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Euvyapiotieg

OEhw va euyoploThow Vepud Tov emPBrénovta xodnynTy wou xOplo IdxwPBo AvopouAddxm yia
TNV BIBOXTIXY TOU YEVVOLOBWEL X0 TIC (PES ToL TEEATE PoNIdVTAC UE VoL ATOXTHOW Wi TATieN
exova Tou YEUaTog, OTmg Emlong xou ot PéAN TNE TeWeholg Lou emtponhc x.x. A. MeAd xou I1.
Tovvidtn. "Eva dudtepo euyapioted xat oTic utodhfhoug tng BBAod xng YeTin®y emotnuoy

ToUL Ue EUTNEETNOUY UE TOV XUAVTERO TEOTO GAO QUTO TO BLACTNUA TNG TEOETOWGIIS Uou.



Abstract

A Lie algebra is the tangent space at the identity element of a manifold that admits a group
structure in a way that the group operations of multiplication and inversion are smooth.
We will present the constructive proof of Sophus Lie’s Third Theorem as it is given in
Duistermaat and Kolk’s book Lie Groups | |. Tt is the unique constructive proof of
the third theorem that can be stated as; Every finite dimensional Lie algebra g is integrated
to a simply connected lie group G.

To prove the theorem we will use the infinite dimensional Banach space of paths of the
Lie algebra. This space is homeomorphic to all path spaces of Lie groups that have Lie
algebra g, not necessarily connected. We will search for solutions of differential equations of
homotopy classes and in order to do so we will have to use a g-valued 1-form and homology
and De Rahm cohomology classes. Through Stokes’ theorem we will see that integration is
well defined. The finite dimensional simply connected Lie group G will occur as a quotient

of two infinite dimensional Banach Lie groups.
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IMepiAndm

Mo dhyeBpa Lie elvon 0 eantduevog Ymeog ot Hovada Ulae TOAATAOTNTOS Ue SoUT) opddog
X0l OPUAEG TIG AMELXOVICELS TOU TOAATAAGIACUOU Xl TOU avTloTpogou. X1 Topoloo QY-
ola TaPOUCIALETAL 1) XUTAOHEVAC TIXT) ATOOEIEY Tou Teitou Vewpruatog Tou Sophus Lie dmwg
Yedptnxe and touc Duistermaat, Kolk oto Bi3hio Lie Groups | |. Eivou n povadn| xarta-
OXEVAC T AmOBELEY Tou Tpitou Pewphuatog Tou dlatutdveton we e€ng: o xdde dhyePea Lie
g TMETEPAOUEVNC OLIC TUOTC UTHRYEL LOVAOXT) ATAS GUVEXTIXT] OUdda Lie mou TNy ohoxAnpdVveL.

[t Ty om6detln tou Yewpruatog Yo YeeldoTEL Vo TEPACOUUE GTOV ATELOBIACTATO Y WEO
Banach twv govomatidyv tng dhyefpac. Autog elvon oUolopop@XOS UE TOUG YOPOUS TWY UO-
voTaTiv opddwy Lie mou €youv dhyefea Lie tnv g, oyt anopoitnta cuvextixoy. Ouctaotixd
avalNToUue AIGELS SLaPopIXY EELCMOEMY XAJCEWY OUOTOTIOC XoL Yia TOV ox0ond auTtod Vo yern-
GULOTIOLICOUUE Lol SLAPORIXT] LORP(PT| TTOU Vot UAC UETAPEREL UTO TWYV Y WOEO TWV UOVOTOTIWOY TNG
GAYEBROUC OTOV YWEO TWV UOVOTATIOV TNG OUAOAS Xal XAJCELS opoAoYiag xou cuvouoroylag De
Rahm. Méow tou Yewpruatoc Stokes Yo del€oupe 6Tl 1 ohoxhripwon optleton xohd. Tehixd
1 AmAd CUVEXTIXY| oUdda G TETERUOUEVNE BLAG TAONG TOU OROXANEMVEL TNV g Vo Teox el (¢
Tnhixo dYo drelpng didoTaong ouddwy Lie: tng opddag twv yovomatiwy oty dhyelpa pe TNy

ELXOVAL TWV OUOTOTUXOY UE TT| LOVAON LOVOTOTLOV.
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Introduction

A Lie group is a group that at the same time is a manifold and its Lie algebra is its tangent
space to the identity element. A Lie algebra is also the space of the left invariant vector
fields of the manifold and the exponential mapping is defined through integral curves of
left invariant vector fields from the Lie algebra to the Lie group. If the Lie algebra is finite
dimensional then the group’s connected component of the identity is exactly the product

of the images of the base elements via the exponential mapping.

1.1 Lie Groups

Definition 1.1.1. A Lie group G is a group that at the same time is C? manifold, such

that group operations of multiplication;

p:GxG—G

(z,y) — xy

and inversion;



Lie Groups 1.1

T =X
are C? mappings.

Example 1.1.2. Let M (n,R) be the space of n xn matrices with real enrties. Induced with
pointwise addition and scalar multiplication M (n,R) is a linear space and M (n,R) ~ R?".

Let A € M(n,R). Then the mappings
Sij ¢ A—R

AI—>aij

(where a;; the ij— entry of A) is a system of linear coordinates of M (n,R). Then for
the mapping det : M(n,R) — R one may right det = »_ s9n(0)S15(1) - - - Sno(n)- The set
GL(n,R) = {A € M(n,R) | det A # 0} of real invertiglee%natrices is the inverse image of
the open subset R\ {0} through det and the mapping det is continuous, so GL(n,R) is an

open subset of M(n,R). So we may consider it as a smooth manifold of dimension n? with

p: GL(n,R) x GL(n,R) — GL(n,R)

sk(u(A, B)) = ski(A)su(B)

i=1
Follows that u is smooth.

From Cramer’s rule we have that
t:GL(n,R) - GL(n,R)

A A1

is given by 1(A) = (det A)"1A®. So ¢ is also smooth. It follows that GL(n,R) is a Lie
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group.

Definition 1.1.3. Let G end H be Lie groups. A Lie group homomorphism is a smooth

map f: G — H such that f is a group homomorphism.
Now,

Definition 1.1.4. We define left translation by z

l.:G—G

y—ay

and right translation

re : G— G

y—=yx

The mappings 7, [, are diffeomorphisms G — G and group homomorhisms G — Sym(G).

Finally, for x € G we call conjugate mapping

Co:G—G

Y xyx_l

The mapping C, is an automorphism of G with inverse C,-1 and the mapping

C: G — Aut(G)
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z— Cy

is also a group homomorphism and ker C' = Z(G)

Let M be a smooth manifold and X(M) be the real linear space of smooth vector fields
on M.

Definition 1.1.5. We say that a vector field X € X(M) is left invariant if (I;), X = X
Vx € G or equivalently

X(zy) =Ty (l) X (y)
Vr,y € G.

One may see that left invariant vector fields are completely determined by their value
at the identity element X (e) € T.G. We write X% (M) for the set of left invariant vector

fields on M.

Proposition 1.1.6. Let X € T.G. We define the vector field ux = Te(lz)(X), v € G.
Then the mapping
T.G — xH(G)

X'—)UX

is a linear isomorphism with inverse u — u(e).

Proof. From the definition of left invariant vector fields the mapping

@) - 1.6

u > u(e)

is an injection. We will demonstrate that it is also a surjection;

4



Lie Groups

1.1

Let f be the mapping
f:GxG—=>G

(z,y) = l(y)

differentiating for y at y = e in the direction X € T,G we get;

T.f:G—=TG

x> To(lp) X

that is also smooth. It follows that wx is a smooth vector field on G, so

T.G — xH(@)

X'—>UX

is a real linear mapping that is also a surjection. Indeed,

fixing a X € T.G and differentiating I, = [, o [, we get

Te (lﬂcy) = Ty(lx)Te(ly)

witch means that ux is a left invariant vector field. We get that X — ux is a surjection.

Finally, ux(e) = X so E :u +— u(e) is a bijection, hence a linear isomorphism with

inverse B! : X — uy

O

Definition 1.1.7. Let G be a Lie group and X € T.G. The curve ax : I — G where

I C R and a(to) = e, a(t) = ux(a(t)) is an integral curve of the vector field ux starting

at e. The integral curve ax is said to be maximal if I is the largest possible interval of de
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finition for a.

Lemma 1.1.8. Let G be a Lie group , X € T,.G and ax : I — G integral curve of the

vector field ux. Then a1(t) = ya(t), y € G, is also an integral curve for ux.

Proof. We have that

d d
%Gl(t) = Tely(a(t)) = Ta(t)ly%a(t)

= Taplyux (a(t)) = ux(ai(t))

because ux is left invariant. Follows that ya(t) is an integral curve for ux.

Proposition 1.1.9. Let G be a Lie group and X € T.G. Then;
1. ax is defined on R
2. ax(s+t) =ax(s)ax(t) Vs,t € R

3. The mapping
RxT.G— G

(t,X) — ax(t)

15 smooth.

Proof. 1. Let I C R be the domain of the integral curve ax beginning at e of the vector

field ux. Then there exists t; € [ and ax(t;) = x; € G. From Lemma 1.1.8,

a1 (t) := x1ax(t) is also an integral curve of ux beginning at x; with domain I.

From Re parametrization Theorem for integral curves (see Appendix A.1), the max-

imal integral curve of the vector field ux beginning at x1 will be as(t) := ax (t + t1).

The integral curve ag has domain I —¢;, which means that I C I —¢;, and s+¢; € I

Vs, t1 € I. It follows that I = R.
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2. Fixing an s € R we get that ax(s) € G and as we saw above the maximal integral

curve of uy beginning at ax(s) is ¢(t) := ax(s)ax/(t).

From Re parametrization Theorem for integral curves, d(t) := ax (s + t) will be also

an integral curve for ux beginning at ax(s).

From the uniqueness of maximal integral curves follows that c(t) = d(t).

3. The vector field ux is linearly dependent, that is, smoothly dependent from X.

Let ¢x be the flow of ux. Then the mapping

(X, t,x) = px(t, )

is smooth (c.f. Appendix A.1). More over,

(t, X) = aX(t) = QOX(t7 6)

RxT,G— G

is smooth.

O

Definition 1.1.10. (Exponential mapping) Let G be a Lie group, X € T.G and ax integral

curve of ux beginning at e. We define the exponential mapping;

exp 1= exPg

exp:1T.G — G

X — ax(l)
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Proposition 1.1.11. Let G be a Lie group, X € T.G and ax : R — G the integral curve

of the vector field ux beginning at e . Then Vs,t € R:
1. exp(sX) =ax(s)
2. exp(s +t)X = exp(sX)exp(tX)

3. The mapping exp : T.G — G s smooth and a local diffeomorphism at 0 and Toexp =
ldr. ¢

Proof. 1. Let ¢: R — G be a curve with ¢(t) := ax(st). Then ¢(0) = e and

d

ﬁc(t) = sax(st)

= sux(ax(st)) = usx(c(t))

So, ¢(t) is a maximal integral curve of the vector field usx beginning at e. So,

c(t) = asx(t), and for t = 1 we get the assertion.

2. From (1) and Proposition 1.1.9 we get

exp sX exptX = ax(s)ax(t)

=ax(s+1t)=exp(s+1t)X

3. In Proposition 1.1.9 we saw that the mapping

RxT,G—G

(t,X) — ax(t)
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is smooth. It follows that (1, X) — ax (1) is smooth, which proves the smoothness of

exp.

Now,

so that Tp(exp) = Idr,x and from the inverse function theorem exp will be a local
diffeomorphism at 0. So there exist open neighborhoods U of 0 € T.G and V of e€ G
such that exp(U) =V and exp |7 is a local diffeomorphism.

O]

Definition 1.1.12. (One Parameter Subgroup) A smooth homomorphism a: (R,4+) - G
is called a one parameter subgroup of G. In other words, a: (R, +) — G is a one parameter
subgroup of G if

a(s +1t) = a(s)a(t)
Vs,t € R and a(0) = e.

Proposition 1.1.13. (Characterization of One Parameter Subgroups) Let G be a Lie group
and X € T,G. Then

t—exptX

18 a one parameter subgroup of G.
Conversely, if a is a one parameter subgroup of G with a(0) = X then a(t) = exp(tX),

teR.
Proof. 1t is direct that ¢t — exptX is a one parameter subgroup of G.

9
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Now if a : (R,+) — G is a one parameter subgroup of G, then a(0) = e and

d d

aa(t) == ls=0 a(t + s)

So a is an integral curve of the vector field ux beginning at e. From uniqueness of integral

curves we get that a = ax and as we saw above, ax(t) = exptX. O

We saw that the mappings of right and left translation r, and [, are diffeomorphisms

G — G. For the mapping of the conjugation C, : G — G one may wright;

~1
Cyp=lgpor,

Y = xyxil

and Cy(e) = e. Differentiating C, at e we get a linear automorphism at T.G, so that

T.C, € GL(T.G)

Definition 1.1.14. Let G be a Lie group and « € G. We define

Ad, : G = T.G

Ad, =T.C,

The mapping;
Ad: G — GL(T.G)

10
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is called the adjoined mapping of G at T.G.
Proposition 1.1.15. Ad : G — GL(T.G) is a Lie group homomorphism.

Proof. The map

GxG—G

(z,y) — zyz ™!

is smooth. Differentiating at y for y = e we get that

G — End(T.G)

x — Ad,

is smooth and GL(T.G) is open at End(T.G) so Ad : G — GL(T.G) is smooth.
Now, C. = Ig = Ad(e) = It,¢. Differentiating Cy, = C,C, using the chain rule at e

we get Ad(zy) = AdxAdy so that Ad is a Lie group homomorphism. O

We saw that
Ad(e) =1 = It

and

TiGL(T.G) = End(T.G)
so the tangent mapping of Ad at e wil be linear T.G — End(T.G).
Definition 1.1.16. We define the linear mapping ad : T.G — End(1.G) with ad := T, Ad

We will later see that the mapping ad defines a product structure on T.G turning T.G

to an algebra on R.

11
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Theorem 1.1.17. Let G and H be Lie groups and ® : G — H be a Lie group homomorph-
ssm. Then forx € G and X € T.G:

1. T, ®(x) = % lt=0 ®(exptX)
2. ®(exp X) = exp(TeP(x))
Proof. Let X € T.G.

1. a(t) = ®(expg(tX)), a: R — H is a one parameter subgroup of H. Using the chain
rule we get that;

d
at lt=0 P(exptX) =

d

= % ‘t:O a(t) = Te‘I)TO expG(X) = Te(I)(X)

2. From the characherization of one parameter subgroups we get;

a(t) = Dexp(tX)) = exp(ta(0)) = exp (H(T.®(x)))

For t = 1 the assertion follows.

Corollary 1.1.18. Let x € G. Then
1. VX € T.G, vexp X~ = exp(Ad, (X))
2. VX € T.G, Ad(exp X) = e2X)
d
3. adx = T lt=0 Ad(exptX)
Proof. The proof is an application of Theorem 1.1.17 for the Lie group homomorphism;
1. o=C, ,2: G- G

2. &= Ad, ® : G — GL(T.G)

12
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O]

Remark 1.1.19. We saw that ad : T.G — End(T.G) and End(T.G) is a matrix group, so
we may write

exp(ady) = e¥x
where () is the matrix exponential.

Definition 1.1.20. Let G be a Lie group. Then for X,Y € T.(G) we define the Lie bracket
(X, Y] € T.G;
(X, Y]f=X(Y[)-Y(X[)

Vf e C%(G).

Lemma 1.1.21. Let G be a Lie group and X a left invariant vector field on G. Then X (g)

is the derivative at t = 0 of the curve t — gexp(tX). In particular

Xf(g)Z%\t:o flgexptX)

forge G and f € C®°(M)

Proof. The assertion holds for ¢ = e, and since X is left invariant it holds for all g € G
O

Theorem 1.1.22. Let G be a Lie group. Then VX,Y € T.G we have that;
(X, Y] =ad;(Y)
Proof. We compute;

(X, Y1) (9) = % im0 ¥ flgexptX) = L |, X f(gexpsy)

13



Lemma 1.1.23. The mapping

T.G xT.G —- T.G

(X,Y) — [X,Y]

1s bilinear and antisymmetric.

Proof. Bilinearity follows from linearity of ad : T.G — End(T.G).

14

Lie Groups 1.1
== \t 0 ]S o f(gexptXexpsY) — \S 05 ]t o f(gexpsY exptX)
d d
= 7 ls=0 o li=o (f(gexptX expsY) + f(g exp sY exp(—£X)))
It holds that
o (F(1,0) + F(0,6) = % oo F(t,1)
dt t=0 ) ) - dt t=0 )
So for F(x,y) = f(gexpxX exp sY exp(—yX)), fixing an s, we get that
d
(X, Y]f)(9) = - ls=0 !t 0 f(gexptX exp sY exp(—tX))
d
= 5 ls=0 |t 0 f(gexp(sAd(exptX)Y))
d
= = le=o (Ad(exptX)Y) f) (g)
= ((ad(X)Y) f) (9)
So we have that adx(Y) = [X,Y] for X, Y € g O



Lie Groups 1.1
For the antisymmetric property;
Let Z € T.G. Then for all s,t € R;
exp(tZ) = exp(sZ) exp(tZ) exp(—sZ)
= exp(tAd(exp sZ)Z)
and as we have already see;
d
pn li=0 exp(tZ) = Z = Ad(exp(sZ))Z
Now,
d
— |s=0 Z =0=ad(Z)Tyexp Z
ds
=ad(2)Z =1Z,7]
For Z = X +Y we have;
X+Y, X+Y]=0=
X X+ [X Y]+ [V Y]+ [V, X]=0=
[X’ Y] - - [Y’X]
O

Theorem 1.1.24. Let G, H be Lie groups and ® : G — H a Lie group homomorphism.

15
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Then VX,Y € T.G we have;
T.9([X,Y],) = [T.9X,T.Y ],

Proof. Observing that ® o C; = Cg(;) o ® from the chain rule we get T, (®oC;) =
Teq) (Adm), Te (Cé(z) o ‘I’) = Adq)(x) (@), so that

1P (Ady) = Ad@(:p) (@)

differentiating for x at = = e at the direction of X € T.G we get

Te(b o) adX = adTeq)(X) o Te©

hence,

Te®(adx)(Y) = adr,ox)Te®(Y)

O
Corollary 1.1.25. For all X,Y,Z € T.G we have;
Proof. Using Theorem 1.1.24 for & = Ad : G — GL(T.G)
we get
ad[X,Y](Z) = [adx,ady] (Z) =
(X, Y], Z] = adxady (Z) — adyadx (2) = [X, [Y, Z]] - [V, [X, Z]]
O

Equation 1.1.1 is called Jacobi identity.

16
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1.2 Lie Algebras

Definition 1.2.1. A real Lie algebra is a vector space g over R, together with a bilinear

mapping

(X,Y) — [X,Y]

gxg—9

witch is called the Lie bracket of g. The Lie bracket is antisymmetric and satisfies the

Jacobi identity.
For later use we will also need the following definition;

Definition 1.2.2. A Complex Lie algebra is a vector space g over C together with a Lie

bracket that is a complex bilinear mapping g X g — g.

Proposition 1.2.3. Let G be a Lie group and let X7(G) be the space of left invariant vector
fields of G. Then for X, Y € XE(G) we have [X,Y] € X1(G).

Proof. Tt is X € X%(G) so Vx € G we get X ' X witch by definition means that
Tl,oXol;l=X
If X,Y € X1(G) then X % X and Y ® Y Vz € G so for the Lie bracket of X,Y we get
X Y] [X,Y]
or,

(X,Y] € 25(G)

17
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Let G be a Lie group. The fact that the left invariant vector field are closed under
the Lie bracket operation combined with Proposition 1.1.6 allows us to write g for the Lie

algebra of G and
g= (TeGa ['7 ])

Example 1.2.4. Let V be a real vector space of finite dimension n and vq,...,v, be a
basis of V. Then there exists a unique linear isomorphism e, : R® — V ¢; — v; where

€1,...,en i8 an orthonormal basis of R™. If w1, ..., w, is another basis for V then

L:R" - R"

1
L:=e; ey

is a linear isomorphism, therefore a diffeomorphism. So V' has a unique manifold structure
independent of the choice of basis. The space of linear endomorphisms of V', End(V') with
pointwise addition and scalar multiplication is a linear space.

Let A € End(V). We write mat(A) = mat, A for the matrix A and the basis vy,...vp.

The mapping mat is a linear isomorphism.

End(V) — M(n,R)

and a diffeomorphism with

mat(GL(V)) = GL(n,R)

So GL(V) is an open subset of End(V'), so it is also a submanifold of End(V'). It follows
that GL(V) is a Lie group isomorphic to GL(n,R) and

T;GL(V) = gi(V) = End(V)

since GL(V') is an open subset of the linear space EndV.

18
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Let us consider the mapping;
det : GL(V) —» R*

Then T7R* = R so,
Trdet: End(V) - R

Let H € End(V). Then
d
Trdet H = i lt=0 det(I + tH)

But

det(I +tH) =1+ t(hi1 + ... + hyy) + 2°R(t, H)

where R is a polynomial. Differentianting for t at t = 0 we get
Trdet H="hi1+ ...+ hpn =trH

Definition 1.2.5. Let g,h be Lie algebras. A Lie algebra homomorphism is a linear

mapping ¢ : g — h such that for all X,Y € g

P [X, Y] = [p(X), o(Y)]

Proposition 1.2.6. Let G, H be Lie groups with Lie algebras g and b respectively. If

® : G — H is a Lie group homomorphism, then the tangent map of ® at the identity

TeD := ¢
g—b
s a Lie algebra homomorphism.
Proof. The proof is a direct application of Theorems 1.1.17 and 1.1.24. 0

19
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1.3 The connected component of the identity

Let G be a Lie group. Consider the set G° = {expX; ...expXy | k > 1, X; € g} where g is

a finite dimensional Lie algebra.
Lemma 1.3.1. G° is an open subset of G.

Proof. Let a € G°. Then there exists a positive integer £ > 1 and elements X1,..., X € ¢
such that a = exp(X1)...exp(Xx). The mapping exp : g — G is a local diffeomorphism at
0 so there exists an open neighborhood €2 of 0 in g such that € is diffeomorphic to an open
neighborhood of e in G.

Since left translation by a: I, : G — G is a diffeomorphism, we get that

la(exp(2)) = {exp(X1) ... exp(Xy) exp(X)} C G°

So a is an inner point of G° and it follows that G° is open in G. O

Lemma 1.3.2. Let G be a Lie group and H be a subgroup of G. If H is open in G then it

s also closed in G.

Proof. G has connected components, so Vr,y € G we have vtH = yH or xtH NyH = (.

(The connected components define an equivalence relation). So there exists a subset S of

G such that;
6=
and
siHNs;H =10
for ¢ # j.
Then
A" = sesLAJsngSH

20
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This is a disjoined union of open subsets, so that H¢ is open, hence H is closed. ]

Proposition 1.3.3. Let G be a Lie group. Then G° is the connected component of the

wdentity of G. Furthermore, G is connected if and only if G° = G .

Proof. G° is open, hence closed in G therefore a disjoined union of connected components.
Let us observe that G° is arcwise connected;
Let a € G°. One may write a = exp(X1)...exp(Xy) with £ > 1 and X;,..., X} € g.
So there exists a curve;

c:10,1] = G

t— exp(tXy)...exp(tXy)

The curve ¢(t) is continuous and smooth beginning at ¢(0) = e and ending at ¢(1) = a. It
follows that G° is arcwise connected, hence connected.

This means that G° is the connected component of G containing the identity. O

We may extend the above theory if g is an infinite dimensional Lie algebra, and a Banach
space. In this case we may use the inverse function theorem for Banach spaces along with
the uniform convergence of the product of the elements of the Lie algebra through the
exponential mapping | |. If g is not a Banach space then the image of the exponential

mapping does not necessarily cover the whole neighborhood of the identity| |
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The Baker-Campbell-Hausdorft

formula

In general for a Lie group exp X expY # expY exp X unless the group is commutative.
Using the Baker Campbell Hausdorff formula one may write the product exp X expY ex-
clusively as combinations of the Lie bracket.

A direct application of the formula is Lie’s Second Theorem: Every Lie algebra homo-
morphism can be integrated to a Lie group homomorphism with domain a simply connected

Lie group. In this thesis we will not state this result.

2.1 The tangent map of the exponential

For the proof of the Baker-Campbell-Hausdorff formula one needs to compute the tangent
map of the exponential mapping. The result has a unique interest and it will be used in

the following chapters as well.

Theorem 2.1.1. Let X € g. Then

1
Tx exp = Te(lepr) o / e—sadwds
0

1
= T(;‘ (Texp) (e} / esadz dS
0
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The tangent map of the exponential 2.1

Proof. We will show that if X|Y € g then

Tx exp(Y) = Te(lexp x) </01 Ad(exp(—sX))Yds>

We define F(X,Y) = (To(lexp x)) " Tx expY € g.

We will show that

dfe (F(X,Y)) = dfe. </01 Ad(exp(—sX))Yds)

for every smooth f € C°°(G). For the linear functional df. we have that;

1
af. (F(X,Y)) = /O df. (Ad(exp(~sX))Y )ds

From the chain rule we get

F(X,)Y)= oexp(—X)exp(X +tY) e T.G =g

9,
ot "=

Let g(s,t) = exp(—sX)exp(s(X +tY)) € G, s,t € R.
Then,
F(sX,sY) = 9 ] (s,t)
) - ot t=0 g\S,

Hence,

G (F(X, 7)) = £ im0 Flo(s,1)

and

1
/0 %dfe (F(sX,sY))ds = dfe(F(X,Y)) — dfe(F(0,0))

but F(0,0) = 0 so,

1
df.F(X,Y) = /0 &g (F(sx,57)) ds
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The tangent map of the exponential 2.1

f is a smooth real function, hence,

0 0 0 0 0
%dfe(F(SX’ SY)) = 7& |t=0 f(g(s,t)) = a ’t:O %f(g(s’t))

S

For s,t,u € R we get g(s + u,t) = exp(—sX)g(u,t) exp(s(X + tY)) so,

f(g(S +u, t)) = (f o lexp(st) o rexp(s(X+tY))) (g(u7 t))

and
0 0
D 1o(5.1)) = o humo Flos +.1)
hence,
0 0
% (g(S,t)) =d (f o lexp(st) o Texp(s(XthY)))e % ‘uzO g(u,t)
But,
2’ (ut)——X+(X+tY)—tY
ou u=0 g\u, 1) = -
SO

0
% (9(57 t)) =d (f © lexp(st) © Texp(s(XthY)))e (tY)
=td (f ° lexp(—sX) © Texp(s(X—i—tY)))e (Y)
Now, d (f 0 lexp(—sX) © rexp(s(x+ty)))e (Y) € R is smoothly dependent on ¢ so, differentiat-

ing td (f 0 lexp(—sX) © Texp(s(X—i—tY)))e (Y) for t at t = 0 we get the value of

d (f © lexp(—sX) © TGXP(S(X""tY)))e (Y)

at t = 0;
0 0

37 11=0 5/ (9(5,0)) = d (f © lexp(-s) © Texp(s(x)). (V)
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The tangent map of the exponential 2.1

= df. (Ad(exp(—sX))(Y))

S0,
D d(F(sX,5Y)) = df.(Ad(exp(~sX))Y)
hence,
1 1
a(F ) = [ dpadienp(-sx))vas) =, [ (Adtesp-s3)))as)
0 0
which proves the assertion. O

Let us observe the following;

* ady: g— End(g) so one may use the exponential mapping for matrices and compute;

ad —ad,
1 ez — T 1 _ I—e¢ *
fO esadwds = and fU e Sadwds -
ady ady

* If V is a finite dimensional vector space and A € End(V') then

1 o0 1
sA
e ds = —_—
[t
and if A is invertible one may write;
b osa - 1 1/ A
ds =y ——— = A" -1
/0 o kzzo (k+1)! ("= 1)

* Using the complexification of V', in other words writing Vo = V@iV we get End(Ve) ~

M, (C) (For details c.f. Appendix B). Using Jordan normal forms for fol e*Ads one
A

may compute eigenvalues as where A is an eigenvalue of A.

Corollary 2.1.2. The singular points of exp: g — G, that is, the elements X € g for

which Tx exp is not invertible are exactly those for which adx € End(gc) has eigenvalues
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The tangent map of the exponential 2.1

of the form 2kim, k € Z ~ {0}. Let ¥ be the collection of those elements. Then

Y= U
kezZ\{0}

where

S = {X € g | det ((adx)c — 2mil) = 0}

ady _
One may see that g. = g\ X, so g is the set of elements for which is invertible
adx
then the mapping
ady
X = cads ]

is a diffeomorphism

ge — End(ge)

Remark 2.1.3. g, X ge is an open neighborhood of (0,0) in g x g.

Theorem 2.1.4. The solution Z(t) of the differential equation

az adZ(t)

t)=——F—(Y
a=7" e
Z(0)=X
where
m(X,Y) :=Z(1)
satisfies

exp(m(X,Y)) =exp XexpY
for X,Y € g. where Z(t) is defined for all t € [0, 1]

Proof. We have;

2 (exp 2(0) = (T exp) “Z 1)
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The tangent map of the exponential 2.1

= Te(lexp Z(t))(Y)

Hence exp Z(t) is an integral curve of the left invariant vector field T.Y beginning at
X for which ¢t — exptY is also an integral curve beginning at e.

We have already seen that;

exp Z(t) = exp Z(0)exptY = exp X exptY

and for ¢t = 1 the assertion follows. O

Definition 2.1.5. A real (respectively complex) analytic Lie group G is a group G that
at the same time is a real (respectively complex) analytic manifold such that the group

operations pg and tg are real (respectively complex) analytic mapping.

We expect to define the inverse of exp in an open neighborhood of 0 where it is a
diffeomorphism. m(X,Y) = Z(1) as defined above is the multiplication in logarithmic
coordinates.

Let us consider open neighborhoods U and Uy of 0 in g and an open neighborhood V
of e in G such that exp : U — V is a diffeomorphism for all X,Y,Z C Up(X,-Y) € g?
m((X,-Y),Z) € g2 and m(m(X,-Y),Z) €U

We have Tpexp = I : g — g, m(0,0) = 0 and m is continuous, so from the inverse

function theorem U, Uy, V exist. For all x € G we define
Vi = Iz (exp Up)
and for y € Vi’

K (y) = log(z~'y)

where

log:=exp 1:V U
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The tangent map of the exponential 2.2

Theorem 2.1.6. The collection {k* : VJ — Up}t,x € G forms a real analytic atlas for G,
turning Gan = (G,{k"}) into a real analytic Lie group such that the mapping i : G — Gy,
is a C? diffeomorphism.

If g s a complex analytic Lie algebra, then this atlas is complex analytic, turning G into

a complex analytic group if moreover Ad, : g — g 1s complex linear for all x € G.

Proof. From Theorem 2.1.1 we see that X +— Tx exp is C! for all X € g, henceexp: g — G
is C2. So k% : V¥ — g is a C? diffeomorphism for all z € G.

Now, if z # y,z,y € G let V¥ NVy # 0. Then there exist Xo,Yy € Up such that
xexp Xo =yexp Yy

IfY = x¥0(k%)~1(X) then either zexp X = yexpY or,expY = exp Yy exp(—Xp) exp X,
meaning that Y = m(m(Yp, —Xo)X)

So the atlas will be real (respectively complex) analytic.

Finally, one has;

zexp X(yexpY) ™t = zexp X exp(—Yy )

= (zy Hyexpu(X,-Y)y ' = 2y ' exp(Ad,m(X,—Y))

so that the mapping
(X,Y) 5 () 7100 (6) (V) ) = Ady(m(X, V)

is real (respectively complex) analytic. O

We will use this construction later, to prove the Analytic Subgroup Theorem.
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The Backer-Campbell-Hausdorff formula 2.2

2.2 The Backer-Campbell-Hausdorff formula

Observing that e®2(®) = etadx ady we may proceed to the proof of the Backer-Campbell-

Hausdorff formula.

Theorem 2.2.1. (Backer-Campbell-Hausdor(f)

log <e“dX e“dy> =

1 1 1
X+Y 4+ 5 (X Y]+ 5 XX Y] - 5 VX Y] +03)
Proof. We saw that;
dz adZ (t)
0= 1z )
and
eadz(t) _ eadxetady

We may write;

adz) = log (eadX etady>

and

U2y = L)y

dt T I — (eadxetady)—l
then for

log 2z
we have
7
9 1) = glentxetodr)(v)

and from the fundamental theorem of calculus;
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The Backer-Campbell-Hausdorff formula 2.2

1
Z(1) = X + / g(eox oy ) (v it
0
Now,

g(z):l—i-%(z—1)—%(2—1)2+T12(z—1)3—...

Moreover, from the series expansion for the exponential we have;

€adX etady .

2 2 2
= <I+adX+ (ad;) +> (I+tady+t(a2dy)> -1
dx)?  t*(ady)?
zadX—i—tady—{—taandy—l—(a X) + (CL Y) + ...

2 2

We compute g(e®x el for terms of degree at most 2. We get;

g(eadx etady) —

1 ((adx)? + t*(ady) + tady adx ) +O(3)

6

1 dx)? t*(ady)?
= I+§ <adX + tady + tadxady + (a QX) + (a2Y) >

Hence,
1
Z(1) = log(eXeY) =X +/ g(eadxet“dy)(Y)dt
0

1 1 1 1 t
_X+/0 [Y+2[X,Y]+4[X,[X,Y]]—G[Xy[X,YH—G[Yv[XvYH dt

S XY+ XY XX Y] - [ XY
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The Analytic Subgroup Theorem

3.1 Lie subalgebras

Definition 3.1.1. A Lie subalgebra of a Lie algebra g is a linear subspace b of g such that
VX,Y €,
(X, Y]€h

It follows that the restriction of the bracket in h x b turns h into a Lie algebra and the

identity mapping h — g into a Lie group homomorphism.

We will demonstrate every Lie subalgebra of finite dimension can be integrated to a

unique a connected Lie subgroup.

Lemma 3.1.2. Let G be a finite dimensional Lie group and H o Lie subgroup of G. Then

for the Lie subalgebra b of H we have:
h={Xeg|VteR:exp(tX)ec H}

where exp: g — G.

Proof. Set V={X €g |Vt e R:exp(tX) e H}. We will show that h C V and V C §.

Let X e hand i: H — G. Then iy, := Tei : h — g is an injection, hence

expa(tX) = i(expy tX)
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Lie subalgebras 3.1

so Vt € Rexps(tX) € i(H) = H, hence h C V.
Conversely, let X € g and X ¢ h and

p:Rxh—->G

p(t,Y) = exp(tX)exp(Y)

Then

T(070)(p:R>< b — g

(r,Y)—»17X+Y

and X ¢ b, hence ker (T(g0)¢) = {0}
From the Immersion Theorem A.2.5 there exists € > 0 and an open neighborhood Q of
0 in b such that ¢ |[_. ;xq is an injection.
We may pick €2 such that expy(€Q) is diffeomorphic to an open neighborhood U C H
of e.
The mapping
m:HxH—H

(z,y) — 2y

is continuous and m(e, e) = e, hence there exists an open neighborhood Uy C H of e such
that m(Up x Up) CU & Uy Uy C U
Now, H is a countable union of compact sets (c.f. Appendix A.2) so there exist h; € H,

J € N so that the family {h;Up} is an open cover of H. For every j € N define

Tj = {t eR ’ exptX € hon}
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Lie subalgebras 3.1

Then for ig € N and for s,t € T}, and |s — t| < & we get
exp [(t — 5)X] = exp(—sX) exp(tX) € Uy Uy C U

hence 3!Y € 2 such that exp [(t — s)X]| =expY and p(t —5,0) = ¢(0,Y). But ¢ [[_.¢xa
is an injection, so t = s and Y = 0. Hence for s,t € T},,s # t we have |s —t| > e. Then T;,
is countable and iy was arbitrary, so
=
is countable, hence,
jgNTj cR
so there exists to € R such that ¢y ¢ T;Vj € N.
So,

exptoX ¢ jgNhjUU

X¢v

=g\bhcCg\V

=V Ch
L]

Lemma 3.1.3. Let G be a Lie group with Lie algebra g and b C g a Lie subalgebra of

g. Then there exists an open neighborhood 2 of 0 in g such that M = exp(h N Q) is a
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Lie subalgebras 3.1

submanifold of G and
ToM = T.(lm)b

for allm e M.

Proof. We know that there exists an open neighborhood €2 of 0 in g and an open neighbor-
hood U of e in G such that exp |q is a diffeomorphism. Taking M := exp (h N Q) then M
is a smooth submanifold of G and dim M = dim .

—adx __

Moreover, b is closed under the Lie bracket of g and the vector field € 77 leaves
adax

b invariant.

So, for X € h N and m = exp X one has

TnM = Tx (exp)h
—adx __ I
- Te(lm) © <€adX> h C Telmh

On the other hand, one sees that dim M = dimb , hence,
TonM = T.(lm)bh

O

Proposition 3.1.4. Let G be a Lie group with Lie algebra g, h C g a Lie subalgebra of
g and M = exp(h N Q). Let K be a compact subset of M. Then there exists an open
neighborhood U of 0 in g so that mexp(h NU) is open in M for all m € C. Moreover

Kexp(hbNU) is an open neighborhood of K in M.

Proof. For all X € h one may write ®x : Rx G — G for the flow of the left invariant vector
field ux. Then for all X € h,t € R,z € G one gets Px(t,r) = rexptX.

For M = exp(h N ), the left invariant vector field ux, X € b is tangent everywhere at
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Lie subalgebras 3.1

M so ux|p is a vector field of M.
For all X € h and m € M we write t — (¢, m) for the maximal integral curve of ux|yy
in M beginning at m. Let D be an open neighborhood of h x {0} x M in h x R x M. Then

the mapping

(X,t,m) — px(t,m)

depends smoothly on its parameters so it is smooth in D and t — ¢x(t,m) is an integ-
ral curve for uy in G beginning at m. From the uniqueness of integral curves one gets
V(X,t,m) e D

ex(t,m) = ®x(t,m)

hence V (X, t,m) € D
@X(t,m) eM

Now, let K be a compact subset of M. One has that ®,x(t,m) = ®x(st,m) and K
is compact, so there exists an open neighborhood Uy of 0 in § such that VX € Up,t €
0,1],m e C

mexp(tX) = ®x(t,m) e M

We may find an open neighborhood U of 0 in g, small enough so that hNU C Uy and
exp |y is a diffeomorphism.

Then, for all m € K the mapping

c:hNU —- M

X —mexpX
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is an injection and an immersion.
But, dim M = dimb, hence o is a diffeomorphism over some open subset of M. So,
mexp(hNU) is an open subset of M for all m € K.

Finally, the compactness of K implies that;
Kexp(hNU)= U mexp(hNU)
meK;
where K7 is a countable subset of K, end every element of the union is open, from which

follows the last assertion. ]

Corollary 3.1.5. Let G be a Lie group with Lie algebra g, b C g a Lie subalgebra of g and

M =exp(hN Q). Then for all x1,x9 € G, the set x1 M NxoM is open in x1M and xoM.

3.2 Analytic Subgroup Theorem

Theorem 3.2.1. (analytic subgroup theorem) Let G be a Lie group with Lie algebra g. If
h C g is a Lie subalgebra of g then the subgroup (exph) generated by exph admits a unique

Lie subgroup stuture. Moreover the mapping

b (exph)

s a bujection between the Lie subalgebras of g and the connected Lie subgroups of G.

Proof. Let b be the group generated by exph. First, we will induce H with a manifold
structure and then proove that H with this structure is a Lie group.

Fix © and M as in Lemma 3.1.3. Then exp | is a bijection and hence Qo := QN is
diffeomorphic to the submanifold M of G through exp |o, with inverse the diffeomorphism
s: M — Q.
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M C H hence the family of submanifolds of G
A={hM |h e H}

is a cover of H. We will induce H with the smallest topology for which hH — M is
continious Vh € H.

As we saw from Corollary 3.1.5 every member of A is open in H. Let
O={F|F CG and F open in G}

be the family of open subsets of G.

Then, VF € O,h € H , FNhM is open in hM. Hence, FN H is open in H and H — G
is continuous. G is Hausdorff so H with the open topology will be also Hausdorff and for
all h € H the mapping

hM — Qg

sh:sol}:1

is a diffeomorphism. Hence {s;, | h € H} forms an Atlas for H.
Fix a compact neighborhood Ky of 0 in 2 Nh. Then K = exp K is a compact neigh-

borhood of e in M. Hence, K is compact in H and
= U nK
h nENn 0

S0,

— k" ke K
exp b nLEJN{ | ke K}

One sees that,
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and for all n € N, K™ is a Cartesian product of compact sets, hence compact. It follows
that the manifold H is a countable union of compact sets, so its topology has a countable
basis.

Now, we will prove that H induced with the manifold structure we found above is a Lie
group.

From the way we constructed the Atlas for H we get that I, : H — H is a diffeomorph-
ism for h € H.

For X € b, the linear endomorphism

Adepr g—9

X s edx

leaves b invariant and H is generated from elements of the form exp X, X € b so for all
h € H Ad(H) leaves b invariant.

Fix an h € H. Then there exists an open F' C ) C g with 0 € F such that

Adj,—1(F) C Q

= Ad,-1(hNF) C hn

Moreover,

exp Xh = hexp Ady,-1 X

so in exp(hNF)

sporp = Adj-10 8¢

Hence 7, : exp(h N F) — M is smooth, and r, : H — H is smooth at e. Through left
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translation we may extend it in a smooth mapping defined in H. Moreover 7, is a bijection
with inverse 7,—1 hence a diffeomorphism.

We will show that the operations of multiplication

pp i Hx H— H

(h, ') = hI

and inversion

g H—H

h— bt
are smooth.

For h,hy,hy € H we get

for © (g X Thy) = lpyThy © B

and

tgoly=mrp—10Ly

hence, since I, and 7y, are smooth it suffices to show that g,y are smooth in (e, e).

There exists an open neighborhood N, of e in M such that NN, is a compact subset of M.
Then by Lemma 3.1.3 we find open neighborhood U of 0 in g such that N.exp(hNU) C M.
Replacing U with U N Q we get that Ny := exp(h N U) is an open neighborhood of e in M
and N.Ny C M, hence for ug : G x G — G we have ug(N. x Nyg) C M and

UG |NoxNo= IH | N.xNo
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maps smoothly N, x Ny onto the submanifold M of G. Hence, pyr is smooth in an open
neighborhood of (e,e) € H x H.

Finaly, Q; := QN (—Q) C g is an open neighborhood of 0 and for Nj := exp(£2; N h),
tg(N1) = N1, e C N1, Ny is open in M. But,

wa |Ni=tH |m

80, ¢ty is smooth in a neighborhood of e € H.

Hence H is a Lie subgroup. O

Example 3.2.2. Let g be finite dimensional Lie algebra. We saw that ad : g — L(g,9)
is a group homomorphism. L(g,g) is the Lie algebra of GL(g) and adg is a subalgebra of
L(g,g). From Theorem 3.2.1 we get that the subgroup GL(g) generated by e®x, X ¢ g
is the unique connected Lie subgroup of GL(g) with Lie algebra adg. This is the adjoined

group Adg of the Lie algebra g. We saw that Ad(exp X) = ¢®X and moreover
et (), et (2)] = e 7, 7

VX,Y,Z € g.

It follows that Ad(exp X) = e®X is in the automorphisms group of g, hence Adg is a
subgroup of Autg.

Moreover, if ® € Aut(g) and X1, ..., Xy is a basis of g then

@ ([Xi, Xj]) = [@(Xy), 2(X;)]

hence Autg is an analytic submanifold of GL(g) hence a closed subgroup.
The Lie algebra of Autg is
(Autg)™? = Derg

={p€ L(g,9) | ¢ ([X,Y]) ={p(X), Y]+ [X,o(Y)],VX,Y € g}
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(Autg)™ = Derg is the Lie subalgebra of L(g,g) that consists of the derivations (or
the infinitesimal automorphisms) of g and adg C Derg.

In general, Adg is not necessarily closed in Autg (so neither in GL(g)) and Autg is not
necessarily connected.

Finally, if G is a Lie group with Lie algebra g we already saw that Ad: G — GL(g) is
a Lie group homomorphism and T, Ad = ad hence Ad maps G° homeomorphically to Adg
such that

Ad(G°) = Adg

3.3 Commutative Lie Groups

Theorem 3.3.1. Let G be a Lie group with Lie algebra g. Then g is commutative if and
only if G° is commutative.

Moreover, if G is connected then g is commutative if and only if G is comutative.

Proof. Let g be a commutative Lie algebra. Then VX,Y € g [X,Y] =0 and
expXexpY =expYexpX

From the characterization of G°, G° will be commutative as well.
Conversely, let us assume that G° is commutative. Let © € G° then Ad, = I and

e®x = Ad(exptX) = I. Hence,

d dix
| e® =0
a =0 ¢
Sadx =0
VX € g so,
(X, Y]=0
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VX,Y € g, hence g is a commutative Lie algebra.
Finally, we saw that if G is commutative then G° = G, from which follows the last

assertion. O

Definition 3.3.2. (Discrete Subgroup) Let G be a Lie group and H a Lie subgroup of G.
Then H is discrete if and only if is discrete as a topological space. Equivalently, if Vh € H

there exists an open neighborhood U of G such that U N H = {h}.

Proposition 3.3.3. Let G be a Lie group and H a subgroup of G. The following are

equivalent:

1. There exists an open neighborhood U of e in G such that U N H = {e}
2. H is discrete
3. For all compact K C G the intersection H N K is finite

4. H is a closed Lie subgroup with Lie algebra {0}

Proof. (1) = (2) Let h € H. Then U, = hU is an open neighborhood of h in G and
U,NH=hUNH=h(HNh'H)=h({UnNh)={h}

(2) = (3) First, we will show that H is closed in G. Let U be an open neighborhood
of e in G such that U N H = {e} and g € H. We want to show that g € H. We may find

1

a sequence {h;} of elements of H such that h; — g. Then hj+1h;1 — g9~ = e. So there

must exist ng € N such that for all j > ny, thhj_1 € UNH = {e}= hj = hjq1 hence {h;}
is constant after some index and g € H so H is closed.

Now, let K be a compact subset of G. Then K N H is closed in K with the subspace
topology, so it is compact.

For h € H we pick an open subset Uy, of G such that U, N H = {h}. Then the family
{Uy, | h € HN K} is an open cover of H N K that has no proper subcover and H N K is

compact, so the cover is finite. The assertion follows.
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(3) = (4) Fix a ¢ € H. Then there exists a compact neighborhood K of g and
g€ HNK = HN K since HN K is finite, hence closed. So g € H, and H is closed. It
follows that H is a closed subgroup of G with Lie algebra h = {X € g | exp(RX) C H}.
The mapping exp : g — G is a local diffeomorphism at 0 so there exists open neighborhood
Q of 0 in g such that exp |q is a bijection. Let X € g~ {0}. Then there exists ¢ > 0
such that [—e,e] X C Q. Then ¢ : [—¢,¢] - G t — exptX has a compact image and
c([—e,e]) N H is finite. Hence, {t € [—¢,¢]| | exptX € H} is finite and X ¢ h. It follows
that h = {0}.

(4) = (1) H is a closed submanifold of G of zero dimension and the assertion follows. [

Lemma 3.3.4. Let V be a finite dimensional vector space and let I' be a discrete subspace

of V.. Then there exist linearly independent elements of V v1,...,v, such that

T =7, ®U...0ZL,

Proof. The proof is by induction in the dimension of V.

For dimV = 1, we may pick a basis of V in order to identify it with R and I is a
discrete subgroup of R. Let a € I' \ {0} and a > 0. Then the set [0,a] NT" is closed in R,
so it will have a least element v. We claim that I' = Z, = {nv |n € Z}. Indeed, I is a
subspace, so I'N (0,1)v = (), hence Z, C T.

Let I' ¢ Z, then there exists g € I' where g ¢ Z,, so that g € (m,m + 1) v for some
m € Z, contradiction. Hence I' = Z,, = {nv | n € Z}.

Now, let dim V' > 1 and that the assertion holds for every F' with dim F' < dim V. We
pick an element v € I' \ {0}. Then the intersection R, NT" where R, = {vz | z € R} is a
discrete subset of R, hence, it will be of the form Z,,. We may find a linear subspace W
of V such that R,, @ W =V where p: V — W is the canonical projection.

Now, if K is a compact subset of W then p(I') N K is finite. So p(I") is a discrete
subspace of W. O
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Theorem 3.3.5. Let G be a connected commutative Lie group. Thene there exist p,q € N

such that G ~ (R/z)P x RZ. Moreover p + q = dim g, p = dim ker(exp)

Proof. G is connected and commutative , so its Lie algebra g is commutative as well. Hence
[X,Y]=0VX,Y €g. For

exp:g—> G

we get

exp(X +Y)=expXexpY

so exp is a Lie group homomorphism (g,+) — G and its image is a subgroup of G and
expg = G°.
But G is connected, so exp is a surjection.
Let I' = ker(exp). Then
g
G~ =
r

and since exp is a local diffeomorphism there exists neighborhood €2 of 0 in g with
QN ker(exp) = {0}

such that I is a discrete subgroup of g. Hence,
=2y ®...0%,,

for some v1, ..., v, linerly independent elements of g.

Consider the basis v1,...,v, of g with n = dim g = p + ¢ and isomorphism
f:g—>RP xR?

Let
E:R"—= @G
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with

E =expof!

Then F is a surjective homomorphism of Lie groups and ker F = f(I") = ZP x {0}. Taking

the canonical projection m: R™ — (R/z)? x R? we get that the mapping

E:=FEon!

E: (R/z)P xR = G
is a diffeomorphism and a bijection, so a Lie group isomorphism.

O

Corollary 3.3.6. If ker(exp) = {0} or if ker(exp) is a discrete subgroup of G then G is

1somorphic to a finite dimensional vector space over R.

Example 3.3.7. We saw that Adey, x = €29 and that Ad(G°) = Adg.
So for = € ker Ad we have zyz~' =y Vy € expg.

But, G° is generated by exp g so that zyz~! = z Vy € G°. Moreover
ker AdN G° = Z(G")

and Z(G®) is a closed Lie subgroup of G°.

Hence Ad : G° — Adg induces Lie group isomorphism

~ Adg

For more details see | |1 11 |

46



Lie’s Third Theorem

4.1 The path space of the Lie group G

Let M be a connected manifold and zp € M. A path beginning at z( is continuous curve
v :[0,1] — M such that v(0) = xo.
We consider path space P = P(xz9, M) of the paths in M beginning at zg, with the

topology of uniform convergence.

Definition 4.1.1. We say that the paths v,~" € P(zg, M) are equivalent and we write
~v ~ ~" if there exists a continuous curve [0,1] — P(xg, M) s +— ~s such that 79 = 7,
m =7 and s+ 7,(1) is constant in [0, 1]. In other words, if there exists a homotopy from

v to 7' with end points fixed. For details see | |

We know that the relation of homotopy with end points fixed defines an equivalence
relation on P(xg, M).

We write [y] for the equivalence class of the path v in P and we define
M = { The set of equivalence classes in the path space P}

Now, if v ~ +/ then v(1) = 4/(1) hence the mapping 7 : M — M [v] = ~(1) is well

defined and a surjection (since M is path-wise connected)

Theorem 4.1.2. The mapping 7:M — M is a smooth fibration and M admits a unique
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manifold structure. Moreover M is simply connected.

Proof. We will show that Vx € M there exists an open neighborhood V C M of z and a

mapping

such that

1

sly=7""|v

Let A = {(z,y) € M x M : x = y}, be the diagonal set of M and Q be an open
neighporhood of A.

Let 1 € M and V be an open neighborhood of z1 in M such that {x;} xV C Q. Then
there exists a path v € P(xg, M) such that y(1) = ;.

We may find 6 > 0 "close" to 1, such that Vo € V and ¢ € [1 — 4, 1] and (v(t),x) € Q.

For ¢t € [0, 1] we define;

V() = (7(t), z) = (1) 0<t<1-§
'Y:Jc(t) =
Ay (1), 72(t) = %A(’y(t),x) 1-6<t<1

where A : A — 0O is a diffeomorphism, and © an open neighborhood of Oy € TM
such that
Mz,y) € T,M

V(z,y) € Q,
MNz,z) =0€ T,MVz € M

We consider o : V' — P(xg, M) x — 7, and observing that
as t — 1 we have A\(y(t),7.(t)) — 0= ~v(t) — (1) = (y(1),z) so v(1) = z or

Vz(1) >z Vr e V.
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For

S =mToo

where

7t P(zo, M) — M

v =[]

we take s |y =71 |y hence 7 is a fibration with discrete fibres.

Now, we have that V' C M, and M is a manifold. Let k£ be coordinates in M. Then
ko |sv) are coordinates for M.

Finally, 7 is a covering and M is a covering space.

Hence, M is simply connected. O

Definition 4.1.3. Let G be a connected Lie group. We write P(1,G) for the space of

paths in G beginning at 1 where 1 is the identity element of G.

Proposition 4.1.4. (P(1,G),-) is a group with group operation (v -~')(t) = ~v(t) - +'(¢).
Also,

AMG) = {ry € P(1,G) [7(1) = 1}

and

MG)" ={ye P(1,G) |y~ 1}

are normal subgroups of P(1,G). Moreover, v ~ ~ in P(1,G) if and only if v € A(G)°.

Finaly,
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Proof. Tt is immediate that (P(1,G),-) is a group.

Consider the group homomorphism

f:P(1,G) > G

v = (1)

Then ker f = A(G), hence A(G) is a normal connected subgroup of G.
Consider a homotopy s — 75 with end points fixed of ~,7’.
Then there exists continuous curve s — v~ 17, beginning at 1 and ending at v~ '/, This

proves that A°(G) is normal in P(1,G). O

Corollary 4.1.5. G is a Lie group and

T:G — G

[v] = (1)

is a Lie group covering. On ker(m) = m1(G, 1) the group structures coincide and 71 (G, 1)

15 commutative.

Lemma 4.1.6. Let G be a connected Lie group and H a discrete normal subgroup of G.

Then H lies in the centre of G, Z(G).

Proof. Let g € G, h € H and ghg™! # h. G is simply connected, hence pathwise connected.
So there exists a path g(¢): [0,1] — G beginning at 1 and ending at g.

Then a(t) := g(t)hg(t)~! [0,1] — H since H < G with a(0) = h and a(1) = ghg~! and
a(t) € H vVt € [0,1]. This is a contradiction since H is discrete.

The assertion follows. O

Remark 4.1.7. One may observe that a Lie group covering 7 : G’ — G always arises by
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fixing a discrete subgroup C' of the center Z(G') and then taking G = G'Jo. If G is a
universal cover of G, then G ~ é/m(G) so C arises as quotient of fundamental groups

C ~ m(G)/r (G

We will now transfer the study of the path group P(1,G) N C* to the space P(g) of
paths in the Lie algebra g of G differentiating with respect to the time parameter t.
Provided with the supremum norm with respect to some norm in g, the path space P(g)

becomes a Banach space and is called the path space of g.

Proposition 4.1.8. Let G be a connected Lie group with Lie algebra g. Then the mapping

Di= D% (30 (@) T 0)

18 a homeomorphism

D:P(1,G)nC' — P(g)
Let As € C1([0,1], End(g)) be the solution A of the differential equation

dA
—(t) = add(t) o A(t)

with initial condition

A0)=IT:9—g¢g

Then for every v,7' € P(1,G)NC* and t € [0,1] :

D(y-+')(t) = Dy(t) + Ady(t) (D' (1))

where

Ady(t) = ADA,(t)

Finally,
D(A(G)°nCh) = P(g)o
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where

1
P(g)o = {(5 € P(g) | 3smooth s — 65 : [0,1] — P(g) where 69 = 0,61 =6 and / Ags(t)lai s(t)dt = O}
0

Lemma 4.1.9. For

T(0) " 50 = [ Ad ()7 52D, ()

hence,

1
5o = T (1) - [ Ad (971 52D, ()

Proof. Consider the curve
U Yy

[0,1] = P(1,G)nC!

with v, (t) = ~(ut). Then there exists (c.f. the proof of Proposition 4.1.8) unique d:

[0,1] — g such that

= TelA,(t)Ad(V(t))_lD'y(t)
Hence for ~, one may write;

0 _
%Vu(t) = Telvu(t)Ad'Yu(t) ID’Ve (t) =
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1 0 _
(Telyu) " 5o7ult) = Adoa(t) 7D, (1)
Let
9 1) = (Tud) " L)
’ el (t) ou
then
9(“7 t) = gu(t) = Ad’Yu@)ilD% (t)
and
0 0 _1

From Proposition 4.1.8 we get:

Ady(t) = ADW (t)

hence,

0 0
agu(t) = &ADW(t)—leu(t) =

40
= adp,, (ty-14Ap,, (t) Dty + Adyu(t) 1aD% (t)

o
= [Druw1 Ap,, 0 Pruw] + Adyu(t) ™ 52 D5, (1)

and [D%(t)q Ap,, (t)D%(t)] = [D%(t)A ) Ad%(t)Dvu(t)] = 0 because the flows of the vector
fields are related.

Hence,

0 B 1 0
agu(t) = Adyy(t) aD% (t)

and because of v, (t) = v(ut) we get

o L0
agu(t) = Ady, (1) T (t)
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But,
s 1 o
0u(5) = [ gulo)ds = [ Adns)7 5Dy (5)ds
0 0 au
Hence,
1 . o
1) = [ Advle) LD, (s
Hence,
Tel( (1))712 (1)—/1Ad (s)*lgD (s)ds
et Yu 8u7u - 0 Yu ou Tu
and

1
S = TOu(D) - [ Ady, ()7 5D ()

O

Remark 4.1.10. The results of Theorem 2.1.1 and Lemma 4.1.9 may be generalized from a

result for curves in infinite dimensional Lie groups.| |.

We continue with the proof of Proposition 4.1.8:

Proof. We will show that D is a bijection;
It is sufficient to show that for every § : [0,1] — g, there exists a unique C' curve 7 :
[0,1] — G so that v(0) =1 and

A(6) = (Tore) (5(0) (@.1.1)

So it is sufficient to show that there is a unique integral curve  of the vector field
(Tery) (0(t)). From the theorem of existence of integral curves (c.f. Appendix A.1) there
exists an open interval I C [0,1] so that 7 is a solution of the differential equation 4.1.1,
v : 1 — G and vy is a maximal integral curve for (T,ry) (6(t)).

Let = € G. Then a(t) := y(t)x is also an integral curve for the vector field (Tery) (6(1));
d

Indeed, %a(t) = a(y(t)x) = (Typyra) Z—Z(t) = (Typyra) (Tere) (0(1)) = (Te (ryyz)) (5(2)).
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So one may extend v in whole [0, 1] and + is maximal, so v is unique.

It follows that D is a bijection. The continuous dependence of the integral curve from
the vector field (T.r;) (6(t)) implies that D and D~! are continuous, hence D is a homeo-
morphism P(1,G) N C! — P(g).

For the computation of the product v-v', D(v-7’) we observe that for the multiplication
operation 1 : G x G — G and a,b € G we have (a-b) = pu(a,b) = (no(a,b)). Hence for
v-v'(t) = (o (v,7")) (t), and aplying the chain rule we get:

%(7(75) A1) = (Tyyry ) 27+ (Ty iy lyy) 7' ()

= (Tyorvw) (Tersw) Do + (Tywho) (Teryo) Dy
= (Twyrym) (Teryw) Doy + (Tywry @) (Teryw) Ady () Dy

= (Terywyy ) (Dyry + Ady(t) Dy r))

So that,
d

(Tery(t)v’(t))_l (dt(v(t) '7’(@)) = D) + Ady(t) Dy
D(y-9') = Dy + Ady - Dy

We will now show that Ady(t) and Ap, (t) satisfy the same differential equation.

One may write :

d

& Ad (1) = - o Ad(y(E-+ ) = - nmo Ad(y(t 4 B) o7 (1) 04(1)
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d _
= |h=0 Ad(~(t + h) o (1) 1) o Ady(t) = adD, ) o Ady(t)

and Ad(~(0)) = Adl = I , and the assertion follows.

Finally, from Lemma 4.1.9 we get that

1
S = TAOu(D) - [ Adyu ()7 5D (o)

Which means that the curve u +— 7,(1) is constant if and only if

1 _la
| Adus) 7 D) =0

But we already saw that Ady(t) = Ap,(t) , and the assertion follows. O

4.2 Lie’s Third Theorem

Our goal is that given a Lie algebra g to construct a simply connected Lie group that

integrates g. From now on we will work only with the lie algebra g and its path space.

Definition 4.2.1. Let g be a finite dimensional Lie algebra. For 4,9’ € P(g) we define the

product (8 - 8") € P(g) as follows;
(6-6") (t) = 6(t) + Asqey - 6'(¢)

Remark 4.2.2. We defined A so that A € End(g) and furthermore As(t) is the integral
curve of the vector field (ad(0(t))). We know that adg is a vector field tangent to Adg

hence

As(t) € Adg C Autg

So As(t) lives in the representations of g and respects the Lie bracket.
Lemma 4.2.3. A5.§/ (t) = A§(t)A5/ (t)
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Proof. Let us observe that:
As(t) o add'(t) = As(t) ([0'(2),%]) =

= [As(t)0'(t), As(t)] = ad (As(t)d'(t)) o As(t)

Hence,
% (A(s(t) o} Ag/ (t)) == CLCl(S(t) o Ag(t) o A(gl(t) + Ag(t) e} ad5/(t) e} A(gl(t)
= add(t) o As(t) o Ay (t) + ad (As(t)8'(t)) o As(t) o Ay (t)
= ad(d - &'(t)) o (As(t) o A (1))
and the assertion is proved. O

Remark 4.2.4. Later on we will show that P(g,-) with the multiplication defined above is

a Banach Lie group. This and Lemma 4.2.3 show that
A: P(g) — Aut(g)

is a Lie group homomorphism.
Lemma 4.2.5. di le=0 Acy 1) = ad ng(s)ds where A as described above and Y (t) € P(g)
€

Proof. We know that A;(t) = Adp, (t). Hence

T, As(t) = T, Adp, (t)

—add D (1) = %/taD (s)d
=ad Dyt =ad | 50 Dy, (s)ds
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where we used Lemma 4.1.9 in the direction v, = e O

Remark 4.2.6. From the definition of the Lie algebra we get that g = T.G, so g is the

tangent space of G at the identity. Hence every element Y (t) of P(g)®9 may be written as

Y(t) = ;i lu=e D-, (1)

Proposition 4.2.7. (P(g),-) with the multiplication as defined above is a Banach Lie group
with tdentity element the constant path

d(t) =0(t) =0 and Lie algebra

P(g)™ = (P(g), [-."])

where

[X,Y](t) = % UotX(s)ds, /Ot Y(s)ds]

Proof. We will show that (P(g),-) is a group with identity element the constant path
5(t) = 0(t) = 0 € P(g)

Associativity:

((6-6")-8") () = (3-8") (t) + As.or ()" (2)
= 0(t) + As(t)d'(t) + As(t) Ag (£)0" (t)

= 50+ As(t) (57 8") (1) = (6- (8- 87)) (1

For the inverse we compute:
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The mapping
0 — As

is analytic due to the linear dependence of the left side;

dA

—-(t) = add(t) o A(t)

from ¢. Hence multiplication and inverse are analytic functions. It follows that (P(g),-) is
a Banach Lie group.
P(g) is a vector space, hence; Ty P(g) = P(g).

It remains to compute the Lie bracket:

(Cs(0") =

(66671 =6(t) + As(t)d' (t) + As(t) o Ap (£)6 1 (2)

= §(t) + As(t)0'(t) — As(t) o Ay (t) 0 Ag(t)~8(t)

Differentiating the above relation for ¢’ at ¢’ = 0 in the direction of Y € P(g)%9 and using
Lemma 4.2.5 we get;

AdsY (t) = To(C5(Y (1)) =

= As(t)(Y (1)) — As(t) 0 ad /Ot Y (s)ds o As(t) "L 0 5(¢)

Differentiating the above relation for § at § = 0 in the direction of X € P(g)® we get;

(X, Y] (t) = adX () (Y (1)) =
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ad/OtX(s)dsY(t)—ad/OtY(s)dsX(t):[/OtX( ds, Y (t ] [/Y )ds, X (t }
- | xeanvio] + [xo. [[vca

_ % [/OtX(s)ds,/otY(s)ds}

For the last equality we used the Leibnitz rule. O

d
—0s € P(9)® and Tpls—1 X = Ay X

Remark 4.2.8. For all 6 € P(g) we have T0l5_1(5)d
s

Proposition 4.2.9. The maping

1s a surjective Lie algebra homomorphism.

Proof. From the way that we constructed the Lie bracket of P (g)™? we get
av ([X, Y] (1)) = [av(X(2)), av(Y'(?))]
hence av is a Lie algebra homomorphism P(g)*9 — g and a surjection and
¢
kerav = {X € P(g)™ | / X(t)dt =0}
0

Hence P(g)“lg {X € P(g)™9 | f X(t)dt = 0} is a Lie subalgebra of P(g). O

P(g)™9 is an infinite dimensional Lie group, hence we cannot aply the analytic subgroup
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theorem. If there where a subgroup Py of P(g) with Lie algebra P(g)glg then, according
to Remark 4.2.8, we may describe Py through a homotopy relation as follows; Py consists
exactly from the § € P(g) for which there exists a smooth curve s +— &5 where §p = 0,
01 = 6 and

d al
T0l5;1 %58 S P(g)o g

Hence Py coincides with P(g)o , the image of the loop group of G through D.

We will see below that P(g)o is a Lie subgroup of P(g)

Corollary 4.2.10. The map

av P(g)“l" — g

X»—)/lX(t)dt
0

induces a Lie algebra isomorphism

P(g)"s a
P(g)g”
~ P
We expect that G will arise as an isomorphism of quotients Iz ((g) . But first we have
g)o

to show that P(g)o is a closed normal subgroup of P(g).
In a natural way we will search for normal Lie subgroups of P(g) containing P(g)o and

through av we will construct a g-valued 1-form

Proposition 4.2.11.

P(g)1=1{0€ P(g) | As(1) = I}

is a closed normal subgroup of P(g) and

Pg) = {X € P(g)"" | ave s}

where 3 ={X € g| adX = 0} is the centre of g. Finally, P(g)o C (P(g)1)°
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Proof. The mapping
f:P(g) — Adg

o Ag(l)

is a surjection and its tangent to the identity is;

fe: P(g)“lg — adg

d t
X — 7 le=0 Aex(1) = ad/o X(s)ds

We have that ker f = {6 € P(g) | As(1) = I} = P(g)1 where I : g — g and from the
Submersion Level Set Theorem (c.f. Appendix A.2) P(g); is a closed submanifold of P(g).
We have that

P(g)39 = {X € P(g)™ | ad/ol X(s)ds = o}

- {X € P(g)% | av € ;,}
The last assertion follows since P(g)5? C P(g)4" O

We define a 1-form w as follows: ws(X) = av(Tpl;'X) = fol As(t)71X (t)dt. Then,
because of the identification of the lie algebras to the left invariant vector fields we may
write every element in P(g) as X! = Tyls(X). So ws(X!) = av(X) = fol X (t)dt independent
of the choice of 4. So we constructed a 1-form that is exactly av and we will use it to construct

a group homomorphism with kernel P(g)o

Remark 4.2.12. (Properties wy)
1. dw(X,Y) + [w(X),w(Y)] =0

2. kerws = T5 (P(g)o) and ker ws is a distibution
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3. w |P(g)163

4. dw ‘P(g)lz 0

For more details on w see | I I ]

Corollary 4.2.13. P(g)o is an integral manifold for the distribution ker ws so it is a closed

submanifold of P(g) hence a closed subgroup.

(P(g)1)°

Proof. The Lie algebra homomorphism ady: g — g with Y +— [g,X] defines an isomorph-

P —
Proposition 4.2.14. (?) Adg
ism g adg. Moreover adg is the Lie algebra of the connected Lie group Adg, as we saw

in Example 3.2.2.
Using the homeomorphism D of Proposition 4.1.8 for the groups P(adg) and P(adg)o

we get
D
P(adg) = P(1, Adg) nct
and
D . L
P(adg)o H% A (Adg)"NC
But from Proposition 4.1.4 we get
P(1,Adg)
— 1= ~ Ad
A(Adg)” ~ °F
Hence,
P(adg) —~
— = ~ Ad
Pladg)y ~ " °
P(g) (P(9)1)° :
Now, ——= = P(adg) and ——~— = P(adg)o and the assertion follows. O
p(y) ) Tpy = Plada

The relations dw |p(g),= 0 and kerws = T (P(g)o) lead us to construct a maping

¢: (P(g)h)” — (3,+)
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so that ¢(0) = 0 and dy = w in order to prove that P(g)g is a normal Lie subgroup of P(g).
In order to do so we need to get through the obstacle of the homotopy relation through

which the path space of the Lie algebra g is defined.

Proposition 4.2.15. The mapping
¢ (P(g))” = (,+)

where

ola): = S w
[0,1]

where s + 65 is a C' curve [0,1] — (P(g)1)°, 6o = 0 and 61 = « is well defined, is a

surjective Lie group homomorphism and (ker )9 = P(g)glg.

Proof. In order to show that ¢ is well defined we need to show that ¢ does not depent on

the choise of §.

P —
There exists a 2-form €2 that is m(?))o = Adg- valued so that dw = 7*Q2 where
g1
P
w: P(g) — (P(S))o the canonical projection and 7* its pullback. 7 is a surjective Lie
1

group homomorphism and 7, is a surjective Lie algebra homomorphism. Hence € is unique
and smooth. Moreover dw is left invariant and 7 is a group homomorphism hence €2 is left
invariant and thus defined from its value at the identity.

We have m.: P(g)*9 — adg so

7T UX,Y) = Qi (X)), m(YV)) = Q(ad X, adY)

and dw(X,Y) = [avX, avY], hence

Q1 (adX,adY) = [X,Y]
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Moreover,

7 dQ = d(n*Q) = ddw =0

Hence 2 defines a De Rahm cohomology class [Q] € H? (:ﬁlvdg,R).
Consider a curve §: s — &, that is piecewise C' with :[0,1] — (P(g)1)° so that
do = 0 = §; and a homotopy
E:[0,1] x [0,1] — P(g)

(u, s) — uds

It is direct that E(0,s) = E(u,0) = F(u,1) = 0 and E(1,s) = d5. But, ds € (P(g)1)° hence
m(ds) = 1.

It follows that the mapping
A=rmoE:[0,1] x [0,1] — Adg

maps the whole boundary [0,1] x [0,1] to {1}. Moreover, 7(ds) = 1= m. = 0 so 7 has
discrete fibres.
So A defines a homology class [A] € Hy (ZZlg, Z).

From Stokes’ theorem we get;

'w= / d(E*w)
[0,1] [0,1]x[0,1]

:/ E*dw:/ E*n*Q
[0,1]x[0,1] [0,1]x[0,1]
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But we know that if G is a simply connected Lie group then
H?*(G,R)=0

It follows that f[o ) 0"w = 0 for every closed, piecewise C* curve § on (P(g)1)°. Hence
@ is well defined.
© is a Lie group homomorphism,;

Fix a ¢’ € (P(g))°. then the derivative of the map
> (3 0") = p(0)

(P(G)1)” — (3, +)

is 0 and dy = w and w is left invariant. So it is constant, and defined from its value at the
identity, hence ¢(d - 6") — ¢(d) = ©(0-8") — ¢(0) = p(d")

Hence ¢ is a surjective group homomorphism with kernel ker ¢ < (P(g)1)° and (ker )9 =
(P(g)0)™. So P(g)o is exactly the connected component of the identity (ker )° of the nor-

mal subgroup ker . O

Theorem 4.2.16. Let g be a finite dimensional Lie algebra. Then there exists a simply
connected Lie group G with Lie algebra g. The restriction of the mapping exp:g — G in

the centre 3 of g induces a group isomorphism exp |;: (3,+) — (Z(é))

P(g)™9 P
Proof. We saw that (gi)al ~ g and P(g)g is normal in P(g) and (9) is a Banach Lie
P(g)3 P(g)o

group with Lie algebra ~ g. Hence there exists a Lie group with Lie algebra g, and from

propositions 4.1.4, 4.1.8 we get

Plg) _ ~
P(g)o ¢

Now, Z(G) = ker (Ad G — Adg) and

Pi(g) ={6 € P(g) | As(1) = I}

66



Lie’s Third Theorem 4.2

={0 € P(g) | Ads, = I}

= ker (Ad : P(g) — Adg)

S0,
G P
G _ 4 dg = (9)
Z(G) P(g)1
Hence,
~ P(g)1
Z(G) =
@) P(g)o
Let p be the canonical projection
P ° P °
P(g)o ker ¢
: ker o :
Then p has discrete fibres (ker o)° " But (3,+) is simply connected and commutative,
Ty
hence,

We get
(@) = 6.+)

so that <Z(é)) is connected commutative Lie group. Hence from Theorem 3.3.5, the
mapping
exp: (3,+) > (2(@))

is an isomorphism. O

Remark 4.2.17. The result does not necessarily hold for an infinite dimensional Banach Lie
algebra g. We saw that if G is a commutative Lie group with finite dimensional Lie algebra
g then exp : (3,+) — Z(G) has a discrete kernel. This is not the case if g is an infinite

dimensional Banach Lie algebra.
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For example, if g = su2, G = SU(2) then <Z(é)>o ~ Yer exp
R

R\ Q

and we can prove that

kerexp ~ R\ Q and 3 = R. The space is not even Hausdorff.
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Appendix

A. Elements of differential geometry

A.1. Integral curves and Flows

Let M be a differential manifold and X € X(M) a smooth vector field in M. An integral
curve of X is a smooth curve v : I — M where I C R is an open interval such that
Y(t) = X(y(t)) for all t € I. Fix an to € I then y(¢o) is the starting point of . If v : I — M
is an integral curve and ¢ € R then s — (s — ¢) with domain I +c:={t+c|t € I} is

also an integral curve. So we may assume that 0 € I and pick tg = 0.

Theorem. A.1.1 LetX € X(M) and p € M. Then there ezists a unique open interval
I, C R containing 0 and unique integral curve a : I, — M beggining at a(0) = p so that if
v:J — M is another integral curve with 0 € J and statring point v(0) = p then J C I,

and v =aly

The integral curve a = ap : I, — M is called maximal integral curve starting at p.
Let Q = {(t,p) € RxM | t € I,}. We define ® : Q — M with ®(t,p) = ap(t), t € Ip. @

is called flow of the vector field and ¢ +— ®(¢, p) is smooth for every p € M.
Theorem. A.1.2 The set Q@ C R x M is open and the flow ® : Q@ — M is smooth.

Finally, if the vector filed X (p) depends smoothly on the pair (A\,p) € A x M, where

A is a differential manifold, then the flow of ®y : Q) — M depends smoothly on (t,p, \)
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where (t,p) € Q)

A.2 Manifolds and Submanifolds

Lemma. A.2.1 Let M be a topological manifold. Then there exists a countable basis of M

so that its closure is compact.

Proof. M is a topological manifold, that is a second countable, Hausdorff topological space.
Let B be a countable basis for M. The existence of B comes from the fact that M is second
countable. Let B’ C B where B = {B € B| B € (U, ¢), B compact} for (U, ¢) coordinate

map of M. Then B’ is a compact countable basis for M O

Let M be a smooth manifold. An embedded submanifold of M is a subset S C M that
is a manifold with the topology of the subspace, induced with a smooth structure so that

S — M is a smooth embedding.

Definition. A.2.2 Let M be a manifold. If for all p € P the linear subspace D, C T,M

is of dimension k& then D = UMDp is a distribution for M of rank k.
pe

Lemma. A.2.3 Let Mbe a smooth manifold of dimension n and D C TM distribution of
rank k. Then D is smooth if and only if for all p € M there exists an open neighborhood U

and smooth 1-forms w',...,w" ™% such that for all g € U D, =kerw! |, N... Nker w"* lq-

Definition. A.2.4 Let D C T M be a smooth distribution and N C M an immersed

submanifold of M. Then N is an integral manifold for D if T,N = D,, for all p € N.

Theorem. A.2.5 ( Immersion Theorem ) Every smooth manifold of dimension n admits

a smooth immersion in R2",

Let M, N be smooth manifolds. A smooth map F : M — N is called a smooth

submersion if its differential is surjective in every point.

Theorem. A.2.6 (Submersion Level Set Theorem) If M, N are smooth manifolds and F :
M — N is a smooth submersion then every level set F' is a properly embedded submanifold

of codimension N.

70



Lie’s Third Theorem 4.2

We close with the following;.

Theorem. A.2.7 (Inverse Function Theorem for Manifolds) Let M, N be smooth manifolds
and F': M — N smooth. If p € M and dF), is invertible then there exists a connected

component Uy of p and Vo of F(p) such that F |y,: Uy — Vp is a diffeomorphism..

For details see | Il I, | |

B. Elements of Linear Algebra

Definition. B.1 Let V be a finite dimensional vector space. The complexification of V', V¢
is the space of all linear combinations uj +iue with ui,us € V. V¢ is a real vector space with
the obvious way and becomes a complex vector space if we define i(uy + iug) = —ug + iuy.

V' is a real linear subspace of V.

Proposition. B.2 Let g be a finite dimensional Lie algebra and gc its complezification.
Then the Lie bracket of g extends uniquely to gc turning it into a complexr Lie algebra. gc

1s called the complexification of g.

Theorem. B.3 Let g be o Lie algebra and gc its complexification. Then every finite
dimensional representation m in g is uniquely extended to a complex linear representation

7c in gc with 7c(X +14Y) = (X)) +in(Y).

For details see | |
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