
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

INTERDEPARTMENTAL POSTGRADUATE PROGRAM IN MICROELECTRONICS

MASTER THESIS

American Sign Language Recognition via Sensor glove
data analysis with deep learning An ARM

Implementation

Theodoros K. Barmpakos

ATHENS

OCTOBER 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ
ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αναγνώριση της Αμερικανικής Νοηματικής Γλώσσας
μέσω ανάλυσης δεδομένων από γάντι αισθητήρων με
δίκτυο βαθιάς μάθησης Υλοποίηση σε επεξεργαστή

ARM

Θεόδωρος Κ. Μπαρμπάκος

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2022

MASTER THESIS

American Sign Language Recognition via Sensor glove data analysis with deep learning
 An ARM Implementation

Theodoros K. Barmpakos

A.M: ΜΜ289

SUPERVISOR: Elias S. Manolakos, Professor of National and Kapodistrian University
of Athens

OCTOBER 2022

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αναγνώριση της Αμερικανικής Νοηματικής Γλώσσας μέσω ανάλυσης δεδομένων από
γάντι αισθητήρων με δίκτυο βαθιάς μάθησης Υλοποίηση σε επεξεργαστή ARM

Θεόδωρος Κ. Μπαρμπάκος

A.M: ΜΜ289

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ηλίας Σ. Μανωλάκος, Καθηγητής στο Εθνικό και
Καποδιστριακό Πανεπηστήμιο Αθηνών

ΟΚΤΩΒΡΙΟΣ 2022

ABSTRACT

Deep Learning (DL), and especially Convolutional Neural Networks (CNNs), have been
widely used to solve a large variety of problems in computer vision, including Sign
Language Recognition (SLR). There have been many efforts towards designing systems
using cameras that can translate signer gestures to text or even speech. However, these
systems are very sensitive to factors such as light intensity, background color and
motion occlusion etc.

In this thesis, we present the design of a simple endtoend embedded system that
translates continuous American Sign Language (ASL) into text based on inputs received
from an instrumented lowcost sensor glove that we have created using flex sensors and
an IMU device. To prove the concept, we first generated a limited dataset of 20 random
ASL sentences using a 20word vocabulary where we manually prelabel the time series
data into 21 classes and simultaneously separate gesture and nongesture (transition
class) movement periods, by using an external button. Subsequently, a sliding window
technique was used to extract overlapping labeled samples (time windows) for
continuous SLR. After standardization, the data samples are fed to a simple 3layer 1D
CNN (conv1d conv1d fully connected) for classification.

Convolutional layers are useful for automated feature extraction and fully connected for
classification. Our CNN achieves 93.40% accuracy on the test set (unseen data). For all
practical purposes, the accuracy is actually 100% as vocabulary gestures are not
confused for each other, and errors occur only in the transition from a gesture to a
nongesture transition movement window and vice versa. The CNN was trained and its
hyperparameters tuned using the ATOM pythonbased framework. Its accuracy was
compared and found to be slightly higher than that of other popular machine learning
methods, such as the Random Forests, Support Vector Machines, and Extreme Gradient
Boosted Trees (XGBoost).

Finally, we have developed an allsoftware implementation of the designedCNN (inference
part) for the ARM Cortex A9 processor on the Zybo development board. Using the Xilinx
SDK and Eigen library, we managed to design a realtime embedded system that can
achieve an operating frequency much higher than the sampling frequency. Optimization,
training, and testing of the CNN were performed on a PC using ATOM and the Keras
library with a TensorflowGPU backend.

SUBJECT AREA: American Sign Language Recognition, Gesture Recognition

KEYWORDS: SLR, sensor glove, ARM, CNN, Machine Learning

ΠΕΡΙΛΗΨΗ

Η Βαθιά Μάθηση (DL), και ειδικότερα τα Νευρωνικά Δίκτυα Συνέλιξης (CNN), έχουν
χρησιμοποιηθεί ευρέως για την επίλυση πλήθους προβλημάτων στη Μηχανική Όραση,
περιλαμβανομένης και αυτού της Αναγνώρισης της Νοηματικής Γλώσσας (ΑΝΓ). Μέχρι
σήμερα, έχουν γίνει πολλές προσπάθειες για τη σχεδίαση συστημάτων με χρήση
κάμερας που μπορούν να μεταφράσουν τις χειρονομίες ενός ατόμου που μιλάει τη
νοηματική γλώσσα σε κείμενο ή ακόμα και ομιλία. Ωστόσο, αυτά τα συστήματα είναι
πολύ ευαίσθητα σε παράγοντες όπως η ένταση του φωτός, το χρώμα φόντου και η
απόφραξη κίνησης κ.λπ.

Η παρούσα διπλωματική εργασία εστιάζει στην υλοποίηση ενός πλήρους συστήματος,
το οποίο μεταφράζει σε συνεχή ροή λέξεις από την Αμερικανική Νοηματική Γλώσσα, σε
κείμενο, με τη χρήση ενός γαντιού δεδομένων που κατασκευάστηκε με χαμηλό κόστος
για τον ως άνω σκοπό και βασίζεται στη χρήση αισθητήρων κάμψης και μιας
αδρανειακής μετρητικής συσκευής. Για την επίτευξη του στόχου, δημιουργήσαμε αρχικά
ένα σύνολο δεδομένων από την καταγραφή χειρονομιών 20 τυχαίων παραγόμενων
προτάσεων χρησιμοποιώντας ένα λεξιλόγιο 20 λέξεων. Κατά την καταγραφή και με τη
χρήση ενός εξωτερικού κουμπιού αποδόθηκαν στα δεδομένα προ ετικέτες
κατηγοριοποιώντας τα σε 21 κλάσεις και διαχωρίζοντας παράλληλα τις χρονικές
περιόδους των χειρονομιών και μη χειρονομιών (κλάση μετάβασης). Στη συνέχεια, για
την αντιμετώπιση της συνεχούς αναγνώρισης, εφαρμόζουμε τη μέθοδο ολισθαίνοντος
παραθύρου και εξάγουμε τα αντίστοιχα αλληλεπικαλυπτόμενα δείγματα (χρονικά
παράθυρα), τα οποία αφού κανονικοποιηθούν τροφοδοτούν ένα απλό Νευρωνικό Δίκτυο
Συνέλιξης με τρία επίπεδα (conv1d conv1d fully connected).

Τα συνελικτικά επίπεδα συμβάλουν στην αυτόματη εξαγωγή ”χρήσιμων”
χαρακτηριστικών ενώ το πλήρως συνδεδεμένο επίπεδο είναι υπεύθυνο για την
κατηγοριοποίηση των δειγμάτων. Το προτεινόμενο νευρωνικό δίκτυο δοκιμάστηκε σε
σύνολο δεδομένων που δεν είχε δεί ξανά, επιτυγχάνοντας ακρίβεια αναγνώρισης στις
προκαθορισμένες χειρονομίες ίση με 93,40%. Στην πράξη, η ακρίβεια αναγνώρισης είναι
100%, καθώς δεν γίνονται λανθασμένες προβλέψεις μεταξύ χειρονομιών, αλλά μεταξύ
μιας χειρονομίας και της μεταβατικής κλάσης τη στιγμή που το χρονικό παράθυρο
εισέρχεται στα όρια της χειρονομίας ή εξέρχεται από αυτήν και για μόνο μερικά χρονικά
βήματα. Η εκπαίδευση του νευρωνικού δικτύου και η ρύθμιση των υπερπαραμέτρων
του, πραγματοποιήθηκε με τη χρήση του εργαλείου ATOM, που βασίζεται στη γλώσσα
python. Επιπλέον, διεξήχθησαν δοκιμές και σε άλλα μοντέλα μηχανικής μάθησης όπως
τα Random Forests, Support Vector Machines, και Extreme Gradient Boosted Trees
(XGBoost), με αποτελέσματα που δείχνουν ότι το προτεινόμενο CNN πετυχαίνει
ελαφρώς καλύτερο ποσοστό ακρίβειας αναγνώρισης.

Τέλος, αναπτύξαμε υλοποίηση του απλού Νευρωνικού Δικτύου Συνέλιξης τριών
επιπέδων (για πρόβλεψη) στον επεξεργαστή ARM Cortex A9 που διαθέτει η πλακέτα

ανάπτυξης Zybo. Χρησιμοποιώντας το περιβάλλον Xilinx SDK και την βιβλιοθήκη Eigen,
καταφέραμε να σχεδιάσουμε ένα πραγματικού χρόνου ενσωματωμένο σύστημα, το
οποίο λειτουργεί σε πολύ μεγαλύτερη συχνότητας από αυτή της δειγματοληψίας. Η
εκπαίδευση και η δοκιμή του Νευρωνικού Δικτύου Συνέλιξης πραγματοποιήθηκε σε
προσωπικό υπολογιστή χρησιμοποιώντας το εργαλείο ATOM και τη βιβλιοθήκη Keras
βασισμένη στο TensorflowGPU.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναγνώρηση Νοηματικής Γλώσσας, Αναγνώρηση Χειρονομίας

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: ΑΝΓ, Γάντι Δεδομένων, ARM, CNN, Μηχανική Μάθηση

To my friends Tsipiras Dionysios and Kostantinos Kourkoulos.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Prof. Elias Manolakos for his trust in my
abilities, his valuable guidance during the writing of this thesis and his patience in the
revision process.

Next I would like to thank Prof. Antonis Paschalis and Dr. Alexandros Pino of the
examination committee for their time spending on the review process and their helpful
comments on the thesis.

Furthermore, I would like to thank Mr. Elias Kouskoumvekakis PhD student of Prof.
Manolakos for his help and technical advice on embedded systems, as well as for
teaching and training me on Xilinx FPGAs.

Last I would like to express my deepest gratitude to my family and friends for the support
during this thesis and especially my cousin Periklis Barmpakos for his advice in Machine
Learning.

CONTENTS

1 INTRODUCTION 23
1.1 Sign Language . 23
1.2 The ideal sign language recognition system Specifications 24
1.3 Thesis goals . 25
1.4 Thesis organization . 26

2 BACKGROUND AND RELATED WORK 27
2.1 Machine Learning . 27
2.2 Deep Learning . 27
2.3 Layers . 29

2.3.1 Convolution 1D Layer . 29

2.3.2 Fully Connected Layer . 30

2.4 Activation Functions . 31
2.5 Classification with Neural Networks . 32

2.5.1 Onehot encoded vector . 32

2.5.2 Multiclass and Multilabel Models . 33

2.6 Related Work . 34
2.7 Thesis contributions related to state of the art . 39

3 SYSTEM DESIGN DATASET CREATION 41
3.1 The Sensor Glove . 41
3.2 Data Sampling . 42
3.3 Sliding Window . 44
3.4 Pre Processing . 45
3.5 Conclusions . 46

4 MODEL DEVELOPMENT 47
4.1 Baseline ML Methods . 47
4.2 Hyperparameter Tuning . 48
4.3 ML Results . 51
4.4 Using Convolution Neural Networks . 55

4.4.1 Model architecture . 55

4.4.2 CNN Hyperparameter tuning . 57

4.4.3 NN model on ATOM . 57

4.5 Results . 58
4.6 Conclusions . 59

5 AN ARMBASED IMPLEMENTATION 61
5.1 Experimental System Overview . 61
5.2 Software and Tools Used . 63
5.3 Define the CNN using Eigen . 64
5.4 Model transfer . 68
5.5 Testset Loaded . 69
5.6 Class prediction using Eigen . 70
5.7 Conclusion . 72

6 CONCLUSIONS AND FUTURE WORK 73

ABBREVIATIONS ACRONYMS 75

APPENDICES 76

A Code for Baseline ML 77

B Code for Our Proposed Method 87

C ARM Main program 99

REFERENCES 111

LIST OF FIGURES

1 Gesture examples. (a) Twentyfour alphabet static gestures of the American sign

language. (b) In the dynamic word ’Hello’, hand posture is moving in the arrow
direction. 23

2 A Feedforward neural network structure. 28

3 A complete neural network structure with optimizer and loss function. 29

4 Applying 1D convolution to timeseries data. The convolution kernel has four

filters and size of three in this example. The output matrix dimensions are
timesteps kernel size + 1 and number of filters. 30

5 Nonlinear activation functions. (a) Relu. (b) Sigmoid 31

6 Example of Multiclass feedforward Neural Network classification. 33

7 Example of Multilabel feedforward Neural Network. 34

8 Our sensor glove with all its components packed away in a usb device. 41

9 (a) A thick laminate flex sensor. (b) An IC analog multiplexer device. 42

10 COM port display. Raw data samples flow over time. 43

11 The signal representation of the first sentence. Horizontal axis is time. Different

colors distinguish the signal of each sensor. 44
12 Sliding window (green) process and overlapping class windows. The transition

class is assigned to both #1 and #2 samples and ’d’ class to sample #3. 45

13 ATOMClassifier log. 50

14 ATOMClassifier results. 51

15 Bootstrap method for the case n_bootstrap=3. 52

16 XGB confusion matrix . 53

17 RF confusion matrix . 53

18 LR confusion matrix . 54

19 LSVM confusion matrix . 54

20 The CNNmodel architecture Bayesian optimization has been applied. Diagram

exported from Keras. 55
21 Sequential model on keras. 56

22 Example of an 7timestep feature extraction for 94 filters. 56

23 Hyperparameter search space. 57

24 ATOMClassifier results on NN. 59

25 CNN confusion matrix. 59

26 System overview and bidirectional communication. The Zybo board holds the

whole application while the input device with the PC work as a peripheral for
input purposes. 61

27 The Zynq Processing System (adopted from [10]). 64

28 All necessary matrices we declare in order to run a feed forward pass.

Hyperparameters: x1=94 filters, y1=7 kernel_size, x2=86 filters, y2=5
kernel_size resulting from BO in section 4.5 according to our model
architecture in section 4.4.1. Operator T gives the transpose of a matrix. 65

29 Keras model presented in chapter 4. Deleted layers are not used on inference. . 66

LIST OF TABLES

1 Onehot encoded representation for each case. If a dog exists in the image, then

first coordinate of the vector has one, otherwise zero and so on. 32

2 The ASL vocabulary used for the project. 43

3 CNN Memory. The system performs on a Singleprecision Floatingpoint format

(FP32). 67

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

1. INTRODUCTION

1.1 Sign Language

Sign Language (SL) is widely used for communication by deaf and mute people. It is not a
simple handmoving language but an entire body and face expression. SL is not standard
in all communities globally, so there are more than two hundred different SLs [1] with their
grammar and syntax. This thesis is concerned with the American Sign Language (ASL)
because of its large number of speakers, which put it in the top three most widely spoken
sign languages.

The essential part of ASL is the movement of the hands, which is called a gesture.
Gestures can be static (a specific form of fingers and wrist) or dynamic [2]. Let us take a
look at some static gestures in Figure 1a (except letters j and z), which present the
American alphabet, and a dynamic one in Figure 1b, which is the word “Hello”. Thus,
adding more and more gestures, static or dynamic, we construct the vocabulary of the
ASL. There are more than 4,500 signs in the American vocabulary [3]. Applying some
rules to it (e.g., grammar), the whole language is constructed. That is how signers can
communicate with each other.

What about the communication between a signer and a speaker? As the former can not
speak, the only way to communicate with each other is to use the same sign language.
But, generally, speakers do not understand sign language and learning it is not an easy
process. Thus, a communication gap between them is created. To minimize this gap and
make communication possible is where gesture recognition plays a role.

(a) (b)

Figure 1: Gesture examples. (a) Twentyfour alphabet static gestures of the American sign
language. (b) In the dynamic word ’Hello’, hand posture is moving in the arrow direction.

Gesture recognition is a computing process that attempts to recognize, not only sign
language but generally human gestures and interpret them using algorithms. It is an
essential domain because it can facilitate communication and create an interface
between humans and machines more naturally. For example, we can control devices

Th. Barmpakos 23

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

such as drones or medical machines only by hand movements. Another important intent
of gesture recognition focuses on virtual reality (VR) environments. By transferring
human body movements from reality into virtual worlds, we can create sophisticated and
interactive applications for training purposes or even for treatments of diseases such as
Alzheimer’s [4].

One powerful tool to solve this problem is Machine Learning (ML), which constantly
provides solutions enhancing human capabilities in many realworld applications.
Pattern recognition is one of the most distinct aspects in which we can draw insights
through machine learning methods. Specifically, since our application concerns realtime
response and user mobility, it is essential to investigate the potential of successful
embedded machine learning solutions, which motivated the design of a portable
embedded system for ASL.

1.2 The ideal sign language recognition system Specifications

What makes a system for sign language recognition an ideal one? There are many
requirements to meet to achieve perfection, but we will focus on the most important
ones. Let us think of a signer standing in front of a speaker and trying to communicate.
First of all, s/he needs a comfortable, portable, and easytouse device at a cost as low
as possible to be affordable.

As speech is a continuous sequence of words, sign language is a continuous sequence
of gestures. The signer must freely act while talking without having to worry about when
a gesture starts or ends. The system has to recognize the boundaries of each gesture
automatically, so we say that it works in continuous/online mode. In contrast to continuous
mode, a version of isolated finite signals recognition exists but is far from ideal.

In addition, two significant specifications are vocabulary size and recognition accuracy.
The ideal system must recognize the whole ASL dictionary without any wrong prediction.
That means it has to classify more than 4,500 gestures and achieve 100% accuracy.

Finally, a realtime attribute is necessary to make communication as fast and interactive
as it can be. In general, [5] [6] a realtime system responds within specified time
constraints, which are often in the order of milliseconds, and sometimes microseconds.
That means, the total processing time per sample including overhead (i.e., other steps
required to complete a task such as read/write memory, etc.) should be less than the
sampling period. Hence, this constrains the sampling rate of any signal processing
system we may employ.

Sometimes, although the above conditions are satisfied (total processing time is less than
sampling period), a throughput delay (latency) also exists e.g. latency in a pipeline system,
adding some extra cost to the total processing time. In theory, even if this delay is large
enough, the system is considered as a realtime one. But in practice, when talking about
realtime bidirectional telecommunications, processing requires both realtime operation
and a sufficient limit to that throughput delay. So systems with responses of less than 300

Th. Barmpakos 24

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

ms are met the above requirements and considered “acceptable” to avoid undesired “talk
over” in a conversation. To make it clear, we can think of a mobile phone conversation. If
the voice from one speaker is delayed in reaching the other, then the latter starts talking
and suddenly hear the delayed voice. This issue is repeated simultaneously in the other
direction as well and makes the communication ineffective. Even though we face a one
way directional communication in our case/project (SLR), we can set the same response
time (300 ms) as the upper bound of our system, hence it must translate each incoming
sample/gesture to the corresponding lexicon word under 300 ms.

In summary, an efficient gesture recognition system should meet the following
specifications:

• comfort, portability, and low cost

• continuous/online recognition

• large vocabulary

• high accuracy

• realtime response

1.3 Thesis goals

There have been many approaches since the 1990s that try to make communication
between signers and speakers possible without a speaker needing to learn the
corresponding language. Many of these use one or more cameras to aid on SLR.
However, this is not easy to adopt as a portable solution because one or more cameras
are needed to be set up in fixed places. This thesis aims to design and implement a
portable endtoend embedded system (software and hardware) that can translate
American Sign Language into text using neural networks and a much simpler sensing
system.

To manage the complexity of our project, we broke it down into smaller parts and set the
following subgoals that try to approximate the ideal system:

Goal 1: Construct a lowcost sensor glove. On a sensorbased SLR system, we
need a device that collects data from hand movements, e.g. fingers’ bend, wrist
direction, elbow position, etc. Commercial gloves are too expensive, so they are
not suitable for everyone. Similar to other researches [7] [8] [9], flex sensors and
Inertial Measurement Unit (IMU) devices are attached to ordinary gloves and make
an affordable device with a cost of about 100e. At this point, we did not aim for a
productiongrade solution but a device we could use for experimental purposes.

Goal 2: Design an efficient neural network architecture model. The neural network
is the main processing unit, and it is responsible for classifying incoming gestures.

Th. Barmpakos 25

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Currently, the vocabulary size is small and is set to twenty gestures, static and
dynamic. The network must be as simple as possible, suitable for an embedded
solution, but achieve better accuracy than other ML methods.

Goal 3: Implement our SLR solution in an embedded system. The solution must fit
into an embedded device and run in realtime in a continuous flow to make signers
feel free while testing it. In addition, we selected to employ an FPGA since it was not
clear at the beginning if we may need hardware acceleration capabilities for some
parts of the design to reach realtime performance. The Zybo z710 development
board by Xilinx [10], which includes a dual ARM processor and an FPGA fabric, was
selected for this purpose.

Goal 4: Oneway communication. As mentioned, communication between two people
is a bidirectional process. This thesis focuses on oneway, where the signer talks
and gestures get translated into text. So, a speaker interprets and understands the
signer and not the other was around.

1.4 Thesis organization

The rest of the thesis is organized as follows:

• Chapter 2: We describe, in detail, the mathematical background of neural networks
and especially of Convolutional Neural Networks (CNN), which is necessary for low
level implementation on embedded systems. We also review the stateoftheart
approaches for different SLR problems from 1991 to 2019 [11] and compare to our
proposed method.

• Chapter 3: We present the design and implementation of a simple and
inexpensive sensor glove, discuss our choices and finally capture the necessary
dataset for training and testing various ML/DL models.

• Chapter 4: We apply different machine learning methods and present our
continuous SLR approach based on CNNs. We build, optimize and test our model,
and compare all methods.

• Chapter 5: We develop a baremetal application running on the Zybo z7
development board, and especially its ARM processor. The FPGA part is not
currently used, so we are presenting an allsoftware solution. Also, we describe
how to load/transfer a trained model to our device, how much memory of DDR it
needs, and how to use other peripheral parts (UART) of the Zybo board.

• Chapter 6: We summarize the main conclusions of this thesis and provide directions
for future work and possible extensions.

Th. Barmpakos 26

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

2. BACKGROUND AND RELATED WORK

In this chapter we present a brief introduction to machine learning (ML) and neural
networks (NN). We review how they work, what they consist of, and how they can solve
a classification problem by applying multiclass and multilabel methods. Finally, we
describe recent approaches for sign language recognition and position our work
relatively to them.

2.1 Machine Learning

Machine Learning is a branch of Artificial Intelligence (AI) that gives systems the ability to
learn from examples (observations) automatically, without being explicitly programmed.
Instead of using handcraft rules to catch different statements (programming), it uses
algorithms that build mathematical models based on collected data, called ”training
data”. So after training, the system can make predictions and decisions without human
intervention. These algorithms are divided into four broad categories [12]:

• Supervised Learning: Mainly consists of regression and classification models. A
set of labelled examples (training set) is used for building the model. Then the
model maps unseen data to known targets (e.g., optical character recognition,
speech recognition, image classification, and language translation).

• Unsupervised Learning: Like supervised learning, it uses a set of examples for
training a model, but without needing any label information. That leads to finding
interesting and common representations on unseen data (e.g., clustering and
dimensionality reduction).

• SelfSupervised Learning: It is supervised learning with selfgenerated labels used
to train a model (e.g., autoencoders [13] [14]).

• Reinforcement Learning: An agent receives information about its environment and
learns to choose actions that will maximize some reward metric [15] (e.g., learn to
play Atari games at maximum level).

This thesis focuses on supervised learning because we treat ASL recognition as a
classification problem and use a labeled data set to train our ML models. More about the
data set and the classes will be discussed in Chapter 3.

2.2 Deep Learning

Deep Learning (DL) is a member of a broader family of Machine Learning methods,
including also Probabilistic modeling, Kernel methods, Decision trees, Random Forest,

Th. Barmpakos 27

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

and Gradient boosting machines [12]. Deep Learning (DL) is implemented using Neural
Networks (NN), and as a supervised ML method, it uses examples to build models. How
does this work? Let us have a look at the structure of a neural network in Figure 2 below.

Figure 2: A Feedforward neural network structure.

In general, a neural network can be thought as a sequence of Layers connected in series.
Τhe output of each layer is connected to the input of the next layer. The number of layers is
called the depth of the network. The more the layers, the deeper the network. Each layer
has a predefined number of parameters, weights and biases, forming themodel’s trainable
parameters. Depending on its type (e.g., dense, convolution, maxpooling e.t.c.), a layer
performs specific calculations as data flows from one layer to the next. Therefore, a neural
network maps an input sample to a target, and so it is also called a feedforward neural
network. For example, consider a simple classification problem: recognizing handwritten
digits (0 to 9). Also, assume that the network has already been trained, so weights have
taken their expected/correct values. Then given a 28x28 pixel image with a handwritten
digit as input of the network, it predicts what digit (class) is presented. The next question
is how a neural network can be trained?

When initializing a network, weights and biases are being set randomly close to zero
value. So prediction compared with the real target will be far away from what we
expected. For this, first we need somehow to measure the size of this error and second
to minimize it. The measurement is performed by some function which is called the loss
function, and its output the loss score. Hence, the goal is to minimize the loss score. The
optimizer is responsible for minimizing that loss score, making proper weight
adjustments via the backpropagation algorithm. So, while training a model, new
predictions are getting closer and closer to real targets at each step of the algorithm.
Below we can see the corresponding diagram in Figure 3. As we mentioned before, we
need a set of examples (training data). For our purpose (supervised learning), each data
sample is labeled by its class.

In deep learning and generally in Machine Learning, models have two types of parameters
[16]. The ones that are set before the training process (learning algorithm) is started,
which are called hyperparameters, and the others that are calculated automatically from
the learning algorithm and constitute the trainable part of the model (weights and biases),

Th. Barmpakos 28

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

which are simply called parameters of the model. For example, in the handwritten digit
recognition problem mentioned earlier, both the input and output sizes of the network are
static (input: 28x28 pixels, output: 10 classes) and belong to model’s hyperparameters.
Hyperparameters are also the number of the weights and biases of each layer but not
their values. In general, hyperparameters define the structure of a model and are shown
for each layer in the next section.

Figure 3: A complete neural network structure with optimizer and loss function.

2.3 Layers

In this part, we present the mathematical computations that take place behind each type
of layer. That is necessary to design the architecture of our model on ARM later in Chapter
5. The two types of layers we will use are Convolution 1D and Fully Connected (dense)
layer.

2.3.1 Convolution 1D Layer

Convolution layers apply a convolution operation to the input sample, passing the result
to the next layer [17]. They can offer a fast alternative to other methods (e.g., RNNs)
for timesseries broadcasting because they can extract local 1D patches (subsequences)
from sequences [12]. The two basic hyperparameters of the conv1d filter are the kernel
size or kernel window and the number of filters. Let us take a look at a simple version of our
project. Raw data is collected from the sensor glove. Thus, a 2D matrix is created. One
dimension is timesteps, and the other is the input features (the number of sensors five
flex sensors, a 3axis accelerometer, a 3axis gyroscope, and a 3axis magnetometer).
As shown in Figure 4, the convolution kernel slides through the input frame one step at

Th. Barmpakos 29

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

a time, convolve the corresponding matrices and store the output value. This procedure
is repeated for each filter. It is important to note that the kernel’s values are the trainable
part of the layer. In our model implementation in section 4.4, we set the hyperparameters
of the first conv1d layer to be: kernel size = 7, number of filters = 94 and of the second
one: kernel size = 5, number of filters = 86. These values are selected from a specified
search space through Bayesian Optimization method achieving best possible accuracy.

The convolution operation between two matrices, A and B with the same size MxN is given
by the formula below:

conv(A,B) =
N∑
j=1

M∑
i=1

A(i, j) ∗B(i, j) (2.1)

where (∗) is elementwise matrix multiplication.

Figure 4: Applying 1D convolution to timeseries data. The convolution kernel has four filters and
size of three in this example. The output matrix dimensions are timesteps kernel size + 1 and

number of filters.

2.3.2 Fully Connected Layer

The fully connected layer is the final layer of a model used to classify input data into the
predefined classes. Unlike convolution layers that learn local patterns, fully connected
layers recognize global patterns from input data. The corresponding operation is a linear

Th. Barmpakos 30

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

transformation of its input X as formulated below [18]:
L = XW +B (2.2)

where X ∈ R1×l is the flattened input (e.g. in handwritten digit example, a 28x28 image is
reshaped into an 1x784 matrix, where 784 is the number of input neurons l),W ∈ Rl×classes

and B ∈ R1×classes are weights and biases, respectively (parameters of the layer that have
to be trained). The input neurons l and classes are layer’s hyperparameters.

2.4 Activation Functions

Activation functions are nonlinear functions applied between layers to make a model
more effective [18]. That is because the model’s parameters are adjusted more
independently (nonlinear way) from layer to layer while training the network. Possible
activation functions are Rectified linear unit (Relu), Leaky Relu, Sigmoid, and Softmax
[19]. Relu and Softmax are going to be used in this project. First, besides its simplicity,
Relu is the most commonly used activation function defined as:

ρ(x) = max(x, 0) (2.3)
Its graphical representation is shown in Figure 5a. Relu can be easily implemented either
in hardware or in software. Second, Softmax is a convenient function for turning a finite
set of numbers into a probability distribution. Given the set X = {x1, x2, ..., xn}, xi ∈ R,
the probability distribution is the set Σ = {σ1, σ2, ..., σn}:

σi =
exi

n∑
j=1

exj

(2.4)

Figure 5: Nonlinear activation functions. (a) Relu. (b) Sigmoid

In contrast with Relu, Softmax is applied on the final layer of the network to produce
the probability of each class label. Softmax function contains massive exponential and
division operations, making its implementation on hardware a complex one [20]. Both
Softmax and Relu functions are implemented on the ARM processor in Chapter 5.

Th. Barmpakos 31

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

2.5 Classification with Neural Networks

Generally, there are two standard ways to address a classification problem; multiclass
classification and multilabel classification.

In multilabel classification, a data sample may belong to multiple classes, whereas in
multiclass, one data sample belongs exclusively to one class. In this section, according
to [21], we give a general idea of how to implement a neural network for classification
problems and apply it to build our model for SLR later on in Chapter 4.

2.5.1 Onehot encoded vector

Classification takes place by applying labels to data samples. These labels can be
anything, like numbers, words, symbols, images, and others. For example, a label can
be a bird, cat, dog, e.t.c. As Neural Networks perform arithmetic operations, it is
necessary to transform labels into a suitable form. For our purpose, this form is the
onehot encoded vector and can be applied on both multiclass and multilabel
classification.

Given a set of n classes C = {c1, c2, ...cn} we take its power set D(C) (or 2C) with 2n

elements and for an input sampleX we define onehot encoded representation as follows:

X 7→ (v1, v2, ..., v2n), with (2.5)

vi =

{
1 , if X ∈ ci

0 ,otherwise
Let us look at a simple image classification example with three classes: dog, cat, bird.
Then onehot encoded vector labels are:

Table 1: Onehot encoded representation for each case. If a dog exists in the image, then first
coordinate of the vector has one, otherwise zero and so on.

No image sample includes label attached

0 null (0, 0, 0)
1 dog (1, 0, 0)
2 cat (0, 1, 0)
3 bird (0, 0, 1)
4 dog and cat (1, 1, 0)
5 dog and bird (1, 0, 1)
6 cat and bird (0, 1, 1)
7 all (1, 1, 1)

It is important to emphasize that, in a multiclass model, labels can have a unique
coordinate with ’1’, and all the others are filled with zeros ’0’. That tells us that a data

Th. Barmpakos 32

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

sample can belong to only one class. Instead, in multilabel, we can have more than one
class being presented simultaneously.

2.5.2 Multiclass and Multilabel Models

The feedforward Neural Network in Figure 6 has a Dense layer which handles the
classification. This layer performs a multiplication between an input array and a matrix
with weights. As shown in the Figure, image pixels are flattened into an input array, and
scores are calculated as output results. Then, in the Multiclass case, the dense layer is
followed by a Softmax activation function which transforms scores into probabilities that
sum up to one. The position of largest probability then gives us a onehot encoded
vector with only one ’1’, which provides the predicted class label.

Figure 6: Example of Multiclass feedforward Neural Network classification.

On the other hand, in the Multilabel case, the dense layer is followed by the Sigmoid
activation function, which is applied separately on each score element and produces
values between 0 to 1. If the value at a certain position is greater than 0.5, the onehot
encoded vector writes ’1’ at the same position, see Figure 7.

At this point, we can clearly understand that two parameters define the size of the dense
layer, hence the size of our models: input nodes and output nodes. The number of output
nodes equals the number of different classes of the specific classification problem, so we
can not modify them.

What about the input nodes? They depend on the size of the input image. So large
images imply more complex models, in terms of number of parameters (matrix of
weights), and more timeconsuming training and inference. A good solution is not to
directly feed the network with the whole image but with useful features extracted from it.

Th. Barmpakos 33

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 7: Example of Multilabel feedforward Neural Network.

This can be done either by manual feature engineering or automatically using
Convolutional layers. There are three widely used types of convolutional layers: conv1d,
conv2d, conv3d which handle time series feature extraction, image feature extraction
and video feature extraction, respectively. In this thesis, we chose CNNs using 1D
Convolutional layers. So, by looking back at Figure 2, we can substitute Layer1 and
Layer2 with two Convolutional layers to create our purposed CNN for SLR (see section
4.4.1). Using appropriate hyperparameters (see section 2.3.1) to the convolutional
layers, we can reduce the output of the second layer; hence, reduce the input nodes of
the dense layer, which is the most complex layer in terms of memory (number of
trainable parameters).

Once we design our Multiclass and Multilabel networks, it is time to train them. By
following the structure in Figure 3, we need one final step. Define loss function and
optimizer for each method. This thesis focus on inference and not on training. So,
without any deeper explanation, we use the RMSprop optimizer for both networks and
two variations of the crossEntropy loss function, Categorical CrossEntropy, and Binary
CrossEntropy, respectively [18].

As we mentioned before, in this thesis, we will not use NN models on images but on time
series data, and the above example is used to make it clearly understood how to face
such a classification problem.

2.6 Related Work

Sign Language Recognition has been studied from early years, and different solutions,
such as template matching, feature extraction, statistics, and learning algorithms, have

Th. Barmpakos 34

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

been applied [23]. These approaches can be separated into three basic categories,
depending on system design. First, is a VisionBased approach in which systems
contain at least one camera as the basic component and hence the recognition is using
image processing methods. Second, we have a SensorBased approach. Timeseries
data is captured from wearable devices, such as sensorgloves, tracking devices, and
other sensors (e.g., IMUs, EMGs, flex sensors, etc). The last one is a Hybrid method, in
which both approaches are combined.

To come up with a welldesigned SLR system some of the challenges are common
regardless of the chosen approach. We start from the size of the vocabulary; it can be
some letters or numbers, a whole alphabet, a set of words, or even sentences. The
larger the size of the vocabulary, the more (computationally) complex the solution.
Another factor that increases the complexity is the number of hands used (onehanded
recognition vs twohanded). In the case of twohanded, we need two wearable devices if
we have, for example, a sensorbased system. This implies doubling the number of
signal channels, so a more complex model is needed. The same is also true for a
visionbased approach. If we think of a gesture in which one hand overlaps the other,
then correct recognition requires a more powerful model.

Why do we need SLR solutions with low complexity? SLR is a realtime problem by its
nature because communication is a direct interaction between people. Hence, a good
system must respond fast, in an amount of time which is less than 300ms, as described
in [24]. Finally, another big challenge is the acquisition mode of input data. It can be
either isolated or continuous. In isolated mode, classification/recognition is made upon a
gesture, one at a time. We feed the model with a gesture, and the model tells us what
this gesture means. That can be done by using a button to capture the exact region of the
gesture. On the other hand, in continuous mode, a frame of images or a series of data is
captured and imported continuously into the model. So the model has not only to classify
the frame, but it has to ensure that the input data corresponds to a valid gesture. Let us
discuss below the different studies that have been reported in the literature for addressing
SLR.

A. Wadhawan and P. Kumar [25] provide an overview of how researchers have
approached the SLR problem until 2017. Most focus on videobased systems using a
camera and classify static and onehanded gestures in isolated mode. The leading
classification mechanism is Neural Networks (NNs) in visionbased systems followed by,
Support Vector Machines (SVMs) and Hidden Markov Models (HMMs). Some
visionbased system techniques are presented below:

Isolated
Q. Munib et al. [26] use a ANN with two hidden layers to classify 20 static gestures of the
American sign language (14 letters, 3 numbers and 3 words). A dataset of 300 images
(20 gestures x 15 times each gesture) preprocessed and a feature vector is constructed
based on Hough transformation before feeding the model. 200 images (10 of each
gesture) are used for training while the remaining 100 for testing. Their method achieves
90% recognition accuracy on unseen images.

Th. Barmpakos 35

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

W. Tangsuksant et al. [27] use an ANN with one hidden layer to classify the American
alphabet (only static). They place two cameras to capture 6 colored markers on a glove
from different angles and convert captured images into 3D object space coordinates using
the DLT algorithm. 2,100 images are used for training while 480 (20 images per posture)
for testing, achieving 95% accuracy.

M. M. Islam et al. [28] designed an android application to translate the alphabet and
numbers of the American sign language by snapping images with the mobile camera.
Then five features exported (fingertip finder, eccentricity, elongatedness, pixel
segmentation and rotation) and feed an ANN with one hidden layer. The purposed
model trained with a dataset of 1,850 samples of 37 signs (50 samples for each sign)
and tested on 370 samples (5 signers x 2 times x 37 signs) captured in real time,
achieving an accuracy of 94.32%.

M. Zamani and H. R. Kanan [29] present a method for recognizing American sign
language alphabets and numbers (36 signs) based on saliency of images. After saliency
detection, the output image processed by PCA and LDA methods to reduce its size and
minimize/maximize an internal/external class distances respectively. Then the exported
feature vectors feed an ANN with one hidden layer. The robustness of the model was
examined through 4Fold Cross Validation on a 2,520 sample dataset (70 times x 36
signs) where 1,890 samples was used for training and the remaining 630 for testing,
achieving an average accuracy of 99.88%

Continuous
P. V. V. Kishore et al. [30], purposed a multi feature model for recognizing continuous
gestures of Indian sign language with the classification stage be an ANN. A sentence of 58
words was captured by 10 subjects. Five of them was used for training and remaining for
testing. Horn Schunck optical flow algorithm applied to extract tracking features (position
vectors of hands) while Active Contour model extracts hand shapes features along with
head portion. Combining the above features, they train and test the ANN achieving an
accuracy around 90%.

D. Kelly et al. [31], presented a framework for continuous Irish sign language recognition.
They use a camera to capture double handed dynamic signs as well as head movements
(face position, width and eye position). Mean shift algorithm and haar cascade applied
to extract features respectively. The classification stage is a Multichannel HMM, which
leads to the accuracy of 95.7%.

In [23], M.A. Ahmed et al. also present approaches from 2007 to 2017 and give us details
about the hardware specifications they use (various handmade and commercial sensor
gloves, microcontrollers etc.). Especially for sensorbased systems, K. Kudrinko et al.
[11] presents approaches from 1991 until 2019. Some more recent are the followings:

Isolated
B.G. Lee and S.M. Lee [32] use a custom sensor glove with five (5) flex sensors, two (2)
pressure sensors and a 9Axis IMU to distinguish characters in the American Sign
Language alphabet. Data from the sensor glove are captured via the Atmega328
microcontroller, which is the main computational core. Flex data are standardized while

Th. Barmpakos 36

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

orientations (pitch, roll, yaw) are computed from IMU data. Hence a feature table is
extracted, and the SVM classifier is run by the same microcontroller to predict the
current sign. For training the classifier, a dataset was created by using twelve subjects
with a total of near 6,500 samples (20 times x 28 signs x 12 subjects). Their method
achieves 98,2% recognition accuracy on a 26letterandtwosign vocabulary.

S. Jiang et al. [24] presents a wrist wearable device with four (4) sEMG sensors and one
(1) IMU module, which is more comfortable than gloves, to recognize eight (8) air and four
(4) surface gestures. Raw data captured from the device are divided into windows, of a
predefined length, to extract features over a series of points and then predict the gesture.
There are four features for sEMG sensors: mean absolute value, zero crossing, slope sign
changes, waveform length, and two for IMU module: mean absolute value and waveform
length. After feature extraction, an LDA (Linear Discriminant Analysis) classifier predicts
the current sign every 100ms, implying a realtime system. Training of the classifier is
done in two parts: Build the classifier and Update it. For the first, tree trials of data sets
are captured using longtime training history data combined with shorttime current training
data to design a relatively robust classifier. The second one is applied for calibrating the
classifier because sEMG signals may differ each time we put on and off the armband
device. This method achieves 92.6% recognition accuracy on eight air (without touching
a surface) gestures and 88.8% on four surface (touching a ground surface) gestures with
two distinct force levels.

S. Yin et al. [33] uses a custom sensor glove with five flex sensors (one for each finger)
controlled by an STM32 microcontroller and focus on the recognition of static gestures,
setting the intuitive distinction between the digit gestures 16 and alphabet gestures A,
T, W. Their approach is a combination of template matching method followed by a NN,
to achieve a better recognition accuracy 99.8% than achieved individually (96.7% and
98.4%, respectively). For implementing this, a data set of 9,000 samples (5 subjects
x 200 times x 9 gestures) is captured, and a template base (the average of values for
each gesture and each finger sensor) is created. Then a template matching algorithm
checks for the similarity between current sensor data and a template base using Euclidean
distance. These outputs are normalized first and feed a NN afterwards, which improves
the recognition rate and accuracy.

S. P. Y. Jane and S. Sasidhar [34] use a Myo armband to recognize 48 words from
Signing Exact English (SEEII) lexicon. An accuracy of 97.12% was achieved. Their
method applies a wavelet denoising filter to the incoming data, and data segmented
using TeagerKaiser energy operator (TKEO) thresholds. Then a 12 element feature
vector is extracted like Maximum Amplitude, Mean Absolute Value, Zero Crossing,
Modified Mean Frequency, Maximum Energy Frequency, Wavelet Energy etc. These
features feed a NN classifier with three hidden layers. A data set of 4,927 samples is
captured and split into three parts, 60%, 20%, and 20%, which are used for training,
evaluation, and testing.

J. Gałka et al. in [35] presents a wearable device that consists of seven 3axis accelero
meters (one for each finger, one for the wrist, and the last for upper arm) to recognize
40 gestures describing days of the week, months, basic numerals, and names of medical

Th. Barmpakos 37

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

specialties. He uses a PaHMM (one HMM for each channel/sensor) with the combination
of a joint HMM model added as a new parallel channel to extract about 40 features. Then
the classification is done by a token passing algorithm which finally achieves a 97.75%
recognition accuracy (same as the single joint HMM) but with less error (about 60%). A
data set of 2,000 (5 signers x 10 times x 40 gestures) recordings is used to validate the
solution.

All previous studies focus on isolated gesture recognition using sensor data. However,
to implement a sign recognition system that can correspond to realworld conditions, this
system must be designed for continuous SLR, which is a more challenging project. Only
about 20% percentage of the reported studies works on this problem.

Continuous
Kehuang Li, Z. Zhou, and C. Lee in [36] use two custom sensor gloves with gyroscopes
and accelerometers set in the middle of every bone of both hands. Their method is
based on the ASR (Automatic Speech Recognition) framework using HMMs, connecting
two models, transition and static. These models were trained in the same way as ASR
phoneme modeling using a data set of 9,216 (6 signers x 3 times x 512 words) samples
with Chinese signs and 2,580 (6 signers x 2 times x 215 sentences) samples with
sentences. The method achieves 87.4% recognition accuracy on 1,024 test sentences.

N. Tubaiz, T. Shanableh, and K. Assaleh in [37] present a continuous Arabic Sign
Language recognition of 40 sentences consisting of an 80word lexicon using two
DG5VHand data gloves. These forty sentences were recorded ten times by one
subject. Acquisition frequency is set to 30 readings per second, and a sliding window is
used. This sliding window with size w aims to extract local features such as standard
deviation and means for each sensor. Then these features are appended to the original
sensor readings to reserve longterm trends. This method works as an lowpass filter and
it results in a smoothed version of the original signal by containing information about past
and future sensor readings. Preprocessed features are stored and then labeled
manually from a video captured simultaneously with data. For classification, a modified
KNearest Neighbors classifier was proposed. The method achieved 98.9% recognition
accuracy on testing data (30% of the original data set).

In [38], Yan Li et al. implemented an automatic continuous Chinese Sign Language
(CSL) recognition system using a 3axis accelerometer and four EMG sensors in each
hand. Raw data from sensors are collected with a sampling rate of 1kHz. Then
segmentation is performed using the amplitude of EMG sensors which is a good
reference for the automatic detection of subword segments within continuous streams
signal. These boundaries are then applied to accelerometers signals too. Three parallel
classifiers (for handshape, orientation, and movement) are evaluated individually and
then integrated for subwordlevel classification. The first two extract features (means
absolute value, 4order autoregressive coefficients from 3axis accelerometers, and
onset/offset orientation features from SMG sensors, respectively) and then LDC (Linear
Discriminant Classifier) is used for the training. The movement classifier is a
multistream HMM classifier that uses extracted features from data of all sensors
simultaneously. Finally, a twostage integration is performed, which combines these

Th. Barmpakos 38

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

three classifiers into steps to produce the current prediction. For training and testing the
whole model, a data set of 40 sentences consisting of 116 signs is captured by two
subjects, two times and one time, respectively. This method has achieved 97.6%
recognition accuracy.

2.7 Thesis contributions related to state of the art

In contrast with visionbased approaches in which CNNs take the lead, in sensorbased
approaches CNNs are not widely employed. Even though 1DCNNs are used on extracting
patterns from timeseries data, the only report we found that applies them is presented by
Wang F. et al. in [39].

In [39] the authors build a RecognitionVerification mechanism to address the Chinese
SLR problem in continuous mode. Two models are used in parallel to classify 86 sign
language categories, including an empty class—classification model based on VGG
(Visual Geometry Group) [40] and verification on the Siamese network [41]. The whole
process is based on a sliding window and each time window moves a step forward, VGG
performs classification while Siamese judges the correctness of recognition of the first.

In this thesis, we focus on creating a sensorbased system using a handmade sensor
glove. This glove consists of five bend sensors and a 9axis IMU device to recognize
20 onehanded, static and dynamic, gestures plus an extra one (transition class) from
American Sign Language vocabulary. Two approaches, one for isolated recognition and
the other for continuous, are implemented during this writing. However, we will present
only the continuous/online one as being the more challenging case. That is because the
adequate segmentation information of realtime input data is not apparent, so we do not
know the boundaries of each gesture while moving the sliding window.

In contrast with the recognitionverification mechanism, we use a single CNN network
to address this difficulty by checking if the sliding window covers more percentage of a
gesture and a little of the transition period or the opposite while on training time. As a result,
somewrong predictions are displayed as the sliding window enters or gets out of a gesture,
but this does not affect gesture recognition. More on this technique will be discussed in
Chapter 3. Our approach is based exclusively on 1D CNNs and all necessary features
are extracted automatically by them, without requiring to find useful representations from
the raw data following state of the art methods.

Th. Barmpakos 39

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 40

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

3. SYSTEM DESIGN DATASET CREATION

In this chapter, we present our system for ASL recognition, which uses signals collected
from a wearable device (sensor glove). Compared to visionbased approaches, this
method is computationally less expensive and remains unaffected by light intensity,
background color and motion occlusion factors. Also, there is no need to set up cameras
or other detecting devices, but all we need is one portable device.

3.1 The Sensor Glove

The sensor glove we used is a handmade device that has five flex sensors (Sparkfun 4.7
inches) for measuring fingers’ bend and a 9axis Inertial Measurement Unit (IMU) (Adafruit
LSM9DS1 with 3axis accelerometer, 3axis gyroscope, and 3axis magnetometer) for
measuring wrest angle and rotation. All sensors are connected to the Arduino Uno R3
board, which is responsible for reading their values with a sampling frequency of about
30/100 Hz (continuous/isolated).

Figure 8: Our sensor glove with all its components packed away in a usb device.

In more detail, a flex sensor is a thick laminate where its resistance changes on different
bend angles. Values scale between 24 kOhm (no bending) and 48 kOhm (full bending).
We use a voltage divider with a constant resistor of 48 KOhm in series and an input voltage
of 5 Volts to capture its behavior. The output voltage is formulated as

Vout =
RR1

R +R1

Vin (3.1)

where R is the sensor’s variable resistance, R1 is the constant resistor, and Vin is the input
voltage. To read the value of Vout we use Arduino’s input analog ports. Due to the limitation
of these ports (only four supported when I2C communication is used simultaneously), we

Th. Barmpakos 41

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

add an analog 5to1 multiplexer, and values of each sensor are read one after the other
in circular mode. Multiplexer’s voltage and other specifications are suitable with Arduino
board.

(a) (b)

Figure 9: (a) A thick laminate flex sensor. (b) An IC analog multiplexer device.

The LSM9DS1 device includes both an I2C serial bus interface and an SPI serial standard
interface. In this project we connect the device to the arduino through I2C interface and
we use an already created by the manufacturer C library to read its values. So, by using
highlevel functions, we can easily read the appropriate values, gyroscope, accelerometer,
and magnetometer, without any further knowledge.

Before combining all these into an Arduino IDE project and uploading it to the Uno board,
we need to face another challenge. We have to attach correct ”pre”labels (will discuss
this later on in section 3.2) to the recorded timeseries data, to separate gesture periods
from transition ones. To achieve this, in [35] and [37] a camera was used and a manual
method applied frame by frame. Similarly, in our project, we add an external button to
the Arduino board, and our device’s hardware is ready to use. As we mentioned before,
we developed two different source codes (firmware) for our two modes: isolated and
continuous. However, we present here only the continuous SLR case, which is more
challenging. In contrast to the isolation case, we do not have to press any button (on
inference) to assign a gesture’s borders, so we can freely move our hands more
naturally. That allow us to extend our project using twohanded words in future work.

3.2 Data Sampling

After the sensor glove was made, we created a dataset for training, validating, and testing
our network. For simplicity and due to time limitations, all recorded gestures were captured
by one signer (the author of this document) and cover a vocabulary of twenty gestures. It
includes the first ten letters of the American alphabet and the ten most common ASL words
plus one extra class: the null/transition class, as shown in Table 2 with the corresponding
class label attached.

Th. Barmpakos 42

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Table 2: The ASL vocabulary used for the project.

alphabet : class words : class
a : 1 f : 6 home : 11 hat : 16
b : 2 g : 7 thank : 12 eat : 17
c : 3 h : 8 hello : 13 happy : 18
d : 4 i : 9 drink : 14 sorry : 19
e : 5 j : 10 apple : 15 go : 20

null/transition : 0

In more detail, 20 sentences of 5 words each, were generated randomly and captured 5
to 7 times one by one separately to make the process more general. We use five words
in a sentence to avoid making mistakes while recording and recapturing it.

Let us take the first sentence ”g d hat f apple” and see how it works. We plug the
sensor glove via Arduino into the PC and open the serial COM port. Then, Arduino starts
reading the sensor data one by one (3axis accelerometer, 3axis gyroscope, 3axis
magnetometer, five flex sensors) and printing them to the serial port. As shown in Figure
10 below, before moving on to the next timestep, we append a ”prelabel” and then go to
the next line.

Figure 10: COM port display. Raw data samples flow over time.

Since the sampling frequency is 30Hz, a new line is printed in 1/30 sec, and so is our
timestep.

It is clear that our signal has two regions: active and transition. Active regions are the
periods of the signal where a gesture evolves and transition zones where the movement
of the hand has no useful meaning, in general. At the same time, it goes from one gesture
to another, or relaxing. To separate these two regions, we use a lefthand button when
recording instead of manually separating video as described in [37].

Th. Barmpakos 43

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

While we are in the active region, we press the button, and the prelabel is set to the
response class. Otherwise, the button is not pressed, and the prelabel is set to ”0”. In
the example sentence, we start with a transition region, so the first eleven timesteps are
marked as ”0”, and then the gesture ”g” is performed with the class ’7’ (button is pressed).
In the following Figure 11, we can see the graphical signal representation of the whole
sentence, where we can distinguish the active from the transition regions. The vertical
red lines mark the boundaries of the gestures and show the moments when we press and
release the button at recording time.

Figure 11: The signal representation of the first sentence. Horizontal axis is time. Different colors
distinguish the signal of each sensor.

3.3 Sliding Window

We now have a long sequence of 23,862 timesteps that involves a full recording of 13.25
minutes (23,862/30 steps per second/60 sec per min) and includes all the sentences with
all the repetitions in a text file. Next, we manually divide it into two parts: train and test
part. The test part consists of the last recording of each sentence and the train one of the
remaining recordings. It is more practical and safe to handle two datasets instead of one,
to avoid mixing them during model training.

The final dataset construction and specification is not yet finished. We also need an
additional procedure for extracting samples in a suitable format which is based on a
sliding window method, see Figure 12. An arbitrarily sized window slides along the
signal on the time axis one step (point) at a time, and a sample is exported (exported
samples are overlapped). A unique class label should characterize each sample, but it
becomes evident that there may be an overlap between two or more classes during
sliding. In this case, the assigned label to the exported sample is the one that covers the
majority of the time frame, thus occupying the largest percentage in the specific sliding
window. The whole process was implemented using Python and applied to both training
and testing datasets individually.

Th. Barmpakos 44

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 12: Sliding window (green) process and overlapping class windows. The transition class is
assigned to both #1 and #2 samples and ’d’ class to sample #3.

A window size of 20 was chosen for our experiments, but we can easily modify it for
further tests. A brief experiment (not presented here) with other sizes, e.g. 15, 25, 30
yielded similar results. The reason we chose values near 30 is to be close to the sampling
frequency. Another reason is that we do not want the window to include many gestures
together, if we consider that the majority of the gestures takes less than a second to be
completed. Applying a larger window might be a good choice if we intend to implement a
multilabel method, as described in section 2.5.1. So, by using a window size of 20, the
final dataset consist of 29,362 overlapped samples (20x14 matrices) where 23,841 (81%)
are used for training and the remaining 5,521 (19%) for testing.

3.4 Pre Processing

Most of the time, data have a different scale for each feature. There are four types of data
in our case, one for each type of sensor (accelerometer, gyroscope, magnetometer, and
flex sensor). As a result, the trained ML model may give more attention to some features
with bigger values than others with smaller ones. To address this issue, there are two
widely used methods, Normalization and Standardization. The second method is used in
our implementation via the scikitlearn library [42].

• Normalization: An estimator scales and translates all data values in the range of 0
to 1, individually for each feature i, by using the formula below:

y(x) =
x− xmin

xmax − xmin

, (3.2)

• Standardization: Similarly, this estimator scales and centers values, individually for
each feature, so data follows normal distribution (mean:0 , variance: 1), by using the
formula:

y(x) =
x− µ

σ
(3.3)

For the training set, consisting of 23,841 overlapping sliding windows with shape = (23841,
20, 14), we first apply the NumPy reshape method to convert the shape to (23841*20,

Th. Barmpakos 45

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

14) and then use a scaler.fit_transform method from scikitlearn standard scaler library.
Reshaping is necessary as the standard scaler can handle a 2dimension input and also
we want to standardize values of each feature in overall and not per sample; hence µ and
σ have the same 14 length size. The test set follows the same process but instead of the
scaler.fit_transform method, we apply scaler.transform one, in which transformation uses
the previously calculated vectors µ and σ.

3.5 Conclusions

In this chapter, we first presented a lowcost sensor glove device using five flex sensors
and an IMU device. We used it to capture 20 different gestures into 20 randomly generated
sentences of 5 words each and create a dataset of 29,362 samples (2D arrays size of
20x14), where 23,841 (81%) is used for training and 5,521 (19%) for testing our model
for continuous SLR. In the next chapter we will discuss how different Machine Learning
models, including our proposed one, behave on our dataset.

Th. Barmpakos 46

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

4. MODEL DEVELOPMENT

In this Chapter, we apply different Machine Learning methods for SLR using our previous
captured and preprocessed dataset. In addition, we design a simple threelayer CNN
model. Finally, we compare all models to find a winner, i.e. the one with the best accuracy
on the test dataset.

4.1 Baseline ML Methods

As we want to address the SLR problem in a datadriven way and not by using handcraft
rules, Machine Learning is the right choice. Among different classical ML methods for
classification, e.g., Support Vector Machine (SVM) [43] [44] [45], Random Forests (RF)
[46] [47], Linear Discriminant Analysis (LDA) [24] [44], Neural Networks (NN) [48],
XGBoost [48], etc. we need to investigate which one is the most appropriate for our
problem. Thus, we have to measure the effectiveness of these models for our dataset.
We use accuracy as a metric for this, so the model with the highest correct predictions
on unseen data (test dataset) is declared the winner. A little attention is needed on
interpreting erroneous predictions. An error between two nontransition classes is vital
because gestures should not be confused for each other. However, an error between a
transition and an active class is acceptable when it appears at the beginning or at the
end of a gesture. We will explain this point in more detail later on in this chapter.

Before applying different ML methods to our dataset and choosing the best one, we must
first tune their hyperparameters. Model tuning is necessary for almost every ML problem
and helps us find the best model corresponding to a given dataset. As described in [49],
tools such as ray tune, hyperopt, tensorboard, scikitlearn libraries can be used to achieve
this goal. In this thesis, we will use ATOM (Automated Tool for OptimizedModelling) [50], a
highlevel package based on scikitlearn [51], which gives us the ability to run experiments
quickly and efficiently without requiring any profound knowledge.

ATOM has a large set of predefined ML models that we can try and an API to incorporate
other more complicated models compatible with scikitlearn. For our purpose, we have
chosen the following five wellknown models:

• Linear Regression (LR) [52]

• Random Forests (RF) [53]

• Linear Discriminant Analysis (LDA) [54]

• Linear Support Vector Machine (LSVM) [55]

• XGBoost (XGB) [56]

Th. Barmpakos 47

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

We tried to include classical MLmodels andmore recent one, such as XGBoost; a powerful
ML algorithm often declared as a winner in Kaggle competitions.

From the above methods only RF, LDA, SVM have been applied before on
sensorbased SLR, based on [11] (Table I). For instance, in [43], R. Fatmi et al. used
SVMs to recognise 13 signs of the American SL, using two Myo Armband devices
achieving 85,5% test accuracy. In [24], as described in Chapter 2, an LDA method is
applied interpreting 8 gestures, using a 4channel sEMG and IMU device with an 92,6%
accuracy. In [44], both LDA and SVM methods are used to recognise 10 ASL letters,
using a custom device consisting of 5 flex sensors, and achieving 97,81% and 97,87%
accuracy respectively. In [46] and [47], the authors use RF to recognise 22 French SL
letters and 26 ASL + 1 sign with a 92,95% and 79.35% test accuracy respectively.
Finally, another research [45], with a larger vocabulary of 80 commonly used ASL signs,
achieved 96,16% test accuracy using SVMs. It is important to emphasize that all
previous attempts are focused on isolated SLR.

On the other hand only few researches have been taken place to address continues SLR
while the majority applies HHMs as a baseline model: Simple HMM [36] [57] [58] [59],
MultiStream HMM [38] [60] [61] [62], HMM combined with RNN (Recurrent Neural
Network) [63] [64] and HMM combined with NN [65]. In addition, two other works found
using other models. In [37] the authors apply a KNearest Neighbour model and in [39],
apply a parallel combination of a CNN with a Siamese network, as described in sections
2.6 and 2.7 respectively.

4.2 Hyperparameter Tuning

Now it is time to set up our baseline models. There are three basic ways [66] to do this:
Grid Search, Random Search and Bayesian Optimization. In all methods, the
corresponding algorithm tries different hyperparameter values from a given space. It
trains all different submodels on a training dataset, evaluates them on an evaluation
dataset, and returns hyperparameters with the higher (or lower) metric score, which is
the accuracy score in our case. Finally, we train the best submodel on the whole (train +
evaluation) dataset and test it on unseen data (test dataset). Accuracy shows how good
or bad the model is. This process is repeated for each LR, RF, LDA, LSVM, and XGB
submodels, and the accuracy scores are compared. In the GridSearch method, the
hyperparameter space consists of discrete values, and the search for the best
submodel is done considering all combinations. This makes it a slow method. On the
other hand, Random search selects random values for each hyperparameter in the
search space. So, if we are lucky enough, we can achieve good results, but if search
space is large, it is more difficult to obtain good results.

In this thesis, we will apply [67] Bayesian Optimization. In contrast to Grid Search and
Random Search, BO exploits previous tries and finds parameter regions with promising
results [68], so we keep exploring these regions rather than other areas. In complex
hyperparameter spaces, Bayesian Optimization is the best method for finetuning amodel.

Th. Barmpakos 48

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Let us start the python code using ATOM (see Appendix A for full code). Implementation
is simple and includes three steps:

1. Loading standardized train and test datasets as numpy arrays with corresponding
labels. As ATOM can handle directly a dataset up to two dimensions (samples,
features) we flatten/reshape a 20x14 sample into a 280 element array.

Step 1

1 dataSet = np.load(”train_dataset_20.npy”)
2 labels = np.load(”train_labels_20.npy”)
3 test_dataSet = np.load(”test_dataset_20.npy”)
4 test_labels = np.load(”test_labels_20.npy”)
5 dataSet = dataSet.reshape(23841, 280)
6 test_dataSet = test_dataSet.reshape(5521, 280)

2. Import ATOMClassifier class and create an atom classifier object called ”atom”.
Dataset attached in (X_train, y_train), (X_test, y_test) format and n_jobs = −1
allow us to use all available CPU cores at optimization time.

Step 2

1 from atom import ATOMClassifier
2 atom = ATOMClassifier((dataSet, labels),

(test_dataSet, test_labels),
warnings=’ignore’, logger=”auto”,
n_jobs=1, verbose=2)

The output of this code prints us information about the atom object, see Figure 13.
As we can see in the figure below, our task is amulticlass classification. The number
of classes is 21 and is labeled from 0 to 20. The dataset consists of 29,362 samples
and has 280 features plus one, which is the target label. Also, ATOM recognizes
that data are scaled and shows us a table on how samples are distributed in each
class.

3. Running Bayesian Optimization on LDA, LR, RF, LSVM, and XGB models. As
mentioned at the beginning of this section, accuracy is used as a metric for tuning
the model’s hyperparameters, so the run method tries to maximize this metric, for
each individual model.

Th. Barmpakos 49

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Step 3

1 atom.run(
models=[”LDA”, ”LR”, ”RF”, ”lSVM”, ”XGB”],
metric=”accuracy”,
n_calls=25,
n_initial_points=10,
bo_params={”early_stopping”: 0.1, ”cv”:5},
n_bootstrap=5,

)

Figure 13: ATOMClassifier log.

Th. Barmpakos 50

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

We choose a small number of bo_iterations, n_calls = 25 for each individual
model, to keep running time low and a random starting state n_initial_points = 10
to initialize, through 10 random tests, the hyperparameters before fitting the
surrogate function. After the hyperparameters’ initialization, BO runs for additional
25− 10 = 15 iterations. Also, bo_parameters keep default/auto values like k = 5 for
5fold crossvalidation, but early_stopping is set at 0.1, which let us stop training if
the model did not improve in the last 10% steps (is available only for models that
allow intraining evaluation. XGB is not compatible). Finally, we apply the
bootstrap algorithm by setting the optional n_bootstrap parameter to 5, and we are
ready to run the code. The whole process takes about 15 hours to complete on a
laptop with an Intel Core i58250U CPU and 12GB of RAM.

4.3 ML Results

Once the whole process is completed, we can easily compare models. ATOM’s result
method gives us a table with every model’s performance in the Figure below.

Figure 14: ATOMClassifier results.

XGB model took the lead with 93.15% test accuracy, followed by Random Forests with
92.86%. Linear Regression and Linear Support Vector Machine take third and fourth
place, with 90.96% and 90.72% accuracy, respectively. Finally, Linear Discriminant
Analysis achieves only 80.23% accuracy, which is low compared with the other methods;
thus, it is out of competition. At this point, we will refer to two other statistical values,
mean_bootstrap and std_bootstrap, which are used at step 3 (n_bootstrap = 5). Once
the best submodel is exported from Bayesian optimization ATOM applies bootstrap
technique [69] to assess the robustness of the model. This technique creates several
new training datasets (5 in our case) selecting random samples from the original training
set (with replacement) and evaluates them on the same test set by calculating
corresponding accuracy values. This way we get a distribution of the performance of the
model. Hence, we can estimate the skill of the current machine learning model when
making predictions on data not included in the training data by computing the mean and
standard deviation of this distribution (mean_bootstrap and std_bootstrap). As we can
see, mean_bootstrap is close to metric_test for every model with a small std_bootstrap
value. That means that models are acting as well as possible on unseen data.

Th. Barmpakos 51

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 15: Bootstrap method for the case n_bootstrap=3.

Another critical point we must take into consideration is interpreting wrong predictions.
Which classes are been confused? We can check results by plotting corresponding
confusion matrices (figures 16 19), with an ATOM builtin function:
plot_confusion_matrix. Ignoring transition class (class 0), we see that only the XGB
model makes all predictions correct (every values are zero except on the diagonal).
Thus XGB does not confuse gestures like the other models. Now, what is happening
with the transition class? If we do not shuffle the test set and let having samples in a
natural time series way, we will see that the wrong predictions appear at the beginning
or/and at the end of a gesture. It means that the model recognizes a gesture a little bit
later/earlier than it truly starts/ends. However, in reality, there is not an exact starting and
ending point for a gesture. It depends on how we captured it and when we pressed the
button during recording time. Since there is no wrong or missing gesture during
continuous recognition, we can accept that the real accuracy of the XGB model is 100%
for all practice cases.

On the other hand LR, LSVM and RF (Figures 1719) made 16, 13 and 7 wrong
predictions between remarkable classes, respectively. In fact, this should not be a
significant issue, because a wrong prediction means that the model did not act correctly
for an 1/30 percentage of a second (sampling frequency is 30Hz). A real problem would
be if more wrong predictions are happening on continuous samples in timeseries data.
For example, in Figure 19, LSVM confused class number 5 with class number 17 in total
of 5 times in continuous samples while in Figure 18, LR confused class number 4 with
class number 12 in total of 5 times. As these errors are in consecutive windows (we
printed predictions in an original timeseries form via python), their importance depends
on the overall length of the current gesture. In some case we may prevent such errors by
using a sorts of additional code. To sum up, without any further analysis, although the
above models achieved lower accuracy they perform quite well on our dataset, too.

Th. Barmpakos 52

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 16: XGB confusion matrix

Figure 17: RF confusion matrix

Th. Barmpakos 53

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 18: LR confusion matrix

Figure 19: LSVM confusion matrix

Th. Barmpakos 54

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

4.4 Using Convolution Neural Networks

Convolution Neural Networks (CNNs) are used to solve a wide range of problems in
computer vision, such as image classification, segmentation, etc. According to [12], they
can handle timeseries data too. Can we build a CNN model, especially a simple one,
that achieves good results on the SLR problem? This section presents a simple
threelayer CNN and evaluates how it performs on our dataset compared to baseline ML
models. We target a simple deep learning CNN model to keep complexity low so that it
can run in realtime on an embedded system (see chapter 5).

4.4.1 Model architecture

To build the model, we will use of the Keras framework [70] [71] and follow the multiclass
method described on section 2.5.2. So, we define a sequential model as shown in the
next diagram (Figure 20) and its equivalent code (Figure 21):

Figure 20: The CNN model architecture Bayesian optimization has been applied. Diagram
exported from Keras.

At first sight, it does not seem to be a threelayer model as wementioned before. However,
suppose we ignore the dropout layer, which is used to prevent overfitting only at training
time, and the flatten one, which is used to adjust dimensions and make the connection
between 2nd conv1d and dense layer compatible without any extra cost, we actually have
a conv1dconv1ddense model (lines 5, 6 and 9 of the code in Figure 21). The model’s
code consists of two parts: feedforward model and optimizerloss function.

The whole model is created as a python function which is necessary to convert it into
an ATOM model later on in the next section. Arguments x1, y1, x2, y2 are its hyper
parameters need to be tuned. As in previous ML methods, we are going to use the ATOM
tool to achieve highest accuracy. In line 2, we define our model as a sequential one and
in line 3 we set its input to be a sample of 280 elements/features (see Figure 13). In line
4, we reshape the sample into its original dimensions 20x14 (see step 1 in section 4.2).

The first crucial layer, in line 5, is a convolutional layer with hyper parameters: filters = x1,
kernel size = y1, followed by a non linear activation ”relu”. This means that the current layer

Th. Barmpakos 55

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 21: Sequential model on keras.

learns patterns of y1 timesteps from incoming signal in x1 different ways. For example, if
filter = 94 and kernel size = 7 then it will extract 20− 7+ 1 = 14 patches of 8 timesteps for
each filter as show at Figure 22 below:

Figure 22: Example of an 7timestep feature extraction for 94 filters.

In line 6, the second critical layer is also 1d convolutional layer, with filters = x2, kernel
size = y2, which works the same way (extracting patches) and finally, through flatten and
drop out layers, we end up with a dense layer with softmax activation, which takes care
of the classification by matching input samples onto corresponding onehot encoded
labels. Values for dropout layer (:= 0.18) and optimizer’s learning rate (:= 0.00002) are
selected through some manual tests. The type of optimizer (”RMSprop”) and loss
function (”categorical_crossentropy”) are defined in section 2.5.2.

Even though our model responded with high accuracy on the dataset, for different values

Th. Barmpakos 56

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

of its hyperparameters by setting them up manually, nevertheless we applied Bayesian
optimization for more reliability. For this, we define the search space of these hyper
parameters and let ATOM choose which ones are the best.

4.4.2 CNN Hyperparameter tuning

As any other neural network tuning tool, ATOM can handle different formats for
variables. In our case we use two of them: Integer and Categorical. The integer format
is followed by a range where a variable can take (integer) values, and the categorical
one can take any discrete value from a predefined set. The Figure below presents
corresponding lines of code. Except from variables x1, y1, x2, y2 there are also two
extra variables, epochs and batch_size which are hyperparameters of the training
algorithm and not model parameters (see section 2.2). To reach an efficient training of
the model, we have to tune them too.

Figure 23: Hyperparameter search space.

Here we have to pay attention on kernel size search spaces (variables y1 and y2) which
are dependent to each other. For input sample 20x14, y1 determines the first dimension
of the output of the first convolution layer to be 20 y1 + 1. Subsequently, y2 determines
the first dimension of the output of the second convolution layer to be (20 y1 + 1) y2 +
1 = 22 (y1 + y2). To ensure that the final dimension exists, y1 + y2 must be lower than
22. Hence, we set the same range for each one to be equal to (1, 10). For the other four
hyperparameters, range values are chosen through some tests.

4.4.3 NN model on ATOM

Running a neural network on ATOM is similar to other ML methods, with one exception.
Neural networks are not included in standard ATOM’s model library, and since ATOM uses
the scikit learn API, we can use Keras’ wrapper to run them.

Let us start python code using ATOM. Implementation includes one extra step than in the
previous section:

1. Apply steps 1 and 2 (see 4.2) to reshape the dataset and create an ATOM classifier
object. Reshaping dataset from three to two dimensions is not necessary when

Th. Barmpakos 57

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

using NNs. The reason we do this is for being similar to the previous section. To
invert it, there is an extra reshape layer on our sequential model.

2. Create an ATOM neural network model. At line 1, Keras’ sequential model (Figure
20), from the defined ”neural_network” function, is converted into sklearn’s model,
and at line 2, the latter is converted into Atom’s one.

Step 3

Since ATOM uses sklearn’s API, use Keras’ wrapper
1 model = KerasClassifier(neural_network, verbose=2)

Convert the model to an ATOM model
2 model = ATOMModel(model,

acronym=”NN”,
fullname=”Neural network”)

3. Running Bayesian Optimization on our NN model and trying to maximize accuracy,
which is the selected metric, under the defined searching space.

Step 4

1 atom.run(
models=model,
metric=”accuracy”,
n_calls=25,
n_initial_points=10,
bo_params=”dimensions”: dim, ”early_stopping”: 0.1, ”cv”:5,

)

Parameter n_bootstrap which was used before, is not compatible with Keras’ NN,
so it is not included. A sorts of manual bootstrapping, which is not presented in this
thesis, was applied to the exported best model giving a stable accuracy on five new
random datasets created from the original sampling (with replacement, see Figure
15). Search space is passing into bo_params through the ”dimensions” element.

4.5 Results

Model tuning took about an hour to complete and best model exported with training
parameters: ’epochs’: 100, ’batch_size’: 128 and model’s hyperparameters: ’x1’: 94,
’x2’: 86, ’y1’: 7, ’y2’: 5 (see Figure 21). By calling ATOM’s result method as before, we
obtain the above results in Figure 24.

Th. Barmpakos 58

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 24: ATOMClassifier results on NN.

As we can see, our neural network achieves 93.40% accuracy on the test set, which is
slightly higher than the XGBoost model’s accuracy (93.15%). At first sight, our simple CNN
is a close winner on the Sign Language Recognition problem. What about the remaining
6.60% of wrong predictions? As we mentioned before, XGB did not confuse classes 1 to
21 together. Wrong predictions appear only between transition class and one other while
entering or/and coming out a gesture. For being more accurate, we have to check if this
is true for the CNN model.

Figure 24 shows the corresponding confusion matrix, in which every element is equal to
zero except elements on first row, first column and main diagonal. As described at section
4.3 for XGB model, our continuous SLR method using a simple neural network is not
mixing up gestures with each other and so we can accept that real_accuracy is 100%.

Figure 25: CNN confusion matrix.

4.6 Conclusions

ATOM is a very useful tool to run and automate finetuning ML models, including deep
learning models, easy and fast, without having to worry about the large set of their hyper

Th. Barmpakos 59

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

parameters. Applying Bayesian optimization to determine these hyperparameters, we
conclude that the proposed CNN achieves 93.40% accuracy on the test set (real accuracy
100% on gesture recognition), which is near but a bit higher than all the other tested
baseline ML models. In contrast to accuracy, our model has a training time of about 1
minute higher than the powerful XGBoost. The sample rate of data acquisition is set at
30Hz to keep the model’s input at a small size. In the next chapter we will program an
ARM processor to run a copy of the current CNN architecture and predict gestures in real.

Th. Barmpakos 60

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

5. AN ARMBASED IMPLEMENTATION

In this chapter, we present an allsoftware realtime application for continuous SLR on
the ARM Cortex A9 processor via the Zybo z710 development board. We also present
a simple approach to handle linear algebra operations on ARM, which are necessary for
implementing neural networks.

5.1 Experimental System Overview

Even though an SLR system has to be portable for comfortable use, here we use a PC
to transfer data from the input device to the Zybo board [10]. That makes communication
between the Arduino and the ARM processor easier (for testing purposes), without
additional hardware, due to the different logic ”HIGH” voltage they use. Arduino’s I/O
pins rely on a 5V logic level, but Zybo’s rely on either 1.8V, 2.5V, or 3.3V, so we do not
want to connect ports directly together to avoid any damage. In the following figure, we
can see a diagram of our experimental system.

Figure 26: System overview and bidirectional communication. The Zybo board holds the whole
application while the input device with the PC work as a peripheral for input purposes.

The ARM processor runs the main application. It is a wide loop that waits for a character
from the keyboard to perform a predefined task. This makes the application more dynamic
and easily configurable. Below we can see a description of our code and related tasks.
Results and messages are printed on the display.

Task 1: Assign zeros to the model’s weights/biases, to scaler’s and input sample’s
values(it is used only for testing/debugging purposes).

Task 2: Transfer the model’s weights/biases and scaler’s values from binary file to Zybo’s
DDR (first we train our model in a PC using Keras with TensorFlowGPU backend).

Th. Barmpakos 61

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Application Program Structure

1: #define myNetwork
2: procedure main ()
3: while (True)
4: Print_Message()
5: ch← keyboard.read()
6: if (ch==’1’) then
7: Zero_Initialize_CNNweights() Task 1
8: else if (ch==’2’) then
9: Load_CNNweights_from_Binary_File() Task 2
10: else if (ch==’3’) then
11: Load_Testset_Samples_From_Binary_File() Task 3
12: else if (ch==’4’) then
13: Enable_Aqcuisition_Mode() Task 4
14: else if (ch==’5’) then
15: Run_Inference_on_Testset_or_AcquisitionData() Task 5
16: else if (ch==’6’) then
17: exit()
18: else
19: print(”Invalid character”)
20: loop

21: return

Task 3: After our model is loaded (Task 2), then we transfer sample(s) from the test set
that we want to classify (inference). Values are being standardized during this task.

Task 4: Enable acquisition mode for real time inference.

Task 5: Start inference on loaded samples (Task 3) and output relative predictions. If Task
4 occurs, then an acquisition mode is running in which data comes directly from the
sensor glove. This task holds the main processing core of the CNN.

In addition to the above Task 5 when running in acquisition mode, it is necessary to
describe the whole process in more detail. Let us take a look at Figure 10, which shows
a data sample to be processed. The Input device sends these values to the PC, one by
one, in rowmajor order. At the same time, the PC is running a python script that reads
incoming values via a serial communication protocol (UART) and organizes them in an
array with 14 elements (as many as the number of sensors). Each time the array is filled
up, the PC sends it to Zybo for further processing (calculations of our model), and the
process is repeated again. It is necessary to tell that both Uart communications, the first
between the input device and the PC and the second between the PC and the Zybo, are
synchronized to ensure a proper data flow through UART FIFOs and avoid losing or
stacking any data. How do we implement the above program, and what tools we used?

Th. Barmpakos 62

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

5.2 Software and Tools Used

When buying a new Zybo z710 development board [10], it comes with the Vivado Suite
and Xilinx SDK, so these are the two main software tools we use. Another significant
dilemma we come across during our research is what kind of application to create. A
Linux application or a baremetal one? Because of our interest in the architecture of Zybo’s
hardware (FPGA and ARM), a good choice was a baremetal app. So C++ was used as
the programming language.

As we saw in section 2.3, a feedforward CNN is a series of multiplications and
additions/subtractions, either matrix multiplications or matrix elementwise
multiplications. To perform these matrix operations, we can use ”pure” C++ code such as
the ”for...loop” control structure. Is that fast enough for ARM to complete a feedforward
pass of our model under 300ms, which is the upper limit of a realtime app, or is there a
better solution? After some investigation, we found Eigen [72], a C++ library for
implementing mathematical operations, like NumPy in python, which is faster and easier
to use than pure C++ code.

What makes Eigen so fast is that it takes advantage of ARM’s architecture, specifically of
a block called Neon Engine [73]. ARM Neon technology is an advanced Single
Instruction Multiple Data (SIMD) architecture, which performs multipleelement
operations in parallel. According to its official website [73], Neon can accelerate signal
processing algorithms to speed up applications such as audio and video processing,
voice and facial recognition, computer vision, and deep learning (which is our goal). How
to use Neon technology and achieve parallel processing? There are several ways,
namely: Neon intrinsics which are function calls that the compiler replaces with an
appropriate Neon instruction or sequence of Neon instructions to directly ”talk” to the
Neon Engine, Neonenabled libraries e.g. Ne10, Libyuv, Skia and ARM Compute
Library, Autovectorization by the compiler e.g. GCC, where it can automatically analyze
our code and identify opportunities to optimize performance with Neon, and finally
Handcoded Neon assembler, a lowlevel programming method with very high
performance. As Eigen is a free open source software which makes use of NEON and
supports NEON instructions (it has its own vectorization system which is enhanced by
the compiler [72]), we chose the first method that does not require any further lowlevel
knowledge about ARM’s SIMD arhitecture and let the compiler do its job.

Another thing to discuss is the communication between the ARM processor and the serial
port driver chip on the Zybo development board. The Xilinx SDK takes care of this by
offering a builtin library with the necessary serial port functions that allows writing our
bare metal application. In Figure 27 we can see the Xilinx chip with Neon (SIMD) Engine
and UART I/O driver. The Processing System (PS), also contains some extra drivers/MIO
interfaces, like SPI, I2C and GPIO which can be used for direct connection between the
sensor glove and Zybo without using Arduino and the PC to read and send data. This was
discovered during elaboration of this thesis and is highlighted for future work.

Th. Barmpakos 63

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 27: The Zynq Processing System (adopted from [10]).

5.3 Define the CNN using Eigen

Once we have selected all the tools we will use, its time to implement our proposed CNN
(see section 4.4) on the ARM processor. Firstly, we have to allocate all necessary space,
in Zynq’s DDR memory, to hold parameters and other useful values for computing a feed
forward pass. This space, as shown in Figure 28, consist of the following arrays/matrices:

• Convolutional kernels (weights and biases) for each conv1d layer

• Dense layer’s weights and biases

• Input sample matrix

• Input/Output of each layer.

Th. Barmpakos 64

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Figure 28: All necessary matrices we declare in order to run a feed forward pass.
Hyperparameters: x1=94 filters, y1=7 kernel_size, x2=86 filters, y2=5 kernel_size resulting from
BO in section 4.5 according to our model architecture in section 4.4.1. Operator T gives the

transpose of a matrix.

Th. Barmpakos 65

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Lets describe in more detail, what these matrices represent and how they are linked with
each layer of our purposed CNN:

Figure 29: Keras model presented in chapter 4. Deleted layers are not used on inference.

Firstly, the input of our network has 20x14 neurons, so we need a same size matrix, Input
sample, to store the current sample. As shown in Figure 4, rows represent the timesteps
and columns hold sensors’ values for each timestep.

Secondly, in Keras to hold its parameters, an 1D convolutional layer has a kernel matrix
and a bias vector. As shown in Figure 4, kernel is a 3dimensions matrix and its size
depends on the layer’s hyperparameters: filters, kernel_size and also the size of the
second dimension (number of columns) of layer’s input. In our case, the first conv1d layer
needs a kernel matrix of 94x7x14 to store its weights. Some attention is needed at this
point. As Eigen can handle matrix operations up to 2dimensions, we have to reshape
kernel matrix by reducing one dimension, as shown in Figure 29. Thus, the kernel/weight
matrix for the 1st conv1d layer is transformed into 658x14 (94*7x14).
To calculate the size of the bias vector we need to apply first the result of the first
multiplication’s operator which outputs the convolution product between input sample
and kernel matrix. The output, as described in section 2.3.1, is a 2dimensional matrix
and its size depends on the size of the first dimension (number of rows) of layer’s input,
and on layer’s hyperparameters: filters, kernel_size. In our case, the first conv1d layer
needs an output matrix of 14x94 (207+1x94).
Finally, the bias is a 94 element vector (1x94) which is added to each row of the previous
output matrix. Relu activation function needs no extra space because it is a wise element
function that stores results into the original matrix.

To calculate corresponding matrices for the second conv1d layer we follow the same
method. Now the input matrix is identified with the previous output one of size 14x94.
Subsequently, the kernel/weight matrix has 3dimensions of size 86x5x94 (filter x
kernel_size x 94) which is transformed into 430x94 (86*5x94). The convolution output
between input and kernel matrices is a 10x86 (145+1x86) matrix and the bias an 86
element vector (1x86). Like before Relu activation function does not need extra space.

The next layer of our sequential model is a flatten one that reshapes the previous output

Th. Barmpakos 66

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

matrix (10x86) to vector with 860 elements (1x860). These 860 elements are the input
neurons of the dense layer. Flattening does not need extra space (and time), because
Eigen creates a map to the memory that can read its data in a specific order. Similar to 1D
convolutional layer, dense layer’s parameters are stored in kernel matrix and a bias vector.
In our case, the kernel/weight matrix has 2dimensions of size 860x21 (input_neurons
x classes) and the bias a 21 element vector (1x21). Dense layer implements a matrix
multiplication (see section 2.3.2), hence the output is an 1x21 vector and then is added
with bias. Softmax activation function needs no extra space; it uses the last output 21
element vector to store predictions.

The total memory of the purposed CNN model is shown in the next Table 3.

Table 3: CNN Memory. The system performs on a Singleprecision Floatingpoint format (FP32).

Required Memory

matrix weights (bytes) bias (bytes) Overall (bytes)

Input Sample 1,120 1,120
Conv1 36,848 376 37,224
Out1 5,264 5,264
Conv2 161,680 344 162,024
Out2 3,440 3,440
Dense4 82,560 84 82,644
Output 84 84

Total 291,800

Finally, in this method, we define the size of each matrix in the preamble of our code (see
Appendix C), so it is a static method and takes place on compiling. By changing hyper
parameters manually, we can implement a set of different CNN models while keeping the
same architecture (conv1d/relu conv1d/relu flatten dense/softmax). Future interesting
work is to create a CNN generator for the Eigen library, to be able to define every possible
network.

To sum up we present the relative part of the code with all declared matrices using Eigen’s
class Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>:

//====================Allocate memory for CNN matrices==================//
Matrix<float, In_shape_i , In_shape_j > Input; //

//
Matrix<float, conv1_shape_i , conv1_shape_j > conv1; //
Matrix<float, 1, bias1_len > bias1; //
Matrix<float, Out1_shape_i , Out1_shape_j > Out1; //

//
Matrix<float, conv2_shape_i , conv2_shape_j > conv2; //
Matrix<float, 1, bias2_len > bias2; //
Matrix<float, Out2_shape_i , Out2_shape_j , RowMajor > Out2; //

Th. Barmpakos 67

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

//
//Create a map to the memory that can read Out2 matrix as flatten //
Map<Matrix<float, 1, dense4_shape_i >> Out3(Out2.data(), Out2.size()); //

//
Matrix<float, dense4_shape_i , dense4_shape_j > dense4; //
Matrix<float, 1, bias4_len > bias4; //

//
Matrix<float, 1, classes> Output; //

//
Matrix<float, 1, scaler_mean_len > Scaler_mean; //
Matrix<float, 1, scaler_std_len > Scaler_std; //

//
//This matrix stores testset's samples for inference //
Matrix<float, samples_num*conv1_shape_i , conv1_shape_j > DataSetMatrix; //
//==//

Listing 5.1: Application Program Task 2

In the above code there are two more matrices 1x14 to store scaler’s values (mean and
std), and another one to store a fraction of the test set (samples_num*20x14). These
matrices do not belong to the CNN but are part of the whole program. By defining
samples_num equal to 50 an extra memory space is 56,112 bytes.

5.4 Model transfer

After training the model on the PC using Keras, we export the trained parameters in binary
format. Once the model is already defined on ARM in the previous section, it is time to fill
the necessary matrices with trained values (weights and biases). Task 2 is responsible for
this action. When bytes are available in ARM’s UART RX FIFO, the program reads and
stores them one by one in a byte array buffer. Then we cast the buffer to a 32bit float
variable tmp and store it in the matrix. Both systems, Keras and Eigen work with 32bit
float numbers.

else if(c=='2'){ //Task 2 - Initialize CNN matrices from file - Transfer CNN
//==========================START COEFF FROM UART======================//
// This part transfers the trained CNN from PC to ARM byte by byte from
// file.bin. Values for each matrix are 32-bit float numbers.
print("\nSend a .bin file\n\r");
InitMatrixFromFile(conv1); //Read 36,848 bytes for conv1 weights.
InitMatrixFromFile(bias1); //Read 376 bytes for conv1 biases.
print("Conv1 weights and biases loaded...ok\n\r");
InitMatrixFromFile(conv2); //Read 161,680 bytes for conv2 weights.
InitMatrixFromFile(bias2); //Read 344 bytes for conv2 biases.
print("Conv2 weights and biases loaded...ok\n\r");
InitMatrixFromFile(dense4); //Read 72,240 bytes for dense weights.
InitMatrixFromFile(bias4); //Read 84 bytes for dense biases.
print("Dense weights and biases loaded...ok\n\r");
InitMatrixFromFile(Scaler_mean); //Read 56 bytes for scaler mean.

Th. Barmpakos 68

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

InitMatrixFromFile(Scaler_std); //Read 56 bytes for scaler std.
print("Scaler mean and std values loaded...ok\n\r");
//========================END COEFF FROM UART=========================//

}

Listing 5.2: Application Program Task 2

The domain function in Task 2 is the custom InitMatrixFromFile() template function as
presented below:

/* InitMatrixFromFile()
* This function reads bytes from UART and cast them as a 32-bit float
* in order to fill an Eigen Matrix.
* Argument: An Eigen Matrix.

*/
template <typename M>
void InitMatrixFromFile(DenseBase <M>& A){

u8 buffer[4];
float tmp;

//loop through each matrix's element
for (int i = 0; i < A.rows(); i++) {

for (int j = 0; j < A.cols(); j++) {
//ARM reads 4 bytes from UART's FIFO
buffer[0]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[1]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[2]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[3]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);

//cast buffer[4] to a 32-bit float number
memcpy(&tmp, &buffer, sizeof(float));

A(i,j)=tmp; //copy tmp to matrix
}

}
}

Listing 5.3: InitMatrixFromFile() function

5.5 Testset Loaded

As previously, Task 3 applies the InitMatrixFromFile() function to transfer a predefined
number of samples into ARM’s DDR memory. This number is defined in the preamble of
the program. As samples are loaded successfully they need to be standardized before
feeding the model. Substraction and cwiseQuotient are elementwise operations between
Eigen arrays.

Th. Barmpakos 69

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

else if(c=='3'){//Task 3 - Load testset from file ==========================//
//

isRealTimeEnabled = false; //realtime is disabled by default ------//
print("\nSend a .bin file\n"); //

//
InitMatrixFromFile(DataSetMatrix); //load dataset from uart //

//
//----------Standardize values row by row using mean and std--------------//
for(int i=0; i<samples_num*In_shape_i; i++){ //

DataSetMatrix.row(i) = (DataSetMatrix.row(i)-Scaler_mean).cwiseQuotient(
Scaler_std);

} //
} //
else if(c=='4'){//Task 4 - Enables realtime acquisition //

isRealTimeEnabled = true; //
} //
//==//

Listing 5.4: Application Program Task 3 and Task 4

Task 4 is only used to enable realtime acquisition instead of using test set in Task 5.

5.6 Class prediction using Eigen

In this section, we describe step by step the procedure of a feedforward pass and
present our C++ code. Task 5 is responsible for this action and is based on Eigen block
operations and elementwise operations, which are so simple to work with. The whole
task is separated in two (almost same) parts; one for disabled real time acquisition (see
Appendix C) and the other for enabled.

At first, the input matrix (20x14) with row index count from 0 to 19 is empty. In each loop,
a block starting from 1 to 19 is copied to equal size block 0 to 18, and new 14 sensor
values fill the last row of the input matrix one by one. That creates a continuous data
flow which constitutes our sliding window. Before heading to the second step, we have
to standardize incoming raw data, so we subtract mean from row 19 and then divide by
standard deviation. Both of them are elementwise operations.

else if(c=='5'){//Task 5 - Inference either on real time samples or test
set

if (isRealTimeEnabled == false){
...... //See Appendix C

}
else{//Real-time acqusision enabled

print("Open UART\n\r");
//---Clear ARM's UART RX FIFO by reading available bytes---//
XUartPs_RecvByte(UART_MEM_BASE_ADDR); //
sleep(3); //
while(XUartPs_IsReceiveData(UART_MEM_BASE_ADDR)){ //

Th. Barmpakos 70

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

XUartPs_RecvByte(UART_MEM_BASE_ADDR); //
} //
print("waiting bytes\n"); //
//---//
while (1){//Sample processing and predict loop--------------------//

//
//Start counter to compute running time //
XTime_GetTime((XTime *) &tStart); //

//
//Sliding window moving - Drop first row //
Input.block<In_shape_i -1, In_shape_j >(0, 0)=Input.block<In_shape_i

-1, In_shape_j >(1, 0);
//

//read 14(sensor values)*4-bytes from FIFO //
for(int i=0; i<buffer_size; i++){ //

*(buffer+i)=XUartPs_RecvByte(UART_MEM_BASE_ADDR); //
} //

//
//cast bytes to 14 32-bit float numbers //
memcpy(&income_line , buffer, In_shape_j*sizeof(float)); //

//
//Fill last row with new 14 sensor values //
Input.row(In_shape_i -1) = Input_c; //

//
//Standardize last row of the matrix //
Input.row(In_shape_i -1) = (Input.row(In_shape_i -1)-Scaler_mean).

cwiseQuotient(Scaler_std);
//--//

//========================Start Inference=======================//
//-------------First convolutional layer-----------//
for (int j = 0; j < conv1_filters; j++)

for (int i = 0; i < Out1_shape_i; i++)
Out1(i,j) = Input.block<conv1_kernel , In_shape_j >(i, 0).

cwiseProduct(conv1.block<conv1_kernel , conv1_shape_j >(j * conv1_kernel ,0))
.sum() + bias1(j);

//relu activation function
Out1 = Out1.cwiseMax(0);

//-------------Second convolutional layer----------//
for (int j = 0; j < conv2_filters; j++)

for (int i = 0; i < Out2_shape_i; i++)
Out2(i, j) = Out1.block<conv2_kernel , Out1_shape_j >(i, 0).

cwiseProduct(conv2.block<conv2_kernel , conv2_shape_j >(j * conv2_kernel , 0)
).sum() + bias2(j);

//relu activation function
Out2 = Out2.cwiseMax(0);

//-------------Flatten layer-----------------------//
//Map has already done when allocate memory. Outputs Out3 matrix
//-------------Fully connected layer---------------//
Output = Out3 * dense4 + bias4;

Th. Barmpakos 71

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

//softmax activation function
Output = Output.array().exp();
sum = Output.sum();
Output=Output/sum;

max = Output.maxCoeff(&maxCol);

//Print current prediction class
cout << "class: " << maxCol << "\tpossibility: " << max << endl;

//End counter, compute usec and print time to terminal
XTime_GetTime((XTime *) &tEnd);
f=1.0*(tEnd - tStart) / (COUNTS_PER_SECOND/1000000);
cout << "Completed\n\rIt took: "<< f << "us"<< endl;
//===//

}
}

}

Listing 5.5: Application Program Task 5

Second, we apply the conv1d layer as described in Figure 2, add biases, and store results
in the corresponding predefined Output matrix. Then relu activation function, figure 5a,
applied to itself and the process repeated for the 2nd convd1d layer and its activation
function. Also, to prepare matrix dimensions for the next dense layer, a flatten one is
necessary. Finally, a simple matrix multiplication takes place (biases added) and softmax
(see equation 2.4) computes the output probabilities. The maximum one is the predicted
class.

ARM’s results, output probabilities, and classes for every sample of the test set are the
same as those when running the model on PC with python. So we know that everything
works perfectly. The sample processing time is in the order of a few milliseconds (∼ 3.56
msec), a value which is near nine times smaller than the sampling period of the system
(33 msec). That leads us to a realtime system.

5.7 Conclusion

In this Chapter, we singled out tools and libraries that can easily and effectively handle
matrix operations on ARM. We analyse the memory we allocate to store our purposed
CNN (∼ 300 Kbytes), so embedded device that do not meet this requirement e.g.
arduino UNO, MEGA, even DUE, cannot run it. Also we exploit ARM’s NEON Engine
using a NEON enabled library, Eigen and achieve to speed up inference to 3.56 msec
per sample. Consequently, microcontrollers running at frequencies under 66Mhz even if
they can handle parallel processing, like NEON Engine, would not achieve realtime
inference. Finally, we give a simple idea on how to define and run Neural Networks on a
baremetal application using Xillinx SDK.

Th. Barmpakos 72

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we presented a sensorbased approach, via flex sensors and an IMU
device, for continuous American SLR. We validated it for a 20word vocabulary of the
most common words and few letters of the American alphabet. To collect data we
constructed a custom sensor glove instead of using a commercial one and achieved to
create a stable acquisition device simply by placing sensors on a common rubber glove
and reading values using an Arduino UNO board. Raw data were captured with a
sample frequency about 30Hz, prelabeled in a continual way, and preprocessed in
terms of standardizing sensors readings, individually for each sensor data type. A sliding
window method was adopted to export samples, time series frames of 20 data points
length, from the overall signal with a window step of 1 and assign labels by calculating
the maximum percentage of prelabels in the current frame.

The classification was performed by applying LDA, LR, RF, LSVM and XGB Machine
Learning models using ATOM tool. We explained how to create an ATOM classifier and
run Bayesian Optimization to tune the hyperparameters of these models in order to
maximize the accuracy metric. The procedure was simple enough because ATOM can
handle the whole process in an automated way. The results indicate that all models
perform very well on the dataset with XGB being the leader reaching an accuracy of
93,15%, followed by the RF model with accuracy 92,86%. Analysing the errors we can
say that the real accuracy is actually 100% because the samples that were not predicted
correctly do not affect the way we address the SLR problem.

In addition to the above ML methods, we have purposed a simple threelayer CNN deep
learning model to address the continuous SLR problem. Two 1D convolutional layers are
used to extract features from preprocessed data while a fully connected layer at the end
takes care of the classification. The given results, using the ATOM tool, are similar to the
XGB and RF baseline models with an accuracy reaching 93,40% and real accuracy of
100%.

Another challenge we faced on in this thesis was to design an experimental endtoend
system and test in realtime. An ARMbased solution was developed using the Zybo z710
development board in which we have managed to develop a baremetal application that
can efficiently run our purposed CNN model. Our software was designed to be generic,
in order to run multiple instances of the same threelayer architecture and also to take
advantage of the ARM’s NEON Engine for faster calculations. The processing time of our
purposed model is ∼3.56 msec according to the sampling period which is about 33 msec,
so our system can be considered as a realtime one.

Since the time of this thesis was limited, we quote some short extensions that can improve
our work. First, for better results we need to calibrate the sensor glove and especially
the IMU device. Calibration can prevent errors that arise from deterioration of the micro
mechanical part of the IMU that are caused during its lifetime. Another point is to reset
IMU values before every use. Due to the fact that all gestures are captured while looking
in one direction, if we change it while on testing, results would be a mess. Resetting the

Th. Barmpakos 73

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

IMU means that we have to add an offset to every value of the IMU to keep the signal
unaffected by our current position and direction. Furthermore, although we wanted our
system to be portable, we connected both sensor glove and Zybo board to the PC to
simplify things. A good improvement will be to bypass the Arduino board and PC, and
directly attach the sensors to the Zybo board, so that the ARM can read raw data on its
own.

Although we have managed to implement this project without deviating from our original
goals, many things need further research and study. In current work we have used a
limited vocabulary that does not measure up to the original American Sign Language
lexicon. So as future work, we have to increase the size of this vocabulary. This comes
at the expense of the overall complexity of the project. From gesture recording, that
must be done by real signers in that case to more computational complex model (our
purposed 1D CNN architecture) needed for inference. How far can we go and how
model’s complexity changes according to the size of the vocabulary keeping accuracy
high enough? Another work is to create a generator for implementing different CNN
models on ARM using the Eigen library in a complete, userfriendly application to
initialize and run various models. Finally, we can create a hardware accelerator that can
run on small resources FPGAs, such as Zybo, in combination with the ARM processor to
take full advantage of an embedded system and run more complex CNN models in a
more extensive vocabulary.

Although this thesis presents the design and implementation of an endtoend system to
address gesture recognition, it more generally demonstrates a feasible method to handling
time series based classification by exploiting the power of 1D CNNs. In SLR, we add a
new sensorbased method, using 1D CNNs relative to the state of the art Recognition
Verification mechanism in [39], that promises an efficient way to classify gestures from a
large vocabulary and can run in small resources embedded systems.

Th. Barmpakos 74

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

ABBREVIATIONS ACRONYMS

SL Sign Language

ASL American Sign Language

SLR Sign Language Recongition

VR Virtual Reality

ML Machine Learning

DL Deep Learning

IMU Inertial Measurement Unit

FPGA Field Programmable Gate Array

ARM Advanced RISC Machines

CNN Convolutional Neural Network

UART Universal Asynchronous Receiver/Transmitter

AI Artificial Intelligence

RNN Recurrent Neural Network

EMG Electromyography

sEMG Surface Electromyography

LDA Linear Discriminant Analysis

SVM Support Vector Machine

HMM Hidden Markov Model

PaHMM Parallel Hiden Markov Model

ASR Automatic Speech Recognition

I2C InterIntegrated Circuit

IC Integrated Circuit

IDE Integrated Development Environment

COM Communication

SPI Serial Peripheral Interface

GPIO General Purpose Input/Output

Th. Barmpakos 75

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 76

[1]: import numpy as np
from sklearn.preprocessing import StandardScaler

[2]: dataSet=np.load("train_dataset_20.npy")
labels=np.load("train_labels_20.npy")
print(np.shape(dataSet))

(23841, 20, 14)

[3]: dataSet=dataSet.reshape(23841,280)

[4]: test_dataSet=np.load("test_dataset_20.npy")
test_labels=np.load("test_labels_20.npy")
print(np.shape(test_dataSet))

(5521, 20, 14)

[5]: test_dataSet=test_dataSet.reshape(5521,280)

[6]: scaler1 = StandardScaler()
dataSet=scaler1.fit_transform(dataSet)
test_dataSet=scaler1.transform(test_dataSet)

[7]: #Import ATOM library and create an ATOMClassifier
from atom import ATOMClassifier
atom = ATOMClassifier((dataSet, labels), #train set, targets

(test_dataSet, test_labels), #test set, targets
warnings='ignore', logger="auto",
n_jobs=-1, verbose=2)

<< ================== ATOM ================== >>
Algorithm task: multiclass classification.
Parallel processing with 4 cores.

Dataset stats ====================== >>
Shape: (29362, 281)
Scaled: True
Outlier values: 64574 (1.0%)

Train set size: 23841
Test set size: 5521

	dataset	train	test
0	13343 (33.6)	10940 (33.6)	2403 (33.8)
1	550 (1.4)	416 (1.3)	134 (1.9)

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

APPENDIX A. CODE FOR BASELINE ML

Python code for finetuning baseline methods: AtomML.ipynb

Th. Barmpakos 77

2	810 (2.0)	670 (2.1)	140 (2.0)
3	975 (2.5)	787 (2.4)	188 (2.6)
4	482 (1.2)	389 (1.2)	93 (1.3)
5	772 (1.9)	601 (1.8)	171 (2.4)
6	729 (1.8)	593 (1.8)	136 (1.9)
7	1057 (2.7)	839 (2.6)	218 (3.1)
8	1260 (3.2)	1019 (3.1)	241 (3.4)
9	944 (2.4)	767 (2.4)	177 (2.5)
10	446 (1.1)	355 (1.1)	91 (1.3)
11	570 (1.4)	475 (1.5)	95 (1.3)
12	1048 (2.6)	847 (2.6)	201 (2.8)
13	397 (1.0)	326 (1.0)	71 (1.0)
14	441 (1.1)	355 (1.1)	86 (1.2)
15	1162 (2.9)	942 (2.9)	220 (3.1)
16	805 (2.0)	655 (2.0)	150 (2.1)
17	447 (1.1)	357 (1.1)	90 (1.3)
18	1603 (4.0)	1281 (3.9)	322 (4.5)
19	845 (2.1)	684 (2.1)	161 (2.3)
20	676 (1.7)	543 (1.7)	133 (1.9)

[8]: #To run BO for XGB - comment all other models and "early stopping".
#To run BO for remaining models - Comment "XGB" and uncomment everything else.
atom.run(

models=["LDA",
"LR",
"RF",
"lSVM"
#"XGB"

],
metric="accuracy",
n_calls=25,
n_initial_points=10,
bo_params={"early_stopping": 0.1,

"cv":5},
n_bootstrap=5,

)

[9]: #Save Atom class to file
atom.save("final_atom",save_data=True)

ATOMClassifier saved successfully!

[10]: from atom import ATOMLoader

[11]: atom_2=ATOMLoader("final_atom", verbose=0)

ATOMClassifier loaded successfully!

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 78

[12]: atom_2.results

[12]: metric_bo time_bo metric_train metric_test time_fit \
LDA 0.828698 1m:51s 0.839730 0.802391 1.426s
LR 0.948786 4h:49m:39s 0.975882 0.909618 5m:52s
RF 0.956839 2h:55m:02s 0.981880 0.928636 3m:26s
lSVM 0.939306 1h:32m:35s 0.959356 0.907263 3m:56s

mean_bootstrap std_bootstrap time_bootstrap time
LDA 0.796196 0.002434 6.994s 1m:59s
LR 0.906901 0.002549 22m:53s 5h:18m:24s
RF 0.925666 0.002661 15m:07s 3h:13m:34s
lSVM 0.895888 0.001083 19m:19s 1h:55m:49s

[13]: #Atom runs BO for XGB model - "early stopping isn't compatible with XGB".
#To run BO for remaining models - Comment "XGB" and uncomment everything else.
atom_2.run(

models=[#"LDA",
#"LR",
#"RF",
#"lSVM"

"XGB"
],
metric="accuracy",
n_calls=25,
n_initial_points=10,
bo_params={#"early_stopping": 0.1,

"cv":5},
n_bootstrap=5,

)

Training ===================================== >>
Models: XGB
Metric: accuracy

Running BO for XGBoost...
Initial point 1 ---------------------------------
Parameters --> {'n_estimators': 62, 'learning_rate': 0.04, 'max_depth': 1,
'gamma': 0.59, 'min_child_weight': 1, 'subsample': 0.8, 'colsample_bytree': 0.8,
'reg_alpha': 10.0, 'reg_lambda': 0.1}

2021/07/15 15:52:53 WARNING mlflow.tracking.context.git_context: Failed to
import Git (the Git executable is probably not on your PATH), so Git SHA is not
available. Error: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:

- be included in your $PATH

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 79

- be set via $GIT_PYTHON_GIT_EXECUTABLE
- explicitly set via git.refresh()

All git commands will error until this is rectified.

This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:

- quiet|q|silence|s|none|n|0: for no warning or exception
- warn|w|warning|1: for a printed warning
- error|e|raise|r|2: for a raised exception

Example:
export GIT_PYTHON_REFRESH=quiet

Evaluation --> accuracy: 0.6980 Best accuracy: 0.6980
Time iteration: 1m:26s Total time: 1m:26s
Initial point 2 ---------------------------------
Parameters --> {'n_estimators': 362, 'learning_rate': 0.01, 'max_depth': 3,
'gamma': 0.43, 'min_child_weight': 8, 'subsample': 0.6, 'colsample_bytree': 0.9,
'reg_alpha': 1.0, 'reg_lambda': 100.0}
Evaluation --> accuracy: 0.9171 Best accuracy: 0.9171
Time iteration: 21m:31s Total time: 22m:57s
Initial point 3 ---------------------------------
Parameters --> {'n_estimators': 204, 'learning_rate': 0.27, 'max_depth': 5,
'gamma': 0.87, 'min_child_weight': 17, 'subsample': 0.7, 'colsample_bytree':
0.7, 'reg_alpha': 0.1, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.9615 Best accuracy: 0.9615
Time iteration: 5m:03s Total time: 28m:00s
Initial point 4 ---------------------------------
Parameters --> {'n_estimators': 398, 'learning_rate': 0.63, 'max_depth': 4,
'gamma': 0.91, 'min_child_weight': 9, 'subsample': 0.8, 'colsample_bytree': 0.6,
'reg_alpha': 1.0, 'reg_lambda': 1.0}
Evaluation --> accuracy: 0.9546 Best accuracy: 0.9615
Time iteration: 8m:41s Total time: 36m:42s
Initial point 5 ---------------------------------
Parameters --> {'n_estimators': 484, 'learning_rate': 0.11, 'max_depth': 1,
'gamma': 0.29, 'min_child_weight': 14, 'subsample': 0.9, 'colsample_bytree':
0.6, 'reg_alpha': 0.1, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.9567 Best accuracy: 0.9615
Time iteration: 5m:58s Total time: 42m:39s
Initial point 6 ---------------------------------
Parameters --> {'n_estimators': 76, 'learning_rate': 0.94, 'max_depth': 1,
'gamma': 0.25, 'min_child_weight': 6, 'subsample': 0.9, 'colsample_bytree': 0.7,
'reg_alpha': 100.0, 'reg_lambda': 100.0}
Evaluation --> accuracy: 0.8435 Best accuracy: 0.9615
Time iteration: 1m:19s Total time: 43m:58s
Initial point 7 ---------------------------------

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 80

Parameters --> {'n_estimators': 68, 'learning_rate': 0.26, 'max_depth': 7,
'gamma': 0.86, 'min_child_weight': 14, 'subsample': 0.7, 'colsample_bytree':
0.8, 'reg_alpha': 0.01, 'reg_lambda': 1.0}
Evaluation --> accuracy: 0.9594 Best accuracy: 0.9615
Time iteration: 3m:07s Total time: 47m:06s
Initial point 8 ---------------------------------
Parameters --> {'n_estimators': 102, 'learning_rate': 0.05, 'max_depth': 4,
'gamma': 0.66, 'min_child_weight': 14, 'subsample': 0.8, 'colsample_bytree':
0.3, 'reg_alpha': 0.0, 'reg_lambda': 0.01}
Evaluation --> accuracy: 0.9523 Best accuracy: 0.9615
Time iteration: 2m:37s Total time: 49m:42s
Initial point 9 ---------------------------------
Parameters --> {'n_estimators': 402, 'learning_rate': 0.02, 'max_depth': 4,
'gamma': 0.64, 'min_child_weight': 11, 'subsample': 0.8, 'colsample_bytree':
0.4, 'reg_alpha': 10.0, 'reg_lambda': 0.01}
Evaluation --> accuracy: 0.9511 Best accuracy: 0.9615
Time iteration: 11m:57s Total time: 1h:01m:39s
Initial point 10 --------------------------------
Parameters --> {'n_estimators': 97, 'learning_rate': 0.14, 'max_depth': 6,
'gamma': 0.07, 'min_child_weight': 5, 'subsample': 1.0, 'colsample_bytree': 0.9,
'reg_alpha': 0.01, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.9649 Best accuracy: 0.9649
Time iteration: 6m:34s Total time: 1h:08m:13s
Iteration 11 ------------------------------------
Parameters --> {'n_estimators': 500, 'learning_rate': 1.0, 'max_depth': 10,
'gamma': 1.0, 'min_child_weight': 4, 'subsample': 0.8, 'colsample_bytree': 0.3,
'reg_alpha': 100.0, 'reg_lambda': 100.0}
Evaluation --> accuracy: 0.9057 Best accuracy: 0.9649
Time iteration: 4m:51s Total time: 1h:13m:04s
Iteration 12 ------------------------------------
Parameters --> {'n_estimators': 20, 'learning_rate': 1.0, 'max_depth': 1,
'gamma': 1.0, 'min_child_weight': 20, 'subsample': 1.0, 'colsample_bytree': 1.0,
'reg_alpha': 0.0, 'reg_lambda': 100.0}
Evaluation --> accuracy: 0.9212 Best accuracy: 0.9649
Time iteration: 26.632s Total time: 1h:13m:31s
Iteration 13 ------------------------------------
Parameters --> {'n_estimators': 227, 'learning_rate': 1.0, 'max_depth': 7,
'gamma': 0.48, 'min_child_weight': 6, 'subsample': 1.0, 'colsample_bytree': 0.8,
'reg_alpha': 0.01, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.9486 Best accuracy: 0.9649
Time iteration: 5m:14s Total time: 1h:18m:46s
Iteration 14 ------------------------------------
Parameters --> {'n_estimators': 20, 'learning_rate': 1.0, 'max_depth': 10,
'gamma': 0.0, 'min_child_weight': 20, 'subsample': 1.0, 'colsample_bytree': 1.0,
'reg_alpha': 0.0, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9373 Best accuracy: 0.9649
Time iteration: 58.296s Total time: 1h:19m:45s
Iteration 15 ------------------------------------

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 81

Parameters --> {'n_estimators': 20, 'learning_rate': 1.0, 'max_depth': 10,
'gamma': 0.0, 'min_child_weight': 8, 'subsample': 1.0, 'colsample_bytree': 0.8,
'reg_alpha': 0.0, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9443 Best accuracy: 0.9649
Time iteration: 1m:01s Total time: 1h:20m:46s
Iteration 16 ------------------------------------
Parameters --> {'n_estimators': 180, 'learning_rate': 1.0, 'max_depth': 7,
'gamma': 0.58, 'min_child_weight': 20, 'subsample': 0.6, 'colsample_bytree':
0.4, 'reg_alpha': 0.0, 'reg_lambda': 0.01}
Evaluation --> accuracy: 0.9431 Best accuracy: 0.9649
Time iteration: 2m:01s Total time: 1h:22m:47s
Iteration 17 ------------------------------------
Parameters --> {'n_estimators': 76, 'learning_rate': 0.04, 'max_depth': 7,
'gamma': 0.0, 'min_child_weight': 6, 'subsample': 0.9, 'colsample_bytree': 0.7,
'reg_alpha': 0.0, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.9570 Best accuracy: 0.9649
Time iteration: 6m:12s Total time: 1h:28m:60s
Iteration 18 ------------------------------------
Parameters --> {'n_estimators': 148, 'learning_rate': 0.05, 'max_depth': 2,
'gamma': 0.0, 'min_child_weight': 3, 'subsample': 1.0, 'colsample_bytree': 0.4,
'reg_alpha': 0.1, 'reg_lambda': 0.01}
Evaluation --> accuracy: 0.9436 Best accuracy: 0.9649
Time iteration: 3m:04s Total time: 1h:32m:04s
Iteration 19 ------------------------------------
Parameters --> {'n_estimators': 500, 'learning_rate': 1.0, 'max_depth': 7,
'gamma': 0.73, 'min_child_weight': 16, 'subsample': 1.0, 'colsample_bytree':
0.5, 'reg_alpha': 1.0, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9444 Best accuracy: 0.9649
Time iteration: 6m:11s Total time: 1h:38m:16s
Iteration 20 ------------------------------------
Parameters --> {'n_estimators': 311, 'learning_rate': 1.0, 'max_depth': 9,
'gamma': 0.59, 'min_child_weight': 14, 'subsample': 0.6, 'colsample_bytree':
0.4, 'reg_alpha': 0.1, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9462 Best accuracy: 0.9649
Time iteration: 3m:22s Total time: 1h:41m:38s
Iteration 21 ------------------------------------
Parameters --> {'n_estimators': 110, 'learning_rate': 0.01, 'max_depth': 10,
'gamma': 0.19, 'min_child_weight': 1, 'subsample': 0.7, 'colsample_bytree': 0.3,
'reg_alpha': 0.01, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9607 Best accuracy: 0.9649
Time iteration: 5m:39s Total time: 1h:47m:18s
Iteration 22 ------------------------------------
Parameters --> {'n_estimators': 500, 'learning_rate': 0.01, 'max_depth': 9,
'gamma': 0.0, 'min_child_weight': 1, 'subsample': 0.9, 'colsample_bytree': 1.0,
'reg_alpha': 0.0, 'reg_lambda': 0.0}
Evaluation --> accuracy: 0.9632 Best accuracy: 0.9649
Time iteration: 1h:34m:47s Total time: 3h:22m:05s
Iteration 23 ------------------------------------

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 82

Parameters --> {'n_estimators': 500, 'learning_rate': 1.0, 'max_depth': 9,
'gamma': 1.0, 'min_child_weight': 20, 'subsample': 0.9, 'colsample_bytree': 0.7,
'reg_alpha': 0.01, 'reg_lambda': 100.0}
Evaluation --> accuracy: 0.9533 Best accuracy: 0.9649
Time iteration: 15m:06s Total time: 3h:37m:12s
Iteration 24 ------------------------------------
Parameters --> {'n_estimators': 371, 'learning_rate': 0.01, 'max_depth': 1,
'gamma': 0.92, 'min_child_weight': 1, 'subsample': 1.0, 'colsample_bytree': 0.6,
'reg_alpha': 0.0, 'reg_lambda': 0.01}
Evaluation --> accuracy: 0.7658 Best accuracy: 0.9649
Time iteration: 5m:25s Total time: 3h:42m:37s
Iteration 25 ------------------------------------
Parameters --> {'n_estimators': 500, 'learning_rate': 0.01, 'max_depth': 3,
'gamma': 0.0, 'min_child_weight': 20, 'subsample': 0.5, 'colsample_bytree': 1.0,
'reg_alpha': 100.0, 'reg_lambda': 0.1}
Evaluation --> accuracy: 0.8497 Best accuracy: 0.9649
Time iteration: 28m:21s Total time: 4h:10m:59s

Results for XGBoost:
Bayesian Optimization ---------------------------
Best parameters --> {'n_estimators': 97, 'learning_rate': 0.14, 'max_depth': 6,
'gamma': 0.07, 'min_child_weight': 5, 'subsample': 1.0, 'colsample_bytree': 0.9,
'reg_alpha': 0.01, 'reg_lambda': 0.1}
Best evaluation --> accuracy: 0.9649
Time elapsed: 4h:10m:59s
Fit ---
Train evaluation --> accuracy: 1.0
Test evaluation --> accuracy: 0.9315
Time elapsed: 1m:44s
Bootstrap ---------------------------------------
Evaluation --> accuracy: 0.9272 ± 0.0017
Time elapsed: 7m:48s

Total time: 4h:20m:31s

Final results ========================= >>
Duration: 4h:20m:31s
--
XGBoost --> accuracy: 0.9272 ± 0.0017

[14]: # "XGB" model has been added to pipeline.
atom_2.results

[14]: metric_bo time_bo metric_train metric_test time_fit \
LDA 0.828698 1m:51s 0.839730 0.802391 1.426s
LR 0.948786 4h:49m:39s 0.975882 0.909618 5m:52s

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 83

RF 0.956839 2h:55m:02s 0.981880 0.928636 3m:26s
lSVM 0.939306 1h:32m:35s 0.959356 0.907263 3m:56s
XGB 0.964893 4h:10m:59s 1.000000 0.931534 1m:44s

mean_bootstrap std_bootstrap time_bootstrap time
LDA 0.796196 0.002434 6.994s 1m:59s
LR 0.906901 0.002549 22m:53s 5h:18m:24s
RF 0.925666 0.002661 15m:07s 3h:13m:34s
lSVM 0.895888 0.001083 19m:19s 1h:55m:49s
XGB 0.927223 0.001708 7m:48s 4h:20m:31s

[15]: #Save Atom class to file
atom_2.save("final_atom",save_data=True)

ATOMClassifier saved successfully!

[16]: #Plot the confusion matrix for the "XGB"
atom_2.xgb.plot_confusion_matrix()

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 84

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

In line 13, ATOM’s run method, runs BO for the XGB model. The output log, prints the
steps of the procedure. Ten random hyperparameter tests are done first (Initial point 1
10). Then the best one fits the surrogate function (BO algorithm). BO runs for 15 times to
reach n_call = 25 and best hyperparameters are exported with an evaluation accuracy
93,15%. Finally, a bootstrap algorithm take place. The same procedure is repeated for
the remaining models and results are printed by result function in line 14.

Best Hyperparameters are presented below:

1. LDA: Best parameters –> {’solver’: ’svd’}

2. LR: Best parameters –> {’penalty’: ’l2’, ’C’: 2.033, ’solver’: ’newtoncg’, ’max_iter’:
108}

3. RF: Best parameters –> {’criterion’: ’entropy’, ’max_depth’: 9, ’max_features’: 0.6,
’max_samples’: 0.7, ’min_samples_split’: 12, ’n_estimators’: 376}

4. LSVM: Best parameters –> {’C’: 0.984, ’dual’: False, ’penalty’: ’l1’}

Th. Barmpakos 85

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 86

[1]: # Disable annoying tf warnings
import logging
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR)
import os
os.environ["GIT_PYTHON_REFRESH"] = "quiet"

[2]: from __future__ import absolute_import, division, print_function,␣
↪→unicode_literals

import tensorflow as tf
from tensorflow import keras
from keras import layers
from keras import models
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix
from skopt.space.space import Integer, Categorical, Real
from keras import optimizers
from keras.utils.vis_utils import plot_model

[3]: dataSet=np.load("train_dataset_20.npy")
labels=np.load("train_labels_20.npy")
print(np.shape(dataSet))

(23841, 20, 14)

[4]: dataSet=dataSet.reshape(23841*20,14)

[5]: test_dataSet=np.load("test_dataset_20.npy")
test_labels=np.load("test_labels_20.npy")
print(np.shape(test_dataSet))

(5521, 20, 14)

[6]: test_dataSet=test_dataSet.reshape(5521*20,14)

[7]: scaler1 = StandardScaler()
dataSet=scaler1.fit_transform(dataSet)
test_dataSet=scaler1.transform(test_dataSet)

[8]: dataSet=dataSet.reshape(23841, 280)
test_dataSet=test_dataSet.reshape(5521, 280)

[9]: #define our CNN model
def neural_network(x1, x2, y1, y2):

model=models.Sequential()

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

APPENDIX B. CODE FOR OUR PROPOSED METHOD

Python code for finetuning our proposed CNN method: AtomCNN.ipynb

Th. Barmpakos 87

model.add(keras.Input(shape=(280)))
model.add(layers.Reshape((20,14)))
model.add(layers.Conv1D(x1, (y1,), activation='relu'))
model.add(layers.Conv1D(x2, (y2,), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dropout(0.18))
model.add(layers.Dense(21,activation='softmax'))

opti=optimizers.RMSprop(lr=0.00002
model.compile(optimizer=opti,

loss='categorical_crossentropy',
metrics=['accuracy'])

return model

[10]: # Import standard packages
from atom import ATOMClassifier, ATOMModel

[11]: # Like any other model, we can define custom dimensions for the bayesian␣
↪→optimization

dim = [Integer(1, 100, name="epochs"),
Categorical([64, 96, 128], name="batch_size"),
Integer(16, 100, name="x1"),
Integer(16, 100, name="x2"),
Integer(1, 10, name="y1"),
Integer(1, 10, name="y2")

]

[12]: # Since ATOM uses sklearn's API, use Keras' wrapper
model = KerasClassifier(neural_network, verbose=2)

[13]: # Convert the model to an ATOM model
model = ATOMModel(model, acronym="NN", fullname="Neural network")

[14]: atom = ATOMClassifier(dataSet, test_dataSet, labels, test_labels, n_rows=1,␣
↪→n_jobs=2, verbose=2)

#atom.add(StandardScaler()) -- We do not use the following functions
#atom.impute()
#atom.encode()
#atom.feature_selection()

<< ================== ATOM ================== >>
Algorithm task: multiclass classification.
Parallel processing with 2 cores.

Dataset stats ====================== >>
Shape: (29362, 281)

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 88

Scaled: True
Outlier values: 64574 (1.0%)

Train set size: 23841
Test set size: 5521

	dataset	train	test
0	13343 (33.6)	10940 (33.6)	2403 (33.8)
1	550 (1.4)	416 (1.3)	134 (1.9)
2	810 (2.0)	670 (2.1)	140 (2.0)
3	975 (2.5)	787 (2.4)	188 (2.6)
4	482 (1.2)	389 (1.2)	93 (1.3)
5	772 (1.9)	601 (1.8)	171 (2.4)
6	729 (1.8)	593 (1.8)	136 (1.9)
7	1057 (2.7)	839 (2.6)	218 (3.1)
8	1260 (3.2)	1019 (3.1)	241 (3.4)
9	944 (2.4)	767 (2.4)	177 (2.5)
10	446 (1.1)	355 (1.1)	91 (1.3)
11	570 (1.4)	475 (1.5)	95 (1.3)
12	1048 (2.6)	847 (2.6)	201 (2.8)
13	397 (1.0)	326 (1.0)	71 (1.0)
14	441 (1.1)	355 (1.1)	86 (1.2)
15	1162 (2.9)	942 (2.9)	220 (3.1)
16	805 (2.0)	655 (2.0)	150 (2.1)
17	447 (1.1)	357 (1.1)	90 (1.3)
18	1603 (4.0)	1281 (3.9)	322 (4.5)
19	845 (2.1)	684 (2.1)	161 (2.3)
20	676 (1.7)	543 (1.7)	133 (1.9)

[15]: # Train the models using early stopping. An early stopping value of 0.1 means
that the model will stop if it didn't improve in the last 10% of it's␣

↪→iterations

atom.run(
model,
metric="accuracy",
n_calls=25,
n_initial_points=10,
bo_params={"dimensions": dim, "early_stopping": 0.1, "cv":5},

)

Training ===================================== >>
Models: NN
Metric: accuracy

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 89

Running BO for Neural network...
Initial point 1 ---------------------------------
Parameters --> {'epochs': 23, 'batch_size': 96, 'x1': 38, 'x2': 55, 'y1': 6,
'y2': 2}
Evaluation --> accuracy: 0.9072 Best accuracy: 0.9072
Time iteration: 1m:36s Total time: 1m:36s
Initial point 2 ---------------------------------
Parameters --> {'epochs': 69, 'batch_size': 96, 'x1': 26, 'x2': 57, 'y1': 9,
'y2': 3}
Evaluation --> accuracy: 0.9339 Best accuracy: 0.9339
Time iteration: 2m:24s Total time: 4m:01s
Initial point 3 ---------------------------------
Parameters --> {'epochs': 14, 'batch_size': 96, 'x1': 76, 'x2': 35, 'y1': 4,
'y2': 4}
Evaluation --> accuracy: 0.8736 Best accuracy: 0.9339
Time iteration: 52.157s Total time: 4m:53s
Initial point 4 ---------------------------------
Parameters --> {'epochs': 18, 'batch_size': 96, 'x1': 36, 'x2': 42, 'y1': 2,
'y2': 2}
Evaluation --> accuracy: 0.8632 Best accuracy: 0.9339
Time iteration: 42.769s Total time: 5m:36s
Initial point 5 ---------------------------------
Parameters --> {'epochs': 38, 'batch_size': 96, 'x1': 82, 'x2': 91, 'y1': 3,
'y2': 2}
Evaluation --> accuracy: 0.9363 Best accuracy: 0.9363
Time iteration: 2m:48s Total time: 8m:24s
Initial point 6 ---------------------------------
Parameters --> {'epochs': 2, 'batch_size': 96, 'x1': 56, 'x2': 51, 'y1': 3,
'y2': 4}
Evaluation --> accuracy: 0.4611 Best accuracy: 0.9363
Time iteration: 10.380s Total time: 8m:34s
Initial point 7 ---------------------------------
Parameters --> {'epochs': 5, 'batch_size': 64, 'x1': 49, 'x2': 88, 'y1': 3,
'y2': 6}
Evaluation --> accuracy: 0.7933 Best accuracy: 0.9363
Time iteration: 26.301s Total time: 9m:01s
Initial point 8 ---------------------------------
Parameters --> {'epochs': 36, 'batch_size': 128, 'x1': 94, 'x2': 96, 'y1': 7,
'y2': 9}
Evaluation --> accuracy: 0.9384 Best accuracy: 0.9384
Time iteration: 3m:05s Total time: 12m:06s
Initial point 9 ---------------------------------
Parameters --> {'epochs': 91, 'batch_size': 64, 'x1': 25, 'x2': 45, 'y1': 4,
'y2': 9}
Evaluation --> accuracy: 0.9419 Best accuracy: 0.9419
Time iteration: 3m:37s Total time: 15m:43s
Initial point 10 --------------------------------

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 90

Parameters --> {'epochs': 100, 'batch_size': 128, 'x1': 94, 'x2': 86, 'y1': 7,
'y2': 5}
Evaluation --> accuracy: 0.9481 Best accuracy: 0.9481
Time iteration: 8m:16s Total time: 23m:59s
Iteration 11 ------------------------------------
Parameters --> {'epochs': 42, 'batch_size': 96, 'x1': 97, 'x2': 92, 'y1': 2,
'y2': 7}
Evaluation --> accuracy: 0.9405 Best accuracy: 0.9481
Time iteration: 5m:26s Total time: 29m:26s
Iteration 12 ------------------------------------
Parameters --> {'epochs': 94, 'batch_size': 96, 'x1': 57, 'x2': 84, 'y1': 3,
'y2': 3}
Evaluation --> accuracy: 0.9450 Best accuracy: 0.9481
Time iteration: 6m:10s Total time: 35m:36s
Iteration 13 ------------------------------------
Parameters --> {'epochs': 66, 'batch_size': 96, 'x1': 24, 'x2': 18, 'y1': 2,
'y2': 3}
Evaluation --> accuracy: 0.9133 Best accuracy: 0.9481
Time iteration: 1m:38s Total time: 37m:14s
Iteration 14 ------------------------------------
Parameters --> {'epochs': 8, 'batch_size': 64, 'x1': 33, 'x2': 90, 'y1': 1,
'y2': 7}
Evaluation --> accuracy: 0.8636 Best accuracy: 0.9481
Time iteration: 34.821s Total time: 37m:49s
Iteration 15 ------------------------------------
Parameters --> {'epochs': 4, 'batch_size': 64, 'x1': 25, 'x2': 93, 'y1': 6,
'y2': 5}
Evaluation --> accuracy: 0.6725 Best accuracy: 0.9481
Time iteration: 15.375s Total time: 38m:04s
Iteration 16 ------------------------------------
Parameters --> {'epochs': 6, 'batch_size': 64, 'x1': 59, 'x2': 55, 'y1': 5,
'y2': 9}
Evaluation --> accuracy: 0.8065 Best accuracy: 0.9481
Time iteration: 29.101s Total time: 38m:34s
Iteration 17 ------------------------------------
Parameters --> {'epochs': 87, 'batch_size': 128, 'x1': 20, 'x2': 96, 'y1': 3,
'y2': 5}
Evaluation --> accuracy: 0.9375 Best accuracy: 0.9481
Time iteration: 4m:04s Total time: 42m:38s
Iteration 18 ------------------------------------
Parameters --> {'epochs': 43, 'batch_size': 96, 'x1': 61, 'x2': 30, 'y1': 5,
'y2': 4}
Evaluation --> accuracy: 0.9263 Best accuracy: 0.9481
Time iteration: 2m:08s Total time: 44m:46s
Iteration 19 ------------------------------------
Parameters --> {'epochs': 13, 'batch_size': 96, 'x1': 70, 'x2': 26, 'y1': 3,
'y2': 3}
Evaluation --> accuracy: 0.8042 Best accuracy: 0.9481

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 91

Time iteration: 41.791s Total time: 45m:28s
Iteration 20 ------------------------------------
Parameters --> {'epochs': 25, 'batch_size': 96, 'x1': 42, 'x2': 35, 'y1': 3,
'y2': 7}
Evaluation --> accuracy: 0.9071 Best accuracy: 0.9481
Time iteration: 1m:16s Total time: 46m:43s
Iteration 21 ------------------------------------
Parameters --> {'epochs': 8, 'batch_size': 96, 'x1': 53, 'x2': 36, 'y1': 3,
'y2': 5}
Evaluation --> accuracy: 0.7139 Best accuracy: 0.9481
Time iteration: 28.558s Total time: 47m:12s
Iteration 22 ------------------------------------
Parameters --> {'epochs': 59, 'batch_size': 96, 'x1': 87, 'x2': 99, 'y1': 5,
'y2': 10}
Evaluation --> accuracy: 0.9457 Best accuracy: 0.9481
Time iteration: 6m:04s Total time: 53m:16s
Iteration 23 ------------------------------------
Parameters --> {'epochs': 32, 'batch_size': 96, 'x1': 78, 'x2': 61, 'y1': 7,
'y2': 3}
Evaluation --> accuracy: 0.9310 Best accuracy: 0.9481
Time iteration: 1m:53s Total time: 55m:09s
Iteration 24 ------------------------------------
Parameters --> {'epochs': 23, 'batch_size': 128, 'x1': 93, 'x2': 97, 'y1': 8,
'y2': 9}
Evaluation --> accuracy: 0.9290 Best accuracy: 0.9481
Time iteration: 1m:49s Total time: 56m:58s
Iteration 25 ------------------------------------
Parameters --> {'epochs': 90, 'batch_size': 96, 'x1': 84, 'x2': 54, 'y1': 5,
'y2': 5}
Evaluation --> accuracy: 0.9455 Best accuracy: 0.9481
Time iteration: 7m:02s Total time: 1h:04m:00s

Results for Neural network:
Bayesian Optimization ---------------------------
Best parameters --> {'epochs': 100, 'batch_size': 128, 'x1': 94, 'x2': 86, 'y1':
7, 'y2': 5}
Best evaluation --> accuracy: 0.9481
Time elapsed: 1h:04m:01s
Epoch 1/100
187/187 - 1s - loss: 2.4798 - accuracy: 0.3717
Epoch 2/100
187/187 - 1s - loss: 1.7621 - accuracy: 0.4805
Epoch 3/100
187/187 - 1s - loss: 1.3206 - accuracy: 0.5968
Epoch 4/100
187/187 - 1s - loss: 1.0111 - accuracy: 0.6816
Epoch 5/100
187/187 - 1s - loss: 0.7973 - accuracy: 0.7323

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 92

Epoch 6/100
187/187 - 1s - loss: 0.6434 - accuracy: 0.7857
Epoch 7/100
187/187 - 1s - loss: 0.5372 - accuracy: 0.8244
Epoch 8/100
187/187 - 1s - loss: 0.4609 - accuracy: 0.8498
Epoch 9/100
187/187 - 1s - loss: 0.4066 - accuracy: 0.8683
Epoch 10/100
187/187 - 1s - loss: 0.3703 - accuracy: 0.8784
Epoch 11/100
187/187 - 1s - loss: 0.3383 - accuracy: 0.8881
Epoch 12/100
187/187 - 1s - loss: 0.3170 - accuracy: 0.8929
Epoch 13/100
187/187 - 1s - loss: 0.2977 - accuracy: 0.8988
Epoch 14/100
187/187 - 1s - loss: 0.2841 - accuracy: 0.9055
Epoch 15/100
187/187 - 1s - loss: 0.2695 - accuracy: 0.9077
Epoch 16/100
187/187 - 1s - loss: 0.2633 - accuracy: 0.9107
Epoch 17/100
187/187 - 1s - loss: 0.2495 - accuracy: 0.9144
Epoch 18/100
187/187 - 2s - loss: 0.2426 - accuracy: 0.9162
Epoch 19/100
187/187 - 1s - loss: 0.2329 - accuracy: 0.9192
Epoch 20/100
187/187 - 1s - loss: 0.2279 - accuracy: 0.9199
Epoch 21/100
187/187 - 1s - loss: 0.2230 - accuracy: 0.9217
Epoch 22/100
187/187 - 1s - loss: 0.2181 - accuracy: 0.9216
Epoch 23/100
187/187 - 1s - loss: 0.2103 - accuracy: 0.9260
Epoch 24/100
187/187 - 1s - loss: 0.2048 - accuracy: 0.9266
Epoch 25/100
187/187 - 1s - loss: 0.2015 - accuracy: 0.9264
Epoch 26/100
187/187 - 1s - loss: 0.1981 - accuracy: 0.9279
Epoch 27/100
187/187 - 1s - loss: 0.1953 - accuracy: 0.9292
Epoch 28/100
187/187 - 1s - loss: 0.1948 - accuracy: 0.9291
Epoch 29/100
187/187 - 1s - loss: 0.1881 - accuracy: 0.9321

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 93

Epoch 30/100
187/187 - 1s - loss: 0.1871 - accuracy: 0.9308
Epoch 31/100
187/187 - 1s - loss: 0.1861 - accuracy: 0.9311
Epoch 32/100
187/187 - 1s - loss: 0.1803 - accuracy: 0.9338
Epoch 33/100
187/187 - 1s - loss: 0.1773 - accuracy: 0.9350
Epoch 34/100
187/187 - 1s - loss: 0.1743 - accuracy: 0.9348
Epoch 35/100
187/187 - 1s - loss: 0.1728 - accuracy: 0.9365
Epoch 36/100
187/187 - 1s - loss: 0.1700 - accuracy: 0.9360
Epoch 37/100
187/187 - 1s - loss: 0.1696 - accuracy: 0.9362
Epoch 38/100
187/187 - 1s - loss: 0.1682 - accuracy: 0.9374
Epoch 39/100
187/187 - 1s - loss: 0.1648 - accuracy: 0.9389
Epoch 40/100
187/187 - 2s - loss: 0.1661 - accuracy: 0.9388
Epoch 41/100
187/187 - 1s - loss: 0.1624 - accuracy: 0.9391
Epoch 42/100
187/187 - 2s - loss: 0.1594 - accuracy: 0.9396
Epoch 43/100
187/187 - 1s - loss: 0.1598 - accuracy: 0.9388
Epoch 44/100
187/187 - 1s - loss: 0.1591 - accuracy: 0.9396
Epoch 45/100
187/187 - 1s - loss: 0.1549 - accuracy: 0.9419
Epoch 46/100
187/187 - 2s - loss: 0.1554 - accuracy: 0.9412
Epoch 47/100
187/187 - 2s - loss: 0.1540 - accuracy: 0.9407
Epoch 48/100
187/187 - 1s - loss: 0.1529 - accuracy: 0.9412
Epoch 49/100
187/187 - 1s - loss: 0.1518 - accuracy: 0.9416
Epoch 50/100
187/187 - 1s - loss: 0.1513 - accuracy: 0.9421
Epoch 51/100
187/187 - 1s - loss: 0.1496 - accuracy: 0.9423
Epoch 52/100
187/187 - 1s - loss: 0.1483 - accuracy: 0.9429
Epoch 53/100
187/187 - 1s - loss: 0.1471 - accuracy: 0.9436

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 94

Epoch 54/100
187/187 - 1s - loss: 0.1461 - accuracy: 0.9437
Epoch 55/100
187/187 - 1s - loss: 0.1459 - accuracy: 0.9443
Epoch 56/100
187/187 - 1s - loss: 0.1447 - accuracy: 0.9435
Epoch 57/100
187/187 - 2s - loss: 0.1420 - accuracy: 0.9443
Epoch 58/100
187/187 - 1s - loss: 0.1384 - accuracy: 0.9459
Epoch 59/100
187/187 - 1s - loss: 0.1407 - accuracy: 0.9464
Epoch 60/100
187/187 - 1s - loss: 0.1398 - accuracy: 0.9464
Epoch 61/100
187/187 - 1s - loss: 0.1379 - accuracy: 0.9458
Epoch 62/100
187/187 - 1s - loss: 0.1382 - accuracy: 0.9459
Epoch 63/100
187/187 - 1s - loss: 0.1371 - accuracy: 0.9465
Epoch 64/100
187/187 - 1s - loss: 0.1368 - accuracy: 0.9471
Epoch 65/100
187/187 - 1s - loss: 0.1354 - accuracy: 0.9465
Epoch 66/100
187/187 - 1s - loss: 0.1363 - accuracy: 0.9460
Epoch 67/100
187/187 - 1s - loss: 0.1351 - accuracy: 0.9472
Epoch 68/100
187/187 - 1s - loss: 0.1347 - accuracy: 0.9472
Epoch 69/100
187/187 - 1s - loss: 0.1329 - accuracy: 0.9490
Epoch 70/100
187/187 - 1s - loss: 0.1328 - accuracy: 0.9471
Epoch 71/100
187/187 - 1s - loss: 0.1315 - accuracy: 0.9481
Epoch 72/100
187/187 - 1s - loss: 0.1304 - accuracy: 0.9479
Epoch 73/100
187/187 - 1s - loss: 0.1282 - accuracy: 0.9503
Epoch 74/100
187/187 - 1s - loss: 0.1304 - accuracy: 0.9478
Epoch 75/100
187/187 - 1s - loss: 0.1295 - accuracy: 0.9495
Epoch 76/100
187/187 - 1s - loss: 0.1281 - accuracy: 0.9492
Epoch 77/100
187/187 - 1s - loss: 0.1278 - accuracy: 0.9496

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 95

Epoch 78/100
187/187 - 1s - loss: 0.1253 - accuracy: 0.9500
Epoch 79/100
187/187 - 1s - loss: 0.1281 - accuracy: 0.9482
Epoch 80/100
187/187 - 1s - loss: 0.1261 - accuracy: 0.9506
Epoch 81/100
187/187 - 1s - loss: 0.1245 - accuracy: 0.9502
Epoch 82/100
187/187 - 1s - loss: 0.1239 - accuracy: 0.9501
Epoch 83/100
187/187 - 1s - loss: 0.1264 - accuracy: 0.9503
Epoch 84/100
187/187 - 1s - loss: 0.1235 - accuracy: 0.9508
Epoch 85/100
187/187 - 1s - loss: 0.1235 - accuracy: 0.9497
Epoch 86/100
187/187 - 1s - loss: 0.1219 - accuracy: 0.9513
Epoch 87/100
187/187 - 1s - loss: 0.1226 - accuracy: 0.9515
Epoch 88/100
187/187 - 1s - loss: 0.1224 - accuracy: 0.9502
Epoch 89/100
187/187 - 1s - loss: 0.1195 - accuracy: 0.9522
Epoch 90/100
187/187 - 1s - loss: 0.1196 - accuracy: 0.9527
Epoch 91/100
187/187 - 1s - loss: 0.1198 - accuracy: 0.9513
Epoch 92/100
187/187 - 1s - loss: 0.1203 - accuracy: 0.9520
Epoch 93/100
187/187 - 1s - loss: 0.1183 - accuracy: 0.9513
Epoch 94/100
187/187 - 1s - loss: 0.1176 - accuracy: 0.9527
Epoch 95/100
187/187 - 1s - loss: 0.1180 - accuracy: 0.9528
Epoch 96/100
187/187 - 1s - loss: 0.1170 - accuracy: 0.9523
Epoch 97/100
187/187 - 1s - loss: 0.1180 - accuracy: 0.9514
Epoch 98/100
187/187 - 1s - loss: 0.1168 - accuracy: 0.9536
Epoch 99/100
187/187 - 1s - loss: 0.1167 - accuracy: 0.9519
Epoch 100/100
187/187 - 1s - loss: 0.1156 - accuracy: 0.9522
187/187 - 0s
44/44 - 0s

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 96

Fit ---
Train evaluation --> accuracy: 0.9568
Test evaluation --> accuracy: 0.9341
Time elapsed: 2m:13s

Total time: 1h:06m:14s

Final results ========================= >>
Duration: 1h:06m:14s
--
Neural network --> accuracy: 0.9341

[16]: atom.results

[16]: metric_bo time_bo metric_train metric_test time_fit time
NN 0.948115 1h:04m:01s 0.956797 0.93407 2m:13s 1h:06m:14s

[17]: atom.nn.plot_confusion_matrix(dataset="test", normalize=False, title=None,␣
↪→figsize=None, filename="NN_confusion2", display=True)

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 97

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

empty

Th. Barmpakos 98

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

APPENDIX C. ARM MAIN PROGRAM

C++ code for the baremetal application: app.cpp
//set eigen to operate on free size matricied
#define EIGEN_STACK_ALLOCATION_LIMIT 0

#include <iostream>
#include <Eigen/Dense>
#include "xparameters.h"
#include "xil_io.h"
#include "xuartps.h"
#include "xtime_l.h"
#include "sleep.h"

using namespace std;
using namespace Eigen;

#define classes 21

#define In_shape_i 20
#define In_shape_j 14

#define conv1_kernel 7
#define conv1_filters 94
#define conv1_shape_i conv1_kernel*conv1_filters
#define conv1_shape_j In_shape_j
#define bias1_len conv1_filters
#define Out1_shape_i In_shape_i - conv1_kernel + 1
#define Out1_shape_j conv1_filters

#define conv2_kernel 5
#define conv2_filters 86
#define conv2_shape_i conv2_kernel*conv2_filters
#define conv2_shape_j Out1_shape_j
#define bias2_len conv2_filters
#define Out2_shape_i Out1_shape_i - conv2_kernel + 1
#define Out2_shape_j conv2_filters

#define dense4_shape_i (Out2_shape_i)*Out2_shape_j
#define dense4_shape_j classes
#define bias4_len classes

#define scaler_mean_len In_shape_j
#define scaler_std_len In_shape_j

#define buffer_size In_shape_j*4
#define samples_num 50

#define UART_MEM_BASE_ADDR XPAR_XUARTPS_0_BASEADDR

char Uart_Menu(void);

Th. Barmpakos 99

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

template <typename M>
void InitMatrixFromFile(DenseBase <M>& A);

template <typename M>
void InitMatrixZeros(DenseBase <M>& A);

int main()
{

char c;
bool isRealTimeEnabled = true;
float sum, max, f;

u8* buffer = new u8[buffer_size];
float income_line[In_shape_j];

XTime tStart, tEnd;

//Create a map to the memory where c++ array exists
Map<Array<float, 1, In_shape_j >> Input_c(income_line);

Matrix<float, In_shape_i , In_shape_j > Input;

Matrix<float, conv1_shape_i , conv1_shape_j > conv1;
Matrix<float, 1, bias1_len > bias1;
Matrix<float, Out1_shape_i , Out1_shape_j > Out1;

Matrix<float, conv2_shape_i , conv2_shape_j > conv2;
Matrix<float, 1, bias2_len > bias2;
Matrix<float, Out2_shape_i , Out2_shape_j , RowMajor > Out2;

//Create a map to the memory that can read Out2 matrix as flatten
Map<Matrix<float, 1, dense4_shape_i >> Out3(Out2.data(), Out2.size());

Matrix<float, dense4_shape_i , dense4_shape_j > dense4;
Matrix<float, 1, bias4_len > bias4;

Matrix<float, 1, classes> Output;
MatrixXf::Index maxCol;

Matrix<float, 1, scaler_mean_len > Scaler_mean;
Matrix<float, 1, scaler_std_len > Scaler_std;

//This matrix stores testset's samples for inference
Matrix<float, samples_num*conv1_shape_i , conv1_shape_j > DataSetMatrix;

while(1){
//display message and return character//
c = Uart_Menu();
if (c == '1'){

//==//
//===============START Input sample generation================//
// This part fills with zeros each matrix of the CNN including the

Scaler.

Th. Barmpakos 100

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

// Values for each matrix are 32-bit float numbers.
print("\nStarting ...\n\r");
InitMatrixZeros(Input); //
print("Conv1 weights and biases loaded with zeros ... ok\n\r");
InitMatrixZeros(conv1);
InitMatrixZeros(bias1);
print("Conv1 weights and biases loaded with zeros ... ok\n\r");
InitMatrixZeros(conv2);
InitMatrixZeros(bias2);
print("Conv2 weights and biases loaded with zeros ... ok\n\r");
InitMatrixZeros(dense4);
InitMatrixZeros(bias4);
print("Dense weights and biases loaded with zeros ... ok\n\r");
InitMatrixZeros(Scaler_mean);
InitMatrixZeros(Scaler_std);
print("Scaler mean and std values loaded with zeros ... ok\n\r");
print("Finished ... ok!\n\r");
//==//
//=====================END Input sample generation==================//

}
else if(c == '2'){ //Initialize CNN from file - Transfer CNN

//==//
//=======================START COEFF FROM UART======================//
// This part transfers the trained CNN from PC to ARM byte by byte from

file.bin.
// Values for each matrix are 32-bit float numbers.
print("\nSend a .bin file\n\r");
InitMatrixFromFile(conv1); //Read 36,848 bytes for conv1 weights.
InitMatrixFromFile(bias1); //Read 376 bytes for conv1 biases.
print("Conv1 weights and biases loaded...ok\n\r");
InitMatrixFromFile(conv2); //Read 161,680 bytes for conv2 weights

.
InitMatrixFromFile(bias2); //Read 344 bytes for conv2 biases.
print("Conv2 weights and biases loaded...ok\n\r");
InitMatrixFromFile(dense4); //Read 72,240 bytes for dense weights.
InitMatrixFromFile(bias4); //Read 84 bytes for dense biases.
print("Dense weights and biases loaded...ok\n\r");
InitMatrixFromFile(Scaler_mean); //Read 56 bytes for scaler mean.
InitMatrixFromFile(Scaler_std); //Read 56 bytes for scaler std.
print("Scaler mean and std values loaded...ok\n\r");
//==//
//========================END COEFF FROM UART=======================//

}
else if(c == '3'){//-------Choose to load samples from file

isRealTimeEnabled = false; //---realtime disabled
print("\nSend a .bin file\n");

InitMatrixFromFile(DataSetMatrix); //load dataset from uart binary file

//--------Standardize values row by row using mean and std--------//
for(int i=0; i<samples_num*In_shape_i; i++){

DataSetMatrix.row(i) = (DataSetMatrix.row(i)-Scaler_mean).
cwiseQuotient(Scaler_std);

Th. Barmpakos 101

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

}
}
else if(c=='4'){

isRealTimeEnabled = true;
}
else if(c=='5'){

if (isRealTimeEnabled == false){
for (int i=0; i<samples_num; i++){

//XTime_GetTime((XTime *) &tStart); //Uncomment to start timer
Input = DataSetMatrix.block<In_shape_i , In_shape_j >(i*In_shape_i , 0)

;

//----------------------Start Inference ------------------------//
//-------------First convolutional layer-----------//
for (int j = 0; j < conv1_filters; j++)

for (int i = 0; i < Out1_shape_i; i++)
Out1(i,j) = Input.block<conv1_kernel , In_shape_j >(i, 0).

cwiseProduct(conv1.block<conv1_kernel , conv1_shape_j >(j * conv1_kernel ,0))
.sum() + bias1(j);

//relu activation function
Out1 = Out1.cwiseMax(0);

//-------------Second convolutional layer----------//
for (int j = 0; j < conv2_filters; j++)

for (int i = 0; i < Out2_shape_i; i++)
Out2(i, j) = Out1.block<conv2_kernel , Out1_shape_j >(i, 0).

cwiseProduct(conv2.block<conv2_kernel , conv2_shape_j >(j * conv2_kernel , 0)
).sum() + bias2(j);

//relu activation function
Out2 = Out2.cwiseMax(0);

//-------------Flatten layer-----------------------//
Map<Matrix<float, 1, dense4_shape_i >> Out3(Out2.data(), Out2.size())

;
//-------------Fully connected layer---------------//
Output = Out3 * dense4 + bias4;

//softmax activation function
Output = Output.array().exp();
sum = Output.sum();
Output=Output/sum;

max = Output.maxCoeff(&maxCol);

cout << "sample" << i << "\tclass: " << maxCol << "\tpossibility: "
<< max << endl;

XTime_GetTime((XTime *) &tEnd);
f=1.0*(tEnd - tStart) / (COUNTS_PER_SECOND/1000000);
cout << "Completed\n\rIt took: "<< f << "us"<< endl;

//===//
//break;

Th. Barmpakos 102

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

}
}
else{

print("Open UART\n\r");
XUartPs_RecvByte(UART_MEM_BASE_ADDR);
sleep(3);
while(XUartPs_IsReceiveData(UART_MEM_BASE_ADDR)){

XUartPs_RecvByte(UART_MEM_BASE_ADDR);
}
print("waiting bytes\n");

while (1){

//XTime_GetTime((XTime *) &tStart);

Input.block<In_shape_i -1, In_shape_j >(0, 0)=Input.block<In_shape_i
-1, In_shape_j >(1, 0);

for(int i=0; i<buffer_size; i++){
*(buffer+i)=XUartPs_RecvByte(UART_MEM_BASE_ADDR);

}
memcpy(&income_line , buffer, In_shape_j*sizeof(float));
Input.row(In_shape_i -1) = Input_c;
Input.row(In_shape_i -1) = (Input.row(In_shape_i -1)-Scaler_mean).

cwiseQuotient(Scaler_std);

//---------------------Start Inference --------------------------//
//-------------First convolutional layer-----------//
for (int j = 0; j < conv1_filters; j++)

for (int i = 0; i < Out1_shape_i; i++)
Out1(i,j) = Input.block<conv1_kernel , In_shape_j >(i, 0).

cwiseProduct(conv1.block<conv1_kernel , conv1_shape_j >(j * conv1_kernel ,0))
.sum() + bias1(j);

//relu activation function
Out1 = Out1.cwiseMax(0);

//-------------Second convolutional layer----------//
for (int j = 0; j < conv2_filters; j++)

for (int i = 0; i < Out2_shape_i; i++)
Out2(i, j) = Out1.block<conv2_kernel , Out1_shape_j >(i, 0).

cwiseProduct(conv2.block<conv2_kernel , conv2_shape_j >(j * conv2_kernel , 0)
).sum() + bias2(j);

//relu activation function
Out2 = Out2.cwiseMax(0);

//-------------Flatten layer-----------------------//
Map<Matrix<float, 1, dense4_shape_i >> Out3(Out2.data(), Out2.size())

;
//-------------Fully connected layer---------------//
Output = Out3 * dense4 + bias4;

Th. Barmpakos 103

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

//softmax activation function
Output = Output.array().exp();
sum = Output.sum();
Output=Output/sum;

max = Output.maxCoeff(&maxCol);

cout << "class: " << maxCol << "\tpossibility: " << max << endl;
//XTime_GetTime((XTime *) &tEnd);
//f=1.0*(tEnd - tStart) / (COUNTS_PER_SECOND/1000000);
//cout << "Completed\n\rIt took: "<< f << "us"<< endl;
//==//
//break;

}
}

}
else if(c=='6'){

print("Okay, exiting...\n\r");
break;

}
}

}

/* Uart_Menu
* Prints a menu to terminal for the user and reads a byte from UART.
* Return: a char value e.g. the key from keyboard tha was sended from

terminal.
*/

char Uart_Menu(void){
//Print Message
print("\n\n\r==================Inference====================\n\r");
print("What would you like to do?\n\r");
print("1. Generate CNN weights randomly --for test only\n\r");
print("2. Load CNN weights from .bin file\n\r");
print("3. Load sample(s) from .bin file\n\r");
print("4. Enable realtime acqusition\n\r");
print("5. Run Inference\n\r");
print("6. Exit\n\r");

return XUartPs_RecvByte(UART_MEM_BASE_ADDR);
}

/* InitMatrixFromFile
* This function reads bytes from UART and cast them as a 32-bit float
* in order to fill an Eigen Matrix.
* Argument: An Eigen Matrix.

*/
template <typename M>
void InitMatrixFromFile(DenseBase <M>& A){

u8 buffer[4];
float tmp;

Th. Barmpakos 104

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

//loop through each matrix's element
for (int i = 0; i < A.rows(); i++) {

for (int j = 0; j < A.cols(); j++) {
//ARM reads 4 bytes from UART's FIFO
buffer[0]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[1]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[2]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);
buffer[3]=XUartPs_RecvByte(UART_MEM_BASE_ADDR);

//cast buffer[4] to a 32-bit float number
memcpy(&tmp, &buffer, sizeof(float));

A(i,j)=tmp; //copy tmp to matrix
}

}
}

/* InitMatrixZeros
* This function fills an Eigen Matrix with zeros.
* Argument: An Eigen Matrix.

*/
template <typename M>
void InitMatrixZeros(DenseBase <M>& A){

for (int i = 0; i < A.rows(); i++) {
for (int j = 0; j < A.cols(); j++) {

A(i,j)=0;
}

}
}

Th. Barmpakos 105

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

Th. Barmpakos 106

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

REFERENCES

[1] Wikipedia Contributors, “List of sign languages,” Wikipedia, Apr. 19, 2019.
https://en.wikipedia.org/wiki/List_of_sign_languages (accessed Oct. 11, 2021).

[2] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,” IEEE Transactions on Systems, Man
and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 3, pp. 311–324, May 2007, doi:
10.1109/tsmcc.2007.893280.

[3] E. Costello,RandomHouseWebster’s concise American Sign Language dictionary. NewYork: Bantam,
2002.

[4] M. S. Kibbanahalli Shivalingappa, H. Ben Abdessalem, and C. Frasson, “RealTime Gesture
Recognition Using Deep Learning Towards Alzheimer’s Disease Applications,” Brain Function
Assessment in Learning, pp. 75–86, 2020, doi: 10.1007/9783030607357_8.

[5] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction myoelectric control,” IEEE
Transactions on Biomedical Engineering, vol. 40, no. 1, pp. 82–94, 1993, doi: 10.1109/10.204774.

[6] Wikipedia Contributors, “Realtime computing,” Wikipedia, Apr. 29, 2019.
https://en.wikipedia.org/wiki/Realtime_computing (accessed Oct. 11, 2021).

[7] M. I. Sadek, M. N. Mikhael, and H. A. Mansour, “A new approach for designing a smart glove for Arabic
Sign Language Recognition system based on the statistical analysis of the Sign Language,” 2017 34th
National Radio Science Conference (NRSC), Mar. 2017, doi: 10.1109/nrsc.2017.7893499.

[8] R. M. McGuire, J. HernandezRebollar, T. Starner, V. Henderson, H. Brashear, and D. S. Ross, “Towards
a oneway American Sign Language translator,” Sixth IEEE International Conference on Automatic Face
and Gesture Recognition, 2004. Proceedings., doi: 10.1109/afgr.2004.1301602.

[9] P. Vijayalakshmi and M. Aarthi, “Sign language to speech conversion,” 2016 International Conference
on Recent Trends in Information Technology (ICRTIT), Apr. 2016, doi: 10.1109/icrtit.2016.7569545.

[10] “Zybo Z7 Reference Manual Digilent Reference,” digilent.com.
https://digilent.com/reference/programmablelogic/zyboz7/referencemanual (accessed Apr. 30,
2022).

[11] K. Kudrinko, E. Flavin, X. Zhu, and Q. Li, “Wearable SensorBased Sign Language Recognition: A
Comprehensive Review,” IEEE Reviews in Biomedical Engineering, vol. 14, pp. 82–97, 2021, doi:
10.1109/rbme.2020.3019769.

[12] F. Chollet, Deep Learning with Python. Shelter Island (New York, Estados Unidos): Manning, Cop,
2018.

[13] A. Dertat, “Applied Deep Learning Part 3: Autoencoders,” Medium, Oct. 03, 2017.
https://towardsdatascience.com/applieddeeplearningpart3autoencoders1c083af4d798

[14] J. Zhai, S. Zhang, J. Chen and Q. He, ”Autoencoder and Its Various Variants,” 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 415419, doi:
10.1109/SMC.2018.00080.

Th. Barmpakos 107

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

[15] F. MorenoVera, ”Performing Deep Recurrent Double QLearning for Atari Games,” 2019 IEEE
Latin American Conference on Computational Intelligence (LACCI), 2019, pp. 14, doi: 10.1109/LA
CCI47412.2019.9036763.

[16] K. Nyuytiymbiy, “Parameters and Hyperparameters in Machine Learning and Deep Learning,”Medium,
Apr. 05, 2021. https://towardsdatascience.com/parametersandhyperparametersaa609601a9ac.

[17] Pitsis, George. (2018). Design and Implementation of an FPGABased Convolutional Neural Network
Accelerator.

[18] E. Charniak, Introduction to deep learning. Cambridge, Ma: Mit Press, 2018.

[19] B. Ding, H. Qian and J. Zhou, ”Activation functions and their characteristics in deep neural
networks,” 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 18361841, doi:
10.1109/CCDC.2018.8407425.

[20] Z. Li, H. Li, X. Jiang, B. Chen, Y. Zhang and G. Du, ”Efficient FPGA Implementation of Softmax Function
for DNN Applications,” 2018 12th IEEE International Conference on Anticounterfeiting, Security, and
Identification (ASID), 2018, pp. 212216, doi: 10.1109/ICASID.2018.8693206.

[21] S. Verma, “MultiLabel Image Classification with Neural Network | Keras,” Medium, Oct.
05, 2021. https://towardsdatascience.com/multilabelimageclassificationwithneuralnetworkkeras
ddc1ab1afede (accessed Oct. 24, 2021).

[22] K. O. Jimoh, A. O. Ajayi, and I. K. Ogundoyin, “Template Matching Based Sign Language Recognition
System for Android Devices,” FUOYE Journal of Engineering and Technology, vol. 5, no. 1, Mar. 2020,
doi: 10.46792/fuoyejet.v5i1.465.

[23] M. A. Ahmed, B. B. Zaidan, A. A. Zaidan, M. M. Salih, and M. M. bin Lakulu, “A Review on Systems
Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017,”
Sensors, vol. 18, no. 7, p. 2208, Jul. 2018, doi: 10.3390/s18072208.

[24] S. Jiang et al., “Feasibility of WristWorn, RealTime Hand, and Surface Gesture Recognition via sEMG
and IMU Sensing,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3376–3385, Aug.
2018, doi: 10.1109/TII.2017.2779814.

[25] A. Wadhawan and P. Kumar, “Sign Language Recognition Systems: A Decade Systematic Literature
Review,” Archives of Computational Methods in Engineering, Dec. 2019, doi: 10.1007/s11831019
093842.

[26] [63]Q. Munib, M. Habeeb, B. Takruri, and H. A. AlMalik, “American sign language (ASL) recognition
based on Hough transform and neural networks,” Expert Systems with Applications, vol. 32, no. 1, pp.
24–37, Jan. 2007, doi: 10.1016/j.eswa.2005.11.018.

[27] W. Tangsuksant, S. Adhan and C. Pintavirooj, ”American Sign Language recognition by using 3D
geometric invariant feature and ANN classification,” The 7th 2014 Biomedical Engineering International
Conference, 2014, pp. 15, doi: 10.1109/BMEiCON.2014.7017372.

[28] M. M. Islam, S. Siddiqua and J. Afnan, ”Real time Hand Gesture Recognition using different algorithms
based on American Sign Language,” 2017 IEEE International Conference on Imaging, Vision & Pattern
Recognition (icIVPR), 2017, pp. 16, doi: 10.1109/ICIVPR.2017.7890854.

[29] M. Zamani and H. R. Kanan, ”Saliency based alphabet and numbers of American sign language
recognition using linear feature extraction,” 2014 4th International Conference on Computer and
Knowledge Engineering (ICCKE), 2014, pp. 398403, doi: 10.1109/ICCKE.2014.6993442.

Th. Barmpakos 108

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

[30] P. V. V. Kishore, M. V. D. Prasad, D. A. Kumar and A. S. C. S. Sastry, ”Optical Flow Hand Tracking
and Active Contour Hand Shape Features for Continuous Sign Language Recognition with Artificial
Neural Networks,” 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016, pp.
346351, doi: 10.1109/IACC.2016.71.

[31] D. Kelly, J. Reilly Delannoy, J. Mc Donald, and C. Markham, “A framework for continuous multimodal
sign language recognition,” Proceedings of the 2009 international conference on Multimodal interfaces
 ICMIMLMI ’09, 2009, doi: 10.1145/1647314.1647387.

[32] B. G. Lee and S. M. Lee, “Smart Wearable Hand Device for Sign Language Interpretation System
With Sensors Fusion,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1224–1232, Feb. 2018, doi:
10.1109/jsen.2017.2779466.

[33] S. Yin et al., “Research on Gesture Recognition Technology of Data Glove Based on Joint Algorithm,”
Proceedings of the 2018 International Conference on Mechanical, Electronic, Control and Automation
Engineering (MECAE 2018), 2018, doi: 10.2991/mecae18.2018.8.

[34] S. P. Y. Jane and S. Sasidhar, “Sign Language Interpreter: Classification of Forearm EMG and
IMU Signals for Signing Exact English *,” 2018 IEEE 14th International Conference on Control and
Automation (ICCA), Jun. 2018, doi: 10.1109/icca.2018.8444266.

[35] J. Galka, M. Masior, M. Zaborski, and K. Barczewska, “Inertial Motion Sensing Glove for Sign Language
Gesture Acquisition and Recognition,” IEEE Sensors Journal, vol. 16, no. 16, pp. 6310–6316, Aug.
2016, doi: 10.1109/jsen.2016.2583542.

[36] K. Li, Z. Zhou, and C.H. Lee, “Sign Transition Modeling and a Scalable Solution to Continuous Sign
Language Recognition for RealWorld Applications,” ACM Transactions on Accessible Computing, vol.
8, no. 2, pp. 1–23, Jan. 2016, doi: 10.1145/2850421.

[37] N. Tubaiz, T. Shanableh, and K. Assaleh, “GloveBased Continuous Arabic Sign Language Recognition
in UserDependent Mode,” IEEE Transactions on HumanMachine Systems, vol. 45, no. 4, pp. 526–
533, Aug. 2015, doi: 10.1109/thms.2015.2406692.

[38] Y. Li, X. Chen, X. Zhang, K. Wang, and J. Yang, “Interpreting sign components from accelerometer
and sEMG data for automatic sign language recognition,” 2011 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Aug. 2011, doi: 10.1109/iembs.2011.6090910.

[39] F. Wang, S. Zhao, X. Zhou, C. Li, M. Li, and Z. Zeng, “An Recognition–Verification Mechanism for
RealTime Chinese Sign Language Recognition Based on MultiInformation Fusion,” Sensors, vol. 19,
no. 11, p. 2495, May 2019, doi: 10.3390/s19112495.

[40] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for LargeScale Image
Recognition,” arXiv.org, 2014. https://arxiv.org/abs/1409.1556.

[41] S. B. J, “A friendly Introduction to Siamese Networks,” Medium, Jan. 29, 2021.
https://towardsdatascience.com/afriendlyintroductiontosiamesenetworks85ab17522942.

[42] P. Deekshith chary, Dr.R.P.Singh ”Review on Advanced Machine Learning Model: ScikitLearn”
International Journal of Scientific Research and Engineering Development (IJSRED), vol. 3, no. 4 pp.
526529.

[43] R. Fatmi, S. Rashad, and R. Integlia, “Comparing ANN, SVM, and HMM based Machine Learning
Methods for American Sign Language Recognition using Wearable Motion Sensors,” 2019 IEEE
9th Annual Computing and Communication Workshop and Conference (CCWC), Jan. 2019, doi:
10.1109/ccwc.2019.8666491.

Th. Barmpakos 109

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

[44] L. Li, S. Jiang, P. B. Shull, and G. Gu, “SkinGest: artificial skin for gesture recognition via filmy
stretchable strain sensors,” Advanced Robotics, vol. 32, no. 21, pp. 1112–1121, Jul. 2018, doi:
10.1080/01691864.2018.1490666.

[45] J. Wu, L. Sun, and R. Jafari, “A Wearable System for Recognizing American Sign Language in Real
Time Using IMU and Surface EMG Sensors,” IEEE Journal of Biomedical and Health Informatics, vol.
20, no. 5, pp. 1281–1290, Sep. 2016, doi: 10.1109/jbhi.2016.2598302.

[46] C. Mummadi et al., “RealTime and Embedded Detection of Hand Gestures with an IMUBased Glove,”
Informatics, vol. 5, no. 2, p. 28, Jun. 2018, doi: 10.3390/informatics5020028.

[47] C. Savur and F. Sahin, “American Sign Language Recognition system by using surface EMG signal,”
2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2016, doi:
10.1109/smc.2016.7844675.

[48] J. Wu, Y. Li, and Y. Ma, “Comparison of XGBoost and the Neural Network model on the classbalanced
datasets,” IEEE Xplore, Nov. 01, 2021. https://ieeexplore.ieee.org/document/9647373 (accessed Sep.
02, 2022).

[49] S. Y. Mudugandla, “10 Hyperparameter optimization frameworks.,” Medium, Feb. 15, 2021.
https://towardsdatascience.com/10hyperparameteroptimizationframeworks8bc87bc8b7e3
(accessed Apr. 09, 2022).

[50] M. vd Boom, “ATOM: A Python package for fast exploration of machine learning pipelines,”
Medium, Sep. 18, 2021. https://towardsdatascience.com/atomapythonpackageforfastexploration
ofmachinelearningpipelines653956a16e7b (accessed Apr. 09, 2022).

[51] scikitlearn, “scikitlearn: machine learning in Python — scikitlearn 0.20.3 documentation,” Scikit
learn.org, 2019. https://scikitlearn.org/stable/

[52] S. Rong and Z. Baowen, “The research of regression model in machine learning field,” MATEC Web
of Conferences, vol. 176, p. 01033, 2018, doi: 10.1051/matecconf/201817601033.

[53] M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” The Stata
Journal: Promoting communications on statistics and Stata, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi:
10.1177/1536867x20909688.

[54] A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis: A detailed
tutorial,” AI Communications, vol. 30, no. 2, pp. 169–190, May 2017, doi: 10.3233/aic170729.

[55] S. Suthaharan, “Support Vector Machine,” Machine Learning Models and Algorithms for Big Data
Classification, vol. 36, pp. 207–235, 2016, doi: 10.1007/9781489976413_9.

[56] C. Wade, Handson gradient boosting with XGBoost and scikitlearn : perform accessible machine
learning and extreme gradient boosting with python. Birmingham: Packt Publishing, 2020.

[57] W. Gao et al., “HandTalker: A Multimodal Dialog SystemUsing Sign Language and 3D Virtual Human,”
Advances in Multimodal Interfaces — ICMI 2000, pp. 564–571, 2000, doi: 10.1007/354040063x_74.

[58] R. M. McGuire, J. HernandezRebollar, T. Starner, V. Henderson, H. Brashear and D. S. Ross, ”Towards
a oneway American sign language translator,” Sixth IEEE International Conference on Automatic Face
and Gesture Recognition, 2004. Proceedings., 2004, pp. 620625, doi: 10.1109/AFGR.2004.1301602.

[59] W. Gao, Gaolin Fang, Debin Zhao and Yiqiang Chen, ”Transition movement models for
large vocabulary continuous sign language recognition,” Sixth IEEE International Conference
on Automatic Face and Gesture Recognition, 2004. Proceedings., 2004, pp. 553558, doi:
10.1109/AFGR.2004.1301591.

Th. Barmpakos 110

American Sign Language Recognition via Sensor glove data analysis with deep learning An ARM Implementation

[60] Y. Li, X. Chen, X. Zhang, K. Wang and Z. J. Wang, ”A SignComponentBased Framework for Chinese
Sign Language Recognition Using Accelerometer and sEMGData,” in IEEE Transactions on Biomedical
Engineering, vol. 59, no. 10, pp. 26952704, Oct. 2012, doi: 10.1109/TBME.2012.2190734.

[61] M. Maebatake, I. Suzuki, M. Nishida, Y. Horiuchi and S. Kuroiwa, ”Sign Language Recognition Based
on Position and Movement Using MultiStream HMM,” 2008 Second International Symposium on
Universal Communication, 2008, pp. 478481, doi: 10.1109/ISUC.2008.56.

[62] RungHuei Liang and Ming Ouhyoung, ”A realtime continuous gesture recognition system for
sign language,” Proceedings Third IEEE International Conference on Automatic Face and Gesture
Recognition, 1998, pp. 558567, doi: 10.1109/AFGR.1998.671007.

[63] Gaolin Fang and W. Gao, ”A SRN/HMM system for signerindependent continuous sign language
recognition,” Proceedings of Fifth IEEE International Conference on Automatic Face Gesture
Recognition, 2002, pp. 312317, doi: 10.1109/AFGR.2002.1004172.

[64] W. Gao, G. Fang, D. Zhao, and Y. Chen, “A Chinese sign language recognition system based
on SOFM/SRN/HMM,” Pattern Recognition, vol. 37, no. 12, pp. 2389–2402, Dec. 2004, doi:
10.1016/j.patcog.2004.04.008.

[65] W. GAO, J. MA, J. WU, and C. WANG, “SIGN LANGUAGE RECOGNITION BASED ON
HMM/ANN/DP,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 14, no. 05,
pp. 587–602, Aug. 2000, doi: 10.1142/s0218001400000386.

[66] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and
practice,” Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.

[67] M. vd Boom, “Multiclass classification ATOM,” tvdboom.github.io.
https://tvdboom.github.io/ATOM/v4.13/examples/multiclass_classification/ (accessed Apr. 09, 2022).

[68] W. Koehrsen, “A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine
Learning,” Medium, Jun. 24, 2018. https://towardsdatascience.com/aconceptualexplanationof
bayesianmodelbasedhyperparameteroptimizationformachinelearningb8172278050f.

[69] L. Yen, “An Introduction to the Bootstrap Method,” Medium, Jan. 26, 2019.
https://towardsdatascience.com/anintroductiontothebootstrapmethod58bcb51b4d60

[70] R. Wood, “Deep Learning Primer with Keras,” Medium, Feb. 03, 2021.
https://towardsdatascience.com/deeplearningprimerwithkeras3958705882c5 (accessed Apr.
10, 2022).

[71] Keras, “Home Keras Documentation,” Keras.io, 2019. https://keras.io/

[72] “Eigen,” eigen.tuxfamily.org. https://eigen.tuxfamily.org/index.php?title=Main_Page (accessed Apr. 30,
2022).

[73] A. Ltd, “SIMD ISAs | Neon,” Arm Developer. https://developer.arm.com/architectures/instruction
sets/simdisas/neon (accessed Jan. 30, 2022).

Th. Barmpakos 111

	CONTENTS
	INTRODUCTION
	Sign Language
	The ideal sign language recognition system - Specifications
	Thesis goals
	Thesis organization

	BACKGROUND AND RELATED WORK
	Machine Learning
	Deep Learning
	Layers
	Convolution 1D Layer
	Fully Connected Layer

	Activation Functions
	Classification with Neural Networks
	One-hot encoded vector
	Multi-class and Multi-label Models

	Related Work
	Thesis contributions related to state of the art

	SYSTEM DESIGN - DATASET CREATION
	The Sensor Glove
	Data Sampling
	Sliding Window
	Pre Processing
	Conclusions

	MODEL DEVELOPMENT
	Baseline ML Methods
	Hyperparameter Tuning
	ML Results
	Using Convolution Neural Networks
	Model architecture
	CNN Hyperparameter tuning
	NN model on ATOM

	Results
	Conclusions

	AN ARM-BASED IMPLEMENTATION
	Experimental System Overview
	Software and Tools Used
	Define the CNN using Eigen
	Model transfer
	Testset Loaded
	Class prediction using Eigen
	Conclusion

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Code for Baseline ML
	Code for Our Proposed Method
	ARM Main program
	REFERENCES

