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Abstract

A Lie algebra is the tangent space at the identity element of a manifold that admits a group

structure in a way that the group operations of multiplication and inversion are smooth.

We will present the constructive proof of Sophus Lie's Third Theorem as it is given in

Duistermaat and Kolk's book Lie Groups [DK00]. It is the unique constructive proof of

the third theorem that can be stated as; Every �nite dimensional Lie algebra g is integrated

to a simply connected lie group G.

To prove the theorem we will use the in�nite dimensional Banach space of paths of the

Lie algebra. This space is homeomorphic to all path spaces of Lie groups that have Lie

algebra g, not necessarily connected. We will search for solutions of di�erential equations of

homotopy classes and in order to do so we will have to use a g-valued 1-form and homology

and De Rahm cohomology classes. Through Stokes' theorem we will see that integration is

well de�ned. The �nite dimensional simply connected Lie group G will occur as a quotient

of two in�nite dimensional Banach Lie groups.

ii



Περίληψη

Μια άλγεβρα Lie είναι ο εφαπτόμενος χώρος στη μονάδα μιας πολλαπλότητας με δομή ομάδας

και ομαλές τις απεικονίσεις του πολλαπλασιασμού και του αντίστροφου. Στη παρούσα εργα-

σία παρουσιάζεται η κατασκευαστική απόδειξη του τρίτου θεωρήματος του Sophus Lie όπως

γράφτηκε από τους Duistermaat, Kolk στο βιβλίο Lie Groups [DK00]. Είναι η μοναδική κατα-

σκευαστική απόδειξη του τρίτου θεωρήματος που διατυπώνεται ως εξής: Για κάθε άλγεβρα Lie

g πεπερασμένης διάστασης υπάρχει μοναδική απλά συνεκτική ομάδα Lie που την ολοκληρώνει.

Για την απόδειξη του θεωρήματος θα χρειαστεί να περάσουμε στον απειροδιάστατο χώρο

Banach των μονοπατιών της άλγεβρας. Αυτός είναι ομοιομορφικός με τους χώρους των μο-

νοπατιών ομάδων Lie που έχουν άλγεβρα Lie την g, όχι απαραίτητα συνεκτικών. Ουσιαστικά

αναζητούμε λύσεις διαφορικών εξισώσεων κλάσεων ομοτοπίας και για τον σκοπό αυτό θα χρη-

σιμοποιήσουμε μια διαφορική μορφή που θα μας μεταφέρει από των χώρο των μονοπατιών της

άλγεβρας στον χώρο των μονοπατιών της ομάδας και κλάσεις ομολογίας και συνομολογίας De

Rahm. Μέσω του θεωρήματος Stokes θα δείξουμε ότι η ολοκλήρωση ορίζεται καλά. Τελικά

η απλά συνεκτική ομάδα G πεπερασμένης διάστασης που ολοκληρώνει την g θα προκύψει ως

πηλίκο δύο άπειρης διάστασης ομάδων Lie: της ομάδας των μονοπατιών στην άλγεβρα με την

εικόνα των ομοτοπικών με τη μονάδα μονοπατιών.
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Introduction

A Lie group is a group that at the same time is a manifold and its Lie algebra is its tangent

space to the identity element. A Lie algebra is also the space of the left invariant vector

�elds of the manifold and the exponential mapping is de�ned through integral curves of

left invariant vector �elds from the Lie algebra to the Lie group. If the Lie algebra is �nite

dimensional then the group's connected component of the identity is exactly the product

of the images of the base elements via the exponential mapping.

1.1 Lie Groups

De�nition 1.1.1. A Lie group G is a group that at the same time is C2 manifold, such

that group operations of multiplication;

µ : G×G → G

(x, y) 7→ xy

and inversion;

ι : G → G
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Lie Groups 1.1

x 7→ x−1

are C2 mappings.

Example 1.1.2. LetM(n,R) be the space of n×nmatrices with real enrties. Induced with

pointwise addition and scalar multiplication M(n,R) is a linear space and M(n,R) ≃ R2n.

Let A ∈ M(n,R). Then the mappings

sij : A → R

A 7→ aij

(where aij the ij− entry of A) is a system of linear coordinates of M(n,R). Then for

the mapping det : M(n,R) → R one may right det =
∑

σ∈Sn

sgn(σ)s1σ(1) . . . snσ(n). The set

GL(n,R) = {A ∈ M(n,R) | detA ̸= 0} of real invertible matrices is the inverse image of

the open subset R \ {0} through det and the mapping det is continuous, so GL(n,R) is an

open subset of M(n,R). So we may consider it as a smooth manifold of dimension n2 with

µ : GL(n,R)×GL(n,R) → GL(n,R)

skl(µ(A,B)) =

n∑
i=1

ski(A)sil(B)

Follows that µ is smooth.

From Cramer's rule we have that

ι : GL(n,R) → GL(n,R)

A 7→ A−1

is given by ι(A) = (detA)−1Aco. So ι is also smooth. It follows that GL(n,R) is a Lie

2



Lie Groups 1.1

group.

De�nition 1.1.3. Let G end H be Lie groups. A Lie group homomorphism is a smooth

map f : G → H such that f is a group homomorphism.

Now,

De�nition 1.1.4. We de�ne left translation by x

lx : G → G

y 7→ xy

and right translation

rx : G → G

y 7→ yx

The mappings rx, lx are di�eomorphisms G → G and group homomorhisms G → Sym(G).

Finally, for x ∈ G we call conjugate mapping

Cx : G → G

y 7→ xyx−1

The mapping Cx is an automorphism of G with inverse Cx−1 and the mapping

C : G → Aut(G)

3



Lie Groups 1.1

x 7→ Cx

is also a group homomorphism and kerC = Z(G)

Let M be a smooth manifold and X(M) be the real linear space of smooth vector �elds

on M .

De�nition 1.1.5. We say that a vector �eld X ∈ X(M) is left invariant if (lg)∗X = X

∀x ∈ G or equivalently

X(xy) = Ty(lx)X(y)

∀x, y ∈ G.

One may see that left invariant vector �elds are completely determined by their value

at the identity element X(e) ∈ TeG. We write XL(M) for the set of left invariant vector

�elds on M .

Proposition 1.1.6. Let X ∈ TeG. We de�ne the vector �eld uX = Te(lx)(X), x ∈ G.

Then the mapping

TeG → XL(G)

X 7→ uX

is a linear isomorphism with inverse u 7→ u(e).

Proof. From the de�nition of left invariant vector �elds the mapping

XL(G) → TeG

u 7→ u(e)

is an injection. We will demonstrate that it is also a surjection;

4



Lie Groups 1.1

Let f be the mapping

f : G×G → G

(x, y) 7→ lx(y)

di�erentiating for y at y = e in the direction X ∈ TeG we get;

Tef : G → TG

x 7→ Te(lx)X

that is also smooth. It follows that uX is a smooth vector �eld on G, so

TeG → XL(G)

X 7→ uX

is a real linear mapping that is also a surjection. Indeed,

�xing a X ∈ TeG and di�erentiating lxy = lx ◦ ly we get

Te(lxy) = Ty(lx)Te(ly)

witch means that uX is a left invariant vector �eld. We get that X 7→ uX is a surjection.

Finally, uX(e) = X so E :u 7→ u(e) is a bijection, hence a linear isomorphism with

inverse E−1 : X 7→ uX

De�nition 1.1.7. Let G be a Lie group and X ∈ TeG. The curve aX : I → G where

I ⊂ R and a(t0) = e, ˙a(t) = uX(a(t)) is an integral curve of the vector �eld uX starting

at e. The integral curve aX is said to be maximal if I is the largest possible interval of de

5



Lie Groups 1.1

�nition for a.

Lemma 1.1.8. Let G be a Lie group , X ∈ TeG and aX : I → G integral curve of the

vector �eld uX . Then a1(t) = ya(t), y ∈ G, is also an integral curve for uX .

Proof. We have that

d

dt
a1(t) = Tely(a(t)) = Ta(t)ly

d

dt
a(t)

= Ta(t)lyuX(a(t)) = uX(a1(t))

because uX is left invariant. Follows that ya(t) is an integral curve for uX .

Proposition 1.1.9. Let G be a Lie group and X ∈ TeG. Then;

1. aX is de�ned on R

2. aX(s+ t) = aX(s)aX(t) ∀s, t ∈ R

3. The mapping

R× TeG → G

(t,X) 7→ aX(t)

is smooth.

Proof. 1. Let I ⊆ R be the domain of the integral curve aX beginning at e of the vector

�eld uX . Then there exists t1 ∈ I and aX(t1) = x1 ∈ G. From Lemma 1.1.8,

a1(t) := x1aX(t) is also an integral curve of uX beginning at x1 with domain I.

From Re parametrization Theorem for integral curves (see Appendix A.1), the max-

imal integral curve of the vector �eld uX beginning at x1 will be a2(t) := aX(t+ t1).

The integral curve a2 has domain I − t1, which means that I ⊂ I − t1, and s+ t1 ∈ I

∀s, t1 ∈ I. It follows that I = R.

6



Lie Groups 1.1

2. Fixing an s ∈ R we get that aX(s) ∈ G and as we saw above the maximal integral

curve of uX beginning at aX(s) is c(t) := aX(s)aX(t).

From Re parametrization Theorem for integral curves, d(t) := aX(s+ t) will be also

an integral curve for uX beginning at aX(s).

From the uniqueness of maximal integral curves follows that c(t) = d(t).

3. The vector �eld uX is linearly dependent, that is, smoothly dependent from X.

Let φX be the �ow of uX . Then the mapping

(X, t, x) 7→ φX(t, x)

is smooth (c.f. Appendix A.1). More over,

(t,X) 7→ aX(t) = φX(t, e)

R× TeG → G

is smooth.

De�nition 1.1.10. (Exponential mapping) Let G be a Lie group, X ∈ TeG and aX integral

curve of uX beginning at e. We de�ne the exponential mapping;

exp := expG

exp : TeG → G

X 7→ aX(1)

7



Lie Groups 1.1

Proposition 1.1.11. Let G be a Lie group, X ∈ TeG and aX : R → G the integral curve

of the vector �eld uX beginning at e . Then ∀s, t ∈ R:

1. exp(sX) = aX(s)

2. exp(s+ t)X = exp(sX) exp(tX)

3. The mapping exp : TeG → G is smooth and a local di�eomorphism at 0 and T0exp =

IdTeG

Proof. 1. Let c : R → G be a curve with c(t) := aX(st). Then c(0) = e and

d

dt
c(t) = s ˙aX(st)

= suX(aX(st)) = usX(c(t))

So, c(t) is a maximal integral curve of the vector �eld usX beginning at e. So,

c(t) = asX(t), and for t = 1 we get the assertion.

2. From (1) and Proposition 1.1.9 we get

exp sX exp tX = aX(s)aX(t)

= aX(s+ t) = exp(s+ t)X

3. In Proposition 1.1.9 we saw that the mapping

R× TeG → G

(t,X) 7→ aX(t)

8



Lie Groups 1.1

is smooth. It follows that (1, X) 7→ aX(1) is smooth, which proves the smoothness of

exp .

Now,

T0(exp)X =
d

dt
|t=0 exp(tX) = ˙aX(0)

= uX(e) = X

so that T0(exp) = IdTeX and from the inverse function theorem exp will be a local

di�eomorphism at 0. So there exist open neighborhoods U of 0 ∈ TeG and V of e∈ G

such that exp(U) = V and exp |U is a local di�eomorphism.

De�nition 1.1.12. (One Parameter Subgroup) A smooth homomorphism a: (R,+) → G

is called a one parameter subgroup of G. In other words, a: (R,+) → G is a one parameter

subgroup of G if

a(s+ t) = a(s)a(t)

∀s, t ∈ R and a(0) = e.

Proposition 1.1.13. (Characterization of One Parameter Subgroups) Let G be a Lie group

and X ∈ TeG. Then

t 7→ exp tX

R −→ G

is a one parameter subgroup of G.

Conversely, if a is a one parameter subgroup of G with ȧ(0) = X then a(t) = exp(tX),

t ∈ R.

Proof. It is direct that t 7→ exp tX is a one parameter subgroup of G.

9
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Now if a : (R,+) → G is a one parameter subgroup of G, then a(0) = e and

d

dt
a(t) =

d

ds
|s=0 a(t+ s)

=
d

ds
|s=0 a(t)a(s) = Te(la(t))ȧ(0)

= uX(a(t))

So a is an integral curve of the vector �eld uX beginning at e. From uniqueness of integral

curves we get that a = aX and as we saw above, aX(t) = exp tX.

We saw that the mappings of right and left translation rx and lx are di�eomorphisms

G → G. For the mapping of the conjugation Cx : G → G one may wright;

Cx = lx ◦ r−1
x

y 7→ xyx−1

and Cx(e) = e. Di�erentiating Cx at e we get a linear automorphism at TeG, so that

TeCx ∈ GL(TeG)

De�nition 1.1.14. Let G be a Lie group and x ∈ G. We de�ne

Adx : G → TeG

Adx := TeCx

The mapping;

Ad : G → GL(TeG)

10
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is called the adjoined mapping of G at TeG.

Proposition 1.1.15. Ad : G → GL(TeG) is a Lie group homomorphism.

Proof. The map

G×G → G

(x, y) 7→ xyx−1

is smooth. Di�erentiating at y for y = e we get that

G → End(TeG)

x 7→ Adx

is smooth and GL(TeG) is open at End(TeG) so Ad : G → GL(TeG) is smooth.

Now, Ce = IG ⇒ Ad(e) = ITeG. Di�erentiating Cxy = CxCy using the chain rule at e

we get Ad(xy) = AdxAdy so that Ad is a Lie group homomorphism.

We saw that

Ad(e) = I = ITeG

and

TIGL(TeG) = End(TeG)

so the tangent mapping of Ad at e wil be linear TeG → End(TeG).

De�nition 1.1.16. We de�ne the linear mapping ad : TeG → End(TeG) with ad := TeAd

We will later see that the mapping ad de�nes a product structure on TeG turning TeG

to an algebra on R.

11



Lie Groups 1.1

Theorem 1.1.17. Let G and H be Lie groups and Φ : G → H be a Lie group homomorph-

ism. Then for x ∈ G and X ∈ TeG:

1. TeΦ(x) =
d

dt
|t=0 Φ(exp tX)

2. Φ(expX) = exp(TeΦ(x))

Proof. Let X ∈ TeG.

1. a(t) = Φ(expG(tX)), a : R → H is a one parameter subgroup of H. Using the chain

rule we get that;

d

dt
|t=0 Φ(exp tX) =

=
d

dt
|t=0 a(t) = TeΦT0 expG(X) = TeΦ(X)

2. From the characherization of one parameter subgroups we get;

a(t) = Φ(exp(tX)) = exp(tȧ(0)) = exp (t(TeΦ(x)))

For t = 1 the assertion follows.

Corollary 1.1.18. Let x ∈ G. Then

1. ∀X ∈ TeG, x expXx−1 = exp(Adx(X))

2. ∀X ∈ TeG, Ad(expX) = ead(X)

3. adX =
d

dt
|t=0 Ad(exp tX)

Proof. The proof is an application of Theorem 1.1.17 for the Lie group homomorphism;

1. Φ = Cx , Φ : G → G

2. Φ = Ad, Φ : G → GL(TeG)

12



Lie Groups 1.1

Remark 1.1.19. We saw that ad : TeG → End(TeG) and End(TeG) is a matrix group, so

we may write

exp(adX) ≡ eadX

where e(·) is the matrix exponential.

De�nition 1.1.20. Let G be a Lie group. Then for X,Y ∈ Te(G) we de�ne the Lie bracket

[X,Y ] ∈ TeG;

[X,Y ] f = X(Y f)− Y (Xf)

∀f ∈ C∞(G).

Lemma 1.1.21. Let G be a Lie group and X a left invariant vector �eld on G. Then X(g)

is the derivative at t = 0 of the curve t 7→ g exp(tX). In particular

Xf(g) =
d

dt
|t=0 f(g exp tX)

for g ∈ G and f ∈ C∞(M)

Proof. The assertion holds for g = e, and since X is left invariant it holds for all g ∈ G

.

Theorem 1.1.22. Let G be a Lie group. Then ∀X,Y ∈ TeG we have that;

[X,Y ] = adx(Y )

Proof. We compute;

([X,Y ] f) (g) =
d

dt
|t=0 Y f(g exp tX)− d

ds
|s=0 Xf(g exp sY )

13



Lie Groups 1.1

=
d

dt
|t=0

d

ds
|s=0 f(g exp tX exp sY )− d

ds
|s=0

d

dt
|t=0 f(g exp sY exp tX)

=
d

ds
|s=0

d

dt
|t=0 (f(g exp tX exp sY ) + f(g exp sY exp(−tX)))

It holds that

d

dt
|t=0 (F (t, 0) + F (0, t)) =

d

dt
|t=0 F (t, t)

So for F (x, y) = f(g expxX exp sY exp(−yX)), �xing an s, we get that

([X,Y ] f) (g) =
d

ds
|s=0

d

dt
|t=0 f(g exp tX exp sY exp(−tX))

=
d

ds
|s=0

d

dt
|t=0 f(g exp(sAd(exp tX)Y ))

=
d

dt
|t=0 ((Ad(exp tX)Y )f) (g)

= ((ad(X)Y ) f) (g)

So we have that adX(Y ) = [X,Y ] for X,Y ∈ g

Lemma 1.1.23. The mapping

TeG× TeG → TeG

(X,Y ) 7→ [X,Y ]

is bilinear and antisymmetric.

Proof. Bilinearity follows from linearity of ad : TeG → End(TeG).

14



Lie Groups 1.1

For the antisymmetric property;

Let Z ∈ TeG. Then for all s, t ∈ R;

exp(tZ) = exp(sZ) exp(tZ) exp(−sZ)

= exp(tAd(exp sZ)Z)

and as we have already see;

d

dt
|t=0 exp(tZ) = Z = Ad(exp(sZ))Z

Now,

d

ds
|s=0 Z = 0 = ad(Z)T0 expZ

= ad(Z)Z = [Z,Z]

For Z = X + Y we have;

[X + Y,X + Y ] = 0 ⇒

[X,X] + [X,Y ] + [Y, Y ] + [Y,X] = 0 ⇒

[X,Y ] = − [Y,X]

Theorem 1.1.24. Let G,H be Lie groups and Φ : G → H a Lie group homomorphism.

15



Lie Groups 1.2

Then ∀X,Y ∈ TeG we have;

TeΦ([X,Y ]G) = [TeΦX,TeΦY ]H

Proof. Observing that Φ ◦ Cx = CΦ(x) ◦ Φ from the chain rule we get Te (Φ ◦ Cx) =

TeΦ (Adx), Te

(
CΦ(x) ◦ Φ

)
= AdΦ(x)(Φ), so that

TeΦ (Adx) = AdΦ(x) (Φ)

di�erentiating for x at x = e at the direction of X ∈ TeG we get

TeΦ ◦ adX = adTeΦ(X) ◦ TeΦ

hence,

TeΦ(adX)(Y ) = adTeΦ(X)TeΦ(Y )

Corollary 1.1.25. For all X,Y, Z ∈ TeG we have;

[[X,Y ] , Z] = [X, [Y,Z]]− [Y, [X,Z]] (1.1.1)

Proof. Using Theorem 1.1.24 for Φ = Ad : G → GL(TeG)

we get

ad [X,Y ] (Z) = [adX , adY ] (Z) ⇒

[[X,Y ] , Z] = adXadY (Z)− adY adX(Z) = [X, [Y,Z]]− [Y, [X,Z]]

Equation 1.1.1 is called Jacobi identity.

16



Lie Algebras 1.2

1.2 Lie Algebras

De�nition 1.2.1. A real Lie algebra is a vector space g over R, together with a bilinear

mapping

(X,Y ) 7→ [X,Y ]

g× g −→ g

witch is called the Lie bracket of g. The Lie bracket is antisymmetric and satis�es the

Jacobi identity.

For later use we will also need the following de�nition;

De�nition 1.2.2. A Complex Lie algebra is a vector space g over C together with a Lie

bracket that is a complex bilinear mapping g× g → g.

Proposition 1.2.3. Let G be a Lie group and let XL(G) be the space of left invariant vector

�elds of G. Then for X,Y ∈ XL(G) we have [X,Y ] ∈ XL(G).

Proof. It is X ∈ XL(G) so ∀x ∈ G we get X
lx∼ X witch by de�nition means that

T lx ◦X ◦ l−1
x = X

If X,Y ∈ XL(G) then X
lx∼ X and Y

lx∼ Y ∀x ∈ G so for the Lie bracket of X,Y we get

[X,Y ]
lx∼ [X,Y ]

or,

[X,Y ] ∈ XL(G)

17



Lie Algebras 1.2

Let G be a Lie group. The fact that the left invariant vector �eld are closed under

the Lie bracket operation combined with Proposition 1.1.6 allows us to write g for the Lie

algebra of G and

g = (TeG, [·, ·])

Example 1.2.4. Let V be a real vector space of �nite dimension n and v1, . . . , vn be a

basis of V . Then there exists a unique linear isomorphism ev : Rn → V ei 7→ vi where

e1, . . . , en is an orthonormal basis of Rn. If w1, . . . , wn is another basis for V then

L : Rn → Rn

L := e−1
v ew

is a linear isomorphism, therefore a di�eomorphism. So V has a unique manifold structure

independent of the choice of basis. The space of linear endomorphisms of V , End(V ) with

pointwise addition and scalar multiplication is a linear space.

Let A ∈ End(V ). We write mat(A) = matvA for the matrix A and the basis v1, . . . vn.

The mapping mat is a linear isomorphism.

End(V ) → M(n,R)

and a di�eomorphism with

mat(GL(V )) = GL(n,R)

So GL(V ) is an open subset of End(V ), so it is also a submanifold of End(V ). It follows

that GL(V ) is a Lie group isomorphic to GL(n,R) and

TIGL(V ) = gl(V ) = End(V )

since GL(V ) is an open subset of the linear space EndV.
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Let us consider the mapping;

det : GL(V ) → R∗

Then T1R∗ = R so,

TI det : End(V ) → R

Let H ∈ End(V ). Then

TI detH =
d

dt
|t=0 det(I + tH)

But

det(I + tH) = 1 + t(h11 + . . .+ hnn) + t2R(t,H)

where R is a polynomial. Di�erentianting for t at t = 0 we get

TI detH = h11 + . . .+ hnn = trH

De�nition 1.2.5. Let g, h be Lie algebras. A Lie algebra homomorphism is a linear

mapping φ : g → h such that for all X,Y ∈ g

φ [X,Y ] = [φ(X), φ(Y )]

Proposition 1.2.6. Let G,H be Lie groups with Lie algebras g and h respectively. If

Φ : G → H is a Lie group homomorphism, then the tangent map of Φ at the identity

TeΦ := φ

g → h

is a Lie algebra homomorphism.

Proof. The proof is a direct application of Theorems 1.1.17 and 1.1.24.
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1.3 The connected component of the identity

Let G be a Lie group. Consider the set G◦ = {expX1 . . . expXk | k ≥ 1, Xi ∈ g} where g is

a �nite dimensional Lie algebra.

Lemma 1.3.1. G◦ is an open subset of G.

Proof. Let a ∈ G◦. Then there exists a positive integer k ≥ 1 and elements X1, . . . , Xk ∈ g

such that a = exp(X1) . . . exp(Xk). The mapping exp : g → G is a local di�eomorphism at

0 so there exists an open neighborhood Ω of 0 in g such that Ω is di�eomorphic to an open

neighborhood of e in G.

Since left translation by a: la : G → G is a di�eomorphism, we get that

la(exp(Ω)) = {exp(X1) . . . exp(Xk) exp(X)} ⊂ G◦

So a is an inner point of G◦ and it follows that G◦ is open in G.

Lemma 1.3.2. Let G be a Lie group and H be a subgroup of G. If H is open in G then it

is also closed in G.

Proof. G has connected components, so ∀x, y ∈ G we have xH = yH or xH ∩ yH = ∅.

(The connected components de�ne an equivalence relation). So there exists a subset S of

G such that;

G = ∪
s∈S

sH

and

siH ∩ sjH = ∅

for i ̸= j.

Then

Hc = ∪
s∈S∧s/∈H

sH
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The connected component of the identity 1.3

This is a disjoined union of open subsets, so that Hc is open, hence H is closed.

Proposition 1.3.3. Let G be a Lie group. Then G◦ is the connected component of the

identity of G. Furthermore, G is connected if and only if G◦ = G .

Proof. G◦ is open, hence closed in G therefore a disjoined union of connected components.

Let us observe that G◦ is arcwise connected;

Let a ∈ G◦. One may write a = exp(X1) . . . exp(Xk) with k ≥ 1 and X1, . . . , Xk ∈ g.

So there exists a curve;

c : [0, 1] → G

t 7→ exp(tX1) . . . exp(tXk)

The curve c(t) is continuous and smooth beginning at c(0) = e and ending at c(1) = a. It

follows that G◦ is arcwise connected, hence connected.

This means that G◦ is the connected component of G containing the identity.

We may extend the above theory if g is an in�nite dimensional Lie algebra, and a Banach

space. In this case we may use the inverse function theorem for Banach spaces along with

the uniform convergence of the product of the elements of the Lie algebra through the

exponential mapping [Omo97]. If g is not a Banach space then the image of the exponential

mapping does not necessarily cover the whole neighborhood of the identity[Omo72].
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The Baker-Campbell-Hausdor�

formula

In general for a Lie group expX expY ̸= expY expX unless the group is commutative.

Using the Baker Campbell Hausdor� formula one may write the product expX expY ex-

clusively as combinations of the Lie bracket.

A direct application of the formula is Lie's Second Theorem: Every Lie algebra homo-

morphism can be integrated to a Lie group homomorphism with domain a simply connected

Lie group. In this thesis we will not state this result.

2.1 The tangent map of the exponential

For the proof of the Baker-Campbell-Hausdor� formula one needs to compute the tangent

map of the exponential mapping. The result has a unique interest and it will be used in

the following chapters as well.

Theorem 2.1.1. Let X ∈ g. Then

TX exp = Te(lexpX) ◦
� 1

0
e−sadxds

= Te(rexp) ◦
� 1

0
esadxds

22



The tangent map of the exponential 2.1

Proof. We will show that if X,Y ∈ g then

TX exp(Y ) = Te(lexpX)

(� 1

0
Ad(exp(−sX))Y ds

)

We de�ne F (X,Y ) = (Te(lexpX))−1 TX expY ∈ g.

We will show that

dfe (F (X,Y )) = dfe

(� 1

0
Ad(exp(−sX))Y ds

)

for every smooth f ∈ C∞(G). For the linear functional dfe we have that;

dfe (F (X,Y )) =

� 1

0
dfe(Ad(exp(−sX))Y )ds

From the chain rule we get

F (X,Y ) =
∂

∂t
|t=0 exp(−X) exp(X + tY ) ∈ TeG = g

Let g(s, t) = exp(−sX) exp(s(X + tY )) ∈ G , s, t ∈ R.

Then,

F (sX, sY ) =
∂

∂t
|t=0 g(s, t)

Hence,

dfe(F (sX, sY )) =
∂

∂t
|t=0 f(g(s, t))

and � 1

0

∂

∂s
dfe (F (sX, sY )) ds = dfe(F (X,Y ))− dfe(F (0, 0))

but F (0, 0) = 0 so,

dfeF (X,Y ) =

� 1

0

∂

∂s
dfe (F (sX, sY )) ds
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The tangent map of the exponential 2.1

f is a smooth real function, hence,

∂

∂s
dfe(F (sX, sY )) =

∂

∂s

∂

∂t
|t=0 f(g(s, t)) =

∂

∂t
|t=0

∂

∂s
f(g(s, t))

For s, t, u ∈ R we get g(s+ u, t) = exp(−sX)g(u, t) exp(s(X + tY )) so,

f(g(s+ u, t)) =
(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
(g(u, t))

and

∂

∂s
f(g(s, t)) =

∂

∂u
|u=0 f(g(s+ u, t))

hence,

∂

∂s
f(g(s, t)) = d

(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e

(
∂

∂u
|u=0 g(u, t)

)
But,

∂

∂u
|u=0 g(u, t) = −X + (X + tY ) = tY

so

∂

∂s
f(g(s, t)) = d

(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e
(tY )

= td
(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e
(Y )

Now, d
(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e
(Y ) ∈ R is smoothly dependent on t so, di�erentiat-

ing td
(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e
(Y ) for t at t = 0 we get the value of

d
(
f ◦ lexp(−sX) ◦ rexp(s(X+tY ))

)
e
(Y )

at t = 0;

∂

∂t
|t=0

∂

∂s
f(g(s, t)) = d

(
f ◦ lexp(−sX) ◦ rexp(s(X))

)
e
(Y )
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The tangent map of the exponential 2.1

= dfe (Ad(exp(−sX))(Y ))

so,

∂

∂s
dfe(F (sX, sY )) = dfe(Ad(exp(−sX))Y )

hence,

dfe(F (X,Y )) =

� 1

0
dfe(Ad(exp(−sX))Y ds) = dfe

(� 1

0
(Ad(exp(−sX))Y )ds

)

which proves the assertion.

Let us observe the following;

⋆ adx: g→ End(g) so one may use the exponential mapping for matrices and compute;
� 1
0 esadxds =

eadx − I

adx
and

� 1
0 e−sadxds =

I − e−adx

adx

⋆ If V is a �nite dimensional vector space and A ∈ End(V ) then

� 1

0
esAds =

∞∑
k=0

1

(k + 1)!

and if A is invertible one may write;

� 1

0
esAds =

∞∑
k=0

1

(k + 1)!
= A−1(eA − I)

⋆ Using the complexi�cation of V , in other words writing VC = V⊕iV we getEnd(VC) ≃

Mn(C) (For details c.f. Appendix B). Using Jordan normal forms for
� 1
0 esAds one

may compute eigenvalues as
eλ − 1

λ
where λ is an eigenvalue of A.

Corollary 2.1.2. The singular points of exp: g → G, that is, the elements X ∈ g for

which TX exp is not invertible are exactly those for which adX ∈ End(gC) has eigenvalues
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The tangent map of the exponential 2.1

of the form 2kiπ, k ∈ Z ∖ {0}. Let Σ be the collection of those elements. Then

Σ = ∪
k∈Z\{0}

kΣ1

where

Σ1 = {X ∈ g | det ((adX)C − 2πiI) = 0}

One may see that ge = g ∖ Σ, so ge is the set of elements for which
eadx − I

adX
is invertible

then the mapping

X 7→ adx
eadx − I

is a di�eomorphism

ge → End(ge)

Remark 2.1.3. ge × ge is an open neighborhood of (0, 0) in g× g.

Theorem 2.1.4. The solution Z(t) of the di�erential equation

dZ

dt
(t) =

adZ(t)

I − e−adZ(t)
(Y )

Z(0) = X

where

m(X,Y ) := Z(1)

satis�es

exp(m(X,Y )) = expX expY

for X,Y ∈ ge where Z(t) is de�ned for all t ∈ [0, 1]

Proof. We have;

d

dt
(expZ(t)) =

(
TZ(t) exp

) dZ
dt

(t)
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The tangent map of the exponential 2.1

= Te(lexpZ(t))(Y )

Hence expZ(t) is an integral curve of the left invariant vector �eld TeY beginning at

X for which t 7→ exp tY is also an integral curve beginning at e.

We have already seen that;

expZ(t) = expZ(0) exp tY = expX exp tY

and for t = 1 the assertion follows.

De�nition 2.1.5. A real (respectively complex) analytic Lie group G is a group G that

at the same time is a real (respectively complex) analytic manifold such that the group

operations µG and ιG are real (respectively complex) analytic mapping.

We expect to de�ne the inverse of exp in an open neighborhood of 0 where it is a

di�eomorphism. m(X,Y ) = Z(1) as de�ned above is the multiplication in logarithmic

coordinates.

Let us consider open neighborhoods U and U0 of 0 in g and an open neighborhood V

of e in G such that exp : U → V is a di�eomorphism for all X,Y, Z ⊂ U0(X,−Y ) ∈ g2e

m((X,−Y ), Z) ∈ g2e and m(m(X,−Y ), Z) ∈ U

We have T0 exp = I : g → g, m(0, 0) = 0 and m is continuous, so from the inverse

function theorem U,U0, V exist. For all x ∈ G we de�ne

V x
0 := lx(expU0)

and for y ∈ V x
0

κx(y) := log(x−1y)

where

log := exp−1 : V → U
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The tangent map of the exponential 2.2

Theorem 2.1.6. The collection {κx : V x
0 → U0},x ∈ G forms a real analytic atlas for G,

turning Gan := (G, {κx}) into a real analytic Lie group such that the mapping i : G → Gan

is a C2 di�eomorphism.

If g is a complex analytic Lie algebra, then this atlas is complex analytic, turning G into

a complex analytic group if moreover Adx : g → g is complex linear for all x ∈ G.

Proof. From Theorem 2.1.1 we see that X 7→ TX exp is C1 for all X ∈ g, hence exp : g → G

is C2. So κx : V x
0 → g is a C2 di�eomorphism for all x ∈ G.

Now, if x ̸= y,x, y ∈ G let V x
0 ∩ V y

0 ̸= ∅. Then there exist X0, Y0 ∈ U0 such that

x expX0 = y expY0

If Y = κy◦(κx)−1(X) then either x expX = y expY or, expY = expY0 exp(−X0) expX,

meaning that Y = m(m(Y0,−X0)X)

So the atlas will be real (respectively complex) analytic.

Finally, one has;

x expX(y expY )−1 = x expX exp(−Y y−1)

= (xy−1)y expµ(X,−Y )y−1 = xy−1 exp(Adym(X,−Y ))

so that the mapping

(X,Y ) 7→ κxy
−1

(
(κx)−1(X)

(
(κy)−1(Y )

)−1
)
= Ady(m(X,−Y ))

is real (respectively complex) analytic.

We will use this construction later, to prove the Analytic Subgroup Theorem.
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2.2 The Backer-Campbell-Hausdor� formula

Observing that eadZ(t) = etadXeadY we may proceed to the proof of the Backer-Campbell-

Hausdor� formula.

Theorem 2.2.1. (Backer-Campbell-Hausdor�)

log
(
eadXeadY

)
=

X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] +O(3)

Proof. We saw that;

dZ

dt
(t) =

adZ(t)

I − e−adZ(t)
(Y )

and

eadZ(t) = eadXetadY

We may write;

adZ(t) = log
(
eadXetadY

)
and

dZ

dt
(t) =

log
(
eadXetadY

)
I − (eadXetadY )−1

(Y )

then for

g(z) =
log z

1− z−1

we have

dZ

dt
(t) = g(eadXetadY )(Y )

and from the fundamental theorem of calculus;
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Z(1) = X +

� 1

0
g(eadXetadY )(Y )dt

Now,

g(z) = 1 +
1

2
(z − 1)− 1

6
(z − 1)2 +

1

12
(z − 1)3 − . . .

Moreover, from the series expansion for the exponential we have;

eadXetadY − I

=

(
I + adX +

(adX)2

2
+ . . .

)(
I + tadY +

t2(adY )
2

2

)
− I

= adX + tadY + tadXadY +
(adX)2

2
+

t2(adY )
2

2
+ . . .

We compute g(eadXetadY ) for terms of degree at most 2. We get;

g(eadXetadY ) =

= I+
1

2

(
adX + tadY + tadXadY +

(adX)2

2
+

t2(adY )
2

2

)
−1

6

(
(adX)2 + t2(adY ) + tadY adX

)
+O(3)

Hence,

Z(1) = log(eXeY ) = X +

� 1

0
g(eadXetadY )(Y )dt

= X +

� 1

0

[
Y +

1

2
[X,Y ] +

1

4
[X, [X,Y ]]− 1

6
[X, [X,Y ]]− t

6
[Y, [X,Y ]]

]
dt

= X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]
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The Analytic Subgroup Theorem

3.1 Lie subalgebras

De�nition 3.1.1. A Lie subalgebra of a Lie algebra g is a linear subspace h of g such that

∀X,Y ∈ h,

[X,Y ] ∈ h

It follows that the restriction of the bracket in h× h turns h into a Lie algebra and the

identity mapping h → g into a Lie group homomorphism.

We will demonstrate every Lie subalgebra of �nite dimension can be integrated to a

unique a connected Lie subgroup.

Lemma 3.1.2. Let G be a �nite dimensional Lie group and H a Lie subgroup of G. Then

for the Lie subalgebra h of H we have:

h = {X ∈ g | ∀t ∈ R : exp(tX) ∈ H}

where exp: g → G.

Proof. Set V = {X ∈ g | ∀t ∈ R : exp(tX) ∈ H}. We will show that h ⊂ V and V ⊂ h.

Let X ∈ h and i : H ↪→ G. Then i∗ := Tei : h → g is an injection, hence

expG(tX) = i(expH tX)
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so ∀t ∈ RexpG(tX) ∈ i(H) = H, hence h ⊂ V .

Conversely, let X ∈ g and X /∈ h and

φ : R× h → G

φ(t, Y ) = exp(tX) exp(Y )

Then

T(0,0)φ : R× h → g

(τ, Y ) 7→ τX + Y

and X /∈ h, hence ker
(
T(0,0)φ

)
= {0}

From the Immersion Theorem A.2.5 there exists ε > 0 and an open neighborhood Ω of

0 in h such that φ |[−ε,ε]×Ω is an injection.

We may pick Ω such that expH(Ω) is di�eomorphic to an open neighborhood U ⊆ H

of e.

The mapping

m : H ×H → H

(x, y) 7→ x−1y

is continuous and m(e, e) = e, hence there exists an open neighborhood U0 ⊆ H of e such

that m(U0 × U0) ⊂ U ⇔ U−1
0 U0 ⊂ U

Now, H is a countable union of compact sets (c.f. Appendix A.2) so there exist hj ∈ H,

j ∈ N so that the family {hjU0} is an open cover of H. For every j ∈ N de�ne

Tj = {t ∈ R | exp tX ∈ hjU0}
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Then for i0 ∈ N and for s, t ∈ Ti0 and |s− t| < ε we get

exp [(t− s)X] = exp(−sX) exp(tX) ∈ U−1
0 U0 ⊂ U

hence ∃!Y ∈ Ω such that exp [(t− s)X] = expY and φ(t− s, 0) = φ(0, Y ). But φ |[−ε,ε]×Ω

is an injection, so t = s and Y = 0. Hence for s, t ∈ Ti0 ,s ̸= t we have |s− t| ≥ ε. Then Ti0

is countable and i0 was arbitrary, so

∪
j∈N

Tj

is countable, hence,

∪
j∈N

Tj ⊂ R

so there exists t0 ∈ R such that t0 /∈ Tj∀j ∈ N.

So,

exp t0X /∈ ∪
j∈N

hjU0

⇒

X /∈ V

⇒ g \ h ⊂ g\V

⇒ V ⊂ h

Lemma 3.1.3. Let G be a Lie group with Lie algebra g and h ⊂ g a Lie subalgebra of

g. Then there exists an open neighborhood Ω of 0 in g such that M = exp(h ∩ Ω) is a
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submanifold of G and

TmM = Te(lm)h

for all m ∈ M .

Proof. We know that there exists an open neighborhood Ω of 0 in g and an open neighbor-

hood U of e in G such that exp |Ω is a di�eomorphism. Taking M := exp (h ∩ Ω) then M

is a smooth submanifold of G and dimM = dim h.

Moreover, h is closed under the Lie bracket of g and the vector �eld
e−adX − I

adX
leaves

h invariant.

So, for X ∈ h ∩ Ω and m = expX one has

TmM = TX(exp)h

= Te(lm) ◦
(
e−adX − I

adX

)
h ⊂ Telmh

On the other hand, one sees that dimM = dim h , hence,

TmM = Te(lm)h

Proposition 3.1.4. Let G be a Lie group with Lie algebra g, h ⊂ g a Lie subalgebra of

g and M = exp(h ∩ Ω). Let K be a compact subset of M . Then there exists an open

neighborhood U of 0 in g so that m exp(h ∩ U) is open in M for all m ∈ C. Moreover

K exp(h ∩ U) is an open neighborhood of K in M .

Proof. For all X ∈ h one may write ΦX : R×G → G for the �ow of the left invariant vector

�eld uX . Then for all X ∈ h,t ∈ R, x ∈ G one gets ΦX(t, x) = x exp tX.

For M = exp(h ∩Ω), the left invariant vector �eld uX , X ∈ h is tangent everywhere at
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M so uX|M is a vector �eld of M .

For all X ∈ h and m ∈ M we write t 7→ φ(t,m) for the maximal integral curve of uX|M

in M beginning at m. Let D be an open neighborhood of h×{0}×M in h×R×M . Then

the mapping

D −→ M

(X, t,m) 7→ φX(t,m)

depends smoothly on its parameters so it is smooth in D and t 7→ φX(t,m) is an integ-

ral curve for uX in G beginning at m. From the uniqueness of integral curves one gets

∀ (X, t,m) ∈ D

φX(t,m) = ΦX(t,m)

hence ∀ (X, t,m) ∈ D

ΦX(t,m) ∈ M

Now, let K be a compact subset of M . One has that ΦsX(t,m) = ΦX(st,m) and K

is compact, so there exists an open neighborhood U0 of 0 in h such that ∀X ∈ U0, t ∈

[0, 1] ,m ∈ C

m exp(tX) = ΦX(t,m) ∈ M

We may �nd an open neighborhood U of 0 in g, small enough so that h∩U ⊆ U0 and

exp |U is a di�eomorphism.

Then, for all m ∈ K the mapping

σ : h ∩ U → M

X 7→ m expX
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is an injection and an immersion.

But, dimM = dim h, hence σ is a di�eomorphism over some open subset of M . So,

m exp(h ∩ U) is an open subset of M for all m ∈ K.

Finally, the compactness of K implies that;

K exp(h ∩ U) = ∪
m∈K1

m exp(h ∩ U)

where K1 is a countable subset of K, end every element of the union is open, from which

follows the last assertion.

Corollary 3.1.5. Let G be a Lie group with Lie algebra g, h ⊂ g a Lie subalgebra of g and

M = exp(h ∩ Ω). Then for all x1, x2 ∈ G, the set x1M ∩ x2M is open in x1M and x2M .

3.2 Analytic Subgroup Theorem

Theorem 3.2.1. (analytic subgroup theorem) Let G be a Lie group with Lie algebra g. If

h ⊂ g is a Lie subalgebra of g then the subgroup ⟨exp h⟩ generated by exp h admits a unique

Lie subgroup stuture. Moreover the mapping

h 7→ ⟨exp h⟩

is a bijection between the Lie subalgebras of g and the connected Lie subgroups of G.

Proof. Let h be the group generated by exp h. First, we will induce H with a manifold

structure and then proove that H with this structure is a Lie group.

Fix Ω and M as in Lemma 3.1.3. Then exp |Ω is a bijection and hence Ω0 := Ω ∩ h is

di�eomorphic to the submanifold M of G through exp |Ω0 with inverse the di�eomorphism

s : M → Ω0.
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M ⊂ H hence the family of submanifolds of G

A = {hM | h ∈ H}

is a cover of H. We will induce H with the smallest topology for which hH ↪→ M is

continious ∀h ∈ H.

As we saw from Corollary 3.1.5 every member of A is open in H. Let

O = {F | F ⊆ G and F open in G}

be the family of open subsets of G.

Then, ∀F ∈ O, h ∈ H , F ∩hM is open in hM. Hence, F ∩H is open in H and H ↪→ G

is continuous. G is Hausdor� so H with the open topology will be also Hausdor� and for

all h ∈ H the mapping

hM → Ω0

sh = s ◦ l−1
h

is a di�eomorphism. Hence {sh | h ∈ H} forms an Atlas for H.

Fix a compact neighborhood K0 of 0 in Ω ∩ h. Then K = expK0 is a compact neigh-

borhood of e in M . Hence, K is compact in H and

h = ∪
n∈N

nK0

so,

exp h = ∪
n∈N

{kn | k ∈ K}

One sees that,

H = ∪
n∈N

Kn
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and for all n ∈ N, Kn is a Cartesian product of compact sets, hence compact. It follows

that the manifold H is a countable union of compact sets, so its topology has a countable

basis.

Now, we will prove that H induced with the manifold structure we found above is a Lie

group.

From the way we constructed the Atlas for H we get that lh : H → H is a di�eomorph-

ism for h ∈ H.

For X ∈ h, the linear endomorphism

AdexpX : g → g

X 7→ eadX

leaves h invariant and H is generated from elements of the form expX, X ∈ h so for all

h ∈ H Ad(H) leaves h invariant.

Fix an h ∈ H. Then there exists an open F ⊆ Ω ⊂ g with 0 ∈ F such that

Adh−1(F ) ⊂ Ω

⇒ Adh−1(h ∩ F ) ⊂ h ∩

Moreover,

expXh = h expAdh−1X

so in exp(h∩F )

sh ◦ rh = Adh−1 ◦ se

Hence rh : exp(h ∩ F ) → M is smooth, and rh : H → H is smooth at e. Through left
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translation we may extend it in a smooth mapping de�ned in H. Moreover rh is a bijection

with inverse rh−1 hence a di�eomorphism.

We will show that the operations of multiplication

µH : H ×H → H

(
h, h′

)
7→ hh′

and inversion

ιH : H → H

h 7→ h−1

are smooth.

For h, h1, h2 ∈ H we get

µH ◦ (lh1 × rh2) = lh1rh2 ◦ µH

and

ιH ◦ lh = rh−1 ◦ ιH

hence, since lh1 and rh2 are smooth it su�ces to show that µH , ιH are smooth in (e, e).

There exists an open neighborhood Ne of e in M such that Ne is a compact subset of M .

Then by Lemma 3.1.3 we �nd open neighborhood U of 0 in g such that Ne exp(h∩U) ⊂ M .

Replacing U with U ∩Ω we get that N0 := exp(h ∩ U) is an open neighborhood of e in M

and NeN0 ⊂ M , hence for µG : G×G → G we have µG(Ne ×N0) ⊂ M and

µG |Ne×N0= µH |Ne×N0
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maps smoothly Ne × N0 onto the submanifold M of G. Hence, µH is smooth in an open

neighborhood of (e, e) ∈ H ×H.

Finaly, Ω1 := Ω ∩ (−Ω) ⊂ g is an open neighborhood of 0 and for N1 := exp(Ω1 ∩ h),

ιG(N1) = N1 , e ⊂ N1, N1 is open in M . But,

ιG |N1= ιH |N1

so, ιH is smooth in a neighborhood of e ∈ H.

Hence H is a Lie subgroup.

Example 3.2.2. Let g be �nite dimensional Lie algebra. We saw that ad : g → L(g, g)

is a group homomorphism. L(g, g) is the Lie algebra of GL(g) and adg is a subalgebra of

L(g, g). From Theorem 3.2.1 we get that the subgroup GL(g) generated by eadX , X ∈ g

is the unique connected Lie subgroup of GL(g) with Lie algebra adg. This is the adjoined

group Adg of the Lie algebra g. We saw that Ad(expX) = eadX and moreover

[
eadX (Y ), eadX (Z)

]
= eadX [Y, Z]

∀X,Y, Z ∈ g.

It follows that Ad(expX) = eadX is in the automorphisms group of g, hence Adg is a

subgroup of Autg.

Moreover, if Φ ∈ Aut(g) and X1, . . . , Xk is a basis of g then

Φ ([Xi, Xj ]) = [Φ(Xi),Φ(Xj)]

hence Autg is an analytic submanifold of GL(g) hence a closed subgroup.

The Lie algebra of Autg is

(Autg)alg = Derg

= {φ ∈ L(g, g) | φ ([X,Y ]) = {φ(X), Y ] + [X,φ(Y )],∀X,Y ∈ g}
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(Autg)alg = Derg is the Lie subalgebra of L(g, g) that consists of the derivations (or

the in�nitesimal automorphisms) of g and adg ⊂ Derg.

In general, Adg is not necessarily closed in Autg (so neither in GL(g)) and Autg is not

necessarily connected.

Finally, if G is a Lie group with Lie algebra g we already saw that Ad : G → GL(g) is

a Lie group homomorphism and TeAd = ad hence Ad maps G◦ homeomorphically to Adg

such that

Ad(G◦) = Adg

3.3 Commutative Lie Groups

Theorem 3.3.1. Let G be a Lie group with Lie algebra g. Then g is commutative if and

only if G◦ is commutative.

Moreover, if G is connected then g is commutative if and only if G is comutative.

Proof. Let g be a commutative Lie algebra. Then ∀X,Y ∈ g [X,Y ] = 0 and

expX expY = expY expX

From the characterization of G◦, G◦ will be commutative as well.

Conversely, let us assume that G◦ is commutative. Let x ∈ G◦ then Adx = I and

eadtX = Ad(exp tX) = I. Hence,

d

dt
|t=0 e

adtX = 0

⇔ adX ≡ 0

∀X ∈ g so,

[X,Y ] = 0
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∀X,Y ∈ g, hence g is a commutative Lie algebra.

Finally, we saw that if G is commutative then G◦ = G, from which follows the last

assertion.

De�nition 3.3.2. (Discrete Subgroup) Let G be a Lie group and H a Lie subgroup of G.

Then H is discrete if and only if is discrete as a topological space. Equivalently, if ∀h ∈ H

there exists an open neighborhood U of G such that U ∩H = {h}.

Proposition 3.3.3. Let G be a Lie group and H a subgroup of G. The following are

equivalent:

1. There exists an open neighborhood U of e in G such that U ∩H = {e}

2. H is discrete

3. For all compact K ⊆ G the intersection H ∩K is �nite

4. H is a closed Lie subgroup with Lie algebra {0}

Proof. (1) ⇒ (2) Let h ∈ H. Then Uh = hU is an open neighborhood of h in G and

Uh ∩H = hU ∩H = h(H ∩ h−1H) = h(U ∩ h) = {h}

(2) ⇒ (3) First, we will show that H is closed in G. Let U be an open neighborhood

of e in G such that U ∩H = {e} and g ∈ H. We want to show that g ∈ H. We may �nd

a sequence {hj} of elements of H such that hj → g. Then hj+1h
−1
j → gg−1 = e. So there

must exist n0 ∈ N such that for all j ≥ n0, hj+1h
−1
j ∈ U ∩H = {e}⇒ hj = hj+1 hence {hj}

is constant after some index and g ∈ H so H is closed.

Now, let K be a compact subset of G. Then K ∩H is closed in K with the subspace

topology, so it is compact.

For h ∈ H we pick an open subset Uh of G such that Uh ∩H = {h}. Then the family

{Uh | h ∈ H ∩K} is an open cover of H ∩ K that has no proper subcover and H ∩ K is

compact, so the cover is �nite. The assertion follows.
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(3) ⇒ (4) Fix a g ∈ H. Then there exists a compact neighborhood K of g and

g ∈ H ∩K = H ∩ K since H ∩ K is �nite, hence closed. So g ∈ H, and H is closed. It

follows that H is a closed subgroup of G with Lie algebra h = {X ∈ g | exp(RX) ⊂ H}.

The mapping exp : g → G is a local di�eomorphism at 0 so there exists open neighborhood

Ω of 0 in g such that exp |Ω is a bijection. Let X ∈ g ∖ {0}. Then there exists ε > 0

such that [−ε, ε]X ⊂ Ω. Then c : [−ε, ε] → G t 7→ exp tX has a compact image and

c ([−ε, ε]) ∩ H is �nite. Hence, {t ∈ [−ε, ε] | exp tX ∈ H} is �nite and X /∈ h. It follows

that h = {0}.

(4) ⇒ (1)H is a closed submanifold ofG of zero dimension and the assertion follows.

Lemma 3.3.4. Let V be a �nite dimensional vector space and let Γ be a discrete subspace

of V . Then there exist linearly independent elements of V v1, . . . , vp such that

Γ = Zv1 ⊕ U . . .⊕ Zvp

Proof. The proof is by induction in the dimension of V .

For dimV = 1, we may pick a basis of V in order to identify it with R and Γ is a

discrete subgroup of R. Let a ∈ Γ \ {0} and a > 0. Then the set [0, a] ∩ Γ is closed in R,

so it will have a least element v. We claim that Γ = Zv = {nv | n ∈ Z}. Indeed, Γ is a

subspace, so Γ ∩ (0, 1) v = ∅, hence Zv ⊆ Γ.

Let Γ ⊈ Zv then there exists g ∈ Γ where g /∈ Zv, so that g ∈ (m,m+ 1) v for some

m ∈ Z, contradiction. Hence Γ = Zv = {nv | n ∈ Z}.

Now, let dimV > 1 and that the assertion holds for every F with dimF < dimV . We

pick an element v ∈ Γ \ {0}. Then the intersection Rv ∩ Γ where Rv = {vx | x ∈ R} is a

discrete subset of Rv hence, it will be of the form Zv1 . We may �nd a linear subspace W

of V such that Rv1 ⊕W = V where p : V → W is the canonical projection.

Now, if K is a compact subset of W then p(Γ ) ∩ K is �nite. So p(Γ) is a discrete

subspace of W .
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Theorem 3.3.5. Let G be a connected commutative Lie group. Thene there exist p, q ∈ N

such that G ≃ (R/Z)p × Rq. Moreover p+ q = dim g, p = dimker(exp)

Proof. G is connected and commutative , so its Lie algebra g is commutative as well. Hence

[X,Y ] = 0 ∀X,Y ∈ g. For

exp : g → G

we get

exp(X + Y ) = expX expY

so exp is a Lie group homomorphism (g,+) → G and its image is a subgroup of G and

exp g = G◦.

But G is connected, so exp is a surjection.

Let Γ = ker(exp). Then

G ≃ g

Γ

and since exp is a local di�eomorphism there exists neighborhood Ω of 0 in g with

Ω ∩ ker(exp) = {0}

such that Γ is a discrete subgroup of g. Hence,

Γ = Zv1 ⊕ . . .⊕ Zvp

for some v1, . . . , vp linerly independent elements of g.

Consider the basis v1, . . . , vn of g with n = dim g = p+ q and isomorphism

f : g → Rp × Rq

Let

E : Rn → G
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with

E = exp ◦f−1

Then E is a surjective homomorphism of Lie groups and kerE = f(Γ) = Zp ×{0}. Taking

the canonical projection π : Rn → (R/Z)p × Rq we get that the mapping

Ẽ := E ◦ π−1

Ẽ : (R/Z)p × Rq → G

is a di�eomorphism and a bijection, so a Lie group isomorphism.

Corollary 3.3.6. If ker(exp) = {0} or if ker(exp) is a discrete subgroup of G then G is

isomorphic to a �nite dimensional vector space over R.

Example 3.3.7. We saw that AdexpX = eadX and that Ad(G◦) = Adg.

So for x ∈ kerAd we have xyx−1 = y ∀y ∈ exp g.

But, G◦ is generated by exp g so that xyx−1 = x ∀y ∈ G◦. Moreover

kerAd ∩G◦ = Z(G◦)

and Z(G◦) is a closed Lie subgroup of G◦.

Hence Ad : G◦ → Adg induces Lie group isomorphism

G◦

Z(G◦)
≃ Adg

For more details see [Far10] [Kna02] [FH04]
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Lie's Third Theorem

4.1 The path space of the Lie group G

Let M be a connected manifold and x0 ∈ M . A path beginning at x0 is continuous curve

γ : [0, 1] → M such that γ(0) = x0.

We consider path space P = P (x0,M) of the paths in M beginning at x0, with the

topology of uniform convergence.

De�nition 4.1.1. We say that the paths γ, γ′ ∈ P (x0,M) are equivalent and we write

γ ∼ γ′ if there exists a continuous curve [0, 1] → P (x0,M) s 7→ γs such that γ0 = γ,

γ1 = γ′ and s 7→ γs(1) is constant in [0, 1]. In other words, if there exists a homotopy from

γ to γ′ with end points �xed. For details see [Hat01]

We know that the relation of homotopy with end points �xed de�nes an equivalence

relation on P (x0,M).

We write [γ] for the equivalence class of the path γ in P and we de�ne

M̃ = { The set of equivalence classes in the path space P}

Now, if γ ∼ γ′ then γ(1) = γ′(1) hence the mapping π̃ : M̃ → M [γ] 7→ γ(1) is well

de�ned and a surjection (since M is path-wise connected)

Theorem 4.1.2. The mapping π̃:M̃ → M is a smooth �bration and M̃ admits a unique
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manifold structure. Moreover M̃ is simply connected.

Proof. We will show that ∀x ∈ M there exists an open neighborhood V ⊆ M of x and a

mapping

s : M → M̃

such that

s |V = π̃−1 |V

Let ∆ = {(x, y) ∈ M × M : x = y}, be the diagonal set of M and Ω be an open

neighporhood of ∆.

Let x1 ∈ M and V be an open neighborhood of x1 in M such that {x1}×V ⊂ Ω. Then

there exists a path γ ∈ P (x0,M) such that γ(1) = x1.

We may �nd δ > 0 "close" to 1, such that ∀x ∈ V and t ∈ [1− δ, 1] and (γ(t), x) ∈ Ω.

For t ∈ [0, 1] we de�ne;

γx(t) =


γx(t) = (γ(t), x) = γ(t) 0 ≤ t ≤ 1− δ

λ(γ(t), γx(t)) =
t− 1 + δ

δ
λ(γ(t), x) 1− δ ≤ t ≤ 1

where λ : ∆ → Θ is a di�eomorphism, and Θ an open neighborhood of 0TM ∈ TM

such that

λ(x, y) ∈ TxM

∀(x, y) ∈ Ω,

λ(x, x) = 0 ∈ TxM∀x ∈ M

We consider σ : V → P (x0,M) x 7→ γx and observing that

as t → 1 we have λ(γ(t), γx(t)) → 0⇒ γ(t) → γx(1) = (γ(1), x) so γ(1) = x or

γx(1) → x ∀x ∈ V .
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For

s := π ◦ σ

V → M̃

where

π : P (x0,M) → M̃

γ 7→ [γ]

we take s |V = π̃−1 |V hence π̃ is a �bration with discrete �bres.

Now, we have that V ⊆ M , and M is a manifold. Let k be coordinates in M . Then

k ◦ π̃ |s(V ) are coordinates for M̃ .

Finally, π̃ is a covering and M̃ is a covering space.

Hence, M̃ is simply connected.

De�nition 4.1.3. Let G be a connected Lie group. We write P (1, G) for the space of

paths in G beginning at 1 where 1 is the identity element of G.

Proposition 4.1.4. (P (1, G), ·) is a group with group operation (γ · γ′)(t) = γ(t) · γ′(t).

Also,

Λ(G) = {γ ∈ P (1, G) | γ(1) = 1}

and

Λ(G)◦ = {γ ∈ P (1, G) | γ ∼ 1}

are normal subgroups of P (1, G). Moreover, γ′ ∼ γ in P (1, G) if and only if γ′ ∈ Λ(G)◦.

Finaly,

G̃ =
P (1, G)

Λ(G)◦
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Proof. It is immediate that (P (1, G), ·) is a group.

Consider the group homomorphism

f : P (1, G) → G

γ 7→ γ(1)

Then ker f = Λ(G), hence Λ(G) is a normal connected subgroup of G.

Consider a homotopy s 7→ γs with end points �xed of γ, γ′.

Then there exists continuous curve s 7→ γ−1γs beginning at 1 and ending at γ−1γ′. This

proves that Λ◦(G) is normal in P (1, G).

Corollary 4.1.5. G̃ is a Lie group and

π̃ : G̃ −→ G

[γ] 7→ γ(1)

is a Lie group covering. On ker(π̃) = π1(G, 1) the group structures coincide and π1(G, 1)

is commutative.

Lemma 4.1.6. Let G be a connected Lie group and H a discrete normal subgroup of G.

Then H lies in the centre of G, Z(G).

Proof. Let g ∈ G, h ∈ H and ghg−1 ̸= h. G is simply connected, hence pathwise connected.

So there exists a path g(t): [0, 1] → G beginning at 1 and ending at g.

Then a(t) := g(t)hg(t)−1 [0, 1] → H since H P G with a(0) = h and a(1) = ghg−1 and

a(t) ∈ H ∀t ∈ [0, 1]. This is a contradiction since H is discrete.

The assertion follows.

Remark 4.1.7. One may observe that a Lie group covering π : G′ → G always arises by
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�xing a discrete subgroup C of the center Z(G′) and then taking G = G′/C. If G̃ is a

universal cover of G, then G ≃ G̃/π1(G) so C arises as quotient of fundamental groups

C ≃ π1(G)/π1(G′)

We will now transfer the study of the path group P (1, G) ∩ C1 to the space P (g) of

paths in the Lie algebra g of G di�erentiating with respect to the time parameter t.

Provided with the supremum norm with respect to some norm in g, the path space P (g)

becomes a Banach space and is called the path space of g.

Proposition 4.1.8. Let G be a connected Lie group with Lie algebra g. Then the mapping

D := DR :

(
γ 7→ (Ter(γ(t)))

−1 dγ

dt
(t)

)

is a homeomorphism

D : P (1, G) ∩ C1 −→ P (g)

Let Aδ ∈ C1 ([0, 1] , End(g)) be the solution A of the di�erential equation

dA

dt
(t) = adδ(t) ◦A(t)

with initial condition

A(0) = I : g → g

Then for every γ, γ′ ∈ P (1, G) ∩ C1 and t ∈ [0, 1] :

D(γ · γ′)(t) = Dγ(t) +Adγ(t)
(
Dγ′(t)

)
where

Adγ(t) = ADγ(t)

Finally,

D(Λ(G)◦ ∩ C1) = P (g)0
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where

P (g)0 =

{
δ ∈ P (g) | ∃smooth s 7→ δs : [0, 1] → P (g) where δ0 = 0, δ1 = δ and

� 1

0
Aδs(t)

−1 ∂

∂s
δs(t)dt = 0

}

Lemma 4.1.9. For

Tel(γu(t))
−1 ∂

∂u
γu(t) =

� t

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

hence,

∂

∂u
γu(1) = Tel(γu(1)) ·

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

Proof. Consider the curve

u 7→ γu

[0, 1] → P (1, G) ∩ C1

with γu(t) = γ(ut). Then there exists (c.f. the proof of Proposition 4.1.8) unique δ:

[0, 1] → g such that

δ(t) =
(
Terγ(t)

)−1 dγ

dt
⇒

(
Terγ(t)

)
(δ(t)) =

dγ

dt
⇒

dγ

dt
= Terγ(t)(δ(t)) = Telγ(t)Ad(γ(t))

−1δ(t) =

= Telγ(t)Ad(γ(t))
−1Dγ(t)

Hence for γu one may write;

∂

∂u
γu(t) = Telγu(t)Adγu(t)

−1Dγθ(t) ⇒
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(
Telγu(t)

)−1 ∂

∂u
γu(t) = Adγu(t)

−1Dγu(t)

Let

g(u, t) =
(
Telγu(t)

)−1 ∂

∂u
γu(t)

then

g(u, t) = gu(t) = Adγu(t)
−1Dγu(t)

and

∂

∂t
gu(t) =

∂

∂t
(Adγu(t)

−1Dγu(t))

From Proposition 4.1.8 we get:

Adγu(t) = ADγu (t)

hence,

∂

∂t
gu(t) =

∂

∂t
ADγu (t)

−1Dγu(t) =

= adDγu (t)
−1ADγu (t)

Dγu(t) +Adγu(t)
−1 ∂

∂t
Dγu(t)

=
[
Dγu(t)−1 , ADγu (t)

Dγu(t)

]
+Adγu(t)

−1 ∂

∂t
Dγu(t)

and
[
Dγu(t)−1 , ADγu (t)

Dγu(t)

]
=

[
Dγu(t)−1 , Adγu(t)Dγu(t)

]
= 0 because the �ows of the vector

�elds are related.

Hence,

∂

∂t
gu(t) = Adγu(t)

−1 ∂

∂t
Dγu(t)

and because of γu(t) = γ(ut) we get

∂

∂t
gu(t) = Adγu(t)

−1 ∂

∂u
Dγu(t)
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But,

gu(s) =

� s

0
gu(s)ds =

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

Hence,

gu(1) =

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

Hence,

Tel(γu(1))
−1 ∂

∂u
γu(1) =

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

and

∂

∂u
γu(1) = Tel(γu(1)) ·

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

Remark 4.1.10. The results of Theorem 2.1.1 and Lemma 4.1.9 may be generalized from a

result for curves in in�nite dimensional Lie groups.[MK97].

We continue with the proof of Proposition 4.1.8:

Proof. We will show that D is a bijection;

It is su�cient to show that for every δ : [0, 1] 7→ g, there exists a unique C1 curve γ :

[0, 1] → G so that γ(0) = 1 and

d

dt
γ(t) = (Terx) (δ(t)) (4.1.1)

So it is su�cient to show that there is a unique integral curve γ of the vector �eld

(Terx) (δ(t)). From the theorem of existence of integral curves (c.f. Appendix A.1) there

exists an open interval I ⊂ [0, 1] so that γ is a solution of the di�erential equation 4.1.1,

γ : I → G and γ is a maximal integral curve for (Terx) (δ(t)).

Let x ∈ G. Then a(t) := γ(t)x is also an integral curve for the vector �eld (Terx) (δ(t));

Indeed,
d

dt
a(t) =

d

dt
(γ(t)x) =

(
Tγ(t)rx

) dγ
dt

(t) =
(
Tγ(t)rx

)
(Terx) (δ(t)) =

(
Te

(
rγ(t)x

))
(δ(t)).
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So one may extend γ in whole [0, 1] and γ is maximal, so γ is unique.

It follows that D is a bijection. The continuous dependence of the integral curve from

the vector �eld (Terx) (δ(t)) implies that D and D−1 are continuous, hence D is a homeo-

morphism P (1, G) ∩ C1 → P (g).

For the computation of the product γ ·γ′ , D(γ ·γ′) we observe that for the multiplication

operation µ : G × G → G and a, b ∈ G we have (a · b) = µ(a, b) = (µ ◦ (a, b)). Hence for

γ · γ′(t) = (µ ◦ (γ, γ′)) (t), and aplying the chain rule we get:

d

dt
(γ(t) · γ′(t)) =

(
Tγ(t)rγ′(t)

) d

dt
γ(t) +

(
Tγ′(t)lγ(t)

) d

dt
γ′(t)

=
(
Tγ(t)rγ′(t)

) (
Terγ(t)

)
Dγ(t) +

(
Tγ′(t)lγ(t)

) (
Terγ′(t)

)
Dγ′(t)

=
(
Tγ(t)rγ′(t)

) (
Terγ(t)

)
Dγ(t) +

(
Tγ(t)rγ′(t)

) (
Terγ(t)

)
Adγ(t)Dγ′(t)

=
(
Terγ(t)γ′(t)

) (
Dγ(t) +Adγ(t)Dγ′(t)

)
So that, (

Terγ(t)γ′(t)

)−1
(

d

dt
(γ(t) · γ′(t))

)
= Dγ(t) +Adγ(t)Dγ′(t)

⇒

D(γ · γ′) = Dγ +Adγ ·Dγ′

We will now show that Adγ(t) and ADγ (t) satisfy the same di�erential equation.

One may write :

d

dt
Adγ(t) =

d

dh
|h=0 Ad(γ(t+ h)) =

d

dh
|h=0 Ad(γ(t+ h) ◦ γ−1(t) ◦ γ(t))
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=
d

dh
|h=0 Ad(γ(t+ h) ◦ γ(t)−1) ◦Adγ(t) = adDγ(t) ◦Adγ(t)

and Ad(γ(0)) = Ad1 = I , and the assertion follows.

Finally, from Lemma 4.1.9 we get that

∂

∂u
γu(1) = Tel(γu(1)) ·

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s)ds

Which means that the curve u 7→ γu(1) is constant if and only if

� 1

0
Adγu(s)

−1 ∂

∂u
Dγu(s) = 0

But we already saw that Adγ(t) = ADγ (t) , and the assertion follows.

4.2 Lie's Third Theorem

Our goal is that given a Lie algebra g to construct a simply connected Lie group that

integrates g. From now on we will work only with the lie algebra g and its path space.

De�nition 4.2.1. Let g be a �nite dimensional Lie algebra. For δ, δ′ ∈ P (g) we de�ne the

product (δ · δ′) ∈ P (g) as follows;

(
δ · δ′

)
(t) = δ(t) +Aδ(t) · δ′(t)

Remark 4.2.2. We de�ned A so that A ∈ End(g) and furthermore Aδ(t) is the integral

curve of the vector �eld (ad(δ(t))). We know that adg is a vector �eld tangent to Adg

hence

Aδ(t) ∈ Adg ⊂ Autg

So Aδ(t) lives in the representations of g and respects the Lie bracket.

Lemma 4.2.3. Aδ·δ′(t) = Aδ(t)Aδ′(t)

56



Lie's Third Theorem 4.2

Proof. Let us observe that:

Aδ(t) ◦ adδ′(t) = Aδ(t)
([
δ′(t), ⋆

])
=

=
[
Aδ(t)δ

′(t), Aδ(t)
]
= ad

(
Aδ(t)δ

′(t)
)
◦Aδ(t)

Hence,

d

dt
(Aδ(t) ◦Aδ′(t)) = adδ(t) ◦Aδ(t) ◦Aδ′(t) +Aδ(t) ◦ adδ′(t) ◦Aδ′(t)

= adδ(t) ◦Aδ(t) ◦Aδ′(t) + ad
(
Aδ(t)δ

′(t)
)
◦Aδ(t) ◦Aδ′(t)

= ad(δ · δ′(t)) ◦ (Aδ(t) ◦Aδ′(t))

and the assertion is proved.

Remark 4.2.4. Later on we will show that P (g, ·) with the multiplication de�ned above is

a Banach Lie group. This and Lemma 4.2.3 show that

A : P (g) −→ Aut(g)

is a Lie group homomorphism.

Lemma 4.2.5.
d

dε
|ε=0 AεY (t) = ad

� t
0 Y (s)ds where A as described above and Y (t) ∈ P (g)

Proof. We know that Aδ(t) = AdDγ (t). Hence

TeAδ(t) = TeAdDγ (t)

= ad
d

dt
Dγ(t) = ad

� t

0

∂

∂u
Dγu(s)ds
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where we used Lemma 4.1.9 in the direction γu = e

Remark 4.2.6. From the de�nition of the Lie algebra we get that g = TeG, so g is the

tangent space of G at the identity. Hence every element Y (t) of P (g)alg may be written as

Y (t) =
∂

∂u
|u=e Dγu(t).

Proposition 4.2.7. (P (g), ·) with the multiplication as de�ned above is a Banach Lie group

with identity element the constant path

δ(t) = 0(t) ≡ 0 and Lie algebra

P (g)alg = (P (g), [·, ·])

where

[X,Y ] (t) =
d

dt

[� t

0
X(s)ds,

� t

0
Y (s)ds

]
Proof. We will show that (P (g), ·) is a group with identity element the constant path

δ(t) = 0(t) ≡ 0 ∈ P (g)

Associativity:

((
δ · δ′

)
· δ′′

)
(t) =

(
δ · δ′

)
(t) +Aδ·δ′(t)δ

′′(t)

= δ(t) +Aδ(t)δ
′(t) +Aδ(t)Aδ′(t)δ

′′(t)

= δ(t) +Aδ(t)
(
δ′ · δ′′

)
(t) =

(
δ · (δ′ · δ′′)

)
(t)

For the inverse we compute:

δ · δ−1(t) = 0

⇒ (δ−1)(t) = −Aδ(t)δ(t)
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The mapping

δ 7→ Aδ

is analytic due to the linear dependence of the left side;

dA

dt
(t) = adδ(t) ◦A(t)

from δ. Hence multiplication and inverse are analytic functions. It follows that (P (g), ·) is

a Banach Lie group.

P (g) is a vector space, hence; T0P (g) = P (g).

It remains to compute the Lie bracket:

(
Cδ(δ

′)
)
=

(
δ · δ′ · δ−1

)
= δ(t) +Aδ(t)δ

′(t) +Aδ(t) ◦Aδ′(t)δ
−1(t)

= δ(t) +Aδ(t)δ
′(t)−Aδ(t) ◦Aδ′(t) ◦Aδ(t)

−1δ(t)

Di�erentiating the above relation for δ′ at δ′ = 0 in the direction of Y ∈ P (g)alg and using

Lemma 4.2.5 we get;

AdδY (t) = T0(Cδ(Y (t))) =

= Aδ(t)(Y (t))−Aδ(t) ◦ ad
� t

0
Y (s)ds ◦Aδ(t)

−1 ◦ δ(t)

Di�erentiating the above relation for δ at δ = 0 in the direction of X ∈ P (g)alg we get;

[X,Y ] (t) = adX(t)(Y (t)) =
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ad

� t

0
X(s)dsY (t)− ad

� t

0
Y (s)dsX(t) =

[� t

0
X(s)ds, Y (t)

]
−
[� t

0
Y (s)ds,X(t)

]

=

[� t

0
X(s)ds, Y (t)

]
+

[
X(t),

� t

0
Y (s)ds

]

=
d

dt

[� t

0
X(s)ds,

� t

0
Y (s)ds

]
For the last equality we used the Leibnitz rule.

Remark 4.2.8. For all δ ∈ P (g) we have T0lδ−1(s)
d

ds
δs ∈ P (g)alg and T0lδ−1X = Aδ−1X

Proposition 4.2.9. The maping

av : P (g)alg → g

X 7→
� 1

0
X(t)dt

is a surjective Lie algebra homomorphism.

Proof. From the way that we constructed the Lie bracket of P (g)alg we get

av ([X,Y ] (t)) = [av(X(t)), av(Y (t))]

hence av is a Lie algebra homomorphism P (g)alg → g and a surjection and

kerav = {X ∈ P (g)alg |
� t

0
X(t)dt = 0}

Hence P (g)alg0 :=
{
X ∈ P (g)alg |

� t
0 X(t)dt = 0

}
is a Lie subalgebra of P (g).

P (g)alg is an in�nite dimensional Lie group, hence we cannot aply the analytic subgroup
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theorem. If there where a subgroup P0 of P (g) with Lie algebra P (g)alg0 then, according

to Remark 4.2.8, we may describe P0 through a homotopy relation as follows; P0 consists

exactly from the δ ∈ P (g) for which there exists a smooth curve s 7→ δs where δ0 = 0,

δ1 = δ and

T0lδ−1
s

d

ds
δs ∈ P (g)alg0

Hence P0 coincides with P (g)0 , the image of the loop group of G through D.

We will see below that P (g)0 is a Lie subgroup of P (g)

Corollary 4.2.10. The map

av : P (g)alg → g

X 7→
� 1

0
X(t)dt

induces a Lie algebra isomorphism

P (g)alg

P (g)alg0

≃ g

We expect that G̃ will arise as an isomorphism of quotients
P (g)

P (g)0
. But �rst we have

to show that P (g)0 is a closed normal subgroup of P (g).

In a natural way we will search for normal Lie subgroups of P (g) containing P (g)0 and

through av we will construct a g-valued 1-form

Proposition 4.2.11.

P (g)1 = {δ ∈ P (g) | Aδ(1) = I}

is a closed normal subgroup of P (g) and

P (g)alg1 =
{
X ∈ P (g)alg | av ∈ z

}

where z = {X ∈ g | adX = 0} is the centre of g. Finally, P (g)0 ⊆ (P (g)1)
◦
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Proof. The mapping

f : P (g) −→ Adg

δ 7→ Aδ(1)

is a surjection and its tangent to the identity is;

f∗ : P (g)alg −→ adg

X 7→ d

dε
|ε=0 AεX(1) = ad

� t

0
X(s)ds

We have that ker f = {δ ∈ P (g) | Aδ(1) = I} = P (g)1 where I : g → g and from the

Submersion Level Set Theorem (c.f. Appendix A.2) P (g)1 is a closed submanifold of P (g).

We have that

P (g)alg1 =

{
X ∈ P (g)alg | ad

� 1

0
X(s)ds = 0

}

=
{
X ∈ P (g)alg | av ∈ z

}
The last assertion follows since P (g)alg0 ⊆ P (g)alg1

We de�ne a 1-form ω as follows: ωδ(X) = av(T0l
−1
δ X) =

� 1
0 Aδ(t)

−1X(t)dt. Then,

because of the identi�cation of the lie algebras to the left invariant vector �elds we may

write every element in P (g) as X l = T0lδ(X). So ωδ(X
l) = av(X) =

� 1
0 X(t)dt independent

of the choice of δ. So we constructed a 1-form that is exactly av and we will use it to construct

a group homomorphism with kernel P (g)0

Remark 4.2.12. (Properties ωδ)

1. dω(X,Y ) + [ω(X), ω(Y )] = 0

2. kerωδ = Tδ (P (g)0) and kerωδ is a distibution
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3. ω |P (g)1∈ z

4. dω |P (g)1= 0

For more details on ω see [IL03] [Mic08] [KN09]

Corollary 4.2.13. P (g)0 is an integral manifold for the distribution kerωδ so it is a closed

submanifold of P (g) hence a closed subgroup.

Proposition 4.2.14.
P (g)

(P (g)1)
◦ = Ãdg

Proof. The Lie algebra homomorphism adg: g −→ g with Y 7→ [g,X] de�nes an isomorph-

ism
g

z
≃ adg. Moreover adg is the Lie algebra of the connected Lie group Adg, as we saw

in Example 3.2.2.

Using the homeomorphism D of Proposition 4.1.8 for the groups P (adg) and P (adg)0

we get

P (adg)
D∼=

Hom
P (1, Adg) ∩ C1

and

P (adg)0
D∼=

Hom
Λ (Adg)◦ ∩ C1

But from Proposition 4.1.4 we get

P (1, Adg)

Λ (Adg)◦
≃ Ãdg

Hence,

P (adg)

P (adg)0
≃ Ãdg

Now,
P (g)

P (z)
= P (adg) and

(P (g)1)
◦

P (z)
= P (adg)0 and the assertion follows.

The relations dω |P (g)1= 0 and kerωδ = Tδ (P (g)0) lead us to construct a maping

φ : (P (g)1)
◦ → (z,+)
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so that φ(0) = 0 and dφ = ω in order to prove that P (g)0 is a normal Lie subgroup of P (g).

In order to do so we need to get through the obstacle of the homotopy relation through

which the path space of the Lie algebra g is de�ned.

Proposition 4.2.15. The mapping

φ : (P (g)1)
◦ → (z,+)

where

φ(α): =

�
[0,1]

δ∗ω

where s 7→ δs is a C1 curve [0, 1] → (P (g)1)
◦, δ0 = 0 and δ1 = α is well de�ned, is a

surjective Lie group homomorphism and (kerφ)alg = P (g)alg0 .

Proof. In order to show that φ is well de�ned we need to show that φ does not depent on

the choise of δ.

There exists a 2-form Ω that is
P (g)

(P (g)1)
◦ = Ãdg- valued so that dω = π∗Ω where

π : P (g) → P (g)

(P (g)1)
◦ the canonical projection and π∗ its pullback. π is a surjective Lie

group homomorphism and π∗ is a surjective Lie algebra homomorphism. Hence Ω is unique

and smooth. Moreover dω is left invariant and π is a group homomorphism hence Ω is left

invariant and thus de�ned from its value at the identity.

We have π∗: P (g)alg −→ adg so

π∗Ω(X,Y ) = Ω(π∗(X), π∗(Y )) = Ω(adX, adY )

and dω(X,Y ) = [avX, avY ], hence

Ω1(adX, adY ) = [X,Y ]

64



Lie's Third Theorem 4.2

Moreover,

π∗dΩ = d(π∗Ω) = ddω = 0

Hence Ω de�nes a De Rahm cohomology class [Ω] ∈ H2
DR

(
Ãdg,R

)
.

Consider a curve δ: s 7→ δs that is piecewise C1 with δ:[0, 1] → (P (g)1)
◦ so that

δ0 = 0 = δ1 and a homotopy

E : [0, 1]× [0, 1] → P (g)

(u, s) 7→ uδs

It is direct that E(0, s) = E(u, 0) = E(u, 1) = 0 and E(1, s) = δs. But, δs ∈ (P (g)1)
◦ hence

π(δs) ≡ 1.

It follows that the mapping

A = π ◦ E : [0, 1]× [0, 1] → Ãdg

maps the whole boundary [0, 1] × [0, 1] to {1}. Moreover, π(δs) ≡ 1⇒ π∗ = 0 so π has

discrete �bres.

So A de�nes a homology class [A] ∈ H2

(
Ãdg,Z

)
.

From Stokes' theorem we get;

�
[0,1]

δ∗ω =

�
[0,1]×[0,1]

d(E∗ω)

=

�
[0,1]×[0,1]

E∗dω =

�
[0,1]×[0,1]

E∗π∗Ω

=

�
[0,1]×[0,1]

A∗Ω

= ⟨[A] , [Ω]⟩
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But we know that if G is a simply connected Lie group then

H2 (G,R) = 0

It follows that
�
[0,1] δ

∗ω = 0 for every closed, piecewise C1 curve δ on (P (g)1)
◦. Hence

φ is well de�ned.

φ is a Lie group homomorphism;

Fix a δ′ ∈ (P (g))◦. then the derivative of the map

δ 7→ φ(δ · δ′)− φ(δ)

(P (G)1)
◦ −→ (z,+)

is 0 and dφ = ω and ω is left invariant. So it is constant, and de�ned from its value at the

identity, hence φ(δ · δ′)− φ(δ) = φ(0 · δ′)− φ(0) = φ(δ′)

Hence φ is a surjective group homomorphism with kernel kerφ P (P (g)1)
◦ and (kerφ)alg =

(P (g)0)
alg. So P (g)0 is exactly the connected component of the identity (kerφ)◦ of the nor-

mal subgroup kerφ.

Theorem 4.2.16. Let g be a �nite dimensional Lie algebra. Then there exists a simply

connected Lie group G̃ with Lie algebra g. The restriction of the mapping exp:g → G̃ in

the centre z of g induces a group isomorphism exp |z: (z,+) −→
(
Z(G̃)

)◦

Proof. We saw that
P (g)alg

P (g)alg0

≃ g and P (g)0 is normal in P (g) and
P (g)

P (g)0
is a Banach Lie

group with Lie algebra ≃ g. Hence there exists a Lie group with Lie algebra g, and from

propositions 4.1.4, 4.1.8 we get

P (g)

P (g)0
≃ G̃

Now, Z(G̃) = ker
(
Ad : G̃ → Adg

)
and

P1(g) = {δ ∈ P (g) | Aδ(1) = I}
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= {δ ∈ P (g) | Adδ1 = I}

= ker (Ad : P (g) → Adg)

so,

G̃

Z(G̃)
= Adg =

P (g)

P (g)1

Hence,

Z(G̃) =
P (g)1
P (g)0

Let p be the canonical projection

p :
(P (g)1)

◦

P (g)0
→ (P (g)1)

◦

kerφ
≃ (z,+)

Then p has discrete �bres
kerφ

(kerφ)◦
. But (z,+) is simply connected and commutative,

hence,

(P (g)1)
◦

P (g)0
=

(P (g)1)
◦

(kerφ)◦

We get (
Z(G̃)

)◦
≃ (z,+)

so that
(
Z(G̃)

)◦
is connected commutative Lie group. Hence from Theorem 3.3.5, the

mapping

exp : (z,+) →
(
Z(G̃)

)◦

is an isomorphism.

Remark 4.2.17. The result does not necessarily hold for an in�nite dimensional Banach Lie

algebra g. We saw that if G is a commutative Lie group with �nite dimensional Lie algebra

g then exp : (z,+) → Z(G) has a discrete kernel. This is not the case if g is an in�nite

dimensional Banach Lie algebra.
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For example, if g = su2, G = SU(2) then
(
Z(G̃)

)◦
≃ z

ker exp
and we can prove that

ker exp ≃ R \Q and z = R. The space
R

R \Q
is not even Hausdor�.
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Appendix

A. Elements of di�erential geometry

A.1. Integral curves and Flows

Let M be a di�erential manifold and X ∈ X(M) a smooth vector �eld in M . An integral

curve of X is a smooth curve γ : I → M where I ⊆ R is an open interval such that

γ′(t) = X(γ(t)) for all t ∈ I. Fix an t0 ∈ I then γ(t0) is the starting point of γ. If γ : I → M

is an integral curve and c ∈ R then s 7→ γ(s − c) with domain I + c := {t + c | t ∈ I} is

also an integral curve. So we may assume that 0 ∈ I and pick t0 = 0.

Theorem. A.1.1 LetX ∈ X(M) and p ∈ M . Then there exists a unique open interval

Ip ⊂ R containing 0 and unique integral curve a : Ip → M beggining at a(0) = p so that if

v : J → M is another integral curve with 0 ∈ J and statring point v(0) = p then J ⊂ Ip

and v = a |J

The integral curve a = ap : Ip → M is called maximal integral curve starting at p.

Let Ω = {(t, p) ∈ R×M | t ∈ Ip}. We de�ne Φ : Ω → M with Φ(t, p) = ap(t), t ∈ Ip. Φ

is called �ow of the vector �eld and t 7→ Φ(t, p) is smooth for every p ∈ M .

Theorem. A.1.2 The set Ω ⊂ R×M is open and the �ow Φ : Ω → M is smooth.

Finally, if the vector �led Xλ(p) depends smoothly on the pair (λ, p) ∈ Λ ×M , where

Λ is a di�erential manifold, then the �ow of Φλ : Ωλ → M depends smoothly on (t, p, λ)
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where (t, p) ∈ Ωλ

A.2 Manifolds and Submanifolds

Lemma. A.2.1 Let M be a topological manifold. Then there exists a countable basis of M

so that its closure is compact.

Proof. M is a topological manifold, that is a second countable, Hausdor� topological space.

Let B be a countable basis for M . The existence of B comes from the fact that M is second

countable. Let B′ ⊂ B where B = {B ∈ B | B ∈ (U,φ), B compact} for (U,φ) coordinate

map of M . Then B′ is a compact countable basis for M

Let M be a smooth manifold. An embedded submanifold of M is a subset S ⊆ M that

is a manifold with the topology of the subspace, induced with a smooth structure so that

S ↪→ M is a smooth embedding.

De�nition. A.2.2 Let M be a manifold. If for all p ∈ P the linear subspace Dp ⊆ TpM

is of dimension k then D = ∪
p∈M

Dp is a distribution for M of rank k.

Lemma. A.2.3 Let Mbe a smooth manifold of dimension n and D ⊆ TM distribution of

rank k. Then D is smooth if and only if for all p ∈ M there exists an open neighborhood U

and smooth 1-forms ω1, . . . , ωn−k such that for all q ∈ U Dq = kerω1 |q ∩ . . .∩ kerωn−k |q.

De�nition. A.2.4 Let D ⊆ TM be a smooth distribution and N ⊆ M an immersed

submanifold of M . Then N is an integral manifold for D if TpN = Dp for all p ∈ N .

Theorem. A.2.5 ( Immersion Theorem ) Every smooth manifold of dimension n admits

a smooth immersion in R2n.

Let M,N be smooth manifolds. A smooth map F : M → N is called a smooth

submersion if its di�erential is surjective in every point.

Theorem. A.2.6 (Submersion Level Set Theorem) If M,N are smooth manifolds and F :

M → N is a smooth submersion then every level set F is a properly embedded submanifold

of codimension N .
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We close with the following;.

Theorem. A.2.7 (Inverse Function Theorem for Manifolds) LetM,N be smooth manifolds

and F : M → N smooth. If p ∈ M and dFp is invertible then there exists a connected

component U0 of p and V0 of F (p) such that F |U0 : U0 → V0 is a di�eomorphism..

For details see [KN09],[Lee12], [Mic08]

B. Elements of Linear Algebra

De�nition. B.1 Let V be a �nite dimensional vector space. The complexi�cation of V , VC

is the space of all linear combinations u1+iu2 with u1, u2 ∈ V . VC is a real vector space with

the obvious way and becomes a complex vector space if we de�ne i(u1 + iu2) = −u2 + iu1.

V is a real linear subspace of VC.

Proposition. B.2 Let g be a �nite dimensional Lie algebra and gC its complexi�cation.

Then the Lie bracket of g extends uniquely to gC turning it into a complex Lie algebra. gC

is called the complexi�cation of g.

Theorem. B.3 Let g be a Lie algebra and gC its complexi�cation. Then every �nite

dimensional representation π in g is uniquely extended to a complex linear representation

πC in gC with πC(X + iY ) = π(X) + iπ(Y ).

For details see [Hal15]
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