;
X = i;

END;

WHILE x < 20;
x = x + 1;
END;

Listing 3.4: Sample Loop statements

E. Danias 19

Parallelizing control flow in mixed imperative - SQL analytics using speculation

3.2 Front End: Parsing

In our system, a program dependency graph is used as the representation that illustrates
the interplay of the queries and the constructs. The parsing mechanism - besides checking
for syntax errors - is responsible for building the initial version of this graph, before handing
it over to the back-end optimizer / rewritting component. For example, considering the
sample snippet of Figure 1.1, it's PDG would be the following:

Figure 3.1: Execution flow of Figure 1.1 snippet

The flow of the Listing 1 snippet is now encoded in the directed acyclic graph (DAG) of Fig.
1, with QO being at the root of the graph, as it must be fully executed before the correct
branch is chosen. In addition, the inter-query dependency between Q2 and Q3 is depicted
by these two queries being connected by an edge and residing in different levels, since
Q2 must finish before Q3 is executed.

We have thus organized the (seemingly) scattered SQL statements in one packed repres-
entation and transformed the naive query-at-a-time execution into a promisingly scalable
job scheduling problem.

It's pivotal to note that queries that are in the same level (e.g. Q1 and Q2) are not de-
pendent of each other, and can thus be visited (executed) by the scheduling algorithm
in parallel. Consequently, the ordering returned from the topological sort if it ran on the
dependency graph from Figure 1 would be:

Qo0 — {Q1, Q2} — Q3

3.3 Middle End: Speculative Execution

3.3.1 Relaxing Control Flow Dependencies

After the foundation of the code-aware engine has been laid out, we can introduce the
optimizing component that performs rewriting passes on the initial dependency graph.
Relaxing the control-flow dependencies would require a branch prediction mechanism
that can - both quickly and fairly accurately - choose the most probable branch to execute
in parallel with the evaluation of the condition e.g. query QO.

In our work, AQP serves perfectly as the branch prediction mechanism, since it can com-
pute a very close estimate of the queries that take part in conditional statements in a

E. Danias 20

Parallelizing control flow in mixed imperative - SQL analytics using speculation

fraction of the time that they would originally need, thus providing an approximate evalu-
ation of the condition and consequently a prediction on which branch will be executed. It
is also important to note that the trade-off between latency and accuracy can be tuned, by
modifying the sampling size or process.

Let Q0* be the approximate version of QO, with the properties that were described above.
The rewriting pass will modify the dependency graph such that the condition query is now
QO0*, replacing Q0. In addition, the original condition evaluation is shifted to the branch
level, which as described in Section 3.2, will result in the condition query being executed
in parallel with the predicted branch. Thus, the control flow dependency has been relaxed,
with the rewritten dependency graph shown in the following figure:

Figure 3.2: Relaxed execution flow of Figure 1.1 snippet

3.3.2 Repairing Mispredictions

Since Q0* produces only an approximate answer, it is easy to deduce that there is a
considerate chance in which the prediction mechanism has chosen the incorrect branch
to be scheduled. Let’'s assume that in the current example, Q0* finishes executing and
the evaluated condition predicts the IF branch. Thus, our scheduling algorithm executes
both the queries under the IF branch (e.g. Q1) and the initial conditional query QO; In the
near future, we expect that Q0 also finishes, together with some of the IF branch workload.

It is at this point that we must pause execution to compare our initial prediction with the
result of the fully evaluated condition, which can lead to two potential outcomes:

» The prediction was correct; In this case, we have gained a considerate speedup by
parallelizing the condition with the correct branch.

» The prediction was incorrect; In this case, we must repair the prediction by aborting
the running IF branch workflow and initiating the ELSE branch.

Thus, we can summarize the speculative execution in the following steps:

1. Initially, the approximate condition is executed and evaluated.

2. Based on the result, a branch is selected, which is executed concurrently with the
initial condition.

E. Danias 21

Parallelizing control flow in mixed imperative - SQL analytics using speculation

3. Once the original condition has been evaluated, the validation mechanism halts ex-
ecution and decides whether it is required to repair the prediction or continue as
is.

3.4 Back End: Interpreting & Scheduling Work

Once the parser has finished running, the AST of the imperative program has been gener-
ated. Utilizing the Visitor pattern, the AST nodes are extended such that they can accept
a generic dispatch function call; Thus, one can define a custom "pass” over the syntax
tree by implementing the behavior of a specialized visitor. In our system, these passes
are the following:

Pass #1: The main focus of the first pass is to fill the Symbol Table with information regard-
ing variable & query declarations and the program dependence graph (PDG), the structure
that captures the data and control dependencies as previously explained. Lastly, this pass
is also responsible for integrating the speculation framework, such as by generating the
AQP equivalent queries @ for each query @, that is involved in a branch condition.

Pass #2: This pass uses the information collected from the 15! pass and begins interpret-
ing each instruction; For example, at a variable declaration the right-hand side expression
is dynamically evaluated and the resulting value is stored in the variable’s Symbol Table
entry. At a query declaration, the PDG is checked for dependencies with other queries/-
constructs, issuing the query if there are none. Once the query is finished, it's node in the
PDG is marked "disabled” to indicate that successor queries/constructs no longer have an
active dependency and can also begin scheduling, as is explained in the Topological Sort
algorithm.

E. Danias 22

Parallelizing control flow in mixed imperative - SQL analytics using speculation

4. EVALUATION

41 Setup

To build a prototype for the proposed framework and to be able to execute queries, an
established open-source engine was needed that would serve as the foundation. For this
reason, we chose Trino (formerly known as Presto) [5], a distributed query engine that is
widely used in large-scale analytics.

Initially, our interpreter was integrated into Trino’s front-end parsing mechanism, allowing
it to accept and execute programs of the prototype language in the same manner that it
would accept and execute standalone queries.

We also extended Trino’s scheduler to account for the imperative programs; The enhanced
scheduler accepts and parses a dependency graph instead of scheduling standalone
query tasks. Since the speculative hints have already been integrated in the dependency
graph, the original scheduler can still be used when scheduling and executing queries.
Thus, the role of the enhanced scheduler is to visit the nodes of the graph in the appropri-
ate order (as mentioned in Section 3) and to coordinate the speculative mechanism, while
extracting the queries at each node and executing them through the original scheduling
mechanism.

After executing each query, the intermediate results are materialized in temporary tables
cached in memory. Then, whenever a variable is used in a control-flow statement condition
or as a parameter in SQL statements, we can substitute its value by accessing the data
of the appropriate table.

The optimizing component that performs the rewriting passes of the dependency graph
lies between the parser and the scheduler.

4.2 Benchmarks

In this section, we evaluate the prototype of the proposed code-aware engine architecture
that resolves control-flow dependencies using speculation. We then compare this frame-
work with a query-at-a-time execution of the "correct” queries - that is, the queries that
should be executed after having evaluated the IF/ELSE statements of the same imper-
ative program - by a vanilla Trino configuration; this will mimic an engine executing the
same workload without having resolved any control-flow dependency.

In the following benchmarks, we have used up to 3 levels of nested IF/ELSE statements.
Each branch statement contains one TPC-H Q5 query in both the condition and at each
branch, with a scale factor of SF=30 cached in memory. The Q5 was specifically chosen
as it is a join-heavy query that doesn’t scale properly; Thus, it will further drive the point
that a solely data-parallelism execution can quickly reach diminishing returns, if the quer-
ies executed contain anti-parallel patterns and no strategies are employed to increase
query parallelism.

Both engines are run on a 1-node cluster, equipped with 370GB of RAM and 2 x Intel
Xeons 5118 containing 12 cores each.

In both benchmarks, the execution time in relation to the nested IF/ELSE levels is depicted

E. Danias 23

Parallelizing control flow in mixed imperative - SQL analytics using speculation

in blue bars for our speculative framework and in orange bars for the query-at-a-time
execution (non-speculative).

Figure 4.1 (below) shows the end-to-end execution time speedup gain for solely correct
predictions that vary in nested branch levels, ranging from x1.25 up to x1.5.

B Speculative Execution - All Correct Predictions
. Query-at-a-Time Execution

Execution time (s2c)

1 level 2 levels 3 levels

of nested branch levels

Figure 4.1: Execution time of all correct predictions vs Non-Speculative version

Figure 4.2 shows the repair overhead accounting for an increase of 1.1x (avg) in end-to-
end execution time, for mispredictions in every level.

g0 | W Speculative Execution - Repair of all Incorrect Predictions
. Query-at-a-Time Execution
M
E
=
=
p=l
b=}
=
g
[TH)
1 lewvel 2 levels 3 levels
of nested branch levels
Figure 4.2: Execution time of all incorrect predictions vs Non-Speculative version
E. Danias

24

Parallelizing control flow in mixed imperative - SQL analytics using speculation

5. CONCLUSIONS AND FUTURE WORK

In this thesis, we first propose a new architecture for OLAP engines that execute mixed
imperative-SQL analytic workflows, in order to increase synergy between the components.
This allows us to implement a speculative mechanism that relaxes control-flow depend-
encies, thus increasing parallelization opportunities.

We demonstrate that, in an optimistic scenario, this can result in an average acceleration of
a factor of 1.4x in nested conditional statements. In comparison to branch mispredictions,
a small overhead is induced, increasing the end-to-end execution time by a factor of 1.1x.
Thus, even though a greater suite of experiments is needed to accurately provide an
average speedup vs repair cost trade-off, these initial results indicate that relaxing control-
flow dependencies using a speculative framework is a promising feature, as it has been
already proved in modern hardware.

In the future, we hope to extend the interpreter by bridging the established optimizations
in compilers such as common subexpression elimination, constant folding, loop unrolling
etc with the equivalent optimizations in databases, such as data sharing. These are not
only critical in increasing the interpretation efficiency, but can also unlock further optim-
ization opportunities. For example, by unrolling a loop that contains queries in it's body,
we not only harness the potential to run loop iterations in parallel, but can also benefit e.g
from a data sharing framework that is capable of recognizing the reusable data resources
and caching them, thus reducing the overall memory footprint and removing the cost of
materializing multiple tables with overlapping data across the unrolled queries.

E. Danias 25

Parallelizing control flow in mixed imperative - SQL analytics using speculation

E. Danias

ABBREVIATIONS - ACRONYMS

AST Abstract Syntax Tree

PDG Program Depedence Graph
DAG Directed Acyclic Graph

OLAP Online Analytical Processing
OLTP Online Transaction Processing

26

Parallelizing control flow in mixed imperative - SQL analytics using speculation

(1]
(2]

(3]
[4]

[3]

6]

BIBLIOGRAPHY

Javacc: The most popular parser generator for use with java applications.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, lon Stoica, and Samuel R Madden.
Blinkdb: queries with bounded errors and bounded response times on very large data. In In Proceedings
of the 8th ACM European Conference on Computer Systems (EuroSys '13). ACM, New York, NY, USA,
29-42., 2013.

UCLA Compilers Group. Jtb: Java tree builder.

Sioulas Panagiotis, Sanca Viktor, Mytilinis loannis, and Anastasia Ailamaki. Accelerating complex ana-
lytics using speculation. In 11th Annual Conference on Innovative Data Systems Research (CIDR 21),
January 10-13, 2021, Chaminade, USA., 2021.

Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun, Nezih Yigitbasi,
Haozhun Jin, Eric Hwang, Nileema Shingte, and Christopher Berner. Presto: Sql on everything. In
Facebook, Inc., 2018.

Wikipedia. Optimistic concurrency control.

E. Danias 27

	CONTENTS
	INTRODUCTION
	Modern Data Analysis Workflows

	BACKGROUND
	Flavors of Parallelism in DBMSs
	Data vs Task Parallelism

	Interpreter Design Run-down
	Lifecycle Components
	Symbol Table
	AST and the Visitor Pattern

	Dependencies in Analytical Workflows
	Data vs Control Dependencies
	Representing and Scheduling Dependent Tasks

	Speculation
	Branch Prediction
	Applications in Databases

	Approximate Query Processing

	Unified Engine Overview
	Prototype Language
	Outline
	Declaring Variables & Queries
	Control Flow Statements

	Front End: Parsing
	Middle End: Speculative Execution
	Relaxing Control Flow Dependencies
	Repairing Mispredictions

	Back End: Interpreting & Scheduling Work

	EVALUATION
	Setup
	Benchmarks

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

