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Hidden Markov models are used in a wide range of applications due to their construction that

renders them mathematically tractable and allows for the use of efficient computational techniques.

There are methods for the estimation of the model’s parameters, such as the EM algorithm, but also

for the estimation of the hidden states of the underlying Markov chain, such as the Viterbi algorithm.

In applications where the dimension of the data is comparable to the sample size, the sample

covariance matrix is known to be ill-conditioned, which directly affects the maximisation step (M-

step) of the EM algorithm, where its inverse is involved in the computations. This problem might be

amplified if there are rarely visited states resulting in a small sample size for the estimation of the

corresponding parameters. Therefore, the direct implementation of these methods can be proved to

be troublesome, as many computational problems might occur in the estimation of the covariance

matrix and its inverse, further affecting the estimation of the one-step transition probability matrix

and the reconstruction of the hidden Markov chain.

In this paper, a modified version of the EM algorithm is studied, both theoretically and computa-

tionally, in order to obtain the shrinkage estimator of the covariance matrix during the maximisation

step. This is achieved by maximising a penalised log-likelihood function, which is also used in the

estimation step (E-step). A variant of this modified version, where the penalised log-likelihood func-

tion is only used in the maximisation step (M-step), is also studied computationally.
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Περίληψη

΄Ενας Τροποποιημένος EM Αλγόριθμος για Εκτίμηση με Συρρίκνωση σε Πολυδιάστατα Κρυμμένα

Μαρκοβιανά Μοντέλα

Τα κρυμμέναΜαρκοβιανά μοντέλα χρησιμοποιούνται σε ένα ευρύ πεδίο εφαρμογών, λόγω της κατασκευής

τους που τα καθιστά μαθηματικώς διαχειρίσιμα και επιτρέπει τη χρήση αποτελεσματικών υπολογιστικών

τεχνικών. ΄Εχουν αναπτυχθεί μέθοδοι για την εκτίμηση των παραμέτρων του μοντέλου, όπως ο αλγόριθμος

EM, αλλά και για την εύρεση των κρυμμένων καταστάσεων της Μαρκοβιανής αλυσίδας, όπως ο αλγόριθμος

Viterbi.

Σε εφαρμογές στις οποίες η διάσταση των δεδομένων είναι συγκρίσιμη με το μέγεθος του δέιγματος,

είναι γνωστό πως ο δειγματικός πίνακας συνδιακύμανσης είναι αριθμητικά ασταθής, γεγονός που επηρεάζει

άμεσα το βήμα μεγιστοποίησης (M-step) του αλγορίθμου EM, στο οποίο εμπλέκεται ο υπολογισμός του

αντιστρόφου του. Το πρόβλημα αυτό μπορεί να ενταθεί λόγω ενδεχόμενης ύπαρξης καταστάσεων οι οποίες

εμφανίζονται σπάνια, με αποτέλεσμα το μέγεθος δείγματος για την εκτίμηση των αντίστοιχων παραμέτρων

να είναι μικρό. Επομένως, η άμεση χρήση αυτών των μεθόδων είναι πιθανό να οδηγήσει σε αριθμητικά προβ-

λήματα, όσον αφορά στην εκτίμηση του πίνακα συνδιακύμανσης και του αντιστρόφου του, επηρεάζοντας

επιπλέον την εκτίμηση του πίνακα πιθανοτήτων μετάβασης και την ανακατασκευή της κρυμμένης Μαρκο-

βιανής αλυσίδας.

Στη συγκεκριμένη εργασία μελετάται θεωρητικά και αλγοριθμικά μία τροποποίηση του αλγορίθμου EM,

έτσι ώστε ο εκτιμήτης που προκύπτει για τον πίνακα συνδιακύμανσης, κατά το βήμα μεγιστοποίησης, να

είναι αυτός που απορρέει από τη χρήση της μεθόδου συρρίκνωσης (shrinkage). Για τον σκοπό αυτό, στη

συνάρτηση της λογαριθμικής πιθανοφάνειας ενσωματώνονται κάποιες ποινές, ώστε να κανονικοποιηθεί το

αντίστοιχο πρόβλημα μεγιστοποίησης. Ησυνάρτηση αυτή, χρησιμοποιείται και στο βήμα εκτίμησης (E-step).

Επίσης, μελετάται αλγοριθμικά και μία παραλλαγή αυτής της μεθόδου, στην οποία η συνάρτηση με τις ποινές

χρησιμοποιείται μόνο κατά το βήμα μεγιστοποίησης (M-step).
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Introduction

A hidden Markov model (abbreviated HMM) is a statistical model in which it is assumed that an

observed stochastic process is linked to another stochastic process, a (discrete-time) Markov chain,

which is not observable. Simply put, if we have a sequence of observations at different points in

time (i.e. a time series), we assume that the distribution of an observation at a specific time point is

governed by the corresponding "hidden" state (regime) of the unobserved Markov chain.

HMMs were generally introduced in Baum and Petrie (1966). The authors defined a finite state

Markov process {Xt} and a stochastic finite state process {Yt} as a probabilistic function of {Xt},

where the value of Yt depends (probabilistically) on the value of Xt. It was assumed that both the

transition probability matrix of the Markov process {Xt} and the emission matrix are unknown and

it was proved that these quantities can be recovered from a sample of observations {Y1, . . . , YT}.

Consistency and asymptotic normality of the maximum likelihood estimators was also proved un-

der suitable conditions. Petrie (1969) weakened the conditions for consistency and provided suf-

ficient conditions for identifiability of the model. Baum et al. (1970) and Baum (1972) developed

forward–backward recursions for calculating the conditional probability of a state given an obser-

vation sequence from a general HMΜ. A computationally efficient iterative procedure for maximum

likelihood estimation of the parameters of the model was also developed, using the above-mentioned

recursions. This algorithm is often referred to as the Baum–Welch algorithm. The authors also estab-

lished local convergence of the algorithm in the same papers, using results from Baum and Eagon

(1967) and Baum and Sell (1968).

The notion of an underlying hidden mechanism (the hidden Markov chain) which controls the

data generating process, makes HMMs versatile enough to be implemented in a plethora of complex

real-world problems. The Markov property of the hidden process makes these models mathemat-

ically tractable and allows for the use of efficient computational techniques (see, e.g. Cappé et al.

2005, or Zucchini et al. 2016). Since their first introduction, HMMs have been studied broadly (see,

e.g., Ephraim and Merhav 2002). Many extensions and generalisations have been developed, such as

higher-order HMMs, hierarchical HMMs, continuous-time HMMs, non-homogeneous HMMs and

layered HMMs to name a few (see, e.g., Cappé et al. 2005; Mor et al. 2021).
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HMMs were initially used in signal-processing applications, especially in the context of auto-

matic speech recognition (Levinson et al., 1983; Rabiner, 1989; Juang and Rabiner, 1991; Jelinek, 1998).

Apart from their use in signal-processing, HMMs and their variations have been applied in a wide

range of fields, some of which are:

• pattern recognition

– face (Samaria, 1995; Nefian and Hayes, 1998; Alhadi et al., 2005)

– gesture (Rigoll et al., 1997; Chen et al., 2003)

– handwriting (Gilloux, 1994; Bunke et al., 1995; Hu et al., 1996)

– signature (Yang et al., 1995; Dolfing et al., 2002; Daramola and Ibiyemi, 2010)

• bioinformatics

– sequence analysis (Eddy et al., 1995; Eddy, 1998; Lunter, 2007)

– modeling of proteins (Karplus et al., 1999; Krogh et al., 1994, 2001)

– identification of coding regions in genomes (Lukashin and Borodovsky, 1998; Antonov

and Borodovsky, 2010)

• environment

– earthquakes (Wang and Bebbington, 2011; Avesani et al., 2012; Chambers et al., 2014)

– rainfall (Sansom, 1998; Betrò et al., 2008; Stoner and Economou, 2020)

– modeling wind times series and short-horizon wind forecasting (Hocaoğlu et al., 2010;

Jafarzadeh et al., 2010; Barber et al., 2010; Ailliot et al., 2015)

• finance

– portfolio analysis and management (e.g. asset allocation) (Elliott and Van der Hoek, 1997;

Erlwein et al., 2011)

– modelling financial time series such as:

* financial returns (Rydén et al., 1998; Mary R. Hardy A.S.A., 2001)

* interest rates (Smith, 2002; Wilson and Elliott, 2014)

* exchange rates (Engel, 1994; Caporale and Spagnolo, 2004; Chen, 2006; Ali et al., 2014)

Recently HMMs have also been used in astronomy, in the search for gravitational waves (Suvorova

et al., 2016, 2017; Sun and Melatos, 2019; Middleton et al., 2020) and for pulsar glitch detection

(Melatos et al., 2020).
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A very popular and extensively studied method to estimate the parameters of HMMs, is the

expectation-maximisation (EM) algorithm (Dempster et al., 1977) which is presented in Section 2.2.

Besides parameter estimation, it is also possible to estimate the most probable sequence of the hid-

den states, given the observed data, using the Viterbi algorithm (Viterbi, 1967), which is a dynamic

programming algorithm, specially designed for this purpose (see Appendix D).

In this paper the modified EM algorithm proposed by Fiecas et al. (2017) is presented. These

authors implement an HMM to analyse high-dimensional time-series data from finance and specifi-

cally for portfolio analysis. A usual assumption when modeling such data (e.g. the vector of returns

of all assets in a stock portfolio) is that they are independent random vectors from the multivariate

Normal distribution with covariance matrix Σ and volatility matrix Σ1/2. Such models fail to de-

scribe potential changes in the market environment, such as a move to a more volatile state, which

leads to a change of the covariance matrix. HMMs are able to model these changes, as the hidden

states can represent the states of the market (see the introductions in Tadjuidje Kamgaing 2013 and

Fiecas et al. 2017). They are also able to describe some particular features of this kind of data (also

called stylised facts, see Rydén et al. 1998), such as departures from the normality assumption and

dependence between the observations, due to the dependence structure of the underlying Markov

chain.

A crucial part of many multivariate statistical analysis applications is the estimation of the co-

variance matrix and/or its inverse (see, e.g., Johnstone 2001, Ledoit and Wolf 2004, Bickel and Levina

2008 and Cai et al. 2011). However, when the data are of high dimension, as it is usually the case

in many real-world problems, such as the ones mentioned above, this task can be challenging. The

natural estimator, the sample covariance matrix, is known to perform poorly in high-dimensional

situations (see, e.g., Ledoit and Wolf 2004, Bickel and Levina 2008, or Fan et al. 2008). Especially

when the dimension of the data is comparable to the sample size, the sample covariance matrix may

be numerically ill-conditioned or even not invertible at all. When regime switching models, such as

HMMs, are implemented, this problem can be amplified by the fact that there might be some rarely

visited states, which results in a very small corresponding sample size to estimate the covariance

matrices. Any estimation technique involving the inverse of the covariance matrix can also be af-

fected by the instability of the estimator. For instance, when the EM algorithm is utilised to estimate

the model parameters of an HMM, if it is assumed that the data come from the multivariate Normal

distribution, the inverses of the covariance matrices are involved in the calculations. This can have

an adverse effect not only on the estimates of the parameters of the state-dependent distributions,

but also on the estimation of the transition probability matrix and the reconstruction of the hidden

Markov chain (see the Introduction in Fiecas et al. 2017).
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To combat this problem Fiecas et al. (2017) incorporate the method of shrinkage into the EM

algorithm, in order to obtain stable estimates of the covariance matrix during the M-step. This in an

extension of the method of Sancetta (2008), who proposed a shrinkage estimator of the covariance

matrix of data that exhibit time-series dependence. Sancetta (2008) also extended the work of Ledoit

and Wolf (2004), who introduced a shrinkage estimator of the covariance matrix of independent and

identically distributed random vectors.

This paper is organised as follows. In Chapter 1 a brief overview of the Markov chain theory is

presented. It mostly serves as an introduction to some basic notions, that play an important role in

the following chapters. Chapter 2 is dedicated to HMMs and the EM algorithm. In Section 2.1 hidden

Markov models are defined and discussed quite extensively. In Section 2.2, the EM algorithm and its

general application to HMMs is presented in detail. In Section 2.3 the model of Fiecas et al. (2017) is

introduced and the EM algorithm is applied to this specific model. Chapter 3 contains the necessary

ingredients to derive the modified EM algorithm of Fiecas et al. (2017). In Section 3.1 the work of

Ledoit and Wolf (2004) is presented. It is also shown how their estimator can be obtained using the

regularisation method of Yuan and Huang (2009) for the likelihood of independent and identically

distributed random variables. In Section 3.2 the framework of Section 3.1 is extended to models with

regime switching, where it is assumed that the states are known. In Section 3.3 the modified version

of the EM algorithm is presented. Finally, in Chapter 4 we report the results of the application of

the method of Fiecas et al. (2017) to simulated and real data. A variant of this method, where the

penalised likelihood is only used during the M-step of the algorithm, is also applied to the same data

sets. The results are also reported in Chapter 4. This method has also been used by Chen et al. (2014),

to estimate multivariate Gaussian parameters in models with missing data. Some additional content

that complements the main body of this work can be found in the Appendices.
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Chapter 1

Finite-State Markov Chains

In this chapter we briefly describe dynamical systems and stochastic processes. The main body of

this chapter consists of a presentation of the basic theory of finite-state discrete-time Markov chains,

which will be a vital part of the content of the following chapters. We mainly follow the presentation

of Kulkarni (2011, 2017) and Fakinos (2012).

1.1 Dynamical Systems and Stochastic Processes

A dynamical system is a system that evolves over time. At any given point in time, the system is in

a state, which is represented by an element of an appropriately chosen set, called the state space. When

the function that describes the evolution of the system is deterministic, the system is characterised as

a deterministic dynamical system, or, simply, a deterministic system. On the other hand, when the

evolution of the system is affected by random factors, the system is characterised as a stochastic (or

random) dynamical system or, simply, a stochastic (or random) system.

Stochastic processes are mathematical models used to analyse the evolution of stochastic systems.

If the system is observed at a set of discrete times, for instance at the beginning of every hour or every

day, we have a discrete-time stochastic process. Otherwise, if the system is observed continuously,

then we have a continuous-time stochastic process. (see Section 1.1 in Kulkarni 2017).

We now give a formal definition of a stochastic process, which can be found in Section 4.1 in

Fakinos (2012).

Definition 1.1 (Stochastic Process). A family of random variables {X(t) : t ∈ T}, defined on the same

probability space (Ω,A, P)1, is called a stochastic process. The parameter t takes its values in the parameter

space T and is often referred to as the time parameter. If the parameter space T is a countable set (usually the set

N), the process is referred to as a discrete-time stochastic process and is usually denoted by {Xn : n ∈N}. On

the other hand, if the parameter space T is an uncountable set, the process is referred to as a continuous-time

1see Definition A.9 in Appendix A
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stochastic process and is denoted by {X(t) : t ∈ T}. Each possible value of the random variables X(t) is called

a state of the process. The state space S is referred to as discrete if it is a countable set (finite or countably

infinite) and as continuous if it is an uncountable set. Hence, there are four categories of stochastic processes,

discrete/continuous-time stochastic processes with a discrete/continuous state space.

Every stochastic process {X(t) : t ∈ T}, defined on a probability space (Ω,A, P), is a function

X : T ×Ω 3 (t, ω)→ X(t, ω) ∈ S.

For fixed values t = t0, ω = ω0, X(t0, ω0) corresponds to the state of the stochastic process at

time t0 for a particular outcome ω0. For a fixed value t = t0, the function

X(t0, ·) : Ω 3 ω → X(t0, ω) ∈ S,

is the random variable X(t0). For a fixed value ω = ω0, the function

X(·, ω0) : T 3 t→ X(t, ω0) ∈ S,

represents a specific evolution (or trajectory) of the stochastic process and it is called a realisation or a

sample path (see e.g. Section 1.1 in Kulkarni 2017 or Section 4.1 in Fakinos 2012).

We now define a specific class of stochastic processes, which possess an important property, called

stationarity, that will be needed in the following.

Definition 1.2 (Stationary Stochastic Process). A stochastic process {X(t) : t ∈ T}, is characterised as

strongly or strictly stationary if, for all n ∈N, t1, t2, . . . , tn ∈ T, s > 0, the n-dimensional random variables

[X(t1), X(t2), . . . , X(tn)] , [X(t1 + s), X(t2 + s), . . . , X(tn + s)] ,

have the same joint distribution.

Alternatively, the stochastic processes {X(t) : t ∈ T} and {X(t + s) : t ∈ T} are stochastically equiv-

alent, which means that any moment can be deemed as the beginning of time. A process with this

property is said to be in a state of statistical equilibrium or stationarity (see Section 4.2 in Fakinos 2012).

Remark. The term "stationarity" refers to the statistical properties of the stochastic process and not the process

itself. The process evolves over time in a manner that its statistical properties remain constant (e.g., parameters

such as its mean are independent of time).
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1.2 Discrete-time Markov Chains

In this section we introduce the basic concepts of the theory of Markov chains. Our focus is

restricted to first-order finite-state discrete-time Markov chains which are necessary for a better un-

derstanding of the mathematical properties that are presented in the following chapters. There are

many textbooks on the topic of Markov chains. Some recommendations for the interested reader are

Ross (1995), Norris (1997), Grimmett and Stirzaker (2001), Kulkarni (2011, 2017), and Fakinos (2012).

1.2.1 Definition and Characterisation

Consider a discrete-time stochastic process {Xn : n ∈N}, used to model a stochastic system, with

a countable state space S, for simplicity S = N, and let us pick a fixed value n ∈ N, which shall be

called the present. The random variable Xn is called the present state of the system, (X0, X1, . . . , Xn−1)

is said to be the past of the system and (Xn+1, Xn+2, . . .) is said to be the future of the system. If Xn = i

and Xn+1 = j, where i, j ∈ S, then it is said that the system has jumped, or made a transition from

state i to state j from time n to time (n + 1), or at the (n + 1)-th step (see Section 2.1 in Kulkarni 2017).

A stochastic system is said to possess the Markov (or Markovian) property if, given its present

state, the future of the system is independent of its past. This property was named after the Russian

mathematician Andrey Andreyevich Markov (1856-1922), who was the first to introduce this notion,

generalising the concept of independence for a collection of random variables (see, e.g., Section 2.1

in Kulkarni 2011, or the introduction of Chapter 6 in Fakinos 2012). A stochastic process that models

such a system is called a Markov process. Markov processes with a discrete state space (finite or

countably infinite), are also referred to as Markov chains (see Fakinos 2012).

The dependence structure of a Markov chain is depicted in Figure 1.1 below, using a directed

graphical model. Directed acyclic graphs, like this one, represent the joint probability of a set of ran-

dom variables. The nodes (circles) in the graph correspond to the random variables, whereas the

directed edges (arrows) represent the dependency relation between them. Any random variable is

conditionally independent of all the other random variables with which it is not directly connected,

given the values of its parent nodes2. Hence, the joint probability distribution can be expressed as

a product of the conditional distribution of each node given its parents. Some recommendations for

further reading on graphical models are Lauritzen (1996), Jordan (2004), Cowell et al. (2007), Koller

and Friedman (2009) and Sucar (2015).

2In a directed acyclic graph, if two nodes, say Xi and Xj are connected by a directed edge (arrow) starting from Xi and
leading to Xj (Xi → Xj), then Xi is said to be a parent of Xj and Xj is called a child of Xi (see, e.g. Subsection 2.1.1 in
Lauritzen 1996).
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X0 X1 . . . Xn−1 Xn . . .

FIGURE 1.1: Probabilistic graphical model for the dependence structure of a Markov
chain.

We now give a formal definition of discrete-time Markov chains.

Definition 1.3 (Discrete-Time Markov Chain). A stochastic process {Xn : n ∈N}with discrete state space

S, is called a discrete-time Markov chain if

P(Xn+1 = j |Xn = i, Xn−1, . . . , X0) = P(Xn+1 = j |Xn = i) , (1.1)

for all n ∈N and i, j ∈ S.

Equivalently, the process {Xn : n ∈N} is a Markov chain if and only if, for any fixed value n ∈N,

the random variable Xn+1 is conditionally independent of the random variables (X0, X1, . . . , Xn−1),

given the value of the random variable Xn (see Definition 1 of Section 6.1 in Fakinos 2012). Hence,

given the present state of the system, Xn, the future (Xn+1, Xn+2, . . .) is independent of its past

(X0, X1, . . . , Xn−1), as has already been stated.

Remark. For all n ∈ N, the random variable Xn+1 depends on all its previous states (X0, X1, . . . , Xn).

However, the value of the random variable Xn, provides all the information needed to determine the probability

of Xn+1 taking a specific value. In other words, given the value of Xn, the values of the random variables

(X0, X1, . . . , Xn−1) are no longer informative for the distribution of Xn+1.

In cases where there is an integer d, such that for any n > d

P(Xn = in |Xn−1 = in−1, . . . , X0 = i0) = P(Xn = in |Xn−1 = in−1, . . . , Xn−d = in−d) ,

then the stochastic process is said to be a Markov chain of order d.

For d = 0, the sequence of random variables {Xn : n ∈N}, is simply a case of a family of mutually

independent random variables. For d = 1, {Xn : n ∈N} is a "classic" Markov chain.

Consider a Markov chain {Xn : n ∈N}, of order d > 1. It is easy to check that by defining a process

{Yn : n ∈N}, such that

Yn = (Xn, Xn+1, . . . , Xn+d−1) ,

then {Yn : n ∈N} is a Markov chain of order 1 (see Section 6 in Billingsley 1961).

For any fixed value n ∈ N and any i, j ∈ S, the conditional probability P(Xn+1 = j |Xn = i)

is called the one-step transition probability, or simply the transition probability, from state i to state j,



16

from time n to time (n + 1), or at the (n + 1)-th step (jump) of the chain and is usually denoted by

pij (n, n + 1). Generally, the transition probabilities are functions of both the pair of states i, j and the

time at which the transition happens. In case the transition probabilities are independent of time, the

Markov chain is characterised as time homogeneous (see, e.g., the discussion following Definition 2.1

in Kulkarni 2011, or Definition 1 of Section 6.1 in Fakinos 2012). We give the following definition.

Definition 1.4 (Time-Homogeneous Discrete-Time Markov Chain). A discrete-time Markov chain {Xn : n ∈N}

with discrete state space S is said to be time homogeneous if

pij = P(Xn+1 = j |Xn = i) = P(X1 = j |X0 = i) , (1.2)

for all n ∈N and i, j ∈ S.

In the following we focus on time-homogeneous discrete-time Markov chains, as it is the only

class needed for our purpose. We will refer to them, simply, as Markov chains.

Let P =
(

pij
)

i,j∈S denote the matrix whose (i, j)-th entry contains the transition probability pij,

for all i, j ∈ S. Such a matrix is called the one-step transition probability matrix or simply transition

probability matrix. When the state space is finite, say S = {1, 2, . . . , N}, the transition probability

matrix can be displayed as

P =
(

pij
)

i,j∈S =


p11 p12 . . . p1N

p21 p22 . . . p2N
...

...
. . .

...

pN1 pN2 . . . pNN


(see the discussion following Definition 2.2 in Kulkarni 2017). The transition probability matrix of a

discrete-time Markov chain is always a square matrix. An important property of square matrices is

given below.

Definition 1.5 (Stochastic Matrix). A square matrix P =
(

pij
)

i,j∈S is called stochastic if it satisfies the

following conditions:

(i) pij ≥ 0, for all i, j ∈ S,

(ii) ∑
j∈S

pij = 1, for all i, j ∈ S.

The next theorem shows the relevance of this definition (see, e.g. Theorem 2.1 in Kulkarni 2017).

Theorem 1.1. The one-step transition probability matrix of a Markov chain is stochastic.
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Proof. Statement (i) is obvious, since every element of the transition probability matrix, pij is a (con-

ditional) probability, thus it is non-negative. Statement (ii) is proved as follows:

∑
j∈S

pij = ∑
j∈S

P(Xn+1 = j |Xn = i) = P(Xn+1 ∈ S |Xn = i) = 1,

since by definition Xn+1 must take some value in S, for all n ∈N, regardless of the value of Xn.

We can completely describe a Markov chain when we are able to specify the probability of any

finite sample path (i0, i1, . . . , in). For this to be possible, the distribution of the initial random variable

X0 is needed (see Section 6.1 in Fakinos 2012). The distribution of X0 cannot be determined by the

transition probability matrix, as its elements are conditional probabilities (see the discussion follow-

ing the proof of Theorem 2.1 in Kulkarni 2017). Let us denote the probability of the event {X0 = i}

by p(0)i , that is

p(0)i = P(X0 = i) (i ∈ S) .

The vector p(0) =
(

p(0)i

)
i∈S

containing all these probabilities is called the initial distribution of the

Markov chain.

We now give the following theorem for the characterisation of a Markov chain (see Theorem 2.2

in Kulkarni 2017).

Theorem 1.2. A Markov chain {Xn : n ∈N} is completely described by its initial distribution p(0) =(
p(0)i

)
i∈S

and the transition probability matrix P.

Proof. For all n ∈ N and i0, i1, . . . , in−1, in ∈ S, by the general multiplication rule for the joint proba-

bility of the sample path (i0, i1, . . . , in−1, in), we get

P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in) =

P(X0 = i0) ·
n

∏
k=1

P(Xk = ik |X0 = i0, . . . , Xk−1 = ik−1) =

(Markov property)

P(X0 = i0) ·
n

∏
k=1

P(Xk = ik |Xk−1 = ik−1) =

(Time homogeneity)

p(0)i0
· pi0i1 · pi1i2 · . . . · pin−1in .
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1.2.2 Transient Distributions

Consider a Markov chain {Xn : n ∈N} with state space S, transition probability matrix P and

initial distribution p(0) =
(

p(0)i

)
i∈S

. The probability of a transition from a state i to a state j (i, j ∈ S)

in m steps is called the m-step transition probability of the Markov chain from state i to state j. For all

n, m ∈N and i, j ∈ S we use the notation:

p(m)
ij = P(Xn+m = j |Xn = i) = P(Xm = j |X0 = i) ,

where in the last equality we have used the property of time homogeneity (see Section 2.3 in Kulkarni

2011).

We have the following two special cases:

(i) m = 0 :

p(0)ij =


0, if i 6= j

1, if i = j
(i, j ∈ S) , (1.3)

(ii) m = 1 :

p(1)ij = pij (i, j ∈ S) . (1.4)

Analogous to the one-step transition probability matrix, we define the m-step transition probability

matrix as P(m) =
(

p(m)
ij

)
i,j∈S

, which is also stochastic. As in the case of the one-step transition prob-

ability matrix, when the state space is finite, say S = {1, 2, . . . , N}, the m-step transition probability

matrix can be displayed as

P(m) =
(

p(m)
ij

)
i,j∈S

=


p(m)

11 p(m)
12 . . . p(m)

1N

p(m)
21 p(m)

22 . . . p(m)
2N

...
...

. . .
...

p(m)
N1 p(m)

N2 . . . p(m)
NN

 .

By Equations (1.3) and (1.4), it follows that

P(0) = IN ,

where IN is the N × N identity matrix, and

P(1) = P,
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respectively.

We now turn our attention towards a way of expressing the m-step transition probabilities p(m)
ij as

functions of the one-step transition probabilities. This is possible thanks to the Markov property and

the time homogeneity. Notice that the m-step transition probability p(m)
ij is equal to the summation

of the probabilities of all the possible finite paths, that start from state i and lead to state j in m steps.

More formally, by the law of total probability we get

p(m)
ij = P(Xm = j |X0 = i)

= ∑
k∈S

P(Xm = j, Xm−1 = k |X0 = i)

= ∑
k∈S

P(Xm−1 = k |X0 = i)P(Xm = j |Xm−1 = k, X0 = i) (Markov property)

= ∑
k∈S

P(Xm−1 = k |X0 = i)P(Xm = j |Xm−1 = k) (time homogeneity)

= ∑
k∈S

p(m−1)
ik pkj (m ∈N, i, j ∈ S) .

The expression above can also be written in matrix form as

P(m) = P(m−1)P (m ∈N) ,

hence we have

P(m) = P(m−1) · P = P(m−2) · P · P = . . . = P(1) · Pm−1 = Pm (m ∈N) . (1.5)

Equation (1.5) shows that the m-step transition probabilities are the elements of the m-th power

of the one-step transition probability matrix P. We can also deduce that for fixed values m, n ∈ N it

holds that

P(m+n) = P(m) · P(n),

or in scalar form

p(m+n)
ij = ∑

k∈S
p(m)

ik p(n)kj (i, j ∈ S) . (1.6)

The Equations (1.6) are called the Chapman-Kolmogorov equations and express the intuitive idea

that for a transition from state i to state j to take place in (m + n) steps, the chain needs to jump from

state i to an intermediate state k in m steps and then from state k to state j in the remaining n steps

(see Section 6.2 in Fakinos 2012).
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We are now able to define the transient distribution, that is the distribution of the random variable

Xn for some fixed value n ∈N (see Section 2.3 in Kulkarni 2011). Let us use the notation

p(n) =
(

p(n)j

)
j∈S

,

where

p(n)j = P(Xn = j) (n ∈N, j ∈ S) .

For n = 0, we have the initial distribution, p(0) =
(

p(0)j

)
j∈S

. By the law of total probability we get

p(n)j = P(Xn = j) = ∑
i∈S

P(X0 = i)P(Xn = j |X0 = i) = ∑
i∈S

p(0)i p(n)ij (n ∈N, j ∈ S) .

Working in a similar fashion, we get the general case,

p(m+n)
j = ∑

i∈S
p(m)

i p(n)ij (m, n ∈N, j ∈ S) ,

and a special case

p(n+1)
j = ∑

i∈S
p(n)i pij (n ∈N, j ∈ S) .

The equations above can also be expressed as

p(n) = p(0)P(n) (n ∈N) , (1.7)

p(m+n) = p(m)P(n) = p(m)Pn (m, n ∈N) ,

p(n+1) = p(n)P (n ∈N) .

1.2.3 Classification of States

In this subsection the notions of communicating class, irreducibility, transience, recurrence, null recur-

rence, positive recurrence and periodicity are introduced. These concepts are of paramount importance

for the analysis of Markov chains.

1.2.3.1 Irreducibility

We begin with a series of definitions which will enable the classification of states, sets of states, or

whole chains, according to their properties.

Definition 1.6 (Accessibility). A state j is said to be accessible from a state i if and only if there is an n ∈N

such that p(n)ij > 0.
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The inequality p(n)ij > 0 implies that there is a sequence of states (i = i0, i1, . . . , in−1, in = j) such

that pikik+1 > 0 for k = 0, 1, . . . , n− 1. Thus, an intuitive interpretation of this definition is that a state

j is accessible from i, if there is a directed path i = i0 → i1 → . . . → in−1 → in = j, for a value n ∈ N

(see the discussion following Definition 4.1 in Kulkarni 2017).

We write i → j if state j is accessible from i. Since p(0)ii = 1, it follows that every state is accessible

from itself, that is i→ i.

Definition 1.7 (Communication). States i and j are said to communicate if and only if j is accessible from i

and i is accessible from j ( i→ j and j→ i ).

If i and j communicate, we write i ↔ j. The relation of communication possesses the following

properties:

(i) i↔ i (reflexivity),

(ii) i↔ j⇔ j↔ i (symmetry),

(iii) i↔ j , j↔ k⇒ i↔ k (transitivity).

Proof. Properties (i) and (ii) derive directly from the definition of communication. To prove the prop-

erty of transitivity (iii), note that:

i↔ j⇒ i→ j, j↔ k⇒ j→ k, (1.8)

and

j↔ i⇒ j→ i, k↔ j⇒ k→ j. (1.9)

By (1.8) and (1.9) we get that i→ k and k→ i, respectively. Hence it is clear that i↔ k.

Consequently, communication defines an equivalence relation in the state space S, which implies

that S can be partitioned in equivalence classes. These classes consist of the states that communicate

with each other, hence they are called communicating classes.

Definition 1.8 (Communicating Class). A set C ⊂ S is called a communicating class if and only if

(i) i ∈ C, j ∈ C ⇒ i↔ j,

(ii) i ∈ C, i↔ j⇒ j ∈ C.

Property (i) assures what was mentioned above, that all the states of a communicating class com-

municate with one another. By property (ii) it follows that C is a maximal set, which means that
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there is no strict superset of C that can be a communicating class. It is possible for a state j, that does

not belong to C, to be accessible from a state i inside C, but in this case, i cannot be accessible from

j (otherwise j would belong to C). Accordingly, it is possible for a state i, that belongs to C, to be

accessible from a state j outside C, but in this case, j cannot be accessible from i (see the discussion

following Definition 4.3 in Kulkarni 2017).

Definition 1.9 (Closed Communicating Class). A communicating class C is called closed if and only if

pij = 0, for all i ∈ C and j /∈ C. Otherwise, the class C is called non-closed.

If a closed class C is a singleton, say C = {i}, then the state i is referred to as an absorbing state (see

Definition 2 of Section 6.4 Fakinos 2012). We are now able to define irreducibility.

Definition 1.10 (Irreducibility). A Markov chain with state space S is called irreducible if and only if all

its states communicate with each other, equivalently if and only if the whole state space S is a communicating

class. A Markov chain that is not irreducible is called reducible.

1.2.3.2 Recurrence, Transience and Periodicity

Consider a Markov chain {Xn : n ∈N} with state space S and transition probability matrix P.

Assume that X0 = i, for some i ∈ S. Let us denote by Tij the number of transitions that are needed

for the Markov chain to visit for the first time the state j ∈ S, given that X0 = i, that is

Tij = min {n ∈N : Xn = j |X0 = i}.

If such a transition is impossible, we set Tij = ∞. The random variable Tij is called the first passage

time into state j starting from state i (see Section 6.3 in Fakinos 2012). The probability of the first

passage time to state j starting from i being equal to n, is given by

f (n)ij = P
(
Tij = n

)
= P(Xn = j, Xk 6= j, k = 1, 2, . . . , n− 1 |X0 = i) (n ∈N) .

The probability of eventually visiting state j, starting from state i is

fij = P
(
Tij < +∞

)
=

+∞

∑
n=1

f (n)ij ≤ 1.

In the special case where j = i, the random variable Tii is called the first return time to state i. The

probability of eventually returning to state i is

fii = P(Tii < +∞) =
+∞

∑
n=1

f (n)ii ≤ 1.



23

The mean return time to state i is E(Tii). For a state i we have the following two cases.

(i) It is certain that a return to state i will occur ( fii = 1):

E(Tii) =
+∞

∑
n=1

n f (n)ii ≤ +∞.

(ii) It is not certain that a return to state i will occur ( fii < 1 equivalently P(Tii = +∞) = 1− fii > 0):

E(Tii) = +∞.

We are now able to give the following definitions.

Definition 1.11 (Recurrence and Transience). A state i is called:

(i) recurrent if fii = 1,

(ii) transient if fii < 1.

Definition 1.12 (Positive and Null Recurrence). A recurrent state i is called:

(i) positive recurrent if E(Tii) < +∞,

(ii) null recurrent if E(Tii) = +∞.

We now proceed to define the notion of periodicity.

Definition 1.13 (Period). The period of a positive recurrent state i is the number di such that

di = gcd
{

n ∈N : f (n)ii > 0
}
= gcd

{
n ∈N : p(n)ii > 0

}
.

Definition 1.14 (Periodicity). A positive recurrent state i is called:

(i) aperiodic, if di = 1,

(ii) periodic with period di, if di > 1.

A return to a periodic state i with period di is possible only at times that are integer multiples of di

(see the discussion following Definition 4.10 in Kulkarni 2017, or the discussion following Definition

2 of Section 6.3 in Fakinos 2012). Consequently, for all k = 1, 2, . . . , di − 1 we have

p(ndi+k)
ii = 0 (n ∈N) .



24

If the one-step transition probability from a state i to itself is positive (pii > 0), then state i is aperi-

odic.

We now give a series of theorems and corollaries that are useful for classifying communicating

classes and Markov chains. The proofs are classical and a reference is given for the interested reader.

Theorem 1.3. Every pair of states that communicate with each other are of the same type, that is, they are both

positive recurrent or null recurrent or transient. Additionally, if they are positive recurrent, then they are both

aperiodic or periodic with the same period.

Proof. See the proofs of Theorems 4.5, 4.6 and 4.8 in Kulkarni (2017).

Corollary 1.3.1. All states inside a communicating class are of the same type. Especially, all the states of an

irreducible Markov chain are of the same type (see Corollary 1 of Section 6.4 in Fakinos 2012).

Theorem 1.4. All states in a finite closed communicating class are positive recurrent.

Proof. See the proof of Theorem 4.9 in Kulkarni (2017).

Corollary 1.4.1. Every finite Markov chain possesses at least one positive recurrent state. Additionally, if the

chain is irreducible, then all its states are positive recurrent (see Corollary 2 of Section 6.4 in Fakinos 2012).

Theorem 1.5. All states in a non-closed communicating class are transient.

Proof. See the proof of Theorem 4.10 in Kulkarni (2017).

Remark. A communicating class is called positive recurrent or null recurrent or transient (aperiodic or pe-

riodic with period d) if all the states in it are positive recurrent or null recurrent or transient (aperiodic or

periodic with period d), respectively (see Definition 4.8 and Theorem 4.8 in Kulkarni 2017).

An irreducible Markov chain is called positive recurrent or null recurrent or transient (aperiodic or periodic

with period d) if all its states are positive recurrent or null recurrent or transient (aperiodic or periodic with

period d), respectively (see Definition 4.9 in Kulkarni 2017).

An irreducible positive recurrent aperiodic Markov chain is also called ergodic (see Subsection 4.5.5 in

Kulkarni 2017).

These statements show that in order to completely classify a communicating class or an irre-

ducible Markov chain, it suffices to classify only one of its states.

1.2.4 Stationary Distribution

Consider a Markov chain {Xn : n ∈N} with state space S, transition probability matrix P and

initial distribution p(0). We wish to examine the limiting behaviour of the chain, in other words, we
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want to examine the properties of the distribution p(n), after a long period of time (as n tends to

infinity).

Definition 1.15 (Limiting Distribution). Consider a Markov chain {Xn : n ∈N} with state space S, tran-

sition probability matrix P and initial distribution p(0). If for all i ∈ S there exists the limit

lim
n→+∞

(pn
i ) = lim

n→+∞
[P(Xn = i)] = pi,

then the vector p = (pi)i∈S is called the limiting or steady-state distribution of the Markov chain {Xn : n ∈N}

(see Section 2.5 in Kulkarni 2011).

We have the following theorem for the limiting distribution of a Markov chain.

Theorem 1.6. If a Markov chain {Xn : n ∈N} has a limiting distribution p, then it satisfies the following

equations:

pi = ∑
k∈S

pk pki (i ∈ S) , (1.10)

∑
i∈S

pi = 1 (i ∈ S) . (1.11)

Proof. See the proof of Theorem 2.5 in Kulkarni (2011).

For a specific state i, Equation (1.10) is referred to as the balance equation, because it balances the

probability of entering state i with the probability of transitioning from state i to any state of the state

space (including i). Equation (1.11) is known as the normalising equation (see the discussion following

the proof of Theorem 4.19 in Kulkarni 2017).

The equations given by (1.10) can also be expressed in matrix form as

p = pP. (1.12)

In case the limiting distribution of the Markov chain (if it exists) is chosen as its initial distribution,

then the limiting distribution is called stationary and is usually denoted by π = (πi)i∈S. By Equation

(1.12) we have

π = πP. (1.13)

It follows that

πP2 = (πP)P = πP = π,

and by induction we get

πPn = π (n ∈N) . (1.14)
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As was shown in Subsection 1.2.2, by Equation (1.7), the transient distribution
{

p(n) : n ∈N
}

of a

Markov chain {Xn : n ∈N} is a function of both the initial distribution p(0) and the n-step transition

probability matrix P(n), therefore for all n ∈N, p(n) depends on the specific value of n. Choosing the

stationary distribution as the initial, that is π = p(0), by (1.7) and (1.14), we get

p(n) = π (n ∈N) ,

which is equivalent to

πi = P(Xn = i) (n ∈N, i ∈ S) .

As a result, the transient distribution
{

p(n) : n ∈N
}

becomes constant (independent of time n) and

the same holds for the evolution of the Markov chain (not the process itself, but the manner in which

it evolves). This justifies the term stationary.

We now give a formal definition of the stationary distribution of a Markov chain.

Definition 1.16 (Stationary Distribution). Consider a Markov chain {Xn : n ∈N} with state space S and

transition probability matrix P. The distribution π = (πi)i∈S is said to be the stationary distribution of the

chain {Xn : n ∈N} if, for all n ∈N and i ∈ S, it holds

P(X0 = i) = πi ⇒ P(Xn = i) = πi.

For the stationary distribution of a Markov chain we have the following theorem.

Theorem 1.7. The distribution π = (πi)i∈S is stationary if and only if it satisfies the balance and normalising

equations

πi = ∑
k∈S

πk pki (i ∈ S) , (1.15)

∑
i∈S

πi = 1 (i ∈ S) . (1.16)

Proof. See the proof of Theorem 2.6 in Kulkarni (2011).

Remark. Any vector that is a non-negative solution of Equation (1.15) can be transformed into a stationary

distribution, as long as the sum of its elements is a finite number. This can be achieved by normalising the

vector, i.e. by dividing all its elements by their sum. For infinite-state Markov chains the existence of such

solutions is not certain, in which case there is no stationary distribution. There are also some cases where a

Markov chain has multiple stationary distributions. In such cases there is an infinite number of stationary
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distributions, that correspond to the Markov chain, since every convex combination of them is also a stationary

distribution (see the discussion following Definition 1 of Section 6.5 in Fakinos 2012).

Corollary 1.7.1. A limiting distribution, when it exists, is also a stationary distribution.

Proof. See the proof of Corollary 2.3 in Kulkarni (2011).

If a Markov chain {Xn : n ∈N} has a stationary distribution, then for all k, n ∈N and i0, i1, . . . , in ∈

S it holds

P(Xk = i0, Xk+1 = i1, . . . , Xk+n = in) =

(General multiplication rule and Markov property)

p(k)i0
pi0i1 · . . . · pin−1in = πi0 pi0i1 · . . . · pin−1in =

(Time homogeneity)

P(X0 = i0, X1 = i1, . . . , Xn = in) ,

which means that the processes {Xn : n ∈N} and {Xk+n : n ∈N} are stochastically equivalent. It

follows that the Markov chain {Xn : n ∈N} becomes a stationary stochastic process (see Definition

1.2) when π = (πi)i∈S (see Section 6.5 in Fakinos 2012).

The following theorem is very useful as it provides a necessary and sufficient condition for the

positive recurrence of irreducible Markov chains (see Subsection 4.5.7 in Kulkarni 2017).

Theorem 1.8. An irreducible Markov chain is positive recurrent if and only if it has a unique stationary

distribution π = (πi)i∈S.

Proof. See the proof of Theorem 4.22 in Kulkarni (2017).

It follows that to determine whether an irreducible Markov chain is positive recurrent, one can

directly try to solve Equations (1.15) and (1.16). If there is a unique solution, then the positive recur-

rence of the chain is assured (see the discussion following Theorem 4.22 in Kulkarni 2017).

We also have a very useful result for finite-state irreducible Markov chains (see Theorem 2.8 in

Kulkarni 2011).

Theorem 1.9. A finite-state irreducible Markov chain has a unique stationary distribution.

For finite-state irreducible Markov chains which are also aperiodic, we have the following theo-

rem (see Theorem 2.10 in Kulkarni 2011).

Theorem 1.10. A finite-state irreducible aperiodic Markov chain has a unique limiting distribution.
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The following result derives directly from Corollary 1.7.1 and Theorem 1.10.

Corollary 1.10.1. A finite-state irreducible aperiodic Markov chain has a unique limiting distribution, which

is also its stationary distribution.

1.2.4.1 Empirical Estimation of the Stationary Distribution

Consider an irreducible finite-state Markov chain {Xn : n ∈N} with state space S, transition

probability matrix P, initial distribution p(0) and stationary distribution π, where P and π are un-

known parameters.

Suppose that we wish to estimate the stationary distribution π = (π)i∈S using a set of observa-

tions of the random variables (X0, . . . , XN). We define the sample estimator of πi as

π̂i =
1

N + 1

N

∑
n=0

1{Xn=i} (n ∈ {0, . . . , N} , i ∈ S) , (1.17)

where

1{Xn=i} =


1, if Xn = i

0, if Xn 6= i
(n ∈ {0, . . . , N} , i ∈ S) .

As
N
∑

n=0
1{Xn=i} is the total number of visits in state i in the first (N + 1) steps of the chain, π̂i is the

ratio of visits in state i (in the first (N + 1) steps of the chain).

If a Markov chain {Xn : n ∈N} is stationary, for all n ∈ {0, . . . , N} and i ∈ S, we have that

E
(
1{Xn=i}

)
= P(Xn = i) = πi,

and by the linearity of the expectation, it follows that

E(π̂i) = E

(
1

N + 1

N

∑
n=0

1{Xn=i}

)
=

1
N + 1

N

∑
n=0

E
(
1{Xn=i}

)
=

1
N + 1

N

∑
n=0

πi = πi,

therefore π̂i is an unbiased estimator of πi, equivalently π̂ is an unbiased3 estimator of π. π̂ is

also a consistent4 estimator of π and under some appropriate conditions, it is
√

n-consistent5 and

asymptotically normal6 (see Section 2 in Athreya and Majumdar 2003).

3See Definition A.31 in Appendix A
4See Definition A.33 in Appendix A
5See Definition A.34 in Appendix A
6See Definition A.35 in Appendix A
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Chapter 2

Hidden Markov Models and the EM

Algorithm

We start this chapter by introducing hidden Markov models in Section 2.1. We, then, proceed to

present in detail the EM algorithm and its application to HMMs in Section 2.2. In Section 2.3, the

model of Fiecas et al. (2017) is defined and the EM algorithm is applied to this model.

2.1 Hidden Markov Models

Hidden Markov models comprise a class of models which consist of two stochastic processes.

An observable stochastic process {Yt : t ≥ 1} and a Markov chain {Xt : t ≥ 1} (to keep the notation

simple in the sequel, from now on we will assume that the initial moment is t = 1, instead of t = 0),

which is "hidden" (not observable). The former process depends on the Markov chain in that Xt

governs the distribution of the corresponding Yt. For example, given Xt, the random variable Yt may

have a Poisson distribution whose parameter differs for each possible value of Xt. An important

assumption of the simplest class of HMMs is that each observation Yt depends on the Markov chain

only through the random variable Xt.

Models, such as HMMs, where it is assumed that there are unobserved random variables, are

called latent variable models. Another way to interpret the unobserved random quantities is as missing

data, hence such models are also referred to as missing data models, or models with incomplete data (see

Section 1.1 in Cappé et al. 2005). Thus, HMMs may also be useful in cases where there are indeed

some data that are missing.

The dependence structure of HMMs is depicted in Figure 2.1, using a directed graphical model,

similar, in spirit, to the one that was presented in Figure 1.1.
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. . . Xt−1

Yt−1
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Xt+1

Yt+1
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FIGURE 2.1: Probabilistic graphical model for the dependence structure of a hidden
Markov model.

In Figure 2.1, {Yt : t ≥ 1} is the sequence of observations and {Xt : t ≥ 1} is the underlying

Markov chain. As it can be deduced by the graph, for any t ≥ 1, given the current state Xt, the

random variable Yt is conditionally independent of all the previous observations (Y1, . . . , Yt−1) and

the past of the chain (X1, . . . , Xt−1). This is exactly the property that we mentioned above, that the

distribution of Yt can be determined by the corresponding state Xt only.

We now give a formal definition of HMMs.

Definition 2.1 (Hidden Markov Model). A hidden Markov model is a bivariate process {(Xt, Yt) : t ≥ 1}

such that

(i) {Xt : t ≥ 1} is a Markov chain with initial distribution p(1) and transition probability matrix P,

(ii) conditionally on the state process {Xt : t ≥ 1}, the observations {Yt : t ≥ 1} are independent, and for

each t the conditional distribution of Yt depends on Xt only.

A more general definition of a hidden Markov model can be found in Cappé et al. (2005) (see

Definition 2.2.1), but the one we gave above will suffice for our purposes.

From now on, for an HMM, we will denote by {Yt : t ≥ 1} and {Xt : t ≥ 1} the observable stochas-

tic process and the hidden Markov chain, respectively. We will also denote by y = (y1, . . . , yT),

x = (x1, . . . , xT) a realisation of the stochastic processes {Yt : t ≥ 1} and {Xt : t ≥ 1}, until time T,

respectively. The probability mass or density function of a random variable (depending on whether

it is discrete or continuous) will be denoted by f (·).

Consider an HMM with state space SX = {1, . . . , K}, initial distribution p(1) and transition prob-

ability matrix P for the hidden Markov chain. We consider two cases of interest for the observable

stochastic process {Yt : t ≥ 1}.

• The random variable (Yt|Xt = k) follows a distribution with parameter φk (φk can either be

unidimensional or multidimensional, depending on the distribution), for all t ≥ 1 and k ∈
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SX = {1, . . . , K}. We denote by φ the vector containing all φk’s, that is, φ = (φ1, . . . , φK).

Then, the parameter of the HMM is θ =
(

p(1), P, φ
)

, or θ = (P, φ), in cases where the initial

distribution p(1) is assumed to be known.

• The state space of the stochastic process {Yt : t ≥ 1} is a finite set, say SY = {1, . . . , M}. Then

we define the probabilities

rkm = P(Yt = m |Xt = k) (k ∈ SX, m ∈ SY) , (2.1)

also known as the emission probabilities. These probabilities can also be arranged in a matrix

form, R = (rkm)k∈SX ,m∈SY
, known as the emission matrix, which is stochastic (see Definition

4.3 in Trevezas 2021). In accordance with the previous case, the parameter of the HMM is

θ =
(

p(1), P, R
)

, or θ = (P, R) .

There are three basic problems that arise when an HMM of the form described above is imple-

mented (see e.g., Section II in Rabiner 1989).

The evaluation problem: For a sequence of observations y = (y1, . . . , yT) and a specific HMM

θ =
(

p(1), P, φ
)

, or θ = (P, R), we need to compute the joint probability (or density) of the

observed vector given the model, that is, the likelihood f (y; θ) of the observations.

The decoding problem: For the sequence of observations y = (y1, . . . , yT) and the model θ =(
p(1), P, φ

)
, or θ = (P, R), we need to estimate the optimal corresponding sample path x =

(x1, . . . , xT) of the hidden Markov chain, that is, we need to determine the most likely state

sequence that produced the observations.

The learning (or training) problem: The model parameters θ =
(

p(1), P, φ
)

, or θ = (P, R),

need to be adjusted so as to maximise the probability f (y; θ). For this purpose, a proportion of

the data is used to "train" the HMM, i.e., to tune the parameters in order to describe, as best as

possible, how the observations arise (hence the name training problem).

All statistical inference on the model parameters θ =
(

p(1), P, φ
)

, or θ = (P, R), must be achieved

using only the observations y = (y1, . . . , yT), since the Markov chain {Xt : t ≥ 1} is not available to

the observer.

In the following, we focus our attention on time-homogeneous HMMs, which means that the

underlying Markov chain {Xt : t ≥ 1} is time-homogeneous (see Definition 1.4) and that the condi-

tional law of Yt given Xt is also independent of time t. We will also assume that the state space of the

hidden chain is finite.
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Suppose that {Xt : t ≥ 1} is a Markov chain with state space SX = {1, . . . , K} and that the dis-

tribution Yt, given Xt = k, also referred to as the state-dependent distribution (see Section 2.2 in Zuc-

chini et al. 2016), is Poisson with parameter λk, k ∈ SX. Then, for the conditional random variables

(Yt|Xt = k) we have that

(Yt|Xt = k) ∼ Poisson (λk) , (k ∈ SX) .

We could also assume that, instead of a Poisson distribution, the state-dependent distribution was

Normal, therefore

(Yt|Xt = k) ∼ N
(
µk, σk

2) , (k ∈ SX) ,

or another family of distributions, say Gamma.

Let us denote by fk (y) the state-dependent probability mass or density function of Yt (depending

on whether the random variables {Yt : t ≥ 1} are discrete or continuous, respectively), given that

Xt = k, for all t ∈ {1, . . . , T} and k ∈ SX = {1, . . . , K}. That is,

fk (y) = P(Yt = y |Xt = k) ,

in the discrete case, or

fk (y) = fYt|Xt (y|Xt = k) ,

in the continuous case. By the law of total probability, the marginal distribution of Yt is:

fYt (y) =
K

∑
k=1

P(Xt = k) fk (y). (2.2)

Equation (2.2) shows that the marginal distribution of Yt is a mixture of the distributions of the con-

ditional random variables (Yt|Xt = k), for all t ∈ {1, . . . , T} and k ∈ SX = {1, . . . , K}.

Consider a sample y = (y1, . . . , yT). It becomes evident by the evaluation and learning problems

above, that an essential part of the statistical inference in an HMM is the calculation of the likelihood,

that is the joint probability of the observations given the model parameters P(y | θ). One way to

achieve this, is through enumerating every possible sample path of the hidden Markov chain, with

the same length as the observation sequence, T. Consider a specific sample path x = (x1, . . . , xT). The

probability of the observation sequence, given this state sequence and the parameters of the model is

Ly|x(θ) = f (y | x; θ) = f (y1, . . . , yT | x1, . . . , xT; θ) =
T

∏
t=1

fxt(yt; θ), (2.3)
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where we have used the fact that for any t ≥ 1, given the random variable Xt, the random variable

Yt is conditionally independent of every Ys and Xs, where s ≥ 1 and s 6= t. As we saw in the proof of

Theorem 1.2, the probability of the state sequence is

Lx(θ) = f (x; θ) = p(1)x1

T

∏
t=2

pxt−1xt . (2.4)

By the general multiplication rule for the joint probability of y and x, which is the probability that y

and x occur simultaneously, we get

Ly,x(θ) = f (y, x; θ) = f (x; θ) f (y | x; θ) =

(
p(1)x1

T

∏
t=2

pxt−1xt

)(
T

∏
t=1

fxt(yt; θ)

)
. (2.5)

It is easy to see that in order to obtain the probability of the observation sequence, we need to sum

the joint probability given in Equation (2.5), over all possible sample paths, which gives

Ly(θ) = f (y; θ) = ∑
all possible x

f (x; θ) f (y | x; θ)

=
K

∑
x1=1

. . .
K

∑
xT=1

[(
p(1)x1

T

∏
t=2

pxt−1xt

)(
T

∏
t=1

fxt(yt; θ)

)]
. (2.6)

As it has already been mentioned, the variables {Xt : t ≥ 1} of the hidden chain can be interpreted

as missing data. Generally, in models with incomplete data, the joint probability mass or density

function of the observation sequence f (y; θ), is referred to as the observed-data likelihood, or observed

likelihood while the joint probability f (y, x; θ) of y and x, is called the complete-data likelihood (see e.g.,

Cappé et al. 2005, or Zucchini et al. 2016).

In the context of HMMs the incomplete data are the actual observations y = (y1, . . . , yT), while the

complete data consist of the observations y = (y1, . . . , yT), along with the hidden state sequence x =

(x1, . . . , xT). We will denote by Ly(θ) the observed-data likelihood and by Ly,x(θ) the complete-data

likelihood. We will also denote by Ly|x(θ) the conditional probability of observing y = (y1, . . . , yT),

given the sample path x = (x1, . . . , xT), that is Ly|x(θ) = f (y | x; θ), which we shall call the conditional

likelihood. Under the additional assumption that the parameters of the conditional distributions of the

random variables (Yt|Xt) are independent of the parameters corresponding to the initial distribution

p(1) and the transition probability matrix P of the Markov chain, the complete-data likelihood is

written as

Ly,x

(
p(1), P, φ

)
= Lx

(
p(1), P

)
Ly|x(φ) . (2.7)
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Taking the logarithm of both sides of Equation (2.7) gives us the complete-data log-likelihood

`y,x

(
p(1), P, φ

)
= log

[
Ly,x

(
p(1), P, φ

)]
= log

[
Lx

(
p(1), P

)]
+ log

[
Ly|x(φ)

]
= `x

(
p(1), P

)
+ `y|x(φ) . (2.8)

By Equation (2.6) it becomes clear that it is practically impossible to maximise the likelihood of the

model Ly(θ), using this expression, even for a small number of states and observations (see Section

III in Rabiner 1989). In Section 2.2 we will see how this objective can be achieved via the use of the

EM algorithm.

2.2 The EM Algorithm

The EM algorithm was presented, in full generality, and named by Dempster et al. (1977). Their

paper includes a description of the method, the necessary theory to prove that the likelihood in-

creases with successive iterations and a convergence analysis of the algorithm. More specifically,

they provided conditions under which the EM algorithm converges to a stationary point1 of the like-

lihood and also examined the rate of convergence close to a stationary point. However, their proof

of convergence of EM sequences contained errors (Theorems 2 and 3), as pointed out by Wu (1983),

who established convergence of the EM and GEM2 sequences and provided conditions under which

the likelihood sequence converges to a global or local maximum, or a saddle point.

The EM algorithm had already been used, in special cases, many times in earlier works. For

instance, Hartley (1958) presented three multinomial examples similar to the first example in Demp-

ster et al. (1977), as the authors state in their paper. Many of the basic ideas of the EM algorithm

had been presented, also in special cases, in Baum et al. (1970), Hartley and Hocking (1971), Orchard

and Woodbury (1972), Sundberg (1974), Sundberg (1976) (see e.g., Dempster et al. 1977, Meng and

Van Dyk 1997, or Wu 1983). However, the work of Dempster et al. (1977) remains very important, as it

generalised the method and rendered it a very popular statistical tool, by presenting many examples

of application.

The EM algorithm is an iterative procedure for calculating maximum-likelihood estimators for

the parameters of incomplete-data models. As it has already been mentioned in the description of

HMMs, these models consist of not only the observations and some unknown parameters, but also

1A point in which the derivative of a differentiable function of one variable, is equal to zero, is called stationary. In
case of a differentiable function of more than one variable, a stationary point is a point where all the partial derivatives
of the function equal zero (equivalently, the gradient of the function equals zero). The stationary points of a function are
candidates for local extrema (minima or maxima).

2The GEM (Generalised Expectation Maximisation) algorithm is a more general method (than the EM) of iterative
computation of maximum-likelihood estimators, also presented in Dempster et al. (1977).
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latent variables. These latent variables can either be actual missing data, or they can be non-existent

and added to the model, in order to simplify inference.

To obtain maximum-likelihood estimators for the parameters of incomplete-data models, all the

unknown quantities need to be taken into account, which means that the likelihood function needs to

be maximised with respect to both the unknown parameters and the latent variables (remember that

in HMMs, the initial distribution and the transition probability matrix of the hidden Markov chain

are parameters of the model).

There is no guarantee that the solution produced by the EM algorithm is the one that globally

maximises the likelihood. The method might converge towards a local maximum, or a saddle point,

as the surface of the likelihood of HMMs is generally multimodal. Therefore, one should use several

initial values for the parameter (see the last paragraph of Section 1 in Bickel et al. 1998).

2.2.1 Description of the EM algorithm

We begin by defining two families of functions that are necessary to establish the monotonic

increase of the sequence of the observed-data likelihood values. We follow Section 10.1 in Cappé

et al. (2005) and Section 4.1 in Trevezas (2021).

Definition 2.2 (Intermediate Quantity of the EM Algorithm). The intermediate quantity of EM is the

family
{
Q
(
·; θ′
)

: θ′ ∈ Θ
}

of real-valued functions on Θ, indexed by θ′ and defined by

Q
(
θ; θ′

)
=
∫

log[ f (x, y; θ)] f
(

x | y; θ′
)

λ(dx) = Eθ′
(
`y,X(θ)

∣∣Y = y
)

,

where λ is a σ-finite measure3 on the measurable space4 on which the hidden Markov chain is defined.

The following assumptions are needed to ensure thatQ
(
θ; θ′

)
is well-defined for all values of the

pair
(
θ, θ′

)
(see Assumption 10.1.3 in Cappé et al. 2005):

Assumptions 1. (i) The parameter set Θ is an open subset of Rdθ (for some integer dθ).

(ii) For all θ ∈ Θ, the observed-data likelihood Ly(θ) is positive and finite.

(iii) For all pairs
(
θ, θ′

)
∈ Θ×Θ,

∫
||∇θ log[ f ( x | y; θ)]|| f

(
x | y; θ′

)
λ(dx) = Eθ′( ||∇θ log[ f (X | y; θ)]|| |Y = y) < +∞.

3See Definition A.5 in Appendix A.
4See Definition A.3 in Appendix A.
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Definition 2.3.
{
H
(
·; θ′
)

: θ′ ∈ Θ
}

is a family of real-valued functions on Θ, indexed by θ′ and defined by

H
(
θ; θ′

)
= −

∫
log[ f ( x | y; θ)] f

(
x | y; θ′

)
λ(dx) = Eθ′(− log[ f (X | y; θ)] |Y = y)

We use the notation `y(θ) for the log-likelihood of the observed data, that is

`y(θ) = log
[
Ly(θ)

]
= log[ f (y; θ)] .

Lemma 2.1. For the complete-data log-likelihood it holds

`y(θ) = Q
(
θ; θ′

)
+H

(
θ; θ′

)
. (2.9)

Proof. For all x such that f ( x | y; θ) 6= 0 the following holds

f ( x | y; θ) =
f (x, y; θ)

f (y; θ)
⇔ f (y; θ) =

f (x, y; θ)

f ( x | y; θ)
.

By letting x become a random variable, we get

f (y; θ) =
f (X, y; θ)

f (X | y; θ)
. (2.10)

Taking the logarithm of both sides of Equation (2.10), we get

`y(θ) = log[ f (X, y; θ)]− log[ f (X | y; θ)] ,

and by taking the conditional expectations given y, we get

Eθ′
(
`y(θ)

∣∣Y = y
)
= Eθ′( log[ f (X, y; θ)] |Y = y) + Eθ′(− log[ f (X | y; θ)] |Y = y)⇔

`y(θ) = Q
(
θ; θ′

)
+H

(
θ; θ′

)
.

We are now able to present a fundamental inequality which guarantees the increase of the observed-

data likelihood with successive iterations of the algorithm.

Proposition 2.1. Under Assumptions 1, for all pairs
(
θ, θ′

)
∈ Θ×Θ, it holds

`y(θ)− `y
(
θ′
)
≥ Q

(
θ; θ′

)
−Q

(
θ′; θ′

)
, (2.11)
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where the inequality is strict unless f (·; θ) and f
(
·; θ′
)

are equal almost everywhere5.

Proof. By Equation (2.9) we have that

`y(θ)− `y
(
θ′
)
= Q

(
θ; θ′

)
+H

(
θ; θ′

)
−Q

(
θ′; θ′

)
−H

(
θ′; θ′

)
⇔

H
(
θ; θ′

)
−H

(
θ′; θ′

)
= `y(θ)− `y

(
θ′
)
−
[
Q
(
θ; θ′

)
−Q

(
θ′; θ′

)]
.

Therefore, in order to show that

`y(θ)− `y
(
θ′
)
≥ Q

(
θ; θ′

)
−Q

(
θ′; θ′

)
,

it suffices to show that

H
(
θ; θ′

)
−H

(
θ′; θ′

)
≥ 0.

For all
(
θ, θ′

)
∈ Θ×Θ we have

H
(
θ; θ′

)
−H

(
θ′; θ′

)
= Eθ′(− log[ f (X | y; θ)] |Y = y)− Eθ′

(
− log

[
f
(

X | y; θ′
)] ∣∣Y = y

)
= Eθ′

(
− log

[
f (X | y; θ)

f
(

X | y; θ′
)] ∣∣∣∣∣Y = y

)
. (2.12)

Since log(x) is a concave function, − log(x) is a convex function. By Jensen’s inequality we get

Eθ′

(
− log

[
f (X | y; θ)

f
(

X | y; θ′
)] ∣∣∣∣∣Y = y

)
≥ − log

[
Eθ′

(
f (X | y; θ)

f
(

X | y; θ′
) ∣∣∣∣∣Y = y

)]
, (2.13)

but

Eθ′

(
f (X | y; θ)

f
(

X | y; θ′
) ∣∣∣∣∣Y = y

)
=
∫ f ( x | y; θ)

f
(

x | y; θ′
) f
(

x | y; θ′
)

dx =
∫

f
(

x | y; θ′
)

dx = 1 (2.14)

By relations (2.12), (2.13) and (2.14), we have

H
(
θ; θ′

)
−H

(
θ′; θ′

)
≥ 0

and the proof is complete.

The basic concept of the EM algorithm is to take advantage of the fact that the complete-data

log-likelihood may be much simpler to compute, therefore it is this function that will be maximised,

instead of the observed-data log-likelihood `y(θ). Since the latent variables are not observable, the

5See Definition A.7 in Apppendix A
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same follows for the complete-data log-likelihood, thus we use, instead, its conditional expectation

given the observations y, under the current value θ′ of the model’s parameter θ, which is exactly the

quantity Q
(
·; θ′
)
. By choosing with each iteration a value θ ∈ Θ, such that

Q
(
θ; θ′

)
≥ Q

(
θ′; θ′

)
, (2.15)

where θ′ is the current estimation for θ, Inequality (2.11) ensures that the new value of the observed-

data log-likelihood will not decrease.

The EM algorithm as presented by Dempster et al. (1977) produces a sequence
{

θ(m) : m ≥ 1
}

of

estimated values of the parameter θ. Let θ(0) denote an initially chosen value for θ. In the E-step of

the first iteration, the quantity

Q
(

θ; θ(0)
)
= E

θ(0)
(
`y,X(θ)

∣∣Y = y
)

.

is calculated. In the M-step Q
(

θ; θ(0)
)

is maximised with respect to θ over the parameter space Θ,

therefore a value θ(1) is chosen, such that for all θ ∈ Θ

Q
(

θ(1); θ(0)
)
≥ Q

(
θ; θ(0)

)
.

In the second iteration, the E-step and the M-step are carried out as before, with the difference that

θ(0) is replaced by the current estimation θ(1). Generally, suppose that after m iterations of the al-

gorithm, the current estimation for θ is θ(m). Then the next iteration is broken into two steps, as

follows:

E-step: Calculate the conditional expectation of the complete-data log-likelihood given the ob-

servations y, under the current value θ(m),

Q
(

θ; θ(m)
)
= E

θ(m)

(
`y,X(θ)

∣∣Y = y
)

.

M-step: Choose θ(m+1) to be any value θ ∈ Θ that maximises Q
(

θ; θ(m)
)

, that is, for all θ ∈ Θ,

Q
(

θ(m+1); θ(m)
)
≥ Q

(
θ; θ(m)

)
.

This procedure continues by alternating between the E-step and the M-step until a stopping criterion

is met. Typically, the algorithm stops when the difference between two successive values of the

observed-data likelihood, or the estimated parameters, is smaller than a predetermined nonnegative
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value. By Inequality (2.11), for all m ≥ 0 we get

`y

(
θ(m+1)

)
− `y

(
θ(m)

)
≥ Q

(
θ(m+1); θ(m)

)
−Q

(
θ(m); θ(m)

)
≥ 0,

therefore, with each cycle of the algorithm, the value of the observed-data likelihood never decreases.

Hence convergence must be obtained with a sequence of likelihood values that are bounded above.

We will not get into details about the convergence of the algorithm. The interested reader is referred

to Wu (1983), Chapter 3 of McLachlan and Krishnan (2007), or Section 10.5 of Cappé et al. (2005).

Remark. In the GEM algorithm the only difference is that at each iteration, in the M-step, instead of choosing

a value θ(m+1) that maximises Q
(

θ; θ(m)
)

over all θ ∈ Θ, the new estimate for θ is chosen so as to increase

the value of Q
(

θ; θ(m)
)

over the current estimate θ(m). That is, θ(m+1) is chosen such that

Q
(

θ(m+1); θ(m)
)
≥ Q

(
θ(m); θ(m)

)
.

The monotonicity of the observed-data log-likelihood still holds, which means that at each iteration of the GEM,

we have

`y

(
θ(m+1)

)
≥ `y

(
θ(m)

)
.

The GEM algorithm is very useful in situations where there is no solution of the M-step in closed form, hence

global maximisation ofQ
(

θ; θ(m)
)

is not feasible (see Subsection 1.5.5 in McLachlan and Krishnan 2007).

2.2.2 The EM Algorithm for HMMs

In Section 2.1 we examined the likelihood functions of both the observations and the complete

data of an HMM. Instead of expressing the observed-data likelihood in the form of Equation (2.6),

we take a different approach. The indicator functions will be helpful in this direction.

Equation (2.4) can be written as

Lx

(
p(1), P

)
=

(
K

∏
k=1

(
p(1)k

)1{x1=k}
)
·
(

T

∏
t=2

K

∏
k=1

K

∏
l=1

p
1{xt−1=k,xt=l}
kl

)
. (2.16)

Letting X be a random variable, we get

LX

(
p(1), P

)
=

(
K

∏
k=1

(
p(1)k

)1{X1=k}
)
·
(

T

∏
t=2

K

∏
k=1

K

∏
l=1

p
1{Xt−1=k,Xt=l}
kl

)
. (2.17)
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Taking the logarithm of both sides of Equation (2.17) gives

`X

(
p(1), P

)
= log

[
LX

(
p(1), P

)]
=

K

∑
k=1

1{X1=k} log
(

p(1)k

)
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

1{Xt−1=k,Xt=l} log(pkl). (2.18)

Similarly the conditional likelihood can be expressed as

Ly|X(φ) =
T

∏
t=1

[ fk(yt; φ)]1{Xt=k} (2.19)

and the conditional log-likelihood as

`y|X(φ) = log
[

Ly|X(φ)
]
=

T

∑
t=1

1{Xt=k} log[ fk(yt; φ)]. (2.20)

Thus, by Equations (2.7), (2.16) and (2.19), the complete-data likelihood is

Ly,X(θ) =

(
K

∏
k=1

(
p(1)k

)1{X1=k}
)
·
(

T

∏
t=2

K

∏
k=1

K

∏
l=1

p
1{Xt−1=k,Xt=l}
kl

)

·
(

T

∏
t=1

K

∏
k=1

[ fk(yt; φ)]1{Xt=k}

)
.

(2.21)

By Equations (2.8), (2.18), and (2.20), or by taking the logarithm of both sides of Equation (2.21), we

get the complete-data log-likelihood as

`y,X

(
p(1), P, φ

)
=

K

∑
k=1

1{X1=k} log
(

p(1)k

)
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

1{Xt−1=k,Xt=l} log(pkl)

+
T

∑
t=1

K

∑
k=1

1{Xt=k} log[ fk(yt; φ)].

(2.22)
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Then for any m ≥ 0, Q
(

θ; θ(m)
)

can be expressed as

Q
(

θ; θ(m)
)
= E

θ(m)

(
`y,X

(
p(1), P, φ

) ∣∣∣Y = y
)

=
K

∑
k=1

E
θ(m)

(
1{X1=k}

∣∣Y = y
)

log
[(

p(1)k

)(m)
]

+
T

∑
t=2

K

∑
k=1

K

∑
l=1

E
θ(m)

(
1{Xt−1=k,Xt=l}

∣∣Y = y
)

log
(

p(m)
kl

)
+

T

∑
t=1

K

∑
k=1

E
θ(m)

(
1{Xt=k}

∣∣Y = y
)

log
[

fk

(
yt; φ(m)

)]
=

K

∑
k=1

P
θ(m)(X1 = k |Y = y) log

[(
p(1)k

)(m)
]

+
T

∑
t=2

K

∑
k=1

K

∑
l=1

P
θ(m)(Xt−1 = k, Xt = l |Y = y) log

(
p(m)

kl

)
+

T

∑
t=1

K

∑
k=1

P
θ(m)(Xt = k |Y = y) log

[
fk

(
yt; φ(m)

)]
. (2.23)

Using a similar notation to the one presented in Rabiner (1989), we define the variables

γk(t) = Eθ

(
1{Xt=k}

∣∣Y = y
)

= Pθ(Xt = k |Y = y) (t ≥ 1, k ∈ SX = {1, . . . , K}) ,
(2.24)

and

ξkl(t) = Eθ

(
1{Xt=k,Xt+1=l}

∣∣Y = y
)

= Pθ(Xt = k, Xt+1 = l |Y = y) (t ≥ 1, k, l ∈ SX = {1, . . . , K}) .
(2.25)

For each k ∈ SX = {1, . . . , K}, γk(t) is the conditional probability of the hidden Markov chain being

in state k at time t, given the observations y and the parameter θ. For each k, l ∈ SX = {1, . . . , K},

ξkl(t) is the conditional probability of the hidden Markov chain being in state k at time t and in state

l at time (t + 1), given the observations y and the parameter θ.

By Equations (2.23) to (2.25), we get

Q
(

θ; θ(m)
)
=

K

∑
k=1

γ
(m)
k (1) log

[(
p(1)k

)(m)
]
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

ξ
(m)
kl (t− 1) log

(
p(m)

kl

)
+

T

∑
t=1

K

∑
k=1

γ
(m)
k (t) log

[
fk

(
yt; φ(m)

)]
.

(2.26)
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2.2.2.1 E-Step

In the E-step of the EM algorithm we compute the variables γ
(m)
k (t) and ξ

(m)
kl (t). To do so, we

implement the forward-backward algorithm (see e.g., Rabiner 1989, or McLachlan and Krishnan

2007).

We define the forward variables

αk(t) = f (y1, . . . , yt, Xt = k; θ) (t ∈ {1, . . . , T} , k ∈ {1, . . . , K}) (2.27)

which are computed as follows:

1. Initialisation

αk(1) = p(1)k fk(y1; φ) (k ∈ {1, . . . , K}) . (2.28)

2. Induction

αk(t) =

(
K

∑
i=1

αi(t− 1) pik

)
fk(yt; φ) , (t ∈ {2, . . . , T} , k ∈ {1, . . . , K}) . (2.29)

3. Termination

Ly(θ) =
K

∑
k=1

αk(T). (2.30)

In the procedure above, the variables αk(t) are computed inductively starting from t = 1 and moving

forward, until t = T, hence the name forward variables.

We now proceed to prove Equations (2.28), (2.29) and (2.30).

Proof. To prove Equation (2.28), we use the definition of αk(t) for t = 1 and the general multiplication

rule.

αk(1) = f (y1, X1 = k; θ) = Pθ(X1 = k) · f (y1 |X1 = k; φ) = p(1)k fk(y1; φ) .
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To prove Equation (2.29), we use the definition of αk(t) and the law of total probability, utilising

the random variable Xt−1. For all t ∈ {2, . . . , T} and k ∈ {1, . . . , K} we have that

αk(t) = f (y1, . . . , yt−1, yt, Xt = k; θ)

=
K

∑
i=1

f (y1, . . . , yt−1, yt, Xt = k, Xt−1 = i; θ)

=
K

∑
i=1

[
f (y1, . . . , yt−1, Xt−1 = i; θ)Pθ(Xt = k | y1, . . . , yt−1, Xt−1 = i)

· f (yt | y1, . . . , yt−1, Xt−1 = i, Xt = k; θ)
]

=
K

∑
i=1

f (y1, . . . , yt−1, Xt−1 = i; θ)Pθ(Xt = k |Xt−1 = i) f (yt |Xt = k; θ)

=
K

∑
i=1

αi(t− 1) pik fk(yt; φ).

To prove Equation (2.30), we use the definition of Ly(θ) and the law of total probability, utilising

the random variable XT.

Ly(θ) = f (y1, . . . , yT; θ) =
K

∑
k=1

f (y1, . . . , yT, XT = k; θ) =
K

∑
k=1

αk(T).

We also define the backward variables

βk(t) = f (yt+1, . . . , yT |Xt = k; θ) (t ∈ {1, . . . , T − 1} , k ∈ {1, . . . , K}) . (2.31)

Since there is no observation for t > T, βk(t) cannot be defined as in Equation (2.31), for t = T.

Thus, we set βk(T) = 1, for all k ∈ {1, . . . , K} and the computation of the backward variables is

carried out as follows:

1. Initialisation

βk(T) = 1 (k ∈ {1, . . . , K}) . (2.32)

2. Induction

βk(t) =
K

∑
l=1

pkl fl(yt+1; φ) βl(t + 1) (t ∈ {1, . . . , T − 1} , k ∈ {1, . . . , K}) . (2.33)

The computation scheme of the backward variables βk(t) justifies their name, since they are calcu-

lated inductively starting from t = T and moving backwards, until t = 1.
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Equation (2.33) is proved below.

Proof. By the definition of βk(t) and the law of total probability, utilising the random variable Xt+1,

for all t ∈ {1, . . . , T − 1} and k ∈ {1, . . . , K}, we have

βk(t) = f (yt+1, . . . , yT |Xt = k; θ) =
K

∑
l=1

f (yt+1, . . . , yT, Xt+1 = l |Xt = k; θ) =

K

∑
l=1

Pθ(Xt+1 = l |Xt = k) f (yt+1, . . . , yT |Xt = k, Xt+1 = l; θ) =

K

∑
l=1

Pθ(Xt+1 = l |Xt = k) f (yt+1, yt+2, . . . , yT |Xt+1 = l; θ) =

K

∑
l=1

Pθ(Xt+1 = l |Xt = k) f (yt+1 |Xt+1 = l; θ) f (yt+2, . . . , yT | yt+1, Xt+1 = l; θ) =

K

∑
l=1

Pθ(Xt+1 = l |Xt = k) f (yt+1 |Xt+1 = l; φ) f (yt+2, . . . , yT |Xt+1 = l; θ) =

K

∑
l=1

pkl fl(yt+1; φ) βl(t + 1).

We also have the following equation, which relates the forward and backward variables to the

observed-data likelihood.

Ly(θ) =
K

∑
k=1

αk(t) βk(t) (t ∈ {1, . . . , T}) . (2.34)

Proof. For all t ∈ {1, . . . , T}, we have that

K

∑
k=1

αk(t) βk(t) =
K

∑
k=1

f (y1, . . . , yt, Xt = k; θ) f (yt+1, . . . , yT |Xt = k; θ)

=
K

∑
k=1

Pθ(Xt = k) f (y1, . . . , yt |Xt = k; θ) f (yt+1, . . . , yT |Xt = k; θ)

=
K

∑
k=1

Pθ(Xt = k) f (y1, . . . , yt, yt+1, . . . , yT |Xt = k; θ)

=
K

∑
k=1

Pθ(Xt = k) f (y1, . . . , yT |Xt = k; θ)

= f (y1, . . . , yT; θ) = Ly(θ) ,

where in the third equality we have used the fact that the random variables (Y1, . . . , Yt) and (Yt+1, . . . , YT)

are conditionally independent, given the state of the hidden Markov chain at time t, Xt.
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Notice that by Equations (2.32) and (2.34) we get Equation (2.30).

We are now able to express the variables γk(t) and ξkl(t) as functions of the forward and backward

variables. We have the following relations:

γk(t) =
αk(t) βk(t)

K
∑

i=1
αi(t) βi(t)

(t ∈ {1, . . . , T} , k ∈ {1, . . . , K}) (2.35)

ξkl(t) =
αk(t) pkl fl(yt+1; φ) βl(t + 1)

K
∑

i=1
αi(t) βi(t)

(t ∈ {1, . . . , T − 1} , k, l ∈ {1, . . . , K}) (2.36)

Proof. For Equation (2.35), for all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, we have

γk(t) = Pθ(Xt = k |Y = y) =
f (Xt = k, y1, . . . , yt; θ) f (yt+1, . . . , yT |Xt = k, y1, . . . , yt; θ)

f (y; θ)

=
f (Xt = k, y1, . . . , yt; θ) f (yt+1, . . . , yT |Xt = k; θ)

f (y; θ)
=

αk(t) βk(t)
K
∑

i=1
αi(t) βi(t)

.

For Equation (2.36), for all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, we have

ξkl(t) = Pθ(Xt = k, Xt+1 = l |Y = y)

=
f (Xt = k, Xt+1 = l, y1, . . . , yt, yt+1, yt+2, . . . , yT; θ)

f (y; θ)

=
f (Xt = k, y1, . . . , yt; θ)Pθ(Xt+1 = l |Xt = k, y1, . . . , yt)

f (y; θ)

· f (yt+1 |Xt+1 = l, Xt = k, y1, . . . , yt; θ)

· f (yt+2, . . . , yT |Xt+1 = l, Xt = k, y1, . . . , yt; θ)

=
f (Xt = k, y1, . . . , yt; θ)Pθ(Xt+1 = l |Xt = k)

f (y; θ)

· f (yt+1 |Xt+1 = l; θ) f (yt+2, . . . , yT |Xt+1 = l; θ)

=
αk(t) pkl fl(yt+1; φ) βl(t + 1)

K
∑

i=1
αi(t) βi(t)

.
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We can also relate γk(t) and ξkl(t) as follows:

γk(t) =
K

∑
l=1

ξkl(t) (t ∈ {1, . . . , T} , k ∈ {1, . . . , K}) , (2.37)

ξkl(t) =
γk(t) pkl fl(yt+1; φ) βl(t + 1)

βk(t)
(t ∈ {1, . . . , T − 1} , k, l ∈ {1, . . . , K}) . (2.38)

Proof. For Equation (2.37), we utilise the random variable Xt+1 and the law of total probability. For

all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, we get

γk(t) = Pθ(Xt = k |Y = y) =
K

∑
l=1

Pθ(Xt = k, Xt+1 = l | y) =
K

∑
l=1

ξkl(t).

By Equations (2.35) and (2.36), for all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, we get

ξkl(t) =
αk(t) pkl fl(yt+1; φ) βl(t + 1)

K
∑

i=1
αi(t) βi(t)

=
αk(t) βk(t)

K
∑

i=1
αi(t) βi(t)

· pkl fl(yt+1; φ) βl(t + 1)
βk(t)

= γk(t) ·
pkl fl(yt+1; φ) βl(t + 1)

βk(t)
.

2.2.2.2 M-Step

In the M-step we maximise Q
(

θ; θ(m)
)

subject to:

K

∑
k=1

p(1)k = 1

and
K

∑
l=1

pkl = 1 (k ∈ {1, . . . , K}) .

By implementing the method of Lagrange multipliers, we get the Lagrangian function for the

maximisation problem above, as:

L
(

p(1), P, φ, λ1, . . . , λK, λ
)
= Q

(
θ; θ(m)

)
−

K

∑
k=1

[
λk

(
K

∑
l=1

pkl − 1

)]
− λ

(
K

∑
k=1

p(1)k − 1

)
(2.39)
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and by Equation (2.26), we get

L
(

p(1), P, φ, λ1, . . . , λK, λ
)
=

K

∑
k=1

γk(1) log
(

p(1)k

)
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

ξkl(t− 1) log(pkl)

+
T

∑
t=1

K

∑
k=1

γk(t) log[ fk(yt; φ)]−
K

∑
k=1

[
λk

(
K

∑
l=1

pkl − 1

)]

− λ

(
K

∑
k=1

p(1)k − 1

)
.

(2.40)

To get the updated values for the initial distribution p(1) =
(

p(1)k

)
k∈SX

and the transition prob-

abilities pkl (k, l ∈ SX), we compute the partial derivative of the Lagrangian function with respect

to p(1)k , for all k ∈ SX and pkl , for all k, l ∈ SX, respectively and set them equal to zero. We get the

following relations:
∂L

∂p(1)k

= 0⇔ γk(1)

p(1)k

− λ = 0⇔ p(1)k =
γk(1)

λ
. (2.41)

∂L
∂pkl

= 0⇔

T
∑

t=2
ξkl(t− 1)

pkl
− λk = 0⇔ pkl =

T
∑

t=2
ξkl(t− 1)

λk
⇔ pkl =

T−1
∑

t=1
ξkl(t)

λk
(2.42)

Utilising the first constraint and Equation (2.41), or, equivalently, by computing the partial deriva-

tive of the Lagrangian function with respect to λ and setting it equal to zero, for all k ∈ SX, we get

K

∑
k=1

p(1)k = 1⇔
K

∑
k=1

γk(1)
λ

= 1⇔ λ =
K

∑
k=1

γk(1). (2.43)

Utilising the second constraint and Equation (2.42), or, equivalently, by computing the partial

derivative of the Lagrangian function with respect to λk and setting it equal to zero, for all k ∈ SX,

we get

K

∑
l=1

pkl = 1⇔
K

∑
l=1


T−1
∑

t=1
ξkl(t)

λk

 = 1⇔ λk =
K

∑
l=1

(
T−1

∑
t=1

ξkl(t)

)
⇔ λk =

T−1

∑
t=1

(
K

∑
l=1

ξkl(t)

)
.

By (2.36) we get

λk =
T−1

∑
t=1

 K

∑
l=1

αk(t) pkl fl(yt+1; φ) βl(t + 1)
K
∑

i=1
αi(t) βi(t)

,
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which, equivalently, is written as

λk =
T−1

∑
t=1

 αk(t)
K
∑

i=1
αi(t) βi(t)

K

∑
l=1

pkl fl(yt+1; φ) βl(t + 1)

.

It follows that

λk =
T−1

∑
t=1

 αk(t)
K
∑

i=1
αi(t) βi(t)

βk(t)

,

and by Equation (2.35)

λk =
T−1

∑
t=1

γk(t). (2.44)

As a result, by Relations (2.41) and (2.43), we get the updated values for the initial probabilities

as (
p̂(1)k

)(m+1)

=
γ
(m)
k (1)

K
∑

i=1
γ
(m)
i (1)

(k ∈ SX) ,

and by Relations (2.42) and (2.44), we get the updated values for the transition probabilities as

p̂(m+1)
kl =

T−1
∑

t=1
ξ
(m)
kl (t)

T−1
∑

t=1
γ
(m)
k (t)

(k, l ∈ SX) .

By computing the partial derivative of the Lagrangian function with respect to φk and setting it

equal to zero, for all k ∈ SX, we get the estimates φ̂
(m+1)
k (see e.g., Section III.C in Rabiner 1989).

Remark. As we can see by Equation (2.8) the complete-data log-likelihood consists of two summands, `X

(
p(1), P

)
and `y|X(φ), thus Q

(
θ; θ(m)

)
can be written as

Q
(

θ; θ(m)
)
= E

θ(m)

(
`y,X

(
p(1), P, φ

) ∣∣∣Y = y
)

= E
θ(m)

(
`X

(
p(1), P

)
+ `y|X(φ)

∣∣∣Y = y
)

= E
θ(m)

(
`X

(
p(1), P

) ∣∣∣Y = y
)
+ E

θ(m)

(
`y|X(φ)

∣∣∣Y = y
)

= E
θ(m)

(
`X

(
p(1), P

) ∣∣∣Y = y
)
+ E

θ(m)

[
`y|X(φ)

]
.

Therefore, in order to maximiseQ
(

θ; θ(m)
)

, we can maximise E
θ(m)

(
`X

(
p(1), P

) ∣∣∣Y = y
)

and E
θ(m)

[
`y|X(φ)

]
separately. Thus, we get the following two optimisation problems:
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(1) the constrained maximisation problem

max
{

E
θ(m)

(
`X

(
p(1), P

) ∣∣∣Y = y
)}

s.t.
K

∑
k=1

p(1)k = 1,

K

∑
l=1

pkl = 1 (k ∈ {1, . . . , K})

and

(2) the unconstrained maximisation problem

max
{

E
θ(m)

[
`y|X(φ)

]}

Below we summarise the procedures that were described for the E-step and M-step.

EM Algorithm

(1) Initialise with a proper value θ(0) =

[(
p(1)

)(0)
, P(0), φ(0)

]
of the parameter.

(2) At the m-th iteration proceed as follows:

(2.1) E-Step: Compute Q
(

θ; θ(m)
)

as a function of θ, in the following manner:

(2.1.1) For all k ∈ {1, . . . , K}, compute the forward variables under the value θ(m) as:

(2.1.1.1) α
(m)
k (1) =

(
p(1)k

)(m)
fk

(
y1; φ

(m)
k

)
.

(2.1.1.2) α
(m)
k (t) =

(
K
∑

i=1
α
(m)
i (t− 1) p(m)

ik

)
fk

(
yt; φ

(m)
k

)
, for all t ∈ {2, . . . , T}.

(2.1.2) For all k ∈ {1, . . . , K}, compute the backward variables under the value θ(m) as:

(2.1.2.1) β
(m)
k (T) = 1.

(2.1.2.2) β
(m)
k (t) =

K
∑

l=1
p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1), for all t ∈ {T − 1, . . . , 1}.

(2.1.3) For all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, compute the variables:

γ
(m)
k (t) =

α
(m)
k (t) β

(m)
k (t)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.

(2.1.4) For all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, compute the variables:

ξ
(m)
kl (t) =

α
(m)
k (t) p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.
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(2.1.5) Calculate the observed-data likelihood for the current value θ(m) of the parameter as:

Ly

(
θ(m)

)
=

K

∑
k=1

α
(m)
k (T).

(2.2) M-Step: Using the current values γ
(m)
k (t) and ξ

(m)
kl (t), that were calculated in the E-step,

determine the value θ(m+1) =

[(
p(1)

)(m+1)
, P(m+1), φ(m+1)

]
that maximises Q

(
θ; θ(m)

)
.

For all k, l ∈ {1, . . . , K}, the values of the initial and transition probabilities of the hidden

Markov chain are updated as follows:

(
p̂(1)k

)(m+1)

=
γ
(m)
k (1)

K
∑

i=1
γ
(m)
i (1)

,

p̂(m+1)
kl =

T−1
∑

t=1
ξ
(m)
kl (t)

T−1
∑

t=1
γ
(m)
k (t)

.

(3) Alternate between steps (2.1) and (2.2) until a stopping criterion is met.

2.3 The Data-Generating Model

In this section we introduce the model that will be used to generate the data, proposed by Fiecas

et al. (2017), along with the necessary basic assumptions. In contrast with our previous models,

from now on, we consider a hidden Markov chain {Xt : t ∈ Z} and an observable stochastic process

{Yt : t ∈ Z}, where, for all t ∈ Z, Yt is assumed to be a p-dimensional random vector.

2.3.1 Definition of the Data-Generating Model

Let {Xt : t ∈ Z} be a Markov chain with finite state space SX = {1, . . . , K}, and transition proba-

bility matrix P. Following the notation up to this point, we define the transition probabilities:

pkl = P(Xt+1 = l |Xt = k, Xt−1, . . . , X1) = P(Xt = l |Xt−1 = k) (k, l ∈ SX = {1, . . . , K}) .

The model for the data-generating mechanism is given by the following equation:

Yt =
K

∑
k=1

1{Xt=k}

(
µk + Σ1/2

k εt

)
, (2.45)
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where εt, t ∈ Z are independent and identically distributed (abbreviated iid) p-dimensional ran-

dom vectors with:

E(εt) = 0p,

Var(εt) = Ip,

where 0p is a p-dimensional vector of zeroes and Ip is the p× p identity matrix. At any moment t,

there is only one possible value of k ∈ {1, . . . , K}, so that

Xt = k⇔ 1{Xt=k} = 1,

which implies that

Yt = µk + Σ1/2
k εt,

for that specific value of k. We observe a sequence y = (y1, . . . , yT), but not the state sequence

x = (x1, . . . , xT) of the hidden Markov chain. Fiecas et al. (2017) make three basic assumptions for

this model.

(A1) The hidden Markov chain {Xt : t ∈ Z} is irreducible, aperiodic and stationary,

(A2) εt, t ∈ Z, are independent of Xt, t ∈ Z,

(A3) E
(

ε4
t,i

)
− 3 ≤ κε, t ∈ Z, i ∈ {1, . . . , p}, for some constant κε < +∞ and E

(
ε8

t,i

)
< +∞, t ∈ Z,

i ∈ {1, . . . , p} .

By Assumption (A1) it follows that the Markov chain is α-mixing with exponentially decreasing

rate6 (see e.g., Lemma 1 in Francq and Roussignol 1997, or Statements (a), (b) and (c) of Theorem

3.1 and the paragraph following it in Bradley 2005). Since the hidden Markov chain of the model

is assumed to be irreducible and aperiodic with a finite state space, it follows that is has a unique

stationary distribution π = (πi)i∈S (see Corollary 1.10.1). Hence, the assumption of stationarity is

not necessary. Even if the initial distribution were not also the stationary distribution of the chain, all

the results would hold, as the process would reach stationarity after a sufficient amount of time (see

the discussion following the Assumptions (A) in Section 2.1 in Fiecas et al. 2017).

Assumptions (A1) and (A2) guarantee that the observed sequence {Yt : t ∈ Z} inherits the prop-

erties of stationarity and α-mixing with exponentially decreasing rate from the hidden process {Xt : t ∈ Z}

(see e.g., proof of Lemma 1 in Francq and Roussignol 1997, or Section IV-C in Ephraim and Merhav

6See Definition A.20 in Apppendix A and the discussion following it. For more information on the topic of α-mixing
(and mixing in general) the interested reader is referred to Bradley (2005).
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2002). These two properties are necessary to ensure that the maximum likelihood estimates are con-

sistent and asymptotically normal (see the paragraph preceding Proposition 3.1 in Tadjuidje Kam-

gaing 2013).

The first part of Assumption (A3) states that E
(

ε4
t,i

)
is uniformly bounded by κε + 3, for all t ∈ Z

and i ∈ {1, . . . , p}. This property is stronger than that ensured by the second part, as E
(

ε8
t,i

)
< +∞

only implies that E
(

ε4
t,i

)
< +∞. Moreover, the existence of the m-th moment of εt assures that the

m-th moment of Yt also exists.

Tadjuidje Kamgaing (2013) used the same model as the one given in Equation (2.45) to prove that

the maximum likelihood estimates of the parameters are consistent and asympotically normal, under

some suitable conditions (see Assumptions 2.1 and 3.1 to 3.3 in Tadjuidje Kamgaing 2013). As the

author states in his paper (see Section 3), under these conditions, this model satisfies the assumptions

of Douc et al. (2004), whose results were used to derive the asymptotic properties of the parameter

estimators. He assumed that εt, t ∈ Z are iid random variables from Np(0p, Ip) and independent

of the underlying Markov chain (Assumption 2.1 in Tadjuidje Kamgaing 2013). However, as he

mentions (see Sections 2 and 4), the assumption of the normality of the innovations (εt’s) is used

as an example and his theory could also be utilised in different settings for the distribution of the

innovations.

2.3.2 EM Algorithm for the Data-Generating Model

In this subsection we present a classical approach of the EM algorithm for the data-generating

model given by Equation (2.45). We assume that the state-dependent distributions are multivariate

Normal7 with parameters (µk, Σk), for all k ∈ SX = {1, . . . , K}, that is (Yt|Xt = k) ∼ Np (µk, Σk), for

all t ∈ Z and k ∈ SX = {1, . . . , K}. Thus we have

fk(yt; φk) =
1

(2π)p/2 [det(Σk)]
1/2 exp

{
−1

2
(yt − µk)

′
Σ−1

k (yt − µk)

}
, (2.46)

where φk = (µk, Σk), for all k ∈ SX = {1, . . . , K}.

As we saw in Section 2.2, a vital part of the EM algorithm is the calculation of Q
(

θ; θ(m)
)

. To do

so, we need to compute the logarithm of the state-dependent distributions (see Equation (2.26)).

7See Subsection A.3.2 in Appendix A.
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Taking the logarithm of both sides of Equation (2.46), we get

log[ fk(yt; φk)] = log

[
1

(2π)p/2 [det(Σk)]
1/2 exp

{
−1

2
(yt − µk)

′
Σ−1

k (yt − µk)

}]

= − p
2

log(2π)− 1
2

log[det(Σk)]−
1
2
(yt − µk)

′
Σ−1

k (yt − µk). (2.47)

We have that

− 1
2
(yt − µk)

′
Σ−1

k (yt − µk) = −
1
2

yt
′
Σ−1

k yt +
1
2

yt
′
Σ−1

k µk +
1
2

µk
′
Σ−1

k yt −
1
2

µk
′
Σ−1

k µk. (2.48)

Notice that the quantity µk
′
Σ−1

k yt is scalar, which means that it is equal to its transpose, therefore

we get

µk
′
Σ−1

k yt =
(

µk
′
Σ−1

k yt

)′
=
(

Σ−1
k yt

)′ (
µk
′
)′

= yt
′
(

Σ−1
k

)′
µk = yt

′
(

Σk
′
)−1

µk = yt
′
Σ−1

k µk. (2.49)

By Equations (2.48) and (2.49), it follows that

− 1
2
(yt − µk)

′
Σ−1

k (yt − µk) = −
1
2

yt
′
Σ−1

k yt + yt
′
Σ−1

k µk −
1
2

µk
′
Σ−1

k µk (2.50)

By (2.47) and (2.50) we get the following relation

log[ fk(yt; φk)] = −
p
2

log(2π)− 1
2

log[det(Σk)]−
1
2

yt
′
Σ−1

k yt

+ yt
′
Σ−1

k µk −
1
2

µk
′
Σ−1

k µk.
(2.51)

As has already been mentioned, in the context of HMMs, the hidden path of the Markov chain

{Xt : t ∈ Z}, is considered as missing data. Had an oracle unveiled the hidden states (X1, . . . , XT), by

Equations (2.8), (2.22), (2.47) and (2.51), we would get the following two expressions for the complete-

data log-likelihood
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`y,X(θ) = `y|X(φ) + `X

(
p(1), P

)
=

T

∑
t=1

K

∑
k=1

1{Xt=k} log[ fk(yt; φk)] + `X

(
p(1), P

)
= −1

2

T

∑
t=1

(
K

∑
k=1

1{Xt=k}log[det(Σk)]

)
− 1

2

T

∑
t=1

(
K

∑
k=1

1{Xt=k} (yt − µk)
′
Σ−1

k (yt − µk)

)
+ `X

(
p(1), P

)
+ c

= −1
2

K

∑
k=1

(
T

∑
t=1

1{Xt=k}log[det(Σk)]

)
− 1

2

K

∑
k=1

(
T

∑
t=1

1{Xt=k} (yt − µk)
′
Σ−1

k (yt − µk)

)
+ `X

(
p(1), P

)
+ c (2.52)

= −1
2

K

∑
k=1

(
T

∑
t=1

1{Xt=k}log[det(Σk)]

)
− 1

2

K

∑
k=1

[
T

∑
t=1

1{Xt=k}

(
yt
′
Σ−1

k yt

)]

+
K

∑
k=1

[
T

∑
t=1

1{Xt=k}

(
yt
′
Σ−1

k µk

)]
− 1

2

K

∑
k=1

[
T

∑
t=1

1{Xt=k}

(
µk
′
Σ−1

k µk

)]
+ `X

(
p(1), P

)
+ c, (2.53)

where

c =
T

∑
t=1

K

∑
k=1

1{Xt=k}

[
− p

2
log(2π)

]
= − p

2
log(2π)

T

∑
t=1

1 = − p
2

log(2π) T,

as for any fixed value t ∈ Z, 1{Xt=k} = 1 for some fixed value k ∈ {1, . . . , K}, and 1{Xt=l} = 0, for all

l ∈ {1, . . . , K}, with l 6= k, therefore
K
∑

k=1
1{Xt=k} = 1.

Maximising the complete-data likelihood with respect to µk and Σk, for all k ∈ {1, . . . , K}, yields

what we shall call the oracle estimates.

To determine the oracle estimators of the means, we set the partial derivative of the complete-data

log-likelihood, given by (2.53), with respect to µk, equal to the zero vector 0p. Utilising Equations

(A.2) and (A.3) (see Appendix A), for all k ∈ SX = {1, . . . , K}, we have that

∂`y,X(µk, Σk)

∂µk
= 0p ⇔

T

∑
t=1

1{Xt=k}

(
yt
′
Σ−1

k

)
− 1

2

T

∑
t=1

1{Xt=k}

(
2µk

′
Σ−1

k

)
= 0p,

therefore,
T

∑
t=1

1{Xt=k}

(
µk
′
Σ−1

k

)
=

T

∑
t=1

1{Xt=k}

(
yt
′
Σ−1

k

)
. (2.54)

Multiplying both sides of (2.54) by Σk, from the right, gives

T

∑
t=1

1{Xt=k}

(
µk
′
)

Ip =
T

∑
t=1

1{Xt=k}

(
yt
′
)

Ip ⇔
(

T

∑
t=1

1{Xt=k}µk

)′
=

(
T

∑
t=1

1{Xt=k}yt

)′
,
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which is equivalent to
T

∑
t=1

1{Xt=k}µk =
T

∑
t=1

1{Xt=k}yt.

As a result, the oracle estimators of the means are

µo
k =

1
T
∑

t=1
1{Xt=k}

T

∑
t=1

1{Xt=k}yt (k ∈ SX = {1, . . . , K}) . (2.55)

To determine the oracle estimators of the covariance matrices, we set the partial derivative of

the complete-data log-likelihood, given by (2.52), with respect to Σk, equal to the zero matrix 0p×p.

Utilising Equations (A.4) and (A.5) (see Appendix A), for all k ∈ SX = {1, . . . , K}, we have that

∂`y,X
(
µo

k , Σk
)

∂Σk
= 0p×p ⇔

−1
2

T

∑
t=1

1{Xt=k}

(
Σk
′
)−1
− 1

2

T

∑
t=1

1{Xt=k}

[
−
(

Σk
′
)−1

(yt − µo
k ) (yt − µo

k )
′ (

Σk
′
)−1

]
= 0p×p.

As Σk is symmetric, we get

[
T

∑
t=1

1{Xt=k}

]
Σ−1

k = Σ−1
k

[
T

∑
t=1

1{Xt=k} (yt − µo
k ) (yt − µo

k )
′
]

Σ−1
k . (2.56)

Multiplying both sides of (2.56) by Σk, both from the left and from the right, yields

[
T

∑
t=1

1{Xt=k}

]
ΣkIp = Ip

[
T

∑
t=1

1{Xt=k} (yt − µo
k ) (yt − µo

k )
′
]

Ip

Therefore, the oracle estimators of the covariance matrices are

Σ̃o
k =

1
T
∑

t=1
1{Xt=k}

T

∑
t=1

1{Xt=k} (yt − µo
k ) (yt − µo

k )
′

(k ∈ SX = {1, . . . , K}) . (2.57)

Notice that the oracle estimators µo
k and Σ̃o

k are the sample estimators of the parameters µk and

Σk, respectively, as for any fixed k ∈ {1, . . . , K}, the sample size is
T
∑

t=1
1{Xt=k}. In case

T
∑

t=1
1{Xt=k} = 0,

that is in case there is a state k ∈ {1, . . . , K} which is not observed, Fiecas et al. (2017) set µo
k = 0p

and Σ̃o
k = 0p×p. As they also state in their paper (see the discussion following Equation (6) in Subsec-

tion 2.2), this happens with exponentially decreasing probability and it is asymptotically negligible.

However, in case there are some rarely visited states, such that
T
∑

t=1
1{Xt=k} is very small, some nu-

merical problems may arise, hence they choose to work with the biased estimator of the covariance
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matrix (see also Equation (A.1) in Appendix A)

Σo
k =

1
T

T

∑
t=1

1{Xt=k} (yt − µo
k ) (yt − µo

k )
′
= πo

k Σ̃o
k (k ∈ SX = {1, . . . , K}) , (2.58)

where

πo
k =

1
T

T

∑
t=1

1{Xt=k}, (2.59)

is the oracle (empirical) estimate of the stationary probability πk = P(Xt = k) (see Subsection 1.2.4.1).

2.3.2.1 E-Step

As the E-step is not affected by the state-dependent distribution, it is carried out as was presented

in Paragraph 2.2.2.1. The only difference is that in Equations (2.28), the initial probability p(1)k is

replaced by the stationary probability πk, that is

αk(1) = πk fk(y1; φ) (k ∈ {1, . . . , K}) ,

since we have assumed that the hidden Markov chain {Xt : t ∈ Z} is stationary.

2.3.2.2 M-Step

Utilising the variables γk(t) and ξk,l(t) obtained in the E-step, we get the updating formulas for

πk, pkl , µk and Σk, as

π̂
(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t) (k ∈ {1, . . . , K}) , (2.60)

p̂(m+1)
kl =

T−1
∑

t=1
ξ
(m)
kl (t)

T−1
∑

t=1
γ
(m)
k (t)

(k, l ∈ {1, . . . , K}) , (2.61)

µ̂
(m+1)
k =

T
∑

t=1
γ
(m)
k (t) yt

T
∑

t=1
γ
(m)
k (t)

(k ∈ {1, . . . , K}) , (2.62)

Σ̂(m+1)
k =

1

π̂
(m+1)
k

Σ̂o(m+1)
k (k ∈ {1, . . . , K}) , (2.63)

where

Σ̂o(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t)

(
yt − µ̂

(m+1)
k

) (
yt − µ̂

(m+1)
k

)′
(k ∈ {1, . . . , K}) . (2.64)

The EM algorithm for the data generating model is summarised as follows.
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EM Algorithm for the Data Generating Model

(1) Initialise with a proper value θ(0) =
(

π(0), P(0), φ(0)
)

of the parameter.

(2) At the m-th iteration proceed as follows:

(2.1) E-Step: Compute Q
(

θ; θ(m)
)

as a function of θ, in the following manner:

(2.1.1) For all k ∈ {1, . . . , K}, compute the forward variables under the value θ(m) as:

(2.1.1.1) α
(m)
k (1) = π

(m)
k fk

(
y1; φ

(m)
k

)
.

(2.1.1.2) α
(m)
k (t) =

(
K
∑

i=1
α
(m)
i (t− 1) p(m)

ik

)
fk

(
yt; φ

(m)
k

)
, for all t ∈ {2, . . . , T}.

(2.1.2) For all k ∈ {1, . . . , K}, compute the backward variables under the value θ(m) as:

(2.1.2.1) β
(m)
k (T) = 1.

(2.1.2.2) β
(m)
k (t) =

K
∑

l=1
p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1), for all t ∈ {T − 1, . . . , 1}.

(2.1.3) For all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, compute the variables:

γ
(m)
k (t) =

α
(m)
k (t) β

(m)
k (t)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.

(2.1.4) For all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, compute the variables:

ξ
(m)
kl (t) =

α
(m)
k (t) p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.

(2.1.5) Calculate the observed-data likelihood for the current value θ(m) of the parameter as:

Ly

(
θ(m)

)
=

K

∑
k=1

α
(m)
k (T).

(2.2) M-Step: Using the current values γ
(m)
k (t) and ξ

(m)
kl (t), that were calculated in the E-step,

determine the value θ(m+1) =
(

π(m+1), P(m+1), φ(m+1)
)

that maximisesQ
(

θ; θ(m)
)

. For all

k, l ∈ {1, . . . , K}, the values of the initial and transition probabilities of the hidden Markov
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chain are updated as follows:

π̂
(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t),

p̂(m+1)
kl =

T−1
∑

t=1
ξ
(m)
kl (t)

T−1
∑

t=1
γ
(m)
k (t)

.

For all k ∈ {1, . . . , K}, the parameters of the state-dependent distributions φ(m+1) =(
φ
(m+1)
k

)
k∈SX

, with φk = (µk, Σk), are updated as follows:

µ̂
(m+1)
k =

T
∑

t=1
γ
(m)
k (t) yt

T
∑

t=1
γ
(m)
k (t)

,

Σ̂(m+1)
k =

1

π̂
(m+1)
k

Σ̂o(m+1)
k ,

where

Σ̂o(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t)

(
yt − µ̂

(m+1)
k

) (
yt − µ̂

(m+1)
k

)′
.

(3) Alternate between steps (2.1) and (2.2) until a stopping criterion is met.

Remark. Following Fiecas et al. (2017), instead of maximising Q
(

θ; θ(m)
)

with respect to µk and Σk, to

determine their updating formulas, we initially calculated the maximum likelihood estimators of these param-

eters, as if the states were known and then replaced the unknown quantities 1{Xt=k} by their estimates γk(t).

The reason why this framework was adopted will become clear in Chapter 3. However, had we maximised

Q
(

θ; θ(m)
)

with respect to µk and Σk, the same formulas as the ones given by Equations (2.62) and (2.63)

would have emerged (see Appendix B).

It should also be noted that instead of using the empirical estimator of the stationary distribution in the

EM algorithm, in the case of a stationary Markov chain, another method can be implemented, presented in

Subsection 4.2.5 in Zucchini et al. (2016).
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Chapter 3

EM Algorithm and Shrinkage

Estimating the covariance matrix of a sample of random variables is an essential part in many

areas of multivariate statistical analysis, such as principal component analysis (PCA), linear and

quadratic discrimination analysis (LDA and QDA), or graphical models (see, e.g., the introductions

in Bickel and Levina 2008 and Cai et al. 2011). Many real-world applications, where these methods

are implemented (for instance genetic data, brain imaging and spectroscopic imaging), deal with

high-dimensional data (see the Introduction in Bickel and Levina 2008). In other problems, such as

portfolio risk assessment and optimal portfolio allocation, mean–variance portfolio optimisation for

a large number of assets (see, e.g., the introductions in Ledoit and Wolf 2004; Sancetta 2008; Fan et al.

2008), where the data can also be of high dimension, it may be crucial to also estimate the inverse

of the covariance matrix, also known as the precision matrix (see, for instance, the introductions in

Bickel and Levina 2008 and Cai et al. 2011). However, in situations like these, estimation of a large

covariance matrix and/or its inverse, can be very challenging. The natural estimator of a covariance

matrix, the sample covariance matrix, is well-known that is not a good estimate when the dimension

p is comparable to the sample size T. As Ledoit and Wolf (2004) point out in their paper, when

the ratio p/T is larger than one, the sample covariance matrix is singular (see also Cai et al. 2011).

When the ratio p/T is less than one but not negligible, even though the sample covariance matrix is

invertible, it is numerically ill-conditioned1. In cases where the dimension p is very large, it may be

impossible to find enough observations, so that the ratio p/T becomes negligible. This problem may

be even more pronounced in the context of HMMs, where the sample size for some states might be

minute, if they are rarely visited.

1A problem of solving a system of linear equations is characterised as ill-conditioned when small perturbations in the data
(for instance, in the elements of a matrix), result in large changes in the result, otherwise it is referred to as well-conditioned
(see the Introduction of Chapter 2 in Ciarlet 1989).

If a matrix is ill-conditioned for the problem of its inversion, approximating its inverse will probably result in an inaccu-
rate solution due to its sensitivity to the values of the coefficients (see Chapter 4 in Westlake 1968).
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A popular method to combat this problem is shrinkage. Shrinkage is a regularisation2 technique

not only used to estimate large covariance matrices, but also in other areas of statistics, such as re-

gression analysis (Copas 1983; Tibshirani 1996; Zou 2006) and in spectral analysis of time-series data,

where it has been used to estimate the spectral density matrix (Böhm and von Sachs 2009; Fiecas and

Ombao 2011). In covariance matrix estimation, the idea is to obtain an estimator that is a weighted

average between the sample covariance matrix, which is known to be unbiased (see the Introduction

in Ledoit and Wolf 2004) and a properly chosen matrix, called the shrinkage target or target matrix (see,

e.g., Subsection 2.1 in Ledoit and Wolf 2004, Subsection 2.1 in Yuan and Huang 2009, or Appendix A

in Hausser and Strimmer 2008), so that the resulting estimator, asymptotically, possesses some desir-

able properties. This is possible when the weight on the target matrix, which is called the shrinkage

intensity (see the same references as for the shrinkage target), is chosen optimally according to some

loss function3 . As Ledoit and Wolf (2004) state, under standard asymptotics, where the dimension

of the random variables p is finite and fixed and the sample size T goes to infinity, the sample co-

variance matrix is well-conditioned in the limit. This assumption is not realistic in many situations

where the dimension p is of the same order of magnitude as the sample size T, or even larger.

Chapter 3 is organised as follows. In Section 3.1, we give a brief overview of the work of Ledoit

and Wolf (2004) and show how their estimator can be obtained in the case of iid Normal random

vectors, using a penalised likelihood, as defined by Yuan and Huang (2009). In Section 3.2, the

framework of Section 3.1 is implemented in the case where there are several regimes revealed by an

oracle, similarly to Subsection 2.3.2. Finally, in Section 3.3 the modified version of the EM algorithm

of Fiecas et al. (2017) is presented.

3.1 Penalised Likelihood For Independent And Identically Distributed

Random Vectors

As we mentioned above, in this section we introduce the shrinkage estimator of Ledoit and Wolf

(2004) for iid data and show how it can be obtained using the penalised log-likelihood of Yuan and

Huang (2009).

Ledoit and Wolf (2004) proposed an estimator that, asymptotically, as the dimension p and the

sample size T go to infinity simultaneously, is the optimal convex linear combination of the sample

covariance matrix with a multiple of the identity matrix. According to the authors, a constructed

2(see Demmel 1997) The term regularisation is used to describe the process of turning an ill-conditioned problem into
a well-conditioned one, by imposing some additional conditions on the solution (see the introduction of Section 3.5 in
Demmel 1997).

3See Definition A.27 in Appendix A.
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estimator with equal variances and null covariances (that is, a diagonal matrix with equal diagonal

entries) is well-conditioned. Therefore, by taking the weighted average of the sample covariance

matrix and the shrinkage target (i.e. a multiple of the identity matrix) and choosing the weights op-

timally according to a quadratic loss function, the resulting estimator inherits the desired properties

of both matrices.

Firstly, the following definitions are needed.

Definition 3.1. Consider a square p× p matrix A. The Frobenius norm is defined as

||A||F =

√√√√ tr
(

AA′
)

p
. (3.1)

We can also define an associated inner product of the Frobenius norm.

Definition 3.2. Consider two square p× p matrices A and B. The associated inner product of the Frobenius

norm is defined as

〈A , B〉 = 1
p

tr
(

AB
′
)

. (3.2)

Lemma 3.1. Consider a T × p matrix Y of T observations of a family of p-dimensional iid random vectors

{Y1, . . . , YT} with mean zero and covariance matrix Σ. Then the sample covariance matrix given by

S =
1
T

Y
′
Y, (3.3)

is an unbiased estimator of the true covariance matrix Σ.

Proof. For all i, j ∈ {1, . . . , p} we have that

(
Y
′
Y
)

ij
=

T

∑
t=1

Yt,iYt,j.

Taking the expectation of the elements Sij, for all i, j ∈ {1, . . . , p}, yields

E
(
Sij
)
= E

(
1
T

T

∑
t=1

Yt,iYt,j

)
=

1
T

T

∑
t=1

E
(
Yt,iYt,j

)
=

1
T

T

∑
t=1

Cov
(
Yt,i, Yt,j

)
= Cov

(
Yt,i, Yt,j

)
,

where we have used the fact that E(Yt) = 0, for all t ∈ {1, . . . , T} (see also Definition A.37 in Ap-

pendix A). Therefore,

E(S) = Σ,

(see Definition A.38 in Appendix A) and the proof is complete.
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In the following definition, four scalar quantities, which are crucial for the analysis of Ledoit and

Wolf (2004), are presented.

Definition 3.3. Ledoit and Wolf (2004) define the following four scalar quantities:

(i) µ =
〈
Σ , Ip

〉
=

1
p

tr
(

ΣIp
′
)
=

1
p

tr(Σ),

(ii) α2 =
∣∣∣∣Σ− µIp

∣∣∣∣2
F,

(iii) β2 = E
(
||S− Σ||2F

)
,

(iv) δ2 = E
(∣∣∣∣S− µIp

∣∣∣∣2
F

)
.

The following lemma shows the relation between α2, β2 and δ2.

Lemma 3.2. For the scalar quantities α2, β2 and δ2 it holds that

δ2 = α2 + β2.

Proof. See the proof of Lemma 2.1 in Ledoit and Wolf (2004).

The shrinkage estimator of Ledoit and Wolf (2004) is given by the following theorem as the solu-

tion of a quadratic programming problem under a linear constraint.

Theorem 3.1. Consider the optimisation problem:

min
ρ1, ρ2

{
E
(
||Σ∗ − Σ||2F

)}
s.t. Σ∗ = ρ1S + ρ2Ip,

where the coefficients ρ1 and ρ2 are nonrandom. Its solution verifies

Σ∗ =
α2

δ2 S +
β2

δ2 µIp, (3.4)

and

E
(
||Σ∗ − Σ||2F

)
=

α2β2

δ2 . (3.5)

Proof. See the proof of Theorem 2.1 in Ledoit and Wolf (2004).

We now proceed to present four interpretations of Theorem 3.1, above, which can be found in

Subsection 2.2 of Ledoit and Wolf (2004).
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(i) Consider the Hilbert space of p× p symmetric random matrices A, such that E
(
||A||2F

)
< +∞,

whose associated norm is
√

E
(
||·||2F

)
and the inner product of two random matrices A1 and

A2 is E(〈A1 , A2〉). Then Theorem 3.1 can be interpreted as a projection theorem on this Hilbert

space. In this context Lemma 3.2 can be thought of as a restatement of the Pythagorean Theorem

(see the first interpretation of Theorem 2.1 in Ledoit and Wolf 2004). The interpretation of

Equation (3.4) is that the true covariance matrix Σ is projected onto the space spanned by the

identity matrix Ip and the sample covariance matrix S. To achieve this, Σ is initially projected

onto the line spanned by Ip, which results in the shrinkage target µIp, and then it is projected

onto the line that joins the shrinkage target µIp to the sample covariance matrix S. The relation

between the distance of the true covariance matrix Σ to the shrinkage target µIp and the distance

of Σ to the sample covariance matrix S, determines whether the shrinkage estimator Σ∗ ends

up being closer to µIp, or to S.

(ii) The second interpretation is that of a trade-off between bias and variance. The objective is to

minimise the mean squared error of the shrinkage estimator Σ∗, which can be expressed as

the sum of its variance and its squared bias (see Equation (10) in Ledoit and Wolf 2004 and

Proposition A.3 in Appendix A), that is

E
(
||Σ∗ − Σ||2F

)
= E

(
||Σ∗ − E(Σ∗)||2F

)
+ ||E(Σ∗)− Σ||2F .

For the shrinkage target µIp the mean squared error is equal to its squared bias, while for the

sample covariance matrix S the mean squared error is equal to its variance. Therefore, the

shrinkage estimator Σ∗ is the quantity that optimally balances the error coming from bias and

the error coming from variance. It should be noted that the trade-off between bias and variance

is a central idea of shrinkage (see, e.g. the paragraph following Equation (10) in Ledoit and

Wolf 2004, the Introduction and the discussion following Proposition 1 in Sancetta 2008, or the

Introduction in DeMiguel et al. 2013).

(iii) The third interpretation is Bayesian. Let us assume that the prior information for the true

covariance matrix Σ is that it lies on the sphere whose centre is the shrinkage target µIp with

radius α (see (ii) in Definition 3.3). The information obtained from the data is that the true

covariance Σ lies on the sphere with centre the sample covariance matrix S and radius β (see

(iii) in Definition 3.3). Then Σ∗ can be deemed as the combination of the prior information and

the information provided by the data. Combining these, the true covariance matrix should lie

on the intersection of the two spheres, which is a circle with centre the shrinkage estimator
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Σ∗. The relation between the accuracy of the shrinkage target µIp and the accuracy of the

sample covariance matrix S determines the relative importance given to prior versus sample

information for the resulting shrinkage estimator Σ∗. As Ledoit and Wolf (2004) point out, for

a complete Bayesian approach, both the support and the distribution of the true covariance

matrix Σ would need to be specified. Therefore, Σ∗ should be seen as the centre of mass of the

support of Σ, instead of as the expectation of the posterior distribution, as is usually the case.

(iv) Let us denote by λi and li, i ∈ {1, . . . , p}, the eigenvalues of the true covariance matrix Σ and

the eigenvalues of the sample covariance matrix S, respectively. The scalar quantity µ, defined

in (i) of Definition 3.3 can be expressed as (see Equation (11) in Ledoit and Wolf 2004)

µ =
1
p

tr(Σ) =
1
p

p

∑
i=1

λi = E

(
1
p

p

∑
i=1

li

)
.

The last equality is proved as follows

1
p

tr(Σ) =
1
p

tr[E(S)] =
1
p

E[tr(S)] =
1
p

E

(
p

∑
i=1

li

)
,

(for the second equality see (C.48) in the proof of Lemma 3.9 in Subsection C.2.3 of Appendix C).

Therefore, µ represents the mean of the eigenvalues of both the true and the sample covariance

matrix (the eigenvalues of the sample covariance matrix are also called sample eigenvalues, see,

e.g. Subsection 2.2 in Ledoit and Wolf 2004, or the Introduction in Mestre 2008). Similarly,

Lemma 3.2 can be written as (see Equation (12) Ledoit and Wolf 2004)

1
p

E

[
p

∑
i=1

(li − µ)2

]
=

1
p

p

∑
i=1

(λi − µ)2 + E
(
||S− Σ||2F

)
, (3.6)

(for a proof of Equation 3.6, see Section C.1 of Appendix C). Equation 3.6 shows that the sample

eigenvalues are more dispersed around their mean than the true ones, and the excess disper-

sion equals the risk4 of the sample covariance matrix S. This means that the largest sample

eigenvalues are biased upwards (they overestimate the corresponding true eigenvalues) and

the smallest are biased downwards (they underestimate the corresponding true eigenvalues),

which is a well-known issue (see, e.g., Section 2 in Muirhead 1987, the Introduction in John-

stone 2001, Subsections 2.2 and 2.3 in Ledoit and Wolf 2004, or the Introduction in Mestre 2008).

4See Definition A.29 in Appendix A.
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Shrinking the sample eigenvalues by taking

λ∗i =
α2

δ2 li +
β2

δ2 µ (i ∈ {1, . . . , p}) ,

is a way of improving upon the sample covariance matrix. These are exactly the eigenvalues of

the shrinkage estimator Σ∗ and their dispersion is even lower than the one of the true eigenval-

ues, as it is shown by the following lemma.

Lemma 3.3. The eigenvalues of the shrinkage estimator Σ∗, defined as

λ∗i =
α2

δ2 li +
β2

δ2 µ (i ∈ {1, . . . , p}) ,

are less dispersed around their mean, compared to the eigenvalues of the true covariance matrix Σ.

Proof. For all i ∈ {1, . . . , p}, by Lemma 3.2, we get

λ∗i − µ =
α2

δ2 li +
β2

δ2 µ− α2 + β2

δ2 µ =
α2

δ2 (li − µ) .

Therefore, for the dispersion of the eigenvalues of the shrinkage estimator Σ∗, by (C.1), we get

1
p

E

[
p

∑
i=1

(λ∗i − µ)2

]
=

1
p

E

(
p

∑
i=1

[
α2

δ2 (li − µ)

]2
)

=
1
p

E

[(
α2

δ2

)2 p

∑
i=1

(li − µ)2

]

=

(
α2

δ2

)2 1
p

E

[
p

∑
i=1

(li − µ)2

]
=

(
α2

δ2

)2

δ2 =

(
α2)2

δ2 .

Since δ2 = α2 + β2, (
α2)2

δ2 =

(
α2)2

α2 + β2 <

(
α2)2

α2 = α2,

and, by Equation (C.2), the proof is complete.

Shrinking the sample eigenvalues towards their mean results to an estimator whose condition

number5 is closer to one, therefore, the shrinkage estimator Σ∗ is a well-conditioned matrix.

5The condition number for the problem of solving a system of linear equations is indicative of whether the problem is
well- or ill-conditioned. A small condition number indicates a well-conditioned problem, while a large condition number
indicates an ill-conditioned problem (see, e.g. Subsection 2.2 in Ciarlet 1989, Theorem 2.1 in Demmel 1997, or Chapter 4 in
Westlake 1968).

For a positive definite matrix, whose eigenvalues are all positive (see Proposition A.10), the condition number can be
expressed as the ratio of its largest to its smallest eigenvalue (see the third statement of Theorem 2.2-3 in Ciarlet 1989), that
is

κ(A) =
λmax(A)

λmin(A)
.

A matrix whose condition number is close to one, is well-conditioned for solving linear equations, hence it is also well-
conditioned for the problem of its inversion (see Chapter 4 in Westlake 1968).
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By Definition 3.3 and Equation (3.4) it becomes apparent that Σ∗ depends on the true covariance

matrix Σ, which is unknown, therefore Σ∗ is not a feasible, or, as Ledoit and Wolf (2004) call it, a

bona fide estimator. Replacing the quantities µ, α2, β2 and δ2 in the definition of Σ∗, by consistent

estimators, results in a bona fide estimator of Σ.

Following Ledoit and Wolf (2004), let us rewrite the four quantities of Definition (3.3) as:

(i) µT =
〈
ΣT , Ip

〉
=

1
p

tr
(

ΣTIp
′
)
=

1
p

tr(ΣT),

(ii) α2
T =

∣∣∣∣ΣT − µTIp
∣∣∣∣2

F,

(iii) β2
T = E

(
||ST − ΣT||2F

)
,

(iv) δ2
T = E

(∣∣∣∣ST − µTIp
∣∣∣∣2

F

)
,

where the subscript T is used to emphasise the dependence of the following results on the sample

size. What follows holds asymptotically as T → +∞ (see the first paragraph of Subsection 3.3 in

Ledoit and Wolf 2004).

We now give a series of lemmas (see Lemmas 3.2 to 3.5 in Ledoit and Wolf 2004), before we state

the main result in Theorem 3.2.

Lemma 3.4. If mT =
〈
ST , Ip

〉
, then E(mT) = µT, for all T and mT − µT converges to zero in quartic mean,

that is E
[
(mT − µT)

4
]
−−−−→
T→+∞

0.

Proof. See the proof of Lemma 3.2 in Appendix A in Ledoit and Wolf (2004).

A direct consequence of Lemma 3.4 is that m2
T − µ2

T
q.m.−−→ 0 and mT − µT

q.m.−−→ 0, where
q.m.−−→ is

used to denote convergence in quadratic mean (see the paragraph following Lemma 3.2 in Ledoit

and Wolf 2004).

Lemma 3.5. If d2
T =

∣∣∣∣ST −mTIp
∣∣∣∣2

F, then d2
T − δ2

T
q.m.−−→ 0.

Proof. See the proof of Lemma 3.3 in Appendix A in Ledoit and Wolf (2004).

Lemma 3.6. Let

b̄2
T =

1
T2

T

∑
t=1

∣∣∣∣∣∣Yt·Yt·
′ − ST

∣∣∣∣∣∣2
F
,

and b2
T = min

{
b̄2

T, d2
T
}

, where Yt· denotes the t-th row of the matrix Y that contains the observations. Then

b̄2
T − β2

T
q.m.−−→ 0 and b2

T − β2
T

q.m.−−→ 0.

Proof. See the proof of Lemma 3.4 in Appendix A in Ledoit and Wolf (2004).

Lemma 3.7. If a2
T = d2

T − b2
T, then a2

T − α2
T

q.m.−−→ 0.



67

Proof. See the proof of Lemma 3.5 in Appendix A in Ledoit and Wolf (2004).

We are now able to present the bona fide shrinkage estimator of the true covariance matrix, which

is a consistent estimator of Σ∗T.

Theorem 3.2. If

S∗T =
a2

T
d2

T
ST +

b2
T

d2
T

mTIp,

then ||S∗T − Σ∗T||F
q.m.−−→ 0. Consequently, the shrinkage estimator S∗T is a consistent estimator of Σ∗T. Addi-

tionally, S∗T and Σ∗T have, asymptotically, the same risk as estimators of the true covariance matrix ΣT, that

is

E
(
||S∗T − ΣT||2F

)
− E

(
||Σ∗T − ΣT||2F

)
−−−−→
T→+∞

0.

Proof. See the proof of Theorem 3.2 in Appendix A in Ledoit and Wolf (2004).

We now proceed to show how the shrinkage estimator of Ledoit and Wolf (2004) can be obtained,

using the method of Yuan and Huang (2009).

Consider a set of observations y = (y1, . . . , yT) that are a realisation of T iid random vectors

Y = (Y1, . . . , YT) from Np(µ, Σ). This is equivalent to assuming that the data come from model (2.45),

where the state space of the underlying Markov chain is a singleton (K = 1) and the random vectors

εt, t ∈ {1, . . . , T} are iid from Np
(
0p, Ip

)
. For all t ∈ {1, . . . , T} we have

f (yt; µ, Σ) = (2π)−p/2 [det(Σ)]−1/2 exp
{
−1

2
(yt − µ)

′
Σ−1(yt − µ)

}
.

The likelihood function is

Ly(µ, Σ) =
T

∏
t=1

f (yt; µ, Σ) = (2π)−Tp/2 [det(Σ)]−T/2 exp

{
−1

2

T

∑
t=1

(yt − µ)
′
Σ−1(yt − µ)

}
,

and the log-likelihood is

`y(µ, Σ) = −Tp
2

log(2π)− T
2

log[det(Σ)]− 1
2

T

∑
t=1

(yt − µ)
′
Σ−1(yt − µ).

Similarly to Yuan and Huang (2009) (see Subsection 2.1), we give the penalised log-likelihood in

the following definition.

Definition 3.4. The penalised log-likelihood function is defined as

py(µ, Σ) =
2
T
`y(µ, Σ)− λJ(Σ) , (3.7)
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where

J(Σ) = log[det(Σ)] + tr
(

Σ−1Ω
)

. (3.8)

According to Yuan and Huang (2009), the penalty function given by Equation (3.8) is strictly

convex over the cone of positive definite matrices, is chosen so that it is ensured that the penalised

log-likelihood function, defined in Equation (3.7), has a unique maximiser and its maximisation is

computationally tractable. The penalty has a unique minimiser Ω, which is an appropriately chosen,

well-conditioned matrix and shrinkage target of the resulting shrinkage estimator (see the discussion

following Equation (3) in Subsection 2.1 of their paper).

The coefficient λ is called the regularisation parameter (see Fan et al. 2006).

Lemma 3.8. Consider the maximisation problem

max
µ, Σ>0

{
py(µ, Σ)

}
= max

µ, Σ>0

{
2
T
`y(µ, Σ)− λJ(Σ)

}
,

where Σ > 0 denotes that Σ is a positive definite matrix. The estimators for µ and Σ, denoted by µ̂, Σs,

respectively that maximise the objective function are

µ̂ = ȳ,

and

Σs =
1

1 + λ
S +

λ

1 + λ
Ω.

Proof. The penalised log-likelihood, given by (3.7), is

py(µ, Σ) =
2
T

(
−T

2
log(2π)− T

2
log[det(Σ)]− 1

2

T

∑
t=1

(yt − µ)
′
Σ−1(yt − µ)

)
− λ

[
log[det(Σ)] + tr

(
Σ−1Ω

)]
= − log(2π)− (1 + λ) log[det(Σ)]− 1

T

T

∑
t=1

(yt − µ)
′
Σ−1(yt − µ)− λ · tr

(
Σ−1Ω

)
. (3.9)

We have

(yt − µ)
′
Σ−1(yt − µ) = yt

′
Σ−1yt − yt

′
Σ−1µ− µ

′
Σ−1yt + µ

′
Σ−1µ = yt

′
Σ−1yt − 2yt

′
Σ−1µ + µ

′
Σ−1µ,
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thus, we get

− 1
T

T

∑
t=1

(yt − µ)
′
Σ−1(yt − µ) = − 1

T

T

∑
t=1

yt
′
Σ−1yt +

2
T

T

∑
t=1

yt
′
Σ−1µ− 1

T

T

∑
t=1

µ
′
Σ−1µ

= − 1
T

T

∑
t=1

yt
′
Σ−1yt + 2 (ȳ)

′
Σ−1µ− µ

′
Σ−1µ

= − 1
T

T

∑
t=1

yt
′
Σ−1yt + 2

(
Σ−1ȳ

)′
µ− µ

′
Σ−1µ, (3.10)

where ȳ =
1
T

T
∑

t=1
yt. In the last relation we have used the fact that Σ−1 is symmetric.

Setting the partial derivative of py(µ, Σ), with respect to µ, equal to the zero vector 0p and utilising

Equations (3.10), (A.2) and (A.3), yields

2
(

Σ−1ȳ
)′
− µ

′
[

Σ−1 +
(

Σ−1
)′]

= 0p,

which results to

2µ
′
Σ−1 = 2 (ȳ)

′
Σ−1 ⇔ µ

′
Σ−1Σ = (ȳ)

′
Σ−1Σ⇔ µ

′
Ip = (ȳ)

′
Ip ⇔ µ = ȳ.

Therefore, the estimator of µ, that maximises the penalised log-likelihood, is

µ̂ = ȳ.

Setting the partial derivative of py(µ, Σ), with repsect to Σ, equal to the zero matrix 0p×p, by (3.9)

and (A.4) to (A.6) and using the fact tr
(
Σ−1Ω

)
= tr

(
IpΣ−1Ω

)
, we get

− (1 + λ)Σ−1 +
1
T

Σ−1
T

∑
t=1

(yt − ȳ) (yt − ȳ)
′ (

Σ−1
)′

+ λ
(

Σ−1IpΩΣ−1
)′

= 0p×p. (3.11)

Let us denote by S the biased sample estimator of Σ

S =
1
T

T

∑
t=1

(yt − ȳ) (yt − ȳ)
′
,

(see Definition A.42 in Appendix A and compare with Equation (2.58)). Then, as Σ−1 is symmetric,

(3.11) becomes

− (1 + λ)Σ−1 + Σ−1SΣ−1 + λΣ−1ΩΣ−1 = 0p×p. (3.12)
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Multiplying both sides of (3.12) by Σ, both from the left and from the right, results in

− (1 + λ)ΣΣ−1Σ + ΣΣ−1SΣ−1Σ + λΣΣ−1ΩΣ−1Σ = 0p×p ⇔ − (1 + λ)Σ + S + λΩ = 0p×p.

Consequently, the maximum penalised log-likelihood estimator of Σ, is given by

Σs =
1

1 + λ
S +

λ

1 + λ
Ω. (3.13)

Setting w =
λ

1 + λ
∈ [0, 1], Equation (3.13) is written as

Σs = (1− w) S + wΩ.

Setting

(i) Ω = νIp, with ν =
〈
Σ , Ip

〉
,

(ii) w =
β2

δ2 , where β2 = E
(
||S− Σ||2F

)
and δ2 = E

(∣∣∣∣S− νIp
∣∣∣∣2

F

)
,

yields the optimal linear shrinkage estimator proposed by Ledoit and Wolf (2004),

Σ∗ =
α2

δ2 S +
β2

δ2 νIp,

where α2 =
∣∣∣∣Σ− νIp

∣∣∣∣2
F.

Then a consistent estimator of the optimal weight w is

ŵ =
b2

d2 ,

where

d2 =
∣∣∣∣S− ν̂Ip

∣∣∣∣2
F ,

ν̂ =
〈
S , Ip

〉
,

and

b2 = min

{
1
T

T

∑
t=1

∣∣∣∣∣∣ȳȳ
′ − S

∣∣∣∣∣∣2
F

, d2

}
,

which gives the following consistent estimator of Σ∗,

Σ̂∗ =
a2

d2 S +
b2

d2 ν̂Ip,
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where a2 = d2 − b2.

Since λ =
w

1− w
, it becomes evident that to derive the shrinkage estimator Σ∗, the regularisation

parameter λ should be chosen by taking into account the underlying distribution of the data.

3.2 Shrinkage under Regime Switching

As we saw in Subsection 2.3.2, an important part in the implementation of the EM algorithm for

the hidden Markov model given by Equation (2.45), was the complete-data log-likelihood

`y,X [(π, P, φ)] =
K

∑
k=1

T

∑
t=1

1{Xt=k} fk(yt; φk) + `X [(π, P)] .

Assuming that an oracle reveals the hidden states (X1, . . . , XT) leads to the oracle estimates µo
k and Σ̃o

k

given by Equations (2.55) and (2.57), respectively. To get well-conditioned estimates for the covari-

ance matrices, following the framework of Section 3.1, we incorporate K different penalty terms, one

for each state, into the complete-data log-likelihood, to get a penalised complete-data log-likelihood,

defined as

py,X [(π, P, φ)] =
2
T

K

∑
k=1

T

∑
t=1

1{Xt=k} fk(yt; φk)−
K

∑
k=1

λk Jk(Σk) +
2
T
`X [(π, P)] , (3.14)

where Jk(Σk) = log[det(Σk)] + ν̃ktr
(

Σ−1
k

)
and ν̃k =

1
p

tr(Σk), where Σk denotes the true covariance

matrix under state k, for all k ∈ {1, . . . , K}. Following the frameworks of Subsection 2.3.2 and Section

3.1, the maximum penalised log-likelihood estimators of the covariance matrices are the shrunken

versions of the oracle estimators Σ̃o
k , that is

Σ̃s
k = (1− wk) Σ̃o

k + wkν̃kIp, (3.15)

where wk =
λk

1 + λk
∈ [0, 1], for all k ∈ {1, . . . , K}. As has already been mentioned in Subsection 2.3.2,

Fiecas et al. (2017) chose to work with Σo
k = πo

k Σ̃o
k (see Equation (2.58)). To derive the corresponding

shrinkage estimators, the scaling factors ν̃k, k ∈ {1, . . . , K}, need to be adapted accordingly. Using

the optimal weights of Ledoit and Wolf (2004), we get the shrinkage estimators of the covariance

matrices, based on Σo
k , as

Σs
k = (1− wk)Σo

k + wkνkIp (k ∈ {1, . . . , K}) , (3.16)

where νk =
1
p

tr(πkΣk), k ∈ {1, . . . , K}.
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Σs
k is not a bona fide estimator, as wk and νk are unknown and need to be estimated from the data.

To do so, Fiecas et al. (2017) use the framework of Sancetta (2008), who extended the work of Ledoit

and Wolf (2004) for data that exhibit time-series dependence. As the author points out in his paper

(see the Introduction and the remark on Condition 1 in Subsection 2.2), his results are weaker than

the ones of Ledoit and Wolf (2004), but they cover more cases, therefore the two papers should be

viewed as complementary. Sancetta’s shrinkage estimator is of the form

Σs = (1− α) S + αF,

where α ∈ [0, 1], S is the sample covariance matrix and F is a constrained version of the true covari-

ance matrix Σ. The shrinkage target F is chosen appropriately in order to impose strict conditions on

Σ and it is unknown, so it needs to be estimated.

The first step to determining an estimator for Σs
k, is to replace the scaling factor νk, which relies

on the unknown covariance matrix Σk and the unknown stationary probability πk, with an estimate.

Fiecas et al. (2017) show, using Lemma 3.9, that a proper choice is νo
k =

1
p

tr
(
Σo

k

)
(for the proof of

Lemma 3.9 see Appendix C).

Lemma 3.9. Let the data be generated from model (2.45), either for fixed p, or for p → +∞ with increasing

T, satisfying Assumptions (A) (see Subsection 2.3.1). Consider the following assumptions:

(B1) max
1≤i≤p

{|µk,i|} and
∣∣∣∣∣∣Σ1/2

k

∣∣∣∣∣∣2
F
= p−1tr(Σk) are uniformly bounded in p,

(B2) πk > 0, tr(Σk) ≥ cpr, for some c > 0, 0 ≤ r ≤ 1 and all p.

It follows for some 0 < β < 1 and all k ∈ {1, . . . , K},

(i)

E(µo
k ) = µk + µk O

(
βT
)
= µk + O

(
p1/2βT

)
,

E
(

πo
k ||µo

k − µk||22
)
= T−1πktr(Σk) = O(p/T) ,

and

E(Σo
k ) = (πk − 1/T)Σk + O

(
βT/T

)
= πkΣk + O(

√
p/T) .

(ii) If (B1) holds, then the normalised trace estimator νo
k is mean-square consistent, that is,

E
[
(νo

k − νk)
2
]
= O

(
T−1

)
.

Additionally,

E(νo
k ) = νk + O

(
T−1

)
,
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where

νk =
1
p

tr(πkΣk) , (3.17)

and

νo
k =

1
p

tr(Σo
k ) . (3.18)

(iii) If both (B1) and (B2) hold, then

Var
[
tr
(
Σo

k

)]
|tr(πkΣk)|2

= O

(
p2(1−r)

T

)
,

that is, the relative error of tr
(
Σo

k

)
as an estimate of tr(πkΣk) converges to zero if p1−r = o

(√
T
)

.

We present some comments on Assumptions (B1) and (B2) that can be found in the discussion

following Lemma 1 in Fiecas et al. (2017).

If p is fixed and the true covariance matrix Σk is nonsingular (all its eigenvalues are different

than zero), Assumptions (B1) and (B2) are automatically satisfied. If the largest eigenvalue of Σk,

say λmax(Σk), is uniformly bounded in p, then the second part of Assumption (B1) is automatically

satisfied, as tr(Σk) ≤ pλmax(Σk). However, this is not a necessary condition. Even if λmax(Σk) is

growing with a rate up to p, Assumption (B1) is still satisfied, as long as all the eigenvalues of Σk,

except a finite number of them, are uniformly bounded in p. In case the smallest eigenvalue of Σk, say

λmin(Σk), satisfies the inequality λmin(Σk) ≥ cpr−1 =
c

p1−r , which means that it does not converge

too fast to zero, as the dimension p increases, then Assumption (B2) is automatically satisfied, since

tr(Σk) ≥ pλmin(Σk). However, Assumption (B2) includes the case of Σk being singular, that is at least

one of its eigenvalues equals zero, which implies that λmin(Σk) = 0.

For the optimal weights we use the formula given by Proposition 1 of Sancetta (2008), setting

F = νkIp. It should be noted that Sancetta (2008) uses the unscaled Frobenius norm, that is ||A|| =√
tr(AA′), where A ∈ Rp×p.

Lemma 3.10. Consider the shrinkage estimators Σs
k = (1− wk)Σo

k + wkνkIp, k ∈ {1, . . . , K}, where Σo
k and

νk are given by (2.58) and (3.17), respectively. The optimal weights wk, k ∈ {1, . . . , K}, which minimise the

risk

min
wk∈[0,1]

{
E
(∣∣∣∣(1− wk)Σo

k + wkνkIp − πkΣk
∣∣∣∣2

F

)}
,

are given by

wk = min

E
(∣∣∣∣Σo

k − πkΣk
∣∣∣∣2

F

)
E
(∣∣∣∣Σo

k − νkIp
∣∣∣∣2

F

) , 1

,

assuming that all the relevant moments exist.
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Proof. See the proof of Proposition 1 in Section 4 in Sancetta (2008).

As the optimal weight of Lemma 3.10 depends on the true stationary probability πk and the true

covariance matrix Σk, the optimal shrinkage estimator Σs
k is not a bona fide estimator. To estimate wk,

we need to find consistent estimators for both the nominator and the denominator. For the denomi-

nator, νk is substituted for its oracle estimate νo
k (see Equation (3.18) in Lemma 3.9). This follows the

framework of Ledoit and Wolf (2004), who replace the expected loss in the denominator of the opti-

mal weight with its sample counterpart, by substituting the scalar quantity µ for its sample estimator

m (see Definition 3.3, Lemmas 3.4 and 3.5 and Theorems 3.1 and 3.2).

To determine an estimator for the nominator, we are going to follow the framework of Sancetta

(2008).

By Statement (ii) of Lemma C.3 and Equation (C.79) (in the proof of Lemma C.3), we get

E
(
||Σo

k − πkΣk||2F
)
=

1
p

p

∑
i=1

p

∑
j=1

Var

[
1
T

T

∑
t=1

1{Xt=k} (Yt,i − µk,i)
(
Yt,j − µk,j

)]
+ O

( p
T2

)
. (3.19)

Setting

Zk,ij(t) = 1{Xt=k} (Yt,i − µk,i)
(
Yt,j − µk,j

)
,

Equation (3.19) can be written as

E
(
||Σo

k − πkΣk||2F
)
=

1
p

p

∑
i=1

p

∑
j=1

Var

(
1
T

T

∑
t=1

Zk,ij(t)

)
+ O

( p
T2

)
.

This time series is stationary with exponentially decreasing autocovariances ck,ij(s) and a contin-

uous spectral density fk,ij(ω) (see Lemma C.1 in Appendix C). We define the corresponding sample

autocovariances6 as

c̄o
k,ij(s) =

1
T

T−s

∑
t=1

(
Zk,ij(t)−

1
T

T

∑
τ=1

Zk,ij(τ)

)(
Zk,ij(t + s)− 1

T

T

∑
τ=1

Zk,ij(τ)

)
(s ∈ {0, . . . , T − 1}) ,

where c̄o
k,ij(s) = c̄o

k,ij(−s). As in the proof of Lemma 3.9 (see Subsection C.2.3) for the variance of πo
k ,

by Remark 1 to Theorem 7.1.1 in Brockwell and Davis (1991), we get

Var

(
1
T

T

∑
t=1

Zk,ij(t)

)
→ 1

T
fk,ij(0) , T → +∞ (k ∈ {1, . . . , K} , i, j ∈ {1, . . . , p}) .

6See Definition A.49 in Appendix A.
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As in Sancetta (2008), the spectral densities at frequency zero,

fk,ij(0) =
+∞

∑
n=−∞

c̄o
k,ij(n) (k ∈ {1, . . . , K} , i, j ∈ {1, . . . , p}) ,

are going to be estimated via kernel smoothing7. We consider a kernel K(·), with the following

properties:

(i) K(u) ≥ 0, for all u ∈ R,

(ii) K(u) = K(−u), for all u ∈ R,

(iii) K(0) = 1.

For some bandwidth (or smoothing parameter) b > 0, the estimators of the spectral densities at

frequency zero are given by

f̄ b
k,ij(0) =

T−1

∑
s=−T+1

K
( s

b

)
c̄o

k,ij(s) (k ∈ {1, . . . , K} , i, j ∈ {1, . . . , p}) .

Using the same kind of arguments that were used to prove Lemma C.3, replacing the unknown

means µk by their oracle estimates µo
k , asymptotically, has no significant impact. Therefore, we can

utilise the following bona fide estimators, defined for all t ∈ {1, . . . , T}, s ∈ {0, . . . , T − 1}, k ∈

{1, . . . , K} and i, j ∈ {1, . . . , p}, as:

Ẑk,ij(t) = 1{Xt=k}
(
Yt,i − µo

k,i
) (

Yt,j − µo
k,j

)
,

ĉo
k,ij(s) =

1
T

T−s

∑
t=1

(
Ẑk,ij(t)−

1
T

T

∑
τ=1

Ẑk,ij(τ)

)(
Ẑk,ij(t + s)− 1

T

T

∑
τ=1

Ẑk,ij(τ)

)
,

and

f̂ b
k,ij(0) =

T−1

∑
s=−T+1

K
( s

b

)
ĉo

k,ij(s).

Therefore, we get the following oracle estimators of the optimal weights

wo
k = min


(pT)−1

p
∑

i=1

p
∑

j=1
f̂ b
k,ij(0)∣∣∣∣Σo

k − νo
k Ip
∣∣∣∣2

F

, 1

 (k ∈ {1, . . . , K}) , (3.20)

7Kernel density estimation or kernel smoothing is a technique for nonparametric estimation of density functions (probability
or spectral). In this method, some functions with specific properties, called kernels, and a bandwidth or smoothing parameter
are utilised, hence the name (see, e.g., Andrews 1991, or Wand and Jones 1994).
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which yields the bona fide optimal shrinkage estimator

Σ̂s
k = (1− wo

k )Σo
k + wo

k νo
k Ip (k ∈ {1, . . . , K}) . (3.21)

Notice that Equation (3.20) is the exact same formula as the one for α̂T given after Equation (4) in

Sancetta (2008). The term p−1 in the nominator of wo
k is justified by the fact that we use the scaled

Frobenius norm, while, as has already been mentioned, Sancetta (2008) uses the unscaled version.

Theorem 3.3. Under Assumptions (A1), (A2) and (A3) on the Markov chain {Xt : t ∈ Z} and the random

vectors εt, t ∈ Z, and under Assumption (B1) of Lemma 3.9, let the kernel K(u) be continuous, symmetric,

nonnegative and, for u > 0, decreasing with K(0) = 1 and
∫ +∞

0 [K(u)]2 du < +∞. Additionally, choose the

bandwidth b = bT → +∞, such that bT/
√

T → 0, as T → +∞. Moreover, assume either:

(C1) p fixed, νkIp 6= πkΣk, or,

(C2) p→ +∞, p1−γ
∣∣∣∣νkIp − πkΣk

∣∣∣∣2
F → c > 0 for some γ ∈ (0, 2], such that p2−γ/T → 0.

Then, with rT = T in case (C1), or rT = T/p2−γ in case (C2), we have the following results:

(i) wo
k �

1
rT

,

(ii) rT
(
wo

k − wk
)
= op(1),

(iii)
∣∣∣∣∣∣Σ̂s

k − πkΣk

∣∣∣∣∣∣
F
=
∣∣∣∣Σs

k − πkΣk
∣∣∣∣

F

[
1 + op(1/

√
rt)
]
.

Before we proceed to show how the methodology, presented in this section, is incorporated into

the EM algorithm, we make some comments on Theorem 3.3, that can be found in Subsections 2.1

and 2.1 in Sancetta (2008) and in the discussion following Theorem 1 in Fiecas et al. (2017).

Assumptions (C1) and (C2) come from classical assumptions for shrinkage (see Condition 1 (3)

in Sancetta 2008). The target matrix needs to be quite different than the true parameter πkΣk, so that

the number of the elements of the shrinkage target to be estimated will be relatively small (see the

paragraph following Example 3 in Subsection 2.2 in Sancetta 2008). Also, if the shrinkage target νkIp

were equal to the true value of the parameter πkΣk, there would be no point of using shrinkage. The

parameter γ quantifies how different the target matrix νkIp is from πkΣk, under the Frobenius norm

(see the paragraph following Example 2 in Subsection 2.2 in Sancetta 2008, keeping in mind that the

Frobenius norm used by Sancetta 2008 is not scaled).

Theorem 3.3 assures that the optimal weight wk and its oracle estimate wo
k are, asymptotically,

equivalent and that the error of the bona fide estimator Σ̂s
k, is in probability asymptotically the same

as the error of the non bona fide shrinkage estimator Σs
k. This means that using Σ̂s

k as an estimator
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of πkΣk, is in probability asymptotically, equivalent to using Σs
k. The rate of convergence of the error

of Σ̂s
k, as an estimator of πkΣk, in the corresponding error of Σs

k is also provided. Consistency of the

estimator Σ̂s
k is not guaranteed by Theorem 3.3, as it is not the main concern. What is of interest, is

that Σ̂s
k is a better estimator than Σo

k under the Frobenius norm (see Subsection 2.1 in Sancetta 2008).

3.3 Incorporating Shrinkage into the EM Algorithm

As has been discussed throughout this chapter, the sample covariance matrix performs poorly in

situations where the sample size T is relatively small and the data dimension p is high. As we saw

in Subsection 2.3.2, the estimator Σ̃o
k , which is the sample covariance matrix for the hidden Markov

model given by Equation (2.45), under state k, k ∈ {1, . . . , K}, faces the same problems. Even in

cases where the dimension p is low, if there are some states for which there is only a small number of

observations, then the corresponding matrices might be numerically ill-conditioned, or even singular.

To overcome this problem Fiecas et al. (2017) propose to incorporate the shrinkage estimator of

Section 3.2 into the EM algorithm. The first step is to substitute the complete-data log-likelihood

`y,X(θ), in the function Q
(
θ; θ′

)
, for its penalised counterpart, given by Equation (3.14). Therefore,

we define

Q
(
θ; θ′

)
= Eθ′

(
py,X(θ)

∣∣Y = y
)
= E

(
2
T

K

∑
k=1

T

∑
t=1

1{Xt=k} fk(yt; θ)−
K

∑
k=1

λk Jk(Σk) +
2
T
`X(θ)

∣∣∣∣∣Y = y

)

=
2
T

K

∑
k=1

T

∑
t=1

E
(

1{Xt=k}
∣∣Y = y

)
fk(yt; θ)−

K

∑
k=1

λk Jk(Σk) + E
(

2
T
`X(θ)

∣∣∣∣Y = y
)

=
2
T

K

∑
k=1

T

∑
t=1

γk(t) fk(yt; θ)−
K

∑
k=1

λk Jk(Σk) + E
(

2
T
`X(θ)

∣∣∣∣Y = y
)

. (3.22)

The E-step is carried out as was described in Paragraph 2.3.2.1 with Q
(

θ; θ̂
(m)
)

as defined in

Equation (3.22). It should be noted that the penalty terms Jk(Σk) are independent of θ(m), except

for the scaling factors νk = p−1tr(Σk), which are linear in the corresponding covariance matrices.

As was shown in Paragraph 2.3.2.1, in the E-step, the conditional expectations, of the random vari-

ables 1{Xt=k} and 1{Xt=k,Xt+1=l}, given the observations (y1, . . . , yT), γk(t) and ξk,l(t), respectively, are

obtained.

In the M-step, as was presented in Paragraph 2.3.2.2, we derived the maximum likelihood esti-

mates based on the formulas of the oracle estimates, where the random variables 1{Xt=k} were re-

placed by their conditional expectations γk(t) from the E-step. Working in a similar fashion, now the

maximum penalised likelihood estimates are going to be utilised, where a data-adaptive regularisa-

tion parameter has been employed, in order to obtain them.



78

As was shown in Section 3.1, the penalty term has an effect only on the formula of the estimator

of the covariance matrix, therefore the updating formulas for the transition probabilities pkl and the

means µk are the same as the ones that were given by Equations (2.61) and (2.62), respectively. In

Subsection 2.3.2, we started from the maximiser of the complete-data log-likelihood Σ̃o
k and using

the sample estimate of the stationary probability πk, we derived the biased oracle estimator of the

covariance matrix Σo
k = πo

k Σ̃o
k . Then, we substituted the random variables 1{Xt=k} for their condi-

tional expectations γk(t), derived from the E-step, to obtain the updating formulas for the covariance

matrices (see Equations (2.63) and (2.64)). Following that framework, in Section 3.2 we started from

the shrinkage estimator Σ̃s
k which maximises the penalised complete-data log-likelihood. Then, we

obtained Σs
k by replacing Σ̃o

k and ν̃k with Σo
k and νk, respectively, in the definition of Σ̃s

k (see Equations

(3.15) and (3.16)). Finally, by estimating the unknown quantities in the definition of Σs
k, we obtained

the bona fide optimal shrinkage estimator Σ̂s
k given by Equation (3.21). Same as before, replacing

the random variables 1{Xt=k} with their conditional expectations γk(t), yields the estimators for the

covariance matrices given by

Σ̂k =
1

π̂k
Σ̂s

k =
1

π̂k

[
(1− ŵo

k ) Σ̂o
k + ŵo

k ν̂o
k Ip

]
(k ∈ {1, . . . , K}) , (3.23)

where

Σ̂o
k =

1
T

T

∑
t=1

γk(t) (yt − µ̂k) (yt − µ̂k)
′

(k ∈ {1, . . . , K}) ,

ν̂o
k =

1
p

tr
(

Σ̂o
k

)
(k ∈ {1, . . . , K}) ,

and ŵo
k defined as wo

k given by Equation (3.20), where the random variables 1{Xt=k}, again, are re-

placed by their conditional expectation γk(t) in all the quantities that are involved in the definition

of wo
k . That is, defining Ẑ

∗
k,ij(t), ĉ∗k,ij(s) and f̂ b∗

k,ij(0) as

Ẑ
∗
k,ij(t) = γk(t) (yt,i − µ̂k,i)

(
yt,j − µ̂k,j

)
,

ĉ∗k,ij(s) =
1
T

T−s

∑
t=1

(
Ẑ
∗
k,ij(t)−

1
T

T

∑
τ=1

Ẑ
∗
k,ij(τ)

)(
Ẑ
∗
k,ij(t + s)− 1

T

T

∑
τ=1

Ẑ
∗
k,ij(τ)

)
,

and

f̂ b∗
k,ij(0) =

T−1

∑
s=−T+1

K
( s

b

)
ĉ∗k,ij(s),
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then ŵo
k is given by

ŵo
k = min


1

pT

p
∑

i=1

p
∑

j=1
f̂ b∗
k,ij(0)∣∣∣∣∣∣Σ̂o

k − ν̂o
k Ip

∣∣∣∣∣∣2
F

, 1

 (k ∈ {1, . . . , K}) .

Finally, let us summarise the process of the modified EM algorithm.

Modified EM Algorithm for the Data-Generating Model

(1) Initialise with a proper value θ(0) =
(

π(0), P(0), φ(0)
)

of the parameter.

(2) At the m-th iteration proceed as follows:

(2.1) E-Step: Compute the modified Q
(

θ; θ(m)
)

defined by Equation (3.22) as a function of θ,

in the following manner:

(2.1.1) For all k ∈ {1, . . . , K}, compute the forward variables under the value θ(m) as:

(2.1.1.1) α
(m)
k (1) = π

(m)
k fk

(
y1; φ

(m)
k

)
.

(2.1.1.2) α
(m)
k (t) =

(
K
∑

i=1
α
(m)
i (t− 1) p(m)

ik

)
fk

(
yt; φ

(m)
k

)
, for all t ∈ {2, . . . , T}.

(2.1.2) For all k ∈ {1, . . . , K}, compute the backward variables under the value θ(m) as:

(2.1.2.1) β
(m)
k (T) = 1.

(2.1.2.2) β
(m)
k (t) =

K
∑

l=1
p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1), for all t ∈ {T − 1, . . . , 1}.

(2.1.3) For all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, compute the variables:

γ
(m)
k (t) =

α
(m)
k (t) β

(m)
k (t)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.

(2.1.4) For all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, compute the variables:

ξ
(m)
kl (t) =

α
(m)
k (t) p(m)

kl fl

(
yt+1; φ

(m)
l

)
β
(m)
l (t + 1)

K
∑

i=1
α
(m)
i (t) β

(m)
i (t)

.
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(2.1.5) Calculate the conditional expectation of the penalised complete-data log-likelihood,

given the observations (y1, . . . , yT) for the current values θ(m), λ
(m)
k and Jk

(
Σ̂(m)

k

)
as:

E
θ(m)

(
py,X(π, P, φ)

∣∣ y1, . . . , yT
)
=

2
T

K

∑
k=1

T

∑
t=1

γ
(m)
k (t) fk

(
yt; φ

(m)
k

)
−

K

∑
k=1

λ
(m)
k Jk

(
Σ̂(m)

k

)
+ E

θ(m)

(
2
T
`X(π, P)

∣∣∣∣ y1, . . . , yT

)
.

where

λ
(m)
k =

ŵo(m)
k

1− ŵo(m)
k

,

and

Jk

(
Σ̂(m)

k

)
= log

[
det
(

Σ̂(m)
k

)]
+ ν̂

o(m)
k tr

[(
Σ̂(m)

k

)−1
]

,

with

ν̂
o(m)
k =

1
p

tr
(

Σ̂o(m)
k

)
.

(2.2) M-Step: Using the current values γ
(m)
k (t) and ξ

(m)
kl (t), that were calculated in the E-step,

determine the value θ(m+1) =
(

π(m+1), P(m+1), φ(m+1)
)

that maximisesQ
(

θ; θ(m)
)

. For all

k, l ∈ {1, . . . , K}, the values of the initial and transition probabilities of the hidden Markov

chain are updated as follows:

π̂
(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t),

p̂(m+1)
kl =

T−1
∑

t=1
ξ
(m)
kl (t)

T−1
∑

t=1
γ
(m)
k (t)

.

For all k ∈ {1, . . . , K}, the parameters of the state-dependent distributions φ(m+1) =(
φ
(m+1)
k

)
k∈SX

, with φk = (µk, Σk), are updated as follows:

µ̂
(m+1)
k =

T
∑

t=1
γ
(m)
k (t) yt

T
∑

t=1
γ
(m)
k (t)

,

Σ̂(m+1)
k =

1

π̂
(m+1)
k

[(
1− ŵo(m+1)

k

)
Σ̂o(m+1)

k + ŵo(m+1)
k ν̂

o(m+1)
k Ip

]
,
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where

Σ̂o(m+1)
k =

1
T

T

∑
t=1

γ
(m)
k (t)

(
yt − µ̂

(m+1)
k

) (
yt − µ̂

(m+1)
k

)′
,

ν̂
o(m+1)
k =

1
p

tr
(

Σ̂o(m+1)
k

)
,

ŵo(m+1)
k = min


1

pT

p
∑

i=1

p
∑

j=1
f̂ b∗(m+1)
k,ij (0)∣∣∣∣∣∣Σ̂o(m+1)

k − ν̂
o(m+1)
k Ip

∣∣∣∣∣∣2
F

, 1

,

with

f̂ b∗(m+1)
k,ij (0) =

T−1

∑
s=−T+1

K
( s

b

)
ĉ∗(m+1)

k,ij (s),

for all i, j ∈ {1, . . . , p},

ĉ∗(m+1)
k,ij (s) =

1
T

T−s

∑
t=1

(
Ẑ
∗(m+1)
k,ij (t)− 1

T

T

∑
τ=1

Ẑ
∗(m+1)
k,ij (τ)

)(
Ẑ
∗(m+1)
k,ij (t + s)− 1

T

T

∑
τ=1

Ẑ
∗(m+1)
k,ij (τ)

)
,

for all s ∈ {0, . . . , T − 1} and i, j ∈ {1, . . . , p}, and

Ẑ
∗(m+1)
k,ij (t) = γ

(m)
k (t)

(
yt,i − µ̂

(m+1)
k,i

) (
yt,j − µ̂

(m+1)
k,j

)′
,

for all t ∈ {1, . . . , T} and i, j ∈ {1, . . . , p}.

(3) Alternate between steps (2.1) and (2.2) until a stopping criterion is met.

Fiecas et al. (2017) point out (see the last paragraph of Section 3.3 of their paper) that this modified

version of the EM algorithm does not possess the monotonicity property of the original algorithm (see

Proposition 2.1). The authors state that the reason for the loss of monotonicity is not the incorporation

of the penalty term itself, but the fact that the regularisation parameter is adapted according to the

data. If both λk and ν̃k were fixed, then the modified algorithm would still possess the property of

monotonicity with respect to the penalised observed-data likelihood.
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Chapter 4

Applications

In this chapter we report our results from the application of the classical EM algorithm, the mod-

ified version of Fiecas et al. (2017) and a variant of the latter, where, in the E-step, we estimate the

complete-data log-likelihood function, and, in the M-step, we maximise the penalised complete-data

log-likelihood, to derive the shrinkage estimators for the covariance matrices. This framework has

also been adopted by Chen et al. (2014).

We used both simulated data and real data. The results from the simulations are presented in

Section 4.1, while the results from the analysis of the real data set are given in Section 4.2.

The code for this paper was written and executed using R Statistical Software R Core Team (2022).

For the implementation of all three algorithms, we modified the function em.mvn that can be found

inside the function em.hmm of the R package Xu and Liu (2018).

4.1 Simulations

In this section we follow the simulation study of Fiecas et al. (2017).

The simulated data are a multivariate time series of dimension p = 20 or p = 50 generated from

the model defined by Equation (2.45), either with two or three states (K = 2 or K = 3), with sample

size T = 128 or T = 256.

For the cases with two states (K = 2), the stationary distribution of the underlying Markov chain

is π = (1/2 , 1/2) and the one step transition probability matrix is

0.95 0.05

0.05 0.95

 ,

while for the three-state cases (K = 3), the stationary distribution is π = (1/3 , 1/3 , 1/3) and

the one step transition probability matrix is
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
0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90

 .

Fiecas et al. (2017) state that their choice of construction of the transition probability matrices is

a way to overcome the problem of identifiability of the states and to make the hidden Markov chain

more stable and balanced. This is not too restrictive, as the relation between the dimension, p, of the

data and the sample size, T, and the fact that, due to the construction of the model, the sample size

for some states might be smaller than T/2 or T/3 (when K = 2 or K = 3, respectively), makes the

settings challenging enough to assess the performance of the methods (see Section 4 in their paper).

The construction of the different covariance matrices is as follows.

• The covariance matrix under state 1 is defined as (Σ1)ij = 0.7|i−j|, i, j ∈ {1, . . . , p}, with p = 20

or p = 50.

• The covariance matrix under state 2 is a block-diagonal matrix, obtained from the following

construction scheme. Initially, a 5 × 5 correlation matrix R(2)
5 is constructed, whose all off-

diagonal entries are equal to 0.25, and all its diagonal entries are, of course, equal to 1. Then a

p× p (p = 20 or p = 50) block-diagonal correlation matrix R(2)
p is constructed with R(2)

5 along

the diagonals. Setting C(2)
p = 1.5Ip (p = 20 or p = 50), the covariance matrix under state 2 is

defined as Σ2 = C(2)
p R(2)

p C(2)
p .

• The covariance matrix under state 3 is also a block-diagonal matrix, obtained from a similar

construction scheme to the one used for Σ2. We begin by constructing a (p/2)× (p/2) (p = 20

or p = 50) correlation matrix R(3)
p/2, whose all off-diagonal entries are equal to 0.5 and all its

diagonal entries are equal to 1. Then a p× p block-diagonal correlation matrix R(3)
p is created

with two diagonal blocks, where each block is the matrix R(3)
p/2. Setting C(3)

p = 1.5Ip (p = 20 or

p = 50), the covariance matrix under state 3 is defined as Σ2 = C(3)
p R(3)

p C(3)
p .

To determine the square root of the covariance matrices, which is necessary for the generating

procedure of the data (see Equation (2.45)), the Cholesky decomposition is implemented.

To compare the performance of the modified EM algorithm of Fiecas et al. (2017), and its variant,

to the classical EM algorithm, where the sample covariance matrix is used, the percentage relative
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improvement in average loss (abbreviated PRIAL) is used, defined as

PRIAL
(

Σ̂s
k

)
= 100×

E
(∣∣∣∣∣∣Σ̂k − Σk

∣∣∣∣∣∣2
F

)
− E

(∣∣∣∣∣∣Σ̂s
k − Σk

∣∣∣∣∣∣2
F

)
E
(∣∣∣∣∣∣Σ̂k − Σk

∣∣∣∣∣∣2
F

) . (4.1)

The expected values involved in (4.1) are estimated by their sample analogs using 100 Monte Carlo

samples.

In the sequel, for the results that were obtained using the method of Fiecas et al. (2017), we use

the abbreviation SPEM (Shrinkage Penalised EM), while the abbreviation SEM (Shrinkage EM) is

used for the results that came from the method where the penalised complete-data log-likelihood is

involved only in the M-step.

It should be noted that in Simulations 2 to 4, due to long execution times, only one set of initial

values was used in the implementation of the algorithms, for each Monte Carlo sample. The initial

values for the stationary distribution and the transition probability matrix were random. For the

vector of means, the sample mean of the data was used for all states. Accordingly, we used the

sample covariance matrix of the data, as the initial value for the covariance matrices of all states.

As Fiecas et al. (2017) point out (see the paragraph following Equation (19)), there is a label-

switching problem1 which impedes the evaluation of the performance of the two methods in esti-

mating the covariance matrix under each state. To overcome this, following their framework, the

performance of the estimates is assessed by estimating the PRIAL of the transition probability ma-

trix, which is not affected by the label-switching problem due to its symmetry, and the marginal

covariance matrix, defined as Σ =
K
∑

k=1
πkΣk.

4.1.1 Simulation 1

In Simulation 1 it is assumed that the states are known, which allows us to evaluate the perfor-

mance of the estimators for the true covariance and precision matrices, under each state, without the

"burden" of the estimation of the hidden state variables. The means under each state are assumed to

be equal to the zero vector 0p (p = 20 or p = 50).

The results from the first simulation are summarised in Table 4.1 below. The estimators of the true

precision matrices are the inverses of the corresponding shrinkage estimators and the corresponding

1Consider a finite mixture model with parameters [(w1, φ1) , . . . , (wK , φK)], where wi and φi are the weight and the
parameter of the distribution of component i, i ∈ {1, . . . , K}, respectively. If the value of the likelihood function is invariant
to permutations of the parameters, that is if the value of the likelihood function remains unchanged when we interchange

the indices of (wi, φi) and
(

wj, φj

)
, for any i.j ∈ {1, . . . , K}, then it is said that there is a label-switching problem (see, e.g.,

Section 3 in Redner and Walker 1984, or Subsection 2.2.1 in Stephens 2000).
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sample covariance matrices. The PRIALs for the precision matrices are defined as in Equation (4.1),

where each matrix has been substituted for its inverse. The same method is also implemented to

compute the PRIALs of the marginal covariance matrices.

Marginal

Number of Dimension Sample Size Covariance Precision Covariance

States K p T State Matrix Matrix Matrix

Two States 20 128 1 7.76 — 32.73

2 44.01 —

20 256 1 5.48 91.89 21.16

2 27.33 88.63

50 128 1 23.45 — 52.21

2 64.59 —

50 256 1 13.91 — 40.35

2 52.72 —

Three States 20 128 1 14.02 — 14.23

2 49.20 —

3 15.76 —

20 256 1 3.49 97.76 9.53

2 39.03 98.66

3 9.89 87.85

50 128 1 34.90 — 18.74

2 71.39 —

3 16.41 —

50 256 1 20.95 — 10.60

2 59.99 —

3 9.76 —

TABLE 4.1: Simulation 1 PRIALs for the covariance and the precision matrices, under
each known state and PRIALs for the marginal covariance matrices. The hyphen (—)
denotes that some of the sample covariance matrix estimates were singular so that the

corresponding PRIALs could not be calculated.

It becomes clear from the results that in every case, shrinkage improves upon the estimates for the

true covariance matrices under each state. Notice that, while keeping the value of K fixed, the PRIALs
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decrease with decreasing values of the ratio p/T. This should not come as a surprise, since the larger

the sample size T compared to the dimension p, the better the sample covariance matrix performs as

an estimator of the true covariance matrix, which means that the benefit of using shrinkage decreases.

As was discussed in Chapter 3, it is important to have well-conditioned estimates of the precision

matrices. In our case the precision matrix is needed for the computation of the likelihood function.

As it can be seen by the corresponding PRIALs, the shrinkage estimator has a substantial advan-

tage, when used to estimate the true precision matrix, over the sample covariance matrix. In our

simulations, some of ththe shrinkage estimates were not invertible in the following cases:

• case K = 2, p = 20, T = 128: some of the shrinkage estimates under state 1, Σ̂s
1,

• case K = 3, p = 20, T = 128: some of the shrinkage estimates under state 1, Σ̂s
1,

• case K = 3, p = 50, T = 128: some of the shrinkage estimates under state 3, Σ̂s
3.

In all these cases, for one or more samples, the corresponding state of the Markov chain did not

occur in the sample paths. As a result the corresponding sample covariance matrices were equal

to the zero matrix (see Eqaution (2.58)) therefore, the corresponding shrinkage estimates were also

equal to the zero matrix (see Equations (3.18) and (3.21)). In any other case where the PRIAL is

missing, the shrinkage estimates were always invertible, while some of the corresponding sample

covariance matrices were singular. These results indicate that the shrinkage estimates are, indeed,

well-conditioned.

It should be noted that we also examined if and how the choice of a kernel function and the

bandwidth, which are involved in the estimation of the optimal shrinkage weights, affects the results.

In particular, we used the Bartlett kernel, the Parzen kernel, the Tukey-Hanning kernel and their

renormalised versions (see Section 2 in Andrews 1991). For the bandwidth, we tested values ranging

from 10−8, up to T1/3, such that bT = o
(√

T
)

(see Theorem 3.3). The difference in the PRIALs was

insignificant, for the different choices of a kernel function. The choice of bandwidth seemed to have

a somewhat bigger impact on the results, but, again, the differences were not significant (the largest

differences were about 2− 3%). However, it was observed that smaller values of the bandwidth led

to a slight increase in the PRIALs, in most cases. For values of the bandwidth below 0.5, the values of

the PRIALs were identical. The results presented in Table 4.1 were obtained using the renormalised

Parzen kernel and bandwidth b = 10−2.

4.1.2 Simulation 2

Simulation 2 is the same as Simulation 1, with the only difference being that the states are un-

known, so that the corresponding variables are estimated using the EM algorithm. Our results are
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summarised in Table 4.2 below, where the renormalised Parzen kernel has been used and the value

of the bandwidth was set equal to T1/3.

Transition Marginal

Number of Dimension Sample Size Probability Covariance

States K p T Matrix Matrix

SPEM SEM SPEM SEM

Two States 20 128 -5.20 31.66 26.57 27.99

20 256 22.24 39.75 19.34 20.29

50 128 39.67 20.32 45.45 45.81

50 256 -55.44 30.31 32.01 34.77

Three States 20 128 -29.42 1.66 17.52 21.06

20 256 -13.08 10.29 8.71 13.44

50 128 -114.08 -4.49 21.51 29.21

50 256 -14.72 10.54 12.82 19.79

TABLE 4.2: Simulation 2 PRIALs for the transition probability matrix and the marginal
covariance matrix.

The estimates for the transition probability matrices, produced by the method of Fiecas et al.

(2017), are much less accurate than the ones obtained using the classical EM algorithm, in most cases.

The only settings where the SPEM algorithm produces better estimates are when (K = 2, p = 20, T =

256) and (K = 2, p = 50, T = 128). This contradicts the results presented by Fiecas et al. (2017) (see

Table 2 in Subsection 4.2 of their paper). On the other hand, the estimates for the transition probability

matrices that derive from the SEM algorithm, are far more accurate than the corresponding estimates

of the classical EM, in all cases except when (K = 3, p = 50, T = 128).

In every setting the shrinkage estimator of both the SPEM and the SEM algorithms improved

upon the estimates for the covariance matrix. From the PRIALs of the marginal covariance matrix,

once again, it becomes evident that the benefit of using shrinkage is greater for larger values of the

ratio p/T, when the number of states K remains fixed. We also observe that the marginal PRIALs

corresponding to the estimates produced by SEM are slightly and, in some cases, quite significantly

larger than their counterparts coming from SPEM.
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4.1.3 Simulation 3

Following Fiecas et al. (2017), to assess the performance of the modified EM algorithms when

the means differ between states, the data in Simulation 3 are generated as in the previous settings,

but with different means under each state, with equal entries across all dimensions. Under state

k ∈ {1, . . . , K} (K = 2 or K = 3), the elements of the vector of means are 2 (−1)k /
√

pk, for all

i ∈ {1, . . . , p} (p = 20 or p = 50). Again, we report the PRIALs that emerged using the renormalised

Parzen kernel and setting the bandwidth equal to T1/3.

Transition Marginal

Number of Dimension Sample Size Probability Covariance

States K p T Matrix Matrix

SPEM SEM SPEM SEM

Two States 20 128 5.07 46.51 39.75 44.82

20 256 -7.22 41.61 23.78 24.31

50 128 39.48 23.71 51.57 53.82

50 256 -45.74 36.90 37.88 43.20

Three States 20 128 -22.20 6.97 19.48 23.80

20 256 -17.30 11.65 8.52 11.65

50 128 -112.08 -0.05 21.73 27.83

50 256 -44.89 8.25 13.02 19.42

TABLE 4.3: Simulation 3 PRIALs for the transition probability matrix and the marginal
covariance matrix.

The results are similar to the ones from Simulation 2. Once again, our implementation of the

SPEM algorithm, performs worse than the classical EM in the estimation of the transition probability

matrix, which contradicts the corresponding results of Fiecas et al. 2017 (see Table 3 in Subsection

4.2). The SEM algorithm improves upon estimates of the transition probability matrices in almost all

cases.

The estimates for the covariance matrices are far more accurate when shrinkage has been used

(both from SPEM and SEM methods), compared to the sample estimates. Again, there is a slight

advantage of using the SEM algorithm, over the SPEM, to estimate the covariance matrices. The

relation between the ratio p/T and the benefit of shrinkage, is confirmed once more.
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4.1.4 Simulation 4

In Simulation 4 the data are generated from the multivariate Student distribution with 15 degrees

of freedom and using the covariance matrices Σ1 and Σ3, for the two-state scenarios, and Σ1, Σ2 and

Σ3 for the three-state scenarios. Simulation 4 is used to evaluate the performance of the shrinkage

estimators for the cases where the underlying distribution of the data has heavy tails (see Section 4

in Fiecas et al. 2017). As in the previous two simulations (2 and 3), we used the renormalised Parzen

kernel and set the value of the bandwidth equal to T1/3.

Transition Marginal

Number of Dimension Sample Size Probability Covariance

States K p T Matrix Matrix

SPEM SEM SPEM SEM

Two States 20 128 -12.29 5.33 28.94 31.41

20 256 0.52 27.83 23.57 24.79

50 128 36.07 14.93 30.15 28.69

50 256 -60.70 22.20 23.87 23.93

Three States 20 128 -47.43 -6.61 37.94 44.60

20 256 -18.92 -1.12 33.23 38.73

50 128 -135.49 -11.46 45.39 44.13

50 256 -61.80 -0.32 38.56 32.90

TABLE 4.4: Simulation 4 PRIALs for the transition probability matrix and the marginal
covariance matrix.

Once again, the estimates of the transition probability matrices produced by the SPEM algorithm,

are far less accurate than the ones derived from the classical EM, except in the cases (K = 2, p =

20, T = 256) and (K = 2, p = 50, T = 128). The SEM algorithm also failed to improve upon the

estimates for the transition probability matrices in the three-state scenarios, however they were far

more accurate than the ones obtained from the SPEM.

The shrinkage estimators of both SPEM and SEM, produced more accurate estimates for the co-

variance matrices than the sample estimators in all settings. As in Simulations 2 and 3, the benefit of

using shrinkage is greater for larger values of the ratio p/T.

Our findings indicate that shrinkage always leads to more stable and accurate estimates for the

covariance matrix, compared with the sample estimator, under challenging conditions. The benefit
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of using shrinkage becomes more pronounced for higher data dimensions and lower sample sizes.

From the results of Simulation 1, it becomes clear that, especially, for the estimation of precision

matrices, the method yields stable estimates even in cases where the classical approach would simply

fail.

Contrary to what was expected, our implementation of the modified EM algorithm proposed by

Fiecas et al. (2017) (SPEM), produced far less accurate estimates of the transition probability matrices,

in most cases, compared to the classical EM algorithm. Further investigation is needed from our part,

to determine the reasons behind this contradiction. However, the implementation of the variant of

this method (SEM), where the penalised complete-data log-likelihood is used only in the M-step, im-

proved quite significantly upon these estimates, in most cases, and even when the classical approach

proved superior, the differences were not as dramatic as the ones that were observed when SPEM

was used.

4.2 U.S. Industry Portfolio

The data set used for the analysis is a publicly available collection of U.S. industry portfolio data,

that can be found here. It is composed of monthly returns from p = 30 industry sectors taken from

NYSE, AMEX and NASDAQ. A description for every industry sector is available here.

Following Fiecas et al. (2017), we used the returns starting from January 2000 and ending at De-

cember 2011, resulting in a 30-dimensional time series with T = 144 observations. The log-transform

of these returns was taken, so that a light tail is induced in the underlying distribution, in order for

the moment conditions of model (2.45) to be satisfied (see the discussion following Assumptions (A)

in Subsection 2.3.1 and the second paragraph of Section 5 in Fiecas et al. 2017). The analysis was

performed using the mean-centred log-returns.

We used 1000 random sets of initial values for the parameters, for both the SPEM and the SEM

algorithms and report the results from the initialisation that yielded the largest value of the penalised

complete-data log-likelihood and the largest value of the complete-data log-likelihood, respectively.

We examined two different cases for the number of states of the hidden Markov chain, K = 2 and

K = 3. To determine the number of states of the model that best fits the data, we used Akaike’s

Information Criterion (abbreviated AIC) (see, e.g. Section 6.1 in Zucchini et al. 2016, or Section 4.4

in Trevezas 2021). To compute the value of AIC we used the value of the penalised complete-data

log-likelihood when SPEM was used, while for the SEM, we used the value of the complete-data

log-likelihood. The model with K = 2 states resulted in the lowest value2 of AIC for both methods.

2When AIC is used for model selection„ the model with the lowest value of the criterion is chosen as the one that best
fits the data (see Section 6.1 in Zucchini et al. 2016).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_30_ind_port.html


91

Fiecas et al. (2017) considered models with up to K = 5 states, using 1000 random sets of initial

values. Due to long execution times, we examined these cases using only 200 sets of initial values.

Again, the model with K = 2 states yielded the lowest value of AIC for both methods.

Before we proceed to present the results, we should note that it is likely that there are more than

two states. For multivariate time series, the sample size T = 144 is not sufficiently large for AIC to

be able to capture fine features in the data structure that might indicate the existence of more states

(see the last paragraph of Section 5 in Fiecas et al. 2017).

We begin with the results produced using the modified algorithm of Fiecas et al. (2017) (SPEM).

The estimated optimal weights are 0.602 for state 1 and 0.078 for state 2. The estimated transition

probability matrix is

P̂SPEM =

0.289 0.711

0.007 0.993

 .

State 1 represents a state of higher volatility (variance) for all industry sectors, while in state 2

the correlations between the sectors are stronger. By the estimate of the transition probability matrix

P̂SPEM, we deduce that the industry portfolios are more likely to move from the more volatile state

1, towards the less volatile state 2 and stay there. In Figure 4.1, below, the values of the centred

log-returns of the 30 industry sectors are depicted, with the different colours in the background rep-

resenting the underlying states. For the hidden path reconstruction we used the Viterbi algorithm

(see Appendix D), using the estimates of the parameters yielded by the SPEM algorithm.
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FIGURE 4.1: The time series of the centred log-returns of the 30 industry sectors and the
estimated state sequence using the SPEM algorithm.

It is evident that there exists heteroscedasticity in the data. There are periods of higher and lower

volatility. For example within the first quarter of 2001, or the third quarter of 2002, there are large

spikes in the values of the centred log-returns, which implies that during these periods, the market

was probably under a state of high risk. The more volatile state 1 is probably the underlying state

during these periods, but this was not captured by the estimated state sequence. In the path produced

by the estimates of SPEM, state 1 only occurs within the second half of 2008, where the highest

volatility is observed.

We now report the results of the SEM algorithm. The optimal weight for state 1 is 0.058, and for

state 2 is 0.403. The estimated transition probability matrix is

P̂SEM =

0.941 0.059

0.321 0.679

 .

Here the labels are switched, compared to the results of SPEM. Under state 1 the correlations

between the industry sectors are stronger, while under state 2 the variance of each industry sector is

higher. As was done for the results of the SPEM algorithm, in Figure 4.2, below, the time series of the

centred log-returns of the 30 industry sectors is depicted, along the estimated state sequence of the

Markov chain, represented by the colours in the background.
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FIGURE 4.2: The time series of the centred log-returns of the 30 industry sectors and the
estimated state sequence using the SEM algorithm.

We can see that using the parameter estimates derived from the SEM algorithm, the resulting

estimated path is very well adapted to the changes in the variance of the 30 industry sectors. This

suggests that, using the SEM method, we were able to capture quite well the changes in the market,

that might have happened during the period under consideration. These results are quite similar to

the ones reported in Section 5 of Fiecas et al. (2017).

Below we present the corresponding figure which was yielded using the classical EM algorithm.

The resulting estimates, led to a state sequence with too many transitions between the two states.

Even though many potential changes in the market are captured, the estimated path is less inter-

pretable than the corresponding path that was obtained using the SEM. This implies that the esti-

mates of the parameters produced by the classical EM algorithm are less stable than their counter-

parts from the SEM (see Section 5 in Fiecas et al. 2017).
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FIGURE 4.3: The time series of the centred log-returns of the 30 industry sectors and the
estimated state sequence using the EM algorithm.
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Appendix A

Auxiliary Material

A.1 Probability And Measure Theory

In this section some basic definitions and results from Probability and Measure theory are pre-

sented. This section is useful for someone who is not familiar with some of the notions presented

throughout this paper and it mostly serves as a way to provide a sense of completeness. For a proper

introduction to Probability and Measure theory the interested reader is referred to Billingsley (1995).

We mainly follow Billingsley (1995) and Section 2.4 in Trevezas (2021).

Definition A.1 (Sample Space). Let us assume an experiment whose outcome, after each trial, is not pre-

dictable with certainty, but all its possible outcomes, say ω1, . . . , ωn, are known. The set Ω = {ω1, . . . , ωn}

of all possible outcomes is called the sample space of the experiment. After each trial only one possible outcome

occurs, that is if ωi takes place, then no other ωj can occur, for all i, j ∈ Ω = {ω1, . . . , ωn}, with i 6= j.

Definition A.2 (σ-algebra). Consider a non-empty set Ω. A σ-algebra or sigma-field A on Ω is a collection

of subsets of Ω, satisfying the following conditions:

(i) Ω ∈ A,

(ii) if A ∈ A, then Ac ∈ A (A is closed under complementation),

(iii) if {An : n ≥ 1} is a sequence of sets in A, then A =
+∞⋃
n=1

An ∈ A (A is closed under countable unions).

Since Ω is an element of A (Condition (i)), by Condition (ii) its complement, the empty set ∅, is

also an element of A. Additionally, by Condition (iii) for a sequence of sets in A, {An : n ≥ 1}, we

have that
+∞⋃
n=1

An ∈ A. By de Morgan’s laws we have that
+∞⋃
n=1

An =

(
+∞⋂
n=1

Ac
n

)c

and by Condition (ii)

Ac
n is an element of A for all n ≥ 1. It follows that A is also closed under countable intersections.

Definition A.3 (Measurable Space). A measurable space is a pair (Ω,A), where Ω is a non-empty set and

A is a σ-algebra on Ω.
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Definition A.4 (Measure). A measure is a set function µ on a σ-algebra A in Ω, satisfying the following

conditions:

(i) µ(A) ∈ [0,+∞), for any set A ∈ A,

(ii) µ(∅) = 0,

(iii) for any sequence {An : n ≥ 1} of pairwise disjoint sets of A (Ai ∩ Aj = ∅, for all i, j ≥ 1 and i 6= j),

it holds

µ

(
+∞⋃
n=1

An

)
=

+∞

∑
n=1

µ(An).

Definition A.5 (Finite, Infinite, σ-finite Measure). Consider a measurable space (Ω,A).

(i) A measure µ is said to be finite on (Ω,A), if µ (Ω) < +∞.

(ii) A measure µ is said to be infinite on (Ω,A), if µ (Ω) = +∞.

(iii) A measure µ is said to be σ-finite on (Ω,A), if there exists a sequence {An : n ≥ 1} of sets in A, with

µ(An) < +∞, for all n ≥ 1, such that Ω =
⋃+∞

n=1 An.

Definition A.6 (Measure Space). A measure space is a triplet (Ω,A, µ), where Ω is a non-empty set, A is

a σ-algebra on Ω and µ is a probability measure defined on A.

Definition A.7 (Almost Everywhere). Consider a measure space (Ω,A, µ). A property P is said to hold

almost everywhere (abbreviated a.e.) on Ω, or for almost every x, if for all x ∈ Ω which satisfy P, it holds that

x ∈ Ac = Ω \ A, where A ∈ A, such that µ(A) = 0.

Definition A.8 (Probability Measure). Consider a measurable space (Ω,A). A probability measure set

function P : A → [0, 1], satisfying the following conditions:

(i) P(A) ∈ [0,+∞), for any set A ∈ A,

(ii) P is normalised, that is the measure of the entire sample space Ω equals 1, P(Ω) = 1,

(iii) P is countably additive or σ-additive, which means that for any countable sequence {An : n ≥ 1} of

pairwise disjoint sets of A, it holds

P

(
+∞⋃
n=1

An

)
=

+∞

∑
n=1

P(An).

In accordance with the definition of measurespaces we have the following definition.
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Definition A.9 (Probability Space). A probability space is a triplet (Ω,A, P), where Ω is a non-empty set,

A is a σ-algebra on Ω and P is a probability measure defined on A.

Definition A.10 (σ-algebra Generated by an Arbitrary Family). Consider a non-empty set Ω and a col-

lection D consisting of subsets of Ω. Α σ-algebra A which satisfies the following conditions:

(i) D ⊆ A,

(ii) for any σ-algebra A′ on Ω such that D ⊆ A′, it follows A ⊆ A′,

is called the σ-algebra generated by D and is denoted by σ(D).

For any set Ω and a collection D, as defined in Definition A.10, the σ-algebra generated by D,

σ(D), always exists and it is unique. It is the intersection of all the σ-algebras on Ω containing D (see

Section 2 in Billingsley 1995).

Definition A.11 (Borel σ-algebra). Consider a metric space1 (Ω, d). The σ-algebra generated by the open

sets2 of (Ω, d) is called the Borel σ-algebra (on Ω) and is denoted by B(Ω). The members of B(Ω) are called

the Borel sets of Ω.

Let us denote by OΩ the family of all open sets of the metric space (Ω, d). Then Definition A.11

implies that B(Ω) = σ(OΩ).

Definition A.12 (Measurable Function). Consider two measurable spaces (Ω1,A1) and (Ω2,A2). A func-

tion f : Ω1 → Ω2 is called A1/A2-measurable (or A1-measurable when A2 is obvious, or just measurable

when both A1 and A2 are obvious) if for every set B ⊆ A2 the inverse image of B under f is in A1, that is

f−1(B) = {ω ∈ Ω1 : f (x) ∈ B} ∈ A1, for all B ∈ A2.

Equivalently, f is A1/A2-measurable if f−1(A2) ⊆ A1.

Definition A.13 (Random Variable). Consider a probability space (Ω,A, P). A real valued function X

defined on Ω, X : Ω→ R, is called a random variable if it is A/B(R)-measurable, that is

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, for all B ∈ B(R) .
1A metric space is an ordered pair (Ω, d) where Ω is a non-empty set and d is a metric on Ω, that is, a nonnegative

function d : Ω×Ω→ R, satisfying the following conditions:

(i) d(x, y) = 0⇔ x = y, ∀x, y ∈ Ω,

(ii) d(x, y) = d(y, x), ∀x, y ∈ Ω,

(iii) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ Ω.

2A subset B of a metric space (Ω, d) is called open if, for any point x ∈ B, there exists a real number ε > 0 such that for
any point y ∈ Ω with d(x, y) < ε, it follows that y ∈ B.
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Definition A.14 (Random Vector). Consider a probability space (Ω,A, P). A random vector X on (Ω,A, P)

is a p-tuple X =
(
X1, . . . , Xp

)
of random variables.

Definition A.15 (Convergence of Random Variables). Consider a probability space (Ω,A, P) and a se-

quence of random variables {Xn : n ≥ 1} defined on (Ω,A, P). The sequence {Xn : n ≥ 1} is said to converge

(i) with probability 1, or almost surely to a random variable X if and only if

P
({

ω ∈ Ω : ∃ lim
n→+∞

[Xn(ω)] and lim
n→+∞

[Xn(ω)] = X(ω)

})
= 1,

or simply

P
(

lim
n→+∞

(Xn) = X
)
= 1

and it is denoted by

Xn
a.s.−→ X ⇔ |Xn − X| a.s.−→ 0,

(ii) in probability to a random variable X if and only if for all ε > 0

P(|Xn − X| > ε) −−−−→
n→+∞

0,

or equivalently

P(|Xn − X| ≤ ε) −−−−→
n→+∞

1,

and it is denoted by

Xn
p−→ X ⇔ |Xn − X| p−→ 0,

(iii) in distribution to a random variable X if and only if for all x ∈ R such that F(x−) = F(x) ⇔

lim
y→x−

[F(y)] = F(x)

Fn(x) −−−−→
n→+∞

F(x) ,

where Fn(·) is the cumulative distribution function of Xn and F(x) is the corresponding function of X,

and it is denoted by

Xn
d−→ X.

In accordance to the univariate case, we can define the convergence of random vectors.

Definition A.16 (Convergence of Random Vectors). Consider a probability space (Ω,A, P) and a se-

quence of random vectors {Xn : n ≥ 1} defined on (Ω,A, P), where Xn ∈ Rp, for all n ≥ 1. The sequence

{Xn : n ≥ 1} is said to converge
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(i) with probability 1, or almost surely to a random vector X ∈ Rp if and only if

||Xn − X||2
a.s.−→ 0,

where ||·||2 denotes the Euclidean norm of a vector, or equivalently

P
(

lim
n→+∞

(Xn) = X
)
= 1

and it is denoted by

Xn
a.s.−→ X,

(ii) in probability to a random vector X ∈ Rp if and only if

||Xn − X||2
p−→ 0,

and it is denoted by

Xn
p−→ X,

(iii) in distribution to a random vector X ∈ Rp if and only if for all B ∈ B(Rp) such that P(X ∈ ∂B) = 0

P(Xn ∈ B) −−−−→
n→+∞

P(X ∈ B) ,

where ∂B = B \ Bo is the topological boundary of B (with Bo denoting the interior of B), and it is denoted

by

Xn
d−→ X.

For the convergence in distribution both for random variables and random vectors, the sequences

need not be defined in the same probability space with their corresponding limits (see the paragraph

following Definition 2.3 in Trevezas 2021).

The following proposition relates the convergence with probability 1 and in probability of random

vectors to the corresponding convergence of random variables (see Proposition 2.10 Trevezas 2021).

Proposition A.1. Consider a probability space (Ω,A, P), a sequence of random vectors {Xn : n ≥ 1}, where

Xn ∈ Rp for all n ≥ 1, and a random vector X ∈ Rp, all defined on (Ω,A, P). Then

Xn
a.s. / p−−−→ X ⇔ Xn,i

a.s. / p−−−→ Xi,

for all i ∈ {1, . . . , p}.
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For the convergence in distribution of random vectors we have the following result (see Theorem

2.1 in Trevezas 2021).

Theorem A.1. A sequence of random vectors {Xn : n ≥ 1}, where Xn ∈ Rp for all n ≥ 1 converges to a

random vector X ∈ Rp if and only if

(i) for all x ∈ Rp, such that F(x−) = F(x)

Fn(x) −−−−→
n→+∞

F(x) ,

where Fn(·) and F(·) are the cumulative distribution functions of Xn and X, respectively,

(ii) any linear combination of the elements of Xn converges in distribution to the corresponding linear com-

bination of the elements of X, that is for any vector u ∈ Rp

u
′
Xn

d−→ u
′
X,

(iii) for any continuous and bounded function f : Rp → R

E[ f (Xn)] −−−−→
n→+∞

E[ f (X)] .

The following proposition gives the relation between the three ways of convergence for random

vectors. The same relation also holds for the corresponding ways of convergence for random vari-

ables (see Proposition 2.1 in Trevezas 2021).

Proposition A.2. Consider a probability space (Ω,A, P), a sequence of random vectors {Xn : n ≥ 1}, where

Xn ∈ Rp for all n ≥ 1, and a random vector X ∈ Rp, all defined on (Ω,A, P). Then

Xn
a.s.−→ X ⇒ Xn

p−→ X ⇒ Xn
d−→ X.

In case X = c, where c ∈ Rp is a constant vector, then

Xn
p−→ c⇔ Xn

d−→ c.

Definition A.17 (Independence of Random Variables). Consider a probability space (Ω,A, P) and a se-

quence of random variables (X1, . . . , Xn). The random variables (X1, . . . , Xn) are called independent if and

only if

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) · . . . · P(Xn ∈ An) ,
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for all Ai ∈ B(R), with i ∈ {1, . . . , n}.

Definition A.18 (Independence of Random Vectors). Consider a probability space (Ω,A, P) and a se-

quence of random vectors (X1, . . . , Xn), where X i ∈ Rpi , with i ∈ {1, . . . , n}. The random vectors (X1, . . . , Xn)

are called independent if and only if

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) · . . . · P(Xn ∈ An) ,

for all Ai ∈ B(Rpi), with i ∈ {1, . . . , n}.

Definition A.19 (σ-algebra Generated by a Random Variable). Consider a random variable X on a prob-

ability space (Ω,A, P). The smallest σ-algebra with respect to which the random variable X is measurable,

is called the σ-algebra generated by X and is denoted by σ(X). It is the intersection of all σ-algebras with

respect to which X is measurable. Generally, for any set I of indices the σ-algebra generated by the se-

quence (Xi : i ∈ I), is the smallest σ-algebra with respect to which each Xi is measurable and is denoted by

σ(Xi : i ∈ I).

Definition A.20 (α-mixing). Consider a probability space a (Ω,A, P), a stochastic process

{Xt : −∞ < t < +∞} on (Ω,A, P) and a sequence {an : n ≥ 1} such that

an = sup {|P(A ∩ B)− P(A)P(B)| : A ∈ σ(Xt : t ≤ k) , B ∈ σ(Xt : t ≥ k + n)} .

The elements an are called the α-mixing coefficients (or strong mixing coefficients) of the process

{Xt : −∞ < t < +∞}. The process itself is said to be α-mixing or strongly mixing if

an −−−−→
n→+∞

0.

A stochastic process {Xt : −∞ < t < +∞} is α-mixing with exponential decay or exponential mixing

rate if an −−−−→
n→+∞

0 exponentially fast, where an are the α-mixing coefficients of {Xt : −∞ < t < +∞},

as defined above (see the discussion following Equation (2.11) and the paragraph following Theorem

3.1 in Bradley 2005).

A.2 Statistical Analysis

In this section we provide some basic elements of Statistical analysis that mainly concern point

estimation. The interested reader is referred to van der Vaart (1998), Lehmann and Casella (1998),

Lehmann and Casella (2001), Casella and Berger (2002) and Lehmann (1999).
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Definition A.21 (Statistical Model). Consider a random experiment with sample space Ω and a random

vector X = (X1, . . . , Xn) defined on Ω. If the outcome of the experiment is ω ∈ Ω, then X(ω) is referred to

as the observations or data. Only X is observable, thus we only need to consider its probability distribution.

The family of distributions P defined on Rn, in which this probability distribution belongs to, is a statistical

model.

Definition A.22 (Parameterisation). A function θ → Pθ , from a space of labels, called a parameter space, Θ

to a model P , used to describe P , is called a parameterisation and it is expressed as P = {Pθ : θ ∈ Θ}.

Definition A.23 (Identifiable Model). A model P = {Pθ : θ ∈ Θ} is called identifiable if the parameterisa-

tion θ → Pθ is a 1− 1 function, that is if

θ1 6= θ2 ⇒ Pθ1 6= Pθ2 ,

otherwise the model P is referred to as unidentifiable.

Definition A.24 (Statistic). A statistic T is a function from a sample space X to a space of values T , such

that if we observe X = x, then T(x) is the quantity that we can compute.

Definition A.25 (Estimator). Consider a parameter θ ∈ Θ and a real-valued function g(θ) defined over Θ.

Any real-valued function δ(X) defined over the sample space X , used to estimate g(θ), is called an estimator

of g(θ). If x is the observed value of X, then the value δ(x) is the estimate of g(θ).

Definition A.26 (Action Space). A set A of possible actions or decisions one can make is called action space.

Definition A.27 (Loss Function). A function L : P ×A → R+ is called loss function. L(P, α), or L(θ, α),

if P is parameterised, where P ∈ P , α ∈ A and θ ∈ Θ, represents the nonnegative loss incurred by taking

action α when the probability distribution producing the data is P, or the true value of the parameter is θ,

respectively.

Definition A.28 (Decision Rule or Procedure). The decision rule or procedure is any function δ : X → A,

such that, if a point from the sample space X , X = x, is observed, then the action taken is δ(x).

Consider a setting where X = x is the outcome of an experiment, P ∈ P is the probability

distribution that generated the data, the loss function used is L and the decision rule is δ, thus the

loss is L[P, δ(x)]. Since P is unknown, the same holds for L[P, δ(x)]. It is desirable for decision rules to

possess good properties not only at one specific x, but for a range of possible values over the sample

space. This motivates the following definition.
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Definition A.29 (Risk Function). For the outcome of an experiment X = x, where P ∈ P is the probability

distribution that generated the data, with loss function L[P, δ(x)], for a decision rule δ, the risk function is the

expectation of the loss L[P, δ(x)], regarding the latter as a random variable. That is

R(P, δ) = EP(L[P, δ(X)]) .

In case the model P is parameterised and θ ∈ Θ is the true value of the parameter, then the risk function is

defined, accordingly, as

R(θ, δ) = Eθ(L[θ, δ(X)]) .

Definition A.30 (Bias). Consider a parameter θ ∈ Θ, a function g : Θ→ R and an estimator δ(X) of g(θ).

The bias of δ(X) as an estimator of g(θ) is defined as

Bias[δ(X)] = Eθ [δ(X)− g(θ)] = Eθ [δ(X)]− g(θ) .

Definition A.31 (Unbiased Estimator). Consider a parameter θ ∈ Θ and a function g : Θ → R. An

estimator δ(X) of g(θ) is characterised as unbiased if and only if

Bias[δ(X)] = 0⇔ Eθ [δ(X)] = g(θ) ,

otherwise δ(X) is called biased.

Definition A.32 (Mean Squared Error). Consider a parameter θ ∈ Θ, a function g : Θ → R and an

estimator δ(X) of g(θ). The mean squared error of δ(X) as an estimator of g(θ) is defined as

MSE[δ(X)] = Eθ

(
[δ(X)− g(θ)]2

)
.

The following proposition relates the mean squared error of an estimator to its bias.

Proposition A.3. Consider a parameter θ ∈ Θ, a function g : Θ → R and an estimator δ(X) of g(θ). The

mean squared error and the bias of δ(X) as an estimator of g(θ) are related via the following equation

MSE[δ(X)] = (Bias[δ(X)])2 + Var[δ(X)] .
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Proof.

MSE[δ(X)] = E
(
[δ(X)− g(θ)]2

)
= E

(
[δ(X)− E[δ(X)] + E[δ(X)]− g(θ)]2

)
=

E
[
(δ(X)− E[δ(X)])2 + 2 (δ(X)− E[δ(X)]) [E[δ(X)]− g(θ)] + [E[δ(X)]− g(θ)]2

]
=

E
[
(δ(X)− E[δ(X)])2

]
+ 2E(δ(X)− E[δ(X)]) [E[δ(X)]− g(θ)] + [E[δ(X)]− g(θ)]2 =

E
[
(δ(X)− E[δ(X)])2

]
+ 2 (E[δ(X)]− E[δ(X)]) [E[δ(X)]− g(θ)] + [E[δ(X)]− g(θ)]2 =

E
[
(δ(X)− E[δ(X)])2

]
+ [E[δ(X)]− g(θ)]2 = Var[δ(X)] + (Bias[δ(X)])2 .

Definition A.33 (Consistent Estimator). Consider a parameter θ ∈ Θ, a function g : Θ → R and a

sequence of estimators δn = δn(X1, . . . , Xn), n ∈ {1, 2, . . .} of g(θ). {δn : n ≥ 1} is characterised as a

consistent sequence of estimators of g(θ) if for every θ ∈ Θ

δn
p−→ g(θ) , as n→ +∞.

The following theorem gives some ways to prove consistency for a sequence of estimators (see

Theorem 8.2 in Lehmann and Casella 1998).

Theorem A.2. Consider a parameter θ ∈ Θ, a function g : Θ→ R and a sequence of estimators {δn : n ≥ 1}.

(i) If for all θ ∈ Θ it holds that

MSE(δn) = Eθ

(
[δn − g(θ)]2

)
−−−−→
n→+∞

0,

then {δn : n ≥ 1} is a consistent sequence of estimators for g(θ).

(ii) If for all θ ∈ Θ it holds that

Bias(δn) −−−−→
n→+∞

0⇔ E(δn) −−−−→
n→+∞

g(θ) ,

and

Varθ(δn) −−−−→
n→+∞

0,

then {δn : n ≥ 1} is a consistent sequence of estimators for g(θ).

(iii) As a direct result of (ii), if δn is unbiased for all n ≥ 1 and

Varθ(δn) −−−−→
n→+∞

0,
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then {δn : n ≥ 1} is a consistent sequence of estimators for g(θ).

Definition A.34 (
√

n-consistent Estimator). Consider a parameter θ ∈ Θ, a function g : Θ → R and

a sequence of estimators {δn : n ≥ 1}. {δn : n ≥ 1} is said to be a
√

n-consistent sequence of estimators for

g(θ) if
√

n [δn − g(θ)] is bounded in probability, that is, if

√
n [δn − g(θ)] = Op(1)⇔ [δn − g(θ)] = Op

(
1√
n

)
.

Definition A.35 (Asymptotically Normal Estimator). Consider a parameter θ ∈ Θ, a function g : Θ→ R

and a sequence of estimators {δn : n ≥ 1}. {δn : n ≥ 1} is said to be an asymptotically normal sequence of

estimators for g(θ) if there exists a function r(θ) ∈ (0,+∞), such that

√
n [δn − g(θ)] d−→ N[0, r(θ)] .

The function r(θ) is referred to as the asymptotic variance of {δn : n ≥ 1}.

A.3 Multivariate Statistical Analysis

In this section some basic definitions of multivariate statistical analysis are introduced and the

multivariate Normal distribution is presented, that is used in Chapters 2 and 3. We mainly follow

Härdle and Simar (2007) and Trevezas (2021). The interested reader is also referred to Anderson

(2003) and Johnson et al. (2002).

A.3.1 Basic Elements of Multivariate Statistical Analysis

Definition A.36 (Cumulative Distribution Function of Random Vectors). The cumulative distribution

function of a random vector X ∈ Rp, X =
(
X1, . . . , Xp

)′
, where for all i ∈ {1, . . . , p}, Xi is a random

variable, is the joint cumulative distribution function of its elements, that is

FX(x) = P(X ≤ x) = P
(
X1 ≤ x1, . . . , Xp ≤ xp

)
.

Definition A.37 (Expectation of Random Vectors). Consider a random vector X ∈ Rp,

X =
(
X1, . . . , Xp

)′
. If E(|Xi|) < +∞, for all i ∈ {1, . . . , p}, then the expectation of the vector X is defined

as

E(X) = E


X1
...

Xp

 =


E(X1)

...

E
(
Xp
)
 ,



12

where for all i ∈ {1, . . . , p}

E(Xi) =



∑
xi∈S

xiP(Xi = xi),
if Xi is a discrete random

variable taking its values in S

+∞∫
−∞

xi fXi(xi) dxi,
if Xi is a continuous random variable

with probability density function fXi(·)

Definition A.38 (Expectation of Random Matrices). Consider random matrix X ∈ RT×p, that is a matrix

whose entries Xij are random variables, for all i ∈ {1, . . . , T} and j ∈ {1, . . . , p}. If E
(∣∣Xij

∣∣) < +∞, for all

i ∈ {1, . . . , T} and i ∈ {1, . . . , p}, then the expectation of the matrix X is defined as

E(X) =


E(X11) E(X12) . . . E

(
X1p
)

E(X21) E(X22) . . . E
(
X2p
)

...
...

. . .
...

E(XT1) E(XT2) . . . E
(
XTp

)

 ,

where for all i ∈ {1, . . . , T} and j ∈ {1, . . . , p}

E
(
Xij
)
=



∑
xij∈S

xijP
(
Xij = xij

)
,

if Xij is a discrete random

variable taking its values in S

+∞∫
−∞

xij fXij

(
xij
)

dxij,
if Xij is a continuous random variable

with probability density function fXij(·)

Definition A.39 (Variance - Covariance Matrix). Consider a random vector X ∈ Rp,

X =
(
X1, . . . , Xp

)′
. If E

(
X2

i
)
< +∞, for all i ∈ {1, . . . , p}, then the variance - covariance, or simply the

covariance matrix of the vector X is defined as

Var(X) =
[
Cov

(
Xi, Xj

)]
i,j∈{1,...,p} =


Cov(X1, X1) Cov(X1, X2) . . . Cov

(
X1, Xp

)
Cov(X2, X1) Cov(X2, X2) . . . Cov

(
X2, Xp

)
...

...
. . .

...

Cov
(
Xp, X1

)
Cov

(
Xp, X2

)
. . . Cov

(
Xp, Xp

)

 ,

where for all i, j ∈ {1, . . . , p}

Cov
(
Xi, Xj

)
= E

(
[Xi − E(Xi)]

[
Xj − E

(
Xj
)])

.
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The diagonal elements of Var(X) are the variances Var(Xi), for all i ∈ {1, . . . , p}. The covariance matrix of a

random vector X is positive semidefinite (see Definition A.59).

Definition A.40 (Covariance Matrix). Consider the random vectors X ∈ Rp,

X =
(
X1, . . . , Xp

)′
and Y ∈ Rs, Y = (Y1, . . . , Ys)

′
. If E

(
X2

i
)
< +∞, for all i ∈ {1, . . . , p}, and E

(
Y2

j

)
<

+∞, for all j ∈ {1, . . . , s}, then the covariance matrix of the vectors X and Y is defined as

Cov(X, Y) =
[
Cov

(
Xi, Yj

)]
i∈{1,...,p}, j∈{1,...,s} =


Cov(X1, Y1) Cov(X1, Y2) . . . Cov(X1, Ys)

Cov(X2, Y1) Cov(X2, Y2) . . . Cov(X2, Ys)
...

...
. . .

...

Cov
(
Xp, Y1

)
Cov

(
Xp, Y2

)
. . . Cov

(
Xp, Ys

)

 .

If Cov(X, Y) = 0p×s, then the random vectors X and Y are uncorrelated.

In the following propositions the properties of the expectation and the covariance matrix are

presented (see e.g. Section 4.2 in Härdle and Simar 2007, or Section 2.1 in Trevezas 2021).

Proposition A.4. Consider two random vectors X, Y ∈ Rp, for which the corresponding expectations exist.

For a matrix A and a vector b of appropriate dimensions, we have the following relations:

(i) E
(

X
′
)
= [E(X)]

′
,

(ii) E(AX + b) = AE(X) + b,

(iii) E(X + Y) = E(X) + E(Y).

The same relations also hold in case X and Y are random matrices.

Proposition A.5. Consider two random vectors X, Y ∈ Rp, for which the corresponding covariance matrices

exist. For a matrix A and a vector b of appropriate dimensions, we have the following relations:

(i) Var(X) = E
(
[X − E(X)] [X − E(X)]

′)
= E

(
XX

′
)
− E(X)E

(
X
′
)

,

(ii) Var(AX + b) = AVar(X)A
′
,

(iii) Var(X + Y) = Var(X) + Var(Y) + Cov(X, Y) + Cov(Y , X).

Proposition A.6. Consider two random vectors X ∈ Rp, Y ∈ Rs, for which the corresponding covariance

matrices exist. For tow matrices A, B and two vectors b, c of appropriate dimensions, we have the following

relations:

(i) Cov(X, Y) = E
(
[X − E(X)] [Y − E(Y)]

′)
= E

(
XY

′
)
− E(X)E

(
Y
′
)

,
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(ii) Cov(AX + b, BY + c) = ACov(X, Y)B
′
.

Proposition A.7. Consider two independent random vectors X ∈ Rp, Y ∈ Rs, for which the corresponding

covariance matrices exist. We have the following relations:

(i) E
(

XY
′
)
= E(X)E

(
Y
′
)

,

(ii) Cov(X, Y) = 0p×s, i.e. X and Y are also uncorrelated,

(iii) Var(X + Y) = Var(X) + Var(Y), if p = s.

We now proceed to define the sample analogs of the expectation and the covariance matrix for

random vectors.

Definition A.41 (Sample Mean of Random Vectors). Consider a sample of T observations of the random

vectors (X1, . . . , XT), where X t ∈ Rp, for all t ∈ {1, . . . , T}. The sample mean is defined as

XT =


X1

X2
...

X p

 ,

where for all i ∈ {1, . . . , p}

X i =
1
T

T

∑
t=1

Xt,i.

As in the univariate case, for a sample of T i.i.d. random vectors, the sample mean is an unbiased

estimator of the expectation (see Example 4.15 in Härdle and Simar 2007).

Definition A.42 (Sample Covariance Matrix). Consider a sample of T observations of the random vectors

(X1, . . . , XT), where X t ∈ Rp, for all t ∈ {1, . . . , T}. The sample covariance matrix is defined as

ST =
(

SXiXj

)
i,j∈{1,...,p}

,

where for all i, j ∈ {1, . . . , p}

SXiXj =
1
T

T

∑
t=1

(
Xt,i − X i

) (
Xt,j − X j

)
.

The diagonal elements of the sample covariance matrix are the sample variances

SXiXi =
1
T

T

∑
t=1

(
Xt,i − X i

)2.

The sample covariance matrix is also positive semidefinite (see Equation (3.20) in Härdle and Simar 2007).
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Definition A.43 (Sample Covariance Matrix of Two Random Vectors). Consider two samples of T ob-

servations of the random vectors (X1, . . . , XT) and (Y1, . . . , YT), where X t ∈ Rp and Y t ∈ Rs, for all

t ∈ {1, . . . , T}. The sample covariance matrix is defined as

S =
(

SXiYj

)
i∈{1,...,p}, j∈{1,...,s}

,

where for all i ∈ {1, . . . , p} and j ∈ {1, . . . , s}

SXiYj =
1
T

T

∑
t=1

(
Xt,i − X i

) (
Yt,j − Y j

)
.

In case of small samples of T i.i.d. random variables, to correct the bias of the sample estimators

given in Definitions A.42 and A.43, the denominator T in the formulas of the sample variance and

covariance is replaced by (T − 1) (see the paragraph following Equation (3.3) in Härdle and Simar

2007).

A sample of T observations of the random vectors (X1, . . . , XT), where X t ∈ Rp, for all i ∈

{1, . . . , p} can be displayed in matrix form as

X =


X1,1 X1,2 . . . X1,p

X2,1 X2,2 . . . X2,p
...

...
. . .

...

XT,1 XT,2 . . . XT,p

 ,

where the t-th row of the matrix is the t-th observation of the p-dimensional random vector Xt.

The sample mean and the sample covariance matrix of the random vectors (X1, . . . , XT) can be

expressed in matrix form as (see Equations (3.17) to (3.19) in Härdle and Simar 2007)

(i)

XT =
1
T
X ′1T,

where 1T is a T-dimensional vector of ones,

(ii)

ST =
1
T
X ′X − XTXT

′
=

1
T

(
X ′X − 1

T
X ′1T1T

′X
)

,

which is equivalent to

ST =
1
T

T

∑
t=1

(
Xt − XT

) (
Xt − XT

)′
. (A.1)
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As in the univariate case, for small samples of T i.i.d. random vectors the unbiased estimator of

the covariance matrix is S =
T

T − 1
ST (see Example 4.15 in Härdle and Simar 2007).

A.3.2 Multivariate Normal Distribution

Definition A.44 (Multivariate Normal Distribution). A random vector X ∈ Rp that follows the multi-

variate Normal distribution with mean µ and covariance matrix Σ, where Σ is a positive definite matrix (see

Definition A.59), denoted by X ∼ Np(µ, Σ), has the following probability density function

fX(x; µ, Σ) =
1

(2π)p/2 [det(Σ)]1/2 exp
{
−1

2
(x− µ)

′
Σ−1 (x− µ)

}
.

The following theorem shows how the multivariate Normal distribution Np(µ, Σ) is related to the

standard multivariate Normal distribution Np
(
0p, Ip

)
.

Theorem A.3. Let X ∼ Np(µ, Σ) and Y = Σ−1/2 (X − µ), where Σ−1/2 =
(
Σ1/2)−1 and Σ1/2 is the square

root of Σ (see Definition A.60). Then Y ∼ Np
(
0p, Ip

)
, which means that the elements Yi are independent

random variables from the univariate standard Normal distribution N(0, 1), for all i ∈ {1, . . . , p}.

Proof. See the proof of Theorem 4.5 in Härdle and Simar (2007).

We also have the following result for affine transformations (see, e.g., Result 4.3 in Johnson et al.

2002, or Theorem 4.6 in Härdle and Simar 2007).

Theorem A.4. Let X ∼ Np(µ, Σ). For a matrix A ∈ Rp×p and a vector b ∈ Rp and a random vector

Y ∈ Rp, such that Y = AX + b, it holds that Y ∼ Np

(
Aµ + b, AΣA

′
)

.

Proof. See the proof of Result 4.3 in Johnson et al. (2002).

More information about the multivariate Normal distribution can be found in, e.g., Chapter 4 of

Johnson et al. (2002), Chapter 2 of Anderson (2003), Section 4.4 and Chapter 5 of Härdle and Simar

(2007), or Section 2.3 of Trevezas (2021).

A.4 Time Series

This section contains some basic notions of univariate time series theory that are used in Chapter

3. The main purpose of this presentation is to provide a sense of completeness and not a proper

introduction on the topic of time series. The interested reader is referred to the works of Brockwell

and Davis (1991) and Shumway and Stoffer (2011), which we follow in this section.
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Definition A.45 (The Autocovariance Function). If {Xt : t ∈ T} is a stochastic process such that Var(Xt) <

+∞ for each t ∈ T, then the autocovariance function c(·, ·) of {Xt : t ∈ T} is defined as

c(t, s) = Cov(Xt, Xs) = E([Xt − E(Xt)] [Xs − E(Xs)]) (t, s ∈ T) .

Definition A.46 (Strictly Stationary Time Series). The time series {Xt : t ∈ Z} is said to strictly stationary

if the joint distributions of the random variables (Xt1 , . . . , Xtk) and
(
Xt1+h , . . . , Xtk+h

)
are the same for all

positive integers k and all t1, . . . , tk ∈ Z.

Definition A.47 (Weakly Stationary Time Series). The time series {Xt : t ∈ Z} is said to be weakly sta-

tionary if

(i) E
(
|Xt|2

)
< +∞, for all t ∈ Z,

(ii) E(Xt) = µ, for all t ∈ Z,

(iii) c(t, s) = c(t + h, s + h), for all t, s, h ∈ Z.

Remark. If a time series is strictly stationary with finite second moments, then it is also weakly stationary.

The converse is not true in general (see the discussion preceding Definition 1.3.4 in Brockwell and Davis

1991, or the discussion following Definition 1.7 in Shumway and Stoffer 2011).

We have the following result for the autocovariance of a (strictly or weakly) stationary time series

(see Remark 2 in Chapter 1 of Brockwell and Davis 1991, or Shumway and Stoffer 2011).

Remark. If {Xt : t ∈ Z} is a (strictly or weakly) stationary time series, then its autocovariance c(t, s) depends

on t and s only through their difference |t− s|, and not on the specific moments t and s, for all t, s ∈ Z. More

formally, it holds that

c(t, s) = c(t− s, 0) (t, s ∈ Z) .

As a result, we have the following definition for the autocovariance of a (strictly or weakly) sta-

tionary time series.

Definition A.48 (The Autocovariance Function For Stationary Time Series). The autocovariance func-

tion of a (strictly or weakly) stationary time series {Xt : t ∈ Z} is defined as

c(h) = c(h, 0) = Cov(Xt+h, Xt) = E([Xt+h − E(Xt+h)] [Xt − E(Xt)]) (t, h ∈ Z) .

The quantity c(h) is referred to as the value of the autocovariance function of {Xt : t ∈ Z} at "lag" h.
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The autocovariance function of a (strictly or weakly) stationary time series {Xt : t ∈ Z} possesses

three properties given by the following proposition (see Proposition 1.5.1 in Brockwell and Davis

1991, or the discussion following Example 1.20 in Shumway and Stoffer 2011).

Proposition A.8. If c(·) is the autocovariance of a (strictly or weakly) stationary time series {Xt : t ∈ Z},

then it satisfies the following relations:

(i) c(0) ≥ 0,

(ii) |c(h)| ≤ c(0), for all h ∈ Z,

(iii) c(h) = c(−h), for all h ∈ Z, which means that it is an even function.

Proof. (i) For the first property, for all t ∈ Z, we have

c(0) = Cov(Xt, Xt) = Var(Xt) ≥ 0.

(ii) The second property is a direct implication of the Cauchy–Schwarz inequality,

|c(h)| = |Cov(Xt+h, Xt)| ≤ [Var(Xt+h)]
1/2 [Var(Xt)]

1/2 = c(0) .

(iii) The third and last property is proved as follows:

c(−h) = Cov(Xt−h, Xt) = Cov(Xt, Xt+h) = c(h) .

Definition A.49 (The Sample Autocovariance Function). Consider a (strictly or weakly) stationary time

series {Xt : t ∈ Z} with autocovariance function c(·). For a sequence of observations (x1, . . . , xT) of the

process {Xt : t ∈ Z}, the sample autocovariance function is defined as

ĉ(h) =
1
T

T−h

∑
t=1

(xt+h − x̄) (xt − x̄),

with ĉ(−h) = ĉ(h), for h ∈ {0, . . . , T − 1}, where x̄ is the sample mean, x̄ =
1
T

T
∑

t=1
xt.

We now give a brief definition of the spectral density of a univariate time series. More information

on the topic of spectral analysis of univariate or multivariate time series can be found in Chapters 4,

10 and 11 of Brockwell and Davis (1991), or in Chapter 4 and Appendix C of Shumway and Stoffer

(2011).
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Definition A.50 (Spectral Density). Consider a (strictly or weakly) stationary process {Xt : t ∈ Z} whose

autocovariance function c(·) is absolutely summable, that is

+∞

∑
h=−∞

|c(h)| < +∞.

The spectral density of {Xt : t ∈ Z} is defined as

f (ω) =
+∞

∑
h=−∞

c(h) e−2πiωh (ω ∈ [−1/2, 1/2]) .

If the autocovariance function c(·) of a (strictly or weakly) stationary process {Xt : t ∈ Z} is ab-

solutely summable, then it has the following representation, which is an inverse transform of the

spectral density function f (·) (see Property 4.2 in Shumway and Stoffer 2011)

c(h) =
∫ 1/2

−1/2
e2πiωh f (ω) dω (h ∈ Z) .

For the spectral density of a (strictly or weakly) stationary process {Xt : t ∈ Z} we have that (see

the discussion following Property 4.2 in Shumway and Stoffer 2011)

(i) f (ω) ≥ 0, for all ω ∈ [−1/2, 1/2],

(ii) f (ω) = f (−ω) and f (ω) = f (1−ω), for all ω ∈ [−1/2, 1/2],

(iii) c(0) = Var(Xt) =
∫ 1/2
−1/2 f (ω) dω.

A.5 Orders of Magnitude and Rate of Convergence

In this section we present the notions of boundedness and order of magnitude along with the big-

O and little-o notation, as well as their stochastic analogs. We mainly follow Sections 1.4 and 2.1 in

Lehmann (1999), but also Section 2.3 in Bamdorff-Nielsen and Cox (1989) and Section 2.2 in van der

Vaart (1998). The interested reader is also referred to Sections 1.2 and 1.3 in de Bruijn (1958).

Definition A.51 (Boundedness). A real-valued sequence {an : n ∈N} is said to be bounded if there exist a

constant M > 0 and a positive integer n0, such that for all n > n0

|an| ≤ M.

Definition A.52 (Bachmann–Landau Notation or Big-O Notation). Consider two real-valued sequences

{an : n ∈N} and {bn : n ∈N}. We write:
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(i) an = O(1), if {an : n ∈N} is a bounded sequence,

(ii) an = O(bn), if and only if there exist a constant M > 0 and a positive integer n0, such that for all

n > n0

|an| ≤ M |bn| .

If bn 6= 0 for all n ∈ N, then an = O(bn) means that the sequence
{

an

bn
: n ∈N

}
is bounded, that is,

there exist a constant M > 0 and a positive integer n0, such that for all n > n0∣∣∣∣ an

bn

∣∣∣∣ ≤ M⇔ an

bn
= O(1) .

It is said that the order of {an : n ∈N} is smaller than or equal to the order of {bn : n ∈N}.

In the following lemma we give some properties of big-O notation (see Lemma 1.4.1 and Problem

4.17 of Chapter 1 in Lehmann 1999).

Lemma A.1. (i) If an = O(bn) and bn = O(cn), then an = O(cn).

(ii) If an = O(bn), then can = O(bn), for any constant c 6= 0.

(iii) For any real-valued sequence {cn : n ∈N}, with cn 6= 0 for all n ∈ N, if an = O(bn), then cnan =

O(cnbn).

(iv) If dn = O(bn) and en = O(cn), then dnen = O(bncn).

Definition A.53 (Sequences of the Same Order). Consider two real-valued sequences {an : n ∈N} and

{bn : n ∈N}, with bn 6= 0 for all n ∈ N. The sequences {an : n ∈N} and {bn : n ∈N} are said to be of

the same order if there exist constants m, M, with 0 < m < M < +∞, and a positive integer n0, such that for

all n > n0

m <

∣∣∣∣ an

bn

∣∣∣∣ < M

and it is denoted by an � bn.

The sequences {an : n ∈N} and {bn : n ∈N} are of the same order if and only if an = O(bn) and

bn = O(an) (see Problem 4.16 Lehmann 1999).

For two sequences of the same order we have the following lemma (see Lemma 1.4.2 in Lehmann

1999).

Lemma A.2. If an � bn, then can � bn, for any constant c 6= 0.

Definition A.54 (Little-o Notation). Consider two real-valued sequences {an : n ∈N} and {bn : n ∈N},

with bn 6= 0 for all n ∈N. We write:
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(i) an = o(1), if

an −−−−→
n→+∞

0,

(ii) an = o(bn), if
an

bn
−−−−→
n→+∞

0.

It is said that the order of {an : n ∈N} is smaller than the order of {bn : n ∈N}.

An interpretation of Definition A.54 is that in case both {an : n ∈N} and {bn : n ∈N} tend to

infinity, then the rate at which {an : n ∈N} tends to infinity is slower than the corresponding rate

of {bn : n ∈N}, while if both sequences tend to zero, then {an : n ∈N} tends to zero faster than

{bn : n ∈N} (see the paragraph following Definition 1.4.1 in Lehmann 1999).

In the following lemma we give some properties of little-o notation (see Lemma 1.4.1 in Lehmann

1999).

Lemma A.3. (i) If an = o(bn) and bn = o(cn), then an = o(cn).

(ii) If an = o(bn), then can = o(bn), for any constant c 6= 0.

(iii) For any real-valued sequence {cn : n ∈N}, with cn 6= 0 for all n ∈ N, if an = o(bn), then cnan =

o(cnbn).

(iv) If dn = o(bn) and en = o(cn), then dnen = o(bncn).

We now present the stochastic analogs of the theory presented above.

Definition A.55 (Boundedness in Probability). A sequence of random variables (or random vectors)

{Xn : n ∈N} is said to be bounded in probability if for any ε > 0, there exist a constant M := M(ε) and a

positive integer n0 := n0(ε), such that for all n > n0

P(|Xn| ≤ M) ≥ 1− ε.

For a sequence of random vectors, the absolute value |·| in the inequality above, is replaced by the Euclidean

norm ||·||2 (see the paragraph preceding 2.4 Theorem in van der Vaart 1998).

Definition A.56 (Stochastic Big-O Notation). Consider two sequences of random variables (or random

vectors) {Xn : n ∈N} and {Yn : n ∈N}. We write:

(i) Xn = Op(1), if {Xn : n ∈N} is a bounded in probability sequence,
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(ii) Xn = O(Yn), if for any ε > 0, there exist a constant M := M(ε) and a positive integer n0 := n0(ε),

such that for all n > n0

P(|Xn| ≤ M |Yn|) ≥ 1− ε.

If Yn 6= 0 for all n ∈ N almost surely, then Xn = O(Yn) means that the sequence
{

Xn

Yn
: n ∈N

}
is

bounded in probability, that is, for any ε > 0, there exist a constant M := M(ε) and a positive integer

n0 := n0(ε), such that for all n > n0

P
(∣∣∣∣Xn

Yn

∣∣∣∣ ≤ M
)
≥ 1− ε⇔ Xn

Yn
= Op(1) .

It is said that the order of {Xn : n ∈N} is smaller than or equal to the order of {Yn : n ∈N} in

probability.

For sequences of random vectors, the absolute values |·| in the inequalities above, are replaced by the

Euclidean norm ||·||2.

The following lemma is the stochastic analog of Lemma A.1 (see Lemma 1.4.1 and Problem 1.11

(ii) of Chapter 2 in Lehmann 1999).

Lemma A.4. (i) If Xn = Op(Yn) and Yn = Op(Zn), then Xn = Op(Zn).

(ii) If Xn = Op(Yn), then cXn = Op(Yn), for any constant c 6= 0.

(iii) For any real valued sequence {cn : n ∈N}, with cn 6= 0 for all n ∈ N, if Xn = Op(Yn), then

cnXn = Op(cnYn).

(iv) For any sequence of random variables (or random vectors) {Zn : n ∈N}, with Zn 6= 0 for all n ∈ N

almost surely, if Xn = Op(Yn), then ZnXn = Op(ZnYn).

(v) If Un = Op(Yn) and Vn = Op(Zn), then UnVn = Op(YnZn).

Definition A.57 (Sequences of Same Order in Probability). Consider two sequences of random variables

(or random vectors) {Xn : n ∈N} and {Yn : n ∈N}, with Yn 6= 0 for all n ∈ N almost surely. The

sequences {Xn : n ∈N} and {Yn : n ∈N} are said to be of the same order in probability if for any ε > 0,

there exist constants m := m(ε) and M := M(ε), with 0 < m < M < +∞, and a positive integer

n0 := n0(ε), such that for all n > n0

P
(

m <

∣∣∣∣Xn

Yn

∣∣∣∣ < M
)
≥ 1− ε,

and it is denoted by Xn �p Yn.
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For sequences of random vectors, the absolute value |·| in the inequality above, is replaced by the Euclidean

norm ||·||2.

Definition A.58 (Stochastic Little-o Notation). Consider two sequences of random variables (or random

vectors) {Xn : n ∈N} and {Yn : n ∈N}, with Yn 6= 0 for all n ∈N almost surely. We write:

(i) Xn = op(1), if and only if

Xn
p−→ 0,

(ii) Xn = o(Yn), if and only if
Xn

Yn

p−→ 0.

It is said that the order of {Xn : n ∈N} is smaller than the order of {Yn : n ∈N} in probability.

The following lemma is the stochastic analog of Lemma A.3 (see the discussion following Defini-

tion 2.1.3 and Problem 1.11 (ii) of Chapter 2 in Lehmann 1999).

Lemma A.5. (i) If Xn = op(Yn) and Yn = op(Zn), then Xn = op(Zn).

(ii) If Xn = op(Yn), then cXn = op(Yn), for any constant c 6= 0.

(iii) For any real-valued sequence{cn : n ∈N}, with cn 6= 0 for all n ∈ N, if Xn = op(Yn), then cnXn =

op(cnYn).

(iv) For any sequence of random variables (or random vectors) {Zn : n ∈N}, with Zn 6= 0 for all n ∈ N

almost surely, if Xn = op(Yn), then ZnXn = op(ZnYn).

(v) If Un = op(Yn) and Vn = op(Zn), then UnVn = op(YnZn).

(vi) For any real valued sequence {cn : n ∈N}, with cn 6= 0 for all n ∈N, cn op(Xn) = op(cnXn).

(vii) For any sequence of random variables (or random vectors) {Zn : n ∈N}, with Zn 6= 0 for all n ∈ N

almost surely, Zn op(Xn) = op(ZnXn).

For the last two statements see (2.1.19) following Definition 2.1.3 in Lehmann (1999).

We now give some further relations involving O, o, Op and op that can be found in Exercise 2.6 in

Further Results and Exercises in Bamdorff-Nielsen and Cox (1989) and in Section 2.2 in van der Vaart

(1998). Some of these relations are special cases of the properties presented in Lemmas A.1, A.3, A.4

and A.5.

Lemma A.6. (i) o(1) + o(1) = o(1),

(ii) o(1) + O(1) = O(1),
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(iii) O(1) o(1) = o(1),

(iv)
1

1 + o(1)
= O(1),

(v) o[O(1)] = o(1),

(vi) op(1) + op(1) = op(1),

(vii) op(1) + Op(1) = Op(1),

(viii) Op(1) op(1) = op(1),

(ix)
1

1 + op(1)
= Op(1),

(x) op
[
Op(1)

]
= op(1),

(xi) O(n−a)O
(
n−b) = O

(
n−a−b),

(xii) O(n−a) o
(
n−b) = o

(
n−a−b),

(xiii) o(n−a) o
(
n−b) = o

(
n−a−b),

(xiv) Op(n−a)Op
(
n−b) = Op

(
n−a−b),

(xv) Op(n−a) op
(
n−b) = op

(
n−a−b),

(xvi) op(n−a) op
(
n−b) = op

(
n−a−b),

(xvii) Op(n−a)O
(
n−b) = Op

(
n−a−b),

(xviii) Op(n−a) o
(
n−b) = op

(
n−a−b),

(xix) op(n−a)O
(
n−b) = op

(
n−a−b),

(xx) op(n−a) o
(
n−b) = op

(
n−a−b).

A.6 Linear Algebra

Proposition A.9. For any square matrix A ∈ Rp×p, it holds that

tr
(

AA
′
)
=

p

∑
i=1

p

∑
j=1

α2
ij,

where αij, i, j ∈ {1, . . . , p} is the (i, j)-th entry of A.
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Proof. The diagonal elements of the matrix AA
′

are

AA
′
=


α11 α12 . . . α1p

α21 α22 . . . α2p
...

...
. . .

...

αp1 αp2 . . . αpp




α11 α21 . . . αp1

α12 α22 . . . αp2
...

...
. . .

...

α1p α2p . . . αpp

 =


α2

11 + α2
12 + . . . + α2

1p . . . . . . . . .

. . . α2
21 + α2

22 + . . . + α2
2p . . . . . .

...
...

. . .
...

. . . . . . . . . α2
p1 + α2

p2 + . . . + α2
pp

 =


∑

p
j=1 α2

1j . . . . . . . . .

. . . ∑
p
j=1 α2

2j . . . . . .
...

...
. . .

...

. . . . . . . . . ∑
p
j=1 α2

pj

 .

Therefore, tr
(

AA
′
)
=

p
∑

i=1

p
∑

j=1
α2

ij.

Definition A.59 (Positive Definite and Semidefinite Matrix). A symmetric matrix A ∈ Rp×p is charac-

terised as

(i) positive definite if and only if for all x ∈ Rp \
{

0p
}

x
′
Ax > 0,

(ii) positive semidefinite if and only if for all x ∈ Rp \
{

0p
}

x
′
Ax ≥ 0.

It is clear that if A is positive definite, then it is also positive semidefinite.

Proposition A.10. All the eigenvalues of a positive definite matrix are positive. All the eigenvalues of a

positive semidefinite matrix are nonnegative.

Proof. See the proof of Observation 7.1.4 in Horn and Johnson (2012).

Corollary A.4.1. The trace and the determinant of a positive definite matrix are positive. The trace and the

determinant of a positive semidefinite matrix are nonnegative.
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Proof. Corollary A.4.1 is a direct result of Proposition A.10, as the trace of a matrix is equal to the sum

of its eigenvalues and the determinant is equal to the product of its eigenvalues.

Definition A.60 (Square Root of a Positive (Semi)Definite Matrix). If A ∈ Rp×p is a positive (semi)definite

matrix, then it has a unique positive (semi)definite square root, denote by A1/2, such that

(
A1/2

)′
A1/2 = A1/2

(
A1/2

)′
=
(

A1/2
)2

= A.

Proposition A.11. For any positive semidefinite matrix A ∈ Rp it holds that

||A||2F ≤
1
p
[tr(A)]2 .

Proof. Consider a positive semi-definite matrix A ∈ Rp with eigenvalues λi, i ∈ {1, . . . , p}. We have

||A||2F =
1
p

tr
(
A2) = 1

p

p

∑
i=1

λ2
i =

1
p


(

p

∑
i=1

λi

)2

−
p

∑
i=1

p

∑
j=1
j 6=i

λiλj

 ≤ 1
p

(
p

∑
i=1

λi

)2

=
1
p
[tr(A)]2 ,

since, by Proposition A.10, λi ≥ 0, for all i ∈ {1, . . . , p}, therefore λiλj ≥ 0, for all i, j ∈ {1, . . . , p}.

Below are presented some relations from matrix calculus that are used in Subsection 2.3.2 and

Section 3.1, to derive the formulas of µo
k , Σ̃o

k , µ̂ and Σs (see Equations (69), (81), (57), (61) and (124),

respectively, in Petersen and Pedersen 2012).

∂x
′
a

∂x
=

∂a
′
x

∂x
= a

′
, (A.2)

∂x
′
Ax

∂x
= x

′
(

A + A
′
)

, (A.3)

∂ log(|det(X)|)
∂X

=
(

X−1
)′

=
(

X
′
)−1

, (A.4)

∂a
′
X−1b
∂X

= −
(

X−1
)′

ab
′
(

X−1
)′

= −
(

X
′
)−1

ab
′
(

X
′
)−1

, (A.5)

∂tr
(
AX−1B

)
∂X

= −
(

X−1BAX−1
)′

= −
(

X
′
)−1

A
′
B
′
(

X
′
)−1

. (A.6)
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Appendix B

Technical Result of Subsection 2.3.2

By Equations (2.26), (2.47) and (2.51) we get the two following expressions for Q
(

θ; θ(m)
)

, where

we have omitted the factor − p
2

log(2π), since it does not depend on any of the model’s parameters.

Q
(

θ; θ(m)
)
=

[
K

∑
k=1

γ
(m)
k (1) log

[(
p(0)k

)(m)
]]

+

[
T

∑
t=2

K

∑
k=1

K

∑
l=1

ξ
(m)
kl (t− 1) log

(
p(m)

kl

)]

− 1
2

K

∑
k=1

(
T

∑
t=1

γ
(m)
k (t) log[det(Σk)]

)

− 1
2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t) (yt − µk)

′
Σk
−1(yt − µk)

]
(B.1)

=

[
K

∑
k=1

γ
(m)
k (1) log

[(
p(0)k

)(m)
]]

+

[
T

∑
t=2

K

∑
k=1

K

∑
l=1

ξ
(m)
kl (t− 1) log

(
p(m)

kl

)]

− 1
2

K

∑
k=1

(
T

∑
t=1

γ
(m)
k (t) log[det(Σk)]

)
− 1

2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
yt
′
Σk
−1yt

)]

+
K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
yt
′
Σk
−1µk

)]
− 1

2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
µk
′
Σk
−1µk

)]
. (B.2)

By Equation (2.40), the Lagrangian function can be written in the following two forms:

L
(

p(0), P, φ, λ1, . . . , λK, λ
)
=

K

∑
k=1

γk(1) log
(

p(0)k

)
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

ξkl(t− 1) log(pkl)

− 1
2

K

∑
k=1

(
T

∑
t=1

γ
(m)
k (t) log[det(Σk)]

)

− 1
2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t) (yt − µk)

′
Σk
−1(yt − µk)

]

−
K

∑
l=1

[
λk

(
K

∑
l=1

pkl − 1

)]
− λ

(
K

∑
k=1

p(0)k − 1

)
, (B.3)



28

and

L
(

p(0), P, φ, λ1, . . . , λK, λ
)
=

K

∑
k=1

γk(1) log
(

p(0)k

)
+

T

∑
t=2

K

∑
k=1

K

∑
l=1

ξkl(t− 1) log(pkl)

− 1
2

K

∑
k=1

(
T

∑
t=1

γ
(m)
k (t) log[det(Σk)]

)
− 1

2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
yt
′
Σk
−1yt

)]

+
K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
yt
′
Σk
−1µk

)]
− 1

2

K

∑
k=1

[
T

∑
t=1

γ
(m)
k (t)

(
µk
′
Σk
−1µk

)]

−
K

∑
l=1

[
λk

(
K

∑
l=1

pkl − 1

)]
− λ

(
K

∑
k=1

p(0)k − 1

)
. (B.4)

To determine the estimates for µk and Σk, we calculate the partial derivatives of the Lagrangian

function with respect to these parameters, for all k ∈ SX = {1, . . . , K} and set them equal to zero.

To determine the estimates for µk, we utilise Equation (B.4) (see also Equations (A.2) and (A.3) in

Appendix A). For all k ∈ SX = {1, . . . , K}, we have that

∂L
∂µk

= 0p ⇔

T

∑
t=1

γk(t)
(

yt
′
Σk
−1
)
− 1

2

T

∑
t=1

γk(t)
(

2µk
′
Σk
−1
)
= 0p ⇔

T

∑
t=1

γk(t)
(

µk
′
Σk
−1
)
=

T

∑
t=1

γk(t)
(

yt
′
Σk
−1
)
⇔

T

∑
t=1

γk(t)
(

µk
′
Σk
−1
)

Σk =
T

∑
t=1

γk(t)
(

yt
′
Σk
−1
)

Σk ⇔

T

∑
t=1

γk(t)
(

µk
′
)

Ip =
T

∑
t=1

γk(t)
(

yt
′
)

Ip ⇔(
T

∑
t=1

γk(t) µk

)′
=

(
T

∑
t=1

γk(t) yt

)′
⇔

T

∑
t=1

γk(t) µk =
T

∑
t=1

γk(t) yt ⇔

µk =
1

T
∑

t=1
γk(t)

T

∑
t=1

γk(t) yt.
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To determine the estimates for Σk, we utilise Equation (B.3) (see also Equations (A.4) and (A.5) in

Appendix A). For all k ∈ SX = {1, . . . , K}, we have that

∂l (y, X|θ)
∂Σk

= 0p×p ⇔

−1
2

T

∑
t=1

γk(t)
(

Σk
′
)−1
− 1

2

T

∑
t=1

γk(t)
[
−
(

Σk
′
)−1

(yt − µk) (yt − µk)
′ (

Σk
′
)−1

]
= 0p×p ⇔

T

∑
t=1

γk(t)Σk
−1 =

T

∑
t=1

γk(t)
[
Σk
−1 (yt − µk) (yt − µk)

′
Σk
−1
]
⇔[

T

∑
t=1

γk(t)

]
Σk
−1 = Σk

−1

[
T

∑
t=1

γk(t) (yt − µk) (yt − µk)
′
]

Σk
−1 ⇔

Σk

[
T

∑
t=1

γk(t)

]
Σk
−1Σk = ΣkΣk

−1

[
T

∑
t=1

γk(t) (yt − µk) (yt − µk)
′
]

Σk
−1Σk ⇔[

T

∑
t=1

γk(t)

]
ΣkIp = Ip

[
T

∑
t=1

γk(t) (yt − µk) (yt − µk)
′
]

Ip ⇔

Σk =
1

T
∑

t=1
γk(t)

T

∑
t=1

γk(t) (yt − µk) (yt − µk)
′
.

Therefore we get the estimates for µk and Σk as

µ̂
(m+1)
k =

1
T
∑

t=1
γ
(m)
k (t)

T

∑
t=1

γ
(m)
k (t) yt (k ∈ SX = {1, . . . , K}) (B.5)

and

Σ̂(m+1)
k =

1
T
∑

t=1
γ
(m)
k (t)

T

∑
t=1

γ
(m)
k (t)

(
yt − µ̂

(m+1)
k

) (
yt − µ̂

(m+1)
k

)′
(B.6)
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Appendix C

Proofs and Technical Results of Chapter 3

C.1 Technical Result 1

In this section we prove Equation (3.6) of Section 3.1.

Proof. We have that ∣∣∣∣S− µIp
∣∣∣∣2

F =
1
p

tr
[(

S− µIp
) (

S− µIp
)′]

,

and (
S− µIp

) (
S− µIp

)′
= SS

′ − µSIp
′ − µIpS

′
+ µ2IpIp

′
= SS

′ − µS− µS
′
+ µ2Ip.

Therefore,

tr
[(

S− µIp
) (

S− µIp
)′]

= tr
(

SS
′ − µS− µS

′
+ µ2Ip

)
=

tr
(

SS
′
)
− µtr(S)− µtr

(
S
′
)
+ µ2tr

(
Ip
)
= tr

(
SS
′
)
− 2µtr(S) + µ2 p =

tr
(

S2
)
− 2µtr(S) + µ2 p =

p

∑
i=1

l2
i − 2µ

p

∑
i=1

li +
p

∑
i=1

µ =
p

∑
i=1

(li − µ)2.

Hence,

δ2 = E
(∣∣∣∣S− µIp

∣∣∣∣2
F

)
= E

(
1
p

p

∑
i=1

(li − µ)2

)
. (C.1)

Similarly it is proved that

α2 =
∣∣∣∣Σ− µIp

∣∣∣∣2
F =

1
p

p

∑
i=1

(λi − µ)2, (C.2)

and the proof of Equation (3.6) is complete.

C.2 Proofs and Technical Lemmas of Section 3.2

This section contains some technical lemmas used in Chapter 3.2, along with the proofs of Lemma

3.9 and Theorem 3.3.
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To simplify notation in what follows, let us define Rt = 1{Xt=k} and

Zk(t) = 1{Xt=k} (Yt − µk) (Yt − µk)
′

(C.3)

for any fixed k ∈ {1, . . . , K}. We will also use cn
m to denote a vector (cm, . . . , cn), where m, n ∈ N and

m < n.

As {Xt : t ∈ Z} is a Markov chain, the conditional random variables (Xt | Xt−1) are independent

of the random variables (Xt−2, Xt−3, . . .), for all t ∈ Z. The same holds for the random variables(
1{Xt=k} | 1{Xt−1=k}

)
, that is

(
1{Xt=k} | 1{Xt−1=k}

)
are independent of the random variables(

1{Xt−2=k}, 1{Xt−3=k}, . . .
)
. Therefore, {Rt : t ∈ Z} is a Markov chain with state space {0, 1}. We have

that

P(Rt+1 = 1 | Rt = 0) = P
(

1{Xt+1=k} = 1
∣∣ 1{Xt=k} = 0

)
= P(Xt+1 = k |Xt 6= k)

= ∑
l∈SXr{k}

P(Xt+1 = k |Xt = l)

= ∑
l∈SXr{k}

plk,

and

P(Rt+1 = 1 | Rt = 1) = P
(

1{Xt+1=k} = 1
∣∣ 1{Xt=k} = 1

)
= P(Xt+1 = k |Xt = k)

= pkk.

We also have that

P(Rt+1 = 0 | Rt = 0) = 1− P(Rt+1 = 1 | Rt = 0) = 1− ∑
l∈SXr{k}

plk

and

P(Rt+1 = 0 | Rt = 1) = 1− P(Rt+1 = 1 | Rt = 1) = 1− pkk.

Let us denote by B the transition probability matrix of {Rt : t ∈ Z}. As we showed above, we have

B =

b00 b01

b10 b11

 =

1− ∑
l∈SXr{k}

plk ∑
l∈SXr{k}

plk

1− pkk pkk

 .
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P(Rt = 1) = P
(
1{Xt=k} = 1

)
= P(Xt = k) = πk (k ∈ {1, . . . , K}) . (C.4)

A useful relationship in what follows is

Rn
t = Rt, (t ∈ Z, n ∈N) (C.5)

as,

Rt = 1{Xt=k} =


1, if Xt = k

0, if Xt 6= k
(t ∈ Z).

For the time series Zk(t), we have

Zk(t) = 1{Xt=k} (Yt − µk) (Yt − µk)
′

= 1{Xt=k}


Yt,1 − µk,1

Yt,2 − µk,2
...

Yt,p − µk,p


(
Yt,1 − µk,1, Yt,2 − µk,2, . . . , Yt,p − µk,p

)

= 1{Xt=k}


(Yt,1 − µk,1)

2 (Yt,1 − µk,1) (Yt,2 − µk,2) . . . (Yt,1 − µk,1)
(
Yt,p − µk,p

)
(Yt,2 − µk,2) (Yt,1 − µk,1) (Yt,2 − µk,2)

2 . . . (Yt,2 − µk,2)
(
Yt,p − µk,p

)
...

...
. . .

...(
Yt,p − µk,p

)
(Yt,1 − µk,1)

(
Yt,p − µk,p

)
(Yt,2 − µk,2) . . .

(
Yt,p − µk,p

)2

 .

Therefore, the (i, j)-th entry of the matrix Zk(t) is

[Zk(t)]ij = Zk,ij(t) = 1{Xt=k} (Yt,i − µk,i)
(
Yt,j − µk,j

)
C.2.1 Technical Lemma 1

Lemma C.1. For any 1 ≤ k ≤ K, 1 ≤ i, j ≤ p, the univariate time series

zt = Zk,ij(t) = [Zk(t)]ij = 1{Xt=k} (Yt,i − µk,i)
(
Yt,j − µk,j

)
(t ∈ Z) , (C.6)
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is stationary with autocovariances1

ck,ij(n) = Cov(zt, zt+n) = πkΣ1/2
k,ij [(B

n)11 − πk]→ 0,

exponentially fast, as n→ +∞, where Σ1/2
k,ij =

(
Σ1/2

k

)
ij

, and having a continuous spectral density2

fk,ij(ω) =
+∞

∑
n=−∞

ck,ij(n) einω.

Proof. Let k ∈ {1, . . . , K} and i, j ∈ {1, . . . , p} be given and fixed. We define qt =
(

Σ1/2
k εt

)
i

(
Σ1/2

k εt

)
j
.

Let ρij =
(

Σ1/2
k

)
ij

, for all i, j ∈ {1, . . . , p}. We have that

Σ1/2
k εt =


ρ11 ρ12 . . . ρ1p

ρ21 ρ22 . . . ρ2p
...

...
. . .

...

ρp1 ρp2 . . . ρpp

 ·


εt,1

εt,2
...

εt,p

 =


∑

p
α=1 ρ1αεt,α

∑
p
α=1 ρ2αεt,α

...

∑
p
α=1 ρpαεt,α

 ,

therefore,

qt =
(

Σ1/2
k εt

)
i

(
Σ1/2

k εt

)
j

=

(
p

∑
α=1

ρiαεt,α

)(
p

∑
α=1

ρjαεt,α

)

=
p

∑
α=1

ρiαρjαε2
t,α +

p

∑
α=1

 p

∑
β=1,
β 6=α

ρiαρjβεt,αεt,β

.

The expectation of qt is

E(qt) = E

 p

∑
α=1

ρiαρjαε2
t,α +

p

∑
α=1

 p

∑
β=1,
β 6=α

ρiαρjβεt,αεt,β




=
p

∑
α=1

ρiαρjαE
(
ε2

t,α
)
+

p

∑
α=1

 p

∑
β=1,
β 6=α

ρiαρjβE
(
εt,αεt,β

).

1See Definition A.45 in Appendix A.
2See Definition A.50 in Appendix A.
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For the model (2.45), we have assumed that εt, t ∈ Z are iid with

E(εt) = 0p,

Var(εt) = Ip.

By Definitions A.37 and A.39, for all t ∈ Z, we have

E(εt,i) = 0 (i ∈ {1, . . . , p}) , (C.7)

Var(εt,i) = E
(
ε2

t,i
)
− [E(εt,i)]

2 = E
(
ε2

t,i
)
= 1 (i ∈ {1, . . . , p}) , (C.8)

Cov
(
εt,i, εt,j

)
= E

(
εt,iεt,j

)
− E(εt,i)E

(
εt,j
)
= E

(
εt,iεt,j

)
= 0 (i, j ∈ {1, . . . , p} and i 6= j) . (C.9)

By Equations (C.8) and (C.9) for the expectation of qt we get

E(qt) =
p

∑
α=1

ρiαρjα =
p

∑
α=1

ρiαραj =

([
Σ1/2

k

]2
)

ij
= (Σk)ij = Σk,ij,

where we have used the fact that the matrix Σ1/2
k is symmetric, which implies that ρij = ρji, for all

i, j ∈ {1, . . . , p}.

Since εt, t ∈ Z are iid and independent of Xs, for all t, s ∈ Z, qt, t ∈ Z are also iid and independent

of Rs, for all t, s. It also holds that zt = Rtqt, which follows from Equations (2.45) and (C.6) and the

fact that

Rt (Yt − µk) =


Σ1/2

k εt, if and only if Rt = 1 (⇔ Xt = k)

0p, otherwise
.

Thus, we have that

E(ztzt+n) = E(RtqtRt+nqt+n)

= E(RtRt+n)E(qt)E(qt+n)

= E(RtRt+n)Σk,ijΣk,ij

= E(RtRt+n)Σ2
k,ij, (C.10)

where Σ2
k,ij =

[
(Σk)ij

]2
.
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E(RtRt+n) = 0 · P(RtRt+n = 0) + 1 · P(RtRt+n = 1)

= P(Rt = 1, Rt+n = 1) = P(Rt = 1)P(Rt+n = 1 | Rt = 1)

= πkb(n)11 = πk

(
B(n)

)
11

= πk (Bn)11 . (C.11)

By Equations (C.10) and (C.11) we get

E(ztzt+n) = πk (Bn)11 Σ2
k,ij. (C.12)

For all t ∈ Z, it holds that

E(zt) = E(Rtqt) = E(Rt)E(qt) = P(Rt = 1)Σk,ij = πkΣk,ij. (C.13)

It follows from Equations (C.12) and (C.13) that the autocovariance of the univariate time series

zt is

ck,ij(n) = Cov(zt, zt+n)

= E(ztzt+n)− E(zt)E(zt+n)

= πk (Bn)11 Σ2
k,ij − πkΣk,ij · πkΣk,ij

= πkΣ2
k,ij [(Bn

11 − πk)] (k ∈ {1, . . . , K} , i, j ∈ {1, . . . , p} , n ∈ Z) . (C.14)

We have that

E
(
1{Xt=k}

)
= P(Xt = k) = πk,

and by Equation (C.11), we get

E
(
1{Xt=k}1{Xt+n=k}

)
= πk (Bn)11 ,

thus

Cov
(
1{Xt=k}, 1{Xt+n=k}

)
= πk (Bn)11 − πkπk = πk [(Bn)11 − πk] . (C.15)

It follows from Equations (C.14) and (C.15) that

ck,ij(n) = Σ2
k,ijCov

(
1{Xt=k}, 1{Xt+n=k}

)
(k ∈ {1, . . . , K} , i, j ∈ {1, . . . , p} , n ∈ Z) ,

which implies that ck,ij(n) decreases exponentially fast to 0, as will be shown in Step 1 in the proof of
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Statement (ii) of Lemma C.2. Consequently, the spectral density converges pointwise and is continu-

ous.

C.2.2 Technical Lemma 2

Lemma C.2. Let {Xt : t ∈ Z} be stationary, aperiodic and irreducible. Then,

(i) {Xt : t ∈ Z} is (γ, L∞, ψ)-weakly dependent with an exponentially decreasing sequence γ = {γr : r ∈N}

and ψ (h, k, u, v) ≤ 4 ||h||∞ ||k||∞, that is

|Cov[h (Xt1 , . . . , Xtu) , k (Xτ1 , . . . , Xτv)]| ≤ 4 ||h||∞ ||k||∞ γr,

for all t1 < . . . < tu ≤ tu + r < τ1 < . . . < τv (t1 ≤ . . . ≤ tu < tu + r ≤ τ1 ≤ . . . ≤ τv), r, u, v ≥ 1,

h, k ∈ L∞, where the norm ||·||∞ is defined as

|| f ||∞ = inf {c ≥ 0 : | f (x)| ≤ c, almost everywhere} ,

for any function f ∈ L∞.

(ii) There is some constant c > 0 such that,

∣∣Cov
(
Yt1,i1 · . . . ·Ytu,iu , Yτ1,j1 · . . . ·Yτv,jv

)∣∣ ≤ cγr,

for all t1 < . . . < tu ≤ tu + r < τ1 < . . . < τv (t1 ≤ . . . ≤ tu < tu + r ≤ τ1 ≤ . . . ≤ τv), 1 ≤ u, v ≤

4 and r ≥ 1.

Proof. (i) We have assumed that {Xt : t ∈ Z} is stationary, aperiodic and irreducible, and it is also

finite-state, thus from the Statements (a), (b) and (c) of Theorem 3.1 and the paragraph follow-

ing it in Bradley (2005), it follows that {Xt : t ∈ Z} is strongly mixing with exponentially de-

creasing mixing coefficients, say γr (see also Subsection 2.1 in Bradley 2005). Since {Xt : t ∈ Z}

is strongly mixing, it follows from Lemma 6 in Doukhan and Louhichi (1999) that it is also

(γ, L∞, ψ)-weakly dependent with ψ (h, k, u, v) = 4 ||h||∞ ||k||∞, which implies Statement (i).

(ii) Statement (ii) will be proved in three steps.

Step 1: We choose

h (w1, . . . , wu) =


w1 · . . . · wu, if |w1| , . . . , |wu| ≤ 1

0, otherwise
,
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and

k (w1, . . . , wv) =


w1 · . . . · wv, if |w1| , . . . , |wv| ≤ 1

0, otherwise
.

We have that h, k ∈ L∞ and ||h||∞ ||k||∞ ≤ 1, therefore it follows from Statement (i) that

∣∣∣Cov
(

1{Xt1=i1} · . . . · 1{Xtu=iu}, 1{Xτ1=j1} · . . . · 1{Xτv=jv}

)∣∣∣ ≤ 4γr, (C.16)

for all t1 < . . . < tu ≤ tu + r < τ1 < . . . < τv (t1 ≤ . . . ≤ tu < tu + r ≤ τ1 ≤ . . . ≤ τv),

i1, . . . , iu, j1, . . . , jv ∈ {1, . . . , K}, u, v, r ≥ 1.

Step 2: For a set of real-valued random variables U1, U2, V1, V2, where the pair (U1, U2), V1

and V2 are independent, we have

Cov(U1V1, U2V2) = E(U1V1 ·U2V2)− E(U1V1)E(U2V2)

= E(U1U2)E(V1)E(V2)− E(U1)E(V1)E(U2)E(V2)

= [E(U1U2)− E(U1)E(U2)]E(V1)E(V2)

= Cov(U1, U2)E(V1)E(V2) .

Step 3: Consider the random variables

Ys,m =
K

∑
k=1

1{Xs=k}

(
Σ1/2

k εs

)
m

(s ∈ Z, m ∈ {1, . . . , p}) .

Using the bilinearity of the covariance, we get that

Cov
(
Yt1,i1 · . . . ·Ytu,iu , Yτ1,j1 · . . . ·Yτv,jv

)
=

Cov

(
u

∏
n=1

[
K

∑
k=1

1{Xtn=k}

(
Σ1/2

k εtn

)
in

]
,

v

∏
m=1

[
K

∑
l=1

1{Xτm=l}

(
Σ1/2

l ετm

)
jm

])
=

Cov

(
K

∑
k1,...,ku=1

[
u

∏
n=1

1{Xtn=kn}

(
Σ1/2

kn
εtn

)
in

]
,

K

∑
l1,...,lv=1

[
v

∏
m=1

1{Xτm=lm}

(
Σ1/2

lm
ετm

)
jm

])
=

K

∑
k1,...,ku=1
l1,...,lv=1

Cov

([
u

∏
n=1

1{Xtn=kn}

] [
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
,

[
v

∏
m=1

1{Xτm=lm}

] [
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

])
.

(C.17)

Since εt, t ∈ Z are iid and independent of the Markov chain {Xt : t ∈ Z}, the random

variables
(
∏u

n=1 1{Xtn=kn}, ∏v
m=1 1{Xτm=lm}

)
,
[

∏u
n=1

(
Σ1/2

kn
εtn

)
in

]
and

[
∏v

m=1

(
Σ1/2

lm
ετm

)
jm

]
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are independent, thus from Step 2, it follows that

Cov

([
u

∏
n=1

1{Xtn=kn}

] [
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
,

[
v

∏
m=1

1{Xτm=lm}

] [
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

])
=

Cov

(
u

∏
n=1

1{Xtn=kn},
v

∏
m=1

1{Xτm=lm}

)
E

[
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
E

[
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

]
,

and by Equation (C.16) in Step 1, we get

∣∣∣∣∣Cov

([
u

∏
n=1

1{Xtn=kn}

] [
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
,

[
v

∏
m=1

1{Xτm=lm}

] [
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

])∣∣∣∣∣ ≤
4γr

∣∣∣∣∣E
[

u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
E

[
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

]∣∣∣∣∣ . (C.18)

By Equations (C.17) and (C.18), we get

∣∣Cov
(
Yt1,i1 · . . . ·Ytu,iu , Yτ1,j1 · . . . ·Yτv,jv

)∣∣ =∣∣∣∣∣∣∣
K

∑
k1,...,ku=1
l1,...,lv=1

Cov

(
u

∏
n=1

1{Xtn=kn},
v

∏
m=1

1{Xτm=lm}

)
E

[
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
E

[
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

]∣∣∣∣∣∣∣ ≤
K

∑
k1,...,ku=1
l1,...,lv=1

∣∣∣∣∣Cov

(
u

∏
n=1

1{Xtn=kn},
v

∏
m=1

1{Xτm=lm}

)
E

[
u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
E

[
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

]∣∣∣∣∣ ≤
4γr

K

∑
k1,...,ku=1
l1,...,lv=1

∣∣∣∣∣E
[

u

∏
n=1

(
Σ1/2

kn
εtn

)
in

]
E

[
v

∏
m=1

(
Σ1/2

lm
ετm

)
jm

]∣∣∣∣∣.
Since K, Σ1, . . . , ΣK are fixed and the 4-th moments of εt’s are bounded (see Assumption

(A3) in Subsection 2.3.1), it follows that there exists some constant c > 0, such that

∣∣Cov
(
Yt1,i1 · . . . ·Ytu,iu , Yτ1,j1 · . . . ·Yτv,jv

)∣∣ ≤ cγr.
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C.2.3 Proof of Lemma 3.9

Proof. We have

||µk||22 =
p

∑
i=1

µ2
k,i

≤ p
(

max
1≤i≤p

{|µk,i|}
)2

[Assumption (B1)]

= p [O(1)]2

= p O(1)

= O(p) ,

and, since Σk is positive semidefinite, by Proposition A.11, we get

||Σk||2F ≤
1
p
[tr(Σk)]

2

= p
(

1
p

tr
[

Σ1/2
k

(
Σ1/2

k

)′])2

= p
∣∣∣∣∣∣Σ1/2

k

∣∣∣∣∣∣2
F

[Assumption (B1)]

= p O(1)

= O(p) .

As a result, we get the following equations:

1
p
||µk||22 = O(1) , (C.19)

and

||Σk||2F = O(p) . (C.20)

Let us denote by R the total number of visits of the Markov chain {Yt : t ∈ Z} to state k over

{1, . . . , T}, that is

R =
T

∑
t=1

Rt. (C.21)

(i) As was mentioned in Subsection 2.3.2 (see the discussion following Equation (2.57)), if R = 0,

then µo
k is set equal to 0p, therefore, it holds that

µo
k = µo

k · 1{R>0}. (C.22)
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Using Equation (C.22), we get

E(µo
k ) = E

(
µo

k · 1{R>0}
)
= E

(
1
R

T

∑
t=1

RtYt · 1{R>0}

)
= E

[
E

(
1
R

T

∑
t=1

RtYt · 1{R>0}

∣∣∣∣∣XT
1

)]
=

E

(
1{R>0}

R

T

∑
t=1

RtE
(

Yt |XT
1

))
= E

(
1{R>0}

R

T

∑
t=1

RtE(Yt |Xt)

)
.

In the last relation we used the fact that, by the definition of HMMs, Yt is independent of Xs,

given Xt, for all s 6= t.

Since

Rt = 1{Xt=k} =


1, if Xt = k

0, otherwise
,

it follows that

RtE(Yt |Xt) = RtE(Yt |Xt = k) = Rtµk,

consequently

E(µo
k ) = E

(
1{R>0}

R

T

∑
t=1

Rtµk

)
= E

(
1{R>0}µk

)
= µk

[
0 · P

(
1{R>0} = 0

)
+ 1 · P

(
1{R>0} = 1

)]
=

µkP(R > 0) = µk [1− P(R = 0)] = µk [1− P(R1 = 0, . . . , RT = 0)] =

µk [1− P(R1 = 0)P(R2 = 0 | R1 = 0) · . . . · P(RT = 0 | RT−1 = 0)] =

µk [1− (1− πk) b00 · . . . · b00] = µk − µk (1− πk) bT−1
00 .

By the irreducibility of the Markov chain {Yt : t ∈ Z}, it holds that 0 < b00 < 1. Setting as β the

maximum of those K values, by (C.19), the first part of Statement (i) is assured.

Let us use the abbreviations

ηt = Σ1/2
k εt, (C.23)

and

δk = µo
k − µk. (C.24)

Since εt, t ∈ {1, . . . , T} are iid zero-mean random vectors, independent of the state variables

Xt, t ∈ {1, . . . , T}, the same holds for ηt. Hence, by (ii) in Proposition A.4 and (ii) in Proposition

A.5 in Appendix A, for all t ∈ {1, . . . , T}, we get

E(ηt) = E
(

Σ1/2
k εt

)
= Σ1/2

k E(εt) = Σ1/2
k 0p = 0p, (C.25)
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and

Var(ηt) = Var
(

Σ1/2
k εt

)
= Σ1/2

k Var(εt)
(

Σ1/2
k

)′
= Σ1/2

k Ip

(
Σ1/2

k

)′
= Σk. (C.26)

Since Yt = µk + Σ1/2
k εt = µk + ηt, if and only if Rt = 1, it follows that RtYt = Rt (µk + ηt). Thus,

using Equation (C.22), we get the following relation for δk:

δk = µo
k − µk =

1{R>0}
R

T

∑
t=1

RtYt − µk =
1{R>0}

R

T

∑
t=1

Rt (µk + ηt)− µk

=
1{R>0}

R

T

∑
t=1

Rtµk +
1{R>0}

R

T

∑
t=1

Rtηt − µk =
1{R>0}

R

T

∑
t=1

Rtηt + 1{R>0}µk − µk

=
1{R>0}

R

T

∑
t=1

Rtηt +
(
1{R>0} − 1

)
µk =

1{R>0}
R

T

∑
t=1

Rtηt − 1{R=0}µk, (C.27)

where in the last relation we used the fact that 1{R>0} − 1 = −1{R=0}, since

1{R>0} − 1 =


0, if R > 0

−1, if R = 0
.

Equation (2.59) can be written as

πo
k =

1
T

T

∑
t=1

Rt =
R
T

, (C.28)

therefore, by Equations (C.28) and (C.27), we get

πo
k ||δk||22 =


πo

k

∣∣∣∣∣∣∣∣1{R>0}
R

T
∑

t=1
Rtηt

∣∣∣∣∣∣∣∣2
2

, if R > 0

0, if R = 0

,
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thus

E
(

πo
k ||δk||22

)
= E

[
E
(

πo
k ||δk||22

∣∣∣XT
1

)]
= E

E

πo
k

(1{R>0}
R

)2
∣∣∣∣∣
∣∣∣∣∣ T

∑
t=1

Rtηt

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣XT
1


= E

πo
k

1{R>0}
R2 E

( T

∑
t=1

Rtηt

)′ (
T

∑
t=1

Rtηt

) ∣∣∣∣∣∣XT
1


= E

(
πo

k
1{R>0}

R2 E

[
T

∑
t=1

(
T

∑
s=1

Rtηt
′
Rsηs

) ∣∣∣∣∣XT
1

])

= E

(
πo

k
1{R>0}

R2

T

∑
t=1

[
T

∑
s=1

RtRsE
(

ηt
′
ηs

∣∣∣XT
1

)])

= E

(
πo

k
1{R>0}

R2

T

∑
t=1

[
T

∑
s=1

RtRsE
(

ηt
′
ηs

)])
. (C.29)

As we mentioned, ηt are iid, with

E(ηt) = 0p ⇔ E(ηt,i) = 0 (t ∈ Z, i ∈ {1, . . . , p}) ,

therefore

E
(

ηt
′
ηs

)
= E

(
p

∑
i=1

ηt,iηs,i

)
=

p

∑
i=1

E(ηt,iηs,i) =

∑
p
i=1 E

(
η2

t,i

)
, if t = s

0, if t 6= s
. (C.30)

By Equation (C.25) we get

p

∑
i=1

E
(
η2

t,i
)
=

p

∑
i=1

Var
(
η2

t,i
)
=

p

∑
i=1

Var
[(

Σ1/2
k εt

)
i

]
=

p

∑
i=1

Var

(
p

∑
j=1

ρijεt,j

)
. (C.31)

As a result, by Equations (C.8), (C.9) and (C.31) (see also Proposition A.9 in Appendix A), we

get

p

∑
i=1

E
(
η2

t,i
)
=

p

∑
i=1

p

∑
j=1

Var
(
ρijεt,j

)
=

p

∑
i=1

p

∑
j=1

ρ2
ijVar

(
εt,j
)

=
p

∑
i=1

p

∑
j=1

ρ2
ij = tr

[
Σ1/2

k

(
Σ1/2

k

)′]
= tr(Σk) . (C.32)
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Combining (C.5), (C.30) and (C.32), we get

T

∑
t=1

[
T

∑
s=1

RtRsE
(

ηt
′
ηs

)]
=

T

∑
t=1

R2
t E
(

ηt
′
ηt

)
=

T

∑
t=1

Rttr(Σk) = Rtr(Σk) .

By Equation (C.28), directly follows that

πo
k = πo

k · 1{R>0}, (C.33)

hence, (C.29) becomes

E
(

πo
k ||δk||22

)
= E

[
πo

k
1{R>0}

R2 Rtr(Σk)

]
= E

[
πo

k
1
R

tr(Σk)

]
= E

[
1
T

T

∑
t=1

Rt
1
R

tr(Σk)

]
=

1
T

tr(Σk) = O
( p

T

)
, (C.34)

which concludes the proof of the second part of Statement (i).

By the definition of HMMs and the construction of the model given by Equation (2.45) (see also

(i) in Proposition A.6 in Appendix A), we get

E
(

Yt − µk |XT
1 = k, . . . , XT

)
= E(Yt − µk |Xt = k) = 0p,

and

E
[
(Yt − µk) (Ys − µk)

′
∣∣∣XT

1

]
=


E[ (Yt − µk) |Xt] · E

[
(Ys − µk)

′
∣∣∣Xs

]
, if s 6= t

Var(Yt |Xt) , if s = t
.

It follows that

RtE
(

Yt − µk |XT
1

)
= 0p, (C.35)

and

RtE
[
(Yt − µk) (Ys − µk)

′
∣∣∣XT

1

]
=


RtΣk, if s = t

0p×p, if s 6= t
. (C.36)
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For the conditional expectation of Σo
k , given the state sequence (X1, . . . , XT), we have

E
(

Σo
k |XT

1

)
=

1
T

T

∑
t=1

RTE
[
(Yt − µo

k ) (Yt − µo
k )
′
∣∣∣XT

1

]
=

1
T

T

∑
t=1

RTE
[
(Yt − µk + µk − µo

k ) (Yt − µk + µk − µo
k )
′
∣∣∣XT

1

]
,

and

(Yt − µk + µk − µo
k ) (Yt − µk + µk − µo

k )
′
=

(Yt − µk) (Yt − µk)
′
+ (Yt − µk) (µk − µo

k )
′
+ (µk − µo

k ) (Yt − µk)
′
+ (µk − µo

k ) (µk − µo
k )
′
.

Using the linearity of the expectation, we get

E
(

Σo
k |XT

1

)
=

1
T

T

∑
t=1

RtE
[
(Yt − µk) (Yt − µk)

′
∣∣∣XT

1

]
+

1
T

T

∑
t=1

RtE
[
(Yt − µk) (µk − µo

k )
′
∣∣∣XT

1

]
+

1
T

T

∑
t=1

RtE
[
(µk − µo

k ) (Yt − µk)
′
∣∣∣XT

1

]
+

1
T

T

∑
t=1

RtE
[
(µk − µo

k ) (µk − µo
k )
′
∣∣∣XT

1

]
.

(C.37)

For the first term of (C.37), by Equation (C.36), we get

1
T

T

∑
t=1

RtE
[
(Yt − µk) (Yt − µk)

′
∣∣∣XT

1

]
=

1
T

T

∑
t=1

RtΣk = πo
k Σk. (C.38)

Since

1{R>0} =


1, if R > 0

0, if R = 0
,

it holds that R · 1{R>0} = R, thus,

µk =
1{R>0}

R · 1{R>0}

T

∑
t=1

Rtµk =
1{R>0}

R

T

∑
t=1

Rtµk. (C.39)
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Using (C.22) and (C.39) we get

RtE
[
(Yt − µk) (µk − µo

k )
′
∣∣∣XT

1

]
=

RtE

 (Yt − µk)

(
1{R>0}

R

T

∑
s=1

Rsµk −
1{R>0}

R

T

∑
s=1

RsYs

)′ ∣∣∣∣∣∣XT
1

 =

RtE

 (Yt − µk)

[
1{R>0}

R

T

∑
s=1

Rs (µk −Ys)

]′ ∣∣∣∣∣∣XT
1

 =

−
Rt1{R>0}

R

T

∑
s=1

RsE
[
(Yt − µk) (Ys − µk)

′
∣∣∣XT

1

]
.

Thus, using (C.5) and (C.36), the second term of Equation (C.37) can be written as

1
T

T

∑
t=1

RtE
[
(Yt − µk) (µk − µo

k )
′
∣∣∣XT

1

]
=

−
1{R>0}

TR

T

∑
t=1

T

∑
s=1

RtRsE
[
(Yt − µk) (Ys − µk)

′
∣∣∣XT

1

]
=

−
1{R>0}

TR

 T

∑
t=1

RtRtE
[
(Yt − µk) (Yt − µk)

′
∣∣∣XT

1

]
+

T

∑
t=1

T

∑
s=1
s 6=t

RtRsE
[
(Yt − µk) (Ys − µk)

′
∣∣∣XT

1

] =

−
1{R>0}

TR

T

∑
t=1

RtRtΣk = −
1{R>0}

TR

T

∑
t=1

RtΣk = −
1{R>0}

T
Σk.

(C.40)

For the third term of Equation (C.37) (see also (i) in Proposition A.4 in Appendix A) we have

1
T

T

∑
t=1

RtE
[
(µk − µo

k ) (Yt − µk)
′
∣∣∣XT

1

]
=

1
T

T

∑
t=1

RtE
([

(Yt − µk) (µk − µo
k )
′]′ ∣∣∣∣XT

1

)
=

1
T

T

∑
t=1

Rt

(
E
[
(Yt − µk) (µk − µo

k )
′
∣∣∣XT

1

])′

=

(
1
T

T

∑
t=1

RtE
[
(Yt − µk) (µk − µo

k )
′
∣∣∣XT

1

])′

=

(
−

1{R>0}
T

Σk

)′
= −

1{R>0}
T

Σk, (C.41)

as Σk is symmetric.
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Combining (C.5), (C.22), (C.36) and (C.39) and the fact that
(
1{R>0}

)2
= 1{R>0}, we get

RtE
[
(µk − µo

k ) (µk − µo
k )
′
∣∣∣XT

1

]
= RtE

[
(µo

k − µk) (µ
o
k − µk)

′
∣∣∣XT

1

]
= RtE

(1{R>0}
R

T

∑
s=1

Rs (Yt − µk)

)(
1{R>0}

R

T

∑
s=1

Rs (Yt − µk)

)′ ∣∣∣∣∣∣XT
1


= Rt

(1{R>0}
R

)2 T

∑
s1=1

T

∑
s2=1

Rs1 Rs2E
[
(Ys1 − µk) (Ys2 − µk)

′
∣∣∣XT

1

]
= Rt

1{R>0}
R2

T

∑
s=1

Rs1 Rs1 Σk =
Rt1{R>0}

R
Σk

Therefore, the fourth term of Equation (C.37) can be expressed as

1
T

T

∑
t=1

RtE
[
(µk − µo

k ) (µk − µo
k )
′
∣∣∣XT

1

]
=

1
T

T

∑
t=1

Rt1{R>0}
R

Σk =
1{R>0}

T
Σk. (C.42)

As a result, by Equations (C.37), (C.38) and (C.40) to (C.42), we get

E
(

Σo
k |XT

1

)
= πo

k Σk −
1{R>0}

T
Σk −

1{R>0}
T

Σk +
1{R>0}

T
Σk =

(
πo

k −
1{R>0}

T

)
Σk. (C.43)

Therefore,

E(Σo
k ) = E

[
E
(

Σo
k |XT

1

)]
= E

[(
πo

k −
1{R>0}

T

)
Σk

]
= E(πo

k )Σk −
1
T

E
(
1{R>0}

)
Σk.

We have that

E(πo
k ) = E

(
1
T

T

∑
t=1

Rt

)
=

1
T

T

∑
t=1

E(Rt) =
1
T

T

∑
t=1

P(Rt = 1) =
1
T

T

∑
t=1

πk = πk, (C.44)

and

E
(
1{R>0}

)
= P(R > 0) = 1− P(R = 0) . (C.45)

As a result, the expectation of Σo
k is

E(Σo
k ) = πkΣk −

1
T

Σk +
P(R = 0)

T
Σk. (C.46)



47

By the definition of β, P(R = 0) = O
(

βT) (see the end of the proof of the first part of Statement

(i)) and by Equation (C.20), we get ||Σk||F = O
(√

p
)
. Consequently, (C.46) becomes

E(Σo
k ) =

(
πk −

1
T

)
Σk + O

(
βT

T

)
= πkΣk + O

(√
p

T

)
, (C.47)

as
√

p > βT, which concludes the proof of the third part of Statement (i).

(ii) By Assumption (B1) we have

∣∣∣∣∣∣Σ1/2
k

∣∣∣∣∣∣
F
= O(1)⇔ 1

p
tr
[

Σ1/2
k

(
Σ1/2

k

)′]
= O(1)⇔ tr(Σk) = O(p) .

Using the fact that for any matrix A ∈ Rp×p, it holds

E[tr(A)] = E

(
p

∑
i=1

αii

)
=

p

∑
i=1

E(αii) = tr[E(A)] , (C.48)

we get

E(νo
k − νk) = E(νo

k )− νk = E
[

1
p

tr(Σo
k )

]
− νk =

1
p

E[tr(Σo
k )]− νk =

1
p

tr[E(Σo
k )]− νk =

1
p

tr
[

πkΣk −
1
T

Σk + O
(

βT

T

)]
− νk =

1
p

πktr(Σk)−
1

pT
tr(Σk) + O

(
βT

pT

)
− 1

p
πktr(Σk) =

− 1
pT

O(p) + O
(

βT

pT

)
= O

(
1
T

)
+ O

(
βT

pT

)
= O

(
1
T

)
,

as
1
T

>
1

pT
and β < 1, which concludes the second part of Statement (ii).

For the first part we have

E
[
(νo

k − νk)
2
]
= E

([
1
p

tr(Σo
k )−

1
p

tr(πkΣk)

]2
)

=
1
p2 E

(
[tr(Σo

k )− tr(πkΣk)]
2
)

=
1
p2 E

(
[tr(Σo

k )]
2 − 2tr(Σo

k ) tr(πkΣk) + [tr(πkΣk)]
2
)

=
1
p2

(
E
(
[tr(Σo

k )]
2
)
− 2tr(πkΣk)E[tr(Σo

k )] + [tr(πkΣk)]
2
)

=
1
p2

(
Var[tr(Σo

k )] + (E[tr(Σo
k )])

2 − 2tr(πkΣk)E[tr(Σo
k )] + [tr(πkΣk)]

2
)

.
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Using Equation (C.48) and the third part of Statement (i), we get

1
p2

[
(E[tr(Σo

k )])
2 − 2tr(πkΣk)E[tr(Σo

k )] + [tr(πkΣk)]
2
]
=

1
p2

[
(tr[E(Σo

k )])
2 − 2tr(πkΣk) tr[E(Σo

k )] + [tr(πkΣk)]
2
]
=

1
p2

([
tr(πkΣk) + O

(√
p

T

)]2

− 2tr(πkΣk)

[
tr(πkΣk) + O

(√
p

T

)]
+ [tr(πkΣk)]

2

)
=

1
p2

(
[tr(πkΣk)]

2 + 2tr(πkΣk)O
(√

p
T

)
+ O

( p
T2

)
− 2 [tr(πkΣk)]

2 − 2tr(πkΣk)O
(√

p
T

)
+ [tr(πkΣk)]

2
)
=

1
p2 O

( p
T2

)
= O

(
1

pT2

)
= O

(
1

T2

)
,

as
1

pT2 <
1

T2 .

Consequently,

E
[
(νo

k − νk)
2
]
=

1
p2 Var[tr(Σo

k )] + O
(

1
T2

)
. (C.49)

To prove that E
[(

νo
k − νk

)2
]
= O

(
T−1), it suffices to show that Var

[
tr
(
Σo

k

)]
= O

(
p2/T

)
, or,

equivalently, using the law of total variance,

E
[
Var
(

tr(Σo
k ) |XT

1

)]
+ Var

[
E
(

tr(Σo
k ) |XT

1

)]
= O

(
p2

T

)
. (C.50)

For the second term of the left-hand side of (C.50), by (C.43) and (C.48), we get

E
(

tr(Σo
k ) |XT

1

)
= tr

[
E
(

Σo
k |XT

1

)]
= tr

[(
πo

k −
1{R>0}

T

)
Σk

]
=

(
πo

k −
1{R>0}

T

)
tr(Σk) ,

therefore,

Var
[
E
(

tr(Σo
k ) |XT

1

)]
= Var

[(
πo

k −
1{R>0}

T

)
tr(Σk)

]
= [tr(Σk)]

2 Var
(

πo
k −

1{R>0}
T

)
.

We have

Var
(

πo
k −

1{R>0}
T

)
= Var(πo

k ) +
1

T2 Var
(
1{R>0}

)
− 2Cov

(
πo

k , 1{R>0}
)

. (C.51)
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For the first term of Equation (C.51) , by Remark 1 to Theorem 7.1.1 in Brockwell and Davis

(1991) (see also Corollary 4.3.2) and the mixing assumption on Rt, we get

TVar(πo
k ) = TVar

(
1
T

T

∑
t=1

Rt

)
= TVar(R̄t)→ 2π f (0) , (C.52)

where f (0) is the spectral density of {Rt : t ∈ Z} at frequency 0. It follows that Var
(
πo

k

)
=

O(1/T).

For the second term of Equation (C.51) , by (C.45) and the fact that
(
1{R>0}

)2
= 1{R>0}, we get

1
T2 Var

(
1{R>0}

)
=

1
T2

(
E
[(

1{R>0}
)2
]
−
[
E
(
1{R>0}

)]2
)
=

1
T2

(
E
(
1{R>0}

)
−
[
E
(
1{R>0}

)]2
)
=

1
T2 E

(
1{R>0}

) [
1− E

(
1{R>0}

)]
=

1
T2 [1− P(R = 0)] (1− [1− P(R = 0)]) =

1
T2

(
P(R = 0)− [P(R = 0)]2

)
=

1
T2 O

(
βT
)
= O

(
βT

T2

)
,

since by the proof of the first part of Statement (i), we have P(R = 0) = O
(

βT), which implies

[P(R = 0)]2 = O
(

β2T), and βT > β2T, as 0 < β < 1.

Combining (C.33), (C.44) and (C.45), the third term of Equation (C.51) , becomes

−2Cov
(

πo
k ,

1{R>0}
T

)
= − 2

T
[
E
(
πo

k 1{R>0}
)
− E(πo

k )E
(
1{R>0}

)]
= − 2

T
[
E(πo

k )− E(πo
k )E

(
1{R>0}

)]
= − 2

T
E(πo

k )
[
1− E

(
1{R>0}

)]
= − 2

T
πk [1− P(R > 0)]

= − 2
T

πkP(R = 0) = − 2
T

πk O
(

βT
)
= O

(
βT

T

)
.

Hence, (C.51) becomes

Var
(

πo
k −

1{R>0}
T

)
= O

(
1
T

)
+ O

(
βT

T2

)
+ O

(
βT

T

)
= O

(
1
T

)
,

therefore,

Var
[
E
(

tr(Σo
k ) |XT

1

)]
= [tr(Σk)]

2 O
(

1
T

)
= O

(
p2)O

(
1
T

)
= O

(
p2

T

)
. (C.53)

As was mentioned in Subsection 2.3.2 (see the discussion following Equation (2.57)), if R = 0,

then Σ̃o
k is set equal to 0p×p and it follows that Σo

k = πo
k Σ̃o

k = 0p×p. Consequently, if R = 0, then

tr
(
Σo

k

)
= 0. Therefore, to calculate the conditional variance of the first term of Equation (C.50),
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let us assume for the moment that R > 0. As has already been mentioned, ηt, t ∈ {1, . . . , T} are

iid random vectors, independent of the state variables {X1, . . . , XT}, with

E(ηt) = 0p

and

Var(ηt) = Σk.

Notice that if Rt = 1, then

Yt = µk + Σk εt = µk + ηt

which implies that

Rt (Yt − µo
k ) (Yt − µo

k )
′
= Rt (µk + ηt − µo

k ) (µk + ηt − µo
k )
′
= Rt (ηt − δk) (ηt − δk)

′
.

As for any matrix A ∈ Rp×p,

tr(A) = tr
(

A
′
)

,

we get

tr(Σo
k ) =

1
T

T

∑
t=1

Rttr
[
(ηt − δk) (ηt − δk)

′]
=

1
T

T

∑
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Rttr
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(ηt − δk)

]
=

1
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∑
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′
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=
1
T

T

∑
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Rt

(
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′
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′
δk − δk

′
ηt + δk

′
δk

)
=

1
T

T

∑
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Rtηt
′
ηt −

2
T

T

∑
t=1

Rtηt
′
δk +

1
T

T

∑
t=1

Rtδk
′
δk

=
1
T

T

∑
t=1

Rt ||ηt||22 +
1
T

T

∑
t=1

Rt ||δk||22 −
2
T

T

∑
t=1

Rtηt
′
δk,

where we have used the facts that

tr
[
(ηt − δk)

′
(ηt − δk)

]
= (ηt − δk)

′
(ηt − δk) , (C.54)

as (ηt − δk)
′
(ηt − δk) is scalar and δk

′
ηt = ηt

′
δk.
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Since we have assumed that R > 0, by Equation (C.27), we get

δk =
1
R

T

∑
t=1

Rtηt,

hence,

− 2
T

T

∑
t=1

Rtηt
′
δk = −

2
T

R
1
R

T

∑
t=1

Rtηt
′
δk = −2

R
T

(
1
R

T

∑
t=1

Rtηt

)′
δk = −2πo

k δk
′
δk = −2πo

k ||δk||22 .

As a result, we get

tr(Σo
k ) =

1
T

T

∑
t=1

Rt ||ηt||22 − πo
k ||δk||22 , (C.55)

consequently,

Var
(

tr(Σo
k ) |XT

1

)
= Var

(
1
T

T

∑
t=1

Rt ||ηt||22 − πo
k ||δk||22

∣∣∣∣∣XT
1

)

= Var

(
1
T
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∑
t=1

Rt ||ηt||22

∣∣∣∣∣XT
1

)
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(
πo

k ||δk||22
∣∣∣XT

1

)
− 2Cov

(
1
T

T

∑
t=1

Rt ||ηt||22 , πo
k ||δk||22

∣∣∣∣∣XT
1

)
. (C.56)

As has already been mentioned, ηt, t ∈ {1, . . . , T} are iid and independent of the Markov chain,

and since, by Equation (C.5), R2
t = Rt, we have

Var

(
1
T

T

∑
t=1

Rt ||ηt||22

∣∣∣∣∣XT
1

)
=

1
T2
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(
||η1||22
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1
T

πo
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(
||η1||22

)
≤ 1

T
πo

k E
(
||η1||42

)
= πo

k O
(

p2

T

)
. (C.57)

To prove the last relation of (C.57), recall that by Var(εt,i) = 1 and by Assumption (A3) (see

Subsection 2.3.1), E
(

ε4
t,i

)
≤ κε + 3, for all t ∈ Z and i ∈ {1, . . . , p}. Let us denote the i-th row

of the matrix Σ1/2
k by ρ(i) =

(
ρi1, . . . , ρip

)
. Since Σ1/2

k , it also holds ρ(i) =
(
ρ1i, . . . , ρpi

)
. Then
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p2) , (C.58)

since, by Assumption (B1),
∣∣∣∣∣∣Σ1/2

k

∣∣∣∣∣∣2
F
= O(1).

For the second term of Equation (C.56), by Equation (C.27), we get
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 , (C.59)



53

and
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. (C.60)

As ηt, t ∈ {1, . . . , T} are iid with zero mean,

Cov(ηt1,i1 ηt2,i1 , ηs1,i2 ηs2,i2) 6= 0,

if t1 = t2 = s1 = s2, or t1 = s1 6= t2 = s2, or t1 = s2 6= t1 = s1. In any other case there is at least

one factor say ηa,b, with (a, b) ∈ {t, s} × {i, j}, independent of the rest. Let us consider the case

where t1 differs from t2, s1 and s2, while the rest can either be equal or not. We have

Cov(ηt1,i1 ηt2,i1 , ηs1,i2 ηs2,i2) = E(ηt1,i1 ηt2,i1 ηs1,i2 ηs2,i2)− E(ηt1,i1 ηt2,i1)E(ηs1,i2 ηs2,i2)

= E(ηt1,i1)E(ηt2,i1 ηs1,i2 ηs2,i2)− E(ηt1,i1)E(ηt2,i1)E(ηs1,i2 ηs2,i2)

= 0,

as E(ηt,i) = 0, for all t ∈ {1, . . . , T} and i ∈ {1, . . . , p}. The same can be proved for any other

index and any other case where there is more than one inequality between the indices t1, t2, s1

and s2.
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Let us, now examine the cases, where

Cov(ηt1,i1 ηt2,i1 , ηs1,i2 ηs2,i2) 6= 0.

• Case t1 = t2 = s1 = s2:

In this case we have

T

∑
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T

∑
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∑
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)
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T
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R4
t Var

(
ηt
′
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)
.

Combining (C.28), (C.57) (C.59) and (C.60), we get
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)2 1
R3 O

(
p2)

=
1

RT2 O
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p2) = O
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p2

T2

)
, (C.61)

since, by Equation (C.5), R4
t = Rt and we have assumed, temporarily, that R > 0, which

implies that R ≥ 1.

• Cases t1 = s1 6= t2 = s2, t1 = s2 6= t2 = s1:

Notice that these cases are equivalent due to symmetry. Let us present the first one.

Since t1 = s1 6= t2 = s2, Equation (C.60) becomes

T

∑
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T
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∑
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)

Since ηt, t ∈ {1, . . . , T} are iid , it holds

f
(
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)
= f

(
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ηs1

)
f
(

ηt2

′
ηs2

)
,

where by f (·) we denote the corresponding probability density functions of each of these

random variables. The above relation shows that ηt
′
ηs, t, s ∈ {1, . . . , T} are also iid . Thus,
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we have
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, (C.62)

since RtRsE
[(

η1
′
η2

)2
]
≥ 0, for all t, s ∈ {1, . . . , T}.

By the Cauchy–Schwarz inequality and Jensen’s inequality, we get

E
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. (C.63)

Combining (C.58), (C.59), (C.62) and (C.63), we get
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Consequently, we proved that it always holds that
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. (C.64)
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For the third term of Equation (C.56) we have
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. (C.65)

Similarly as before,
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)
6= 0,

if t = s1 = s2.

By (C.57) and (C.65), we get

Cov

(
1
T

T

∑
t=1

Rt ||ηt||22 , πo
k ||δk||22

∣∣∣∣∣XT
1

)
=

1
RT2

T

∑
t=1

R3
t Cov

(
ηt
′
ηt , ηt

′
ηt

∣∣∣XT
1

)
=

1
RT2

T

∑
t=1

RtVar
(

ηt
′
ηt

)
=

1
RT2

T

∑
t=1

RtVar
(
||ηt||22

)
=

1
RT2

T

∑
t=1

RtVar
(
||η1||22

)
=

1
T2 Var

(
||η1||22

)
≤ 1

T2 O
(

p2) = O
(

p2

T2

)
(C.66)
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Combining (C.56), (C.57), (C.64) and (C.66) we get

Var
(

tr(Σo
k ) |XT

1

)
= O

(
p2

T2

)
+O

(
p2

T2

)
− 2 O

(
p2

T2

)
= O

(
p2

T2

)
+O

(
p2

T2

)
+O

(
p2

T2

)
= O

(
p2

T2

)
.

It follows that

E
[
Var
(

tr(Σo
k ) |XT

1

)]
= O

(
p2

T2

)
. (C.67)

Finally, Equation (C.50) is ensured by (C.53) and (C.67), in the case where R > 0, that is

Var[tr(Σo
k )] = E

[
Var
(

tr(Σo
k ) |XT

1

)]
+ Var

[
E
(

tr(Σo
k ) |XT

1

)]
= O

(
p2

T2

)
+ O

(
p2

T

)
= O

(
p2

T

)
.

As we have already mentioned, if R = 0, then tr
(
Σo

k

)
= 0, which implies that Var

[
tr
(
Σo

k

)]
= 0

and since 0 < p2/T, in any case, it holds

Var[tr(Σo
k )] = O

(
p2

T

)
,

which by Equation (C.49) concludes the proof of Statement (ii).

(iii) From the proof of Statement (ii) we have

Var[tr(Σo
k )] = O

(
p2

T

)
.

Under Assumption (B2) there exist some constants c > 0 and 0 ≤ r ≤ 1, such that

tr(Σk) ≥ cpr.

Thus, we get

Var
[
tr
(
Σo

k

)]
|tr(πkΣk)|2

=
Var
[
tr
(
Σo

k

)]
π2

k |tr(Σk)|2
≤

Var
[
tr
(
Σo

k

)]
π2

k(cpr)2
=

1
π2

k c2

1
p2r O

(
p2

T

)
= O

(
p2(1−r)

T

)
, (C.68)

since, by Assumption (A1), πk > 0, for all k ∈ {1, . . . , K}. This completes the proof of Statement

(iii).
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C.2.4 Technical Lemma 3

Lemma C.3, below, shows that substituting µo
k for the true unknown value µ in the definition of

Σo
k (see Equation (2.58)), asymptotically has a negligible effect. Therefore, we define Σo∗

k as

Σo∗
k =

1
T

T

∑
t=1

1{Xt=k} (Yt − µk) (Yt − µk)
′
. (C.69)

Notice that for all i, j ∈ {1, . . . , p}, the (i, j)-th element of Σo∗
k , Σo∗

k,ij is the sample mean of the

univariate time series Zk,ij(t) = zt = 1{Xt=k} (Xt,i − µk,i)
(
Xt,j − µk,j

)
.

Lemma C.3. Under the conditions of Lemma 3.9

(i)

E
(
||Σo∗

k − Σo
k ||

2
F

)
= O

( p
T2

)
,

(ii)

E
(
||Σo

k − πkΣk||2F
)
= E

(
||Σo∗

k − πkΣk||2F
)
+ O

( p
T2

)
.

Proof. (i) Taking the difference between Σo∗
k and Σo

k , by Equations (2.58) and (C.69), we get

Σo∗
k − Σo

k =
1
T

T

∑
t=1

Rt (Yt − µk) (Yt − µk)
′
− 1

T

T

∑
t=1

Rt (Yt − µo
k ) (Yt − µo

k )
′

=
1
T

T

∑
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Rt

[
(Yt − µk) (Yt − µk)

′
− (Yt − µo

k ) (Yt − µo
k )
′]

.

We have that

(Yt − µk) (Yt − µk)
′
− (Yt − µo

k ) (Yt − µo
k )
′
=

YtYt
′ −Ytµk

′ − µkYt
′
+ µkµk

′ −YtYt
′
+ Yt (µ

o
k )
′
+ µo

kYt
′ − µo

k (µ
o
k )
′
=

Yt

[
(µo

k )
′
− µk

′
]
+ (µo

k − µk)Yt
′
+ µkµk

′ − µo
k (µ

o
k )
′
.
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Hence, using Equations (2.55), (C.24) and (C.28), we get

Σo∗
k − Σo

k =
1
T

T

∑
t=1
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[
Yt

[
(µo

k )
′
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′
]
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′
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o
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′]

=
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T
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∑
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(µo

k )
′
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′
]
+

1
T

T

∑
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o
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′
+

1
T

T
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Rtµkµk
′ − 1

T

T

∑
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Rtµ
o
k (µ

o
k )
′

=
1
T

T

∑
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RtYt

[
(µo

k )
′
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′
]
+ (µo
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(
1
T

T

∑
t=1

RtYt
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+

1
T

T

∑
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Rtµkµk
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T

T

∑
t=1

Rtµ
o
k (µ

o
k )
′

=
R
T

µo
k

[
(µo

k )
′
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′
]
+

R
T
(µo

k − µk) (µ
o
k )
′
+

R
T

µkµk
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T
µo

k (µ
o
k )
′

=
R
T
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k (µ

o
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′
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T
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k µk
′
+

R
T
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k (µ

o
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′
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T
µk (µ

o
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′
+

R
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µkµk
′ − R

T
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k (µ
o
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′
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R
T

(
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k (µ
o
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− µo

k µk
′ − µk (µ

o
k )
′
+ µkµk

′
)
=

R
T

[
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k (µ
o
k − µk)

′
− µk (µ

o
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=

R
T
(µo

k − µk) (µ
o
k − µk)

′
=

R
T

δkδk
′
= πo

k δkδk
′
. (C.70)

As we have already mentioned, by the definition of πo
k , we have πo

k · 1{R=0} = 0 and πo
k ·

1{R>0} = πo
k . Therefore, using (C.27), Equation (C.70) can also be expressed as

Σo∗
k − Σo

k = πo
k

1{R>0}
R

T

∑
t=1

Rtηt

(
1{R>0}

R

T

∑
t=1

Rtηt

)′
=

πo
k

R2

T

∑
t=1

T

∑
s=1

RtRsηtηs
′
. (C.71)

By the law of total expectation we have

E
[(

Σo∗
k,ij − Σo

k,ij

)2
]
= E

(
E
[(

Σo∗
k,ij − Σo

k,ij

)2
∣∣∣∣XT

1

])
. (C.72)

As ηt, t ∈ {1, . . . , T} are iid and independent of the Markov chain, and
(

ηtηs
′
)

ij
= ηt,iηs,j, by

(C.71) and the linearity of the expectation, we get

E
[(

Σo∗
k,ij − Σo

k,ij

)2
∣∣∣∣XT

1

]
= E


(πo

k
R2

T

∑
t=1

T

∑
s=1

RtRsηtηs
′

)
ij

2
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1


= E

(πo
k

R2
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∑
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T

∑
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RtRsηt,iηs,j

)2
∣∣∣∣∣∣XT

1


=

(
πo

k
R2

)2

E

(
T

∑
t1=1

T

∑
t2=1

T

∑
s1=1

T

∑
s2=1

Rt1 Rt2 Rs1 Rs2 ηt1,iηt2,iηs1,jηs2,j

∣∣∣∣∣XT
1

)

=

(
πo

k

)2

R4

T

∑
t1=1

T

∑
t2=1

T

∑
s1=1

T

∑
s2=1

Rt1 Rt2 Rs1 Rs2E
(
ηt1,iηt2,iηs1,jηs2,j

)
. (C.73)
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Similarly as in the case of Cov(ηt1,i1 ηt2,i1 , ηs1,i2 ηs2,i2), in the proof of Statement (ii) of Lemma 3.9

(see Subsection C.2.3), we have that

E
(
ηt1,iηt2,iηs1,jηs2,j

)
6= 0,

if t1 = t2 = s1 = s2, or t1 = t2 6= s1 = s2, or t1 = s1 6= t2 = s2, or t1 = s2 6= t2 = s1. Due to

symmetry, the last two cases are equivalent.

Before we proceed to examine these four cases, we will prove a useful relationship.

Recall that εt, t ∈ {1, . . . , T} are iid with

E(εt) = 0p,

and

Var(εt) = Ip.

It follows that

E
(

ηtηt
′
)
= E

[
Σ1/2

k εt

(
Σ1/2

k εt

)′]
= E

[
Σ1/2

k εtεt
′
(

Σ1/2
k

)′]
= Σ1/2

k E
(

εtεt
′
) (

Σ1/2
k

)′
= Σ1/2

k Var
(

εtεt
′
) (

Σ1/2
k

)′
= Σ1/2

k Ip

(
Σ1/2

k

)′
= Σk. (C.74)

As
(

ηtηs
′
)

ij
= ηt,iηs,j (see also Definition A.38), we have that

E
(
ηt,iηt,j

)
= E

[(
ηtηt

′
)

ij

]
=
[
E
(

ηtηt
′
)]

ij
,

consequently, for all t ∈ {1, . . . , T} and i, j ∈ {1, . . . , p}, it holds

E
(
ηt,iηt,j

)
= Σk,ij. (C.75)

Let us, now, examine these four cases.

• Case t1 = t2 = s1 = s2:

E
(

η2
t,iη

2
t,j

)
= E

[(
ηt,iηt,j

)2
]

.

• Case t1 = t2 6= s1 = s2:
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Since ηt, t ∈ {1, . . . , T} are iid , for all t, s ∈ {1, . . . , T}, with t 6= s and for all i, j ∈

{1, . . . , p}, ηt,i and ηs,j are independent random variables, hence η2
t,i and η2

s,j are also inde-

pendent. By Equation (C.75), we get

E
(

η2
t,iη

2
s,j

)
= E

(
η2

t,i
)

E
(

η2
s,j

)
= Σk,iiΣk,jj.

• Cases t1 = s1 6= t2 = s2 and t1 = s2 6= t2 = s1:

E
(
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)
= E

(
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)
E
(
ηt2,iηt2,j

)
= Σk,ijΣk,ij = Σ2

k,ij.

Therefore, Equation (C.73) is written as
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+
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∑
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∑
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∑
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=
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2
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)
+
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∑
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=
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+

1
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E
(
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1,iη

2
1,j

)
+ Σk,iiΣk,jj + 2Σ2

k,ij

)
, (C.76)

as πo
k > 0 if and only if R > 0⇔ R ≥ 1, which implies that 1/RT2 ≤ 1/T2.

Therefore, by Equations (C.72) and (C.76), we get

E
[(

Σo∗
k,ij − Σo

k,ij

)2
]
≤ E

[
1

T2

(
E
(

η2
1,iη

2
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E
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1,iη

2
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)
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k,ij

)
. (C.77)

By the definition of the scaled Frobenius norm and Proposition A.9, we get

||Σo∗
k − Σo

k ||
2
F =

1
p

tr
[
(Σo∗

k − Σo
k ) (Σ
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∑
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p

∑
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[
(Σo∗

k − Σo
k )ij

]2
=

1
p

p

∑
i=1

p

∑
j=1

(
Σo∗

k,ij − Σo
k,ij

)2
.
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Using the linearity of the expectation and Inequality (C.77), we get

E
(
||Σo∗

k − Σo
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2
F

)
=

1
p

p

∑
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p

∑
j=1

E
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]
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pT2
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∑
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∑
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E
(

η2
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)
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=

1
pT2

(
p

∑
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p

∑
j=1

E
(

η2
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2
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)
+
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∑
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p

∑
j=1

Σk,iiΣk,jj + 2
p

∑
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p

∑
j=1

Σ2
k,ij

)
.

By Equation (C.58) in the proof of Lemma 3.9 in Subsection C.2.3 we have

p

∑
i=1

p

∑
j=1

E
(

η2
1,iη

2
1,j

)
= E

(
p

∑
i=1

η2
1,i

p

∑
j=1

η2
1,j

)
= E

(
ηt
′
ηtηt

′
ηt

)
= E

(
||ηt||22 ||ηt||22

)
= E

(
||ηt||42

)
= O

(
p2) .

By the definition of the trace we have

p

∑
i=1

p

∑
j=1

Σk,iiΣk,jj =
p

∑
i=1

Σk,ii

p

∑
j=1

Σk,jj = tr(Σk) tr(Σk) = O
(

p2) ,

since by Assumption (B1), tr(Σk) = O(p).

By Proposition A.9, the proof of Proposition A.11 and the fact that Σk is symmetric, we get

2
p

∑
i=1

p

∑
j=1

Σ2
k,ij = 2tr

(
Σk (Σk)

′)
= 2tr

(
Σ2

k
)
≤ 2 [tr(Σk)]

2 = 2 O
(

p2) = O
(

p2) .

Finally, we have

E
(
||Σo∗

k − Σo
k ||

2
F

)
≤ 1

pT2

[
O
(

p2)+ O
(

p2)+ O
(

p2)] = 1
pT2 O

(
p2) = O

( p
T2

)
,

and the proof of Statement (i) is complete.

(ii) Since by the construction of model (2.45)

Yt = µk + Σkεt,

if and only if Rt = 1{Xt=k} = 1, we have that

Rt (Yt − µk) (Yt − µk)
′
= Rt (Σkεt) (Σkεt)

′
= Rtηtηt

′
,
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Then, Equation (C.69) is written as

Σo∗
k =

1
T

T

∑
t=1

Rtηtηt
′
.

Using the linearity of the expectation and Equations (C.28) and (C.74), we get
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By the law of total expectation and Equation (C.4), we get
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∑
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A direct consequence of (C.78) is

E
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E
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. (C.79)

We have that

||Σo
k − πkΣk||2F = ||Σo

k − Σo∗
k + Σo∗

k − πkΣk||2F =

||Σo
k − Σo∗

k ||
2
F + ||Σ
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Therefore,
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)
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C.2.5 Proof of Theorem 3.3

Proof. As was mentioned earlier in Section 3.2, Sancetta (2008) defines a shrinkage estimator of the

form:

Σs = (1− α) S + αF,

where α ∈ [0, 1], S is the sample covariance matrix and F is the shrinkage target. In our case, F = νkIp

and F̂T = νo
k Ip. We check that Conditions 1 to 4 of Sancetta (2008) are satisfied.

Condition 1 (1): We have that

E
(∣∣F̂T,ij − Fij

∣∣2) = E
(∣∣∣(νo

k Ip
)
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νkIp

)
ij
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ij E
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2
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= O
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)
,

as (
Ip
)
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
0, if i 6= j

1, if i = j
,

and

E
[
(νk − νo

k )
2
]
= O

(
T−1

)
,

by Statement (ii) of Lemma 3.9. Therefore, Condition 1 (1) is satisfied.

Condition 1 (2): Since F = νkIp and F̂T = νo
k Ip, are diagonal matrices, for β = 1 ∈ [0, 2), we

have that

#
{

1 ≤ i, j ≤ p : Fij 6= F̂T,ij
}
≤ pβ,

where # is used to denote the cardinality of a countable set.
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Condition 1 (3): From Assumption (C1), νkIp 6= πkΣk, therefore there exists some γ > 0, such

that ∣∣∣∣νkIp − πkΣk
∣∣∣∣2

F � pγ,

which means that Condition 1 (3) is satisfied.

Condition 1 (4): From Assumption (C2), p → +∞ such that
p2−γ

T
→ 0, as T → +∞, for some

γ ∈ (0, 2], hence p1−γ/2 = o
(√

T
)

. Since in our case β = 1, for any γ ∈ (0, 2], we have that

max
{

pβ−γ, p1−γ/2
}
= p1−γ/2 = o

(√
T
)

,

therefore Condition 1 (4) is satisfied.

Condition 2: Condition 2 derives directly from Statement (ii) of Lemma C.2.

Condition 3: Condition 3 (1) is a direct result of the assumptions on the kernel K(u), which are

slightly stronger, than those of Sancetta (2008). Condition 3 (2) for the bandwidth, is exactly the

same as the one given in the statement of Theorem 3.3.

Condition 4: From Assumptions (A1) to (A3), the process {Yt : t ∈ Z} is stationary with finite

eighth moments (see the discussion following Assumptions (A1) to (A3) in Subsection 2.3.1).

The moment condition of Condition 4 follows from E
(
||εt||82

)
< +∞ and the boundedness of

{Xt : t ∈ Z} by a similar argument as in proving Statement (ii) of Lemma C.2.
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Appendix D

The Viterbi Algorithm

The Viterbi algorithm is a technique, based on dynamic programming methods, to estimate the

single best state sequence {X1, . . . , XT} that maximises the conditional probability

Pθ(X1, . . . , XT | y1, . . . , yT) ,

which is equivalent to maximising the joint probability (see Section III.B in Levinson et al. 1983)

Pθ(X1, . . . , XT, y1, . . . , yT) .

The parameter θ is assumed to be known and in practice it is substituted by the estimate of the EM

algorithm. We follow Appendix A in Fiecas et al. 2017.

For all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}, let us define

δk(t) = max
k1,...,kt−1

{log[Pθ(X1 = k1, . . . , Xt−1 = kt−1, Xt = k, y1, . . . , yt)]}.

δk(t) is the highest log-probability along a single path, at time t, which accounts for the first t obser-

vations and ends in state k.
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By induction, for all t ∈ {1, . . . , T − 1} and k, l ∈ {1, . . . , K}, we get

δl(t + 1) = max
k1,...,kt

{log[Pθ(X1 = k1, . . . , Xt = kt, Xt+1 = l, y1, . . . , yt, yt+1)]}

= max
k1,...,kt

{log[Pθ(X1 = k1, . . . , Xt = kt, y1, . . . , yt)P(Xt+1 = l |Xt = kt) fl(yt+1; θ)]}

= max
kt

{
max

k1,...,kt−1
{log[Pθ(X1 = k1, . . . , Xt = kt, y1, . . . , yt)P(Xt+1 = l |Xt = kt) fl(yt+1; θ)]}

}
= max

k

{
max

k1,...,kt−1
{log[Pθ(X1 = k1, . . . , Xt = k, y1, . . . , yt)P(Xt+1 = l |Xt = k) fl(yt+1; θ)]}

}
= max

k

{
max

k1,...,kt−1
{log[Pθ(X1 = k1, . . . , Xt = k, y1, . . . , yt)] + log[P(Xt+1 = l |Xt = k)]}

}
+ log[ fl(yt+1; θ)]

= max
k
{δk(t) + log(pkl)}+ log[ fl(yt+1; θ)] .

To determine the single best state sequence, it is necessary to keep track of the maximisers of the

terms

δk(t) + log(pkl)

for all t ∈ {1, . . . , T} and k ∈ {1, . . . , K}. Let

ψk(t) = arg max
i∈{1,...,K}

{δi(t− 1) + log(pik)} (t ∈ {1, . . . , T} , k ∈ {1, . . . , K}) .

The method is illustrated below.

Viterbi Algorithm

(1) Initialisation:

For all k ∈ {1, . . . , K}

δk(1) = log(πk) log[ fk(y1; θ)] ,

ψk(1) = 0.

(2) Recursion:

For all t ∈ {2, . . . , T} and k ∈ {1, . . . , K}

δk(t) = max
i∈{1,...,K}

{δi(t− 1) + log(pik)}+ log[ fk(yt; θ)] ,

ψk(t) = arg max
i∈{1,...,K}

{δi(t− 1) + log(pik)}.
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(3) Termination:

x∗T = arg max
k∈{1,...,K}

{δk(T)}.

(4) Path backtracking:

For t ∈ {T − 1, T − 2, . . . , 1}

x∗t = ψx∗t+1
(t + 1) .
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