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ABSTRACT 

Constrained text generation is a relatively new topic in NLG. It has been shown that 
pretrained Language Models (GPT-2, BART etc.), with no additional modifications or 
tuning, do not give good results. Many approaches have been introduced to improves 
results by utilizing external corpora, and by applying task – specific modifications to 
existing Language Models, as well as their fine – tuning process. 

This study focuses on the task of producing phrases that contain a give set of words 
(concepts). For this purpose, we apply a heuristic scoring method, on top of the GPT-2 
scoring function, in order to guide the production of the phrase towards said concepts, 
in a natural and semantically sound way. 

More specifically, we add bonus scores to the top – scoring (according to GPT-2) 
candidate words, for example as a function of their PMI and embedding similarity to the 
remaining concept words (the containment of which, in the produced phrase, is the 
constraint), as well as a bonus if the candidate word itself is a concept. In order to test 
the models we developed, we employed the widely used, for this task, CommonGen 
dataset. The tests showed that the Beam Search algorithm, with a suitable objective 
function that combines the aforementioned heuristics, outperforms the Greedy search 
algorithm. Additionally, a variation of the Diverse Beam Search algorithms, that ensures 
diversity among the beams (possible solutions) further improves the results, when using 
a suitable objective function. 

The employed heuristics were combined in two different ways: a) with a linear function, 
in which each heuristic is manually given and weight; b) with the application of Machine 
Learning methods, for automatically calculating the weights. More specifically, for 
method (b), the best results were achieved using k-NN regression and were comparable 
to the optimal results obtained using method (a), while method (b) has the advantage 
that it does not require testing different weights. 
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ΠΕΡΙΛΗΨΗ 

 

Η παραγωγή κειμένου υπό περιορισμούς αποτελεί έναν σχετικά νέο τομέα της 
Παραγωγής Φυσικής Γλώσσας. Προγενέστερα άρθρα έχουν δείξει πως τα 
προεκπαιδευμένα Γλωσσικά Μοντέλα (π.χ. GPT-2, BART) από μόνα τους και χωρίς 
τροποποιήσεις δεν προσφέρουν αρκούντως καλά αποτελέσματα. Πολλές προσεγγίσεις 
έχουν προταθεί για να πετύχουν καλύτερα αποτελέσματα, χρησιμοποιώντας εξωτερικές 
πηγές και πόρους,  σε συνδυασμό με τροποποιήσεις στα υπάρχοντα Γλωσσικά 
Μοντέλα, καθώς και στην διαδικασία ρύθμισης τους για το συγκεκριμένο πρόβλημα. 

Η παρούσα έρευνα επικεντρώνεται στο πρόβλημα της παραγωγής φράσεων που 
περιέχουν ένα δεδομένο σύνολο λέξεων (concepts). Για αυτόν τον σκοπό, εφαρμόζουμε 
ευριστικές μεθόδους βαθμολόγησης, επιπλέον της συνάρτησης βαθμολόγησης του 
γλωσσικού μοντέλου GPT-2, ώστε να καθοδηγήσουμε την παραγωγή της φράσης προς 
τις προαναφερθείσες λέξεις, με τρόπο φυσικό και νοηματικά ορθό. 

Πιο συγκεκριμένα, προσθέτουμε επιπλέον βαθμούς στις υποψήφιες λέξεις με την 
καλύτερη GPT-2 βαθμολογία, π.χ. ως συνάρτηση του PMI τους, και της διανυσματικής 
τους ομοιότητας με τα εναπομείναντα concepts (για τα οποία υπάρχει ο περιορισμός να 
συμπεριληφθούν στη τελική πρόταση), καθώς και το κατά πόσο είναι οι ίδιες οι 
υποψήφιες λέξεις ένα από αυτά. Για όλες τις δοκιμές των συστημάτων που 
αναπτύχθηκαν, χρησιμοποιήσαμε το ευρέως χρησιμοποιούμενο για αυτό το πρόβλημα 
CommonGen dataset. Οι δοκιμές/πειράματα έδειξαν πως ο αλγόριθμος αναζήτησης 
Beam Search  με μια κατάλληλη αντικειμενική συνάρτηση που συνδυάζει τις 
προαναφερθείσες ευριστικές δίνει βελτιωμένα αποτελέσματα σε σχέση με τον Greedy. 
Μάλιστα, μια συγκεκριμένη εκδοχή του o Diverse Beam Search, που εξασφαλίζει την 
ποικιλομορφία μεταξύ των beams (πιθανές λύσεις), βελτιώνει περεταίρω τα 
αποτελέσματα με την κατάλληλη αντικειμενική συνάρτηση.  

Οι ευριστικές που χρησιμοποιήθηκαν συνδυάστηκαν με δύο διαφορετικούς τρόπους, 
α)_με μια γραμμική συνάρτηση που σε κάθε ευριστική δίνεται ένα βάρος χειροκίνητα β) 
με την εφαρμογή μεθόδων Μηχανικής Μάθησης, ώστε να υπολογιστούν αυτόματα τα 
βάρη. Πιο συγκεκριμένα για το (β) τα καλύτερα αποτελέσματα επιτευχθήκαν με 
παλινδρόμηση με τη μέθοδο k-NN, τα οποία είναι συγκρίσιμα με τα βέλτιστα που 
πετύχαμε με την προσέγγιση (α),  ενώ η προσέγγιση (β) έχει και ως πλεονέκτημα ότι 
δεν απαιτεί δοκιμή διαφορετικών βαρών. 
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PREFACE  

The present study is a Master’s thesis, for the “Language Technology” Master’s 
program of the National and Kapodistrian University of Athens. 
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1. INTRODUCTION 

1.1 Aim of the study 

The aim of this thesis is to improve constrained text generation methods; specifically, 
the proposed method has been designed for the task of Generative Commonsense 
Reasoning (GCSR), i.e., the generation of coherent sentences or phrases with the 
constraint of including a set of given concept words. GCSR task was introduced by Lin 
et al. [1] along with a relevant benchmark dataset called “CommonGen”. For example, 
given the list of words: [‘kid’, ‘room’, ‘dance’], the desired output in CommonGen could 
be ‘A kid is dancing in the room.’ As mentioned by Lin et al., GCSR can be used for 
assessing commonsense reasoning ability, which so far is considered (to a large extent) 
unattainable for Artificial Intelligence (AI) and Natural Language Processing (NLP). 
Consequently, the resolution of this problem can contribute significantly to improving 
NLP applications, such as chatbots [2], question answering systems [3] etc.  

 

1.2 Related work 

1.2.1 Evaluation measures 

The measures that are used for evaluating GCSR methods are the following: 

 BLEU: Papineni et al. [4] proposed BiLingual Evaluation Understudy (BLEU) as an 
automated method of machine translation evaluation. It is calculated as the 
percentage of the n-grams of a reference sentence that are present within the 
produced sentence. Depending on the value of n, the BLEU variant is named 
accordingly, for example BLEU-3 calculates the percentage of 3- grams, etc.   

 ROUGE: Lin [5] proposed Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE) to automatically determine the quality of a machine – generated 
summary. It is based on n-gram similarity, and has several variants, such as 
ROUGE-N (N-gram Co-Occurrence), ROUGE-S (Skip-Bigram Co-Occurrence) 
etc. More commonly used for a task such as CommonGen is ROUGE-L, which 
measures the longest common subsequence between the produced sentence 
and the reference. 

 METEOR: Metric for Evaluation of Translation with Explicit ORdering (METEOR) 
was proposed by Banerjee et al [6] as another metric for machine translation 
evaluation. It is based on unigram overlap; unigrams can be matched based on 
their surface forms, stemmed forms, and meanings. METEOR calculates a score 
based on unigram-precision, unigram-recall, and a measure designed to capture 
how well-ordered the matched words in the machine translation are in relation to 
the human reference. 

 CIDEr: Consensus-based Image Description Evaluation (CIDEr) was proposed by 
Vedantam et al. [7] as an automatic evaluation measure for systems that 
generate image descriptions. Each automatically generated and reference 
sentence is represented by the set of n-grams that they contain. CIDEr takes into 
account n-gram frequency by using TF-IDF scores; i.e. n-grams that commonly 
appear in many images are given lower weight.  CIDEr is calculated using cosine 
similarity on TF-IDF vectors constructed for the generated and reference 
sentences. Each vector position corresponds to a specific n-gram; therefore each 
vector represents all n-grams of length n for a sentence. For the final score a 
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combination of cosine similarity scores for n-grams vectors of varying lengths is 
used. 

 SPICE: Originally proposed by Anderson et al. [8] as an automated caption 
evaluation metric, Semantic Propositional Image Caption Evaluation (SPICE) 
focuses on “semantic propositional content”. The reason for developing SPICE 
was to overcome the limitations of the other evaluation measures which are 
sensitive to n-gram overlap. Instead, SPICE is based on scenes graphs; a scene 
graph encodes the objects, attributes and relationships found in an image 
caption. A graph is constructed by exploiting the output of a dependency parser 
and SPICE is calculated as an F – score over the tuples of the candidate and 
reference semantic scene graph.        

 Concept Coverage: the average percentage of input concepts that are present in 
lemmatizatized outputs. 

 

As it is reported in Lin et al. [1] SPICE is the measure that correlates the most with 
human evaluations. 

1.2.2 CommonGen dataset 

CommonGen dataset [1] was created for training and evaluating GCSR systems. As 
already mentioned in GCSR given a set of common concepts (a.k.a. concepts set) the 
goal is to generate a coherent sentence describing an everyday scenario using these 
concepts. 

The CommonGen dataset is split into train, dev, and test parts and in total it contains 
35,141 concept sets; see Table 1 below.  
 
 

Table 1: Statistics for the CommonGen dataset 

Statistics Train Dev Test 

# Concept-Sets 32,651 993 1,497 

Size=3 25,020 493 - 

Size=4 4,240 250 747 

Size=5 3,391 250 750 

 

For each concept set of train and dev parts a set of human references are provided. 
E.g. 
 
Concept set = {fall, ground, jump} 
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References = {“The girl may fall if she tries to jump to the ground.”, “A man jumping over 
a log falls to the ground.”, “Jump on the ground but don’t fall.”, “A man jumps a ramp 
and falls to the ground.”} 

 

For the test part the references are not publicly available and for obtaining results the 
predictions have to be submitted (via email) to the research team that maintains the 
official Leaderboard [9].  In Table 1 a snapshot of the Leaderboard extracted in May 
2022 from the respective web page is presented. Three models very similar to the ones 
that were developed in this thesis have been added in the table (rows 8, 13, 17) for 
direct comparison by consulting the relevant papers. 

 

Table 2: CommonGen Leaderboard: The models are sorted by SPICE score. 

Rank Model BLEU – 4 CIDEr SPICE 

- Human 46.49 37.64 52.43 

1 KFCNet 43.619 18.845 33.911 

2 KGR4 42.818 18.423 33.564 

3 KFC (v1) 42.453 18.376 33.277 

4 R3-BART 41.954 17.706 32.961 

5 WittGEN + T5-large 38.233 18.036 31.682 

6 I&V 40.565 17.716 31.291 

7 RE – T5 40.863 17.663 31.079 

8 Neurologic - supervised 26.7 14.7 30.3 

9 A* Neurologic (T5-large) 39.597 17.285 30.130 

10 VisCTG (BART-large) 36.939 17.199 29.973 

11 SAPPHIRE (T5-large) 37.119 16.901 29.751 

12 KG-BART 33.867 16.927 29.634 

13 A* Neurologic – 
unsupervised (greedy) 

28.6 15.6 29.6 

14 EKI-BART 35.945 16.999 29.583 

15 T5-Large 31.962 15.128 28.855 

16 BART 31.827 13.976 27.995 

17 Neurologic - 
unsupervised 

24.7 14.4 27.5 
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18 UniLM 30.616 14.889 27.429 

19 BERT-Gen 23.468 12.606  24.822 

20 GPT-2 23.73 12.187 23.567 

21 T5-Base 18.546 9.399 19.871 

 

1.2.3 Generative Commonsense Reasoning methods 

The GCSR task of is relatively new (Lin et al. [1]), however, a significant number of 
methods have already been proposed. Many of them use a retrieve-and-generation 
approach where prototype sentences (templates) are used, retrieved from external 
sources/corpora. For example, Η. Wang et al. [10] proposed a T5 encoder-decoder 
architecture called retrieval-enhanced T5 (RE-T5) where retrieval methods were used 
for enhancing pre-training and fine-tuning steps of T5. Specifically, at pre-training step 
retrieval is used for creating auxiliary (prototype) sentences that along with the input 
concepts and target sentence are fed to T5. In a similar manner at fine-tuning stage 
retrieval is used for determining the top k sentence candidates for each concept set; 
then the candidates and input concepts are fed to the model. The application of RE-T5 
on the CommonGen dataset showed that the results it produced (Table 2, row 7) were 
not only improved, compared to a vanilla T5 (Table 2, row 15 and 21), but are also 
comparable to those of other similar methods e.g.  KG-BART and EKI-BART, rows 12 
and 14 respectively.  In a similar approach, Li et al. [11] proposed a method called 
“Knowledge Filtering and Contrastive Learning Network (KFCNet)” which uses a two-
stage procedure for retrieving prototypes. Specifically, in stage 1, a sparse vector model 
is used for finding N candidates that contain the desired concepts from a corpus D. In 
stage 2, these candidates are scored using a trained multi-layer perceptron (MLP). 
Each candidate (S) is represented with the following sequence S = [CLS] + concept set 
+ [SEP] + candidate + [SEP] and the BERT embedding vector of the [CLS] token is 
given as input to the MLP. Subsequently, the candidate with the highest score is fed to 
a BART model for generating the final output. For training BART contrastive learning   is 
applied on both the encoding and decoding steps; e.g. on the former, the contrastive 
module helps to capture global target semantics.  The BART model was coupled with a 
Beam Search algorithm (Beam size = 5) for finding non-greedy solutions. The results 
that they obtained (Table 2, row 3) with their model significantly outperformed the thus 
far state-of-the-art models (e.g. RE-T5). Liu et al. [12] propose another retrieve-and-
generation approach, similar to KFCNet.  Their Knowledge – enhanced Commonsense 
Generation framework consists of four stages: Retrieval, Retrospect, Refine and 
Rethink (“KGR4”). First, it identifies relative sentences from external corpora, to use as 
prototypes based on Η. Wang et al.’s [10] retrieval methods (RE-T5). The prototype 
sentences are ranked using a RoBERTa-based classifier and the top 3 are kept (as in 
Wang et al [10]). Then, these sentences are copied or edited, to create better 
generations (Retrospect); this is done by using a BART model. The Refine step is for 
fixing any potential errors in the sentences; again a BART model is used. Finally, the 
output sentence is selected (Rethink), from this set of candidate sentences based on 
the scores that are returned from the BART model. The authors’ extensive 
experimentations with KGR4 showed that it achieves high SPICE [8] values (Table 2, 
row 2), as well as competitive scores in the other commonly used metrics. 
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P. Wang et al [13] tackle the problem with a similar perspective (to the one described so 
far), however, they do not retrieve templates but exploit external knowledge for 
imagining the scene that is to be described by the produced sentence. Specifically, the 
“Imagine-and-Verbalize (I&V)” method that they proposed constructs (“imagines”) a 
relational Scene Knowledge Graph (SKG), which identifies relations among the input 
concepts; i.e., the graph represents the background knowledge that is required for 
reasoning and generation. The module that constructs the SKG is trained on a set of 
SKG instances from different resources and modalities. The SKG is then leveraged as a 
constraint, during the generation (verbalization module) of a plausible scene description. 
The obtained results indicate that I&V is effective (see Table 2, row 6) for both 
concepts-to-sentence (i.e., GCSR) and concepts-to-story tasks [13].  

 

Another family of Generative Commonsense Reasoning methods do not use external 
knowledge; e.g., retrieved prototype sentences or knowledge graphs. They start from 
scratch and are based solely on left-to-right decoding from language models (e.g. GPT-
2). For example, Lu et al. [2] proposed an algorithm, called “NeuroLogic” Decoding. The 
aim of the method is to find a sequence that has the maximum possible fluency (based 
on GPT-2 scores), while at the same time satisfy the given constrains; the latter is 
achieved by adding a penalty score within the decoding objective function. A beam- 
search-based algorithm is used to select the optimal solution, and is designed to 
respect predicate logic constraints; i.e., boolean functions indicating the occurrence of 
phrase in a sequence. This approach led to a significant improvement in all commonly 
used performance metrics (ROUGE-L [5], BLEU [4] etc.), as well as the coverage of the 
constraints, compared to vanilla Beam Search decoding [2]. In their follow-up paper 
[14], Lin et al. aimed to improve NeuroLogic, by employing lookahead methods. For this 
purpose, they introduced “NeuroLogic*” a decoding algorithm, inspired by the A*  
algorithm [15]. This algorithm includes a future cost (in the objective function), that 
predicts constraint satisfaction thus guiding generation towards both coherence and 
completion of the GCSR task. The proposed methodology applied on top of Greedy 
decoding, further improved performance, compared to NeuroLogic Decoding on 
CommonGen corpus [14].  As shown in Table 2 the NeuroLogic and NeuroLogic* 
methods [2,14] achieve (see Table 2, rows 8, 13, 17) significantly lower scores than the 
retrieve-and-generation approaches that were described above. We conjecture that this 
is due to that the latter methods use external knowledge and/or start from a template 
while the former start from scratch and do not use additional data/resources. Even a 
variant1 of NeuroLogic* that uses a T5-large model which is much bigger that GPT-2 
(770 vs 1.5 million parameters) does not achieve to surpass retrieve-and-generation 
approaches (Table 2, row 9).  

 

There are also papers that focus on specific enhancements/improvements of the 
generation algorithms. For example, Feng et al.’s [16] method (Table 2, row 11) focuses 
on finding a suitable order of the input concepts by using GPT-2 and perplexity 
measure, as well as augmenting the concept set with some more words (keywords), 
that would lead to a more natural sequence. Fan et al. [17] use external knowledge to 
implement two additional modules to the encoder – decoder models, namely scaling 

 

1 https://docs.google.com/document/d/1VaFJkXT0fLiJ40MPSvBmC1ZcNbbrG8J-TgvTQOyG15Y/edit 
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module and position indicator, for better identifying the relationships among the 
concepts, and thus achieve better semantic coherence (Table 2, row 14). 

 

 

1.3 Contribution of the study 

Although the number of studies that tackle constrained text generation is already 
significant, the fact remains that the task is still relatively new, and thus, there is still 
room for experimentation and improvement. In this study, we do not use retrieval 
methods for obtaining prototypes even though it has been proven that they give good 
results. This is due to the fact that these approaches a) depend on large external 
datasets that might not be always available (e.g., for a specific domain) and b) in 
several cases additional time has to be spent for training task or domain specific 
models.  

Instead, we investigate a more generic approach, and we focus on the decoding part of 
the process; i.e., in designing a search algorithm that starts from scratch and employs a 
fine-tuned language model (LM) which along with an appropriate objective function 
steers generation towards desired outputs. More specifically, we use lookahead 
heuristics which in combination with a conditional LM (i.e., GPT-2), favor the words that 
either satisfy a constraint themselves, or lead to a word that does. Since our 
methodology follows the same approach as that of Lu et al., NeuroLogic and 
NeuroLogic* (which were described above) will be our main reference, regarding both 
architecture and results.  
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2. PROPOSED GENERATION METHODS 

2.1 Background 

In this chapter the machine learning models, word representation approaches, search-
based algorithms etc. that were used for the development of the generation methods of 
this thesis are briefly presented. 

 

2.1.1 GPT 2 

Generative Pre-trained Transformer 2 (GPT-2) [18] was developed by OpenAI as a 
successor to the original GPT [19]. It is a transformer – based model [20] with 1.5 billion 
parameters. The “WebText” dataset that was used for training GPT-2 was compiled 
from reddit and it contains of 40 GB of text. The focus was on quality, e.g., only pages 
curated by humans were used.  

GPT-2 has a decoder – only architecture and is trained for predicting the next word of a 
sequence, given all the previous ones. More specifically, a score is assigned to every 
candidate word, and subsequently, a probability is calculated, which could be 
formulated as: 

 

 

 

GPT-2 has been tuned (with appropriate data) and used in several downstream tasks, 
such as summarization, question answering etc. [18]. In these scenarios a more 
accurate formulation of the calculated probabilities would be: 

 

 

 

As it happens with other pre – trained models, GPT-2 performs better when dealing with 
common topics, while it struggles with domain – specific data. However, as already said 
it can be fine – tuned to not only better “understand” specific topics, but to also solve 
new tasks. This is crucial for our purpose, as it allows us to utilize the capabilities of 
such a powerful, general – purpose model for GCSR.  

GPT-2 can be used along with a number of decoding/search methods, which can be 
selected though specific parameters, during the sequence generation process. The 
most widely known such methods are Greedy decoding, Beam Search, Top – K 
sampling and Top – P (nucleus) sampling [21]. The methods of this thesis were based 
on top of Greedy and Beam Search decoding and are described below. 

 

2.1.2 Greedy Decoding 

Greedy decoding, as well as any greedy algorithm, follows the strategy of making the 
locally optimal choice at each decoding step [22]. As such, it selects the token wi with 
the highest conditional probability P(wi | already generated sequence) in each step [23]. 
This is not optimal because for example, if words w1, w2 and w3,,,wn are the candidates 
in a specific step, and w1 has the best conditional probability, it will be selected. 
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However, the selection of another token (e.g. w2) might eventually lead to a better 
result. As such, greedy decoding is usually not the best option. However, it is relatively 
fast and effective enough to serve at least as a baseline.   

 

2.1.3 Beam Search 

In Beam Search (BS), (R. D. Raj [24]) as opposed to greedy decoding a number of best 
candidates, known as beam width (k), are selected and kept based on some score (e.g. 
GPT-2 conditional probability [25] at each step. The k best generated sequences 
continue to expand, until the “end” token (EOS) is reached. Beam Search (BS) usually 
outperforms Greedy decoding, if beam width, is appropriately chosen. However, BS 
becomes more computationally demanding, as the number of beams increases.  

 

2.1.4 GloVe 

Global Vectors for word representation (GloVe) is an unsupervised learning algorithm 
for obtaining vector representations for words, developed by Pennington et al. [26]. 
Given a corpus as a training dataset, GloVe learning procedure derives a model which 
assigns a N-dimensional vector to each word, based on its use in reference to the other 
words of the corpus. N is usually between 100 and 300. Such representations allow the 
calculation of linguistic or semantic similarity between words; e.g. by using cosine 
similarity between their corresponding vectors. 

For training GloVe models, a matrix of word co – occurrence is required, of which only 
the non – zero entries are taken into account. The method requires the whole corpus to 
be scanned. This is a very demanding process; however, it only takes place once. Once 
the vectors are learnt, they can be saved and reused as needed, to avoid the 
aforementioned process. 

A fact that signifies the consistency of a well – trained GloVe model, is that pairs of 
words that differ in the same semantic or linguistic way, have similar differences of their 
respective vectors. For example, the pairs man – woman and king – queen consist of 
words with that only differ in gender. A well – trained Glove model will produce vectors 
such that: Vman – Vwoman ≈ Vking – Vqueen, where Vman is the vector corresponding to the 
word “man”, etc. In the same way, pairs of words, such as strong – stronger, quick – 
quicker will have similar differences between their respective vectors. 

 

2.1.5 Word2Vec 

Similar to GloVe is Word2Vec that was introduced by Mikolov et al. [27]. It is an 
algorithm that utilizes a Neural Network, for extracting word associations from large 
corpora. The words are represented in this model as vectors in an N – dimensional 
space as with GloVe. The number of dimensions, and the context window which 
determines how many words before and after are considered as context during the 
training procedure are parameters of the learnt model 

After being trained, the word vectors can be used to measure the semantic similarity 
between words, i.e., by calculating the cosine similarity between their respective vectors 
as with GloVe.  
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2.1.6 PMI 

Pointwise Mutual Information (PMI) is a measure that quantifies the likelihood of two 
words occurring in the same sequence [28]. More specifically, it is a measure of how 
often two words co – occur, in regards to how often each of these words co-occur by 
chance. Given the words w1 and w2, PMI is calculated with the following formula: 

 

 

 

As was the case with GloVe, a corpus is required, from which the frequencies of the 
words, individually and together, can be extracted. Naturally, the larger the corpus the 
more accurately will the connection of each pair of words be quantified by PMI.  

Regarding what qualifies as co – occurrence, a maximum accepted number of words 
between the examined pair is decided (window), as a parameter. This affects the 
resulting scores, as a number as small as 0 would only identify bigrams as co – 
occurrence, while a large number will identify cases where the two words happen to be 
in relatively close spots purely as a coincidence, without there being any semantic 
correlation that led the sequence from the first word to the second.  

  

2.2 Proposed generation methods 

2.2.1 Scoring/objective functions 

Our methodology and scoring/objective is applied on top of the scoring process of the 
GPT-2 token generation step which is based on the conditional probability P(wi | already 
generated sequence) [18]. Our objective aims to guide the search towards fulfilling the 
constraints (i.e., include the input concepts) while maintaining a semantically and 
linguistically correct output. That is achieved by giving extra credit in several ways to the 
words that are either one of the concepts themselves or is expected to lead to outputs 
that contain the concepts. 

For our experiments we used the fine–tuned23 to the CommonGen training set GPT-2 
model of Lin et al. [2,14]. This fine – tuning process is very important, because the 
derived model is capable to guide towards the inclusion of the input concepts. In 
addition, it “familiarizes” the decoder with the way that this input is structured. The 
standard form of the input, as suggested by Lin et al. [1] is “concept1, concept2,…, 
conceptn =”, where n is the number of input concepts. Such an input, when given to a 
non fine–tuned GPT-2 model leads to unintelligible outputs, that include random 
characters and symbols, and are not resembling to natural language. On the other 
hand, the fine – tuned GPT-2 model without any further interventions, generates NL 
outputs after given the “=” symbol, and tends to include at least some of the input 
concepts. 

As already mentioned, our methodology is directly applied to the word 
prediction/selection process. More specifically, we intervene right after all possible next 

 

2 https://github.com/GXimingLu/neurologic_decoding 

3 https://drive.google.com/drive/folders/1Jqav26p_g6BmpNg-6mx0AMiPYHH07Vju?usp=sharing 
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(candidate) words (wi) have been assigned a conditional probability score P(wi | already 
generated sequence) by the GPT-2 decoder (GPT-2 score henceforth). In the greedy 
setting (see section 2.1.2) all possible candidates are equal to the size of vocabulary V 
(|V|) while in the beam search setting (see section 2.1.3) is k * |V|, where k is the size of 
the beam. Since it many cases it would be computationally expensive to calculate the 
additional bonus scores of every candidate word, we only calculate bonus scores to the 
N top ranking (according to GPT-2 score) candidates. From an engineering perspective 
N is an additional optional parameter in the implemented generation function. 
Optionally, before dealing with these top N candidates, we increase the scores of the 
remaining concept set (RC) directly. 

The way that the scores of the top N word candidates is tampered, is that they get three 
different bonuses that operate as lookahead heuristics indicating if the selection of a w 
leads to the desired output. Specifically, the final score of every next top candidate word 
w of an already generated sequence (AGS) is calculated as follows: 

 

l1, l2 and l3 are the weights of each bonus score and RC is the set of the remaining 
concepts; i.e., the ones that have not yet been included in the already generated output. 
The objective does not include a measure that “directly” measures the concepts that 
have been already included, however, a fine-tuned GPT-2 model is used which usually 
returns larger scores for the concept words. 

 

The three lookahead heuristics scores are calculated as follows:  

 The first is the similarity between the candidate word (w) and the remaining 
concept set (RC) is calculated using cosine measure over embeddings. Since, 
embeddings reveal of co – word occurrence (as also mentioned in Chapter 2.2), 
the idea is to increase the score of candidate words that are more likely to exist 
in the same contexts as the RC. The reason to select such words, is to guide the 
produced phrase towards the RC by creating a context in which they tend to 
occur. Also, the cosine similarity of a word with itself is equal to 1, which means 
that this bonus helps the concepts themselves to be selected. 

 Similarly, the second bonus is the PMI score between the candidates and the 
remaining concepts (RC). PMI is even more specific about words coexisting in a 
sequence, within a pre–determined span of words. However, unlike embeddings-
based similarity, and since a word is very unlikely to follow itself in a sequence, 
PMI does not directly encourage the selection of the remaining concepts 
themselves. 

 Finally, the third bonus is a straightforward +1 to the score, multiplied by the 
corresponding factor, if the word is itself one of the remaining concepts. This is a 
very simple way to guide the decoder to prefer concepts over other words, 
however this might lead to bad outputs.  

 

There are two different strategies, for calculating the first two lookahead scores (PMI 
and Emb.Similarity) for a word, given the RC set:  

 Max: Calculate a score separately with each of the l remaining concepts and then 
select the maximum 
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 Ordered: Calculate a score with just one specific concept that represents RC. This 
strategy requires the concepts to be ranked by using some function. 

 

2.2.2 Diverse Beam Search 

The scoring methodology presented in the previous section can be used along with any 
search algorithm, e.g. Greedy and Beam Search (see sections 2.1.2 and 2.1.3). 
However, in the case of Beam Search the k best solutions (beams) very often are very 
similar to each other which in several cases leads to bad or not optimal results. In other 
words, the selection of a “good” word candidate at an early step might not lead 
eventually to good solutions. 

To avoid such situations a variation of Beam Search has been used called Diverse 
Beam Search (DBS)4 which has been proposed in [29]. The proposed DBS generates 
groups of beams that are diverse, by using a penalty score that discourages similarity 
between them. This way in our case (GCSR task), the generated groups lead to 
different phrases, thus increasing the likelihood that some of them will include all 
concept words in the right order as well as the required context words for creating a 
natural phrase. Our DBS returns the final result by ranking all output sequences from all 
groups by concept inclusion; if two sequences have the same number of concepts the 
one with the highest GPT-2 score is preferred. This way, we enforce the diversity of the 
beams, and pick the sequence that best fits the task at hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Our implementation of DBS (as for BS) was based on code that is provided by HuggingFace: 

https://huggingface.co/docs/transformers/v4.21.1/en/main_classes/text_generation#transformers.generati

on_utils.GenerationMixin. 
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3. EXPERIMENTS AND RESULTS 

As it is apparent from chapter 2, there is a great number of methods that had to be 
tested and several parameters of these methods need tuning, e.g., Greedy vs BS vs 
DBS, find optimal N for calculating lookahead heuristics, find optimal weights for 
lookahead heuristics (LH) scores, etc. For this purpose, a number of experiments was 
conducted, all of them in the dev set of CommonGen, where the reference sentences 
are available; see Section 1.2.2. In all experiments we have used the fine-tuned (on 
GCSR training data) GPT-2 model that was described in 2.1.1. 

 

3.1 Preliminary experiments and results 

While our focus is Beam Search (BS) since it is expected to give better results, we used 
Greedy decoding for some preliminary tests, because it is faster compared to BS, and 
therefore it is easier to get results and decide for some parameters. 

First, we wanted to determine which embeddings similarity gives better results, GloVe 
or Word2Vec. For this we have set N = 10 and tested GloVe model (vector size = 300) 
vs Word2Vec model (vector size = 300) in 3 different cases; in each case different 
weights were used for the scoring function. Max strategy (see section 2.2.1) was used 
in all experiments for calculating embeddings similarity with the RC set. The results are 
presented in Table 3, where it is shown that GloVe consistently outperforms Word2Vec, 
and thus it was used in all subsequent experiments. 

 

Table 3: Results on dev set of the comparison between GloVe and Word2Vec 

Decoding method ROUGE-L BLEU 3 BLEU 4  Coverage 

Greedy decoding /  

GPT-2  

0.349 0.227 0.194 0.814 

Greedy decoding /  

GPT-2 + 3 * GloVe + 3 * IsConcept 

0.306 0.192 0.177 0.859 

Greedy decoding /  

GPT-2 + 3* Word2Vec + 3 * IsConcept 

0.303 0.183 0.169 0.835 

Greedy decoding /  

GPT-2 + 2 * GloVe + 3 * IsConcept 

0.313 0.186 0.168 0.969 

Greedy decoding /  

GPT-2+ 2 * Word2Vec + 3 * IsConcept 

0.309 0.179 0.16 0.941 

Greedy decoding /  

GPT-2 + 3 * GloVe + 2 * IsConcept 

0.321 0.211 0.197 0.958 

Greedy decoding /  0.316 0.204 0.19 0.949 
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GPT-2+ 3 * Word2Vec + 2 * IsConcept 

 

The results show also that the usage of IsConcept significantly increases Coverage, 
especially when its weight is larger (as expected). However, the other measures 
(ROUGE, BLEU) drop when compared to Greedy decoding is used with GPT-2 scores. 

 

3.2  Experiments with Beam Search 

The experiments were performed using the Beam Search algorithm with five beams 
(k=5). For scoring all bonus factors (see section 2.2.1) were used; i.e., embedding-
based cosine similarity, coverage bonus, and PMI scores. Additionally, the scores of the 
concept words were individually increased before the application of (4), as a way to 
ensure that they will be in the top candidates, thus guiding the produced phrase to 
include them. 

3.2.1 Experiments for finding optimal N  

A number of experiments were also performed for determining N, the number of top – 
scoring words that would be subject to LH bonuses scores (see Section 1). For these 
experiments we used l1 = 0, l2 = 2 and l3 = 3 the best configuration in terms of Coverage 
of the previous section. This has been done to assess if BS can improve ROUGE and 
BLEU scores while keeping Coverage high. Larger values of N would likely benefit the 
quality of the results, however they would also significantly increase the required 
execution time. Therefore, we looked for the threshold, after which any improvement 
with the results would not be significant. The results are presented in Table 4 and 
Figure 1. 

 

Table 4: Performance as a function of the number of top words selected 

 Number of top 
words selected 

ROUGE-L BLEU-3 BLEU-4 Coverage 

Greedy N/A 0.349 0.227 0.194 0.814 

Greedy 10 0.313 0.186 0.168 0.969 

Beam 
Search 

10 0.3692 0.2559 0.2201 0.832 

Beam 
Search 

30 0.3699 0.2616 0.2235 0.944 

Beam 
Search 

50 0.3701 0.2617 0.2237 0.946 

Beam 
Search 

70 0.3702 0.2617 0.2237 0.947 
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Figure 1: Performance as a function of the number of top words selected 

While the increase in the performance, especially regarding the coverage of the 
constraints, is significant between 10 and 30 words, after 30 it is almost stable. 
Therefore, for all experiments of the following sections, the number of selected words 
was 30. Another interesting conclusion is that all configurations of BS (N=10, …, 70) 
achieve better results in terms of ROUGE and BLEU than Greedy Decoding with the 
same objective (and N = 10). At the same time Coverage remains remarkably high. This 
shows that BS is more robust and is capable to avoid aggressively selecting concept 
words and thus generate outputs that have high Coverage but low ROUGE and BLEU. 

 

3.2.2 Experiments for finding optimal weights 

The next step was to estimate the ideal configuration, in other words, the parameters by 
which each bonus would be multiplied, as well as the added score for the concepts. Our 
PMI model was trained using the Reuters corpus of the Natural Language ToolKit 
(NLTK) [30], with a window of 5 words. The results are presented in Table 5, where l1, l2 
and l3 are the parameters of Equation 4.   
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Table 5: Performance of various setups, with a single group of 5 beams 

l1 l2 l3 concept score 
increase 

ROUGE-
L 

BLEU-3 BLEU-4 Coverage 

0 0 0 0 0.370637 0.25644 0.22070 0.82206 

0.5 4 4 0 0.328366 0.21470 0.19011 0.985803 

0.6 4 4 0 0.328324 0.21593 0.19121 0.985853 

0.7 4 3 0 0.334797 0.22082 0.19417 0.985501 

1 4 2 4 0.285261 0.18169 0.15814 0.969943 

2 4 3 4 0.330003 0.21694 0.18874 0.981687 

0 2 0 3 0.370227 0.25151 0.21897 0.846472 

0 2 0 0 0.375481 0.26092 0.22505 0.869607 

0 1.5 0 0 0.372609 0.25860 0.22325 0.848925 

0 1 0 4 0.365344 0.24797 0.21637 0.811979 

0.1 2 0 3 0.368677 0.25096 0.21823 0.842893 

 

While concept coverage is a very important part of the task, when it is “forced” via 
isConcept, it leads to unnatural sentences, as is shown in the results. This is caused 
mainly by the coverage bonus (IsConcept), and secondarily by the direct boost to 
concepts, which however does not increase the coverage.  

To confirm this trend, and gain some insight of the ideal setup, more extensive 
experiments were performed on a subset of 100 randomly selected concept sets of 
CommonGen dev set, for assessing the impact of each parameter. The results are 
presented in Table 6 and Figure 2. 

 

Table 6: Performance of various setups, with a subset of 100 concept sets from dev part of 
CommonGen 

l1 l2 l3 Concept score 
increase 

ROUGE-L BLEU-3 BLEU-4 Coverage 

0 0 0 0 0.389935 0.263466 0.228799 0.811594 

0.5 0 0 0 0.353115 0.263118 0.223513 0.768116 

1 0 0 0 0.280957 0.193863 0.170756 0.666667 

1.5 0 0 0 0.170143 0.105709 0.093618 0.463768 
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2 0 0 0 0.152626 0.101534 0.083523 0.395623 

0 1 0 0 0.388814 0.26335 0.227717 0.855072 

0 2 0 0 0.396007 0.286642 0.247338 0.855072 

0 3 0 0 0.383659 0.282942 0.243429 0.884058 

0 4 0 0 0.382075 0.278832 0.243294 0.869565 

0 0 1 0 0.35718 0.249197 0.216689 0.947566 

0 0 2 0 0.351757 0.246141 0.216084 0.973783 

0 0 3 0 0.338662 0.23495 0.20923 0.985019 

0 0 4 0 0.334985 0.226998 0.20209 0.985019 

0 0 0 1 0.369438 0.234872 0.201165 0.797101 

0 0 0 2 0.356245 0.244068 0.211985 0.826087 

0 0 0 3 0.369242 0.267662 0.234025 0.913043 

0 0 0 4 0.35397 0.261061 0.224871 0.811594 

 

 
Figure 2: Influence of each parameter, with a subset of 100 concept sets 
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As can be seen, the usage of PMI decreases the score of all metrics, likely to 
inadequate training. Increasing the weight of IsConcept slightly improves concept 
coverage, however it causes a decrease in the other metrics. Concept bonus behaves 
in a similar way, greatly increasing concept coverage, but decreasing the other metrics.  

On the other hand, GloVe similarity offers similar ROUGE-L with simple GPT-2 
generation, and an increase in all other metrics. Specifically, when it is respective 
weight is equal to 2, all metrics are improved. Thus, this is the setup that was chosen for 
the experiments that followed.  

 

3.2.3 Diverse Beam Search experiments 

When BS uses just one group of beams it generates outputs that are very similar, so 
even having the model return them, and then pick based on concept coverage, had little 
to no impact to the results. Therefore, in order to improve the performance, we decided 
to experiment with more groups of beams and introduce diversity (see 2.4). Specifically, 
we chose a setup of DBS with 10 groups of 3 beams each, with a “diversity penalty” 
equal to 3. The only lookahead applied was 2*GloVe similarity which was found to give 
good results in the case of BS; see previous section 3.2.2.  

An alternative was also tested. While thus far we used max strategy for embedding 
similarity, we now tried to order the concepts first, and only apply bonus for similarity 
with the concept that was next in the specified order (Ordered strategy). The order was 
determined by maximizing the sum of similarities between all adjacent concepts, once 
using their lemma, and once using all possible inflections. Both orders were obtained 
with exhaustive brute force search. The results of the subsequent experiments are 
presented in Table 7 and Figure 3, with vanilla DBS as reference (row 1).  

 

Table 7: Performance with 10 groups of 3 beams, with different similarity bonus setups. The whole 

dev set was used 

Similarity  l2 ROUGE-L BLEU-3 BLEU-4 Coverage 

Not used 0 0.375404 0.264742 0.226568 0.961341 

Max strategy 2 0.388133 0.273323 0.235714 0.981132 

strategy  

Ranked remaining 
concepts (lemma) by 
maximizing the sum of 
GloVe similarities 
 

2 0.378056 0.264444 0.227301 0.985064 

strategy -  

Ranked remaining 
concepts (all inflections) 
by maximizing the sum 
of GloVe similarities 

2 0.370314 0.258456 0.221221 0.960349 
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Figure 3: Performance with 10 groups of 3 beams, with different similarity bonus setups 

As presented in the results, the overall optimal setup is the one where similarity is 
calculated as the maximum with any of the remaining concepts (Max strategy). While 
ordering the concepts was promising, it did not provide better scores. 

In order to understand the reason, we generated different orderings for all concept sets 
of the dev. part of CommonGen and compared to that of the reference sentences. In the 
original order, (the one given as input) about 18.6% of the cases had at least one of the 
reference sentences that followed it. This percentage was raised to 25.4% with the 
ordering by lemma form similarity, and to 24.5% by all inflection’s similarity. This 
showed that similarity leads to more realistic word order, than the random original one. 
However, it may be the case that even 25.4% is not enough, in the sense that forcing 
this order will lead to a sentence similar to one of the references only about once every 
4 cases.  

Inspired by Zhao et al [31], we used our best – performing model (DBS, 10 groups of 3 
beams, l2 = 2) to obtain orderings. This ordering had at least one reference sentence 
following it at 45.7% of the cases; significantly better than our previous methods. 
Therefore, new experiments were performed to assess whether it helps during 
decoding. 

To avoid forming sentences that blindly focus at one concept at a time, making it difficult 
to move to the next concept, we tried a combination of the maximum similarity with any 
concept bonus, and a similarity bonus to only the concept that is next in the acquired 
order. The results are presented in Table 8. 
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Table 8: Results of combinations of similarity bonuses on the whole dev. set 

Similarity Combination ROUGE-L BLEU-3 BLEU-4 Coverage 

2*Max strategy + 0*Ordered 0.38838455 0.270569 0.233292 0.983132 

0*Max strategy + 2* Ordered 0.38463645 0.266908 0.22958 0.983333 

1*Max strategy + 1*Ordered 0.38614043 0.271743 0.235298 0.964718 

1.33*Max strategy + 0.66*Ordered 0.39039677 0.274036 0.237374 0.97006 

0.66*Max strategy + 1.33*Ordered 0.38725821 0.273579 0.235371 0.974345 

 

As can be seen in Table 8, the combinations produced largely similar results. However, 
we managed to slightly improve on our previous results, in terms of ROUGE-L and 
BLEU scores. 

 

3.3 Overall results in dev set 

To summarize the results of our methods, in Table 9 we present the scores of our three 
best configurations, compared to two competitive baselines that use just GPT-2 for 
scoring (rows 1 and 2). 

 

Table 9: Results of the application of our method, compared to vanilla GPT-2 

GPT -2 Configuration Objective ROUGE-
L 

BLEU-
3 

BLEU-
4 

Coverage 

Greedy decoding  GPT-2 0.349 0.227 0.194 0.814 

Beam Search (1 group, 10 
beams) 

GPT-2 0.37063 0.2564 0.2207 0.82206 

Beam Search (1 group, 10 
beams) 

GPT-2 + 
2*GloVe (Max 
strategy) 

0.37548 0.2609 0.225 0.8696 

DBS (10 groups, 3 beams 
each) 

GPT-2 0.37540 0.2647 0.2266 0.961341 

DBS (10 groups, 3 beams 
each) 

GPT-2 + 
2*GloVe (Max 
strategy) 

0.38838 0.2706 0.2333 0.983132 

DBS (10 groups, 3 beams 
each) 

GPT-2 + GloVe 
(1.33*Max 
strategy + 
0.66*Ordered) 

0.39039 0.274 0.2374 0.97006 
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Beam search outperforms Greedy decoding (as expected), and DBS further improves 
the results, especially in terms of concept coverage. The application of the GloVe 
similarity bonus provides a significant increase in all metrics, with the configuration that 
takes concept order into consideration scoring slightly higher in terms of ROUGE and 
BLEU. 

 

3.4 Learn weights with ML 

For automating the calculation of the total bonus score and avoid testing a large number 
of configurations (weight combinations) for the bonus scores, we employed Machine 
Learning. For this reason, we created a dataset of 5285 instances of randomly selected 
phrases being produced by our optimal model (last row of Table 9); these phrases 
correspond to a generation path.  

For each phrase we calculated the following features: total number of concepts 
included, number of remaining concepts, PMI, GloVe similarity and IsConcept both max 
strategy and ordered as well as the GPT-2 score. The target prediction score was 
(ROUGE – L+BLEU – 3+BLEU – 4)phrase+w - (ROUGE – L+BLEU – 3+BLEU – 4)phrase , in 
order to assess whether w increases (or decreases) the similarity between the phrase 
and the reference sentences.  

Initially we tried a Neural Network [32] and a Decision Tree [33], but they didn’t achieve 
good results, presumably due to the low amount of data. In addition, the Pearson’s 
correlation between the predicted score and ideal score was rather low (~0.3) for the 
method. We achieved significantly better results with k - Nearest Neigbours (k-NN) 
regression [34], with k = 1000 which seems to require less data, Pearson’s correlation 
was also improved (~0.58).  

The comparison of our method that uses DBS along with k-NN for bonus prediction vs. 
simple Greedy decoding and the configurations that linearly combine bonus scores is 
presented in Table 10. 

 

Table 10: Results of the application of the k-NN calculated bonus 

GPT -2 Configuration Objective ROUGE-
L 

BLEU-
3 

BLEU-
4 

Coverage 

Greedy decoding  GPT-2 0.349 0.227 0.194 0.814 

Beam Search (1 group, 
10 beams) 

GPT-2 0.37063 0.2564 0.2207 0.82206 

Beam Search (1 group, 
10 beams) 

GPT-2 + 2*GloVe 
(Max strategy) 

0.37548 0.2609 0.225 0.8696 

DBS (10 groups, 3 
beams each) 

GPT-2 0.37540 0.2647 0.2266 0.961341 

DBS (10 groups, 3 
beams each) 

GPT-2 + 2*GloVe 
(Max strategy) 

0.38838 0.2706 0.2333 0.983132 
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DBS (10 groups, 3 
beams each) 

GPT-2 + GloVe 
(1.33*Max strategy 
+ 0.66*Ordered) 

0.39039 0.274 0.2374 0.97006 

DBS (10 groups, 3 
beams each) 

GPT-2 + k-NN-
calculated bonus 

0.38478 0.2723 0.2346 0.964651 

While improving, compared to simple GPT-2, the k-NN based method is not as good as 
our optimal one. 

 

3.5 Evaluation on the test set of CommonGen 

3.5.1 Test set results evaluation 

The final step was to evaluate the performance of our models on the test set of the 
CommonGen dataset. We submitted two versions of our DBS method (10 groups, 3 
beams each): The first is the optimal one (manually assigned weights, GPT-2 + GloVe 
[1.33*Max strategy + 0.66*Ordered]), which we named “Linear DBS” since it combines 
heuristics with a linear function. The second is the k-NN based method (GPT-2 + k-NN-
calculated bonus), which we named “k-NN DBS”.   

Below in Table 11 we compare the results of our models with a GPT-2 approach and T-
5 baselines, as well as all the best variations of Neurologic and Neurologic*, as they 
follow a similar approach to ours.  

 

Table 11: Comparison of the test - set performance of our models and similarly structured 
methods. Table is sorted based on SPICE 

Model BLEU – 4 CIDEr SPICE Coverage 

Neurologic - supervised 26.7 14.7 30.3 97.7 

A* Neurologic (T5-large) 39.597 17.285 30.130 N/A 

A* Neurologic – unsupervised (greedy) 28.6 15.6 29.6 97.1 

Neurologic - unsupervised 24.7 14.4 27.5 96.7 

Linear DBS 21.004 12.041 24.406 96.03 

k-NN DBS 20.844 11.6343 23.955 94.56 

GPT-2 (Beam Search, 5 beams as reported 
in [1]) 

23.73 12.187 23.567 79.09 

GPT-2 (Beam Search, 5 beams as 
submitted by us) 

18.468 9.9238 21.97 85.02 

T5-Base (Beam Search, 5 beams as 
reported in [1]) 

18.546 9.399 19.871 76.67 
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Both versions of our method (linear and k-NN) surpass in SPICE two strong baselines 
that use Beam Search (5 beams); the one uses a T5-Base model [1] and the other uses 
a GPT-2 model [1]. Two versions of the latter baseline are included in the results; the 
first is described in [1] and presented in the CommonGen leaderboard and the second 
was implemented by us (our setup/configuration). Also, our methods (linear and k-NN) 
have significantly better Coverage than the aforementioned baselines. Interestingly, in 
terms of BLEU they are outperformed by the CommonGen GPT-2. Also, all variations of 
Neurologic score significantly higher in all metrics except Coverage where the results 
are comparable. 

 

3.5.2 Error Analysis 

Using a subset of 100 randomly selected phrases that the best configuration of our 
method (Linear DBS) produced for the test set, we looked for common errors; two types 
of such errors were identified. The first is when concepts are introduced to the phrase in 
a way that lacks semantic coherence, for example: 

 [ride, board, water, boat] => boat and person board a water taxi for a ride on the 
river 

 [shave, stand, leg, bathtub] => an old man with shaved legs standing in a tub with 
bathtubs 

This type of error is much more common and pronounced when IsConcept bonus is 
applied, as it forces the selection towards concepts.  

The second type of error is when concepts appear more than once, making the phrase 
unnatural. For example: 

 [lawn, mower, mow, push] => a man pushing a mower in a lawn and mowing the 
lawn 

 [sit, table, light, candle] => man sitting at table with candles and lighted candles 

 

However, this type of error cannot be attributed solely to our method, as it only applies 
bonus to remaining concepts. Rather, it probably occurs to some extent due to the way 
that GPT-2 has been fine – tuned; i.e. to favor concepts, when producing the phrase. 

Many of the examined phrases, though, are semantically and grammatically sound. For 
example: 

 [cream, shave, face, apply] => a man applies cream to his face before shaving it 

 [lunch, eat, worker, sit] => young woman sitting and eating lunch in a restaurant 
with other workers 

Such phrases fulfil all the requirements of the task, as they contain all the concepts in a 
natural way.  
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4. CONCLUSIONS AND FUTURE WORK 

This thesis developed methods for the task of Generative Commonsense Reasoning 
(GCSR). We have experimented with various search algorithms and scoring functions 
and it has been shown that 

 The use of Diverse Beam Search (DBS) improves results over a vanilla Beam 
Search. This validates the findings of Neurologic papers, i.e., diverse partial 
solutions should be generated in the search space. To the best of our 
knowledge, we are the first to use DBS for GCSR. 

 The use of embeddings similarity in the scoring function helps in generating better 
generation paths, i.e., it favors, in a natural way, the inclusion of words that lead 
to concepts.  

 The use of a plausible ordering for the concepts helps in improving results. This 
also validates findings of previous papers. 

 The two methods that were produced (Linear DBS, K-NN DBS) improve in terms 
of SPICE and Coverage two very strong baselines that use large LMs; especially 
in Coverage the difference is over 10-15% (depending on which setup we use). 
SPICE is the measure that correlates better with human judgements. 

 

Potential future work would entail applying our method on other text generation tasks, 
for example automatic recipe generation [35], for testing its generalization abilities. It 
would also be sensible to apply our method with other LMs (BART [36], T5 [37] etc.), 
which could lead to better performance than GPT-2. 

Finally, both aforementioned cases, as well as further optimizing our method with GPT-
2 would benefit from improving the automated bonus score calculation process. The 
application of k – NN showed promising results, and a different, or better trained ML 
method could be on par, or even offer better results, than that of our hand – picked 
values for l1, l2 and l3. Also, k-NN or any other ML method could be trained with more 
data. 
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ACRONYMS 

NLP  Natural Language Processing 

KFCnet  Knowledge Filtering and Contrastive learning Network 

KGR4 Knowledge – enhanced Commonsense Generation 

I&V Imagine-and-Verbalize 

SKG  Scene Knowledge Graph 

T5 Text-to-Text Transfer Transformer 

RE – T5 Retrieval – Enhanced T5 

BART Bidirectional and Auto-Regressive Transformers 

SAPPHIRE 
Set Augmentation and Post-hoc PHrase Infilling and 
Recombination 

BLEU BiLingual Evaluation Understudy 

ROUGE Recall-Oriented Understudy for Gisting Evaluation 

METEOR Metric for Evaluation of Translation with Explicit ORdering 

CIDEr Consensus-based Image Description Evaluation 

SPICE Semantic Propositional Image Caption Evaluation 

GPT Generative Pre-trained Transformer 

BPE Byte Pair Encoding 

GloVe Global Vectors (for Word Representation) 

PMI Pointwise Mutual Information 

k-NN k – Nearest Neighbors 
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