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ABSTRACT 
 
 
 
Dynamtic Adaptive Streaming over HTTP (DASH) has yield several improvements in the 
video playback Quality of Experimence (QoE) for the end users in pre-fifth generation 
(5G) networks. However, cloud applications that 5G networks enable, combined with 
cloud infrastructures at the edge of the network and in close vicinity to the end users, can 
offer significant improvements in both the offered Quality of Service (QoS) and QoE 
because of the video content caching capabilities at the edge of the network that the edge 
cloud can offer. Furthermore, in addition to edge caching and edge video streaming to 
the end users, new video infrastructures can offer Device-to-Device (D2D) video content 
exchange and delivery. Taking advantage of these technologies, innovative video 
streaming services can be developed which not only improve the video playback QoE for 
the end users but also reduce the video delivery costs and generated network traffic, 
which also means reduced end-to-end latency and reduced overhead in video content 
providers’ Content Delivery Network (CDN). In this thesis we study the impact of using 
different combinations of distinct video caching techniques, video segment request and 
streaming algorithms and video resolution selection logics on the QoS and the QoE of 
end users at the network edge, which can be used in developing an innovative Peer-to-
Peer (P2P) video content delivery optimization service in a distributed network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUBJECT AREA: 5G & MEC Networks 
KEYWORDS:   5G, MEC, DASH, D2D, Caching 
  



ΠΕΡΙΛΗΨΗ 
 
 
 
Η δυναμικά προσαρμοζόμενη ροή βίντεο μέσω HTTP (DASH) παρέχει βελτιώσεις στην 
ποιότητα της εμπειρίας χρήσης (QoE) κατά την αναπαραγωγή βίντεο σε δίκτυα 
παλαιότερα των δικτύων 5ης γενιάς (5G). Ωστόσο, οι εφαρμογές τύπου νέφους τις οποίες 
μπορεί να παρέχει η αρχιτεκτονική δικτύων 5ης γενιάς, σε συνδυασμό με την υλοποίηση 
υπολογιστικών υποδομών νέφους στο άκρο του δικτύου και κοντά στους τελικούς 
χρήστες, μπορεί να βελτιώσει σημαντικά τόσο την ποιότητα της προσφερόμενης 
υπηρεσίας (QoS) όσο και την εμπειρία χρήσης λόγω της δυνατότητας προσωρινής 
αποθήκευσης περιεχομένου βίντεο στο άκρο του δικτύου, λόγω της δυνατότητας 
παροχής προσωρινής αποθήκευσης μέρους του βίντεο στο άκρο του δικτύου. 
Επιπροσθέτως, εκτός της αποθήκευσης στο και διανομής βίντεο από το άκρο του δικτύου 
προς τους τελικούς χρήστες, οι νέες υποδομές βίντεο θα παρέχουν τη δυνατότητα 
διανομής περιεχομένου βίντεο απευθείας από συσκευή σε συσκευή (D2D). Αξιοποιώντας 
τις τεχνολογίες αυτές, μπορούν να υλοποιηθούν καινοτόμες υπηρεσίες ροής βίντεο, οι 
οποίες μπορούν όχι μόνο να βελτιώσουν την εμπειρία χρήσης των τελικών χρηστών κατά 
την αναπαραγωγή βίντεο, αλλά και να μειώσουν το συνολικό κόστος διανομής βίντεο 
καθώς και την συμφόρηση των δικτύων, άρα και την καθυστέρηση από άκρο σε άκρο και 
τη συμφόρηση στα δίκτυα διανομής περιεχομένου (CDN) των παρόχων υπηρεσιών 
διανομής και ροής βίντεο. Στην παρούσα διπλωματική εργασία μελετούμε την επίπτωση 
που έχουν διάφοροι συνδυασμοί τεχνικών προσωρινής αποθήκευσης, διανομής, καθώς 
και επιλογής ανάλυσης, σε περιεχόμενο βίντεο, πάνω στην ποιότητα της προσφερόμενης 
υπηρεσίας και στην εμπειρία των τελικών χρηστών που βρίσκονται στο άκρο του δικτύου, 
οι οποίες μπορούν να αξιοποιηθούν στη δημιουργία μιας καινοτόμας υπηρεσίας που 
βελτιστοποιεί τη διανομή περιεχομένου βίντεο μεταξύ ομότιμων κόμβων (P2P) σε ένα 
κατανεμημένο δίκτυο. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δίκτυα 5G & MEC 
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:   5G, MEC, DASH, D2D, Caching 
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1. INTRODUCTION 
 
1.1 5G applications 
Fifth generation wireless systems, or 5G as they have been marketed, are being deployed 
all around the world in a fast pace and with them significant advancements are being 
introduced into modern networks, both throughout the network infrastructure and through 
the introduction of new and innovative cloud-based technologies, as thoroughly listed and 
analyzed in [1]. 

As far as the network infrastructure changes are concerned, the most significant 
advancements 5G brings to modern networks include: 

 Higher frequencies in the electromagnetic radiation spectrum 

 Larger bandwidth 

 Higher data rates 

 Lower latencies 

 Lower power consumption 

 Higher capacity 

 Better coverage and availability 

 

 
However, these qualitative advancements are not the only the only important differences 
between past and future networks. 5G also provides the infrastructure for innovative 
applications and services through cloud-type technologies, which include: 

 Software-defined networking 

 Network functions virtualization 

 Radio access network as a service 

 Traffic offload as a service 

 Anything as a service 

 Device-to-Device (D2D) communication 

 Mobile Content Delivery Network as a service 

 Multi-access Edge Computing (MEC) 

 Distributed content delivery and caching 

 Application awareness and content optimization 

 

Figure 1: Evolution of Wireless Communication Technologies [2] 
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This thesis focuses on the last five bullets from the list above with the cloud services, and 
more specifically on a combination of these five technologies, which can utilize MEC while 
also taking advantage of the storage and caching capabilities of mobile devices, as well 
as their proximity in a Local Area Network (LAN), to create an application-aware service 
for a mobile Content Delivery Network (CDN) with optimized D2D video content delivery. 

Videos and video playback are among the most widespread applications of current 
networks, as well as among the most traffic-intense ones. Millions of people hours daily 
consuming video content from various video streaming services like YouTube, Netflix, 
Disney+, etc. either on their Smart TVs or on their smartphones. It is considered that in 
the last few years video streaming comprises more than half of the total internet traffic. 
Year-after-year, an increasing number of new companies which base their business on 
video content provision services are founded and compete with each other for a slice of 
the market pie, which means consumers have a variety of video content services to 
choose from. The latest social media like Instagram and TikTok base their whole business 
on the distribution and consumption of video content. 

However, due to the fact that these services are provided by CDNs in servers which in 
most cases are locally positioned in specific sites that are chosen by their owner 
companies, many end users and video content consumers can be positioned in areas 
hundreds of kilometers away from said sites. Moreover, even more recent cable and 
wireless networks suffer from bandwidth limits as well as signal interference due to the 
increasing number of devices with wireless networking capabilities. Because of all these 
facts, it is not uncommon for latency problems to arise which make video loading take 
longer and video playback to stall, resulting in a worse Quality of Service (QoS) of the 
offered service, which in turn can mean a worse Quality of Experience (QoE) as well as 
a frustration for the end users. 

To alleviate a portion of the consequences of this problem in modern networks, video 
content caching has been proposed as a solution, which works in a similar way like web 
page caching for web content does. Multiple video caching approaches have been 

Figure 2: 5G cloud technologies [3] 
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proposed, the most common being caching video content at the edge of the network [4], 
since MEC is going to be an essential part of future networks. 

 

 
1.2 Fundamentals 
 
1.2.1 QoS and QoE 
According to the International Telecommunications Union standards body (ITU), QoS is 
the “totality of characteristics of a telecommunications service that bear on its ability to 
satisfy stated and implied needs of the user of the service.” Under this definition, QoS 
measures the performance of the service delivery infrastructure, including third-party or 
internal CDN, usually through tracking data like overall throughput, latency, error rates, 
and cache hit ratio. In contrast, the ITU defines QoE as “the overall acceptability of an 
application or service, as perceived subjectively by the end-user. It includes the complete 
end-to-end system effects (client, terminal, network, service infrastructure, etc.) and may 
be also influenced by user expectations and context”. So, QoE directly measures the end 
user experience, including factors like playback success, playback startup time, 
rebuffering events and their time, as well as visual quality, both for encoding and 
decoding. 

Fig. 4 shows how QoS and QoE interrelate. As we see, on the left is content preparation 
through encoding and packaging. Then the content files are handed off to the delivery 
infrastructure for distribution, which is what QoS measures. Once received at the viewing 
location, the video is decoded and played back on a video player application. As the figure 
shows, QoE involves the complete end-to-end experience, while QoS is the infrastructure 
portion until (and including) the content distribution. 

Clearly, network performance is critical for achieving a good QoE. But so are other factors 
like source quality, encoding quality, packaging integrity, as well as the video viewing 
environment. It’s one thing to create content that looks great on a smartphone; quite 
another to produce and deliver content that rocks an 85” LED in a living room. For 
example, we can have great QoS but poor QoE if the quality of the source material was 
sketchy or if the player doesn’t use Adaptive Bit Rate (ABR) [7] to switch to the highest 
quality stream because of some missing implementation or some faulty implementation 
or faulty logic. We can also have a high-quality QoE and poor-quality QoS. For example, 

Figure 3: Device-enhanced MEC content caching via D2D communication [5] 
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the network capacity can be high enough to deliver the video content on time, but if the 
caching performance is poor both the bandwidth and distribution costs and overheads 
increase. This means that to get clear view of a system’s performance, we have to 
measure both the QoS and the QoE. 

 

 

To measure the QoS some systems install probes on the network between the systems 
that are to be monitored. These probes are hardware devices or software programs 
installed in service centers around the Internet that monitor traffic from a defined source 
or sources to a destination or destinations. So, if we wanted to monitor performance 
between the content prep headend and the core network, we would install a probe at the 
core network. If we wanted to monitor the streaming service between the core network 
and the edge, we would install a probe at the edge. These probes allow us to identify the 
location of the delivery issues and, therefore, the source. Other systems track QoS by 
installing tracking software in the video player itself, which is the most common 
deployment schema for QoE. The QoS metrics will vary by product and service provider, 
but metrics like throughput, bitrate, latency, jitter, and packet loss are commonly tracked 
and compared by various vendors. 

QoE is usually measured by plug-ins in the video player that report performance data to 
the central database for analysis and presentation. The method of data extraction and 
data tracked varies by service provider. Two organizations have weighed in on the key 
data points to track. According to the Streaming Video Alliance, the key metrics are video 
start time, re-buffering ratio, average media bitrate, and video start failures, as presented 
in Table 1. The Consumer Technology Association recommends monitoring playback 
failures, startup time, playback stalling, bitrate, player failures, and other metrics, 
including advertising insertion and many other players and video playback data points 
like player width and video resolution. 

There are several factors that may be responsible for the overall experience that a user 
perceives. However, the main influencing factors related to QoE are categorized into 
three domains: human, network, and context [8]. 

 Human factors: individual characteristics such as age, gender, memory, attention, 
satisfaction, education standards, mood, social and psychological factors as well 
as expectations are within the scope of the human domain. 

 Network/ System: The state of the network plays a very important role in QoE. 
There are many metrics about the network which are divided into four layers. Each 
layer has the so-called Key Performance Indicators (KPIs). KPIs are values that 

Figure 4: QoS and QoE interrelation [6] 
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measure what is intended to be measured in order to offer a comparison that 
gauges the degree of network performance change over time. These are: 

o Video Specific: we care here about the frame rate, the video content, the 
resolution, and the format of the video, as well as the type of the terminal 
device. 

o Video on Demand: Here are some examples like YouTube where we care 
about the number and the duration of stalling events, the total duration of 
the video and how long it takes for a video to start playing after we press 
the play button. 

o Transport / Network: Here are some network metrics such as round trip, 
jitter, packet loss ratio and congestion period. 

o Physical: Here are some metrics that refer to SNR / SIR / SINR, bit/symbol 
rate, packet / symbol / bit error probability and energy efficiency. 

 Context: In this domain we care about the situation in which the user is. Some 
examples are the urgency of a call, financial policy (such as if there is a high charge 
for a specific service or not), energy consumption issues, environmental conditions 
(such as the type of the weather) and customer support. 

 

 
1.2.2 DASH 
The Motion Picture Expert Group (MPEG) and ISO groups ratified the Dynamic Adaptive 
Streaming over HTTP (DASH) [9] standard, also known as MPEG-DASH, as a response 
to many competing yet similar (and proprietary / vendor dependent) video streaming 
algorithms, which belong to the family of HTTP Adaptive Streaming (HAS) [10] algorithms. 

Table 1: Key QoE metrics according to the Streaming Video Alliance 
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HAS algorithms were developed and used by video content provision services and 
platforms to stream video content to devices and applications. Examples of such 
algorithms are Apple HLS, Microsoft Smooth Streaming, Adobe HDS, etc. [11]. The 
concept of HAS is presented in Fig. 5. Despite the many HAS advantages, several 
inefficiencies still have to be solved to improve the user’s QoE, especially in live video 
streaming. 

DASH is an adaptive bitrate streaming technique that enables high quality streaming of 
media content over the Internet delivered from conventional HTTP web servers, using the 
TCP protocol. DASH works by encoding the video content at different bitrates / quality 
levels, then breaking every quality level into a sequence of small segments, covering 
aligned short intervals of playback time which have a typical duration of one to ten 
seconds, which are served over HTTP requests. Each quality level is determined by its 
corresponding average video bitrate. Each segment contains a short interval of playback 
time of content that is potentially many hours in duration, such as a movie or a live 
broadcast of an event, and can be decoded independently of other segments. DASH is 
codec-agnostic, which means it can be used with content encoded with any coding 
format, such as H.265, VP9, MP3, etc. HTTP-based video streams can easily traverse 
firewalls and reuse the already deployed HTTP infrastructure such as HTTP servers, 
HTTP proxies, and CDN nodes. 

 

 
 

Figure 5: The concept of HTTP Adaptive Streaming (HAS) [12] 

Figure 6: Evolution of HAS in time [13] 
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A DASH client, which plays back the video content, initiates a new session by first 
requesting and downloading a manifest file, which is a Media Presentation Description 
(MPD) file and provides a short description of the different available quality levels and 
segments. As a consequence, each client will first request the MPD that contains the 
temporal and structural information for the media content, and based on that information 
it will request the individual segments that fit best for its requirements. The client uses an 
ABR algorithm to automatically select the segment with the highest bit rate possible that 
can be downloaded in time without causing stalls or re-buffering events during playback. 
The DASH client uses the Rate Determination Algorithm (RDA) to determine the quality 
for the next segment to download. The objective of the RDA is to optimize the global 
Quality of Experience (QoE) determined by the occurrence of video freezes, the average 
quality level, and the frequency of quality changes. Thus, a DASH client can seamlessly 
adapt the video quality to changing network conditions and provide high quality playback 
while minimizing any freezes/stalls or re-buffering events. As a consequence, HAS 
facilitates video streaming over a best-effort network. The concept of DASH is presented 
in Fig. 7 and Fig. 8. 

In summation, the Key-Targets and Benefits of MPEG-DASH are: 

 reduction of startup delays and buffering/stalls during the video 

 continued adaptation to the bandwidth situation of the client 

 client-based streaming logic enabling the highest scalability and flexibility 

 use of existing and cost-effective HTTP-based CDNs, proxies, caches 

 efficient bypassing of NATs and Firewalls by the usage of HTTP 

 common Encryption – signaling, delivery & utilization of multiple concurrent digital 
rights management (DRM) schemes from the same file 

 simple splicing and (targeted) ad insertion 

 support for efficient trick mode 

 

 
Figure 7: The concept of DASH [14] 
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In recent years, MPEG-DASH has been integrated into new standardization efforts, e.g., 
the HTML5 Media Source Extensions (MSE) enabling the DASH playback via the HTML5 
video and audio tag, as well as the HTML5 Encrypted Media Extensions (EME) enabling 
DRM-protected playback in web browsers. Furthermore, DRM-protection with MPEG-
DASH is harmonized across different systems with the MPEG-CENC (Common 
Encryption) and MPEG-DASH playback on different SmartTV platforms is enabled via the 
integration in Hybrid broadcast broadband TV (HbbTV 1.5 and HbbTV 2.0). The usage of 
the MPEG-DASH standard has also been simplified by industry efforts around the DASH 
Industry Forum and their DASH-AVC/264 recommendations, as well as forward-looking 
approaches such as the DASH-HEVC/265 recommendation on the usage of H.265/HEVC 
within MPEG-DASH. Fig. 6 shows the evolution of DASH standards in time. 

Assuming co-location of Base Stations (BSs) and MEC servers, server-assisted and 
network-assisted DASH (SAND) has been shown to offer measurable performance gains 
[22]. 

In order to describe the temporal and structural relationships between segments, MPEG-
DASH introduced the so-called MPD. The MPD is an XML file that represents the different 
qualities of the media content and the individual segments of each quality with HTTP 
Uniform Resource Locators (URLs). This structure provides the binding of the segments 
to the bitrate (resolution, etc.) among others (e.g., start time, duration of segments). The 
MPEG-DASH MPD is a hierarchical data model. Each MPD could contain one or more 
Periods. Each of those Periods contains media components such as video components 
e.g., different view angles or with different codecs, audio components for different 
languages or with different types of information (e.g., with director’s comments, etc.), 
subtitle or caption components, etc. Those components have certain characteristics like 
the bitrate, frame rate, audio channels, etc. which do not change during one Period. Fig. 
9 provides a better understanding of the structure and contents of an MPD file. 

The most important details [16] of MPD’s structure are: 

 Periods, contained in the top-level MPD element, describe a part of the content 
with a start time and duration. Multiple Periods can be used for scenes or chapters, 
or to separate ads from program content. 

 Adaptation sets, which contain a media stream or a set of media streams 

 Representations allow an Adaptation Set to contain the same content encoded 
in different ways. In most cases, Representations will be provided in multiple 
screen Cache-Aware Adaptive Video Streaming in 5G Networks sizes and 
bandwidths in order to allow clients to request the highest quality content that they 
can play without waiting to buffer or wasting bandwidth. 

Figure 8: The concept of DASH [15] 
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 Sub representations contain information that only applies to one media stream in 
a Representation. They also provide information necessary to extract one stream 
from a multiplexed container, or to extract a lower quality version of a stream. 

 Media segments are the actual media files that the DASH client plays, generally 
by playing them back-to-back as if they were the same file. Media Segment 
locations can be described using BaseURL for a single-segment Representation, 
a list of segments (SegmentList) or a template (SegmentTemplate). 

 Index Segments come in two types: one Representation Index Segment for the 
entire Representation which is always a separate file, or a Single Index Segment 
per Media Segment which can be a byte range in the same file as the Media 
Segment. 

Nevertheless, the client is able to adapt during a Period according to the available 
bitrates, resolutions, codecs, etc. that are available in a given Period. Furthermore, a 
Period could separate the content, e.g., for ad insertion, changing the camera angle in a 
live football game, etc. For example, if an ad should only be available in high resolution 
while the content is available from standard definition to high definition, you would simply 
introduce your own Period for the ad which contains only the ad content in high definition. 
After and before this Period, there are other Periods that contain the actual content (e.g., 
movie) in multiple bitrates and resolutions from standard to high definition. 

 

 
By parsing the MPD, the DASH client knows all the information about the program timing, 
media-content availability, media types, resolutions, minimum and maximum bandwidths, 
and the existence of various encoded alternatives of multimedia components, 
accessibility features and required DRM, media-component locations on the network, and 
other content characteristics. The client capitalizes the information and selects the 
appropriate encoded alternative in order to start streaming the content by fetching the 
segments using HTTP GET requests. After appropriate buffering to allow for network 
throughput variations, the client continues fetching the subsequent segments but keeps 
on monitoring the network bandwidth fluctuations. Depending on its measurements, the 
client decides how to adapt to the available bandwidth by fetching segments of different 
bitrates to avoid buffering. The MPEG-DASH specification only defines the MPD and the 
segment formats. The delivery of the MPD and the media encoding formats containing 

Figure 9: The hierarchical structure of an MPD file 



Peer-to-Peer video content delivery optimization service in a distributed network  

N. Episkopos   24 

the segments, as well as the client behavior for fetching, adaptation heuristics, and 
playing content, are outside of MPEG-DASH’s scope [9]. 

 
1.2.3 Proxy caching for Video Streaming 
A Video on Demand system (VoD) system, which provides service for users, typically 
consists of two main components: the central video server and a set of video clients. The 
central video server has a (infinite) storage space to store all the available videos for 
clients connected via a wide area network (WAN) or a LAN. In such a framework, all the 
requests from clients are handled at the central server. The content exchange process 
starts with generating a request message from a client to the central server. In response 
to the client’s request, the central server serves each request individually through a 
dedicated channel. Although this operation is simple to implement, the whole architecture 
is excessively expensive and without scalability due to the fact that the bandwidth 
bottleneck of the central server limits the number of clients it can serve in parallel, which 
in turn can lead to a significant drop of the end user’s QoE. Furthermore, the introduction 
of long service latencies is another critical factor affecting the system performance, which 
is especially crucial when the video is transmitted over the WAN [17]. 

To leverage the workload of the central server and reduce the service latencies, an 
intermediate device called cache proxy is placed between the central server and clients. 
In the proxy-based architecture, a portion of video is cached in the proxy [18]. Upon 
receiving the content request, the proxy checks to see if it has a copy of the requested 
object in its cache. If so, the proxy responds by sending the cached object to the client 
(cache hit). Otherwise, it sends a content request of its own for said object the request to 
the server (cache miss). If the proxy requests the object from the central server, the 
received object data are cached by the proxy so that it can fulfill future content requests 
for the same object without retrieving it again from the central server. The result of serving 
a cached object is a zero server-side bandwidth usage with a huge improvement in the 
response and serving time for the end user. Meanwhile, the central server also delivers 
the non-cached portion of the video to the client indirectly through the cache proxy [19]. 

Existing caching mechanisms about video streaming can be mainly classified into four 
categories [19]: 

 Sliding-interval caching which caches the playback interval between two requests. 

 Prefix caching which divides the video into two parts named prefix and suffix. Prefix 
is the leading portion of the video, which is cached in the proxy, while the suffix is 
the rest of the video which is stored in the central server. Upon receiving a client’s 
request, the proxy delivers the prefix to the client, meanwhile, it also downloads 
the suffix from the central server and then relays to the client. 

 Segment caching generalizes the prefix caching by partitioning a video object into 
a number of segments. The proxy caches one or several segments based on the 
caching decision algorithm. 

 Rate-split is a type of caching where the central server stores the video frame with 
the data rate. If the data rate of the video frame is higher than a threshold value 
which is called cutoff rate, it is partitioned into two parts where the cutoff is the 
boundary such that the transmission rate of the central server can keep constant. 

Assuming that MEC servers are co-located with cellular BSs and that each user requests 
for a fixed video bitrate, collaborative video caching and transcoding is proposed to 
minimize the initial playback delay of end users [23]. 
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1.2.4 CDN 
Content distribution networks is an extension of the proxy caching and it is a critical 
component of any modern video application. In such architecture, the delivery of content 
will be improved by replicating commonly requested video content files across a globally 
distributed set of caching servers which are deployed at the edge of the network core. 
Unlike proxy, which only stores a portion of the video, a full copy of the video is replicated 
in each CDN server. Then, clients request the video from their closest CDN servers 
directly. This architecture significantly reduces the workload of the central server and 
provides a better QoS to clients. 

CDNs do a lot more than just caching, such as delivering dynamic content that is unique 
to the requestor and not cacheable. The advantage of having a CDN deliver dynamic 
content is application performance and scaling. The CDN will establish and maintain 
secure connections closer to the requestor and, if the CDN is on the same network as the 
origin, as is the case for cloud-based CDNs, routing back to the origin to retrieve dynamic 
content is accelerated. Caches have also become much more intelligent, providing the 
ability to inspect information contained in the request header and vary the response based 
on device type, requestor information, query string, or cookie settings. CDNs can be 
directed to retrieve objects from multiple origins, enforce protocol policy, negotiate SSL 
connections, and restrict object access by location or authentication credentials [20]. 

 

 
Figure 10: CDN [21] 
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The benefits of using a CDN are: 

 Reduced hosting costs by conserving the amount of bandwidth it takes to handle 
your traffic through the multiplication of points of presence. A content delivery 
network uses optimization methods like caching, which involves placing static files 
into temporary storage on different computers for ease of access. These methods 
help reduce the overall server workload and bandwidth consumption. Static 
content refers to the data delivered to the end-user without any modification. 
These files stay the same for all users, regardless of who requests them. 
Examples include media files like images and videos as well as HTML, CSS, and 
JavaScript files. On the other hand, dynamic content is the data that cannot be 
cached on an edge server. This is because the content delivered may differ 
according to variables like user credentials or geographical locations. However, 
an advanced CDN’s network infrastructure and request-routing algorithms can 
help streamline the delivery of dynamic content. In short, the combined 
technologies used by a CDN are useful for providing load balancing and reducing 
bandwidth costs. 

 Increased overall speed and performance by using an effective content delivery 
network. Implementing numerous website optimization strategies will also help 
improve site speed and performance. 

 Improved security since CDNs deflect web traffic away from the original server to 
proxies, making the primary source practically invisible, offering a better protection 
of sensitive data. This, in combination with DDoS filters and spreading queries 
over several locations help mitigate traffic explosions. Also SSL/TLS certificates 
secure information transfers using data authentication and encryption. These 
certificates ensure data security protocols are followed by enabling only the 
intended recipient to access and view the information. 

 Optimization of content distribution and availability, by distributing traffic over 
multiple CDN servers, your core network infrastructure will have a lighter burden 
to carry. This system also ensures that in the case of some servers experiencing 
an outage, people can still access the website as other operational servers will 
handle the network traffic. 
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2. PROBLEM STATEMENT 
 
2.1 System model and architecture 
 
2.1.1 System model 

 
The model we propose was initially presented in [24] and consists of the three following 
distinct and independent network nodes (Fig. 11): 

 A remote main video content HTTP server located in the CDN 

 A cache proxy video HTTP server located at the MEC 

 A local video HTTP server / client located in the end user’s LAN 

Each of these nodes uses DASH to either request and receive or be requested and serve 
(or both) video content in the form of DASH-compatible video segments. The link between 
the remote main video content HTTP server and the video cache proxy HTTP server 
(a.k.a. the proxy-to-main link) has an attainable data rate 𝑹𝟐 (Mbps) while the link 
between the video cache proxy HTTP server and the local video HTTP server / client 
(a.k.a. the proxy-to-client link) has an attainable data rate 𝑹𝟏 (Mbps), where 𝑹𝟏  ≥ 𝑹𝟐 
(hence the advantage of local video content caching). 

From this point and for the rest of this thesis, we are going to use the following shorter 
names for the three aforementioned nodes: 
 

Table 2: Short components names 

Component Name 

Remote main video content HTTP server Main 

Video cache proxy HTTP server (Cache) Proxy 

Local video HTTP server / client Local 

 
Main is located within the CDN, has virtually unlimited storage and contains every single 
video and audio DASH segment, which are always available and can be served at any 
time. Cache proxy is located at the edge of the network, e.g. at a MEC Base Station, in 
close proximity to the end user, has limited cache storage and can only store a subset of 
these segments. Local is located in the end user’s LAN, acts like a client/server extension 
to the video request and playback software, and is responsible for forwarding the video 
player’s content requests to the cache proxy. It can also cache a local copy of the received 
content. 

Figure 11: System model architecture 
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In this architecture, whenever a client requests a segment from the cache proxy which is 
unavailable from the cache storage, the cache proxy forwards the segment request to 
main, from which it always successfully fetches the content, caches a local copy if 
possible and forwards it to local. In our architecture we call this limited cache space a 
buffer and we symbolize the buffer size with the letter 𝑳 (MB). 

We have a set Ƒ of original video files. Every original video file 𝒇 ∈ Ƒ with total duration 

𝑫𝒇 (seconds) is transcoded into every available distinct video resolution / bitrate in the 

video resolution set 𝑹. Afterwards, every transcoded video 𝒇𝒓 of video resolution 𝒓 ∈ 𝑹 

gets segmented into 𝑴𝒇 = ⌈
𝑫𝒇

𝑻𝒇
⌉ evenly-timed DASH-compatible segments (and so does 

the audio), where 𝑇𝑓 is the selected duration of every segment for the specific video. Each 

generated segment has a size 𝑺𝒇,𝒓,𝒊 (bits) where 𝑖 = 1, 2, … ,𝑀𝑓 is the unique identifier / ID 

/ index of the segment. In each of these segment sizes we have included the size of the 
respective audio file. So, for every original video file 𝑓 we end up with 7 ⋅ 𝑛 segments (6 ⋅
𝑛 for the video and another 𝑛 for thed audio). While all these segments have the exact 
same duration 𝑇𝑓, their size differs due to the difference in their content / signals. While 

the durations of the video files are fixed, the value for the segment duration 𝑇𝑓 can vary 

between different original videos, because it must be selected so that the generated 
segments do not end up being too big in size, as the time required to stream each big 
segment will increase a lot, eliminating the advantages of the DASH technique, while if 
the segments end up being too small in size, a lot of segments will be created and the 
network will flood with many HTTP requests in order to stream all of these small 
segments. So, the value for the segment duration 𝑇𝑓 must be balanced for each video file 

independently, depending on the video duration, the video size and the data rate 𝑅2. 

 
2.1.2 Problem statement 
The problem we are trying to solve consists of the following three questions – parts: 

 How to request and stream DASH segments so that the total network usage time 
is minimized? 

 How to request and stream DASH segments so that the usage of the available 
network resources, i.e. the data rates 𝑅1 and 𝑅2, are maximized? 

 Which DASH segments should be cached in combination with the streaming 
algorithm of our choice, so that a high QoE is achieved for the end user? 

 
2.2 Resolution selection algorithms 
Video playback software which implements DASH, provides us with multiple resolution 
selection algorithms for each video segment, from which we distinguished the following 
two: 

 Predictive: For the next segment to request, the software tries to make a 
“prediction”, taking into account the available resolutions and the time required to 
stream the current segment. Using this information, it tries to select a segment 
resolution which can achieve the highest video bit rate possible while minimizing 
the required streaming time, so that this choice results in a seamless playback and 
a high QoE, without causing stalls or re-buffering events. In case delays arise 
during streaming due to an insufficient data rate, the software identifies them and 
can choose a lower resolution for the next segment according to the achieved 
bandwidth from the current segment, so that it avoids further delays. In case the 
currently requested segment is streamed faster than anticipated, the software 
identifies this as a speedup and may choose a higher resolution for the next 
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segment according to the achieved bandwidth from the current segment, so that a 
higher quality video playback and QoE are achieved. 

 Fixed: The software keeps requesting a fixed segment resolution constantly, 
regardless of streaming delays or channel capacity underutilization. 

 
2.3 Video segment request and streaming algorithms 
Since the client will request the DASH-compatible segments from the cache proxy, we 
distinguish the two following segment querying scenarios in the cache proxy: 

 CACHE HIT: The requested segment is available from the cache proxy’s buffer, 
so it gets served directly from it and delivered to the client through local 

 CACHE MISS: The requested segment is unavailable from the cache proxy’s 
buffer, so it gets served from main and delivered to the client through proxy first, 
which may cache a copy, and then through local. 

Afterwards, we wanted to decide upon the cache proxy’s procedure for its response. So, 
we came up with two simple video segment request and streaming algorithms, which can 
only request and serve a single segment at each time. So, all requests and their 
responses are performed in a serialized one-after-another way. The only difference 
between these two algorithms the way the cache proxy handles the case of a CACHE 
MISS, since this is the only case in which the segment will be streamed to the client from 
main through the cache proxy: 

 Send-After-Get (SAG): in the case of a CACHE MISS, the cache proxy first 
requests and receives all bytes of the missing segment from main and 
afterwards it starts forwarding these bytes to local. Obviously, since the 
segment has to be completely received from main before it gets forwarded to the 
client, this algorithm adds a huge latency to the total video streaming performance 
since it utilizes R1 and R2 alternately. 

 Send-While-Get (SWG): in the case of a CACHE MISS, proxy first requests the 
missing segment from main and then it forwards each chunk of bytes it 
receives from main to local as soon as it receives it, without waiting to receive 
all bytes first. This exact streaming algorithm is also used by the local video HTTP 
server / client. 

Fig. 12 displays the behavior similarity between SAG and SWG in the case of a CACHE 
HIT while Fig. 13 displays the behavior difference between SAG and SWG in the case of 
a CACHE MISS. The differences are shown through the HTTP GET requests that are 
being sent, alongside their respective responses, with respect to time. We can clearly see 
that in the case of a CACHE HIT both algorithms have the exact same behavior, since 
the segment had been cached before it was requested, so the cache proxy immediately 
starts forwarding all bytes of the segment to local, in the form of chunks of bytes. 
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Figure 12: SAG vs. SWG - behavior difference during a CACHE HIT 

  
 

 
Figure 13: SAG vs. SWG behavior difference during a CACHE MISS 

 
For a more in-depth understanding of how these proxy algorithms work, let’s take a look 
at the following pseudocode segments: 
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SEND-AFTER-GET 
INPUT: cache[M], main_ip, http_server, http_client 

 

1. request = http_server.get_incoming_request() 

2. IF request.segment ∈ cache 
2.1. request.respond(HTTP_200, file_metadata) 

2.2. file = open(cache[request.segment], “read”) 

2.3. WHILE NOT EOF(file): 

 2.3.1. chunk = file.read(4096) 

 2.3.2. request.response.socket.send(chunk) 

2.4. file.close() 

3. ELSE IF request.segment ∉ cache: 
3.1. http_client.request(request.segment, main_ip, HTTP_GET) 

3.2. main_response = http_client.get_response() 

3.3. IF main_response.http_code < HTTP_300: 

 3.3.1. request.response.socket.respond(HTTP_200, main_response.metadata) 

 3.3.2. file = open(cache[request.segment], “write”) 

 3.3.3. counter = 0 

 3.3.4. WHILE counter < main_response.metadata.content_length: 

  3.3.4.1. chunk = main_response.socket.read() 

  3.3.4.2. file.write(chunk) 

  3.3.4.3. counter = counter + size_of(chunk) 

 3.3.5. file.close() 

 3.3.6. file = open(cache[request.segment], “read”) 

 3.3.7. WHILE NOT EOF(file): 

  3.2.7.1. chunk = file.read() 

  3.2.7.2. request.response.socket.send(chunk) 

 3.3.8. file.close() 

3.4. ELSE IF main_response.http_code == HTTP_404 

 3.4.1. request.respond(HTTP_404) 

4. request.close_connection() 

 

 

SEND-WHILE-GET 
INPUT: cache[M], main_ip, http_server, http_client 

 

1. request = http_server.get_request() 

2. IF request.segment ∈ cache 
2.1. request.respond(HTTP_200, file_metadata) 

2.2. file = OPEN(cache[request.segment], “read”) 

2.3. WHILE NOT EOF(file): 

2.3.1. chunk = file.read() 

2.3.2. request.response.socket.send(chunk) 

2.4. CLOSE(file) 

3. ELSE IF request.segment ∉ cache: 
3.1. http_client.request(request.segment, main_ip, HTTP_GET) 

3.2. main_response = http_client.get_response() 

3.3. IF main_response.http_code < HTTP_300: 

 3.3.1. request.respond(HTTP_200, main_response.metadata) 

 3.3.2. file = OPEN(cache[request.segment], “write”) 

 3.3.3. counter = 0 

 3.3.4. WHILE counter < main_response.metadata.content_length: 

  3.3.4.1. chunk = main_response.socket.read() 

  3.3.4.2. request.response.socket.send(chunk) 

  3.3.4.2. file.write(chunk) 

  3.3.4.3. counter = counter + SIZE_OF(chunk) 

 3.3.5. CLOSE(file) 

3.4. ELSE IF main_response.http_code == HTTP_404 

 3.4.1. request.respond(HTTP_404) 

4. request.close_connection() 

 



Peer-to-Peer video content delivery optimization service in a distributed network  

N. Episkopos   32 

If we take a look at steps 2.1 to 2.4 of both algorithms, we can see that in the case of a 
CACHE HIT the two algorithms perform the exact same operations / steps to stream the 
requested and cached segment from proxy to local. However, by looking at steps 3.3.2 
to 3.3.8, we can see that in the case of a CACHE MISS the SAG algorithm performs two 
distinct loops with the same complexity, one to stream the segment from main to proxy 
and one to stream the segment from proxy to local, which means it has to fetch the whole 
missing segment from main before it initiates the streaming procedure towards the client. 
On the other hand, the SWG algorithm performs both operations in a single loop by 
streaming every chunk of bytes of the missing segment to the client as soon as it receives 
it, which significantly reduces the streaming delay. In both proxy streaming algorithm 
variations, the size of each chunk of data being transferred should be equal to the page 
size of the Operating System (OS) of the node. 

 
2.4 Theoretical performance evaluation 
In section 2.3, we mentioned that the difference between SAG and SWG is their behavior 
in the case of a CACHE MISS. What we mostly care about is the elapsed time between 
the moment a segment was requested by the client and the time the client received it. We 
define this time as the delivery delay 𝑑. Assuming that a video streaming procedure 
consists of 𝑀𝑓 segments and that a video segment 𝑖 with video resolution 𝑟 and size 𝑆𝑓,𝑟,𝑖 

is being streamed, we distinguish the following two cases: 

 In the case of a CACHE MISS, the delivery delay is given by the following 
formulas: 

o 𝑑𝑆𝐴𝐺 = 
𝑆𝑓,𝑟,𝑖

𝑅2
 +  

𝑆𝑓,𝑟,𝑖

𝑅1
 =  𝑆𝑓,𝑟,𝑖

𝑅1 + 𝑅2

𝑅1 𝑅2
  seconds 

o 𝑑𝑆𝑊𝐺 = 
𝑆𝑓,𝑟,𝑖

min(𝑅1,𝑅2)
 =
𝑅1≥ 𝑅2

 
𝑆𝑓,𝑟,𝑖

𝑅2
  seconds 

Since 𝑅1  ≥  𝑅2, it is very clear that 𝑑𝑆𝐴𝐺 ≥ 𝑑𝑆𝑊𝐺. So, we expect SWG to have a 
better overall performance because of its lower delivery delay. 

 In the case of a CACHE HIT, although the proxy-to-client link stays active for the 
whole time this segment is being streamed using either SAG or SWG, the proxy-

to-main link stays idle for  𝑇𝑖𝑑𝑙𝑒
𝑖 =

𝑆𝑓,𝑟,𝑖

𝑅1
  seconds, which means that this channel’s 

capacity is underutilized. So, even with the use of SWG a significant portion of the 
bandwidth of  𝑅2 is wasted. 

In both SAG and SWG, since 𝑅1  ≥  𝑅2, 𝑅1 is always underutilized when segments are 
missing from the cache storage and need to be fetched from main. In the case of SAG, 
the total idle time for 𝑅1 is given from the following equation: 

𝑇𝑖𝑑𝑙𝑒
𝑅1 =∑ (1 − 𝐻𝑟,𝑖)

𝑛

𝑖=1

𝑆𝑟,𝑖

𝑅2
  where 𝐻𝑟,𝑖  =  {

 1,   𝑖𝑓   𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡    
 0,          𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠

}, 

while in both SAG and SWG, the total idle time for 𝑅2 is given from the following equation: 

𝑇𝑖𝑑𝑙𝑒
𝑅2 =∑ 𝐻𝑟,𝑖

𝑛

𝑖=1

𝑆𝑟,𝑖

𝑅1
  where 𝐻𝑟,𝑖  =  {

 1,   𝑖𝑓    𝑐𝑎𝑐ℎ𝑒 ℎ𝑖𝑡 
 0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}. 

 
2.5 Simple caching algorithms 
The simplest caching technique that can be used is the random segment caching, in 
which segments to be cached are randomly selected from the available collection of 
different segments. However, we can distinguish the following two random caching 
algorithms: 

 Random caching: orders all segments of a target video content randomly (all video 
resolutions / bitrates) and caches files sequentially until it fully fills the available 
cache storage. Segments that cannot fit into the available cache storage are 
skipped. 
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 Ripple caching []: has the same behavior as Random caching, except that in this 
algorithm only the segments of the highest available video bitrate are considered 
for caching. 

These random caching algorithms randomly select segments to cache one-by-one, 
skipping segments that cannot fit into the available cache storage, to maximize cache 
utilization by storing as many segments as possible, without exceeding the available 
cache storage size. As we can imagine, this technique does not provide any special 
behavior or features, because of its random nature, except for the case in which the total 
cache size is really big, so that a lot of segments can be cached. 
 
RANDOM CACHING 
Input: L, segments, M 

 

1. Cache = Ø, Failures = 0 

2. WHILE Failures < M 

2.1. s = randomly_select_one(segments) 

2.2. IF SIZE_OF(Cache ∪ {s}) ≤ L 
 2.2.1. Cache = Cache ∪ {s} 
2.3. ELSE 

 2.3.1. Failures = Failures + 1 

 

 
RIPPLE CACHING 
Input: L, segments, M, R 

 

1. Cache = Ø, Failures = 0 

2. WHILE Failures < M 

2.1. s = randomly_select_one_of_resolution(segments, R) 

2.2. IF SIZE_OF(Cache ∪ {s}) ≤ L 
 2.2.1. Cache = Cache ∪ {s} 
2.3. ELSE 

 2.3.1. Failures = Failures + 1 

 
 
2.6 Experimental performance evaluation and algorithm comparisons 
We ran some sets of experiments in order to compare the three video segment request 
and streaming algorithms, using the software we developed from scratch and the video 
file described in Appendix I, which has a duration 𝐷𝑓 = 634.6 seconds and which was 

segmented using a segment duration 𝑇𝑓 = 10 seconds, resulting in 64 distinct video 

segments per video resolution and another 64 segments for the audio. We only used a 
fixed video resolution instead of predictive, because the advantage of MS-SWG is 
diminished in the case of a predictive video resolution selection. We evaluate the 

performance difference using the mean data rates 𝑹𝟏̅̅̅̅  and 𝑹𝟐̅̅̅̅ , the time windows of 
segments streaming, the time windows of the stallings that occurred, and the Mean 
Opinion Score (MOS) based on the number of stallings occurred, which is an indicator 
of the QoE for the end user (higher MOS value means a better QoE). MOS will be 
explained in detail in chapter 4. 

 
2.6.1 SAG vs. SWG 
The first set of experiments was a comparison between SAG and SWG for a scenario 
with 𝑹𝟏 = 𝟕 Mbps, 𝑹𝟐 = 𝟒 Mbps, 𝑳 = 𝟓𝟎𝟎 MB, Random caching and with a fixed video 
resolution of 1440p which has a total file size of 418.80 MB. Fig. 14 contains the 
development of the whole video streaming procedure for both SAG and SWG, while Fig. 
15 contains a time window of the first 200 seconds for a clearer view. At the right side of 
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the charts in Fig. 14 it seems as if the SAG suddenly became faster, but this is an optical 
illusion since the explanation for this behavior is the fact that the x-axis with the time is 
compressed, since there is nothing to compare any more. 

From both figures, we can see that SWG completes the whole video streaming procedure 

about 310 seconds earlier than SAG, while also achieving higher mean data rates 𝑹𝟏
𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅ =

𝟒. 𝟐𝟏 Mbps and 𝑹𝟐
𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅ = 𝟑. 𝟐𝟏 Mbps versus 𝑹𝟏

𝑺𝑨𝑮̅̅ ̅̅ ̅̅ = 𝟐. 𝟐𝟑 Mbps and 𝑹𝟐
𝑺𝑨𝑮̅̅ ̅̅ ̅̅ = 𝟏. 𝟔𝟒 Mbps. 

Furthermore, with the use of SWG the total number of stallings is much smaller and the 
MOS starts dropping after about 490 seconds have passed, compared to SAG which 
suffers more stallings in total and its MOS drops as early as about 100 seconds. We can 
also see that in the case of CACHE HITs, the instantaneous data rate 𝑅2 drops to zero 
with both algorithms, which proves again that the channel capacity of the proxy-to-main 
link is underutilized, resulting in a less than optimal total network utilization. 
This behavior was expected from the theoretical performance evaluations and now it has 
been verified experimentally. However, we can see that even with the use of SWG the 
QoE for the end user is relatively poor since several stallings occur and the total time 
required to stream a video of total duration equal to 634.6 seconds was about 760 
seconds, which is another 125.4 seconds more. So, SWG, while better is still not good 
enough. 

 
 

 

Figure 14: SAG vs. SWG for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 𝑳=500 MB and Random caching 
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Figure 15: SAG vs. SWG for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 
𝑳 = 𝟓𝟎𝟎 MB and Random caching for the first 200 seconds 
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3. Proposed solution 
 
3.1 Multi-segment video streaming 
From chapter 2 we deduced that both aforementioned segment request and streaming 
algorithms are sub-optimal because even in the case of a cache hit, which is the positive 
outcome of a segment request to the cache proxy, a significant portion of the available 
channel capacity of proxy-to-main link is wasted. The reason behind this is their serialized 
nature, which means that we could overcome this problem if we made sure that when a 
CACHE HIT occurs, some future and missing segment will be requested and streamed 
from main to the cache proxy simultaneously, so that 𝑅2 is utilized when missing 

segments exist. Furthermore, since 𝑅1  ≥  𝑅2 we also want to make sure that while a 
missing segment is being streamed from main to the client through the cache proxy, parts 
of some future and cached segment are simultaneously streamed from the cache proxy 
to the client so that 𝑅1 is fully utilized. 

We wanted to maximize both utilizations as much as possible through the video streaming 
algorithm, so we came up with an improved version of the SWG algorithm. Taking 
advantage of the multi-processing and multi-threading capabilities of modern CPUs, we 
developed the Multi-Segment Send-While-Get (MS-SWG) segment request and 
streaming algorithm. MS-SWG can serve multiple segment requests in parrallel by 
offloading each incoming segment request in a new process / thread to be handled 
independently. For the synchronization of these parallel tasks and the proper ordering of 
the responses based on the IDs of the segments, so that a seamless video playback is 
achieved, a priority queue is employed. Since these parallel requests will be forwarded 
from the cache proxy to main, again in parallel, this algorithm and software structure must 
be implemented both in the cache proxy and in main. The client must also adopt this 
multiple parallel segments requests architecture. Fig. 16 gives an overview of this 
improved system model architecture. 

 

Given a segment 𝑖 which has been requested by local, its priority 𝑝 within the priority 

queue is given by the following equation: 𝑝 =  2𝑖 + 1. Priority queues are based on heaps, 
which means that a lower value of  𝑝  results to a higher segment priority. So: 

1. 𝑖 < 𝑗 ⇒  segment 𝑖 has a higher priority than segment 𝑗, maintaining proper 
segment streaming order. 

2. For every segment ID 𝑖 both the respective video and audio segments have the 
same priority within the priority queue, since they are parts of the same segment. 

Figure 16: Video streaming platform with parallel segment requests 
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For example, the segment with the file name video_2160_31.m4s, which is the 31st video 
segment with resolution 2160p) has a priority of 63 and so does the corresponding audio 
segment with the file name video_audio_31.m4s (which is the 31st audio segment). This 
choice was made so that for every segment ID, the client does not have to wait for the 
video segment to get completely streamed before the corresponding audio segment 
starts streaming. The reason behind this choice is that since the size of video segments 
is always bigger than the size of their corresponding audio segments, if the audio 
segments had a higher priority than the video ones the video playback would delay, while 
if the video segments had a higher priority it would take much more time for the streaming 
procedure to complete due to waiting for the video to get completely streamed before 
even begin to stream the audio. This priority assignment is used to make sure that even 
though chunks of different segments can be multiplexed in the queue, the actual segment 
delivery matches the order in which segments need to be delivered to the video player to 
ensure a good video playback experience. 

Since multiple segments can be requested and served in parallel, we distinguish the two 
following segment serving scenarios in multi-segment SWG proxy streaming algorithm: 

 CACHE HIT: Since the segment had been cached before it was requested by the 
client, the respective task which handles this request: 

1. Calculates the segment’s priority. 
2. Splits the segment into chunks. 
3. Places each chunk in the priority queue, assigning the same priority in all 

chunks since they are all parts of the same segment, but with an additional 
automatically generated priority property to maintain proper chunk ordering. 

 CACHE MISS: Since the segment had been missing from the cache by the time it 
was requested by the client, the respective task which handles this request: 

1. Requests this segment from main. 
2. Calculates the segment’s priority. 
3. Places every chunk it receives from main into the priority queue as soon as 

it receives it, assigning the same priority in all chunks since they are all parts 
of the same segment, but with an additional automatically generated priority 
property to maintain proper chunk ordering. 

4. Caches a local copy of the segment in its buffer. 

 

 
In Fig. 17 we can see an example snapshot of proxy’s priority queue state and output in 
the case of a missing segment 𝑖 which has a higher priority than a following cached 
segment 𝑖 + 1. Since 𝑅1  ≥  𝑅2, their chunks will get multiplexed as they are served from 

the priority queue, due to the fact that although segment 𝑖 (missing) has a higher priority 
than segment 𝑖 + 1 (cached), data rate  𝑅2 will limit the speed at which chunks of segment 
𝑖 get fetched from main and pushed into the queue, which is why in the meantime chunks 

of segment 𝑖 + 1 are served from the queue, as all chunks of any cached segment have 
been pushed into the queue beforehand. However, any received chunks of segment 𝑖 will 
be pushed to the top of the queue as soon as they get fetched from main. 

For a more in-depth understanding of how both the multi-segment proxy and the multi- 
segment client function, let’s take a look at the following pseudocode segments: 

Figure 17: Priority queue’s output for segments of different priority and cache status 
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MULTI-SEGMENT SEND-WHILE-GET – INCOMING REQUEST HANDLING 
INPUT: tasks[N], http_server 

 

1. request = http_server.get_request() 

2. tasks[k] = create_task(request) 

 
 
MULTI-SEGMENT SEND-WHILE-GET – ASYNC REQUEST RESPONSE AND ENQUEUE 
INPUT: task, cache[M], priority_queue, main_ip, http_client 

 

1. priority = calculate_priority(task.request.segment) 

2. IF task.request.segment ∈ cache 
2.1. task.request.respond(HTTP_200, file_metadata) 

2.2. file = OPEN(cache[task.request.segment], “read”) 

2.3. counter = 0 

2.3. WHILE NOT EOF(file): 

2.3.1. chunk = file.read() 

2.3.2. counter = counter + SIZE_OF(chunk) 

2.3.3. is_final = FALSE 

2.3.4. IF counter == SIZE_OF(file): 

 2.3.4.1. is_final = TRUE 

2.3.5. priority_queue.enqueue(task.request, chunk, is_final, priority) 

2.4. CLOSE(file) 

3. ELSE IF task.request.segment ∉ cache: 
3.1. http_client.request(task.request.segment, main_ip, HTTP_GET) 

3.2. main_response = http_client.get_response() 

3.3. IF main_response.http_code < HTTP_300: 

3.3.1. task.request.respond(HTTP_200, main_response.metadata) 

 3.3.2. file = OPEN(cache[task.request.segment], “write”) 

 3.3.3. counter = 0 

 3.3.4. WHILE counter < main_response.metadata.content_length: 

  3.3.4.1. chunk = main_response.socket.read() 

 3.3.4.2. counter = counter + SIZE_OF(chunk) 

 3.3.4.3. is_final = FALSE 

 3.3.4.4. IF counter == SIZE_OF(file): 

  3.3.4.4.1. is_final = TRUE 

 3.3.4.5. priority_queue.enqueue(task.request, chunk, is_final, priority) 

  3.3.4.6. file.write(chunk) 

 3.3.5. CLOSE(file) 

3.4. ELSE IF main_response.http_code == HTTP_404 

3.4.1. task.request.respond(HTTP_404) 

4. task.request.close_connection() 

 
 
MULTI-SEGMENT SEND-WHILE-GET – ASYNC REQUEST SERVING 
INPUT: priority_queue 

 

1. WHILE TRUE: 

1.1. request,  chunk, is_final = priority_queue.dequeue() 

1.2. request.response.socket.send(chunk) 

1.3. IF is_final: 

1.3.1. request.close_connection() 

 
 
MULTI-SEGMENT CLIENT – REQUESTS INITIALIZATION 
INPUT: tasks[k], resolution 

 

1. FOR i FROM 1 TO N: 

1.1. tasks[i] = create_task(resolution, i) 
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MULTI-SEGMENT CLIENT – ASYNC SEGMENT REQUEST 
INPUT: k, resolution, proxy_ip, http_client 

 

1. request = segment(resolution, k) 

2. http_client.request(request.segment, proxy_ip, HTTP_GET) 

3. proxy_response = http_client.get_response() 

4. IF proxy_response.http_code < HTTP_300:  

4.1. file = OPEN(request.segment, “write”) 

4.2. counter = 0 

4.3. WHILE counter < proxy_response.metadata.content_length: 

 4.4.1. chunk = main_response.socket.read() 

 4.4.2. file.write(chunk) 

4.4.3. counter = counter + SIZE_OF(chunk) 

4.4. CLOSE(file) 

5. request.close_connection() 

 
 
The advantage of this architecture is that in even the case of a CACHE HIT, one of the 
asynchronous tasks created in the cache proxy keeps fetching segment content from 
main. So, the channel capacity of the proxy-to-main link is never underutilized, which also 
means that the total network usage time is reduced. Also, since 𝑅1  ≥  𝑅2, in the case of 

a CACHE MISS while a non-cached segment 𝑖 is being streamed to the client from main 
through proxy with a data rate 𝑅2, (part of) a following cached segment 𝑗 is simultaneously 

being streamed to the client with data rate 𝑅1 − 𝑅2 because of the priority queue, taking 
full advantage of the channel capacity of the proxy-to-client link so that it is fully utilized. 
The disadvantage of this architecture is that it can only work when all video segment 
resolutions are known beforehand, in order to create all the parallel requests. This means 
that this architecture cannot work with an adaptive video resolution, but can only work 
with a fixed / constant video resolution. 

 
3.2 Experimental performance evaluation and algorithm comparisons 
 
3.2.1 MS-SWG vs. SWG 
The second set of experiments was a comparison between MS-SWG and SWG (and 
SAG) for a scenario with the same parameters with the first set of experiments, 𝑹𝟏 = 𝟕 

Mbps, 𝑹𝟐 = 𝟒 Mbps, 𝑳 = 𝟓𝟎𝟎 MB, Random caching and with a fixed video resolution 
of 1440p which has a total file size of 418.80 MB. Fig. 18 contains the development of 
the whole video streaming procedure for both MS-SWG and SWG, while Fig. 19 contains 
a time window between 470 and 650 seconds for a clearer view. At the right side of the 
charts in Fig. 18 it seems as if the SAG suddenly became faster, but this is an optical 
illusion since the explanation for this behavior is the fact that the x-axis with the time is 
compressed, since there is nothing to compare any more. 

From both figures, we can see that MS-SWG completes the whole video streaming 
procedure about 160 seconds earlier than SWG, requiring about 590 seconds to 
completely stream a video of total duration equal to 634.6 seconds, reducing the total 
streaming duration and with it the total network usage time, while also achieving higher 

mean data rates 𝑹𝟏
𝑴𝑺−𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝟓. 𝟗𝟖 Mbps and 𝑹𝟐

𝑴𝑺−𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝟑. 𝟕𝟗 Mbps versus 𝑹𝟏
𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅ = 𝟒. 𝟐𝟏 

Mbps and 𝑹𝟐
𝑺𝑾𝑮̅̅ ̅̅ ̅̅ ̅ = 𝟑. 𝟐𝟏 Mbps. Furthermore, with the use of MS-SWG, the total number 

of stallings is zero and the MOS never drops, compared to SWG which suffers stallings 
and its MOS starts dropping after approximately 490 seconds have passed. We can also 
see that in the case of CACHE HITs, the instantaneous data rate 𝑅2 never drops to zero 
with MS-SWG, which proves that the channel capacity of the proxy-to-main link is utilized 
better, resulting in a much better network resources utilization. This behavior was 
expected from the behavior analysis and now it has been verified experimentally. So, MS-
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SWG seems like a really suitable video segment request and streaming algorithm which 
successfully answers the first two out of the three questions stated in the problem 
statement of the section 2.1. 

 

 

Figure 18: MS-SWG vs. SWG for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 
𝑳=500 MB and Random caching 
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3.3 Epoch-based caching 
 
3.3.1 MS-SWG and cache state 
One very important detail regarding MS-SWG that was intentionally not mentioned in 
section 3.1, is that during a video streaming procedure MS-SWG achieves a better 
performance than the simple SWG only if the cache state of the cache proxy contains 
cached segments that are part of the specific video file and video resolution. Otherwise, 
(almost) all segments will be requested from main and served to the client through proxy 
in a serialized one-after-another order, which eliminates any advantages MS-SWG has 
to offer over SWG. So, for the optimal solution not only we need to have cached segments 

Figure 19: MS-SWG vs. SWG for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 

𝑳=500 MB and Random caching, between 470 and 650 seconds 
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in the cache proxy, but we also need a specific combination of cached and missing 
segments to achieve the best possible outcome with MS-SWG, minimizing or even 
eliminating any video playback latencies and re-buffering delays. 

So, even though MS-SWG is an optimal segment video segment request and streaming 
algorithm, any type of random caching combined with MS-SWG is neither a suitable nor 
a sustainable caching technique. What we now need is to build a caching algorithm which 
can take advantage of the behavior of SWG and perform some “smart” caching selection 
so that the cached segments selected can help with achieving the highest utilization of 
both 𝑅1 and 𝑅2 while not exceeding the available buffer size 𝐿. 

 
3.3.2 Proposed caching algorithm 
The proposed solution to the caching problem is a novel coded caching algorithm, in 
which the video streaming process is divided into consecutive epochs, with each epoch 
enabling the User Equipment (UE) video player (client) to batch multiple requests for 
consecutive video segments of a target video bitrate and better utilize reserved 
storage/network resources. We call this algorithm Epoch-based Caching (EBC). To 
achieve this, the cache proxy, using a recursive algorithm with dynamic programming, 
should: 

i. infer on the maximum video bitrate it can support for the given parameter values 
and video file 

ii. identify how segments should be allocated into streaming epochs, and 
iii. decide which particular segments should be proactively cached for each streaming 

epoch to mitigate video stalls at the UE side. 

Since edge network caching makes sense only when the channel capacity of the proxy-
to-main link is lower than the channel capacity of the proxy-to-client link (𝑅1 > 𝑅2), we 
readily conclude that full utilization of the channel capacity of the proxy-to-main link 
dictates caching of the early video segments per epoch, to prolong the time available for 
fetching non-cached segments through the low-end proxy-to-main link while delivering 
both cached and non-cached segments through the high-end proxy-to-client link. 

Identifying the number of epochs as well as the number/IDs of segments that should be 
cached per epoch is a challenging optimization problem that has not been addressed 
before. 

We consider that the cache proxy employs epoch-based content caching before the 
streaming service begins and suggests the most appropriate video bitrate to the end user 
upon service initiation. Given the data rates 𝑹𝟏 and 𝑹𝟐, the buffer size 𝑳, and the video 
playout constraints (e.g., complete mitigation of video stalls), epoch-based network 
caching can have more than one feasible solutions. Accordingly, identifying the sequence 
of cached segments (a.k.a. caching code) that minimizes the cache usage at the cache 
proxy shall allow for a better utilization of the available cache, e.g., serving more users, 
or caching more files. Accordingly, we start our formulation with the problem of epoch-
based content caching for a target video resolution 𝒓 ∈ 𝑹 and then extend it to derive the 
maximum feasible video resolution 𝒓∗ that the cache proxy can support. 

The cache proxy should identify the most appropriate number of epochs 𝐸 and infer on 
the particular sequence of consecutive video segments [𝑒𝑘 , 𝑑𝑘] that it should cache per 
epoch 𝑘, where 1 ≤  k ≤  E, 𝑒1 = 1, 𝑒𝑘 ≤ 𝑑𝑘, 1 ≤ 𝑒𝑘, 𝑑𝑘 ≤ 𝑀𝑓. The caching code 

[{𝑒1, 𝑑1, 𝑒1
′}, … , {𝑒𝐸 , 𝑑𝐸 , 𝑒𝐸

′ }], where 𝑒𝑘
′ = 𝑒𝑘+1 − 1 is the last segment of epoch 𝑘 and 𝑒𝐸+1 =

𝑀 + 1, should be carefully selected to respect the constraints 𝑹𝟏 and 𝑹𝟐, the buffer size 

𝑳, while completely mitigating video stalls. 
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Each epoch should include at least one cached and one non-cached segment, i.e. 𝑑𝑘 ≤
𝑒𝑘
′ , , because if not, the respective epoch can be merged with the subsequent one. Thus, 

segments 𝑒𝑘 to 𝑑𝑘 are cached at the proxy while segments 𝑑𝑘+1 + 1 to 𝑒𝑘
′  are fetched 

from main through the proxy-to-main and proxy-to-client links. We now formulate the 
problem of epoch-based network caching given a target video resolution 𝒓 ∈ 𝑹, file 𝒇 ∈ Ƒ 
and client 𝒖. The optimization problem is to identify the caching code 𝒄𝒇,𝒓

∗ =

[{𝑒1, 𝑑1, 𝑒1
′}, … , {𝑒𝐸 , 𝑑𝐸 , 𝑒𝐸

′ }] with the minimum cache size requirements 𝑪𝒇,𝒓
∗  that accounts 

for the given parameter values and meets the video playout constraints. 

This algorithm makes sure that 𝑅1 ≥ 𝑅𝑓,𝑟,𝑚,𝑘 ≥ 𝑅2, where 𝑅𝑅 =
1

(𝑚−𝑘+1) 𝑇𝑓
∑ 𝑆𝑓,𝑟,𝑖

𝑚

𝑖=𝑘
 (bps) 

is the minimum channel capacity required so that segments k to m of resolution 𝑟 are 
played back seamlessly on the client’s UE. If 𝑅𝑓,𝑟,𝑚,𝑘 > 𝑅1 stallings are sure to occur since 

the channel capacity of the proxy-to-client link does not suffice, while if 𝑅𝑓,𝑟,𝑚,𝑘 < 𝑅2 it 

would make no sense to cache anything since the channel capacity of the proxy-to-main 
link suffices so that all segments could be served from main to the client through the 
proxy. The rest of EBC’s details will not be presented in this thesis, since this system 
model with MS-SWG combined with EBC are part of a paper that has been submitted for 
review to be published at the IEEE/ACM Transactions on Networking [34] journal. 

The EBC algorithm has the potential to give a much better video streaming performance 
while keeping the required cache storage size to a minimum. However, it has the following 
set of drawbacks: 

 it requires an a-priopri knowledge of 𝑅1, 𝑅2, 𝐿, total video duration, availabale video 
resolutions and segment sizes in order to make its caching choice, which is not 
always the case in real networking and video streaming environments 

 the video segments in its caching choice are segments of a specific video 
resolution, multiple resolutions are not supported 

 it only achieves the optimal streaming performance if both the cached and the 
missing segments are simultaneously requested and streamed 

 
3.4 MS-SWG with EBC vs MS-SWG with Random caching 
The third set of experiments was a comparison between MS-SWG combined with EBC 
and MS-SWG combined with Random caching, for a scenario with the same network 
parameters with the previous two sets of experiments, 𝑹𝟏 = 𝟕 Mbps, 𝑹𝟐 = 𝟒 Mbps but 
with a different buffer size, 𝑳 = 𝟐𝟓𝟎 MB, Random caching and with a fixed video 
resolution of 1440p, which has a total file size of 418.80 MB. Fig. 20 contains the 
development of the whole video streaming procedure for both Random and Coded 
caching, while Fig. 21 contains the cache hit/miss development in a time window between 
0 and 350 seconds for a clearer view. At the right side of the charts in Fig. 20 it seems as 
if the combination of MS-SWG with Random caching suddenly became faster, but this is 
an optical illusion since the explanation for this behavior is the fact that the x-axis with the 
time is compressed, since there is nothing to compare any more. 

Table 3 contains some information regarding the output of the EBC algorithm’s output in 
this experiment. We can see that with a total cache size of only 250 MB, EBC chooses 
segments of the 2nd highest resolution (1440p) which requires a data rate 𝐷 ≥ 5.28 Mbps 
in order to avoid stallings during streaming, it only caches 29 out of the 64 available 
segments, which is less than half, and requires only 190.3 MB of cache storage out of the 
418.8 MB which is the total video size, saving about 60 MB of cache storage. 
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Table 3: Coded caching algorithm output for 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 𝑳=250 MB 

𝑹𝟏 𝑹𝟐 𝑳 
Video 

Resolution 
Required 

Data Rate D 
Cache Choice 

Cached 
Segments Size 

Video Size 

7 Mbps 4 Mbps 250 MB 1440p 5.28 Mbps 
1-2, 4, 6-10, 

18-38 
190.3 MB 418.8 MB 

 
From both Fig. 20 and Fig. 21, we can see that MS-SWG combined with EBC completes 
the whole video streaming procedure about 260 seconds earlier than with Random 
caching, requiring about 490 seconds to completely stream a video of total duration equal 
to 634.6 seconds, reducing the total streaming duration and with it the total network usage 

time, while also achieving higher mean data rates 𝑹𝟏
𝑬𝑩𝑪̅̅ ̅̅ ̅̅ ̅ = 𝟔. 𝟕𝟔 Mbps and 𝑹𝟐

𝑬𝑩𝑪̅̅ ̅̅ ̅̅ ̅ = 𝟑. 𝟓𝟕 

Mbps versus 𝑹𝟏
𝑹𝒂𝒏𝒅𝒐𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝟒. 𝟔𝟓 Mbps and 𝑹𝟐

𝑹𝒂𝒏𝒅𝒐𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝟑. 𝟕𝟓 Mbps. Furthermore, with the 

use EBC, the total number of stallings is zero and the MOS never drops, compared to 
Random caching which suffers stallings and its MOS starts dropping after approximately 
310 seconds have passed. We can also see that the instantaneous data rate 𝑅1 of EBC 
is always higher than the one of Random caching, which proves that channel capacity of 
the proxy-to-client link is utilized better, resulting in a much better network resources 
utilization. So, EBC seems like a really suitable video segment caching algorithm which 
successfully answers the third and last out of the three questions stated in the problem 
statement of the section 2.1. 
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Figure 21: EBC (coded) vs. Random cache hits / misses with the use of MS-SWG, 
for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 𝑳=250 MB 

Figure 20: Performance comparison between random and EBC (coded) caching algorithms with 
the use of MS-SWG, for 1440p, 𝑹𝟏=7 Mbps, 𝑹𝟐=4 Mbps, 𝑳=250 MB 



Peer-to-Peer video content delivery optimization service in a distributed network  

N. Episkopos   46 

4. Performance evaluation 
 
For the performance evaluation, we used the system model presented in Chapter 2, with 
the addition of the proposed content caching and video segment request and streaming 
algorithms presented in Chapter 3. We conducted the following set of 5 distinct 
combinations of caching algorithm, video segment request and streaming algorithm, and 
resolution choice: 

 EBC + MS-SWG + predictive resolution 

 Random caching + MS-SWG + fixed resolution 

 Random caching + SWG + fixed resolution 

 Random caching + SWG + predictive resolution 

 Random caching + SAG + predictive resolution 

For each eperimentation combination we used the values of Table 4 for 𝑅1, 𝑅2 and 𝐿. 
 

Table 4: Experimentation parameters 

𝑹𝟏 (Mbps) 𝑹𝟐 (Mbps) 𝑳 (MB) 

18 8 400 

15.8 6 300 

12 4 200 

8.3 2 100 

7 1 50 

5.7  0 

3   

2   

1.4   

 
We evaluated the performance of these combination using the following evaluation 
metrics: 

 Average Video Bitrate: mean value of the bitrate required for the video streaming, 
based on both the segment sizes which may vary in case the resolution changes 
adaptively and their respective playback duration, and is computed as 

𝐴𝑉𝐺𝑏𝑖𝑡𝑟𝑎𝑡𝑒 =
1

𝑁⋅𝑇𝑓
∑ 𝑆𝑓,𝑟,𝑖
𝑁
𝑖=1  , where 𝑆𝑓,𝑟,𝑖 is the file size of the segment 𝑖 with 

resolution 𝑟 of the original video 𝑓 and 𝑇𝑓 is the segment playback duration. 

 Average Video Resolution: mean value of the streamed video resolution, 

computed as 𝐴𝑉𝐺𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
1

𝑁
∑ 𝑟𝑖
𝑁
𝑖=1 . This value is equal to the video resolution 

when a fixed video resolution is used. 

 Sum of Resolution Switches: total number of resolution changes, computed as 

𝑆𝑆 = ∑ 𝑠𝑖
𝑁
𝑖=2  where 𝑠𝑖 = {

0,   𝑖𝑓  𝑟𝑖 = 𝑟𝑖−1
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

} 

 Average Resolution Altitude: mean value of altitude which is based on the 
difference between two different but consecutive video segment resolutions, and 

is computed as 𝐴𝑉𝐺𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 =
1

𝑁
∑ 𝑎𝑖
𝑁
𝑖=2  where the altitude between a streamed 
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video segment 𝑖 and the previously streamed video segment 𝑖 − 1 is computed as 

𝑎𝑖 = |𝑣𝑖 − 𝑣𝑖−1|, where  𝑣𝑖 = 

{
 
 

 
 
1, 𝑖𝑓 𝑟𝑖 = 360𝑝    
2, 𝑖𝑓 𝑟𝑖 = 480𝑝    
3, 𝑖𝑓 𝑟𝑖 = 720𝑝    
4, 𝑖𝑓 𝑟𝑖 = 1080𝑝 
5, 𝑖𝑓 𝑟𝑖 = 1440𝑝 
6, 𝑖𝑓 𝑟𝑖 = 2160𝑝 }

 
 

 
 

. 

 Mean Opinion Score based on video resolution: mean value of the opinion 
score that occurs based on the resolution of the streamed video and is computed 

as 𝑀𝑂𝑆𝑅𝐸𝑆 =
1

𝑁
∑ 𝑜𝑖
𝑁
𝑖=1  where 𝑜𝑖 = 

{
 
 

 
 
2.07744, 𝑖𝑓 𝑟𝑖 = 360𝑝    
3.02246, 𝑖𝑓 𝑟𝑖 = 480𝑝    
3.97185, 𝑖𝑓 𝑟𝑖 = 720𝑝    
4.47112, 𝑖𝑓 𝑟𝑖 = 1080𝑝 
4.52586, 𝑖𝑓 𝑟𝑖 = 1440𝑝 
4.58036, 𝑖𝑓 𝑟𝑖 = 2160𝑝 }

 
 

 
 

 is the opinion on the 

resolution of the segment 𝑖. Obviously, 2.07 < 𝑀𝑂𝑆𝑅𝐸𝑆 < 4.6 where 4.6 is the best 
value and 2.07 the worst. 

 Initial Playback Delay: the time elapsed from the beginning of the video streaming 
procedure initiation, until the actual video playback begins. This delay can vary 
between different video players and even within the same video player due to the 
network channel conditions. For our experimentation, we consider the initial 
playback delay to be the time required to sucessfully stream the first segment. 

 Stallings: total number of freezes occurred during the video playback because of 
segment delivery delays. 

 Total Stalling Time: total time elapsed for all stallings that occurred during the 
whole video playback. 

 Mean Stalling Time: mean value of the total stalling time, with respect to the 
number of stallings occurred. 

 Mean Opinion Score based on stallings: based on both on the number of 
stallings ocured and the total stalling time, computed as 

𝑀𝑂𝑆𝑆𝑇𝐴𝐿𝐿 =  3.5 ⋅  𝑒
−(0.15 𝑇+0.19)⋅𝑆 + 1.5  where T is the total stalling time and 𝑆 is 

the total number of stallings occurred. Obviously, 1.5 ≤ 𝑀𝑂𝑆𝑆𝑇𝐴𝐿𝐿 ≤ 5 where 5 is 
the best value and 1.5 the worst. 

 Mean Network Throughput 𝑹𝟏: Average channel capacity of the proxy-to-client 
link during the whole video streaming duration. 

 Mean Network Throughput 𝑹𝟐: Average channel capacity of the proxy-to-main 
link during the whole video streaming duration. 

 Total Network Usage Time: total time the network was active during the whole 
video streaming duration. 

 Number of cached bytes delivered: total number of bytes of the cached 
segments that were delivered to the client 

 Number of non-cached bytes delivered: total number of bytes of the non-cached 
(missing) segments that were delivered to the client 

 Cache Miss Ratio 

 Cache Hit Ratio 

 Backhaul traffic ratio 

 Total Video Playback Duration: total time elapsed from the video playback 
initiation until its completion 

For the experimentation we used the video described in Appendix I. Fig. 22 shows the 
video bitrate development with respect to the increase in the video resolution, for the 
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available video resolutions and their respective file sizes. We can see that to seamlessly 
stream the 2160p resolution to to the client, whose total file size is equal to 728.51 MB, a 
data rate of at least 9.18 Mbps is required. 

 

 

At this point we are going to present some comparison charts between the 
aforementioned 5 combinations, to comment on the behavior of the system model and 
determine whether the proposed solution, i.e. the combination of MS-SWG and EBC, 
yields the expected performance results. These charts are useful in getting a greater view 
of each algorithm’s performance in general and compared to the other ones, using 
different values for 𝑅1, 𝑅2 and 𝐿. 

Obviously, in order for the EBC to make sense and the whole system model to have 
meaningful performance improvements, we will only present charts of the experiments in 
which 𝑅1 > 𝑅2 and 𝐿 > 0. Since the highest the video resolution achieved, the highest the 
video bitrate also achieved, we are only going to present experiments at which all 1080p, 
1440p, 2160p resolutions are achieved. Also we need to make sure that 𝑅1 is much higher 
than 𝑅2 so that our displayed example are as close to reality as possible. 

So, for displaying of the system model’s behavior against the development of L we choose 
the channel capacity of the proxy-to-client link 𝑅1 = 18 Mbps and the channel capacity of 

the proxy-to-client 𝑅2 = 6 Mbps so that 𝑅1 ≅ 3 ⋅ 𝑅2 while for its behavior against the 

development of 𝑅1 we choose 𝑅2 = 6 Mbps and 𝐿 = 300 MB so that 
1

3
 of the total size of 

the highest available video resolution file fits in the cache and the value of 𝑅2 matches. 

For every experiment with a fixed video resolution, this video resolution was based on the 
output of EBC, which performs the calculations described in Chapter 3 and outputs both 
some calculated optimal video resolution to stream alongside a cache code which 
consists of the segments to cache. Both the optimal resolution and the segment choice 
EBC calculated is based on the values of 𝑅1, 𝑅2 and 𝐿. 
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Figure 22: Video bitrate vs. Video resolution 
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Initially we are going to present some charts to study the bitrate of the EBC’s optimal 
resolution choice. 

 

 

 

 

From Fig. 23 and Fig. 24 we can see that the bitrate of EBC’s optimal resolution choice 
is lower than the average adaptive resolution of the predictive algorithm for low values of 
𝑅1 and 𝐿. This behavior can be explained because the predictive algorithm attempts to 
raise the streaming resolution to the highest whenever possible. However, for high values 
of 𝑅1 and 𝐿, the EBC algorithm selects a highest fixed resolution that what the predictive 
algorithm achieves. Now, we are going to see the evolution of MOS based on the average 
video resolutions of the charts above. 

Now, we are going to study the effect of EBC’s optimal resolution choice on the MOS. 

 

 

Figure 23: Average Video Bitrate vs. Buffer Size 𝐋 

Figure 24: Average Video Bitrate vs. Channel Capacity 𝑹𝟏 
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From Fig. 25 and Fig. 26 we can see that the value of MOS based on video resolution is 
almost always higher with EBC’s optimally selected and fixed resolution compared to the 
adaptive video resolution of the predictive algorithm. This happens because when 
adaptive video resolution drops to adapt to existing network conditions the MOS drops 
with it, while with the fixed video resolution MOS is constant. This means that the end 
user enjoys a high QoE. 

Now, we will move on to the playback behavior, starting with the stallings. 

 

 

Figure 25: MOS (Resolution) vs. Buffer Size 𝐋 

Figure 26: MOS (Resolution) vs. Channel Capacity 𝑹𝟏 
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From Fig. 27 and Fig. 28, we can see that the number of stallings is always lower with 
EBC’s optimally selected and fixed resolution compared to the adaptive video resolution 
of the predictive algorithm. Furthermore, with EBC’s optimal caching selection, the 
number of stallings is the best among all combinations. The reason behind the small non-
zero number of stallings is the fluctuation in the channel because of the randomly 
changing network conditions. So, EBC with MS-SWG has the best behavior among all 
combinations regarding stallings. 

Now, we are going to study the effect of EBC’s optimal caching selection on the MOS. 

 
 
 
 
 
 
 

Figure 27: Number of stallings vs. Buffer Size 𝐋 

Figure 28: Number of stallings vs. Channel Capacity 𝑹𝟏 
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From Fig. 29 and Fig. 30 we can clearly see that independent of the size of the buffer size 
L, MOS maintains the highest value possible with the combination of EBC with MS-SWG. 

However, with respect to the value of 𝑅1, we can see that even though MS-SWG with 
EBC does not maintain the highest value possible for MOS, because of random changes 
in the channel condition, its value is still higher than all other combinations and close to a 
“perfect 5”. 

 

 

 

 

 

 

Figure 29: MOS (Stallings) vs. Buffer Size 𝐋 

Figure 30: MOS (Stallings) vs. Channel Capacity 𝑹𝟏 
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From Fig. 31 and Fig. 32 we can see that EBC with MS-SWG achieves the lowest total 
video playback duration, independently of the values for 𝑅1, 𝑅2 and 𝐿, because of the 
optimally selected video resolution and segments to cache. This means a guranteed 
video playback duration can be offered. 

Now, we are going to study the effect of EBC’s optimal caching selection on the total 
stalling duration. 

 

 

 

 

 

Figure 31: Total Video Playback Duration vs. Buffer Size 𝐋 

Figure 32: Total Video Playback Duration vs. Channel Capacity 𝑹𝟏 
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From Fig. 33 and Fig. 34 we can clearly see that EBC with MS-SWG results in the lowest 
possible Total Stalling Time among all combinations. Now we have to study the behavior 
of the initial playback delay the end user experiences. 
 
 
 
 
 
 
 
 
 
 
 

Figure 33: Total Stalling Time vs. Buffer Size 𝐋 

Figure 34: MOS (Stallings) vs. Channel Capacity 𝑹𝟏 
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From Fig. 35 and Fig. 36 we can see that the combination of EBC with MS-SWG not only 
experiences the lower initial playback delay but this delay is also as low as 5 seconds or 
even lower. Taking into account MOS (Stallings) and Total Stalling Time, we conclude 
that the end user enjoys a high QoE with MS-SWG and EBC. 

Next, we are going to study the QoS of our model with respect to whether the set goals 
were met. 
 
 
 
 
 
 
 
 

Figure 35: Initial Playback Delay vs. Buffer Size 𝐋 

Figure 36: Initial Playback Delay vs. Channel Capacity 𝑹𝟏 
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From Fig. 37 and Fig. 38, combined with the achieved mean video bitrate development 
displayed in Fig. 33 and Fig. 24, we can deduce that for high values of 𝐿 and 𝑅1 where 
higher video bitrates are achieved, the total network usage time of EBC with MS-SWG 
achieves the lowest total network usage time. Moreover, EBC with MS-SWG always 
achieves a total network usage time that is lower than the video duration which is equal 
to 634.6 seconds, which means that the video streaming procedure always completes in 
time. 

Next, we will move on with the network throughput. 
 
 
 
 
 
 
 

Figure 37: Total Network Usage Time vs. Buffer Size 𝐋 

Figure 38: Total Network Usage Time vs. Channel Capacity 𝑹𝟏 
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From Fig. 39 and Fig. 40, combined with the achieved mean video bitrate development 
displayed in Fig. 23 and Fig. 24, we can deduce that EBC combined with MS-SWG 
achieves the highest mean network throughput for the channel capacity 𝑅2 of the proxy-
to-main link. 

 

 

 

 

 

 

 

 

Figure 39: Mean Network Throughput 𝐑𝟐 vs. Buffer Size 𝐋 

Figure 40: Mean Network Throughput 𝑹𝟐 vs. Channel Capacity 𝑹𝟏 
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From Fig. 41 and Fig. 42, combined with the previous charts, we can see that EBC with 
MS-SWG achieves the highest performance among all combinations independently of 
the cache miss ratio. Furthermore, it manages to keep the cache miss ratio to a minimum 
for high video bitrates where the video file sizes increase because of the increase in the 
resolution, rendering the utilization of caching capabilities mandatory. The reason behind 
the low cache utilization for low values of 𝑅1 and 𝐿 is that the channel capacities of the 
proxy-to-client link and the proxy-to-main link are sufficient for streaming the selected 
video resolution of EBC while maintaining a low utilization of the caching capabilities. 

Taking all these into account, we conclude that the combination of MS-SWG with EBC 
achieves the highest QoS for our model. 

 
  

Figure 41: Cache Miss Ratio vs. Buffer Size 𝐋 

Figure 42: Cache Miss Ratio vs. Channel Capacity 𝑹𝟏 
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5. Conclusion and future improvements 
 
After everything we studied in this thesis regarding DASH, video streaming, edge video 
caching and D2D content exchange, we can see that since both video demand and video 
resolutions are going to increase in the future, a series of smarter and more efficient 
techniques needs to be invented and deployed to meet such demands, taking advantage 
of the innovative technologies 5G can offer. Otherwise, both the QoS of the service 
offered and the QoE for the end users will remain sub-optimal. Innovative services 
developed in future networks must be user-centric first, i.e. their architects should first of 
all aim at offering a great experience to the end users, since these users are the ones 
that will benefit from the network improvements and that will pay for the service they get. 

Our basic three node system model alongside the proposed MS-SWG segment request 
and streaming algorithm and the EBC caching algorithm are examples of smart 
techniques that can offer improvements to the QoS and the QoE, since we have already 
seen that they can offer significant improvements to the video streaming procedure. 
Moreover, the application of such smart and efficient techniques in a decentralized and 
distributed network can not only offer advancements in the offered video streaming 
procedure and service but also reduce the total network operation costs and lower the 
total network traffic congestion. 

Furthermore, EBC was developed so that the values for the network parameters 𝑅1, 𝑅2 
and 𝐿 can be used to decide upon the optimal video resolution and segments to cache. 
However, a reverse technique can be applied so that using the video resolution, the 
segments to cache and two out of the three network parameters 𝑅1, 𝑅2 and 𝐿, we can 
deduce the optimal value for the remaining one. For example, we may be able to use the 
values for 𝑅1 and 𝑅2 to deduce the optimal value for the buffer size 𝐿, or use the values 

for 𝑅2 and 𝐿 to deduce the optimal value for the channel capacity 𝑅1. 

Finally, any network node that participates in a video content distribution procedure can 
be extended to record the events of this procedure for every procedure. This history can 
be used as input in Data Analysis tasks so that additional metrics and information is 
produced and stored. Then, Machine Learning techniques can be utilized so that nodes 
in the network use the recorded history in their database to make decisions on the QoS 
parameters for future content distribution sessions. For example, a client can use this 
knowledge to request specific guarantees for the streaming service, while a proxy can 
use this knowledge to deduce the optimal network and storage capabilities. These 
Machine Learning techniques can also be used for Cybersecurity purposes, either as an 
intrusion detection system by identifying patterns of suspicious behaviors in the network, 
to offer faster malicious node isolation, or as Anomaly Detectors for detecting anomaly 
patterns in the network. 

Finally, an extension of the MS-SWG algorithm can be developed so that multiple clients 
are simultaneously served. This extension can also lead to a fully distributed peer-to-peer 
network in which every UE network device is considered as a network node which can 
act either as a cache proxy that distributes video content to another node or as a client 
which consumes video content. Furthermore, a decentralized payment system, e.g. a 
blockchain, can be used so that proxy nodes get paid for the content they provide, where 
client nodes pay for the content they receive. 
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ABBREVIATIONS – ACRONYMS 
 
 

5G  Fifth Generation Network Systems 

ABR Adaptive Bit Rate 

ACM Association for Computing Machinery 

AVC Advanced Video Coding 

AVG Average 

BS Base Station 

CDN Content Delivery Network 

CENC Common Encryption 

CPU Central Processing Unit 

CRF Constant Rate Factor 

CSS Cascading Style Sheets 

D2D Device-to-Device 

DASH Dynamic Adaptive Streaming over HTTP 

DDoS Distributed Denial of Service 

DRM Digital Rights Management 

EBC Epoch-based Caching 

EME Encrypted Media Extensions 

HAS HTTP Adaptive Streaming 

HDS HTTP Dymanic Streaming 

HEVC High Efficiency Video Coding 

HLS HTTP Live Streaming 

HTML Hyper-Text Markup Language 

HTTP Hyper-Text Transfer Protocol 

IEEE Institute of Electrical and Electronics Engineers 

IP Internet Protocol 

ISO International Organization for Standardization 

ITU International Telecommunications Union 

KPI Key Performance Indicators 

LAN Local Area Network 

LED Light-emitting Diode 

Mbps Megabits Per Second 

MB Megabyte 
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MEC Multi-access Edge Computing 

MOS Mean Opinion Score 

MP4 MPEG-4 Part 14 specification 

MOV QuickTime File Format specification 

MPD Media Presentation Description 

MPEG Motion Picture Expert Group 

MS-SWG Multi-Segment Send-While-Get 

MSE Media Source Extensions 

NAT Network Address Translation 

OS Operating System 

P2P Peer-to-Peer 

QoE Quality of Experience 

QoS Quality of Service 

RDA Rate Determination Algorithm 

SAG Send-After-Get 

SINR Signal to Interference & Noise Ratio 

SIR Signal to Interference Ratio 

SNR Signal to Noise Ratio 

SSL Secure Sockets Layer 

SWG Send-While-Get 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UE User Equipment 

URL Uniform Resource Locator 

VoD Video on Demand 

WAN Wide Area Network 

XML Extensible Markup Language 
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APPENDIX Ι 
 
 

Software implementation details 
For the experimentation through which we obtained the results we presented in Chapters 
2, 3 and 5, we performed a full system model implementation, not just a simulation like 
the majority of scientific papers does. The software we developed is available in the 
GitHub repository [25] in the form of binary executables with fully detailed instructions for 
the setup and the execution. Fig. 43 contains the structure and the contents of the 
repository. 
 

 
 

Figure 43: Software's GitHub repository structure 
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The implementation was done and only tested with the following software combination: 

 Ubuntu [26] 20.04 Desktop 

 Python [27] version 3.8 

 VLC [28] media player version 3.0.9 

 FFmpeg [29] version 4.2.x 

 MP4Box [30] version 0.9 or newer 

The experimentation software was written in the Python programming language with 
some additional pip packages (NumPy, Pandas, ISOdate, MPEGdash). 

The data rate control was implemented in software, and in order to add some randomness 
to simulate an actual channel link’s behavior, we introduced some randomness through 
the use of a Rayleigh distribution, so that the mean rate varies a little. More specifically, 
the mode 𝜎 of a Rayleigh random variable in our simulation is given by the following 

formula 𝜎 = √
2

𝜋
 𝜇(𝑋) where 𝜇(𝑋) represents the mean data rate of the channel. This 

random data rate is recalculated repeatedly with a time interval of 1 second. 

To be more precise, a data window of 𝑁 bytes is generated which are supposed to be 
transmitted during the following interval of simulation time. Since this window may be 
exceeded before a full interval passes, because of the constant data chunk size of 4096 
bytes (equal to the OS page size) that are being transmitted at any moment, when said 
window is exceeded the software will halt the execution for the remaining time, so that 
the total data size transmitted within every interval does not exceed N by more than 4095 
bytes. 

 

Video details 
For our experimentation and measurements, we used the Big Buck Bunny [31] video with 
an original resolution of 2160p, a playback duration of 634.6 seconds and a frame rate of 
30 FPS. We used the AVC/H.264 [32] video encoder of the FFmpeg software tool to 
transcoded the original video into the six following distinct video resolutions: 2160p, 
1440p, 1080p, 720p, 480p, 360p as shown in Table 5. 
 

Table 5: Video details 

Resolution Video File Size (MB) Required Data Rate (Mbps) 

2160p 728.51 9.18 

1440p 418.80 5.28 

1080p 276.43 3.48 

720p 159.49 2.01 

480p 96.22 1.21 

320p 71.70 0.90 
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Afterwards, we used GPAC’s MP4Box to partition each one of these resolutions into 
DASH-compatible video and audio segments suitable for individual/separate download 
through HTTP requests. We chose to create segments with a duration 𝑇𝑓 = 10 seconds, 

which resulted in 64 video segments per resolution plus another 64 audio segments (448 
segment files in total). In addition to that, MP4Box also created a helper manifest MPD 
file which can be used as an index and metadata holder for the generated segments, as 
well as a video and an audio initialization file. So, the CDN (main) contains 451 files in 
total with a total size of approximately 1.75 GB. Table 6 contains a detailed list of each 
segment’s size in MB (including both video and audio sizes). 
 

Table 6: Segment sizes per video resolution (including audio) 

  Segment Size (MB) 

Segment ID Segment Duration (s) 2160p 1440p 1080p 720p 480p 320p 

1 10 8.44 4.41 3.33 1.57 0.99 0.75 

2 10 19.61 10.26 6.97 3.66 2.45 1.70 

3 10 9.91 5.76 3.92 2.22 1.34 0.97 

4 10 19.04 10.94 7.49 4.07 2.27 1.50 

5 10 8.33 4.75 3.35 2.02 1.41 1.07 

6 10 11.84 6.52 4.51 2.66 1.65 1.20 

7 10 6.92 3.90 2.65 1.51 0.97 0.78 

8 10 11.56 6.22 4.11 2.28 1.38 1.03 

9 10 13.73 7.23 4.85 2.68 1.66 1.24 

10 10 5.19 3.12 2.24 1.40 0.93 0.74 

11 10 7.00 3.85 2.58 1.49 0.97 0.77 

12 10 8.04 4.49 3.08 1.79 1.15 0.90 

13 10 12.63 6.48 4.22 2.31 1.43 1.07 

14 10 9.48 5.18 3.49 1.95 1.21 0.92 

15 10 10.05 5.49 3.69 2.07 1.27 0.96 

16 10 9.60 5.23 3.44 1.96 1.23 0.95 

17 10 8.16 4.43 2.95 1.73 1.12 0.88 

Figure 44: Big Buck Bunny poster 
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18 10 6.66 3.63 2.46 1.44 0.96 0.78 

19 10 11.95 6.48 4.33 2.50 1.56 1.18 

20 10 11.90 6.42 4.22 2.31 1.40 1.05 

21 10 8.60 4.75 3.28 1.83 1.14 0.88 

22 10 12.72 7.26 5.00 2.86 1.79 1.35 

23 10 10.38 5.29 3.35 1.77 1.08 0.83 

24 10 10.13 5.29 3.44 1.88 1.15 0.89 

25 10 11.36 6.16 4.13 2.32 1.41 1.04 

26 10 11.82 6.28 4.16 2.35 1.48 1.14 

27 10 10.91 5.88 3.89 2.16 1.33 1.00 

28 10 13.87 7.37 4.84 2.58 1.52 1.13 

29 10 13.83 7.34 4.79 2.58 1.51 1.10 

30 10 6.75 3.72 2.54 1.49 1.00 0.80 

31 10 12.72 6.92 5.15 2.97 1.67 1.17 

32 10 13.04 7.17 4.78 2.65 1.59 1.18 

33 10 15.42 8.22 5.41 2.93 1.76 1.29 

34 10 12.83 6.85 4.57 2.54 1.55 1.17 

35 10 10.22 5.77 3.93 2.26 1.42 1.05 

36 10 17.36 9.66 6.53 3.61 2.21 1.54 

37 10 18.96 10.24 6.73 3.76 2.20 1.58 

38 10 13.61 7.03 4.68 2.63 1.60 1.14 

39 10 6.27 3.47 2.34 1.36 0.89 0.71 

40 10 6.64 3.83 2.62 1.55 1.01 0.79 

41 10 8.81 4.92 3.39 1.92 1.22 0.95 

42 10 8.36 4.68 3.25 1.93 1.27 0.98 

43 10 16.94 9.56 6.67 3.84 2.35 1.69 

44 10 23.74 13.22 8.96 4.89 2.82 1.96 

45 10 16.60 9.78 7.09 3.95 2.36 1.72 

46 10 5.95 3.28 2.28 1.42 1.00 0.82 

47 10 17.97 8.85 5.59 2.83 1.60 1.11 

48 10 15.56 8.29 5.41 2.92 1.67 1.16 

49 10 6.67 3.62 2.47 1.47 0.99 0.77 

50 10 6.98 3.86 2.63 1.48 0.96 0.75 

51 10 10.23 5.36 3.89 1.96 1.11 0.87 

52 10 13.11 6.76 4.57 2.40 1.45 1.10 

53 10 14.41 7.50 5.09 2.56 1.44 1.07 

54 10 14.22 7.27 4.91 2.54 1.55 1.11 

55 10 9.90 9.55 5.74 4.53 2.43 1.93 

56 10 11.29 10.85 6.55 5.04 2.60 2.08 

57 10 16.21 11.38 7.07 3.96 2.50 1.76 

58 10 12.22 6.13 4.47 2.24 1.30 0.95 

59 10 19.03 12.85 7.11 4.68 2.49 1.71 

60 10 17.28 15.61 7.57 5.65 2.94 2.07 

61 10 7.29 7.32 4.17 3.24 1.80 1.40 

62 10 0.99 0.73 0.62 0.53 0.49 0.46 

63 10 4.73 2.67 1.87 1.14 0.80 0.66 

64 4.6 2.57 1.48 1.02 0.64 0.43 0.36 

TOTAL 634.6 728.51 418.80 276.43 159.49 96.22 71.70 

 
Every video segment file has the file name pattern video_RESOLUTION_ID.m4s while 
every audio segment has the file name pattern video_audio_ID.m4s, where 
RESOLUTION is the video resolution and ID is the segment ID / number. All of these 
segments are available from main. For the actual segment requests and video playback 
for the end user, the VLC media player is employed. 
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Experimentation environment setup 
In order to prepare the experimentation environment, first we must install the Ubuntu 
20.04 OS on our PC. Then we should install all required the software tools (Python, VLC, 
FFmpeg, MP4Box, git, etc.) as described in the project’s GitHub repository. 

The next step is to download the binaries from the software’s GitHub repository. This can 
either be cloned using git or downloaded as a compressed ZIP file. 

To download the binaries using git, we need to use the following command: 

 

To download them as a compressed ZIP file we need to navigate to the software’s GitHub 
repository with a web browser and click on Code  Download ZIP as shown in Fig. 45. 

 

 
Afterwards, we can either download the BBB video and manually segment it, or download 
a compressed ZIP file which contains the BBB video segments that were used for the 
experiments we performed in Chapter 5 and place them under main’s serving directory. 
The existing segments can be downloaded from [33]. To segment the video ourselves, 
we can use the provided bash script file transcode.sh. This script locates all MP4 and 
MOV files in the execution directory and then it first uses FFmpeg’s H.264 codec and a 
Constant Rate Factor (CRF) of 23, which is the default value (51 is for the worst possible 
video quality while 0 is for the best possible video quality), to transcode all these videos 
into the 6 video resolutions presented in Table 5 as MP4 files, afterwards it uses MP4Box 
to segment all generated MP4 files into DASH-compatible segments using the value of 
the SEGMENT_DURATION argument as for the generated segments’ duration. 
 
To manually transcode and segment the original video files and then place the output files 
under main’s serving directory, we can use the transcode.sh bash script with the following 

Figure 45: Download software as ZIP 

git clone http://github.com/Fogus-Gr/recent-dash-proposed-caching.git 
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commands, replacing SEGMENT_DURATION with the desired segment duration 
(seconds) which in our experiments was equal to 10: 
 

 
Then, we are ready to move on to the actual software execution and experimentation. 

 

Manual software execution instructions 
As we mentioned in Chapter 2, the software we developed is split into three distinct 
components: the main, the cache proxy and the local / client. These components are 
independent from one another and can be independently executed. We will present the 
basic execution steps and some details on the input parameters. 

First, before any software is executed, we must make sure that we have placed all the 
output files generated by MP4Box under main’s serving directory, otherwise the software 
execution will be unsuccessful. If we want to have cached segments in the cache proxy’s 
buffer, we should manually copy them to the cache proxy’s serving directory before the 
video streaming procedure is initiated. 

We will now present the software components execution instructions. The version of the 
components to execute should be properly selected so that they are compatible and 
cooperate seamlessly with each other. For example when the single-segment version of 
main is executed, if the multi-segment version of proxy is executed alongside it the video 
streaming experiment will fail because of errors due to incompatibilities. 

For the IP addresses of the three software components, we use the (default) IP addresses 
and serving ports presented in Table 7. 

 
Table 7: IP addresses and serving ports of system model’s network components 

Component IP address Serving port 

Main 127.0.0.4 8004 

Cache Proxy 127.0.0.3 8003 

Local 127.0.0.2 8002 

VLC - - 

 
 

 
 

Figure 46: Experimentation network topology 

bash ./transcode.sh SEGMENT_DURATION 

mv manifest.mpd ~/recent-d3x-video-streaming/public/ 

mv *init.mp4 ~/recent-d3x-video-streaming/public/ 

mv video*.m4s ~/recent-d3x-video-streaming/public/ 
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Main 
Second, we should execute main, since this is the basic source of video content and 
proxy will have to communicate with main for the missing / non-cached content. 
 
To execute the single-segment version of main, we use the following command template: 
 

 
An example execution with a data rate 𝑅2 = 5 Mbps and channel randomness through a 
Rayleigh distribution could be the following: 
 

 
To execute the multi-segment version of main, we use the following command template: 

 
An example execution with a data rate 𝑅2 = 5 Mbps and channel randomness through a 
Rayleigh distribution could be the following: 
 

 
 

usage: main [-h] [-a ADDRESS] [-p PORT] [-d DIRECTORY] -r2 RATE2 

                 [-s SAMPLE] [--rayleigh] 

 

Single-segment remote main video content public HTTP server 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

  -r2 RATE2, --rate2 RATE2 

                        data rate R2 [from main to proxy] (Mbps) 

  -s SAMPLE, --sample SAMPLE 

                        sample number 

  --rayleigh            introduce randomness in the data channel [from main to 

                        proxy] through Rayleigh distribution 

usage: main-ms [-h] [-a ADDRESS] [-p PORT] [-d DIRECTORY] -r2 RATE2 

                    [-s SAMPLE] [--rayleigh] 

 

Multi-Segment remote main video content public HTTP server 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

  -r2 RATE2, --rate2 RATE2 

                        data rate R2 [from main to proxy] (Mbps) 

  -s SAMPLE, --sample SAMPLE 

                        sample number 

  --rayleigh            introduce randomness in the data channel [from main to 

                        proxy] through Rayleigh distribution 

./main-ms -a 127.0.0.4 -p 8004 -d . -r2 5.0 --rayleigh 

./main -a 127.0.0.4 -p 8004 -d . -r2 5.0 --rayleigh 
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Cache Proxy 
Now the main server should be up and running. So, we should be able to move on with 
the execution of the cache proxy. 
 
To execute the single-segment version of proxy, we use the following command template: 

 

An example execution with the SWG streaming algorithm, a data rate 𝑅1 = 15 Mbps, a 
communication with main on the IP address 127.0.0.4 with a serving port of 8004, and 
channel randomness through a Rayleigh distribution could be the following: 
 

 
 
 
 
 
 
 
 
 
 

usage: proxy [-h] [-a ADDRESS] [-p PORT] [-sa REMOTEADDRESS] [-sp REMOTEPORT] 

                  [-d DIRECTORY] -al {sag,swg} -r1 RATE1 [-r2 RATE2] 

                  [-l BUFFERSIZE] [-dl {predictive,fixed}] -c {random,ripple} 

                  [-s SAMPLE] [-n NUMFILES] [--rayleigh] 

 

Single-Segment Send-After-Get (SAG) / Send-While-Get (SWG) video cache proxy 

HTTP server / client 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -sa REMOTEADDRESS, --remoteaddress REMOTEADDRESS 

                        remote server IP address 

  -sp REMOTEPORT, --remoteport REMOTEPORT 

                        remote server serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

  -al {sag,swg}, --algorithm {sag,swg} 

                        proxy algorithm option 

  -r1 RATE1, --rate1 RATE1 

                        data rate R1 [from proxy to client] (Mbps) 

  -r2 RATE2, --rate2 RATE2 

                        data rate R2 [from main to proxy] (Mbps) 

  -l BUFFERSIZE, --buffersize BUFFERSIZE 

                        buffer size L (MB) 

  -dl {predictive,fixed}, --dashlogic {predictive,fixed} 

                        DASH resolution logic 

  -c {random,ripple}, --caching {random,ripple} 

                        caching algorithm option 

  -s SAMPLE, --sample SAMPLE 

                        sample number 

  -n NUMFILES, --numfiles NUMFILES 

                        total number of files required for a video stream 

                        (automatic proxy termination when reached) 

  --rayleigh            introduce randomness in the data channel [from proxy 

                        to client] through Rayleigh distribution 

./proxy -a 127.0.0.3 -p 8003 -sa 127.0.0.4 -sp 8004 -d . -al swg --rayleigh 
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To execute the multi-segment version of proxy, we use the following command template: 
 

 
An example execution with a data rate 𝑅2 = 15 Mbps, a communication with main on the 
IP address 127.0.0.4 with a serving port of 8004 and channel randomness through a 
Rayleigh distribution could be the following: 
 

 
 
Local / Client 
Now that the cache proxy is also up and running, we can move on with the execution of 
the client. In the client’s case we have 3 distinct software options: 

 Local: this is the single-segment version of local which will be used with the VLC 
player for video playback 

 MS Local: this is the multi-segment version of local which will also be used with 
the VLC player for video playback 

 Client: this is a custom standalone multi-segment client which successfully 
streams the video content but does not have video playback capabilities 

In the cases of both single-segment and multi-segment versions of local, the client 
consists of the combination of the local with the VLC player. This also means that the 
VLC player must be launched for the video streaming to begin. 
 
 
 
 

./proxy-ms -a 127.0.0.3 -p 8003 -sa 127.0.0.4 -sp 8004 -d . -r1 15.0 --rayleigh 

usage: proxy-ms [-h] [-a ADDRESS] [-p PORT] [-sa REMOTEADDRESS] [-sp REMOTEPORT] 

                     [-d DIRECTORY] -r1 RATE1 [-r2 RATE2] [-l BUFFERSIZE] 

                     -c {random,ebc,tier} [-s SAMPLE] [-n NUMFILES] [--rayleigh] 

 

Multi-Segment Send-While-Get video cache proxy HTTP server / client 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -sa REMOTEADDRESS, --remoteaddress REMOTEADDRESS 

                        remote server IP address 

  -sp REMOTEPORT, --remoteport REMOTEPORT 

                        remote server serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

  -r1 RATE1, --rate1 RATE1 

                        data rate R1 [from proxy to client] (Mbps) 

  -r2 RATE2, --rate2 RATE2 

                        data rate R2 [from main to proxy] (Mbps) 

  -l BUFFERSIZE, --buffersize BUFFERSIZE 

                        buffer size L (MB) 

  -c {random,ebc,tier}, --caching {random,ebc,tier} 

                        caching algorithm option 

  -s SAMPLE, --sample SAMPLE 

                        sample number 

  -n NUMFILES, --numfiles NUMFILES 

                        total number of files required for a video stream 

                        (automatic proxy termination when reached) 

  --rayleigh            introduce randomness in the data channel [from proxy to 

                        client] through Rayleigh distribution 
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To execute the single-segment version of local, we use the following command template: 
 

 
An example execution with a communication with proxy on the IP address 127.0.0.3 with 
a serving port of 8003 could be the following: 
 

 
 
To execute the multi-segment version of local, we use the following command template: 
 

 
An example execution with a communication with proxy on the IP address 127.0.0.3 with 
a serving port of 8003 could be the following: 
 

 
 
 
 
 

./local -a 127.0.0.2 -p 8002 -sa 127.0.0.3 -sp 8003 -d . 

usage: local-ms [-h] [-a ADDRESS] [-p PORT] [-sa REMOTEADDRESS]  

                     [-sp REMOTEPORT] [-d DIRECTORY] 

 

Local video content HTTP server / client 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -sa REMOTEADDRESS, --remoteaddress REMOTEADDRESS 

                        remote server IP address 

  -sp REMOTEPORT, --remoteport REMOTEPORT 

                        remote server serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

./local-ms -a 127.0.0.2 -p 8002 -sa 127.0.0.3 -sp 8003 -d . 

usage: local [-h] [-a ADDRESS] [-p PORT] [-sa REMOTEADDRESS] 

                  [-sp REMOTEPORT] [-d DIRECTORY] 

 

Local video content HTTP server / client 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -a ADDRESS, --address ADDRESS 

                        IP address 

  -p PORT, --port PORT  serving port 

  -sa REMOTEADDRESS, --remoteaddress REMOTEADDRESS 

                        remote server IP address 

  -sp REMOTEPORT, --remoteport REMOTEPORT 

                        remote server serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 
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To execute the multi-segment standalone client, we use the following command template: 
 

 
An example execution with a communication with proxy on the IP address 127.0.0.3 with 
a serving port of 8003 could be the following: 
 

 
 
VLC 
If the MS client has been selected, the video streaming experiment should have been 
initiated. Otherwise, we need to manually execute the VLC player and insert the required 
parameters to initiate the video streaming experiment. 
 
To execute VLC we use the following command template: 
 

 
The LOGIC argument refers to the streaming resolution logic, the HEIGHT argument 
refers to the highest desired video height, while the rest of the command-line arguments 
for VLC make sure that: 

 HTTP Dynamic Streaming is used as the video streaming technique 

 Locally stored VLC user configuration is skipped when VLC is launched 

 The simplest UI version of VLC is loaded 

 VLC ignores any mouse and keyboard inputs 

 VLC automatically closes when playback completes 
 
An example execution with a communication with local on the IP address 127.0.0.2 with 
a serving port of 8002 and an adaptive video resolution could be the following: 
 

 

usage: client-ms [-h] [-sa REMOTEADDRESS] [-sp REMOTEPORT] [-d DIRECTORY] 

                      -r {2160,1440,1080,720,480,360} 

 

Multi-Segment video streaming HTTP client 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -sa REMOTEADDRESS, --remoteaddress REMOTEADDRESS 

                        remote server IP address 

  -sp REMOTEPORT, --remoteport REMOTEPORT 

                        remote server serving port 

  -d DIRECTORY, --directory DIRECTORY 

                        serving directory 

  -r {2160,1440,1080,720,480,360}, --resolution {2160,1440,1080,720,480,360} 

                        video resolution to be streamed 

./client-ms -sa 127.0.0.3 -sp 8003 -d . -r 1440 

vlc http://LOCAL_ADDRESS:PORT/manifest.mpd --adaptive-logic LOGIC 

--adaptive-maxheight HEIGHT --stream-filter hds --ignore-config -I dummy 

--no-keyboard-events --no-mouse-events vlc://quit 

vlc http://127.0.0.2:8002/manifest.mpd --adaptive-logic predictive 

--adaptive-maxheight 2160 --stream-filter hds --ignore-config -I dummy 

--no-keyboard-events --no-mouse-events vlc://quit 
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An example execution with a communication with local on the IP address 127.0.0.2 with 
a serving port of 8002 and a fixed video resolution of 1080p could be the following: 
 

 

Automated software execution instructions 
The manual software execution instruction presented above are too complicated and 
require too many steps. Instead, we have developed two automation binaries which can 
take care of the whole experimentation setup and software component execution 
procedures. These binaries are the following: 

 automation-single: to be used for experimenting with the single-segment SAG 
and SWG video streaming algorithms with the use of the VLC player 

 automation-multi: to be used for experimenting with the MS-SWG algorithm 
either with the use of the VLC player of the custom MS client 

 
To experiment with Single-Segment video streaming, we use the following command 
template: 
 

 
Table 8 presents the values the standard arguments can take in the command above. 
 
 

vlc http://127.0.0.2:8002/manifest.mpd --adaptive-logic highest 

--adaptive-maxheight 1080 --stream-filter hds --ignore-config -I dummy 

--no-keyboard-events --no-mouse-events vlc://quit 

usage: automation-single [-h] -r1 r1 [r1 ...] -r2 r2 [r2 ...] -l l [l ...] 

                              [-d TARGETIPD] -c {random,ripple} -a {sag,swg} 

                              -dl {predictive,fixed} [-p PATIENCE] [-s SAMPLES] 

                              [--rayleigh] [--suppress] [--proposed] 

 

Automation script for experimenting with the single-segment proxy algorithms with 

the use of VLC player 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -r1 r1 [r1 ...], --rate1 r1 [r1 ...] 

                        value(s) for data rate R1 

  -r2 r2 [r2 ...], --rate2 r2 [r2 ...] 

                        value(s) for data rate R2 

  -l l [l ...], --buffersize l [l ...] 

                        value(s) for buffer size L 

  -d TARGETIPD, --targetipd TARGETIPD 

                        target initial playout delay (sec) 

  -c {random,ripple}, --caching {random,ripple} 

                        caching algorithm option 

  -a {sag,swg}, --algorithm {sag,swg} 

                        proxy algorithm option 

  -dl {predictive,fixed}, --logic {predictive,fixed} 

                        DASH resolution logic 

  -p PATIENCE, --patience PATIENCE 

                        time to wait until playback completes (expressed as a 

                        fraction of the video duration) 

  -s SAMPLES, --samples SAMPLES 

                        number of samples for every parameters combination 

  --rayleigh            introduce randomness in data channels through Rayleigh 

         distribution 

  --suppress            suppress video and audio playback 

  --proposed            only run experiments in which L>0, R1>R2 and 

         R1>=Required_throughput>=R2 
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Table 8: Single-segment standard arguments values 

Proxy Algorithm DASH Logic Caching Technique 

sag predictive random 

swg fixed ripple 

 
For example, to reproduce our presented experiments with the combination of Random 
caching, SWG streaming and Fixed video resolution, we can use the following command: 
 

 
 
To experiment with Multi-Segment video streaming, we use the following command 
template: 
 

 
Table 9 presents the values the standard arguments can take in the command above. 
 

Table 9: Multi-segment standard arguments values 

Caching Technique Tool 

random client 

ebc vlc 

tier  

 
In the caching algorithm selection, tier stands for 1-Tiered EBC (Recursion depth = 1). 
 

usage: automation-multi [-h] -r1 r1 [r1 ...] -r2 r2 [r2 ...] -l l [l ...] 

                             [-d TARGETIPD] -c {random,ebc,tier} -t {client,vlc} 

                             [-p PATIENCE] [-s SAMPLES] [--rayleigh] [--suppress] 

                             [--proposed] 

 

Automation script for experimenting with the multi-segment proxy algorithm either 

with the use of a custom video client (recommended) or with the use of VLC player 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -r1 r1 [r1 ...], --rate1 r1 [r1 ...] 

                        value(s) for data rate R1 

  -r2 r2 [r2 ...], --rate2 r2 [r2 ...] 

                        value(s) for data rate R2 

  -l l [l ...], --buffersize l [l ...] 

                        value(s) for buffer size L 

  -d TARGETIPD, --targetipd TARGETIPD 

                        target initial playout delay (sec) 

  -c {random,ebc,tier}, --caching {random,ebc,tier} 

                        caching algorithm option 

  -t {client,vlc}, --tool {client,vlc} 

                        tool for performing the video streaming 

  -p PATIENCE, --patience PATIENCE 

                        time to wait until playback completes (expressed as a 

                        fraction of the video duration) 

  -s SAMPLES, --samples SAMPLES 

                        number of samples for every parameters combination 

  --rayleigh            introduce randomness in data channels through Rayleigh 

                        distribution 

  --suppress            suppress video and audio playback 

  --proposed            only run experiments in which L>0, R1>R2 and 

                        R1>=Required_throughput>=R2 

./automation-single  -r1 1.4 2 3 5.7 8.3 12 15.8 18 -r2 1 2 4 6 8 

-l 0 50 100 200 300 400 -d 10 -c random -a swg -dl fixed -p 10 -s 3 
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To reproduce our presented experiments with the combination of EBC, MS-SWG 
streaming and Fixed video resolution, we can use the following command: 
 

 

Console visual output 
If the software execution was successful, three or four terminals should be launched. All 
three system model software components contain an HTTP server and output a message 
every time an HTTP response is sent. The Cache Proxy, in addition to this message, 
outputs the message CACHE HIT or CACHE MISS based on whether the requested 
segment existed in its cache when it was requested or not. 

Fig. 47 presents a snapshot of the four console outputs during a single-segment video 
streaming experiment with a fixed video resolution of 720p. This snapshot shows the 
cache proxy’s status message when the 33rd video segment is unavailable from its 
cache, so it gets requested from main, then served to local. Fig. 48 presents a snapshot 
of the three console outputs during a multi-segment video streaming experiment, through 
which we can see the multiple parallel segment requests. In Fig. 49 we can see the 
terminal output of proxy and the cache hit / miss notifications during a single-segment 
video streaming process. In Fig. 50 we can see a screenshot of the video stream playback 
going on in VLC. 

 

 
Figure 47: Single-segment video streaming console outputs snapshot 

./automation-multi -r1 1.4 2 3 5.7 8.3 12 15.8 18 -r2 1 2 4 6 8 

-l 0 50 100 200 300 400 -d 10 -c ebc -t client -p 10 -s 3 
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Figure 49: Cache hit /miss console output indication 

Figure 50: VLC video stream playback snapshot 

Figure 48: Multi-segment video streaming console outputs snapshot 
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Logging 
The cache proxy, acting as the middle man in the video segment request and streaming 
process, produces a log file at the end of a video streaming procedure and places said 
log file under the cache/ directory. These logs can be used for determining any anomalies 
or abnormal behavior of the software components during the video streaming procedure 
and for evaluating the performance of the whole system model. These logs will be 
generated when the proxy has streamed to the client all of the segments that it was 
expected to stream, if it was the proper command-line arguments were provided at the 
execution initialization. 

Let’s take a look at the format of the log files. The following lines are taken from a log file 
produced during a video streaming procedure with the SAG algorithm. Every line at the 
beginning contains the timestamp of the operation in nanoseconds, the name of the 
segment that is being processed, the operation type, the operation status and whether 
the processed segment was cached or not. 
 

 
 

Results 
The log files described above can be processed to extract the values for the metrics 
described in Chapter 5. These metric-value combinations can be used to perform 
performance evaluation for the experiment. This log processing can be performed using 
the raw executable located under results directory, with the following command template: 

[991843954804622] manifest.mpd SERVE START HIT 

[991843954937736] manifest.mpd SERVE END HIT 

[991843976017796] manifest_set1_init.mp4 SERVE START HIT 

[991843976037978] manifest_set1_init.mp4 SERVE END HIT 

[991843983907374] video_2160_1.m4s REQUEST START MISS 

[991855033970384] video_2160_1.m4s REQUEST END MISS 

[991855033978958] video_2160_1.m4s SERVE START MISS 

[991858041226108] video_2160_1.m4s SERVE END MISS 

[991858057554038] video_audio_init.mp4 SERVE START HIT 

[991858057581652] video_audio_init.mp4 SERVE END HIT 

[991858065466946] video_audio_1.m4s SERVE START HIT 

[991858065944120] video_audio_1.m4s SERVE END HIT 

[991858083782768] video_audio_2.m4s REQUEST START MISS 

[991858085089457] video_audio_2.m4s REQUEST END MISS 

[991858085094141] video_audio_2.m4s SERVE START MISS 

[991858085609246] video_audio_2.m4s SERVE END MISS 

[991858093488287] video_360_2.m4s REQUEST START MISS 

[991860090255892] video_360_2.m4s REQUEST END MISS 

[991860090260423] video_360_2.m4s SERVE START MISS 

[991860091880995] video_360_2.m4s SERVE END MISS 

[991860128916085] video_2160_3.m4s REQUEST START MISS 

[991869114619014] video_2160_3.m4s REQUEST END MISS 

[991869114623690] video_2160_3.m4s SERVE START MISS 

[991873127361984] video_2160_3.m4s SERVE END MISS 

[991873150973445] video_audio_3.m4s SERVE START HIT 

[991873151449133] video_audio_3.m4s SERVE END HIT 

[991873159662632] video_2160_4.m4s REQUEST START MISS 

[991894248206524] video_2160_4.m4s REQUEST END MISS 

[991894248214082] video_2160_4.m4s SERVE START MISS 

[991900263582304] video_2160_4.m4s SERVE END MISS 

[991900273336736] video_audio_4.m4s REQUEST START MISS 

[991900274739630] video_audio_4.m4s REQUEST END MISS 

[991900274744767] video_audio_4.m4s SERVE START MISS 

[991900275674941] video_audio_4.m4s SERVE END MISS 
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When this log processing is complete a set of TEXT files with the name prefix results_ 
are generated (one for each conducted experiment) containing some preliminary results, 
alongside a CSV file with the name prefix all_results_ which contains detailed evaluation 
metric values for all experiments in a single file. 
 
If we want to extract more detailed behavioral results for each experiment with respect to 
the execution time, like the ones we presented in Chapters 2 and 3, we can use the 
precise executable located under results directory, with the following command template: 
 

 
When this log processing is complete, a set of CSV files with the name prefix analytical_ 
are generated (one for each conducted experiment) containing start-end time ranges and 
the respective development of the values for some evaluation metrics during the video 
streaming procedure. 
 
 
Charts generation 
Using the CSV files generated by the previously presented two binary executables, we 
can create performance evaluation charts like the ones we presented in Chapters 2, 3 
and 5. For the creation of said charts, the Matplotlib library was employed. 
  

usage: raw [-h] [-i INIT] [-p PATH] [-t THRESHOLD] 

 

Performance evaluation metrics and results generation of the video streaming 

experiments 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -i INIT, --init INIT  number of video segments considered as part of the initial 

                        playback delay 

  -p PATH, --path PATH  path to directory with proxy outputs and video metadata 

  -t THRESHOLD, --threshold THRESHOLD 

                        time threshold under which delays are ignored 

usage: precise [-h] [-i INIT] [-p PATH] [-t THRESHOLD] [-c] 

 

Detailed video streaming progress and behavioural results generation 

 

optional arguments: 

  -h, --help            show this help message and exit 

  -i INIT, --init INIT  number of video segments considered as part of the initial 

                        playback delay 

  -p PATH, --path PATH  path to directory with proxy outputs and video metadata 

  -t THRESHOLD, --threshold THRESHOLD 

                        time threshold under which delays are ignored 

  -c, --combine         combine different outputs' timestamps for better comparison 
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