
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ

Διπλωματική Εργασία

Hardware Accelerator for Convolutional

Neural Networks

Επιταχυντής Υλικού για Συνελικτικά Νευρωνικά

Δίκτυα

΄Αγγελος Ψημίτης-Χριστοδουλόπουλος

ΑΜ: 2019-513

Αθήνα, Νοέμβριος 2022

SUPERVISOR

Dr. Nikolaos Vlassopoulos, Research Associate

EVALUATION COMMITEE

Dionysios Reisis, Professor

Ektoras Nistazakis, Professor

Dr. Nikolaos Vlassopoulos, Research Associate

i

Abstract

In this thesis we attempt to discuss the concept of hardware accelerators for convolutional neural

networks which can be perceived as a linkage between two different areas of computer science.

The design of parallel systems and the design of machine learning algorithms. The former

exploits ways of mapping high level programs into hardware structures in order to increase

the speed of computations and has been growing since the rise of VLSI engineering in the

last 40 years. The latter addresses the idea of creating dynamic algorithms that proceed in

an iterative fashion, based on some task and some quantity of experience in order to solve

problems which are extremelly difficult (or even impossible) to be solved by using hard-coded

programs. In the last 10 years machine learning has opened a vast world filled with endless

possibilities and countless applications, especially through Deep Learning and Deep Neural

Networks (DNNs). Convolutional Neural Networks (CNNs) are a special case of DNNs which

are used for image recognition in various computer vision related tasks. A hardware accelerator

is a special-purpose system dedicated to increase the speed of the computationally intensive

parts of the CNN algorithm for results to be given both fast and efficiently regarding energy

consumption. In what follows we will approach the theoretical background behind efficient

parallel computations and neural networks and we will present the FPGA design of the CNN

Accelerator. All VHDL code written for this work can be found in https://github.com/

AggelosPsimitis/FPGA-hardware-accelerator-for-CNN/tree/master.

ii

https://github.com/AggelosPsimitis/FPGA-hardware-accelerator-for-CNN/tree/master
https://github.com/AggelosPsimitis/FPGA-hardware-accelerator-for-CNN/tree/master

Περίληψη

Στην παρούσα εργασία επιχειρούμε να συζητήσουμε το θέμα των επιταχυντών για νευρωνικά

δίκτυα που γίνεται αντιληπτό ως συνδετικός κρίκος ανάμεσα σε δύο πεδία της επιστήμης

των υπολογιστών: τη σχεδίαση παράλληλων συστημάτων και τη σχεδίαση αλγορίθμων μη-

χανικής μάθησης. Το πρώτο πεδίο ερευνά τους τρόπους με τους οποίους προγράμματα

υψηλού επιπέδου αντιστοιχίζονται σε δομές υλικού με σκοπό την επιτάχυνση των υπολο-

γισμών. Το δεύτερο ερευνά τη σχεδίαση δυναμικών αλγορίθμων που έχουν ως στόχο την

προσέγγιση της λύσης προβλημάτων που είναι εξαιρετικά δύσκολο (ή ακόμη και αδύνατο)

να επιλυθούν από προγράμματα γραμμένα εξ’ ολοκλήρου από το χρήστη. Ο κλάδος της

μηχανικής μάθησης έχει αναδείξει την τελευταία δεκαετία πλήθος εφαρμογών και δυνατο-

τήτων κυρίως μέσω της βαθιάς μάθησης και των νευρωνικών δικτύων. Τα συνελικτικά

νευρωνικά δίκτυα είναι μια ειδική κατηγορία βαθιών νευρωνικών δικτύων που χρησιμοποιο-

ύνται για ανίχνευση εικόνων καθώς και σε πολλές άλλες εφαρμογές που σχετίζονται με

την υπολογιστική όραση. ΄Ενας επιταχυντής υλικού είναι ένα σύστημα ειδικού σκοπού ε-

ξειδικευμένο στην αύξηση της ταχύτητας των εντατικών υπολογισμών που αποτελούν μέρος

του αλγορίθμου ενός νευρωνικού δικτύου. Σκοπός του είναι τα αποτελέσματα των υπο-

λογισμών να παράγονται γρήγορα και αποδοτικά όσον αφορά την κατανάλωση ενέργειας.

Στα επόμενα κεφάλαια θα προσεγγίσουμε το θεωρητικό υπόβαθρο των παράλληλων υπολο-

γισμών καθώς και εκείνο των νευρωνικών δικτύων και θα παρουσιάσουμε τη σχεδίαση ενός

επιταχυντή συνελικτικού νευρωνικού δικτύου σε FPGA. Η υλοποίηση πραγματοποιήθηκε σε

γλώσσα VHDL και βρίσκεται στο σύνδεσμο: https://github.com/AggelosPsimitis/

FPGA-hardware-accelerator-for-CNN/tree/master.

iii

https://github.com/AggelosPsimitis/FPGA-hardware-accelerator-for-CNN/tree/master
https://github.com/AggelosPsimitis/FPGA-hardware-accelerator-for-CNN/tree/master

Contents

1 Introduction 1

2 Parallel Computation Theoretical Background 3

2.1 Systolic Architectures . 3

2.1.1 Matrix-vector product . 5

2.1.2 N-tap FIR filter . 5

2.2 Measuring the performance of parallel algorithms 7

2.3 Space-time mapping . 10

2.4 Unfolding . 16

3 Deep Neural Networks Theoretical Background 22

3.1 Parametric modeling . 23

3.2 Neural Networks . 25

3.3 Convolutional Networks . 28

4 Accelerating Inference for DNNs 30

4.1 Training vs Inference . 31

4.2 Key Metrics . 31

4.3 Taxonomy of accelerator architectures . 36

4.4 Hardware architectures for kernel computations in DNN processing 37

5 Design of Hardware Accelerator for CNN on FPGA 40

5.1 The CNN model . 40

iv

Contents

5.2 Architectures for efficient 2D convolution . 41

5.3 Overall architecture . 45

5.4 Input Layer . 45

5.5 Convolution Layer . 46

5.6 Pooling Layer . 47

5.7 Fully Connected and Output Layers . 50

6 Tests and Results 52

7 Appendix: Tables 57

v

1 Introduction

Most neural network software applications are executed on CPUs and result in very long training

times. Recent research in robotics and autonomous driving has featured the needs for increasingly

larger data sets and high precision real time results. This means that neural networks are

increasing in size by introducing many hidden layers, leading to large scale architecture models

consisting of millions of parameters and performing billions of operations resulting in programs

of high complexity and high usage of computational resources. GoogleNet for example receives

224x224x3 (RGB) images as input and is constructed of 57 convolutional (hidden) layers with

6 million weight values (connections) and 1,43 giga Multiply-Accumulate (MAC) operations.

These contemporary demands present a significant challenge for general puprose processors and

research has moved towards developing techniques for designing efficient dedicated hardware

for accelerating the computations of these models utilizing GPUs, ASICS and FPGAs. GPUs

are very popular hardware accelerators for CNNs due to their high bandwidth in memory,

high throughput and efficiency in floating point arithmetic. They consist of hundreds of small

processing cores which can be used in parallel to enhance image processing. GPUs though lack

in power consumption and FPGAs usually outperform them in implementation of vision kernels

[20]which is the main theme of this work. FPGAs are programmable reconfigurable devices

with low power consumption. They consist of Configurable Logic Blocks (CLBs), I/O cells and

DSP blocks. CLBs are comprised of Look Up Tables (LUTs) and Flip FLops (FFs). FPGAs

are fine-grained devices. A program can be divided in a large number of small tasks executed

in parallel from different blocks of the device. Due to their low power consumption they are

great accelerators for battery-driven devices or cloud services in large data servers. Another

advantage of FPGAs is their capability of reconfiguring parts of the system’s structure while

1

Chapter 1. Introduction

the rest is still used. On the other hand FPGAs have small available on-chip memory, low I/O

bandwidth and limited resources.

This thesis is organized as follows: In chapter 2 we revise on the theory behind parallel

computations and the basic metrics used to measure the performance of parallel algorithms. We

see how the systolic architectures and the linear array idea can be used to improve the performance

of the matrix-vector multiplication and the N-tap FIR operation. These examples will help us to

better understand the design of the digital signal processing (DSP) and fully-connected (neuron)

blocks in chapter 5. We proceed with the analysis of space-time transformation which is a tool

that produces theN−1-dimension systolic representation of a DSP circuit given itsN -dimension

space representation, and finally we conclude this chapter with the concept of unfolding. In

chapter 3 we briefly discuss the elementary theory behind Deep Neural Networks. In chapter 4

we present some key points in the literature of DNN hardware accelerators, the most important

of them being the metrics used to evaluate an architecture. In chapter 5 we discuss the proposed

FPGA architecture which is implemented in VHDL and developed in Vivado 2018.3. We

introduce the CNN software model and present the implementation details of every model’s

individual component. Finally, in chapter 6 we present the simulation and synthesis results for

the proposed design.

2

2 Parallel Computation Theoretical Background

2.1 Systolic Architectures

High performance, special-purpose computer systems are used to meet specific application re-

quirements or to off-load computations that are especially taxing to general-purpose computers.

For this reason the concept of systolic architectures has been deployed as a general method-

ology for mapping high-level computations into hardware structures [11]. A systolic system

is composed of a large number of processing elements (PEs) designed to work in parallel and

perform simple tasks (fig. 2.1). This network most commonly is used as a co-processor in

combination with a host computer which feeds the network data in a regural flow [19] and the

PEs rhythmically compute and pass the data through the system in a way that resembles the func-

tionality of the heart. The degree of the system’s concurrency and thus the system’s capability

of performing fast computations is determined not only by the number of PEs but also by the

underlying algorithm. Massive parallelism can be achieved if the algorithm is designed to intro-

duce high degrees of pipelining and multiprocessing. Computational tasks can be conceptually

classified into two families, compute-bound and I/O-bound computations. If the total number

of operations is larger than the total number of input and output elements, then the computation

is compute-bound, otherwise it is I/O-bound [11]. In this sense, matrix-matrix multiplication is

a compute-bound task because every entry in a matrix is multiplied by all entries in some row or

column of the other matrix but matrix-matrix addition is I/O-bound because the total number of

additions is not larger than the total number of entries in the two matrices. In order to increase

an I/O-bound computation, one would need to increase the memory bandwidth (size of data

that can be read in one clock cycle) leading to the use of either expensive fast components or

3

Chapter 2. Parallel Computation Theoretical Background

complicated interleaved memories. On the other hand, compute-bound computations’s speedup

can be achieved by the relatively simple and inexpensive systolic approach.

Figure 2.1: Basic principle of a systolic system [11].

When a large number of PEs work simultaneously, coordination and communication become

essential, especially with VLSI technology where routing costs dominate the power, time and area

required to implement a computation. Area and time play a critical role in the design of parallel

systems. Lower bounds have been obtained for well-studied problems such as matrix-matrix

multiplication, sorting and discrete Fourier transform which give rise to a trade-off between

space and time. Results show that if A is the area used by a VLSI circuit to compute one of the

n-input, n-output functions refered above and T is the time required for the computation, then

the bound

AT 2 > Ω(n2)

must hold [15]. This inequality most importantly states that if an improved version of the

algorithm takes less time to complete the computation - i.e: T’ = T/2, then the area required by

the circuit would increase - i.e: A’ = 4A. This is due to the more complex routing required for

the communication/coordination of the PEs.

4

Chapter 2. Parallel Computation Theoretical Background

2.1.1 Matrix-vector product

As a first example we will discuss the computation of a matrix-vector product using systolic

design methodologies. Given an NxN matrix A and an N-vector x⃗, the goal is to compute the

product y⃗ = Ax⃗ where each element of the result vector y⃗ is

yi =
N−1∑
j=0

aijxj

for 0 ≤ i ≤ N − 1. The simplest sequential method to complete the above task is the following:

1: for i = 0 : N − 1 do

2: yi ← 0

3: for j = 0 : N − 1 do

4: yi ← yi + aijxj

5: end for

6: end for

which takes O(N2) time and uses N multiplications and N-1 additions for each yi. This

complexity may lead to unwanted delays and cause various problems on a real-time system,

especially if the number of entries N is very large. To overcome this, one could use an N-cell

linear array of PEs (fig. 2.2) and calculate the entire product in 2N-1 multiply/add steps (O(N)),

thus achieving a reasonably efficient speedup over the naive sequential algorithm [14].

2.1.2 N-tap FIR filter

As an exercise we will utilize the above linear-array idea to design a parallel algorithm that

implements an N-tap FIR filter. A finite impulse response (FIR) filter takes as input a stream of

data x1, x2,..., and outputs a stream of data yN , yN+1,..., where

yt =
N−1∑
k=0

akxt−k

5

Chapter 2. Parallel Computation Theoretical Background

Figure 2.2: Computing the matrix-vector product y⃗ = Ax⃗ on an N-cell linear array for N=4.
The ith cell computes yi by adding the product aijxj to its memory at step i+j-1. [14].

for t ≥ N and a0, a1, ..., aN−1 are the filter’s coefficients. The algorithm works as follows. At

each time step, every PE receives a value of input stream x from the left and a filter coefficient

from the top. It multiplies these two values and adds the result with the content of its local

memory. Then it updates its local memory with the result of the addition and passes the x

value to its right neighbor (fig. 2.3). In short, every PE works as a Multiply and Accumulate

(MAC) unit. For this algorithm to work however, we need a suitable permutation for the set of

coefficients. More specifically, let M = {a0, a1, ..., aN−1} be the set of the filter’s coefficients

and let C(M) denote the set of cyclic permutations of length N on the set M [21]. These

permutations are of the form

fp =

 a0 a1 ... aN−1

a(p+N−1)modN a(p+N−2)modN ... a(p+0)modN

 (2.1)

where p = 0, 1, ..., N − 1. For the 4-tap FIR of fig. 2.3, where N = 4, we can use the following

sets of permutations for the coefficients of each processing element

f1 =

a0 a1 a2 a3

a0 a3 a2 a1



6

Chapter 2. Parallel Computation Theoretical Background

f2 =

a0 a1 a2 a3

a1 a0 a3 a2



f3 =

a0 a1 a2 a3

a2 a1 a0 a3



f4 =

a0 a1 a2 a3

a3 a2 a1 a0


In this way, Processing Element p outputs yp+(j−1)N at time t = (j − 1)N + 2p − 1, where

p = 1, 2, 3, ..., N and j = 1, 2, 3, ... is the local output of PE p.

Notice that the algorithm requires an overhead in order to feed each processing element with

the proper sequence of filter coefficients. The naive way to do this would be to store the set

M = {a0, a1, ..., aN−1} as rows into an NxN matrix, then reverse every row and finally rotate

right each row by p (p = 1, 2, ..., N) which would require a total complexity of O(N3). Using

the permutations of the form 2.1 however, we can reduce the overhead’s complexity to O(N2).

For more details regarding techniques for generating conflict free parallel address accessing

please refer to [21].

2.2 Measuring the performance of parallel algorithms

The main purpose of writing parallel algorithms is to increase performance. Metrics such

as speedup, work, efficiency and scalability are introduced in order to evaluate the proposed

algorithms. The idea behind parallel algorithm design is to divide the work to be done among

many processing cores as equally as possible. We define Tseq to be the run-time of a single

processing core and Tparallel to be the run-time of a multi-core system. Then Speedup is defined

as

S =
Tseq

Tparallel

(2.2)

7

Chapter 2. Parallel Computation Theoretical Background

Figure 2.3: 4-tap FIR linear array. At step 10 processor p = 1 calculates its j = 4th (y13)
output which completes at step t = 13. Processor p = 2 calculates its j = 3rd (y10) output which
completes at step t = 11 and so on.

and measures how many times faster the execution of a program using multiple processing

cores is compared to the same program being executed by a single processing core. We would

8

Chapter 2. Parallel Computation Theoretical Background

like to design algorithms that have as much speedup as possible. Given p processing cores

we would like our parallel algorithm to be p times faster than the best sequential one. When

Tseq = p · Tparallel happens we say that we achieved linear speedup and this is the best that

we can hope for. In practice though it is unlikely to get linear speedup because the use of

many processors/threads introduces overhead. For example in a shared-memory system mutual

exclusion mechanisms are needed for protecting critical sections [18]. The transmition of data

between processing cores and the synchronization between them is another example of overhead

in a large distributed system. More formally we would define the running time of a parallel

algorithm as

Tparallel = Tserial/P + Toverhead (2.3)

Another important measure of parallel algorithms performance is the work performed by the

algorithm. The work W is defined as

W = Tparallel · P (2.4)

Where Tparallel is the run time of the parallel algorithm and P is the number of processors used.

The notion of work measures the total processing effort needed for an algorithm and it accounts

for inefficiencies caused by one or more processors being idle (or not performing a usefull task)

during the computation. For example the work of the linear array parallel algorithm solving the

matrix-vector problem discussed in the previous section has work W = Θ(N2). Work can be

defined alternatively as

W = N1 +N2 + ...+NT (2.5)

where Ni is the number of actively used processors during ith step. Using the notion of work

we can measure the efficiency with which the processors are utilized. Efficiency E of a parallel

algorithm is defined as

9

Chapter 2. Parallel Computation Theoretical Background

E = Γ/W =
Γ

Tparallel · P
=

S

P
(2.6)

where Γ is the running time of the best sequential algorithm and W is the work of the parallel

algorithm. Given the best sequential algorithm for a specific program, efficiency can be increased

if we decrease the work performed by the parallel algorithm. We would like to design algorithms

that are both fast and efficient which means that we want the running time Tparallel to be as small

as popssible and the efficiency E to be as close to 1 as possible. The question of whether speed

or efficiency is more important depends on many factors and varies widely among applications

[14]. It is important to note that that running times, speedup and efficiency all depend on the

problem size.

2.3 Space-time mapping

A formal methodology for designing systolic architectures is presented in [19]. A regular

dependence graph (DG) is defined for every compute-bound computation and the edges of that

graph represent precedence constraints. The DG is said to be regular if the presence of an edge

in a certain direction at any node in the DG represents the presence of an edge in the same

direction at all nodes in the DG. The DG is a space representation where no time instance is

assigned to any computation. The goal is to map the DG into a space-time representation where

each node corresponds to a certain processing element which is scheduled to operate at a certain

time instance. This systolic design methodology efficiently maps an N-dimensional DG to a an

(N-1)-dimensional systolic array.

The basic vectors involved in a DG −→ systolic array mapping are :

• Projection vector d =

d1

d2


• Processor space vector pT =

(
p1 p2

)
• Scheduling vector sT =

(
s1 s2

)

10

Chapter 2. Parallel Computation Theoretical Background

• Hardware Utilization Efficiency, HUE = 1/|sTd|

and the following holds true:

• Two nodes that are displaced by d or multiples of d are executed by the same processor.

• Any node with index IT = (i, j) would be executed by processor

pT I =
(
p1 p2

)i

j



• Any node with index I would be executed at time sT I .

• Two tasks executed by the same processor are spaced |sTd| time units apart.

These vectors must satisfy some feasibility constraints:

• The processor space vector p and the projection vector d must be orthogonal. If points A

and B in the graph, differ by the projection vector d, ie, IA − IB = d, then they must be

executed by the same processor, ie,

pT IA = pT IB −→ pT (IA − IB) = 0 −→ pTd = 0

• If A and B are mapped to the same processor, then they cannot be executed at the same

time, ie,

sT IA ̸= sT IB −→ sT (IA − IB) = 0 −→ sTd ̸= 0

• Edge mapping: If an edge e exists in the DG, then an edge pT e is introduced in the systolic

array with sT e delays.

Finally, with the above vectors and constraints defined, the space representation (DG) can be

transformed into a space-time representation by interpreting one of the spatial dimensions as a

temporal (time) dimension and using the following relation:

11

Chapter 2. Parallel Computation Theoretical Background

j′

t′

 =

pT

sT

i

j


As an example we will transform the DG of fig. 2.4 into a space-time mapping. The space

representation in fig. 2.4 descibes a 3-tap FIR filter:

y(n) = w0x(n) + w1x(n− 1) + w2x(n− 2)

To implement the 3-tap FIR operation using the systolic design R1 (Results Stay, Inputs and

Weights move in opposite directions) [11] we choose the following vectors:

d =

 1

−1

 ,pT =
(
1 1

)
, sT =

(
1 −1

)

Then the space-time transformation is:

j′

t′

 =

pT

sT

i

j

 =

1 1

1 −1

i

j

 =

i+ j

i− j



Figure 2.4: Space representation for 3-tap FIR filter.

In fig. 2.5 we see that all nodes that align to the (1, -1) direction group together as one processing

element due to the projection vector d. Then, using the above result

j′

t′

 =

i+ j

i− j

 we can

12

Chapter 2. Parallel Computation Theoretical Background

Figure 2.5: Space-time transformation for 3-tap FIR.

easily produce the space-time mapping of the 3-tap FIR’s DG. It is also worth noting that each

PE will be working every two clock cycles which we can verify from HUE = 1/|sTd| = 1/2 for

the given values of sT and d.

Now let’s return to the matrix-vector product which is described by a DG in a 2-D plane as in

fig. 2.6 and thus it will be mapped to a 1-D systolic array of PEs.

Figure 2.6: Dependence graph for matrix-vector product.

Assuming that each node (i, j) stores a matrix coefficient aij in its local memory we can express

13

Chapter 2. Parallel Computation Theoretical Background

the matrix-vector product in a standard Regular Iterative Algorithm (RIA) form :

a(i, j) = a(i, j)

X(i, j) = X(i, j − 1)

Y (i, j) = Y (i− 1, j) +X(i, j)a(i, j)

and then deduce the Reduced Dependence Graph of fig. 2.7.

Figure 2.7: Reduced dependence graph for matrix-vector product.

The scheduling inequality that must hold for one edge X −→ Y is defined as

sT IY + γY ≥ sT IX + γx + TX

where sT =
(
s1 s2

)
. Assuming that Tmult = 1, Tadd = 1, Tcomm = 0, the scheduling

inequalities for the edges of fig. 2.7 are:

Edge X −→ X’:

sT IX′ + γX′ ≥ sT IX + γX + TX −→ sT (IX′ − IX) + γX′ − γX ≥ 0 −→

14

Chapter 2. Parallel Computation Theoretical Background

−→ sT e+ γX′ − γX ≥ 0 −→
(
s1 s2

)0

1

+ γX′ − γX ≥ 0 −→

−→ s2 + γX′ − γX ≥ 0 (2.7)

Edge a −→ a’:

sT Ia′ + γa′ ≥ sT Ia + γa + Ta −→ sT (Ia′ − Ia) + γa′ − γa ≥ 0 −→

−→ sT e+ γa′ − γa ≥ 0 −→
(
s1 s2

)0

0

+ γa′ − γa ≥ 0 −→

−→ γa′ − γa ≥ 0 (2.8)

Edge a −→ Y’:

sT IY + γY ≥ sT Ia + γa + Ta −→ sT (IY − Ia) + γY − γa ≥ 0 −→

−→ sT e+ γY − γa ≥ 0 −→
(
s1 s2

)0

0

+ γY − γa ≥ 0 −→

−→ γY − γa ≥ 0 (2.9)

Edge Y −→ Y’:

sT IY ′ + γY ′ ≥ sT IY + γY + TY −→ sT (IY ′ − IY) + γY ′ − γY ≥ 1 −→

15

Chapter 2. Parallel Computation Theoretical Background

−→ sT e+ γY ′ − γY ≥ 0 −→
(
s1 s2

)1

0

+ γY ′ − γY ≥ 1 −→

−→ s1 + γY ′ − γY ≥ 1 (2.10)

Because the scheduling is linear we have γX = γY = γa = 0. So we are searching solutions for

the inequalities s2 ≥ 0 and s1 ≥ 1. One solution is sT =
(
1 0

)
which subject to

sTd ̸= 0 −→
(
1 0

)d1

d2

 ̸= 0 −→ d1 ̸= 0

leads to dT =
(
1 0

)
. Also we need

pTd = 0 −→
(
p1 p2

)1

0

 = 0 −→ p1 = 0

so we choose pT =
(
0 1

)
.

Based on these vector values we construct the edge mapping array from which the final projected

systolic array of fig. 2.8 is derived.

e pT e sT e
e(a) = (00)T 0 0
e(X) = (01)T 1 0
e(Y) = (10)T 0 1

Table 2.1: Edge mapping for the systolic design that is produced by the space-time transformation
of the matrix-vector problem

2.4 Unfolding

Unfolding is a transformation technique descibed in [19]. It can be applied to a DSP program

in order to create a new one that computes more than one iterations of the original program

16

Chapter 2. Parallel Computation Theoretical Background

Figure 2.8: Systolic Architecture derived from table 2.1

concurrently. The Unfolding algorithm presented below when applied to a Data Flow Graph

that describes the original DSP program produces its unfolded version. Unfolding is sometimes

referred to also as loop-unrolling.

1: Input: Data Flow Graph of DSP program

2: Output: Unfolded Data Flow Graph of DSP program

3: for each node U of original DFG do

4: draw J nodes U0, U1, ..., UJ−1

5: end for

6: for each edge U −→ V with w delays in the original DFG do

7: draw J edges Ui −→ V(i+w)%J with ⌊ i+w
j
⌋ delays for i = 0, 1, ..., J-1

8: end for

For example consider the program that implements the following equation (fig. 2.9):

y(n) = ay(n− 9) + x(n) (2.11)

If we replace index n with 2k and then with 2k+1 we get the following two equations:

y(2k) = ay(2k − 9) + x(2k) (2.12)

17

Chapter 2. Parallel Computation Theoretical Background

y(2k + 1) = ay(2k − 8) + x(2k + 1) (2.13)

which are two subsequent iterations of the original problem.

Figure 2.9: (a) Original DSP program describing eq. 2.10 for n=0 to∞. (b) The 2-unfold DSP
program describing eq. 2.11, 2.12 for k=0 to∞.

Now we will construct a DFG for the above DSP program. Nodes A and B in fig. 2.10(a) represent

input and output, respectively, and the nodes C and D represent addition and multiplication by

a, respectively. After implementing the two steps of algorithm ?? with J=2 and the DFG of

fig. 2.10(a) as input, we derive the 2-unfolded DFG of the program as in fig. 2.10(b).

Figure 2.10: (a) DFG corresponding to the DSP program of fig. 2.9(a). (b) The 2-unfolded
DFG corresponding to the 2-unfolded DSP program in fig. 2.9(b)

Now let us consider a problem in which we approach loop-unrolling in software. We want to

18

Chapter 2. Parallel Computation Theoretical Background

design a DFG that implements a 7-tap FIR filter and uses the architecture of fig. 2.11. The

problem is that in each clock cycle, only one input sample can be read from the RAM, leading

to the usage of only one MAC unit whereas the other two remain idle. To overcome this waste

of resources, unfolding will be used in order to introduce the necessary level of parallelism.

Figure 2.11: Programmable DSP with 3 MAC units.

Our goal is to implement the following equation :

y(n) = ax(n)+bx(n−1)+cx(n−2)+dx(n−3)+ex(n−4)+fx(n−5)+gx(n−6) (2.14)

which describes the circuit of fig. 2.12, but we need all 3 MAC units to work concurrently. For

this reason we first draw the DFG that describes the 7-tap FIR filter and then we apply the unfold

algorithm with J=3.

Figure 2.12: 7-tap FIR filer in transposed form.

The DFG of fig. 2.14 is derived after application of the unfolding algorithm. Notice that the

total number of delays remains equal (as it should be) to the number of delays in the original

DFG. After the unfold-transformation, three iterations of the program can be performed in the

19

Chapter 2. Parallel Computation Theoretical Background

Figure 2.13: DFG of 7-tap FIR filter.

Figure 2.14: Unfolded DFG of 7-tap FIR with J=3.

same clock cycle, i.e, x[3k], x[3k+1], x[3k+2], but still, the three MAC units can not receive

more than one input sample/cycle through the data bus with the current architecture. To proceed,

we construct the acyclic precedence graph of fig. 2.14 by removing all edges with delays and

finally we define an overlapped schedule in which all MACs are utilized in every clock cycle.

Assuming that multiplication nodes A,B,C,D,E, F,G need time Tmult = 3 u.t, addition nodes

H, I, J,K, L,M Tadd = 1 u.t and input nodes X Tin = 1 u.t, the critical path is Tcrit = 6 u.t.

The overlap schedule of fig. 3.1 is rather complicated though, but it is the best one can achieve

20

Chapter 2. Parallel Computation Theoretical Background

given that only one data bus is present in the current architecture.

Figure 2.15: Acyclic precedence graph of 3-unfolded DFG.

Figure 2.16: Overlap schedule for the acyclic precedence graph of fig. 2.15.

21

3 Deep Neural Networks Theoretical Background

Deep learning is a specific kind of machine learning. Machine learning is essentially a form

of applied statistics with increased emphasis on the use of computers to statistically estimate

complicated functions and a decreased emphasis on proving confidence intervals around these

functions.

Figure 3.1: Deep learning in the context of artificial intelligence.

A definition of machine learning is the following: "A computer program is said to learn from

experience E with respect to some class of tasks T and a performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E."[7]. Following

below are some of the classes that a task T might belong to.

• Classification: The computer program is asked to specify in which among k different

categories some input belongs to.

• Regression: The computer is asked to predict a numerical value given some input.

• Transcription: The machine learning system is asked to observe a relatively unstructured

representation of some kind of data and transcribe the information in to discrete textual

22

Chapter 3. Deep Neural Networks Theoretical Background

form.

• Machine translation: The input already consists of a sequence of symbols in some

language, and the computer program must convert this into a sequence of symbols in

another language (used in Natural Language Processing - NLP)

• Anomaly detection: The computer program shifts through a set of events or objects and

flags some of them as being unusual or atypical. A typical example of this task is credit

card fraud detection.

• Denoising: The machine learning algorithm is given as input a corrupted example x̃ ∈ Rn

obtained by an unknown corruption process from a clean example x ∈ Rn and the learner

must predict the clean example from the corrupted version.

Machine learning technology is applied to many aspects of modern life: from web searches

to content filtering on social networks to recommendations on e-commerce websites, object

identification and various other computer vision related applications.

3.1 Parametric modeling

A large class of machine learning problems can be thought of as equivalent to a function

estimation/approximation task. This idea goes way back to 1795 when Lagrange published the

polynomial interpolation theorem which states the following. Given a set of coordinate pairs

(xi, yi) with 0 ≤ i ≤ k, where the xi are called nodes and the yi are called values, there exists

a polynomial L(x) that has degree ≤ k such that L(xi) = yi for every 0 ≤ i ≤ k. This task

is more generally refered to as curve fitting and it is of great importance in machine learning.

In parametric modeling, the functional dependence between the input xi and the output yi is

defined via a set of unknown parameters θ whose number is fixed. A system is learning to

estimate these parameters by digging in the information that resides in the available data set

during the training phase. The usual path to follow is to adopt a functional form such as a

linear or quadratic function, and try to estimate the associated unknown coefficients so that the

graph of the function "passes through" the data and follows their deployment in space as close

23

Chapter 3. Deep Neural Networks Theoretical Background

as possible. The adopted functional form for the curve corresponding to fig 3.2.a for example is

ŷ = fθ(x) = θ0 + θ1x (3.1)

whilst for the curve of fig 3.2.b is

ŷ = fθ(x) = θ0 + θ1x+ θ2x
2 (3.2)

Figure 3.2: Fitting (a) a linear function and (b) a quadratic one. The red lines are the optimized
ones.[24]

Given a training set D = {x1, x2, ..., xN} := {y1, y2, ..., yN} and having adopted a parametric

family of functions, one has to estimate for the unknown set of parameters. The more usual

approach is to adopt a loss function that quantifies how much the predicted values ŷ deviate from

the measured values y that are known to the system through the data set. We adopt a nonnegative

loss function L(y, fθ(x)) and define the total loss (cost) over all data points as

J(θ) :=
N∑

n=1

L(yn, fθ(xn)) (3.3)

Assuming that J(θ) has a minimum, we iteratively update the values of the parameter vector θ⃗

24

Chapter 3. Deep Neural Networks Theoretical Background

according to the following equation

θ⃗′ = θ⃗ − ϵ
∂J

∂θ⃗
(3.4)

where ϵ is learning factor. The idea behind the above equation is that in order to find the values

θ⃗∗ that minimize J , we follow the gradient of J with respect to θ⃗ in the opposite direction and

we stop when we find a minimum. This optimization method is called gradient descent and it

is the backbone of the back-propagation algorithm which is implemented by a neural network

during the training phase.

Figure 3.3: The least squares function is most commonly used as a cost function and it has a
unique minimum at point θ∗.[24]

3.2 Neural Networks

Neural networks are learning machines, composed of a large number of neurons connected in a

layered fashion. Every neuron in each layer is connected to every neuron in the next layer and

the connections between them are called synapses. Every synapse has a value called weight

which indictates the importance of the specific connection on all paths that the information uses

to flow forward. The weights and biases of all neurons are the parameters of the network.

Learning is achieved by adjusting the unknown parameters so as to minimize a pre-selected cost

25

Chapter 3. Deep Neural Networks Theoretical Background

function. Deep learning refers to learning networks with many layers of neurons capable of

extracting specific features from raw input data that reside in multi-dimensional spaces in order

to perform regression/classification tasks.

The fundamental block of a neural network is called the perceptron (neuron) and it’s structure

is depicted in fig 3.4.

Figure 3.4: In the perceptron architecture all values xi of the input vector are weighted by the
respective synapses θi. The bias term θ0 is added on the linear combination of the inputs and
weights and finally the result is passed through a non linear function.

Every value xi that is given as input to the perceptron is adjusted to a weight connection θi. The

perceptron computes the dot product of the inputs and weights, then adds a bias value θ0 and

finally passes the result through a non linear function f(·).

y = f(
l∑

i=1

θixi + θ0) (3.5)

The non-linear function f(·) is usually one of the following

Rectified Linear Unit

f(x) =

 x x ≥ 0

0 x < 0
(3.6)

Logistic Sigmoid

f(x) =
1

1 + e−x
(3.7)

26

Chapter 3. Deep Neural Networks Theoretical Background

Hyperbolic Tangent

f(x) =
ex − e−x

ex + e−x
(3.8)

A system that is made of many perceptrons is called a multi-layered perceptron (neural network).

The network architecture shown in fig 3.5 is the most commonly used in practice and it is easily

generalized by considering additional hidden layers.

Figure 3.5: 2-layered fully connected neural network. The reason that this is described as a
2-layer is because there are two layers of weights (parameters) that need to be adjusted during
the training phase.

In this architecture information flows from input to output and thus the network is called feed-

forward. The system receives vector x⃗ as input and outputs vector y⃗ where each yi is computed

as:

yi = f(
M∑
j=0

θ
(2)
i,j · f(

L∑
k=0

θ
(1)
j,kxk)) (3.9)

One of the most important properties of feedforward networks with hidden layers (deep networks)

27

Chapter 3. Deep Neural Networks Theoretical Background

is that they provide a universal approximation framework [7]. This means that every feedforward

network with a linear output layer and at least one hidden layer with any "squashing" activation

function (such as the logistic sigmoid) can approximate any Borel measurable function from one

finite-dimension (input) to another (output) with any desired nonzero amount of error, provided

that the network is given enough hidden units. In this property lies the capability of deep neural

networks to extract the functional relations that give rise to various patterns hidden inside the

input space of the training data sets.

3.3 Convolutional Networks

A common type of deep neural networks is convolutional neural networks (CNNs). In these

networks, each layer generates a successively higher level abstraction of the input data, called a

feature map, which preserves essential yet unique information[23]. CNNs are widely used in a

variety of applications including image processing, speech recognition, robotics etc.

Data are subject to distortion and various deteriorations due to noise. Before they are sent to the

fixed-size input layer of a neural net, data must be approximately size-normalized and centered

in the input field. Unfortunately, no such pre-processing can be perfect. Convolutional networks

combine three architectural ideas to ensure some degree of shift and distortion invariance: local

receptive fields [17], shared weights and spatial or temporal subsampling. Using local receptive

fields, neurons can extract elementary visual features such as oriented edges and corners in

images which are then combined by the higher layers to extract more complicated patterns[2].

This idea addresses a key property of images, which is that nearby pixels are more strongly

correlated than more distant ones. Modern approaches to computer vision exploit this property

by extracting local features that depend only on small subregions of the image. Information from

such features can then be merged in later stages of processing in order to detect higher-order

features and ultimately yield information about the image as a whole [3]. Hidden layers scan

the input image with a neuron that has a local receptive field (filter-kernel) and the state of

this neuron is stored in an output feature map. This operation is equivalent to a convolution

with a small size kernel, followed by a "squashing" function. A convolutional layer is usually

28

Chapter 3. Deep Neural Networks Theoretical Background

composed of several feature maps with different weight filter-kernels in order to extract different

elementary patterns from the input data.

The architecture of a convolutional network is shown in fig 3.6 and is structured in a series of

stages. The first stages include two types of layers: convolutional and pooling layers. Units

in convolutional layers scan the data using their small receptive field kernels and pass their

local weighted sum through a non-linear function such as ReLU. The following pooling layer

downsamples the output of the convLayer in order to merge semantically similar features into

one. A typical pooling unit computes the maximum of a local path of units in one feature map.

The basic idea behind CNNs and DNNs in general is to exploit the property that many natural

signals are compositional hierarchies, in which higher-level features are obtained by composing

lower-level ones [13]. At the last stages, the feature map produced by the final Convolution-

Pooling layer pair will be a pattern composed of a combination of many low level features. This

final feature map is flattened into a n × 1 vector and then it is passed to the input of a fully

connected layer. Finally the k-node output layer neurons computes their weighted sums and pass

the results in a softmax function. The purpose of a function such as softmax is to represent the

outputs as probabilities that the input image belongs in one of k different classes.

Figure 3.6: CNN for classification of 32x32 2D grayscale images of hand-written digits.

29

4 Accelerating Inference for DNNs

Deep Neural Networks (DNNs) are employed in a myriad of applications such as self-driving

cars, cancer detection, complex gaming, information-retrieval search engines, mobile communi-

cation and more. In many of these domains, DNNs are now able to exceed human accuracy due

to their ability to extract high level features from raw sensory data by using statistical learning

in order to obtain an effective representation of an input space [22]. The constant improvement

in classification accuracy though is achieved at the expense of higher computational and stor-

age complexity. For example ResNet which scored 76.1% at ImageNet’s top-1 classification

accuracy in 2015 raised the number of GOPS (Giga Operations Per Second) to process a single

224x224 image to 22.6 in comparison to the 1.4 GOPS needed by the 2012 ImageNet winner

AlexNet which scored a top-1 accuracy of 57.2%[26]. At the same time, many applications

require DNNs to be deployed on mobile and embedded devices where memory, runtime bud-

gets and energy reserves are strictly limited. In addition to the above constraints, the inherent

paralelization ability of DNN models has led to the realization of FPGA platforms for real-time

DNN processing in contrast to the traditional CPUs or the strong in parallel computations but

power-hungry GPUs. FPGA’s are a great candidate for accelerating DNN processing because

they can achieve both high levels of parallelism and low power consumption but they also face

challenges in performance and flexibility, the most important of those being:

• FGPA’s support working frequency at 100-300MHz which is much less than CPU and

GPU.

• Implementation of DNNs on FPGAs is much harder than that on CPUs or GPUs and

development times are significantly larger because there are no development frameworks

30

Chapter 4. Accelerating Inference for DNNs

such as TensorFlow, Keras, PyTorch or Caffe for hardware.

4.1 Training vs Inference

Since DNNs are part of machine learning algorithms they are deployed in two phases: the

training phase and inference. During the training stage the algorithm implements the back-

propagation algorithm which iteratively updates the network’s parameters (connection-weights

and biases) towards the direction of minimizing a cost function by using extensive chain-rule

calculus, trying to find the function’s local (or global) minimum, an optimization process known

as gradient-descent. In this way the network model improves its predictive power. During the

second phase, known as inference or feed-forward phase, the network uses the learned model’s

parameters to predict (regression) or classify (classification) new data samples never before seen

by the network. For training there are some important considerations one should take when

designing a neural processor. Backpropagation requires intermediate outputs of the network to

be preserved for the backward computations and thus training has increased storage requirements

and due to the gradient descent optimization technique, the precision requirement is generally

higher than inference. A variety of techniques are used to improve the efficiency and robustness

of training with the most common among them being batching and pruning. In batching, the

loss is computed from multiple inputs before a single pass of weight updates is performed and

in this way helps to speed up and stabilize the process. In prunning, weights (connections)

that are not so important are cutted-of leading to a more sparse network. In a typical setup,

DNNs are trained only once, on large GPU/FPGA clusters, but the inference is implemented

each time a new data sample arrives as input. As a consequence, the literature mostly focuses

on accelerating the inference phase [1], which is extremely important for real-time applications

where new input data are received at high frequencies.

4.2 Key Metrics

Efficient processing of DNNs has been a significant research area over the past years. When

one compares and evaluatets the strengths and weaknesses of different designs and proposed

31

Chapter 4. Accelerating Inference for DNNs

techniques, one should consider a set of key metrics such as accuracy, throughput, latency,

energy consumption, power consumption, cost, flexibility and scalability [22].

• Accuracy is used to indicate the quality of the result for a given task. For image classifi-

cation it is measured as the percentage of correctly classified images.

• Throughput is an indication of the amount of data that can be processed or the number

of executions of a task that can be completed in a given time period and is often critical

to an application.

• Latency measures the time between the arrival of data in the system’s input and the

generated result at its output. For real-time interactive applications such as autonomous

navigation and robotics, low latency is key.

Throughput and latency are affected by several factors. One way of understanding this is

by measuring the rate of inferences per second (feed-forward computations per second)

and expand it in the context of a parallel system.

inferences
second

=
operations

second
× 1

operations
inference

(4.1)

The number of operations per second is dictated by both the hardware and the DNN model,

but the number of operations per inference is determined strictly by the DNN model. For

example a model with one hidden layer has less operations per inference than a deeper

architecture. Interestingly, eq. 4.1 suggests that the throughput can be increased by careful

co-design of software and hardware. The hardware design space is tightly coupled with

the model’s architecture space, i.e, the best neural architecture depends on the hardware

and vice versa [9]. In the context of accelerators, many PEs are utilized to compute the

feed-forward phase and thus the number of operations per second can be factorized even

more as

operations
second

= (
1

cycles
operation

× cycles
second

)× number of PEs× utilization of PEs (4.2)

32

Chapter 4. Accelerating Inference for DNNs

The first term refers to the peak throughput of a single PE while the second and third

terms refer to the amount of parallelism and the ability of the design to effectively utilize

this level of parallelism respectively. One can increase the peak throughput of a single

PE by increasing the number of cycles per second, which corresponds to a higher clock

frequency, by reducing the critical path at the circuit level, or the cycles per operations by

introducing pipeline. The overall throughput could then be increased by increasing the

number of PEs and thus the maximum number of MAC operations that can be performed

in parallel. One must be careful though of the corresponding increase in chip area and

the costs of complex wiring, or the decrease in on-chip storage area which gives rise to

more off-chip memory reads which are expensive in terms of energy. Another important

consideration is the hardware utilization efficiency.

utilization of PEs =
number of active PEs

number of PEs
× utilization of active PEs (4.3)

The first term of eq. 4.3 reflects the ability to distribute the workload to PEs, while the

second term reflects how efficiently those active PEs are processing the workload. The

goal is to distribute the workload to as many PEs as possible while at the same time design

a dataflow such that the active PEs do not become idle while waiting for new data to arrive.

• Energy efficiency is used to indicate the amount of data that can be processed or the

number of executions of a task that can be completed for a given amount of energy. High

energy efficiency is important when processing DNNs at the edge in embedded devices

with limited battery capacity (smartphones, smart sensors). Edge (online) processing may

be preferred over the cloud (offline) for certain applications due to latency, privacy, or

communication bandwidth limitations.

• Power consumption is used to indicate the amount of energy consumed per unit time.

Power consumption and energy efficiency limit the throughput of the system as follows:

inferences
second

≤Max(
joules
second

)× inferences
joule

(4.4)

33

Chapter 4. Accelerating Inference for DNNs

Where inferences per joule can be factorized as

inferences
joule

=
operations

joule
× 1

operations
inference

(4.5)

The amount of energy per operation can be broken down to the sum of energy required to

transfer input/output data and the energy required by the MAC operation, ie,

Etotal = Etransfer + EMAC (4.6)

With the use of pipeline and parallel processing, not only we can achieve higher compu-

tational speeds but also achieve low power consumption. For a 1st-order approximation

analysis, the power consumption of a CMOS circuit can be estimated as

P = CtotalV
2
0 f (4.7)

where Ctotal is the capacitance of the circuit, V0 is the supply voltage and f is the clock

frequency, and the propagation delay can be written as:

Tpd =
CchargeV0

k(V0 − Vt)2
(4.8)

where Ccharge is the capacitance that is charged/discharged in a single clock cycle (the

capacitance along the critical path), V0 is the sypply voltage, Vt is the threshold voltage and

k is a function of the parameters related with the technology used such as W
L

MOSFET’s

gate width over length and Cox the capacitance of the oxide.

By introducing M=3 level pipeline as in fig. 4.1 we can reduce the critical path of the system

to 1/3 and also the capacitance to be charged/discharged in each clock cycle to Ccharge

3
.

The total capacitance remains the same, but if the same clock speed f is maintained, only

a fraction of the original capacitance is being charged/discharged in the same amount of

34

Chapter 4. Accelerating Inference for DNNs

time which implies that the supply voltage can be reduced to βV0, with 0 ≤ β ≤ 1. Hence

the power consumption of the pipelined system will be

Ppip = Ctotalβ
2V 2

0 f = β2Pseq (4.9)

and its propagation delay is given by

Tpip =

Ccharge

M
βV0

k(βV0 − Vt)2
(4.10)

Usually the clock period of a circuit is set equal to the maximum propagation delay, and

since we assumed that the pipeline circuit preserves the clock speed we can solve the

following quadratic equation to find β

Tpd = Tpip −→M(βV0 − Vt)
2 = β(V0 − Vt)

2 (4.11)

The energy consumption is dominated by the data movement whose capacitance tends to

be much higher than the capacitance for arithmetic operations. The further the data needs

to travel, the larger the capacitance and thus the switching activity, resulting to increased

energy consumption. For this reason it is really important to design workload flows where

data is reused as much as possible, in order to reduce the number of off-chip memory

accesses, which are the most expensive operation as we see in fig. 4.3

Figure 4.1: Critical path length for sequential and 3-level pipelined systems

35

Chapter 4. Accelerating Inference for DNNs

• Hardware cost is used to evaluate whether the system is financially viable and it is mostly

determined by the chip area in conjuction with the process technology (e.g BiCMOS).

• Flexibility refers to the range of models that the dedicated DNN processor can support

and also to the ability of the software environment that maps the model, to exploit the full

capabilities of the hardware.

• Scalability refers to how well a design can be scaled up to achieve higher throughput and

energy efficiency when increasing the amount of resources (number of PEs and on-chip

storage). Ideally the throughput would scale linearly and proportionally with the number

of PEs and similarly the energy efficiency would improve with more on-chip storage.

Figure 4.2: Energy consumption for various arithmetic operations and memory accesses in a
45 nm technology [8]

4.3 Taxonomy of accelerator architectures

Today’s systems are a hierarchical composition of compute cores organized as nodes that are

connected to memory and I/O devices through a coherent system bus. Conceptually, accelerators

can be attached at all levels of this hierarchy [4]. The goal is to increase the system’s performance,

but as we saw in the previous section, there are various metrics that play a significant role in

36

Chapter 4. Accelerating Inference for DNNs

defining the granularity and integration of the accelerator. Some popular categories that have

emerged through the years at the system level are the following:

• Integrated specialized units such as floating point units (FPUs) and vector units that

offload the CPU from computationally intensive operations.

• Specialized ASICs such as Google’s Tensor Processing Unit (TPU) [10] that provide

special-purpose processing, typically targeted to a set of algorithms in a particular domain.

• Generated accelerators, which are reconfigurable devices such as FPGAs allowing ap-

plications written in high-level languages (VHDL-Verilog) to be directly compiled into

hardware.

The DNN architectures can be broadly divided based on the area in which the architecture

has been primarily optimized. ALU category is the one where the MAC units are modified

such that the accelerator can have large computing resources and flexibility to achieve optimal

performance with variable bit precision. In the Dataflow category, the parameters (weights,

activations, partial sums) are managed such that the overall data movement energy is reduced,

and in Sparsity, the data is managed such that the matrix multiplication units can avoid zero

multiplications effectively [16].

4.4 Hardware architectures for kernel computations in DNN processing

Multiply-and-accumulate (MAC) operation is the basic component of matrix-matrix and matrix-

vector multiplication. Since the heaviest processing in a DNN often maps to a matrix multipli-

cation, the fundamental computation of both the convolutional and fully-connected layers are

MAC operations which can be easily parallelized. Highly parallel compute paradigms can be

used for matrix multiplication. They are categorized as being either temporal or spatial [22].

In temporal architectures DNN algorithms can be mapped and optimized on CPUs and GPUs

in a way that the number of multiplications is reduced whilst the kernel computations can be

ordered in tiles to improve memory subsystem behavior. In spatial architectures, carefully de-

signed dataflows can increase data reuse by utilizing low cost memories in the memory hierarchy

37

Chapter 4. Accelerating Inference for DNNs

leading to reduced energy consumption and also optimized data movement.

Figure 4.3: Two main paradigms of highly parallel compute paradigms [22]

In temporal architectures all the ALUs share the same control and register file (memory) in

order to perform parallel MAC operations. Well studied techniques that utilize this scheme are

Toelpiz matrix multiplication [22] and Winograd transform [19]. Many software libraries such

as Open BLAS, IntelMKL (for CPU) and cuBLAS, cuDNN (for GPU) have been designed for

optimized implementation of matrix multiplication. General matrix multiplication (GEMM)

algorithms consider a granular partition of matrices and the computations are performed in a

layered fashion[5]. The goal is to find a high-performance implementation of the smallest kernel

in terms of data movement between memory hierarchy layers, and proceed in a bottom to top

approach.

In spatial architectures the ALUs are connected with each other forming a mesh-array of

processing elements. Each processng element has its own control logic and memory and thus

is capable of executing different instructions on the data. Data are loaded on these distributed

systems by higher layers of the memory hierarchy.

DNNs often use the same piece of data for multiple MAC operations. This property results in

three basic forms of data reuse that reduce data movement costs (fig 4.4):

• Input feature map reuse : where different filters (different convolution neurons) are applied

to the same input feature map in order to generate multiple output feature maps.

• Filter reuse: where a batch of input feature maps is processed by the same filter.

• Convolutional reuse: where the filter slides across different (often overlapping) positions

in the input feature map to produce an output feature map.

38

Chapter 4. Accelerating Inference for DNNs

Figure 4.4: Data reuse opportunities in a convolutional layer [22]

There are several commonly used design patterns that exploit data reuse and can be categorized

into a taxonomy of dataflows. Weight stationary, Output stationary, Input stationary and Row

stationary dataflows. The weight-stationary dataflow is designed to minimize the energy con-

sumption of reading weights by maximizing the reuse of weights from the local register file

at each processing element. The output-stationary dataflow is designed to minimze the energy

consumption of reading and writing the partial sums keeping the accumulation of partial sums

for the same output activation value local in the register file. Similarly, the input-stationary

dataflow minimizes the energy consumption of reading input activations. Each input activation

runs through as many MACs as possible in the processing element. Finally the row-stationary

dataflow aims to maximize the reuse and accumulation at the register file level of all types of

data (weights, input activations and partial sums) for overall energy efficiency [22].

In this work, the weight-stationary dataflow depicted in fig 4.5 is chosen as the design-pattern

for the basic component of the accelerator’s convolutional layer, the DSP block. More details

regarding the implementation and the adjustments made for the chosen CNN model are given in

chapter 5.

Figure 4.5: Weight-stationary dataflow as implemented in nn-X or neuFlow [6]

39

5 Design of Hardware Accelerator for CNN on FPGA

5.1 The CNN model

The model was trained with the MNSIT dataset which contains 60K handwritten digit grayscale

images. From this dataset 50K images were used for the training and the rest 10K were used for

testing the model’s accuracy. The model was created in google’s Colab using the Keras python

Deep Learning API. The model’s architecture consists of :

• one convolution layer containing 32 filters of 5x5 kernel size each. The convolution layer

takes as input the 28x28x1 input image and outputs a 24x24x32 feature map,

• a ReLU activation layer,

• a max pooling layer which extracts the max value of 2x2 windows with stride 2 in order

to downsample the convolutional output to a 12x12x32 array,

• a ReLU activation layer,

• a 30-node fully connected layer which takes as input the flattened (4608x1) output of the

max pooling layer and

• a 10-node output layer with softmax activation that produces the probabilities that a given

input image belongs in one of the 10 different classes (digits).

The model was compiled using the Adam optimizer and the categorical cross-entropy as the

loss function [24]. Training was performed with a 33% validation split [25] and after 8 epochs

the model achieved 97.73% accuracy on the test set. One of the issues that this thesis does not

address is the fact that the model’s parameters are in float-32 bit numerical representation whilst

40

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

Figure 5.1: CNN model architecture

the FPGA uses fixed-point arithmetic. In a real use-case scenario where one would want to

load the trained neural network into an embedded device, one should convert the neural network

algorithm to a fixed-point using Matlab and C-code. The floating to fixed-point conversion is

not expected to degrade the prediction accuracy of the classifier as it is shown in [12]. In the

following sections we describe the FPGA architecture and we represent every pixel of the 28x28

input image and hence the weights of the filter kernels as 16-bit integers. The results of the

convolution layer and the pooling layers are 32-bit integers (due to integer multiplications). The

results of the Fully connected layer are 64-bit integers which are truncated into 32-bit integers

before they enter to the Output layer which finally produces ten 64-bit integer results. Many

improvements can be made as far as concerning the reduction of the number of bits used at the

final output.

5.2 Architectures for efficient 2D convolution

During inference, the most intensive computations are performed by the convolutional and the

fully connected layers. The 2D convolution operation is basically a sliding of a filter-kernel

41

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

window over a 2D image with a particular stride (sliding step) while at the same time multiplying

each filter value with the corresponding pixel and accumulating the result.

Figure 5.2: 2D convolution on a 4x4 pixel image using a 3x3 filter-kernel with stride 1 and zero
padding.

In fig. 5.2 the convolution is performed with a 3x3 kernel on a 4x4 image using zero padding

and stride S = 1 for both dimensions resulting in a 2x2 output. More generally the output

dimensionality can be computed by the formula :

OH ×OW = (NH −WH + SH)/SH × (NW −WW + SW)/SW (5.1)

where NH , NW are the height and width of the input image and WH and WW are the height and

width of the filter-kernel. The convolution operation is defined as :

om,n =

WH−1∑
i=0

WW−1∑
j=0

im+i,n+jwi,j (5.2)

To compute the convolution of fig. 5.2 we need 4x9 = 36 multiplications and 4x8 = 32 additions

as shown in the following equations:

o0,0 = i0,0·w0,0+i0,1·w0,1+i0,2·w0,2+i1,0·w1,0+i1,1·w1,1+i1,2·w1,2+i2,0·w2,0+i2,1·w2,1+i2,2·w2,2

(5.3)

o0,1 = i0,1·w0,0+i0,2·w0,1+i0,3·w0,2+i1,1·w1,0+i1,2·w1,1+i1,3·w1,2+i2,1·w2,0+i2,2·w2,1+i2,3·w2,2

(5.4)

42

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

o1,0 = i1,0·w0,0+i1,1·w0,1+i1,2·w0,2+i2,0·w1,0+i2,1·w1,1+i2,2·w1,2+i3,0·w2,0+i3,1·w2,1+i3,2·w2,2

(5.5)

o1,1 = i1,1·w0,0+i1,2·w0,1+i1,3·w0,2+i2,1·w1,0+i2,2·w1,1+i2,3·w1,2+i3,1·w2,0+i3,2·w2,1+i3,3·w2,2

(5.6)

Assuming that each multiplier takes 3 u.t (unit time) and each adder takes 1 u.t the sequential

approach needs 140 u.t to compute the convolution. At this step we can improve the performance

by using the weight stationary dataflow architecture of fig. 5.3[22].

Figure 5.3: Weight Stationary Dataflow architecture

The architecture of fig. 5.3 is pipelined and has Tcrit = 4u.t critical path (1 adder + 1 multiplier).

The lower bound for the clock period T is T ≥ 4 u.t. With this clock rate the sequential

algorithm completes its calculations after 140/4 = 35 clock cycles, whilst the pipelined approach

completes its calculations after 16 clock cycles as we see in table 7.3 and achieves a speedup

S = ⌊ TS

TP
⌋ = ⌊35

16
⌋ = 2. This dataflow not only increases the throughput but also reduces

energy consumption because all weight kernel values can be stored locally and the expensive

off-chip memory accesses are minimized. Each multiplier/adder pair in fig. 5.3 is perceived as

43

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

a Processing Element (PE) or a Multiply and Accumulate unit (MAC). Every PE multiplies its

input with a weight value that is stored locally and accumulates the result by adding the partial

sum it receives from the preceding PE as depicted in fig. 5.6. If we further modify the circuit of

fig. 5.3 such that every row of PEs receives values from different input rows we can reduce the

number of clock cycles even more. The architecture of fig. 5.5 is the one that we use as the basic

DSP block of the convolution layer in the FPGA accelerator. With this dataflow the convolution

is completed after 11 clock cycles as we see in table 7.7. Full parallelization is exploited in [12]

where each DSP block receives a whole window of input pixels per clock cycle and an adder

tree sums the results of the multiplications in O(log(N)).

Figure 5.4: Processing Element (PE) performing MAC operation

Figure 5.5: Weight Stationary Dataflow architecture unfolded.

44

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

5.3 Overall architecture

The FPGA architecture of the CNN accelerator is based on [12] and is divided in four fundamental

blocks that correspond to the software model: a) the Input Layer b) the Convolution Layer c)

the Pooling Layer and d) the Fully Connected Layer. The main difference in our approach is

the DSP block presented in the previous section, which also leads to some adjustments in the

functionality of the Input, Pooling and Fully connected Layers. The advantages of the FPGA

architecture are a) the exploitation of parallelism for the CNN model which is achieved by

dividing the 32 filter-kernel convolutions into 32 DSP blocks that will compute the calculations

taking place within each filter in parallel and b) it is a highly pipelined design that improves the

throughput and the power consumption.

Figure 5.6: Hardware Accelerator FPGA Architecture

5.4 Input Layer

The input layer receives the input image of the CNN and stores it to the on-chip RAM memory.

Then it creates the input that is fed to the Convolution Layer. Input Layer stores the 28x28 input

image row by row in a RAM so that the Finite State Machine (FSM) can read a whole row (28

pixels) in a single clock cycle. The FSM is responsible for reading one image row from the RAM

and then writing it into a shift register. Then the shift register outputs 1 pixel per clock cycle

45

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

and feeds one row of PEs in every DSP block of the convolutional layer. We need 5 registers

because each DSP block comprises of 5 rows with 5 PEs each. There are two sets of registers.

When all 5 registers of the 1st set output the final pixel of their load, the FSM needs to read the

RAM again and load the 5 registers with subsequent rows for the computation to be continued.

This means that the DSP blocks will remain idle for 2 clock cycles each time we need to feed

the Convolution Layer with new rows. To improve this we utilize a 2nd set of registers which

are loaded with subsequent image rows and remain idle until the 1st set has finished its shifting.

At this point the registers of the 2nd set are enabled and start shifting their inputs. The FSM

starts reading the RAM and then writes the registers of the 1st set with the next image rows and

so on. A decoder is used to choose which set of registers is forwared to the convolutional layer

each time. With this schema the DSP blocks remain idle for 1 clock cycle. When a register of

one set finishes shifting row i, it updates its input with row i+2 because the row i+1 is already

loaded to the symmetric register of the other set (tables 7.8, 7.9). The required time from the

moment that the first input image row is received until the shift registers starts sending pixels

to the convolution layer is 38 clock cycles. The input image needs to be transmitted by a host

computer into the external interfaces of the FPGA through methods such as PCIe, Ethernet or

USB but this is not implemented in this project.

5.5 Convolution Layer

The main processing elements of the convolution layer are the DSP blocks presented in fig. 5.7.

The convolution layer includes a total of 32 such DSP blocks. Each DSP block computes the

convolution of the 28x28 input image with the 5x5 kernel of one of the 32 filters that are defined in

the software model. It consists of 25 PEs divided into 5 rows, an adder tree which sums the result

of PE row computations in O(log(N)), an adder for the bias and a multiplexer that implements

the ReLU function. Every row of PEs in the design receives pixels from different input image

rows and the result is accumulated. The output of the convolution layer is a 24x24x32 array.

Every DSP block produces 24x24=576 output elements (convolution of the filer kernel with 576

image windows). Accumulation through the PE rows has a delay of 5 clock cycles whereas the

delay of the adder tree summation is 4 clock cycles, resulting in a total latency of 9 clock cycles,

46

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

after which the output elements are produced in every clock cycle. Every time the last element

of an output row oi,23 is received though, the next row’s first element oi+1,0 is received after 5

clock cycles. Intermediate elements that reach the output during that time period are redundant

data and are not part of the DSP’s 24x24 output array and thus should not be written in the FIFO

memories of the Pooling Layer’s.

Figure 5.7: DSP block for 5x5 convolution on a 28x28 image

5.6 Pooling Layer

The pooling layer consists of 32 blocks corresponding to each of the 32 DSP blocks of the

convolution layer. The main role of the pooling layer is to downsample the 24x24x32 feature

map into a 12x12x32 feature map. For this purpose, each pooling block chooses the maximum

value of 2x2 window with stride 2. The pooling layer receives entire rows of data (one pixel per

clock cycle) and thus plays a critical role in the latency of the overall design. The architecture of

the Pooling block is depicted in fig. 5.8. The difference with the design of [12] is that since the

DSP blocks output pixels of one row at a time, we are unable to fill the FIFOs with pixels from

2 consecutive rows of the 24x24 map and create subsequent 2x2 windows that feed the max

47

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

pooling FSM. To outcome this we use the following scheme. We introduce 2 sets of 2 FIFOs.

Each set is controlled by a Demux FSM. When the block receives pixels from row i, counter_1

triggers Demux_FSM_1 to start alternate writing between the first and second FIFO of the 1st

set. When the block starts receiving pixels from row i+1, counter_2 triggers Demux_FSM_2

to start alternate writing between the first and second FIFO of the 2nd set. At the same time

both FIFOs of 1st set begin to empty, feeding the max pool intra_1 which outputs the maximum

between the contents of the two FIFOs. The outputs of max_pool_intra_1 unit must be delayed

by 29 clock cycles to meet the proper outputs from max_pool_intra_2 in order to be compared

with each other and produce the final result. With this design the pooling block has a latency of

57 clock cycles.

Figure 5.8: Pooling Block Architecture

Figure 5.9 describes the way that the pooling block operates given a specific 24x24 feature map

produced by the presceding DSP block. Cyan boxes denote the values stored in FIFOs of the 1st

set and green boxes denote the values stored in FIFOs of the 2nd set. Numbers with bolt are the

maximum of each comparison. The two Demux_FSMs are transitioning between states IDLE,

WRITE_FIFOs and READ_FIFOs with the help of two counters which are synchronizing the

Input, Convolution and Pooling layers. These counters are part of the top level design. Finally

the creation of the 12x12x32 output created by the whole Pooling Layer is depicted in fig 5.10

48

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

Figure 5.9: Example of DSP block and Pooling block operations for the proposed architectures.
The 28x28 input image and the 5x5 kernel show the values that are used in the simulations of
chapter 6.

Figure 5.10: All 32 pooling blocks outputs are received at the same time in parallel. Each
pooling block outputs the first value of every other row after 58 clock cycles due to its latency.
The whole 12x12x32 map is produced in 649 clock cycles.

49

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

5.7 Fully Connected and Output Layers

The Fully Connected Layer is comprised of 30 neurons. The main task of this layer is to perform

the multiplication of the 4608 × 1 input vector I0 and the 30 × 4608 weight matrix W 0, then

add the 30 × 1 bias vector B0 and finally perform the ReLU operation to produce the 30 × 1

vector result O0. All 30 neuron-multipliers operate in parallel and each one has a local ROM

memory where one entire row of the W 0 weight matrix is stored (30 ROM memories in total).

The operation of each neuron is pipelined and is depicted in fig. 5.11. When the 32 outputs from

the previous pooling layer arrive, every neuron is set to operate with the help of an external (top

level) counter and remains set for 11 consecutive clock cycles. Then the neurons are not set

anymore and remain idle until the next 32 outputs from the pooling layer arrive and so forth.

The neurons perform the dot product

31∑
i=0

αiβi+k·32 (5.7)

where α = [α0, α1, ..., α31] is the output of the presceding pooling layer, β = [β0, β1, ..., β4607]

is a row of the W 0 weight matrix and k = 0, 1, 2, ..., 143. Each neuron computes the above dot

product and accumulates the result with the help of an internal register as shown in fig. 5.11.

All neurons start operating when elements of a new row of the 12x12x32 output matrix arrive

as input. The neurons stop operating (close) after 11 clock cycles until they re-open again when

elements of a subsequent row arrive and so forth. When all neurons complete their computations

the B0 bias vector is added to the 30 × 1 result vector and finally each entry is passed through

the ReLU multiplexer which implements the following non-linearity

ReLU(x) =

 x x ≥ 0

0 x < 0
(5.8)

The Output Layer is constructed with 10 neurons of the same architecture. It performs the

multiplication of the 30 × 1 I1 input vector received from the fully connected layer and the

30× 10W 1 weight matrix stored inside ROM memories. Then it adds the 10× 1B1 bias vector

50

Chapter 5. Design of Hardware Accelerator for CNN on FPGA

to the product of the multiplication. The Output Layer starts computing when the I1 is received.

Every one of the ten output layer’s results represents the probability that the input image belongs

in one of the ten different digits that the classifier is trained to recognize.

Figure 5.11: Architecture and operation of a fully connected neuron.

Figure 5.12: Matrix - vector multiplication O0 = W 0 · I0. Every row of the 30 × 4608 W 0

weight matrix is stored inside a ROM memory. The vector I0 arrives as input in chunks of 32
elements at 144 different time instances, so the dot product operation is computed in 144 steps.
All 30 neurons compute their dot products in parallel.

51

6 Tests and Results

The development of the FPGA CNN accelerator was performed in Vivado 2018.3 using VHDL

and targeting xc7z030fbv676-1 part of the Zynq-7000 product family. The design was synthe-

sized succesfully and validated with testbenches for every entity and finally for the top level

module. Unfortunately the implementation failed because placement could not complete due to

overutilization of I/O ports. The design contains 448+1+1+5+10×64=1096 I/O ports whilst the

target board has only 380 I/O ports available. To overcome this one could use parallel to serial

converters as buffers and serialize the data output hence using less I/O ports.

The functionality of the accelerator was tested using the 28x28 matrix 7.10 as input to the

accelerator. For the filter kernel we used the 5x5 matrix 7.11. This matrix is stored inside each

DSP block’s ROM memory. The bias value that each DSP adds to its result before the ReLU

operation is 710 and it is also stored inside every DSP’s ROM memory. For convenience in the

tests, every DSP block uses the same filter kernel and bias. In a real use-case scenario each one

of the 32 filters and biases would have different values in order to support the CNN model which

uses 32 different filters to extract different features from the input image. Every one of the 30

blocks (neurons) inside the Fully Connected layer reads a total of 4608 weight values from its

weight ROM memory in 144 different (non-consecutive) time steps. In that way each neuron

performs the dot product with the (4608x1) input vector which also arives in 144 different time

steps from the Pooling Layer. To keep the computations easy for debugging we have instantiated

every weight ROM memory and bias with the same values equal to one (110 = x0000000116).

We used the same approach for testing every block (neuron) of the Output Layer. In a real

use-case scenario, the weight values and biases of the fully connected and output layers would

have different values produced by the back-propagation algorithm performed in a host computer

52

Chapter 6. Tests and Results

during the training phase and then the host would load these values into the device. With the

above simplifications every block of the Output Layer gives a final result equal to 23613507110

at its output. The required processing time for a single input image is 726 clock cycles as we

see in the following behavioral simulation.

Figure 6.1: Top level behavioral simulation. Clock cycle’s duration is 10 ns so the total
processing time for one image is 726 clock cycles.

Figure 6.2: Register Transfer Level schematic of the architecture.

53

Chapter 6. Tests and Results

Figure 6.3: Input Layer Synthesis Result.

54

Chapter 6. Tests and Results

Figure 6.4: Pooling Layer Synthesis Result.

Figure 6.5: FUlly connected Layer Synthesis Result.

55

Chapter 6. Tests and Results

Figure 6.6: Output Layer Synthesis Result.

56

7 Appendix: Tables

57

Chapter 7. Appendix: Tables

T(time) PE00 PE01 PE02
1 w00i00 w01i00 w02i00
2 w00i01 w00i00 + w01i01 w01i00 + w02i01
3 w00i02 w00i01 + w01i02 w00i00 + w01i01 + w02i02 = []
4 w00i03 w00i02 + w01i03 w00i01 + w01i02 + w02i03 = ()
5 w00i10 w00i03 + w01i10 w00i02 + w01i03 + w02i10
6 w00i11 w00i10 + w01i11 w00i03 + w01i10 + w02i11
7 w00i12 w00i11 + w01i12 w00i10 + w01i11 + w02i12 =<>
8 w00i13 w00i12 + w01i13 w00i11 + w01i12 + w02i13 = //
9 w00i20 w00i13 + w01i20 w00i12 + w01i13 + w02i20
10 w00i21 w00i20 + w01i21 w00i13 + w01i20 + w02i21
11 w00i22 w00i21 + w01i22 w00i20 + w01i21 + w02i22
12 w00i23 w00i22 + w01i23 w00i21 + w01i22 + w02i23
13 w00i30 w00i23 + w01i30 w00i22 + w01i23 + w02i30
14 w00i31 w00i30 + w01i31 w00i23 + w01i30 + w02i31
15 w00i32 w00i31 + w01i32 w00i30 + w01i31 + w02i32
16 w00i33 w00i32 + w01i33 w00i31 + w01i32 + w02i33

Table 7.1: PE computations using the stationary weight dataflow architecture of fig. 5.3(I).

T(time) PE10 PE11 P12
1 w10i00 w11i00 w12i00
2 w10i01 w10i00 + w11i01 w11i00 + w12i01
3 w10i02 w10i01 + w11i02 w10i00 + w11i01 + w12i02
4 w10i03 w10i02 + w11i03 w10i01 + w11i02 + w12i03
5 [] + w10i10 w10i03 + w11i10 w10i02 + w11i03 + w12i10
6 () + w10i11 [] + w10i10 + w11i11 w10i03 + w11i10 + w12i11
7 w10i12 () + w10i11 + w11i12 [] + w10i10 + w11i11 + w12i12 = []
8 w10i13 w10i12 + w11i13 () + w10i11 + w11i12 + w12i13 = ()
9 <> +w10i20 w10i13 + w11i20 w10i12 + w11i13 + w12i20
10 //+ w10i21 <> +w10i20 + w11i21 w10i13 + w11i20 + w12i21
11 w10i22 //+ w10i21 + w11i22 <> +w10i20 + w11i21 + w12i22 =<>
12 w10i23 w10i22 + w11i23 //+ w10i21 + w11i22 + w12i23 = //
13 w10i30 w10i23 + w11i30 w10i22 + w11i23 + w12i30
14 w10i31 w10i30 + w11i31 w10i23 + w11i30 + w12i31
15 w10i32 w10i31 + w11i32 w10i30 + w11i31 + w12i32
16 w10i33 w10i32 + w11i33 w10i31 + w11i32 + w12i33

Table 7.2: PE computations using the stationary weight dataflow architecture of fig. 5.3(II).

58

Chapter 7. Appendix: Tables

T(time) PE20 PE21 P22
1 w20i00 w21i00 w22i00
2 w20i01 w20i00 + w21i01 w21i00 + w22i01
3 w20i02 w20i01 + w21i02 w20i00 + w21i01 + w22i02
4 w20i03 w20i02 + w21i03 w20i01 + w21i02 + w22i03
5 w20i10 w20i03 + w21i10 w20i02 + w21i03 + w22i10
6 w20i11 w20i10 + w21i11 w20i03 + w21i10 + w22i11
7 w20i12 w20i11 + w21i12 w20i10 + w21i11 + w22i12 = []
8 w20i13 w20i12 + w21i13 w20i11 + w21i12 + w22i13 = ()
9 [] + w20i20 w20i13 + w21i20 w20i12 + w21i13 + w22i20
10 () + w20i21 [] + w20i20 + w21i21 w20i13 + w21i20 + w22i21
11 w20i22 () + w20i21 + w21i22 [] + w20i20 + w21i21 + w22i22 = o00
12 w20i23 w20i22 + w21i23 () + w20i21 + w21i22 + w22i23 = o01
13 <> +w20i30 w20i23 + w21i30 w20i22 + w21i23 + w22i30
14 //+ w20i31 <> +w20i30 + w21i31 w20i23 + w21i30 + w22i31
15 w20i32 //+ w20i31 + w21i32 <> +w20i30 + w21i31 + w22i32 = o10
16 w20i33 w20i32 + w21i33 //+ w20i31 + w21i32 + w22i33 = o11

Table 7.3: PE computations using the stationary weight dataflow architecture of fig. 5.3(III).

T(time) PE00 PE01 PE02
1 w00i00 w01i00 w02i00
2 w00i01 w00i00 + w01i01 w01i00 + w02i01
3 w00i02 w00i01 + w01i02 w00i00 + w01i01 + w02i02 = []
4 w00i03 w00i02 + w01i03 w00i01 + w01i02 + w02i03 = ()
5 w00i10 w00i03 + w01i10 w00i02 + w01i03 + w02i10
6 w00i11 w00i10 + w01i11 w00i03 + w01i10 + w02i11
7 w00i12 w00i11 + w01i12 w00i10 + w01i11 + w02i12 =<>
8 w00i13 w00i12 + w01i13 w00i11 + w01i12 + w02i13 = //

Table 7.4: PE computations using the unrolled stationary weight dataflow architecture of
fig. 5.5(I).

59

Chapter 7. Appendix: Tables

T(time) PE10 PE11 P12
1 w10i10 w11i10 w12i10
2 w10i11 w10i10 + w11i11 w11i10 + w12i11
3 w10i12 w10i11 + w11i12 w10i10 + w11i11 + w12i12 = [[]]
4 w10i13 w10i12 + w11i13 w10i11 + w11i12 + w12i13 = (())
5 [] + w10i20 w10i13 + w11i20 w10i12 + w11i13 + w12i20
6 () + w10i21 [] + w10i20 + w11i21 w10i23 + w11i20 + w12i21
7 w10i22 () + w10i21 + w11i22 [] + w10i20 + w11i21 + w12i22 =<<>>
8 w10i23 w10i22 + w11i23 () + w10i21 + w11i22 + w12i23 = ///

Table 7.5: PE computations using the unrolled stationary weight dataflow architecture of
fig. 5.5(II).

T(time) PE20 PE21 P22
1 w20i20 w21i20 w22i20
2 w20i21 w20i20 + w21i21 w21i20 + w22i21
3 w20i22 w20i21 + w21i22 w20i20 + w21i21 + w22i22 = [[[]]]
4 w20i23 w20i22 + w21i23 w20i21 + w21i22 + w22i23 = ((()))
5 w20i30 w20i23 + w21i30 w20i22 + w21i23 + w22i30
6 w20i31 w20i30 + w21i31 w20i23 + w21i30 + w22i31
7 w20i32 w20i31 + w21i32 w20i30 + w21i31 + w22i32 =<<<>>>
8 w20i33 w20i32 + w21i33 w20i31 + w21i32 + w22i33 = ////

Table 7.6: PE computations using the unrolled stationary weight dataflow architecture of
fig. 5.5(III).

T(time) Adder1 Adder2 Out
1 - - -
2 - - -
3 - - -
4 [] + [[]] = # - -
5 () + (()) = ## #+ [[[]]] = o00 -
6 - ##+ ((())) = o01 o00
7 - - o01
8 <> + <<>>= ### - -
9 //+ /// = #### ###+ <<<>>>= o10 -
10 - ####+ //// = o11 o10
11 - - o11

Table 7.7: PE computations using the unrolled stationary weight dataflow architecture of
fig. 5.5(IV).

60

Chapter 7. Appendix: Tables

SREG0 SREG1 SREG2 SREG3 SREG4
row 0 row 1 row 2 row 3 row 4
row 2 row 3 row 4 row 5 row 6
row 4 row 5 row 6 row 7 row 8
row 6 row 7 row 8 row 9 row 10
row 8 row 9 row 10 row 11 row 12
row 10 row 11 row 12 row 13 row 14
row 12 row 13 row 14 row 15 row 16
row 14 row 15 row 16 row 17 row 18
row 16 row 17 row 18 row 19 row 20
row 18 row 19 row 20 row 21 row 22
row 20 row 21 row 22 row 23 row 24
row 22 row 23 row 24 row 25 row 26

Table 7.8: The order in which input image rows are loaded to the registers of the 1st set (Input
Layer).

SREG0 SREG1 SREG2 SREG3 SREG4
row 1 row 2 row 3 row 4 row 5
row 3 row 4 row 5 row 6 row 7
row 5 row 6 row 7 row 8 row 9
row 7 row 8 row 9 row 10 row 11
row 9 row 10 row 11 row 12 row 13
row 11 row 12 row 13 row 14 row 15
row 13 row 14 row 15 row 16 row 17
row 15 row 16 row 17 row 18 row 19
row 17 row 18 row 19 row 20 row 21
row 19 row 20 row 21 row 22 row 23
row 21 row 22 row 23 row 24 row 25
row 23 row 24 row 25 row 26 row 27

Table 7.9: The order in which input image rows are loaded to the registers of the 2nd set (Input
Layer).

61

Chapter 7. Appendix: Tables

Table 7.10: 28x28 pixels input image used for testbench simulation.

2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1
5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1
6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1
2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1
5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1
6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1
2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1
5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1
6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1
2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1
5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1
6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1
2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1
5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1 2 1 5 6 5 6 5 1 2 1
6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1 2 1 6 7 6 7 6 1 2 1
2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1 2 1 2 3 2 3 2 1 2 1
3 4 3 4 3 1 2 1 2 1 3 4 3 4 3 1 2 1 2 1 3 4 3 4 2 1 2 1
4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1 2 1 4 5 4 5 4 1 2 1

Table 7.11: 5x5 filter kernel used for all DSP blocks during testbench simulation.
32 31 30 29 28
27 26 25 24 23
22 21 20 19 18
17 16 15 14 13
12 11 10 9 8



Resource Utilization Utilization %
LUT 51906 66.04

LUTRAM 1024 3.85
FF 19647 12.5

BRAM 7 2.45
DSP 15 3.75

BUFG 12 37.5

Table 7.12: Resource Utilization

62

References

[1] Kamel Abdelouahab et al. Accelerating CNN inference on FPGAs: A Survey. 2018. doi:

10.48550/ARXIV.1806.01683. url: https://arxiv.org/abs/1806.01683.

[2] Y. Bengio and Yann Lecun. “Convolutional Networks for Images, Speech, and Time-

Series”. In: (Nov. 1997).

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). 1st ed. Springer, 2007. isbn: 0387310738. url: http://www.

amazon . com / Pattern - Recognition - Learning - Information - Statistics /

dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%

26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%

3D0387310738.

[4] Calin Cascaval et al. “A taxonomy of accelerator architectures and their programming

models”. In: IBM J. Res. Dev. 54 (2010), p. 5.

[5] Robert van de Geĳn and Kazushige Goto. “Anatomy of high-performance matrix multi-

plication Kazushige Goto, Robert A. van de Geĳn ACM Transactions on Mathematical

Software (TOMS), 2008”. In: ACM Transactions on Mathematical Software 34 (May

2008), Article 12. doi: 10.1145/1356052.1356053.

[6] Vinayak Gokhale et al. “A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks”.

In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2014,

pp. 696–701. doi: 10.1109/CVPRW.2014.106.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

63

https://doi.org/10.48550/ARXIV.1806.01683
https://arxiv.org/abs/1806.01683
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
http://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0387310738
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1109/CVPRW.2014.106
http://www.deeplearningbook.org
http://www.deeplearningbook.org

References

[8] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”. In: 2014

IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

2014, pp. 10–14. doi: 10.1109/ISSCC.2014.6757323.

[9] Weiwen Jiang et al. Hardware/Software Co-Exploration of Neural Architectures. 2019.

doi: 10.48550/ARXIV.1907.04650. url: https://arxiv.org/abs/1907.04650.

[10] Norman P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit.

2017. doi: 10.48550/ARXIV.1704.04760. url: https://arxiv.org/abs/1704.

04760.

[11] Kung. “Why systolic architectures?” In: Computer 15.1 (1982), pp. 37–46. doi: 10.

1109/MC.1982.1653825.

[12] Angelos Kyriakos et al. “High Performance Accelerator for CNN Applications”. In:

2019 29th International Symposium on Power and Timing Modeling, Optimization and

Simulation (PATMOS). 2019, pp. 135–140. doi: 10.1109/PATMOS.2019.8862166.

[13] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (May

2015), pp. 436–44. doi: 10.1038/nature14539.

[14] F. THOMSON LEIGHTON. “CHAPTER 1 - ARRAYS AND TREES”. In: Introduction

to Parallel Algorithms and Architectures. Ed. by F. THOMSON LEIGHTON. Morgan

Kaufmann, 1992, pp. 1–276. isbn: 978-1-4832-0772-8. doi: https://doi.org/10.

1016/B978-1-4832-0772-8.50005-4. url: https://www.sciencedirect.com/

science/article/pii/B9781483207728500054.

[15] Richard J. Lipton and Robert Sedgewick. “Lower bounds for VLSI”. In: STOC ’81. 1981.

[16] Raju Machupalli, Masum Hossain, and Mrinal Mandal. “Review of ASIC accelerators

for deep neural network”. In: Microprocessors and Microsystems 89 (2022), p. 104441.

issn: 0141-9331. doi: https://doi.org/10.1016/j.micpro.2022.104441. url:

https://www.sciencedirect.com/science/article/pii/S0141933122000163.

[17] Bruno Olshausen and David Field. “Emergence of simple-cell receptive field properties

by learning a sparse code for natural images”. In: Nature 381 (July 1996), pp. 607–9. doi:

10.1038/381607a0.

64

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.48550/ARXIV.1907.04650
https://arxiv.org/abs/1907.04650
https://doi.org/10.48550/ARXIV.1704.04760
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1704.04760
https://doi.org/10.1109/MC.1982.1653825
https://doi.org/10.1109/MC.1982.1653825
https://doi.org/10.1109/PATMOS.2019.8862166
https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1016/B978-1-4832-0772-8.50005-4
https://doi.org/https://doi.org/10.1016/B978-1-4832-0772-8.50005-4
https://www.sciencedirect.com/science/article/pii/B9781483207728500054
https://www.sciencedirect.com/science/article/pii/B9781483207728500054
https://doi.org/https://doi.org/10.1016/j.micpro.2022.104441
https://www.sciencedirect.com/science/article/pii/S0141933122000163
https://doi.org/10.1038/381607a0

References

[18] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann, 2011. isbn:

9780123742605 0123742609.

[19] K.K. Parhi. VLSI DIGITAL SIGNAL PROCESSING SYSTEMS: DESIGN AND IMPLE-

MENTATION. Wiley India Pvt. Limited, 2007. isbn: 9788126510986. url: https :

//books.google.gr/books?id=APFRHFkMqG8C.

[20] Murad Qasaimeh et al. “Comparing Energy Efficiency of CPU, GPU and FPGA Imple-

mentations for Vision Kernels”. In: May 2019. doi: 10.1109/ICESS.2019.8782524.

[21] D. Reisis and N. Vlassopoulos. “Address Generation Techniques for Conflict Free Parallel

Memory Accessing in FFT Architectures”. In: 2006 13th IEEE International Conference

on Electronics, Circuits and Systems. 2006, pp. 1188–1191. doi: 10.1109/ICECS.2006.

379653.

[22] Vivienne Sze et al. “Designing DNN Accelerators”. In: Efficient Processing of Deep

Neural Networks. Cham: Springer International Publishing, 2020, pp. 73–118. isbn: 978-

3-031-01766-7. doi: 10.1007/978-3-031-01766-7_5. url: https://doi.org/10.

1007/978-3-031-01766-7_5.

[23] Vivienne Sze et al. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.

2017. doi: 10.48550/ARXIV.1703.09039. url: https://arxiv.org/abs/1703.

09039.

[24] Sergios Theodoridis. Machine Learning: A Bayesian and Optimization Perspective. 1st.

USA: Academic Press, Inc., 2015. isbn: 0128015225.

[25] Yun Xu and Royston Goodacre. “On Splitting Training and Validation Set: A Compar-

ative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the

Generalization Performance of Supervised Learning”. In: Journal of Analysis and Testing

2 (Oct. 2018). doi: 10.1007/s41664-018-0068-2.

[26] Min Zhang et al. “Optimized Compression for Implementing Convolutional Neural

Networks on FPGA”. In: Electronics 8.3 (2019). issn: 2079-9292. doi: 10 . 3390 /

electronics8030295. url: https://www.mdpi.com/2079-9292/8/3/295.

65

https://books.google.gr/books?id=APFRHFkMqG8C
https://books.google.gr/books?id=APFRHFkMqG8C
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/ICECS.2006.379653
https://doi.org/10.1109/ICECS.2006.379653
https://doi.org/10.1007/978-3-031-01766-7_5
https://doi.org/10.1007/978-3-031-01766-7_5
https://doi.org/10.1007/978-3-031-01766-7_5
https://doi.org/10.48550/ARXIV.1703.09039
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.3390/electronics8030295
https://doi.org/10.3390/electronics8030295
https://www.mdpi.com/2079-9292/8/3/295

	Introduction
	Parallel Computation Theoretical Background
	Systolic Architectures
	Matrix-vector product
	N-tap FIR filter

	Measuring the performance of parallel algorithms
	Space-time mapping
	Unfolding

	Deep Neural Networks Theoretical Background
	Parametric modeling
	Neural Networks
	Convolutional Networks

	Accelerating Inference for DNNs
	Training vs Inference
	Key Metrics
	Taxonomy of accelerator architectures
	Hardware architectures for kernel computations in DNN processing

	Design of Hardware Accelerator for CNN on FPGA
	The CNN model
	Architectures for efficient 2D convolution
	Overall architecture
	Input Layer
	Convolution Layer
	Pooling Layer
	Fully Connected and Output Layers

	Tests and Results
	Appendix: Tables

