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Abstract  

In this thesis, the negative dependence between the electricity spot price and the wind onshore power 

production is examined regarding the Italian market. The mathematical models ARMA-GARCH 

and LINEAR-GARCH models and Pearson correlation metric are used to examine the dependence. 

The GARCH model is used to explore the variability of the model errors’ variance. Despite the fact 

that the model development is conducted in a time-period contained the Covid-19 pandemic and 

Ukraine war, meaning that the spot price time series consists of many extreme events, the negative 

dependence exists. The model development is used to prove the existence of the negative 

dependence, rather than for forecasting reasons, since the extreme events of the spot price time 

series cannot be modeled easily.  
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1. Introduction 

In 2020 and 2021, 22%1 of the energy consumption in the European Union was covered from 

renewable energy sources. The heating sector and solar power, in contrary to wind power which 

produced less energy due to lower wind speeds, caused the maintaining trend of the energy 

consumption based on the renewable energy sources. At sectoral level, the renewable energy’s share 

has different percentages in 2021. The share was 23.6% in the heating and cooling sector, the share 

was 37.7% in power sector, which was mostly driven by solar energy since the wind speed was 

slow, while the share was 10.2% in the transport sector. The low share in the transport sector was 

due to the fact that the annual growth of fossil fuels outperformed the share of renewable energy, 

despite the fact that more renewables were used in transport in 2021.  

The power demand in the EU-27+UK was covered by 15% of wind power generation in 2021, 

which is 1.4% lower than that in 2020. As wind energy is by definition variable, its production was 

lower in many regions across Europe, especially in Northern Europe in 2021. Despite the fact that 

Germany, UK, and France are characterized as large wind energy markets, the levels of wind power 

production were low in 2021 compared to the previous year. While, Spain and Italy, where there 

were modest new capacity additions, generated more wind power compared to previous years. 

During the time-period January to March of 2021 the levels of wind generation were mostly low. 

“The final months of 2021 saw stronger wind generation.”(Wind energy in Europe 2021, page 19). 

In the last quarter of 2021, the electricity demand was covered by 18% by wind generation, and 

there was an electricity coverage of 19% in October.    

The wind power capacity installed in Europe was 236 GW in 2021. The new wind energy capacity 

installed in Europe was 17.4 GW in 2021, which represents an 18% increase from 2020. 11 GW 

installed in the EU-27, where 91% constituted onshore wind plants, while the 3.4 GW corresponded 

to offshore wind plants. The Figure 1.1 shows the trend of the growth of total wind capacity 

separately by onshore/offshore wind plants for the years 2012-2021.  

 
1 European Environment Agency, 2022 
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Figure 1.1 Total wind energy capacity in Europe 

 

In Italy, the percentage of average annual electricity demand covered by wind in 2021 was 7% or 

11 GW, exclusively produced by onshore wind farms. Based on the Figure 1.2 the top 5 countries 

with the installed capacity constitute the 64% of all wind power capacity in Europe.  Italy is the 6th 

country with the highest wind power capacity in Europe.  

 

Figure 1.2 Total wind installation by country 
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The Figure 1.3 illustrates the trend of primary energy consumption based on the energy sources in 

Italy in the time period starting from 1990 to 2021. There is a downward trend in oil and coal energy 

sources in contrary to gas where there is an upward trend. The solar, wind, hydro, and other 

renewables have had a maintaining trend the last 9 years (2013-2021).  

 

Figure 1.3 Share of energy consumption by source2 

On the other hand, regarding the milestones to 2050 EU has set, to reduce its domestic CO2 

emissions by 80% compared to 1990 (EU’s Roadmap 2050, page 4), the electricity generation is 

increasingly covered by renewable power generation including wind power. Specifically in Italy, 

even though it is 6th in terms of wind power capacity in Europe (Wind energy in Europe 2021, page 

17),  generated more wind power than in previous years – even though new capacity additions were 

very modest. Wind energy is by definition variable. It is normal to see annual fluctuations in wind 

capacity factors that will impact the share of demand (Wind energy in Europe 2021, page 19). “The 

increasing share of variable, non-dispatchable renewable power generation is a structural change to 

the electricity system and markets compared with the traditional thermal power sources where 

production can be planned if necessary” (Bo Tranberg et al., 2018).   

With reference to the Italy’s climate plan for 2030, the objective is the reduction of greenhouse gas 

emissions by 33%. The plan is based on two pillars: the growth of renewable energy sources and 

the efficient use of energy consumption. The growth of renewables, built on the electricity sector,  

will be achieved by the increasing solar capacity and wind. The goal is 187 terawatt-hours (TWh), 

 
2 Data source: https://ourworldindata.org/energy/country/italy 
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which constitutes 55% of the total consumption of 340 TWh, to be produced by wind and solar 

renewables by 2030. “To achieve this ambition goal, solar capacity will increase from 19 to 52 

gigawatts (GW) and wind from 10 to 19 GW, mostly onshore.” (Lombardini, 2021, page 2). Along 

with the growth of energy capacity by renewable sources, the increase capacity of electricity storage 

by 6000 megawatts (MW) is planned by 2030, and an extra increment of 4000 MW in the future. 

The second pillar about the efficient use of energy consumption, is planned to be achieved by 

creating tax incentives for the public in order to renovate their residence. As many houses were built 

based on the first energy saving law (373/1976), energy efficiency is very low. As a result, the 

quantity of energy consumption may affect the energy system analogous with extreme weather 

conditions.  Thus, Italy has set a goal to reduce the primary energy consumption by 43% and the 

final energy consumption by 39.7% by promoting residential renovation measures. Italy does not 

have an energy and climate plan for 2050, but there are indications that the measures discussed 

above will lead to a 64% emission reduction by 2050.  

Making a retrospective analysis the last three years, two major economic shocks, referring to the 

Covid-19 and the Ukraine crises have been harmful to the economy, especially the energy 

European’s economy. As the Covid-19 arrived in Europe in February of 2020, the European Union 

gradually took economic measures to limit the human and economic impact of the pandemic, such 

as the prices of the carbon permits were set to zero and the prices of the electricity were decreased 

because of the reduced energy demand. Also, as consumption based on non-renewable energy 

sources dropped dramatically due to lower energy demand, the quota energy share of renewable 

energy sources increased.   

Regarding the renewable energy sector, a significant number of projects were put on hold. 

Government subsidies in the energy sector were reduced in order to be invested mostly in the health 

industry and to minimize the economic turndown by taking economic measures. Another reason 

that the renewable energy projects, especially solar power plants, were ceased was due to the supply 

chain disruptions, as many components originated from Asia, could not be manufactured due to the 

closed factories. Also the imported components became very expensive since the maritime trade 

growth was slowed down, as a consequence of the fall in commodity demand in general. In general, 

China had a huge impact on macroeconomic growth globally. 

In the European Union, “the wind-related projects were hit hard, as components for such projects 

were restricted due to the global pandemic” (Chemical Engineering Technology, 2022, page 564). 

Natural gas was mostly harnessed for the energy demand, due to lower prices. However, renewable 

energy generation had sporadic peaks on a weekly basis, during the lockdown. Specifically, in Italy, 

the energy power production from renewable energy sources increased the first four months of 2020 

by 2.3% compared to the previous year. The increased solar energy production by 26.9%, and the 
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increased of hydroelectric and geothermal energy production contributed to this renewable energy 

increased, while the wind energy production decreased by 14.3% based on the same period in 2019 

(CMS,2020, page 2). A substantial number of renewable energy plants which put into operation 

during 2019 and the priority given to the plants fueled by renewable energy concerning the 

connection to the electricity grid, are the main reasons for the upward trend of the renewable energy 

production during the pandemic. However, new renewable energy plants were not created, nor 

commissioned due to the suspension of the industrial activities and supply chain crisis. 

However, in 2021, several reasons contributed to the increased wholesale electricity prices. The 

gradually increased costs of carbon permits, the increased demand for electricity in the summer due 

to the high temperatures and high demand for holidays, Gazprom's refusal to deliver enough 

quantities of natural gas to Europe, the increased demand for liquefied natural gas from Asian 

countries, and the Ukraine war started on 24/02/2022,  are some globally and regional causes of the 

price developments on the energy European markets.  

The Italian market is considered to be the subject of study in this thesis, since this country is almost 

not referred in any paper for the dependence between spot price and wind power production. The 

majority of papers found for this study were about Germany, Denmark, and UK which belong to 

the top 5 countries in EU+UK with the highest energy capacity. Also as Italy is a country that was 

hit hard by Covid-19 pandemic, the spot electricity price would be interesting to be investigated if 

it was affected in contrast to the period before Covid-19. Wind and solar power generation made 

records of shares in Italy’s electricity during a number of months of 2022, so another reason Italy 

selected as a subject of study here is to investigate if the extreme events of wind power production 

affect the dependence between wind power production and spot price. Based on these reasons Italy 

was selected as the subject of study. 

Regarding the data, it is observed that the daily average electricity spot price for the time-period 

01/01/2020 – 01/05/2021 has few fluctuations with a total average spot price of €45 and maximum 

value of €82 , while in the time-period 01/05/2021-30/09/2022 the total average spot price is €246 

and the maximum spot price €741. However, the Ukraine war should influence more the total 

average of spot price as the average becomes €351 between 24/02/2022  - 30/09/2022.  

Thus, due to the different economic shocks, the dependence between the electricity spot price and 

wind power production is examined in three time periods, so that the model results are not affected 

by the different shocks. 
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2. Literature review 

Many studies have been conducted regarding the relationship between electricity spot price and 

wind power production, as wind power production is a variable and may cause fluctuations in the 

electricity system and markets.  

The study “The market value of variable renewables - The effect of solar and wind power variability 

on their relative price” (Hirth 2013), was carried out mostly for the German market. In German 

electricity market has been found that there is a negative dependence between spot price and shares 

of wind and solar power. As the wind speed and solar radiation are variables, it is inferred that the 

power production is variable,  and this variability affects the market value of the renewable energy 

generators. Regression models are used in the analysis for various power exchanges. In data 

preparation, the time-weighted average wholesale day-ahead price is used for the wind power and 

solar radiation respectively. The yearly installed wind capacity was interpolated to calculate changes 

during the year and daily solar capacity was used. The market share of wind is calculated as wind 

power generation over total electricity consumption and respectively for the solar as its power 

generation over total electricity consumption. In data modeling, the correlation effect and a simple 

regression model are used. Solar power correlates positively with electricity demand on a daily basis 

and wind power on a seasonal basis. As the wind market share and solar market share respectively 

increases, their value factors decline based on the correlation analysis effect. A simple regression 

model is constructed for wind and solar production separately, in order to investigate how an 

increase in the market share affects the market value. Based on the regression coefficients, an 

increase in market share of wind (and respectively of solar radiation) is estimated to reduce the 

value factor.      

The study “On the market impact of wind energy forecasts” (Jonsson et al, 2010), conducted for 

Denmark market, presented the same effect between electricity spot prices and wind power 

forecasts. “The spot price is, on average, shown to decrease with increased predicted wind power 

penetration, while intra-day price variations diminish to some extent” (Jonsson et al, 2010, page 

319). Non-parametric regression modeling of electricity prices is developed. In data preparation, 

the variables “hourly area spot prices”, “hourly consumption measurements” and “wind power 

forecasts (in MW)” are used in the model development, for the time-period from January 4rth 2006 

to October 31st of 2007. While the relationship between spot price and wind power generation is 

not linear in general, it is assumed that the relationship is locally linear, so local estimates are 

obtained for the spot price. “The average spot price is estimated as a function of both the time of 

the day and the forecasted wind energy production measured in MWh per hour” (Jonsson et al, 

2010, page 316). Based on the modeling results, a large wind power production quantity will on 

average result in a lower spot price given a specific hour.  
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The study “The impact of wind power generation on the electricity price in Germany” investigated 

the relationship between spot price and wind power generation simulated by a non-parametric 

regression model for Germany. Daily wind electricity generation and prices are used in the analysis. 

The correlation analysis calculated between spot price and wind power generation, resulted in a 

negative dependence. A Garch model is developed to explore the effect of wind power generation 

on the mean and volatility of the electricity price. “The results produced by the Garch model showed 

that intermitted wind power generation decreases the spot price and increases its volatility” 

(Ketterer, 2014, page 270).   

The study “Join price and volumetric risk in wind power trading: A copula approach” (Pircalabu et 

al, 2016) explored the dependence between wind power production and electricity prices for the 

Danish power market. As the dependency between spot prices and wind power production might 

change through time, time-varying copula models are used for model development. The developed 

time-varying copula model, which is based on ARMA-Garch models, is interesting to consider if 

the wind power production has a high penetration ratio in the examined electricity market. The time-

series used are the ratio of “total daily wind power production(MWh) divided by the (installed 

capacity (MW) multiplied by total hours”  and the ratio of “daily average of spot electricity prices”. 

The resulting distribution of prices was explored in accordance with different levels of wind power 

penetration and the outcome was that when the wind power penetration and production is high (low) 

the spot price, on average, decreases (increases).   

The study “Managing volumetric risk of long-term power purchase agreements” (Bo.Tranberg et 

al, 2018) investigated the negative dependence between wind power production and spot prices. In 

contrast with the paper “Join price and volumetric risk in wind power trading: A copula approach”, 

the paper proposes score-driven model, instead of ARMA-Garch model, for the spot prices as it is 

more robust to extreme events. The study used the model of Pircalabu et al, (2016) , as a benchmark 

in order to show that the score-driven model is better than the ARMA-Garch model, based on the 

same data.  

The study “The impact of renewable energy on electricity prices in Netherlands” (Machiel Mulder, 

2013) examined whether weather conditions affect the average daily spot price in the Dutch 

electricity market in the period 2006-2011. An AR model is used with exogenous variables. 

Economic and climate variables are used in the model. The economic variables are the overall 

tightness in the market, the intensity of competition, and the marginal costs of production. The 

climate variables are the speed of wind, both in the Netherlands and Germany, daylight, the intensity 

of sunshine in the two countries, and the temperature of river water in the Netherlands. The 

dependent variable is the daily spot price in the Dutch market. Three models are created in the 

periods 2006-2007, 2008-2009 and 2010-2011 in order to examine if the impact of the economic 

https://d.docs.live.net/398d62c988d90f73/Desktop/ΔιπλωματικήΕργασία/Machiel%20Mulder


Page 11 of 30 
 

and climate variables changes over time. Economic variables have an impact on the electricity price. 

“Both demand and gas price have a positive effect on electricity prices” (Machiel Mulder,2013, 

page 96). The intensity of competition has a relatively large influence on electricity prices, but its 

influence decreases when generation capacity increases. The average wind speed in German 

negatively affects the electricity prices in Netherlands. The remaining climate variables are 

statistically insignificant, so there is not a change in the impact of these variables. 

The study “A combined modeling approach for wind power feed-in and electricity spot prices” 

(Dogan Keles et al, 2013) explored the impact of wind power generation on electricity prices in 

Germany. The modeling approach consists of two main model components. Firstly, the wind power 

feed-in on an hourly basis is modeled based on a stochastic process with an autoregressive 

component. The simulated wind power feed-in model is used to model the electricity price module. 

The electricity wholesale prices are impacted by the wind power generation and feed-in especially 

in hours with high electricity demand. A high wind power feed-in leads to a huge price reduction. 

The study “Modeling the impact of wind generation on electricity market prices in Ireland: An 

econometric versus unit commitment approach” (Eleanor Denny et al, 2016). A multivariate time 

series regression model and a unit commitment simulation model are used for the analysis of this 

dependence based on the same data. The variables are on an hourly basis. The explanatory variables 

are the demand of electricity, wind, gas, oil, coal, carbon, and dummy variables to control public 

holidays. The unit commitment simulation model is a cost function. The cost function includes 

different costs, such as start costs, load costs, marginal costs, and reserve costs. The objective is to 

minimize the costs for all the generating units on the Irish system for every hour, satisfied the 

demand in each hour. The two models result in the fact that wind generation reduces the marginal 

price and there is a linear relationship between wind and prices. 

The study “The impact of renewable energies on EEX day – ahead electricity prices” (Florentina 

Paraschiv  et al, 2014) analyze the relationship between the renewable energies, wind and 

photovoltaic, and the day-ahead electricity prices at EEX in Germany. The analysis is conducted 

for the period between January of 2010 to February of 2013. The granularity of the variables used 

in the model is on an hourly basis. The explanatory variables used to predict the spot price are 

categorized into demand and supply side factors. The demand time series is the sum of the vertical 

net load (or electricity demand in Germany), total wind infeed and total photovoltaic infeed. The 

demand time series is modeled in order to predict the demand and then use it in the spot price model. 

An Autoregressive Moving Average model with exogenous regressors is used to forecast the 

expected electricity demand. On the supply side, the variables are the prices for coal, gas oil, CO2 

emission allowances, and the renewable energies wind and photovoltaic, and the expected power 

plant availability. A time-varying regression model for each hour is developed with lags variables 

https://d.docs.live.net/398d62c988d90f73/Desktop/ΔιπλωματικήΕργασία/Machiel%20Mulder
https://www.sciencedirect.com/science/article/abs/pii/S0301421513001821#!
https://www.sciencedirect.com/science/article/abs/pii/S096014811630965X#!
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in order to predict the day-ahead electricity price for each hour. Based on the model results, there is 

a negative dependence between the infeed from renewable energies and electricity prices.  

The study “An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity 

prices” (Liliana Gelabert  et al, 2011) explores the effects the renewable electricity and cogeneration 

have on the wholesale electricity prices in Spain between 2005 and 2010. The variables used in the 

model development are calculated on a daily average basis in order to avoid extreme events. The 

explanatory variables are the daily demand for electricity, and the daily composition of electricity 

by energy source, that is, the electricity produced from renewables and cogeneration under the 

special regime, total production by hydro plants, nuclear plants, combined cycle plants and from 

fuel or natural gas plants. “An extra variable is the difference between total generation and total 

demand. As a major finding, the paper reports that a marginal increase of 1 GWh of electricity 

production by renewable energy sources is associated with a reduction of almost 1.9 € in electricity 

prices (around 4% of the average daily price between 2005 and 2010)” (Liliana Gelabert  et al, 2011, 

page S65)   

The study “Spatial dependencies of wind power and interrelations with spot price dynamics” 

(Christina Elberg et al, 2013) refers to the spatial dependence structure of wind power incorporated 

into a supply and demand based model for the electricity spot prices in Germany. A stochastic 

simulation model for electricity spot prices is created based on the market’s aggregated wind power 

and the residual demand, which is the difference between total demand and aggregated wind power. 

Secondly, the copula model was created to associate market’s aggregated wind power with the wind 

power of single turbines in order to quantify their market value and the revenues depending on their 

specific location. The paper resulted in the significant negative dependence between spatial 

structure of wind power and spot price, and this effect becomes increasingly important for higher 

levels of wind power penetration.  

The study “Analyzing the impact of renewable electricity support schemes on power prices: The 

case of wind electricity in Spain” (Gonzalo Saenz de Miera et al, 2008) explores the impact of the 

increase of renewable energy sources in the electricity prices. The variables used for the analysis 

are the thermal capacity installed, thermal production, wind power generation, the price of gas in 

the UK and the CO2 allowance price in the EEX (European Energy Exchange). Regression 

simulations are used to investigate the relationship between the merit order effect and the electricity 

prices based on two scenarios: considering or not the absence of wind power generation. Regarding 

wind power generation,  the result of the simulation is that electricity prices reduction is greater than 

the increase of the costs generated from the establishment of new wind energy plants.  

The study “The merit-order effect: A detailed analysis of the price effect of renewable electricity 

generation on spot market prices in Germany” (Frank Sensfuß et al, 2008) investigates the 

https://www.sciencedirect.com/science/article/abs/pii/S0377221714006614#!
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relationship between renewable electricity generation and spot market prices. “In the energy only 

market, the merit order effect describes the lowering of power prices at the electricity exchange due 

to an increased supply of renewable energies” (Journalism for the energy transition). The calibrated 

PowerACE model is used to simulate electricity market prices. The electricity demand is traded  

based on simulated spot market prices (on an hourly level for an entire year). The results generated 

by the model platform indicate that the volume of the merit-order effect is higher than the cost 

payments for renewable energy production, which is positive from a consumer point of view. 

The study “Renewable energy and electricity prices: indirect empirical evidence from hydro power” 

(Ronald Huisman et al, 2013) explores how the spot market prices are influenced by the increasing 

of marginal costs of hydro power energy plants. The modeling process consists of a regression 

model that quantifies this relationship. The study results in the fact that an increase in renewable 

energy production will decrease the market price of power.  

The negative dependence between the spot price and wind production had been resulted in all the 

above studies. However, the model developments of these studies were conducted in a time-period 

without a Covid-19 pandemic neither a Ukraine war. Thus, the performance of all models referred 

in the studies above, should be examined in the time period including Covid-19 pandemic and 

Ukraine War, as the majority of the spot prices in this time-period are characterized as extreme 

events.  

 

 

 

 

 

 

 

 

 

 

https://www.cleanenergywire.org/
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3. Empirical analysis 

 

Methodology 

 

The methodology applied for the analysis, using the Python programming language, is consisted of 

the following elements: 

1. The variables used are the “Daily average purchase electricity prices” and the “Daily 

average of wind onshore production in MWh” 

2. The examined time-period begins from 1st January of 2020 until 30 September of 2022. 

3. Anova and Tukey statistical methods are used to ensure that the variable “Daily average 

purchase electricity prices” is statistically differentiated based on the three time-periods 

referred in the Introduction. 

4. Stationarity analysis is applied using the Augmented Dickey Fuller test in order to 

investigate if the variables referred to in bullet (1) have a unit root. Necessary 

transformations are applied in order to have stationary variables. 

5. The investigation of the relationship between the two variables is done by using ARMA 

and linear models and the Pearson correlation metric. 

6. The order of auto-regressive (AR) and moving average (MA) terms are explored by using 

the ACF (autocorrelation function) and PACF (partial autocorrelation function) plots.  

7. The volatility of the errors of the developed model is investigated by using a  Garch model. 

 

Data Preparation 

  

Two data sources were used for the analysis: the historical purchase electricity prices for end 

customers3 and the actual wind power generation4 from onshore plants, regarding the Italian market. 

The granularity level of the two datasets is based on hour and date. The columns used in the dataset 

of the purchase electricity prices are the [Data/Date, Ora/Hour, PUN]. The column “PUN” is defined 

as the “Purchase price for end customers” based on the sheet “Legenda”. The columns used in the 

dataset of the actual wind power generation are the [Area, MTU, Wind Onshore-Actual Aggregated 

MW]. The column “Area” refers to the country, which is “Italy’ in our case, the column “MTU” 

refers to the date-time interval, for example “01.01.2020 00:00 - 01.01.2020 01:00”, and the column 

 
3 https://www.mercatoelettrico.org/En/Download/DatiStorici.aspx 
4 https://transparency.entsoe.eu/dashboard/show 
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“Wind Onshore-Actual Aggregated MW” is the actual wind power production based on onshore 

plants.  

The granularity of the two datasets is transformed in order to have daily aggregations. So, the 

calculated new fields are the “daily average wind power production in MWh” and the “daily average 

purchase electricity prices”. The date range of the datasets is between January 2020 and September 

of 2022. The number of observations is 992. 

 

Descriptive Statistics 

Based on the analysis made in the Introduction section, a variable is created to separate three 

significant date ranges considering the fluctuations of the daily average purchase electricity prices: 

the time interval between [January of 2020 and April of 2021] where there are few fluctuations in 

the daily average prices, the time interval between [May of 2021 and 23 February of 2022] where 

there are high fluctuations until the start of the Ukraine war and the time interval between [24 

February of 2022 and September of 2022] where there is the Ukraine war period.  

 

Daily average purchase electricity prices 

The Figure 3.1 illustrates the time series of the daily average purchase electricity prices for the 

Italian market. The Covid-19 period [January of 2020 and April of 2021], where we had low energy 

prices and their volatility, after the Covid-19 until the Ukraine war period  [May of 2021 and 23 

February of 2022] the high energy prices with increasing price volatility that followed the strong 

recovery in demand, and the period of the Ukraine war until now [24 February of 2022 and 

September of 2022], that causes the fallout of the extremely high energy prices and theirs volatility, 

all the above advocate that there is high price volatility.  

Statistically wise, a one-way analysis of variance (ANOVA) is conducted in order to examine if 

there are any statistical differences between the means of the three groups, i.e. time periods of few 

fluctuations, high fluctuations, and Ukraine war.  
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Figure 3.1: Daily average electricity spot prices 

The Figure 3.2 illustrates three box plots of the variable daily average spot prices for each time-

period. The ranges of the variable are differentiated among these time-periods. The statistical 

significance between the three groups of the variable is proved using the ANOVA tests and Tukey 

test.  

 

Figure 3.2: Box plot of daily average electricity spot prices for each time-period 

 

The Table 3.1 presents the results of the ANOVA test between the variable and the time-periods. 

Since the p-value is lower than 0.05, there is significant evidence that there is at least one pair of 

groups which are differentiated between them. 
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ANOVA test statistic pvalue 

1324.1379898438206 6.804530590167079e-292 

Table 3.1: ANOVA test for the daily average spot prices 

The Table 3.2 presents the results of the Tukey test between the variable and the time-periods. 

Since the p-adj are below 0.05 for each pair of groups, there is significant evidence that all the 

pairs of groups are differentiated between them. 

Multiple Comparison of means – Tukey HSD, FWER = 0.05 

Group1 Group2 Meandiff P-adj Lower Upper Reject 

Few fluctuations High fluctuations 122.9121 0.0 110.0997 135.7245 True 

Few fluctuations Ukraine War 306.2717 0.0 292.0957 320.4477 True 

High fluctuations Ukraine War 183.3596 0.0 167.9231 198.7961 True 

Table 3.2: Tukey test for the daily average spot prices 

So, the assumption of creating the three time – periods: few fluctuations, high fluctuations, and the 

Ukraine war, is valid statistically wise, based on the statistical tests ANOVA and Tukey test.  

Stationarity analysis  

In this part of the analysis, the statistical properties, i.e. average, variance and covariance, of the 

variable “daily average purchase electricity prices” are examined if they do not change over time. 

The Augmented Dickey-Fuller unit root test is conducted, where the null hypothesis is the existence 

of a unit root, i.e. the time series is not stationary. In short, if a time series is stationary, its mean, 

variance and autocovariance (at various lags) remain the same no matter at what time we measure 

them (Basic econometrics, Gujarati, page 713). The p-value of the Augmented Dickey-Fuller is 

0.786592, which is greater than 0.05, thus the variable is not stationary. The analytical results are 

presented in the Table 3.3. The technical name of the variable “daily average purchase electricity 

prices” is the “AvgSpotPrice”.  

 

Results of Dickey-Fuller Test: AvgSpotPrice 

Test Statistic -0.904181 

p-value 0.786592 

#Lags Used 21.00000 

Number of Observations Used 971.00000 

Critical Value (1%) -3.437102 

Critical Value (5%) -2.864521 

Critical Value (10%) -2568357 

Table 3.3: ADF test of daily average spot prices 
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Since forecasting methods will be used to predict the energy prices, the stationarity assumption of 

the time series needs to be considered. Thus, the variable “daily average purchase electricity prices” 

needs to be transformed into a stationary time series. The variable is transformed into the “return of 

the daily average purchase electricity prices”. The technical name of the variable is 

“Return_AvgSpotPrice”. The Figure 3.3 illustrates the time series of the transformed variable. 

 

Figure 3.3: Return of daily average purchase electricity prices 

The p-value of the Augmented Dickey-Fuller test is almost zero, which is less than 0.05, thus the 

variable is stationary. The analytical results are presented in the Table 3.4.   

Results of Dickey-Fuller Test: Return_AvgSpotPrice 

Test Statistic -6.505998e+00 

p-value 1.130822e-08 

#Lags Used 2.100000e+01 

Number of Observations Used 9.710000e+02 

Critical Value (1%) -3.437102e+00 

Critical Value (5%) -2.864521e+00 

Critical Value (10%) -2.568357e+00 

Table 3.4: ADF test of return of daily average spot prices 

 

ACF-PACF Plots 

The next step of the forecasting process is to identify the parameters of ARMA process. The graphs 

ACF (autocorrelation function) and PACF (partial autocorrelation function) are the tools 

identification of this process.  
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Since the variable “return of daily average spot prices” is stationary,  the ACF and PACF plots can 

be used to find the ARMA pattern of this variable. The Figure 3.4 illustrates the ACF and PACF, 

and it can be observed  that there is a trend pattern every 7 lags in the ACF plot. 

 

 

Figure 3.4: ACF PACF plots of Return of daily average purchase electricity prices 

Since the “return of daily average spot prices” seems to have a seasonality effect, the variable is 

transformed into a moving average based on 7 days. The technical name of the transformed variable 

is “Return_AvgSpotPrice_MA7”. The Figure 3.5 illustrates the transformed variable, which is 

smoother than the variable presented in the Figure 3.3 (the range of the y-axis in the Figure 3.5 is 

smaller than the scale of the Figure 3.3). 

 

Figure 3.5: Moving average 7-days of Return of daily average purchase electricity prices 
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The Figure 3.6 illustrates the ACF – PACF  plots of the transformed variable. The ACF plot decays 

almost exponentially. If the typical pattern of the PACF  had significant spikes through lags p, the 

type of the model would be AR(p), or, if the typical pattern of the PACF was exponential decay, 

then the type of the model would be ARMA(p,q). In our case, the statistically significant partial 

correlation coefficients are outside of the blue region for many different lags. Thus, there are 

concerns if the AR model can be used for the analysis.  

 

Figure 3.6: ACF PACF plots of moving average (7 days) of return of daily average purchase 

electricity prices 

 

Daily average of wind onshore production in MWh 

The Figure 3.7 illustrates the time series of the daily average wind onshore production in MWh for 

the Italian market. Extreme volatility is observed, which is reasonable in general, since there is a 

production uncertainty associated with wind power generation. Thus, wind power production cannot 

be predicted, so it cannot be planned and controlled since there is a dependency on weather 

conditions, such as wind speed and air density. Furthermore, the variable “daily average of wind 

onshore production in MWh” is used in the model as an exogenous regressor since the price can be 

affected theoretically upwards or downwards based on the wind power production quantity. Because 

wind power has a very low marginal cost, a high production for a given hour will, other things being 

equal, pull the market clearing price downwards and similarly, if wind power production is low for 

a given hour, demand will have to be met by either import or turning on more costly generating 

plants pulling the market clearing price upwards (Pircalabu et al, 2016, page 1).  
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The technical name of the variable is “AvgWindProduction[MWh]”.  

 

Figure 3.7: Daily average wind onshore power production in MWh 

 

As the variable “daily average wind onshore power production in MWh” is used as exogenous 

variable in the AR(1) process to predict the “Moving average 7-days of Return of daily average 

purchase electricity prices”, it is transformed into the variable “Moving average 7-days of daily 

average wind onshore power production in MWh” for consistency reasons. The technical name of 

the variable is “AvgWindProduction_MA7”. Also, its stationarity is examined based on the test 

Augmented Dickey-Fuller. The p-value of the statistical test is 0.00147 which is lower than 0.05, 

thus the variable is stationary. The results of the test are presented in the Table 3.5 below. 

 

Results of Dickey-Fuller Test: AvgWindProduction_MA7 

Test Statistic -3.988801 

p-value 0.001470 

#Lags Used 22.000000 

Number of Observations Used 959. 000000 

Critical Value (1%) -3.437187 

Critical Value (5%) -2.864559 

Critical Value (10%) -2.568377 

Table 3.5: ADF test of 7-days moving average of daily average wind onshore power production in 

MWh 
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Pearson correlation analysis 

 

The dependence between the variables “7 days moving average of wind power production’ and “7 

days moving average of spot prices” is examined first using the Pearson correlation metric. A 30-

day moving correlation is calculated in order to examine the evolution of this metric. The Figure 

3.8 illustrates the 30-days moving correlation through the time.  

 

 

Figure 3.8: 30-days moving correlation 

The variable 30-days moving correlation is categorized in order to examine the distribution of the 

positive and negative correlations under the assumption that the threshold is 60%, i.e. considering 

we have negative correlation if the 30-days moving correlation is lower or equal to -60% , and 

respectively the positive correlation if the 30-days moving correlation is higher or equal to +60%. 

The Table 3.6 presents the distribution of the variable 30-days moving correlation. In general, the 

correlation between the two variables is not strong, since the value of the 30-day moving 

correlations fluctuates between -60% and 60%. The spot prices are not depending strongly on the 

changes of the wind power production considering the time-period January of 2020 and September 

of 2022. 

Category Number of rows 

Negative Correlation (<= -60%) 39 

Positive Correlation (>=60%) 21 
Other 893 

Table 3.6: Categorization of 30-days moving correlation 
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Furthermore, the correlation metric is calculated separately in three time periods: Covid period 

(01/01/2020- 30/04/2021), after Covid period (30/04/2021-24/02/2022) and Ukraine period 

(24/02/2022-30/09/2022). The Table 3.7 presents that the dependence between the two variables is 

low, so wind power generation does not influence enough the electricity spot prices for the specific 

time periods.   

Period Value of correlation coefficient 

Covid period (few fluctuations) -5% 
After Covid period (high fluctuations) -10% 

Ukraine war 6% 
Table 3.7: Correlation coefficient results  

 

Autoregressive model with exogenous regressor 

 

Three autoregressive models are created with exogenous regressor for each time-period (Covid 

period, After Covid period and Ukraine war), in order to investigate how the wind power production 

along with the lag1 of the return of electricity spot prices are associated with the return of electricity 

spot prices.  

The dependent variable of the model is the “Moving average 7-days of Return of daily average 

purchase electricity prices” (technical name: “Return_AvgSpotPrice_MA7”) and the predictor 

variables are the first lag of the “Moving average 7-days of Return of daily average purchase 

electricity prices” (technical name: “Return_AvgSpotPrice_MA7_lag1”)  and the “Moving average 

7-days of daily average wind onshore power production in MWh” (technical name:  

“AvgWindProduction_MA7”). Hereinafter, the technical names of the variables will be used. The 

Table 3.8 presents the results for each model. The model that is created in the time-period “After 

Covid period (high fluctuations)” is better than the other ones based on the AIC metric. 

Model period AIC 
Covid period (few fluctuations) 12.051 

After Covid period (high fluctuations) -424 
Ukraine war 45.183 

Table 3.8: AR(1) model results 

 

The Table 3.9 presents the coefficient values and their confidence intervals for each model. Based 

on the confidence intervals, the predictor variables of the models “Covid period (few fluctuations)” 

and “Ukraine war” seems to have no relation with the dependent variable, since the confidence 

intervals of their coefficients contain the value zero (0). Thus, the predictor variables do not have 
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anything to do with the dependent variable. Only the model created in the “After covid period (high 

fluctuations)” seems to create an important association between the dependent variable and the 

predictors, based on the non-existence of the zero value in their predictors’ coefficients confidence 

intervals. However, the coefficient of the variable “Return_AvgSpotPrice_MA7_lag1” of the model 

“After Covid period (high fluctuations)” is not in the range (-1,+1) so neither this model can be used 

for the analysis. 

Model Variable Coefficient 95% Confidence Interval 
Covid period (few 

fluctuations) 
Constant -0,0141 [-6.209e+02,6.208e+02] 

Covid period (few 

fluctuations) 
Lag 1 of moving average 7-

days of Return of daily 

average purchase electricity 

prices 

0,0549 [-2.092e+03,2.092e+03] 

Covid period (few 

fluctuations) 
Moving average 7-days of 

daily average wind onshore 

power production in MWh 

-0,0015293 [ -0.228, 0.225] 

After Covid period (high 

fluctuations) 
Constant -0,1707 [ -0.199, -0.143] 

After Covid period (high 

fluctuations) 
Lag 1 of moving average 7-

days of Return of daily 

average purchase electricity 

prices 

3,2355 [ 2.641, 3.830] 

After Covid period (high 

fluctuations) 
Moving average 7-days of 

daily average wind onshore 

power production in MWh 

0,00011231 [9.457e-05,1.300e-04] 
 

Ukraine war Constant 0,0419 [-3.552e+03,3.552e+03] 
Ukraine war Lag 1 of moving average 7-

days of Return of daily 

average purchase electricity 

prices 

1,185 [-1.039e+04,1.039e+04] 

Ukraine war Moving average 7-days of 

daily average wind onshore 

power production in MWh 

0,0014075 [ -1.465, 1.468] 

Table 3.9: AR(1) model coefficients 

 

 

Linear regression model 

 

A linear regression model is used to associate the variables “Return_AvgSpotPrice_MA7” and 

“AvgWindProduction_MA7”. The Table 3.10 presents the results of the AIC metrics for each model 

period. The model created in the “After Covid period (high fluctuations)” has the lowest AIC metric 

against the other models, thus it is the most appropriate model to be used.   
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Model period AIC 
Covid period (few fluctuations) 324 

After Covid period (high fluctuations) -29 
Ukraine war 2.129 

Table 3.10: Linear model results 

The Table 3.11 presents the model results for each time-period. Only the model created in the “After 

covid period (high fluctuations)” seems to create an important association between the dependent 

variable and the predictor, based on the non-existence of the zero value in the predictor’s coefficient 

confidence intervals. The coefficient of the Constant is not statistically significant as its confidence 

interval contains zero value. 

Model Variable Coefficient 95% Confidence 

Interval 
Covid period (few 

fluctuations) 
Constant 0,0079921 [ -0.145, 0.161] 

Covid period (few 

fluctuations) AvgWindProduction_MA7 
-0,00012437 [-2.132e-04,-3.557e-05] 

After Covid period 

(high fluctuations) 
Constant 0,0752 [-7.086e-02, 0.221] 

After Covid period 

(high fluctuations) 
AvgWindProduction_MA7 -0,00012427 [-1.800e-04,-6.850e-05] 

Ukraine war Constant -0,1301 [ -0.131, -0.130] 
Ukraine war AvgWindProduction_MA7 0,000058226 [5.822e-05,5.823e-05] 

Table 3.11: Linear model coefficients 

 

Thus, the model type is  the following: 

Return_AvgSpotPrice_MA7 = Constant  + AvgWindProduction_MA7 * Coefficient 

 

Return_AvgSpotPrice_MA7 = 0,0752 - AvgWindProduction_MA7 * 0,00012427      (1) 

 

According to the formula (1), the Return_AvgSpotPrice_MA7 has slightly a negative dependence 

from the AvgWindProduction_MA7, i.e. the Return_AvgSpotPrice_MA7 will decrease by 0.012% 

if the AvgWindProduction_MA7 increases by 1 MWh. Furthermore, in conjunction with the 

correlation results presented in the Table 3.7, it must be said that there is some evidence of a negative 

dependence between the variables Return_AvgSpotPrice_MA7 and AvgWindProduction_MA7. 
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The Figure 3.9 illustrates the calculated Return_AvgSpotPrice_MA7 based on the formula (1), and 

the observed Return_AvgSpotPrice_MA7 based on the raw dataset. The model fit is not good as the 

Return_AvgSpotPrice_MA7 depends on multiple various factors which are not considered in the 

model predictors. The linear model is constructed in order to investigate if there is a negative 

dependence between the Return_AvgSpotPrice_MA7 and AvgWindProduction_MA7. 

 

 

Figure 3.9: Predicted versus observed return of spot price 

 

 

Garch model 

 

Another model created is the Garch model in order to capture if the errors of the linear model (1) 

are variable. The variability of the linear model errors can very well be due to volatility in markets, 

sensitive as they are to rumors and political upheavals. Thus, the variance of the linear model errors 

should be investigated if it is not constant but varies from period to period. 

 

A Garch(1,1) model is developed in order to investigate the linear errors’ variability. The Table 

3.12 presents the coefficients and their confidence internals. Based on the Table 3.12, only the 

coefficient omega is not statistically significant, as its confidence interval contains the zero value. 

Based on the Table 3.12 and equation (2), the variance depends on the time, something that has 

been seen from the Figure 3.5.  
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Model Variable Coefficient 95% Confidence Interval 
After Covid period (high fluctuations) omega 0,000010444 [-6.616e-04,6.825e-04] 
After Covid period (high fluctuations) alpha 0,2002 [4.041e-02, 0.360] 
After Covid period (high fluctuations) beta 0,7798 [ 0.610, 0.950] 

Table 3.12: Garch(1,1) coefficients 

 

The form of the Garch(1,1) model is the following: 

 

σt
2 = ω + α ∗  εt−1

2 + β ∗  σt−1
2    

 

σt
2 = 0,000010444 + 0,2002 ∗ εt−1

2 + 0,7798 ∗  σt−1
2        (2) 

Where 𝜀𝑡is the error term of the model (1) and the error term follows a normal distribution. 
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4. Conclusion 

 

Our findings suggest that there is a negative dependence between the moving average of return of 

spot price and moving average of wind power production. The negative dependence is proved based 

on the statistically significant coefficient produced by the linear model developed in the Empirical 

analysis section. An increase of 1MWh in the moving average of wind power production results in 

a decrease of 0.01% in the moving average of return of spot price. The result of the negative 

dependence is quite in line with all the studies referred in the 

Literature review section, despite the fact that the model development across all papers and this 

thesis was conducted in different time periods, countries amidst to significant economic and 

political scenes. 

The performance of the model created in this thesis, is low as the only explanatory variable used is 

the wind power production, and the time period of the model development consists of the Ukraine 

war and Covid-19 pandemic. Thus the spot price time series has many extreme events as a 

consequence of these two major crises, and the modeling of such a time series constitutes a difficult 

task. Moreover, all the models referred to in this thesis should be recalculated in the same data the 

linear model was created here in order to investigate if their model performance and conclusions 

are aligned with my conclusion. 

Based on the climate target for the 2030 Italy has to achieve, in the Introduction section is referred 

that along with the goal of the growth of energy capacity by renewable sources, there is a plan to 

increase capacity of electricity storage by 6000 megawatts (MW) and an extra increment of 4000 

MW in the future. The increased capacity of electricity storage intended to save the electricity 

produced by wind power plants (or in general renewable energy sources) may disrupt all the 

conclusions made for the negative dependence between spot price and wind power production. 

Electricity storage is potentially a new explanatory variable that needs to be investigated along with 

the other variables that have already been used in the models developed to describe this dependence. 

So further research into this explanatory variable is required to come, since wind power production 

acquired further characteristics and cannot be said that it is only variable and affected by the weather 

conditions. The opportunity to store wind power production, contributes to the variable to have less 

volatility. 
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