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Abstract
The research on the complex topological electronic and magnetic structure of mate-
rials has been gaining importance over the last few years, as it can be applied in the field
of spintronics with prospects for implementation in information technology.

The main goal of this thesis is the theoretical and computational study of spin-transport
phenomena in topological structures. Our simulations are based on ab-initio calculations
augmented by electronic scattering theory.

Firstly, we focus on the phenomenon of the spin-orbit torque in a special materials class,
the topological insulators, doped with magnetic impurities. We investigate the spin-orbit
torque exerted on the magnetic moments of ferromagnetically coupled transition-metal
defects (Cr, Mn, Fe, and Co) embedded in the surface of the topological insulator Bi2Te3,
in response to an electrical current flow in the surface. The scattering properties of surface
states off multiple magnetic impurities are calculated within the Korringa-Kohn-Rostoker
(KKR) Green function method, while the spin-orbit torque calculations are performed by
combining the KKR results on the Fermi surface and scattering rate with the semiclassical
linearized Boltzmann equation. We discuss the correlation of the spin-orbit torque to the
spin current on the Fermi surface, analyzing the spin flux contribution to the spin-orbit
torque on the defects. In addition, we relate the torque to the resistivity and the Joule
heat production. We find these systems may be favorable for spintronic applications.
In particular, we predict that the Mn/Bi2Te3 is the most promising among the studied
systems for applications of the spin-orbit torque effect.

Secondly, we focus on magnetic skyrmions in magnetic films, which are two-dimensional
topological solitons that behave like particles that can be formed, transported, detected.
Based on the KKR method, non-collinear spin-density-functional theory calculations are
carried out for the formation of stable magnetic skyrmions in Pd/Fe/Ir(111) ultrathin
films. Next, solving selfconsistently the Boltzmann transport equation, we study the
topological Hall effect (THE) induced by the electron scattering on skyrmion systems.
The investigation of the THE is of pivotal importance in these systems, since it is
one of the key methods for electrically detecting magnetic skyrmions. We present the
resistivity and the Hall angle of the system, and we examine the dependence of the THE
on disorder, modelled by an additional electron scattering term. Our findings predict a
strong dependence of the topological Hall angle on the degree of disorder of the sample.
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Περίληψη

Η σύνθετη τοπολογική ηλεκτρονική και μαγνητική δομή των υλικών είναι ένα πεδίο έρευ-

νας που αποκτά όλο και μεγαλύτερη σημασία τα τελευταία χρόνια, λόγω της εφαρμογής του

στο πεδίο της σπιντρονικής, με πιθανές προεκτάσεις στην πληροφορία της τεχνολογίας.

Στην παρούσα διδακτορική διατριβή, κύριο στόχο αποτελεί η θεωρητική και υπολογιστική

μελέτη φαινομένων μεταφοράς του σπιν σε τοπολογικές δομές. Οι προσομοιώσεις μας βα-

σίζονται σε υπολογισμούς υλικών από πρώτες αρχές εφαρμόζοντας τη θεωρία ηλεκτρονικής

σκέδασης.

Αρχικά, επικεντρωνόμαστε στο φαινόμενο της ροπής στρέψης σπιν σε τοπολογικούς μο-

νωτές εμπλουτισμένους με μαγνητικές προσμίξεις. Μελετούμε τη ροπή στρέψης σπιν που

ασκείται στη μαγνητική ροπή σιδηρομαγνητικά συζευγμένων προσμίξεων, και συγκεκρι-

μένα μετάλλων μετάβασης (Cr, Mn, Fe, και Co), στην επιφάνεια του τοπολογικού μονωτή
Bi2Te3, ως απόκριση σε ηλεκτρικό ρεύματος στην επιφάνεια. Οι ιδιότητες σκέδασης των επι-
φανειακών καταστάσεων στις μαγνητικές προσμίξεις υπολογίζονται με τη μέθοδο Korringa-
Kohn-Rostoker (KKR) συναρτήσεων Green, ενώ οι υπολογισμοί της ροπής στρέψης σπιν
πραγματοποιούνται συνδυάζοντας τα αποτελέσματα της KKR στην επιφάνεια Fermi και
το ρυθμό σκέδασης με την ημικλασική γραμμικοποιημένη εξίσωση Boltzmann. Συζητάμε
τη συσχέτιση της ροπής στρέψης σπιν με το ρεύμα σπιν, αναλύοντας τη συνεισφορά της

ροής σπιν στη ροπή στρέψης σπιν στις προσμίξεις. Επιπλέον, εξετάζουμε πώς σχετίζεται

η ροπή στρέψης σπιν με την αντίσταση και την παραγωγή θερμότητας Joule. Σύμφωνα
με τα αποτελέσματά μας, τα συστήματα αυτά είναι ευνοϊκά για σπιντρονικές εφαρμογές.

Ειδικότερα, προβλέπουμε ότι το σύστημα Mn/Bi2Te3 είναι το πλέον υποσχόμενο μεταξύ
των συστημάτων που μελετήσαμε για εφαρμογές της ροπής στρέψης σπιν.

Στη συνέχεια, επικεντρωνόμαστε στη μελέτη διδιάστατων μαγνητικών σκυρμιονίων, τα

οποία είναι τοπολογικά σολιτόνια σε σιδηρομαγνητικά υμένια και τα οποία συμπεριφέρονται

ως σωματίδια που δύνανται να σχηματιστούν, μεταφερθούν και ανιχνευθούν. Για τη μελέτη

αυτή, βασιστήκαμε στη μέθοδο KKR και πραγματοποιήσαμε υπολογισμούς θεωρίας συναρ-
τησιακού της μη συγγραμικής πυκνότητας σπιν για το σχηματισμό ευσταθών μαγνητικών

σκυρμιονίων σε υπέρλεπτα υμένια Pd/Fe/Ir(111). Κατόπιν, επιλύοντας την αυτοσυνεπή ε-
ξίσωση Boltzmann, εξετάζουμε το τοπολογικό φαινόμενο Hall, το οποίο προκαλείται από τη
σκέδαση των ηλεκτρονίων σε συστήματα σκυρμιονίων. Η μελέτη του τοπολογικού φαινο-

μένου Hall είναι θεμελιώδους σημασίας σε τέτοιου είδους συστήματα, καθώς το φαινόμενο
αυτό αποτελεί μία από τις βασικές μεθόδους για την ανίχνευση μαγνητικών σκυρμιονίων.

Παρουσιάζουμε την αντίσταση και τη γωνία Hall του συστήματος, και εξετάζουμε την
εξάρτηση του τοπολογικού φαινομένου Hall από το βαθμό αταξίας του δείγματος, εισάγο-
ντάς τον στους υπολογισμούς μας μέσω ενός επιπλέον όρου ηλεκτρονικής σκέδασης. Τα

ευρήματά μας προβλέπουν μία ισχυρή εξάρτηση του τοπολογικού φαινομένου Hall από το
βαθμό αταξίας του δείγματος.
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The following abbreviations are frequently used in this thesis:

Abbr. Meaning
AHE anomalous Hall effect
DFT density functional theory
DOS density of states
GF Green function

KKR Korringa Kohn Rostoker
LDA local density approximation

MRAM magnetoresistive random-access memory
SOC spin-orbit coupling
SOT spin-orbit torque
STT spin-transfer torque
THE topological Hall effect
THA topological Hall angle
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Introduction

1

Information technology plays an important role in our everyday lives. The field of
spintronics [1, 2], that aims at controlling the electron spin degree of freedom in solid-state
systems, is a powerful tool for the design energetically efficient devices with applications
in information technology.

Spintronic devices are used as data storage, manipulation and transport devices. One
of the main challenges in their design is the conservation of the information in materials
structures, without dissipation. To this end, the complex topology of electronic and
magnetic structures can be a key element. On the one hand, materials like topological
insulators show a topological structure in momentum-space with protected metallic
surface states, and on the other hand, magnetic skyrmions appear as topological states
in real space, with a potential for efficient storage and transport of information.

A very active area in the field of spintronics is the “electrically controlled spintronics”
that is related to the manipulation and detection of the magnetization by means of an
electric field and by the resulting electric current, allowing for high-density magnetic
memory components in magnetism-based memory devices [3, 4]. The area was pioneered
in 1996 by Slonczewski [5] and Berger [6], who introduced the concept of the spin transfer
torque [7], according to which a spin polarized current, emitted from a ferromagnetic
layer which acts as the polarizer, causes a precession of the magnetization of a second
ferromagnetic layer. This effect can be used for an electric-field control of Magnetoresistive
Random-Access Memories (MRAMs) [8], interpreting the "up" or "down" direction of
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Introduction

magnetization as the logical states of a magnetic memory bit and accordingly writing
the magnetic information. In the last few years, another type of current-induced spin
torque, the spin-orbit torque (SOT) [9–11], has gained ground. Its main advantage is
that the charge current is converted to a spin current without the need of a ferromagnetic
polarizer. The SOT effect has been investigated mainly in ferromagnetic bilayers or
multilayers theoretically [12–17] and experimentally [18–20].

A prerequisite for the accumulation of spin, and therefore for the appearance of the
spin-orbit torque, is a strong spin-orbit coupling [21] in the material. This property
is shared by a special class of materials, the topological insulators [22–25] that are
narrow-gap semiconductors in the bulk but possess metallic surface states. The strong
spin-orbit coupling contributes to a topological protection of these surface states against
surface distortions and gives them a special spin texture, locked to the crystal momentum,
with absent spin degeneracy. Due to the spin momentum locking, electrons with opposite
group velocities have opposite spin directions, resulting in permanent and dissipationless
spin currents on their surface. Consequently, the topological insulators display unique
and advantageous properties for spin-transport applications [26–30].

A SOT effect has been observed in topological insulators bulk-doped with magnetic
transition-metal impurities [31]. Also, (topological insulator)/(ferromagnet) bilayers show
a strong SOT [32–35]. The latter case is difficult to analyze in realistic systems, because
of the complexity of the ferromagnet’s d-bands, as they hybridize with the topological
insulator surface state. On the other hand, ferromagnetically coupled impurities on
topological insulator surfaces affect the surface state only minimally and can be understood
in relatively simpler terms.

Motivated by the latter realization, the present Thesis explores the phenomenon of the
SOT on the magnetization of ferromagnetically ordered transition metal impurities (Cr,
Mn, Fe and Co) embedded in the surface of the topological insulator Bi2Te3 [36, 37]. In
these systems the SOT generates the precession of the impurity magnetic moments in
response to an electrical current in the surface generated by an external electric field.
The precession results from the transfer of spin angular momentum from current-carrying
conduction electrons to the magnetic atoms during scattering between surface states of
different crystal momentum and consequently different spin polarization. The strong
topological insulator Bi2Te3 is chosen as the substrate, since it is one of the most studied
topological insulators. Its simple surface band structure consists of a single Dirac cone
which extends well into the bulk band gap in the vicinity of the Γ point [38], building a
simple hexagonal snowflake-shaped [39] Fermi surface. Due to the metallic surface states
and the insulating bulk of the topological insulator, all current flows near the surface,
where the SOT effect takes place, suggesting optimal efficiency. The magnetization of the
impurity atoms is directed perpendicular to the surface plane, while the spin polarization
of Fermi surface states is mainly directed in the surface plane, reinforcing the SOT.

A conceptual advancement of non-volatile memory was the magnetic racetrack memory,
proposed by S. Parkin [40]. In the racetrack memory, the well-known magnetic domains
and domain walls are utilized as carriers of information for storing data. Following
developments of the past few years that discovered the magnetic skyrmions as new types
of magnetic states, a design of skyrmion-based racetrack memories was conceived [41].
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Magnetic skyrmions are topological entities formed by the magnetization and confined in
space. On a microscopic level, they are the result of the spin-orbit coupling of conduction
electrons together with space inversion asymmetry, which promote isotropic (Heisenberg)
and anisotropic (Dzyaloshinskii-Moriya) exchange interactions. In the racetrack memory
based on a sequence of individual magnetic skyrmions, the data bits are encoded by the
presence or absence of skyrmions, or by the presence of skyrmions of positive or negative
topological charge.

Magnetic skyrmions are very promising for spintronics applications due to the experi-
mentally and theoretically demonstrated ability to create them, drive them by means of
an electric current on the surface, and detect them [42]. A skyrmion is analogous to a
domain wall, however its advantages over a domain wall makes it prominent for future
applications. One of the most important properties of skyrmions is their topological
protection, i.e., they cannot be continuously deformed into another spin configuration,
without overcoming an energy barrier [43]. Hence, magnetic skyrmions can be stabilized
at the nanoscale. In addition, skyrmions are characterized by chirality, i.e., the mag-
netization has a unique rotational sense, defined by the microscopic properties of the
material. Moreover, a skyrmion is localized in space and can be moved as a particle, but
its size can be controlled by means of external magnetic fields or by alloying the material,
changing the stength of the interactions. An additional crucial property of magnetic
skyrmions is that they have been observed experimentally even at room temperature.
Magnetic skyrmions are also very appealing for applications due to the low energy
consumption required for their motion, as they can be created and be moved with low
current densities [44, 45].

A vital issue that have to be addressed in the context of future applications with
skyrmions is an efficient way of detection. Skyrmions in the nanoscale can be detected by
means of spin-polarized scanning tunneling microscopy [46, 47], which, however, may not
be ideal for applications. An auspicious phenomenon for electrically detecting magnetic
skyrmions is the topological Hall effect [48–55]. This effect, caused by the spin chirality
of skyrmions, is an additional contribution to the anomalous Hall effect (AHE) [56] and
ordinary Hall effect (OHE). The skyrmion detection is pivotal for any spintronic device
based on magnetic skyrmions, but as has been already mentioned, may additionally
provide a way of readout of the logical state of the racetrack memory [42].

In this work, we consider the THE caused by stabilized magnetic skyrmions in the
Fe atomic layer of the heterostructure Pd/Fe/Ir(111) (one atomic layer of Fe on the
face-centered-cubic Ir(111) surface, capped by one atomic layer of Pd). Here, the Fe
layer is ferromagnetic, the Ir substrate provides the strong spin-orbit coupling necessary
for the anisotropic exchange, and the Pd capping enhances the ferromagnetic exchange
interaction, enlarging the skyrmion. Magnetic skyrmions of a few-nm size have been
already detected in this system by means of spin-polarized scanning tunneling microscopy
(STM) experiments [46]. The system has also been investigated in DFT simulations [57,
58] with respect to its energetic stability. However, to the best of our knowledge, first-
principles calculations have not been performed with respect to the transport properties
of this system, which is the main target here.

Our ab-initio simulations are based on the Korringa-Kohn-Rostoker (KKR) Green
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function method and transport theory within the Boltzmann formalism. Within this
Thesis, we go beyond previous studies, as the spin-orbit torque on defects in topological
surface states and the Hall effect caused by magnetic skyrmions are calculated for first
time on a density-functional theory level, allowing for predictions without adjustable
parameters. Moreover, both studied systems have been experimentally established, hence
this Thesis is exploring the transport properties of realistic materials. Therefore, this
work provides a realistic study with respect to detailed properties of materials.

This Thesis is structured as follows:

Chapter 2 presents the basic theoretical background. At first, a short introduction to
density functional theory (DFT) and to Green functions for the electronic structure in
Solid State Physics is given. It is followed by the presentation of the Korringa-Kohn-
Rostoker Green function (KKR) formalism as a DFT method within the framework
of multiple scattering theory. The application of KKR method to the calculations of
impurity scattering in an otherwise periodic crystal is discussed in the end of the chapter.

Chapter 3 gives a description of the spin-transport theory, employing the Boltzmann
formalism combined with the KKR method. Our investigations for the scattering
properties off defects under non-equilibrium conditions, considering the application of
external electric field in the system, are based on this method. The chapter closes with
the equation for the calculation of the conductivity tensor which allows us to obtain
some of the main results of this study.

Chapter 4 starts with an introduction to the phenomenon of the spin-orbit torque.
Then, the formalism for the calculation of the matrix elements of the spin accumulation,
spin-orbit torque and spin flux operators within the framework of the KKR method is
presented. Afterwards, the basic equations are derived for the calculation of the linear
response coefficients of the spin accumulation, spin-orbit torque and spin flux in an
applied electric field, employing the multiple scattering approach, as implemented in the
KKR Green function method combined with Boltzmann transport equation.

Chapter 5 focuses on the spin-orbit torque exerted on magnetic moments of magnetic
transition-metal impurity atoms Cr, Mn, Fe, and Co, mediated by the topological surface
state electrons of Bi2Te3, in response to an electric field and an electric current in the
system surface. At first, a brief survey of the properties of the topological insulators, as
well as their special characteristics with respect to the present Thesis, are given. Next,
after the study of the electronic structure of the host system, a Bi2Te3 film, we provide a
description of the studied system, magnetic impurity atoms embedded in the Bi2Te3 film
surface, where spin-transport phenomena are investigated. The validity of the independent
impurity scattering approximation which is conventionally used for the solution of the
Boltzmann transport equation is critically examined and found inadequate in the present
system. Because of this, in the calculations, a collection of magnetic impurity atoms
randomly placed in the surface is taken as a large defect, including all multiple scattering
events off the collection of impurities summed to all orders. The scattering rate thus
calculated is used in the Boltzmann equation. In this way, a modification to the usual
assumptions for the Boltzmann equation is applied. Finally, results on the response
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coefficients of the spin accumulation, spin-orbit torque and spin flux in an electric field,
and their correlation are presented and discussed. In addition, the resistivity due to
the different impurity types systems and the relation of the torque to the Joule heat
production are included in the study.

In Chapter 6, our attention shifts to the ab-initio simulation of stable single magnetic
skyrmions in the ferromagnetic Fe layer of the Pd/Fe/Ir(111) heterostructure, employing
the KKR Green function method. Initially, the theoretical background of the topological
nature of magnetic skyrmions is introduced. Afterwards, a description of the studied
system, in which the stable magnetic skyrmions are formed, is provided. Here, the
skyrmions are created in the ferromagnetic Fe layer deposited on the heavy metal Ir,
characterized by a strong spin-orbit interaction. Additionally, the Fermi surface of this
system is studied, where spin-transport phenomena are investigated in the next chapter.
We finally present three differently sized skyrmions, which are calculated in Pd/Fe/Ir(111)
heterostructure.

Chapter 7 proceeds to the investigation of the topological Hall effect induced by the
stable magnetic skyrmions in the Pd/Fe/Ir(111) film. Firstly, an introduction to the
topological Hall effect is given. Next, the results of ab-initio calculations on spin-transport
phenomena on magnetic skyrmions are presented, based on the KKR Green function
method and the Boltzmann transport equation. The Chapter closes with the investigation
of the dependence of the topological Hall angle on disorder.

Finally, in Chapter 8 the main conclusions of the Thesis are summarized.
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The KKR Green function method

2

2.1 Density functional theory
One of the main issues in solid state physics, for the description of the electronic structure
of materials, is the solution of the many-electron time-independent Schrödinger equation

Ĥψ0(r1, r2, . . . , rN) = E0ψ0(r1, r2, . . . , rN), (2.1)

which describes a system of N interacting electrons in an external potential. The Hamil-
tonian Ĥ determines the many-body wavefunction ψ0(r1, r2, . . . , rN ) with eigenvalue the
ground state energy E0, as we are interested in the ground state properties of the system.
The Hamiltonian consists of the kinetic energy of the electrons T̂ , the electron-electron
interaction energy Û , and an external potential V̂ext due to the interaction of the electrons
with the atomic nuclei and applied external fields.

Ĥ = T̂ + Û + V̂ext

= −
N∑
i=1

∇2
i +

∑
i,j;i ̸=j

1

|ri − rj|
+

N∑
i=1

V̂ext(ri). (2.2)

In this formula, the Rydberg atomic units ℏ = 2me = e2/2 = 1 with ℏ the Planck
constant, me the mass of the electron and e its charge, have been used.
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The KKR Green function method

The solution of the many-electron Schrödinger equation cannot be obtained with
methods which are based on the calculation of the many-body wave function, since it is a
function of 3N spatial variables. Because of this, a huge computational effort is required
for the applications in realistic systems, which makes this task virtually impossible even
on modern supercomputers 1.

A powerful tool for the efficient solution of this problem is an alternative method, the
density functional theory (DFT) method, in which the system properties on the ground
state are determined by the electron density n0(r), instead of using the wavefunction.
In this way, the many-electron problem is converted to a single-electron problem, that
requires a much smaller numerical effort to be solved. DFT was founded by Hohenberg-
Kohn theorem [59] who showed that (a) The energy of the ground state of an interacting
many-electrons system is a unique functional of the electron density E0 = E[n0] and (b)
the total energy functional takes its lowest value for the ground state density. However,
the explicit form of this energy functional remains unknown.

A way of determining the ground state density n(r) that was suggested by Kohn and
Sham [60], is to consider a fictitious auxiliary system of non-interacting electrons with
density equal to the interacting electron system. The many-body wavefunction of the
auxiliary system is constructed by a set of single-electron orbitals ϕi(r) (the so-called
Kohn-Sham orbitals). The orbitals obey the single-particle Kohn–Sham equation, the
non-interacting Schrödinger-like equation of the auxiliary system, defined by an effective
potential Veff in which the non-interacting electrons move. Making use of the Hohenberg-
Kohn theorem (b) and the requirement for the number of electrons N to be conserved,
the following Kohn-Sham equations are derived

[−∇2 + Veff(r)]ϕi(r) = εiϕi(r), ∀i (2.3)

n(r) =
N∑
i=1

|ϕi(r)|2, (2.4)

where Veff is a functional of the density n and the summation runs over the lowest
single-electron energy levels.

The effective potential (or Kohn-Sham potential) is expressed in terms of the external
potential Vext, the Hartree part of the electron-electron interaction and the so-called
exchange-correlation potential Vxc

Veff(r) = Vext(r) +

∫
dr′ 2n(r

′)

|r − r′|
+ Vxc(r). (2.5)

The first two terms in Eq. (2.5) are treated exactly, while the exchange-correlation
potential, which is a functional derivative of the exchange-correlation energy functional
and depends on the electron density, defined as Vxc(r) = δExc[n]/δn(r), is the only

1 We mention the simple example of an Fe atom with atomic charge Z = 26: The determination
of its wavefunction solving the Eq. (2.1) on real-space grid with just 10 grid-points per dimension
demands the storing of 103N = 1078 numbers, which is of the order of the total number of atoms in
the universe.
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2.1 Density functional theory

unknown contribution. However, several reasonable approximations for the practical
solution of the Kohn-Sham equation, in order to estimate the exchange-correlation
potential have been used, such as the local density approximation (LDA) or the generalized
gradient approximation (GGA) [61].

The first idea for the determination of the exchange-correlation potential is based
on the homogeneous electron gas (HEG), in which the exchange-correlation energy εxc
can be calculated accurately. Afterwards, within the LDA, the exchange-correlation
energy ELDA

xc of an inhomogeneous electron gas with density n(r), is given considering
the contribution of each point r of an HEG with constant density equal to the local
density n(r)

ELDA
xc =

∫
dr n(r)εxc(n(r)). (2.6)

Even if the LDA is expected to be valid for systems with densities that vary slowly in
space, it is proved that in practice it provides accurate results for inhomogeneous systems,
too [62]. In the calculations of this thesis, the LDA with a parametrization of Vosko,
Wilk and Nusair [63] was employed.

In order to describe spin-polarized systems, i.e. systems with external magnetic fields
or spin-orbit coupling, the spin-density functional theory need to be used. In this theory,
apart from the ground state electron density n0(r), another basic variable is the vector
of the spin density m0(r)

n0(r) =
N∑
i=1

ϕ†
i
(r)12ϕi

(r), m0(r) =
N∑
i=1

ϕ†
i
(r)σϕ

i
(r). (2.7)

Within the Kohn-Sham formalism which has been extended to take into account the spin
degree of freedom [64], the single-particle wavefunction is given by spinors

ϕ
i
(r) =

∑
σ=↑,↓

ϕσ
i (r)χ

σ =

(
ϕ↑
i (r)

ϕ↓
i (r)

)
, (2.8)

as the basis vectors in spin space correspond to the (2× 1)-vectors, χ↑ for spin-up and
χ↓ for spin-down

χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)
. (2.9)

In the above equation (2.7), the symbol σ denotes the Pauli vector σ = (σx, σy, σz),
consisting of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.10)

Here, the exchange-correlation energy is a functional of the electron density, as well as the
spin density, Exc = Exc[n,m]. The Kohn-Sham equation takes the following extended
form [(

−∇2 + Veff(r)
)
12 +Bxc(r) · σ

]
ϕ
i
(r) = εiϕi

(r), (2.11)

9



The KKR Green function method

including the exchange-correlation magnetic field Bxc(r). This magnetic field is a
functional of n0 and m0, defined as

Bxc(r) =
δExc[n,m]

δm(r)

∣∣∣∣∣
n0,m0

. (2.12)

The Bxc(r) can be determined by approximations in order to solve the spin-polarized
Kohn-Sham equation, such as the local spin density approximation (LSDA).

2.2 Green functions in non-interacting electron systems
We consider a system of non-interacting electrons which is described by the Kohn-Sham
equations (2.3). The Green function is defined as the resolvent of this equation, via the
operator equation

(E −H)G(E) = 1. (2.13)

Therefore, the Green function can be written as the inverse of the operator G(E) =
(E + iη − H)−1, with η a positive infinitesimal real number (η → 0+). In terms of
eigenfunctions of H, |ϕi⟩, which obey the eigenvalue relation H |ϕi⟩ = ϵi |ϕi⟩, G(E) can
be obtained in the spectral representation of the Green function in real space as follows

G(r, r′;E) = ⟨r|G(E) |r′⟩ =
∑
i

ϕ
i
(r)ϕ†

i
(r′)

E − ϵi + iη
, (2.14)

representing, in the limit of η → 0+, the propagation of an outgoing wave at r caused by
a source term at position r′. For spin-polarized systems the Green function is a matrix
in spin space, defined as

G(r, r′, E) =

(
G↑↑(r, r′, E) G↓↑(r, r′, E)
G↑↓(r, r′, E) G↓↓(r, r′, E)

)
. (2.15)

Using the Dirac identity it is easily proven that the spectrally- and space-resolved
density of states n(r, E) can be found in terms of the Green function

n(r;E) = − 1

π
ImTr[G(r, r, E)]. (2.16)

It can be shown that the expectation value A of any observable quantity, represented by
an operator Â, is related to the Green function according to the expression

A =
〈
Â
〉
= − 1

π
Im

∫ EF

−∞
dE Tr[ÂG(E)], (2.17)

with EF the Fermi energy of the system. Hence, the electron density ρ(r) can be found
as an integral over the energies up to Fermi level

ρ(r) = − 1

π
Im

∫ EF

−∞
dE Tr[G(r, r, E)], (2.18)

10



2.2 Green functions in non-interacting electron systems

and the spin magnetization density m(r) can be computed respectively to the electron
density (Eq. eq2.18)

m(r) = − 1

π
Im

∫ EF

−∞
dE Tr[σG(r, r, E)]. (2.19)

Importantly, the Green function method is a powerful tool for the calculation of the
electronic structure perturbed systems, such as systems of defects embedded in periodic
crystals.

Relations between perturbed and unperturbed system

A perturbed system is described by the Hamiltonian H = H0 + ∆V , with ∆V the
perturbing potential. The Hamiltonian obeys the Schrödinger equation (H0+ ∆V ) |ψ⟩ =
E |ψ⟩, while the first part of the Hamiltonian, H0, obeys the Schrödinger equation for
a reference, unperturbed system H0 |ψ0⟩ = E |ψ0⟩, which is known. The eigenfunctions
of the perturbed system are connected to the eigenfunctions of the unperturbed by the
Lippmann-Schwinger equation [65, 66]

|ψ⟩ = |ψ0⟩+G0∆V |ψ⟩ . (2.20)

According to the definition of the Green function (2.13), we can find a relation between
the Green function of interest G and the Green function of the reference system G0, the
so-called Dyson equation [65, 67]

G = G0 +G0∆V G (2.21)
= G0 +G0∆V G0 +G0∆V G0∆V G0 + · · · (2.22)
= G0 +G0T G0. (2.23)

The middle line (2.22) is an expression analogous of a Born series expansion for the
Green function, which is helpful for the calculation of G in case of a weak perturbation
∆V , as it can be solved repetitively. In the last line (2.23), the transition matrix, or
T -matrix is introduced, which is defined by the following relation

∆V |ψ⟩ = T (E) |ψ0⟩ . (2.24)

The T -matrix [68] is a fundamental quantity of the scattering theory, since it contains
the properties of scattering off a defect. If the Dyson equation is solved, it can be also
found, as it can be written in terms of the Green function as follows

T = ∆V + ∆V G∆V (2.25)
= ∆V + ∆V G0∆V + ∆V G0∆V G0∆V + · · · (2.26)
= ∆V + ∆V G0T . (2.27)

11



The KKR Green function method

2.3 Green function within the KKR formalism

2.3.1 Single-site scattering theory

In a first step, the KKR formalism is applied in order to deal the scattering problem of a
finite range potential off a single atom embedded into a reference system, which is chosen
as the free space.

Green function of free space

The reference system is considered a free-electron system, of which the solutions are
analytically known. The Hamiltonian contains only the kinetic energy term, i.e. V (r) = 0,
and the eigenfunctions φk(r) are just plain waves which are expanded in real spherical
harmonics basis YL(r̂)

φk(r) = eikr (2.28)

=
∑
L

4πiljl(
√
Er)YL(r̂)YL(k̂), (2.29)

with k = |k| =
√
E, r = |r|, and jl denotes the spherical Bessel functions of the first

kind. Here, the combined index L = {l,m} of the angular momentum indexes l and m is
used.

The Green function of a free-electron system is given as [65]:

g(r, r′;E) = − 1

4π

ei
√
E|r−r′|

|r − r′|
(2.30)

=
∑
L

1

rr′
YL(r̂)gl(r, r

′;E)YL(r̂
′), (2.31)

where the expansion coefficients of the Green function gl are introduced, which are defined
as

gl(r, r
′;E) =

√
E rr′jl(

√
Er<)hl(

√
Er>). (2.32)

hl(r) are the spherical Hankel functions 2, and r<(>) is the smaller (larger) of the radius r
and r′, respectively. The Bessel functions jl are finite as r → 0, while the Hankel diverge.
Making use of the abbreviations JL(r;E) = rjl(

√
Er) and HL(r;E) = rhl(

√
Er) the

expansion coefficients are expressed in the form

gl(r, r
′;E) =

√
E [JL(r;E)HL(r

′;E)θ(r′ − r) +HL(r;E)JL(r
′;E)θ(r − r′)], (2.33)

with θ the Heaviside step function.3

2 The spherical Hankel functions are defined as hl = nl − ijl, and nl are the Neumann functions.
3 θ(x) =

(
0; x < 0
1; x ≥ 0

)
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2.3 Green function within the KKR formalism

Green function of an atomic potential

Next, we want to solve the scattering problem of a perturbed potential V (r) of finite
range embedded in free space. Then, the wavefunctions ψk(r) can be found in terms of
the Green function of the free space g, using the Lippmann-Schwinger equation (2.20)

ψk(r) = eikr +

∫
dr′g(r, r′;E)V (r′)ψk(r

′), (2.34)

with E = k2, the energy of a free particle of wave vector k. The first term represents
an incoming plane wave, while the second term determines the scattered wave. The
wavefunctions are expanded in real spherical harmonics basis, similarly to Eq. (2.31)

ψk(r) =
∑
L

4πilRL(r;E)YL(k̂), (2.35)

with RL(r;E) the regular solutions, given by the following expansion in real spherical
harmonics

RL(r;E) =
∑
L′

1

r
RL′L(r;E)YL′(r̂). (2.36)

The Green function of this single scattering problem GS is found in terms of the
right-hand regular RL(r) and irregular SL(r) solutions, and the corresponding left-hand
side solutions, R̄L(r) and S̄L(r)

4

GS(r, r
′;E) =

√
E
∑
L

[θ(r′ − r)RL(r)S̄L(r
′) + θ(r − r′)SL(r)R̄L(r

′)]. (2.37)

The regular and irregular solutions are expanded in real spherical harmonics similarly
as (2.36) [69], and its expansion coefficients RL′L, SL′L of the right scattering wavefunc-
tions are given by the following Lippmann-Schwinger equations [69]

RL′L(r;E) = JL(r;E)δL′L +
∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)RL′′L(r
′′;E) (2.38)

SL′L(r;E) = HL(r;E)βL′L(E) +
∑
L′′

∫
dr′′gl′(r, r

′′;E)VL′L′′(r′′)SL′′L(r
′′;E), (2.39)

where VL′L′′ is the expansion coefficient in real spherical harmonics of the atomic potential
and β matrix is found by the expression

βL′L(E) = δL′L −
√
E

∫
dr′J̄L(r

′;E)
∑
L′′

VL′L′′(r′)SL′′L(r
′;E). (2.40)

4 The right-hand solutions, regular RL(r) and irregular SL(r), are 2×1 spinors (column-vectors) in
Pauli theory, and the left-hand side solutions, regular and irregular, R̄L(r) and S̄L(r), are 1×2
spinors (row-vectors).

13



The KKR Green function method

The corresponding expansion coefficients of regular and irregular left scattering wave-
functions R̄LL′ , are derived by the following Lippmann-Schwinger relations

R̄LL′(r;E) = J̄L′(r;E)δLL′ +
∑
L′′

∫
dr′′R̄LL′′(r′′;E)VL′′L′(r′′)gl′(r

′′, r;E) (2.41)

S̄LL′(r;E) = β̄LL′(E)H̄L′(r;E) +
∑
L′′

∫
dr′′S̄L′′L(r

′′;E)VL′L′′(r′′)gl′(r
′′, r;E), (2.42)

with β̄ matrix:

β̄LL′(E) = δLL′ −
√
E

∫
dr′S̄LL′′(r′;E)

∑
L′′

VL′′L′(r′)JL′(r′;E). (2.43)

For a detailed analysis we refer to the work of Bauer [69].

Atomic transition matrix (t-matrix)

As the regular scattering solutions of the reference system into free space are estimated,
the atomic transition matrix (t-matrix) is found by the integral

tLL′(E) =
∑
L′′

∫ Rmax

0

drJ̄L(r;E)VLL′′(r)RL′′L′(r;E), (2.44)

with Rmax the radius of the atomic sphere. Here, the t-matrix gives the scattering
properties of the single atomic potential, but its calculation is important for the treatment
of the multiple scattering problem, combining the scattering properties of the single
atoms at sites n, as it will be shown in the next step.

2.3.2 Multiple scattering theory

The single scattering theory can deal with the problem of an isolated scatterer. Now, we
consider a collection of identical scatterers at lattice positions Rn (n = 1, .., N), in order
to take into account the scattering by all atoms within the whole crystal. The KKR
Green function G that describes the multiple scattering process is a sum of two terms,
the onsite term which gives the solution of the single atomic potential Gn

S (given by
Eq. 2.37), and an additional term of the multiple scattering contribution, which describes
the scattering between different sites Gnn′

M

G(r +Rn, r
′ +Rn′ ;E) = Gn

S(r, r
′;E)δnn′ +Gnn′

M (r, r′;E). (2.45)

Voronoi construction

In the KKR formalism a tessellation of space in atomic cells is used. The center of
each cell is the nucleus position, and the cells are found by a Voronoi construction, as
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polyhedron-shaped cells. This Voronoi tessellation allows us the division of the Green
function calculation into two parts, a local and a global part. Firstly, the local scattering
problem in each cell is solved independently. In a second step, the multiple scattering
among atoms problem is treated with the coupling of the local solutions, and the full
Green function of the crystal is found.

This is achieved with the introduction of a globally vector x pointing inside a cell n,
defined as

x = r +Rn, (2.46)

where Rn is the lattice site of each scattering center and r is locally defined inside the
cell n. Then, the potential is also separated into local potentials

V (x) =
∑
n

V n(x−Rn) =
∑
n

V n(r), (2.47)

with

V n(r) =

{
V (r +Rn), if r +Rn ∈ cell n.

0, otherwise.
(2.48)

Figure 2.1: Illustration of the division of atomic cells found by the Voronoi construction.
The gray spheres represent the positions of atoms in the crystal.

Green function of the free space

The Green function of the free-electron system g is decomposed by a single site part and
a multiple scattering part

g(r+Rn, r
′+Rn′ ;E) = δnn′

√
E
∑
L

jL(r<;E)hL(r>;E)+
∑
LL′

jL(r;E)g
nn′

LL′(E)jL′(r′;E),

(2.49)

where the abbreviations jL(x;E) = jl(
√
Ex)YL(x̂) for the Bessel function, and similarly

for the Hankel function hL(x;E) = hl(
√
Ex)YL(x̂) are used. The expansion coefficients
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of the Green function gnn
′

LL′ which are introduced, also called structure constants, are
obtained by the relation

gnn
′

LL′ = −(1− δnn′)4π
√
E
∑
L′′

il−l′+l′′CLL′L′′hL′′(Rn −Rn′ ;E), (2.50)

with the Gaunt coefficients defined as CLL′L′′ =
∫
dΩ YL(r̂)YL′(r̂)YL′′(r̂).

Green function of atomic potential

In the presence of the periodic potential in the crystal V (r), similarly to Eq. (2.49), the
Green function which describes the multiple scattering problem (Eq. (2.45)), is finally
written

G(r +Rn, r
′ +Rn′ ;E) = GS(r, r

′;E)δnn′ +
∑
ΛΛ′

RΛ(r;E)G
nn′

ΛΛ′(E)R̄Λ′(r′;E), (2.51)

with Gnn′

ΛΛ′(E) the expansion coefficients of the Green function, which are called structural
Green functions. Here, we introduce the combined index for angular momentum and
spin, Λ = (L, s) = (l,m, s).

In addition, the Green function obeys the Dyson equation

G(r +Rn,r
′ +Rn′ ;E) = g(r +Rn, r

′ +Rn′ ;E)+∑
n′′

∫
d3r′′g(r +Rn, r

′′ +Rn′′ ;E)Vn′′(r′′)G(r′′ +Rn′′ , r′ +Rn′ ;E). (2.52)

Instead of solving the above normal Dyson equation (Eq. (2.52)) which includes the
potential, the Green function of the multiple scattering of electrons is found according to
Eq. (2.51). In this equation, the structural Green functions Gnn′

ΛΛ′(E) can be determined
by an algebraic Dyson equation [70]

Gnn′

ΛΛ′(E) = gnn
′

ΛΛ′(E) +
∑

n′′Λ′′Λ′′′

gnn
′′

ΛΛ′′(E) tn
′′

Λ′′Λ′′′(E) Gn′′n′

Λ′′′Λ′(E), (2.53)

which involves the structure constants gnn′′

ΛΛ′′(E) and the atomic t-matrix (Eq. (2.44)).
By the expansion of the sum on the right-hand side into Born series, we can derive
the physical interpretation of this equation. This describes the multiple scattering of
electrons in the crystal, as shows that an electron can travel from site n′ to n directly, or
after multiple scattering events at one site, or two sites, etc.

The calculation of the structural Green functions is simplified in practice, solving
the algebraic Dyson equation (2.53) firstly in the reciprocal space. Then, the structure
constants gµµ

′

ΛΛ′′(k;E) and the structural Green functions Gµµ′

ΛΛ′′(k;E) are only dependent
on the geometry of the lattice, and the relative position Rn −Rn′ . The structural Green
functions in k-space are written

Gµµ′

ΛΛ′′(k;E) =
∑
n′

Gnµ;n′µ′

ΛΛ′′ (E)eik·(Rn−Rn′ ), (2.54)
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and the structure constants of the reference system are given, respectively

gµµ
′

ΛΛ′′(k;E) =
∑
n′

gnµ;n
′µ′

ΛΛ′′ (E)eik·(Rn−Rn′ ). (2.55)

The k-dependent Dyson equation is solved by matrix inversion

Gµµ′

ΛΛ′′(k;E) =

[(
1− g(k;E)t(E)

)−1

g(k;E)

]µµ′

ΛΛ′
, (2.56)

with G(k;E), g(k;E), and t(E) matrices in (Λ,Λ′) and (µ, µ′) subspaces. An inverse
Fourier transformation is used to calculate the structural Green function

Gnn′;µµ′

ΛΛ′′ (E) =
1

VBZ

∫
BZ

dk Gµµ′

ΛΛ′′(k;E)e
ik·(Rn−Rn′ )eik·(χµ−χµ′ ), (2.57)

where the integral is performed over the volume of the Brillouin zone VBZ. Consequently,
the full KKR Green function (2.51), including the single, as well as the multiple scattering
part, can be calculated and we can proceed with the evaluation of the charge density.

Secular equation

Next, we aim to solve the eigenvalue problem of the electrons in a periodic crystal. This
can be dealt by the KKR secular equation, which is solved for certain pairs of k and E,
and gives the energy band structure E(k) of the crystal∑

Λ′µ′

[
δΛΛ′δµµ′ −

∑
Λ′′

gµµ
′

ΛΛ′′(k;E)t
µ′

Λ′′Λ′(E)

]
cµ

′

kΛ′ = 0, (2.58)

which is also expressed as

det
(
δΛΛ′ −

∑
Λ′′

gµµ
′

ΛΛ′′(k;E)t
µ′

Λ′′Λ′(E)
)
= 0. (2.59)

Thus, the band structure E(k) is determined by scanning all energies for a given path of
k in the Brillouin zone.

The knowledge of the coefficient vector cµkΛ is important for the determination of
the Bloch wavefunctions ψk in the crystal, in terms of the regular scattering solutions
Rµ

Λ(r;E) (Eq. (2.36))

ψk(r +Rn + χµ) =
∑
Λ

cµkΛR
µ
Λ(r;E)e

ik·Rn . (2.60)

The numerical solution of the secular equation is carried out considering the eigenvalue
problem

M (k;E)cν = λνcν , (2.61)
where the matrix M(k;E), also called KKR matrix, represents the term inside the
brackets of Eq. (2.58). The problem is solved for the eigenvalues which satisfy the
condition λν = 0.

In this way, apart from the band structure, we can determine the Fermi surface of
a system. This is achieved setting the energy fixed to the Fermi energy, E = EF, and
scanning the k-space.
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2.3.3 Spin-orbit interaction

The spin-orbit interaction (or spin-orbit coupling) comprises the coupling of the spin
degree of freedom σ of an electron to its orbital angular momentum L and can be
described by the following Hamiltonian for spherically symmetric potentials

ĤSO =
1

M(r)2 c2
1

r

∂V (r)

∂r
L · σ, (2.62)

where M(r) is the relativistic mass and c is the speed of light. The potential V (r) is
chosen as the average spin-up and spin-down potential, i.e. V (r) =

(V↑+V↓)

2
.

The inclusion of the SOI can be achieved, considering this spin-orbit coupling Hamilto-
nian as an additional term to the Schrödinger equation. In this way, the total Hamiltonian
is written as a 2×2 matrix in spin-space(

H tot
↑↑ H tot

↑↓
H tot

↓↑ H tot
↓↓

)
=

(
H↑↑ 0
0 H↓↓

)
+

(
HSOC

↑↑ HSOC
↑↓

HSOC
↓↑ HSOC

↓↓

)
. (2.63)

Further details regarding the spin-orbit coupling within the KKR method can be found
in the Theses by Heers [71] and by Bauer [69].

2.4 Impurity scattering

One of the main concepts of this thesis is the study of the electronic structure of materials
in the presence of impurities. The idealized ordered periodic crystal is disturbed by the
existence of impurities, as a result its periodicity is broken.

The solution of this scattering problem is carried out in two steps. At first, the
electronic properties of the host system, i.e. the periodic crystal without impurities are
studied, which obey the Bloch’s theorem, and in a second step the scattering of Bloch
electrons off impurity atoms is investigated.

The lattice site of the atoms in the impurity cluster is determined by the combined site
index i = (n, µ), defining the atomic site Xi by the lattice vector Rn and the sub-lattice
vector χµ. Thus, the general position in the crystal is given in the form

x = r +Xi = r +Rn + χµ. (2.64)

Impurity wavefunction

The methodology which was followed for the solution of a periodic potential embedded
in free-space is used in analogy here, in order to solve the scattering problem due to the
perturbing potential ∆V of the impurities into a periodic host system. The perturbing
potential is defined as the difference between the impurity potential and the potential of
the host system

∆V (r) = V imp(r)− V host(r). (2.65)
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The impurity scattering wavefunctions ψimp
k (r) are connected to the radial scattering

solutions of the perturbed atomic potentials Rimp,i with the expansion coefficients cimp,i
Λ

ψimp
k (r) =

∑
Λ

cimp,i
Λ Rimp,i

Λ (r;E). (2.66)

The regular scattering solutions for the single-site scattering due to the impurity potential,
is given by the following Lippmann-Schwinger equation

Rimp,i
Λ (r;E) = jl(

√
Er)YL(r̂)χ

s +

∫
dr′g(r, r′;E)V imp(r′)Rimp,i

Λ (r′;E), (2.67)

where the reference system is considered as the free space, and g(r, r′;E) is the single-site
Green function of the free space. They are expanded in real spherical harmonics according
to the relation

Rimp
Λ (r;E) = Rimp,s

L (r;E) =
∑
L′

1

r
Rimp,s′

L′L (r;E)YL′(r̂). (2.68)

The wavefunction of an impurity atom ψimp
k (x), embedded in a periodic host system,

are correlated to the eigenstates of the host system ψk(x) (Eq. (2.60)) via the Lippmann-
Schwinger equation

ψimp
k (x) = ψk(x) +

∫
dr′G(x,x′)∆V (x′)ψimp

k (x′), (2.69)

where G(x,x′) is the Green function of the host system. In practice, another form of the
Lippmann-Schwinger equation is chosen

ψimp
k (x) = ψk(x) +

∫
dr′Gimp(x,x′)∆V (x′)ψk(x

′), (2.70)

where the impurity Green function Gimp(x,x′) is included for the evaluation of the
impurity wavefunction.

Impurity Green function

The Green function in the impurity region consists of two parts, the single-site term and
the back-scattering term.

Gimp(r +Xi, r
′ +Xi′) = δii′G

imp,i
s (r, r′) +

∑
ΛΛ′

Rimp,i
Λ (r) Gimp,ii′

ΛΛ′ R̄imp,i′

Λ′ (r′), (2.71)

The impurity structural Green functions Gimp,ii′

ΛΛ′ are related to the structural Green
functions of the host system by the algebraic Dyson equation

Gimp,ii′

ΛΛ′ = Ghost,ii′

ΛΛ′ +
∑
Λ′′Λ′′′

∑
i′′

Ghost,ii′

ΛΛ′ ∆ti
′′

Λ′′Λ′′′G
imp,i′′i′

Λ′′′Λ′ , (2.72)
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The KKR Green function method

where ∆ti
′′

Λ′′Λ′′′ = timp,i′′

Λ′′Λ′′′ − thost,i
′′

Λ′′Λ′′′ being the difference between the t-matrix of the impurity
atomic potential V imp and the host potential V host, computed according to Eq. (2.44).

The host structural Green function Ghost,ii′

ΛΛ′ is found in reciprocal space and is trans-
formed to the real-space impurity region by a Fourier transformation, as described in
previous section, while the previous equation (2.72) for the evaluation of the impurity
structural Green function Gimp,ii′

ΛΛ′ , can be directly solved in real space with the following
inversion matrix

Gimp,ii′

ΛΛ′ =
[
1−Ghost,ii′

ΛΛ′ ∆ti
′′

Λ′′Λ′′′

]−1
Ghost,ii′

ΛΛ′ . (2.73)

The knowledge of the impurity Green function allows us to calculate the impurity
expansion coefficients cimp,i

Λ , i.e., the impurity eigenvectors, which are given in terms of
the host coefficients, i.e. of the Bloch states ci′Λ′ = cµ

′

Λ′eik·Rn′ , according to the relation
[72]:

cimp,i
Λ =

∑
Λ′,i′

{
δΛΛ′δii′ +

∑
Λ′′

Gimp,ii′

ΛΛ′′ ∆timp,i′

Λ′′Λ′

}
cµ

′

Λ′e
ik·Rn′ , (2.74)

where the ∆timp,i-matrix elements are introduced, defined by the equation

∆timp,i
ΛΛ′ =

∑
Λ′′Λ′′′

∫
drR̄i

ΛΛ′′(r)∆V i
Λ′′Λ′′′(r)R

imp,i
Λ′′′Λ′(r). (2.75)

Scattering rate

One of the most important quantities in scattering calculations is the scattering transition
rate wkk′ , defined as the electron scattering probability Pkk′ from an initial state ψk to a
final state ψk′ , due to the presence of an impurity, per unit time:

wkk′ =
dPkk′

dt
. (2.76)

The knowledge of the scattering rate is a powerful tool for spin transport phenomena
calculations, within the Boltzmann formalism, as will be discussed in the next Chapter.
The scattering rate can be computed, expressed in terms of the T -matrix according to
Fermi’s Golden Rule [68]

wkk′ =
2π

ℏ
δ(E(k)− E(k′))|Tk′k|2. (2.77)

From the δ-function inserted in the above Eq. (2.77), it is shown that the scattering rate
is energy-conserving, i.e. the scattering off impurities is elastic, restricted to states with
same energy. Within the Fermi surface calculations for the study of electronic transport
properties that we are interested in, the energy is equal to the Fermi level energy.

The transition matrix elements are given in k-space representation by the relation [73]

Tk′k =

∫
dxψ†

k′(x)∆V (x)ψimp
k (x), (2.78)
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2.4 Impurity scattering

where ψimp
k is the initial state and the Bloch state ψ†

k′ is the final state. Using the relations
of the expansions for the host and impurity wavefunctions, according to equations (2.60)
and (2.66) respectively, we derive after some algebra another form of T -matrix

Tk′k =
∑
ΛΛ′

∑
i

[cik′,Λ]
∗∆i

ΛΛ′ [c
imp,i′

k,Λ′ ], (2.79)

where the ∆-matrix is entered, defined as [71]

∆i
ΛΛ′ =

∑
Λ′′Λ′′′

∫
dr[Ri

ΛΛ′′(r)]∗∆V i
Λ′′Λ′′′(r)R

imp,i
Λ′′′Λ′(r). (2.80)

Inserting the impurity expansion coefficients by Eq. (2.74) into above Eq. (2.79), the
calculation of the T -matrix is simplified to the following relation

Tk′k =
∑
ΛΛ′

∑
i,i′

[cik′,Λ]
∗T i,i′

ΛΛ′c
i′

k,Λ′ , (2.81)

where only the expansion coefficients of the Bloch states are contained. The {Λ, i}
representation of the T -matrix is also introduced in the previous equation, which is
written as

T i,i′

ΛΛ′ =
∑
Λ′′

∆i
ΛΛ′′

(
δii′δΛ′′Λ′ +

∑
Λ′′′

Gimp,ii′

Λ′′Λ′′′∆t
imp,i′

Λ′′′Λ′

)
. (2.82)

This way of the calculation of the T -matrix is computationally very efficient, as the
{Λ, i} representation of the T -matrix depends only on the energy, therefore needs to be
calculated only once per specific energy. Later, it can be easily used for the calculation
of the T -matrix for all pairs of k and k′.
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3

A very fruitful approach for the description of transport phenomena of electrons scattered
at defects in solids is the semi-classical dynamics described by the Boltzmann transport
equation. Within this approach, the electron is represented as a wavepacket determined
with Bloch states. The term "semi-classical" is justified, because, within the approxima-
tion, the motion of the crystal electrons between scattering events follows the classical
equations, while the scattering process is described by quantum-mechanical equations.

The transport theory based on the Boltzmann formalism combined with the KKR
method [72, 74] is presented in this Chapter. The KKR formalism for the calculation of
Fermi surfaces, impurity scattering and spin transport using the Boltzmann equation [74],
has been used in the past for problems related to the present study, e.g. for the
investigation of the spin Hall [73, 75] and the spin Nerst effect [76].

3.1 Boltzmann transport equation

The electrons’ motion is interrupted by collisions under the influence of external forces,
that re-distribute the electrons, and the wavepacket is supposed to occupy a new state,
continuing its motion until the next collision, etc. In this way, one can define the
non-equilibrium distribution function fnk(r, t), which depends on the position r, the
crystal momentum k and the time t, and measures the probability of occupation of an
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Boltzmann formalism within KKR

electron state in the energy band n for the crystal momentum k in the region r at time
t. The Boltzmann equation describes the rate of change of the distribution function in
the presence of external fields and due to electron scattering, given as

∂fk
∂t

+
∂fk
∂t

∣∣∣∣
field

+
∂fk
∂t

∣∣∣∣
diffusion

=
∂fk
∂t

∣∣∣∣
sc

⇒

∂fk
∂t

+
∂fk
∂k

dk

dt

∣∣∣∣
field

+
∂fk
∂r

dr

dt

∣∣∣∣
diffusion

=
∂fk
∂t

∣∣∣∣
sc

, (3.1)

where the band index n, which denotes the additional degeneracy, has been dropped for
simplicity. The second and third term on the left-hand side of the equation determines
the change of the distribution function due to external fields and due to diffusion in r,
respectively. The right-hand side denotes the rate of change of fk through scattering
processes. We are interested in the steady state, i.e. ∂fk

∂t
= 0, and our analysis is restricted

only in the influence of a homogeneous and time-independent external electric field. Thus,
in Eq. (3.1) on the left-hand side, only the field term remains and the Boltzmann equation
reduces to

∂fk
∂k

dk

dt

∣∣∣∣
field

=
∂fk
∂t

∣∣∣∣
sc

. (3.2)

The semi-classical equations, that describe the motion of an electron in an external
electric field E and magnetic field B, according to Ehrenfest’s theory are

ṙ = v(k) =
1

ℏ
∂E(k)

∂k
, (3.3)

k̇ =
e

ℏ

(
E(r, t) + 1

c0
v(k)×B(r, t)

)
, (3.4)

where the group velocity vk is introduced. In our study we consider only the application
of an electric field E in the system, as a result only the first term in Eq. (3.4) survives.
Thus, replacing the time derivative of momentum k, according to Eq. (3.4), in the
right-hand side of Eq. (3.2), the Boltzmann equation is written

e

ℏ
∂fk
∂k

· E =
∂fk
∂t

∣∣∣∣
sc

. (3.5)

Within the semiclassical approach, the distribution function of the non-equilibrium
system fk is separated into two terms

fk = f 0(Ek) + gk, (3.6)

where the first term f 0(Ek) represents the equilibrium distribution function and the
second term gk is the deviation from the equilibrium due to the external field. The
distribution function in the equilibrium f 0(Ek) is given by the Fermi-Dirac distribution
function

f 0(Ek) =

[
1 + exp

Ek − EF

kBT

]−1

, (3.7)
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3.1 Boltzmann transport equation

with kB the Boltzmann constant and T the temperature. Inserting the sum of the
distribution function (Eq. (3.6)) into the Boltzmann equation (3.2), as well as using the
chain rule for the derivative and the definition of the group velocity (Eq. 3.3), we arrive
at the following form of the Boltzmann equation

e
∂f 0(Ek)

∂Ek

vk · E =
∂fk
∂t

∣∣∣∣
sc

. (3.8)

We consider that the deviation gk will be linear in the electric field, therefore the term
∇kgk · E is higher than first order in the electric field and is neglected.

The scattering term of Boltzmann equation (right-hand side of Eq. 3.8) is expressed
in terms of the transition rate wkk′ (Eq. (2.77)) for scattering from a state nk into a
state n′k′. The rate of change of the distribution fk consists of two terms, one increasing
the value of f for the electrons that are scattered from occupied states k′ to unoccupied
states k (scattering-in term) and one decreasing the value of the distribution f for the
electrons that are scattered out from the states k to k′ (scattering-out term). Thus, the
change of the distribution function, because of scattering is written [77] 1

∂fk
∂t

∣∣∣∣
sc

=
∑
k′

(fk′wk′k − fkwkk′) (3.10)

=
∑
k′

(gk′wk′k − gkwkk′) + f 0(Ek)
∑
k′

(wk′k − wkk′) (3.11)

=
∑
k′

(gk′wk′k − gkwkk′), (3.12)

where on the second term on the rhs of Eq. (3.11), we have used the energy conserving
property of the scattering rate, according to Eq. (2.77), which gives us the following
property for the equilibrium distribution function f 0(Ek) = f 0(Ek′). Additionally, due
to the property2 ∑

k′ wk′k =
∑

k′ wkk′ , this term vanishes and the scattering term of
Boltzmann equation is finally written only in terms of the distribution function of the
deviation.

In the limit of a weak electric field E and assuming a linear response of the system,
i.e. gk ∼ E , the deviation of the distribution function can be given by the vector mean
free math Λk. The mean free path Λk denotes the average distance traveled by the

1 Another form that is usually presented for the determination of the scattering term, includes additional
factors in Eq. (3.10) which ensure that the initial state is occupied. Then, one expects the following
expression

∂fk
∂t

∣∣∣∣
sc

=
∑
k′

fk′(1− fk)wk′k − fk(1− fk′)wkk′ . (3.9)

However, according to Kohn and Luttinger (Appendix in Ref. [77]), this is not the case.
2 The left-hand side of the equation

∑
k′ wk′k =

∑
k′ wkk′ gives the total rate of scattering into the

state k′ from all other states, while the right-hand side gives the total rate of scattering out of the
state k′ into all other states. These two terms should be equal, otherwise the weight of the state k′

would either increase or decrease with the time even in the equilibrium state, which is unphysical.
The property is a weak version of the microreversibility condition.
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Boltzmann formalism within KKR

electron between two successive scattering events. During this scattering process, the
electron is accelerated moving from the position of scattering r0 to the position r, by
the electric field. As a result of its acceleration, the electron gains kinetic energy equal
to −eE · (r − r0). The average distance (r − r0) can be replaced by the mean free math
Λk, according to its definition. Thus, the energy of the electron changes from Ek to

Ek − eE ·Λk. (3.13)

By the expansion of the distribution function fk around the equilibrium distribution
function f 0(Ek) in powers of the electric field

fk = f 0(Ek) + E ·∇Efk + · · · , (3.14)

and making use of the chain rule of the derivative

E ·∇Efk =
∂fk
∂Ek

E ·∇EEk ≈ ∂f 0(Ek)

∂Ek

E ·∇EEk, (3.15)

we find the following relation for the deviation distribution function

gk = fk − f 0(Ek) =
∂f 0(Ek)

∂Ek

E ·∇EEk. (3.16)

We replace in the above equation (3.16) the energy derivative by Eq. (3.13), and we
finally make the following ansatz for the distribution function gk, related to the vector
mean free path Λk

gk = −e∂f
0(Ek)

∂Ek

E ·Λk. (3.17)

In the low-temperature limit (T → 0), the derivative of the equilibrium distribution
function turns into a δ-function (−∂f0(Ek)

∂Ek
→ δ(Ek − EF )). Hence, the distribution

function gk is given by
gk = e δ(Ek − EF )E ·Λk. (3.18)

Substituting Eq. (3.17) into Eq. (3.12), we arrive at another expression of the Boltzmann
equation

∂fk
∂t

∣∣∣∣
sc

= − e
∂f 0(Ek)

∂Ek

E ·
∑
k′

(Λk′wk′k −Λkwkk′), (3.19)

written in terms of the vector mean free path Λk, instead of the distribution function.
Combining this expression (Eq. (3.19)) with Eq. (3.8), we obtain the following relation
for the vector mean free path

e
∂f 0(Ek)

∂Ek

vk · E = − e
∂f 0(Ek)

∂Ek

E ·
∑
k′

(Λk′wk′k −Λkwkk′) ⇒

Λk · n̂E =
1∑

k′ wkk′

[
vk · n̂E +

∑
k′

wk′k(Λk′ · n̂E)

]
. (3.20)
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3.1 Boltzmann transport equation

Eq. (3.20) can be further manipulated, inserting the relaxation time τk of a state k for
electron scattering off impurities, defined as

τk =
1∑

k′ wkk′
. (3.21)

Thus, we arrive at the following self-consistent equation for the vector mean free path

Λk · n̂E = τk

[
vk · n̂E +

∑
k′

wk′k(Λk′ · n̂E)

]
, (3.22)

which depends only on the direction of the electric field, n̂E = E/|E|, as it is expected,
since we are only interested in the linear response of the system to the electric field. As a
result, setting the field along different directions, we have at hand independent equations,
one for each component of the vector mean free path.

The Boltzmann equation is solved self-consistently (as presented in the flow diagram
in the next subsection), beyond the relaxation time approximation, thus accounting for
the vertex corrections, due to the inclusion of the scattering-in term [73, 78].

As it is known, at the low temperature limit, only the electrons at the Fermi surface
may be excited by the electric field. Therefore, the transport properties are studied for
the states at the Fermi energy, and as a consequence the mean free path needs to be
determined only for the Fermi surface states. Thus, the sum over k, which represents
the multi-index k → (nk), can be replaced by an integral over the isoenergy surface,
Fermi surface (FS), and an integration over the energies (perpendicular direction to the
isoenergy surface)

∑
k′

−→ 1

ΩBZ

∑
n′

∫
BZ

d3k′ =
1

ΩBZ

∑
n′

∫
dE

∫
FS

dk′
∥

ℏ|vk′ |
, (3.23)

where ΩBZ is the volume of the Brillouin zone and dk′
∥ denotes the isoenergy-surface

element. In Eq. (3.23) we have used the chain rule, and the definition of the group
velocity (Eq. (3.3)).

Therefore, Eq. (7.5) can be reformulated to a Fermi surface integral, written as

Λk · n̂E = τk

[
vk · n̂E +

1

ΩBZ

∑
n′

∫
FS

dk∥

ℏ|vk′ |
wk′k(Λk′ · n̂E)

]
. k ∈ FS (3.24)

Solution of Boltzmann equation

The linearized Boltzmann transport equation can be solved numerically with iterations
(Fig. 3.1). As a starting point, the vector mean free path Λk on the rhs of Eq. (3.24) is
replaced by Λ

(in)
k = τkvk, following the so-called relaxation time approximation. Then,

by the solution of Boltzmann equation a new vector mean free path, Λ(out)
k , is derived.
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The iterations are performed until the self-consistency is achieved, i.e., the average
root-mean-square (RMS) be calculated in the order of 10−9. The RMS is given by

RMSi =

√∑
k(Λ

(out)
k,i − Λ

(in)
k,i )

2

NkNn

, i ∈ (x, y, z), (3.25)

where Nk represents the number of k-points and Nn is the degree of degeneracy.

𝒌
( )

Solve Boltzmann equation

𝒌
( )

ℇ 𝒌 𝒌 ℇ 𝒌 𝒌 𝒌
( )

ℇ

𝒌

Converged?

RMSi

Solved!

𝒌
( )

𝒌
( )

Figure 3.1: The flowchart representing the iterative method used for the self-consistent
solution of the linearized Boltzmann transport equation.
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3.2 Calculation of the conductivity tensor
The response of electrons under the application of an external electric field E is described
by Ohm’s law:

j = σE . (3.26)

Once the mean free path has been calculated, the charge current density can be found
by means of the distribution function, as follows

j =
e

Ω

∑
k

vkfk =
e

Ω

∑
k

vk[f
0(Ek) + gk]

=
e2

Ω ΩBZ

∑
n

∫
δ(Ek − EF)dE

∫
FS

dk∥

ℏ|vk|
vk(Λk · E)

=
e2

ℏ(2π)3
∑
n

∫
FS

dk∥

|vk|
vk(Λk · E), (3.27)

with Ω = 8π3/ΩBZ the crystal volume. From the first to second line we have used the fact
that the equilibrium distribution does not contribute to the current, and the distribution
function has been replaced by Eq. (3.18).

The knowledge of the current density j allows us to calculate the conductivity tensor
σij, as it is easily given as the prefactor to the electric field, according to Ohm’s law
(Eq. (3.26))

σij =
e2

ℏ(2π)3
∑
n

∫
FS

dk∥

|vk|
(vk)i (Λk)j, (3.28)

with i, j = x, y, z.
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4

4.1 Spin-orbit torque

The spin-orbit torque (SOT) is related to the field of the electrically controlled spintronics,
as it generates a precession of the magnetization in response to an electric current. The
possibility of current-induced spin torques has been already shown in the past three
decades, at first by Berger [6] and Slonczewski [5], with the prediction of the mechanism
of the spin-transfer torque (STT). The physical origin of the STT is the transfer of spin
angular momentum between two ferromagnetic layers with noncollinear magnetization
direction. This concept of the spin-transfer torque [7] technology is currently used for
manipulating the bit states in magnetic random access memories (MRAMs) [8]. The
spin polarization arising from an electric current that flows through a ferromagnetic layer
("polarizer"), exerts a magnetic torque causing the precession of the magnetization.

Developments of the past few years, have focused on the replacement of the spin-
transfer torque on STT-MRAMs by a new type of current-induced spin torque, the
so-called spin-orbit torque (SOT) [9], which allows the control of the magnetization
without the need of a polarizer. In contrast to the spin-transfer torques, in these torques
the orbital angular momentum of the conduction electrons from the crystal lattice is
transferred to the angular momentum of the spin system [11]. The idea of the SOT
phenomenon, can be described by the precession of the magnetization due to an electrical
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current which flows through a bilayer consisting of a ferromagnet on a substrate of a
nonmagnetic material. The electric current flowing parallel to the interface generates
a spin accumulation originating from spin-orbit coupling (SOC) of the nonmagnetic
material, which acts on the magnetization of the ferromagnetic material, causing the spin
precession. As this spin torque phenomenon arises from the SOC, is called spin-orbit
torque. Because of the direct link of this effect with the SOC, the nonmagnetic material
which is normally used, is a heavy metal which is characterized by strong spin-orbit
interaction.

Phenomenological description of SOT

The magnetization dynamics induced by the phenomenon of the spin-orbit torque can
be described by the phenomenological Landau-Lifshitz-Gilberg (LLG) equation with an
additional term that is related to the torque T [9]

dM̂

dt
= −|γ|M̂ ×Beff + αM̂ × dM̂

dt
− |γ|
Ms

T (E), (4.1)

with M̂ = M/Ms the magnetization unit vector and Ms the saturation magnetization.
Here, |γ| is the absolute value of the gyromagnetic ratio of electrons and α is the Gilbert
damping parameter. The first term on the right-hand side of Eq. (4.1) represents the
precession of the magnetization around the effective field Beff , which contains the effect
of external magnetic fields. The second term describes the tendency of the magnetization
to relax toward its equilibrium position. The third term represents the change of the
magnetization due to the torque T which is induced by an electrical current of an applied
electric field E .

The torque in its general form consists of two terms, the perpendicular component
and the longitudinal component of the torque. The perpendicular torque which acts
on the magnetization like an effective magnetic field, is known as field like term. The
longitudinal torque which acts as an effective magnetic damping, is called damping like
term.

The spin-orbit torque is by definition orthogonal to the magnetization and can be
determined as a function of the magnetization direction M̂ . In analogy to field like and
damping like terms of the torque, according to investigations in bilayer systems [13, 20],
the SOT is decomposed in two components

T = T even + T odd. (4.2)

The first component is an even function of the magnetization unit vector, given by

T even = T evenM̂ × [(êz ×E)× M̂ ], (4.3)

and the second component is an odd function to lowest order of the magnetization
direction M̂ , written as

T odd = T odd(êz ×E)× M̂ , (4.4)
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where ez indicates the unit vector in the out-of plane direction (perpendicular to the
interface), while the direction of the applied electric field E is considered in-plane (parallel
to the interface).

Theory of SOT

The phenomenon of the spin-orbit torque can be treated within local spin density ap-
proximation (LSDA) to density functional theory (DFT). Within this approximation, the
many-electron system is described by the following non-interacting particle Hamiltonian [9,
14]

H = K + Veff +HSO + σ ·Bxc. (4.5)

This Hamiltonian contains the kinetic energy K, the crystal potential Veff , the spin-orbit
interaction term, and the last term which describes the exchange interaction. σ is the
vector of Pauli matrices which represents the spin magnetic moment operator and Bxc

the exchange field (Eq. (2.12)). The spin-polarized part of the exchange correlation
potential Bxc, which is expressed in units of energy, is defined as the difference between
the potentials of majority and minority electrons in a local frame of reference where the
spin density matrix is diagonal.

The torque on the magnetization at point r is represented by the torque operator
T (r), defined as the external product of the spin with the magnetic part of the exchange-
correlation field [9, 13]

T (r) = −σ ×Bxc(r). (4.6)

Within linear-response theory, the spin-orbit torque can be related to an applied
electric field E by a linear-response expression [13]

T = tE , (4.7)

which defines the torkance tensor t. In this work our interest will be focused on the
response coefficient of the SOT on the electric field t, within DFT-KKR method combined
with Boltzmann formalism.

4.2 Expectation value of the spin, spin-orbit torque
and spin flux operator

In this Section, the development of the formalism for the calculation of the expectation
value of the torque, spin and spin flux operators in KKR formalism is presented. The
formalism proposed by Géranton et al. [16], who studied the torque exerted on the
atoms of the magnetic host system FePt/Pt, is extended to the calculation of the spin
orbit-torque on impurity atoms. This is achieved with the solution of the expressions
for the torque, spin and spin flux operators with the impurity scattering wavefunctions
ψimp
k (Eq. (2.66)), instead of the Bloch wavefunctions which are used in Géranton et al.

methodology.
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Normalization of the wavefunction

The wavefunctions need to satisfy the following condition in order to be normalized〈
ψimp
k

∣∣∣ψimp
k

〉
= 1. (4.8)

The left-hand side of Eq. (4.8) is also written in the form〈
ψimp
k

∣∣∣ψimp
k

〉
=
∑
µ

∫
Ωµ

dr |ψimp
k (r)|2 (4.9)

=
∑
µ

∫
dr θµ(r)[ψimp

k (r)]†ψimp
k (r), (4.10)

where Ωµ is the volume of the atomic site µ. The space integration is extended to the
full space by introducing the shape function θµ(r) 1 of the atomic cells.

Using the relation which connects the impurity wavefunctions ψimp
k with the radial

solutions Rimp,s
L (r;E) and the eigenvectors cimp

kΛ (Eq. (2.66)), and expanded the radial
solutions in real spherical harmonics (Eq. (2.68)), as well as the shape functions according
to relation θµ(r) =

∑
L θL(r)YL(r̂), the above equation is expressed in the form [71]〈

ψimp
k

∣∣∣ψimp
k

〉
=
∑
µ

∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗ ρss

′,µ
LL′ cimp,s′,µ

k′ , (4.12)

with the matrix elements ρss
′,µ

LL′ defined as

ρss
′,µ

LL′ (E) =
∑

L1L2L3

CL1L2L3

∫
dr θµL1

(r)[Rimp,s,µ
L2L

(r;E)]†Rimp,s′,µ
L3L′ (r;E). (4.13)

Spin expectation value

The i-th Cartesian component of the expectation value of the spin operator σ for the
scattering state k integrated in the volume of the atomic cell Ωµ of the impurity atom µ
is determined by

⟨σiµ⟩k =
〈
ψimp
k

∣∣∣σiµ∣∣∣ψimp
k

〉
=

∫
Ωµ

dr [ψimp
k (r)]†σi[ψ

imp
k (r)], (4.14)

with σi corresponds to Pauli matrices σx, σy, σz, as defined in Eq. (2.10). Following
the same scheme, as described for the normalization of the coefficients, i.e. replacing in

1

θµ(r) =

{
1, if r ∈ cell µ

0, otherwise
(4.11)

34



4.2 Expectation value of the spin, spin-orbit torque and spin flux operator

Eq. (4.14) the expression of the impurity wavefunction (ψimp,µ
k ), according to Eq. (2.66),

the spin expectation value is written

⟨σiµ⟩k =
∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗cimp,s′,µ

kL′

∫
dr θµ(r)[Rimp,s,µ

L (r;E)]†σiR
imp,s′,µ
L′ (r;E). (4.15)

By the expansion of the radial solutions and the shape function into spherical harmonics,
the Eq. (4.15) is transformed into

⟨σiµ⟩k =
∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗ Σss′,µ

LL′,i c
imp,s′,µ
kL′ , (4.16)

where the spin matrix elements Σss′,µ
LL′,i are introduced, given by the relation [71, 79]

Σss′,µ
LL′,i(E) =

∫
dr θµ(r)[Rimp,s,µ

L (r;E)]†σiR
imp,s′,µ
L′ (r;E)

=
∑

L1L2L3

CL1L2L3

∫
dr θµL1

(r)[Rimp,s,µ
L2L

(r;E)]†σiR
imp,s′,µ
L3L′ (r;E). (4.17)

The spin matrix elements are k independent and are calculated only once per energy. In
particular, in order to perform Fermi surface calculations, the spin matrix elements are
calculated for the Fermi energy in a first step, and in a second step the eigenvectors are
determined for each scattering state k. In this way, the spin expectation value can be
computed efficiently.

Torque expectation value

According to the definition of the torque operator (4.6), its components Ti (with i =
x, y, z), are given by

Ti(r) = −
∑
pq

ϵipqσpB
xc
q (r), (4.18)

with ϵipq the Levi-Civita symbol and the indices i, p, q take the values x, y, and z.
The exchange correlation field Bxc(r) is determined within the LDA, and it is directed
opposite to the local magnetization vector M [13].

Then, the expression of the i-th expectation value of the torque operator for the
scattering state k can be obtained by integrating over the impurity atom µ

⟨Tiµ⟩k =
〈
ψimp
k

∣∣∣Tiµ

∣∣∣ψimp
k

〉
= −

∑
pq

ϵipq

∫
Ωµ

dr [ψimp
k (r)]†σp[ψ

imp
k (r)]Bxc

q (r). (4.19)

In analogy to the previous subsection, Eq. (4.19) can be transformed into a matrix
multiplication [16]

⟨Tiµ⟩k =
∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗ Tss′,µ

LL′,i c
imp,s′,µ
kL′ , (4.20)

35



Spin-orbit torque within KKR method

with the torque matrix elements Tss′,µ
LL′,i defined as

Tss′,µ
LL′,i(E) = −

∑
pq

ϵipq

∫
dr θµ(r)[Rimp,s,µ

L (r;E)]†σpR
imp,s′,µ
L′ (r;E)Bxc,µ

q (r). (4.21)

As it has been mentioned, the scattering solutions Rimp,s,µ
L (r) and the shape function θµ(r)

are expanded in real spherical harmonics. The exchange field Bµ
k (r) can be also expanded,

Bxc,µ
q (r) =

∑
LB

xc,µ
L,q YL(r̂). Thus, the calculation of the torque matrix elements depends

on an integral of the product of four spherical harmonics. In order to simplify the
computational effort, we define the convoluted exchange field bµq (r)

bµq (r) = Bxc,µ
q (r)θµ(r), (4.22)

which is calculated firstly, and then in Eq. (4.21) we use the expansion of the convoluted
field

bµq (r) =
∑
L

bµL,qYL(r̂). (4.23)

The torque matrix elements are finally found in the KKR formalism by the equation

Tss′,µ
LL′,i(E) = −

∑
pq

ϵipq
∑

L1L2L3

CL1L2L3

∫
dr [Rimp,s,µ

L1L
(r;E)]†σpR

imp,s′,µ
L2L′ (r;E)bµL3,q

(r).

(4.24)
These matrix elements are also depend only on the energy, as spin matrix elements.
Hence, similar manipulations are performed for the computation of the torque, as the
ones mentioned in the previous subsection for the spin expectation value.

Spin flux expectation value

The spin flux is used to determine how much of the spin current that enters the impurity
atomic sphere contributes to the spin-orbit torque and how much is lost to the spin
lattice interaction.

The spin flux operator is analogous to the spin current operator, but represents the
integrated spin current that enters the muffin-tin sphere through its surface 2. The
i-th Cartesian component of the expectation value of the spin flux operator Qi for the
scattering state k integrated in the the atomic cell of the impurity atom µ is given by
the relation [13, 16, 80]

⟨Qiµ⟩k =
〈
ψimp
k

∣∣∣Qiµ

∣∣∣ψimp
k

〉
=
µBℏ
2ie

∫
Sµ

dS
[
[ψimp

k (r)]†σi∇ψimp
k (r)− [∇ψimp

k (r)]†σiψ
imp
k (r)

]
, (4.25)

where ℏ is the reduced Planck constant, e = −|e| is the electron’s charge, µB is the Bohr
magneton, and the integration is performed on the surface Sµ of the muffin-tin sphere of
the atom µ.

2 The muffin-tin radius rMT is equal to the half of the first neighbor distance.
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4.3 Response tensors within the Boltzmann formalism

Introducing in Eq. (4.25) the expression of the impurity wavefunction (Eq. (2.66)), the
expectation value of the spin flux operator is given by

⟨Qiµ⟩k =
∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗ qss

′,µ
LL′,i c

imp,s′,µ
kL′ , (4.26)

where the spin flux matrix elements qss
′,µ

LL′,i are written as

qss
′,µ

LL′,i(E) =
µBℏ
2ie

∫
Sµ

dS
[
[Rimp,s,µ

L (r;E)]†σi∇Rimp,s′,µ
L′ (r;E)

− [∇Rimp,s,µ
L (r;E)]†σiR

imp,s′,µ
L′ (r;E)

]
. (4.27)

The integral over the surface of the muffin-tin can be replaced by an integral over the solid
angle Ω, using the expression of the infinitesimal surface element dS = r2MTeΩdΩ, where
rMT is the radius of the muffin-tin sphere and eΩ is the unit vector pointing towards the
center of the muffin-tin sphere. Inserting the expansion of radial scattering solutions into
real spherical harmonics in Eq. (4.27), the spin flux matrix elements are taken the form

qss
′,µ

LL′,i(E) =
µBℏ
2ie

∑
L1

[
[Rimp,s,µ

L1L
(r;E)]†σi

∂

∂r

(
Rimp,s′,µ

L1L′ (r;E)
)

− ∂

∂r

(
[Rimp,s,µ

L1L
(r;E)]†

)
σiR

imp,s′,µ
L1L′ (r;E)

]
r=rMT

, (4.28)

and can be computed similarly to spin and torque matrix elements, as analyzed in the
previous subsections.

4.3 Response tensors within the Boltzmann formalism
In the following, we derive the expressions for the current-induced spin-orbit torque, spin
accumulation, and spin flux, as a response to the applied electric field, within the KKR
Green function method and the semi-classical linearized Boltzmann equation (Chapter 3).

Spin accumulation

Having estimated the deviation distribution function gk, one can proceed with the
calculation of the spin accumulation on impurity atom µ, sµ, which is written by means
of the deviation distribution function in Boltzmann formalism as

sµ =
∑
k

gk ⟨σµ⟩k . (4.29)

The spin expectation value ⟨σµ⟩k is computed by Eq. (4.16). Replacing the deviation
distribution function (Eq. (3.18)) in the above equation we find the following Fermi
surface (FS) integral for the spin accumulation

sµ = − eµB

ℏSBZ

∫
FS

dk∥
|vk|

(⟨σµ⟩k ⊗Λk) · E . (4.30)
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We define the response tensor of the spin accumulation χµ to the electric field E

sµ = χµE , (4.31)

which is given, according to Eqs. (4.30), (4.31) by the relation

χµ = − eµB

ℏSBZ

∫
FS

dk

|vk|
⟨σµ⟩k ⊗Λk. (4.32)

This integral (4.32) can be easily calculated, once the Boltzmann transport equation has
been solved (Eq. (3.24)) and the mean free path Λk has been computed.

Torkance

In analogy to the calculation of the spin response tensor, the spin-orbit torque that is
exerted on impurity atom µ, Tµ, is written in terms of the deviation distribution function
as

Tµ =
∑
k

gk ⟨T µ⟩k , (4.33)

where the torque expectation value is calculated by Eq. (4.20). By the equation of the
deviation distribution function (Eq. (3.18)) we obtain the following Fermi surface (FS)
integral for the impurity-driven spin-orbit torque

Tµ = − e

ℏSBZ

∫
FS

dk

|vk|
(⟨T µ⟩k ⊗Λk) · E . (4.34)

The linear response of the SOT to an external electric field is represented by the torkance
tensor tµ [13]

Tµ = tµE . (4.35)

Then, it is easily proved by Eqs. (4.34), (4.35) that the torkance of atom µ is computed
by the expression

tµ = − e

ℏSBZ

∫
FS

dk

|vk|
⟨T µ⟩k ⊗Λk. (4.36)

Spin flux

In a similar way, we can determine the spin flux which enters the impurity atom µ, Qµ,
by means of the deviation distribution function

Qµ =
∑
k

gk ⟨Qµ⟩k ⇒

Qµ =
e

ℏSBZ

∫
FS

dk∥
|vk|

(⟨Qµ⟩k ⊗Λk) · E , (4.37)

with the spin flux expectation value ⟨Qµ⟩k computed according to Eq. (4.26). The
response coefficient of the spin flux to the electric field, qµ, which is defined as

Qµ = qµE , (4.38)

38



4.4 New implementations in JuKKR code

is computed by the following Fermi surface integral

qµ =
e

ℏSBZ

∫
FS

dk

|vk|
⟨Qµ⟩k ⊗Λk. (4.39)

4.4 New implementations in JuKKR code
One of the main subjects of this thesis is the first-principles calculations of the response
functions of the spin, spin-orbit torque, and spin flux on magnetic impurity atoms. In
previous implementations, these quantities were computed by the JuKKR code, but only
for the host atoms [81]. Therefore, further code development was necessary, in order
to extend the pre-existing methodology to the calculation of the spin-orbit torque on
impurity atoms. The implementation necessitated several changes in the KKR-host code
as well as on the KKR-Fermi surface code.

The expression of the torque expectation value at the atom µ of the host system is
given in terms of the host Bloch wavefunctions, expressed by the following equation

⟨Tiµ⟩hostk = −
∑
ss′

∑
LL′

[cs,µkL]
∗
(∑

pq

ϵipq

∫
dr θµ(r)[Rs,µ

L (r;E)]†σpR
s′,µ
L′ (r;E)Bxc,µ

q (r)
)
cs

′,µ
kL′ .

(4.40)
In Eq. (4.40), the radial solutions Rs,µ

L (r;E) and the host coefficients cs,µkL, are determined
according to relations (2.36) and (2.58), respectively.

On the other hand, for the computation of the torque expectation value at the impurity
atom µ, Eq. (4.40) is modified, including the impurity wavefunctions instead of the Bloch
wavefunctions, and takes the following form

⟨Tiµ⟩k = −
∑
ss′

∑
LL′

[cimp,s,µ
kL ]∗

(∑
pq

ϵipq

∫
dr θµ(r)[Rimp,s,µ

L (r;E)]†

σpR
imp,s′,µ
L′ (r;E)Bxc,µ

q (r)
)
cimp,s′,µ
kL′ . (4.41)

Hence, in Eq. (4.41) the radial solutions of the impurity potential Rimp,s,µ
L (r;E) are given

by the Lippmann-Schwinger equation (2.67), and the impurity expansion coefficients
cimp,s,µ
kL are determined by Eq. (2.74).
Next, the torkance (Eq. (4.36)) is given in terms of torque expectation value on the

defect (Eq. (4.41)). Thus, necessary changes are also applied for the computation of the
response coefficient of the torque within the solution of the Boltzmann equation. The
expectation values of the spin and spin flux, as well as its response coefficients within
Boltzmann formalism were implemented in the JuKKR code, accordingly. The results
shown in Chapter 5 have been generated by this new version of the code.

Furthermore, the computation of the response function of the spin-orbit torque on
magnetic impurity atoms, including non-collinear magnetization, which was previously
absent in the code, has been implemented. The exchange correlation field vector is
generalized to have an arbitrary direction. In this way, the torque (Eq. (4.41)) is
determined including the magnetization direction.
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Spin-orbit torque within KKR method

This is a significant modification which allows the study of the spin-orbit torque on
non-collinear structures, like systems with magnetic skyrmions.
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SOT effect on magnetic defects
in the Bi2Te3 surface

5

5.1 Introduction

The topological insulators [23, 24] represent a new special materials class, which can be
observed in 2 dimensions (2D) or 3 dimensions (3D). Just like ordinary insulators, they
present a band gap in the bulk. In contrast, at the surface they are characterized by
metallic surface states with special spin texture, originating from the strong spin orbit
coupling. These surface states are topologically protected against non-magnetic disorder.
This property accompanied by time-reversal symmetry protection, make these materials
very promising for spintronic applications.

A prerequisite for the occurrence of these effects is a strong spin-orbit coupling. Its
presence makes the topological insulators optimal materials for the observation of spin-
orbit torque on magnetic transition-metal impurities embedded in their surface or in
ferromagnet/(topological insulator) bilayers. Our focus is on the surface states of Bi2Te3,
which is an experimentally and theoretically well characterised topological insulator.
The topologically protected surface states of Bi2Te3 have been verified theoretically [36]
and experimentally using ARPES [38], with the existence of a single Dirac cone at
the high-symmetry Γ point in the surface Brillouin zone. When an electrical current
flows in the surface, a spin accumulation is generated, which acts on the magnetization
of ferromagnetically coupled impurities embedded in Bi2Te3. This switching of the
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Figure 5.1: The spin polarization of the Fermi surface states of the topological insulator
Bi2Te3 film (side-view). The red arrow in the middle represents the magneti-
zation M of the magnetic impurity atom.

magnetization by SOT can be used as a new technique in future applications to create
MRAMs.

Here, we investigate the spin-orbit torque on (Cr, Mn, Fe, and Co)/Bi2Te3 systems.
An important characteristic of the studied systems is the existence of the conducting
surface states, that leads to the flow of all current through the surface, where the SOT
effect is observed, without energy loss in the bulk. In addition, the spin polarization
s of the Fermi states is predominantly directed in the plane of the Bi2Te3 surface and,
consequently, perpendicular to the magnetic impurity spin M which is taken along the
surface normal, maximizing the product s×M that governs the torque. The situation is
shown in Fig. 5.1. The preferred out-of-plane orientation of the magnetic moment axis has
been established by experiments [82–84] for the Mn/Bi2Te3 and Fe/Bi2Te3 systems. From
the preceding description it is clear that we are after an extrinsic (impurity-mediated)
SOT effect. Additionally, our formalism accounts for Fermi-surface but not Fermi-sea
contributions.

Because of the aforementioned properties of the proposed system, a much stronger
spin-orbit torque effect is expected, compared to the observed phenomenon in ferromag-
net/heavy metal bilayers. The spin polarization of the ferromagnet is predominantly
parallel to the polarization of the conduction electrons in the bilayer, and, in addition,
part of the electric current flows through the bulk of the heavy metal, being far from the
interface and not contributing significantly to the SOT.

This Chapter is organized as follows1. A short introduction to the discovery of the
topological insulators and its special properties, is given in Sec 5.2. In Sec. 5.3 we discuss
the electronic structure of Bi2Te3 system. Next, in Sec. 5.4 we provide a description of

1Parts of this Chapter have been published in Ref. [85].
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the studied system, magnetic transition metals embedded in Bi2Te3 surface. We consider
a collection of magnetic defects on the surface, as it is discussed in Sec. 5.4.1, giving
a modification of the usual Boltzmann formalism beyond the independent scattering
approximation. Sec. 5.5 includes the results, the correlation of the calculated quantities,
and a discussion on the Joule heat as a function of the torque.

5.2 Introduction to topological insulators
Topology is the branch of mathematics concerned with the geometrical properties of
spaces, that are invariant through continuous deformations. Two geometrical objects that
can be transformed into each other by twisting and stretching, are called topologically
equivalent. A popular science example of this concept is a doughnut (i.e. a torus with
one hole), which can be smoothly transformed into a coffee mug with a handle through
continuous deformations, and vice versa. On the other hand, the moon and a doughnut
are topologically inequivalent. The moon is a closed surface without any hole, as a result
it can never be smoothly deformed into a doughnut without excluding one point from its
surface. These topological spaces are distinguished by an integer topological invariant
number, called the genus, g, which can be understood as the number of holes in each
shape, i.e. g = 0 for the moon and g = 1 for the doughnut. In general, the geometrical
spaces are classified to topologically equivalent or distinct, according to this invariant.

In analogy, in condensed matter physics, the topological insulators can be defined
within the framework of the band theory of solids. A Bloch Hamiltonian H(k) with
a gapped energy spectrum is considered as topologically equivalent to another Bloch
Hamiltonian H ′(k), if they can be continuously transformed into each other by changing
some parameters, without closing the energy gap at any instance during the process of
transformation. In Fig. 5.2 a schematic representation of the bulk band structure for a
trivial and a topological insulator, is depicted. In a trivial insulator the occupied valence-
band states are separated from the empty conduction-band states by a large energy gap.
In a topological insulator, at first the gap closes, due to the strong spin-orbit interaction,
and the bands are inverted near to the special points, the so-called time reversal invariant
momenta (TRIM) points of the first Brillouin zone. Then, this hybridization between
the shifted bands leads to the reopening of the band gap. As a consequence, because of
the intermediate closing of the gap, a trivial and a topological insulator are determined
as topologically inequivalent. The presence of the band inversion in the band structure
of the topological insulator is the analog of the presence or absence of holes in the
mathematically defined space, as discussed in the previous paragraph. The corresponding
topological invariant Z2 in the 3D topological insulators, that distinguishes the two types
of insulating band structures of the trivial and topological insulator, can be evaluated for
the TRIM points. The colors in bands represent the parity of the wavefunction.

43



SOT effect on magnetic defects
in the Bi2Te3 surface

Trivial insulator Topological insulator

SOC
EF

Figure 5.2: Schematic representation of the band structure, for the transition from a
trivial insulator to a topological insulator induced by the spin-orbit coupling
(SOC). The band inversion in the topological insulator is shown at the center
of the bands, indicated by the blue and red colors.
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5.2 Introduction to topological insulators

Quantum Hall effect

The quantum Hall effect (QHE) [86, 87] paved the way for the discovery of the topological
insulators, as correlates the topological properties of the electronic band structure to
physical observables, such as the quantized Hall conductivity. The QHE is observed in 2-
dimensional (2D) systems, in which electrons that are subjected to a perpendicular strong
magnetic field, are forced into circular orbits. At the edges of the sample, electrons have
to bounce off the edge, performing skipping orbits. These edge electronic states propagate
only in one direction, and because of this are also known as chiral states. During this
mechanism, the Hall conductivity is quantized and proportional to a topological invariant
n, which is called Chern number. Thus, the quantized Hall conductivity σxy for the
anomalous QHE, according to Thouless, Kohmoto, Nightingale, and den Nijs [88], can
be computed using the Kubo formula, by the following expression

σxy =
e2

h
n. (5.1)

The Chern number is an integer quantity that connects the quantized Hall conductivity
with the topology of the system via the Berry curvature Ωk. This is considered a
topological invariant, in the sense that it cannot be changed via a smooth variation of
the Hamiltonian. The Chern number n can be expressed as an integral of the Berry
curvature

n =
1

2π

∫
BZ

dkxdky Ωk

=
1

2π

∫
BZ

dkxdky ∇k ×Ak, (5.2)

where the integral is performed over the surface of the Brillouin zone. Ak is the Berry
connection which is expressed in terms of derivatives of the wavefunction ψk of a Bloch
Hamiltonian H(k), i.e., Ak = −i ⟨ψk|∇k|ψk⟩. The Berry connection determines the
Berry phase [89], which is a phase factor of the wavefunction acquired under an adiabatic
cycle in k-space 2. The Berry phase γ can be evaluated by the line integral

γ =

∮
dk Ak

= −i
∮
dk ⟨ψk|∇k|ψk⟩ . (5.3)

Haldane [90] first introduced the concept of the QHE to systems without the application
of an external magnetic field. These systems are called Chern insulators, which are
non-trivial insulators with broken time-reversal symmetry. Many years later, the quantum
anomalous Hall effect observed also experimentally [91] in this kind of insulators.

2 The Berry phase is γ = π for the topological insulators [24]. This is determined by the spin texture
in the Fermi surface states.
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In analogy to QHE in Chern insulators, the quantum spin Hall effect (QSHE) was
suggested in graphene [22] and in 2D semiconductor systems [92, 93], arising from the
spin orbit coupling in the absense of an external magnetic field. It is established that the
spin-orbit coupling plays an important role in the existence of the quantum spin Hall
state. These systems are the first prediction of 2D topological insulators, also known as
quantum spin Hall insulators.

According to the quantum spin Hall effect (QSHE), along the edge states the electrons
with spin up propagate in one direction with crystal momentum k while the electrons of
the opposite spin propagate only in the opposite direction with crystal momentum −k.
Such states are also known as helical states, due to this correlation between spin and
momentum. The spin-momentum locking is one of the main characteristics of topological
insulators.

The topological properties of 2D QSH states has been generalized in three dimen-
sions [94, 95]. For these types of insulators, the term "topological insulator" is used. The
first experimental discovery of a 3D topological insulator phase was established with angle
resolved photoemission spectroscopy (ARPES) experiments in Bi1−xSbx material [96]. In
this material, the topologically non-trivial surface states were observed in its electronic
band structure.

The topological classification of materials is related to a fundamental principle according
to which the existence of robust surface states is related to the topological nature of the
bulk band structure. This is known as bulk-boundary correspondence. Considering a
non-trivial insulator, which is characterized by a non-zero Chern number, and a trivial
insulator with zero Chern number, at the interface between the two, where the Chern
number (i.e. the topological invariant) changes, the gap closes by the appearance of the
edge states.

The surface of a topological insulator is its boundary with vacuum, and vacuum (at
energies below the onset of free-electron states) is considered as a trivial insulator in the
topological sense, thus a topological insulator surface necessarily hosts surface states.

3D topological insulators

In this work, we are interested in the properties of the surface of a 3D topological
insulator. The 3D topological insulator is an insulating material in the bulk, while its
surface electronic states is gapless, metallic-like states. The topological surface states
can be described by a 2D massless Dirac Hamiltonian [24]

H0(k) = vF(k× σ) · ẑ, (5.4)

where vF is the Fermi velocity. These surface states are topologically protected against
perturbations that preserve the time-reversal symmetry, i.e. in presence of non-magnetic
disorder (surface reconstruction, non-magnetic impurities, etc.). Additionally, the cou-
pling of the crystal momentum with the spin in the surface of the topological insulator,
i.e. the spin-momentum locking of the topological surface state, combined with the time
reversal symmetry, leads to the absence of backscattering (from k to −k) in the surface
states [97].
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In contrast, the topological protection of the conducting surface states on topological
insulators breaks in case of attendance of magnetic disorder in the system. The internal
magnetic fields of such impurities break the time-reversal symmetry, allowing back
scattering. In that case, the transport properties of the system are also affected.

Additionally, the topological insulator provides strong spin-orbit coupling, as mentioned
in Sec 5.1. The SOC is essential for the emergence of spin accumulation, and therefore for
the existence of the phenomenon of the SOT, that will be investigated in this Chapter.

5.3 Electronic structure of Bi2Te3
In a first step, we perform simulations based on KKR Green function method, for the
self-consistent convergence of the host crystal structure, which is a Bi2Te3 film, and we
investigate its electronic properties.

Host system

The surface of Bi2Te3 [98], i.e. the structure of the host system, is modeled by a film of
six quintuple layers of Bi2Te3 oriented in the (111) direction, as it is shown in Fig. 5.3(a),
including nine vacuum layers on top and bottom to ensure a proper embedding into
the vacuum, i.e. 78 atomic layers in total. Each quintuple layer is consisted of three
Te and two Bi atoms, and five empty spheres placed between Te and Bi layers 3. The
atoms in the quintuple layer interact with strong covalent bonds, while the interactions
between quintuple layers are of a weaker, Van der Vaals nature. The thickness of the
film is chosen so as to ensure the robustness of the bulk band gap and the surface states.

Band structure

At first, we carry out calculations for the study of the band structure of Bi2Te3 for the
surface crystal structure, in order to confirm the existence of its topological surface states.
The surface energy bands structure of Bi2Te3 computed along the directions of the time
reversal invariant momenta (TRIM) points of the first Brillouin zone, i.e. along M → Γ
and Γ → K path is given in Fig. 5.4.

The topological insulator Bi2Te3 may be classified as a narrow-gap semiconductor,
since a small band gap (< 1 eV) has been found in the study of its band structure. This
is not the case in the surface, where the gap is closed by the conducting states created
across the gap. According to our computations, as is presented in the resulting band
structure diagram (Fig. 5.4), we observe the existence of a single Dirac cone around the
Fermi level. The Dirac cone intersects the Γ high-symmetry point on the so-called Dirac

3 Bi2Te3 is considered as an open structure, due to the large distance between neighboring quintuple
layers. In systems like these, the Voronoi cell which is constructed around an atom may be present a
large deviation from sphericity, that may affect the computed Green function within the KKR-based
calculations. Because of this, empty spheres (with no nuclear charge), considered as "virtual atoms",
are included to the unit cell in open systems in order to improve the sphericity of the Voronoi cells.
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Figure 5.3: (a) Illustration of the first quintuple layer of Bi2Te3 in side-view and (b)
top-view. The pink (medium-sized) and the gray (large) spheres represent
the Te and Bi atoms, respectively. The magnetic impurity atom is depicted
in red (small sized sphere). The impurity shows an inward relaxation with
respect to the surface Te layer with vertical distance of 0.9Å, as has been
found for Fe impurities by Eelbo et al. [84].
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point, which, in the case of Bi2Te3, is within the bulk valence band, approximately 0.2 eV
below the Fermi level. As expected from the bulk-boundary correspondence principle,
conducting, metallic-like states are found in the surface.

We find that the dispersion of the Dirac cone is linear near the Γ point along Γ →
K direction, whereas along Γ → M direction, a non-linear dispersion is shown. This
non-linearity is observed because of the hexagonal warping effects in the Bi2Te3 Fermi
surface [39].

Figure 5.4: Surface-projected band structure of Bi2Te3 thick film along ΓM and ΓK
directions. The Fermi level is EF = 8.6 eV. [99]

Computational details

The density functional theory calculations for the electronic structure of the Bi2Te3 film
were carried out with the Jülich full potential relativistic KKRhost code [100]. For the
computation of the Green functions a finite angular momentum cutoff of lmax = 3 was
assumed. The thickness of the film which is chosen such that, on the one hand it is thick
enough to ensure the decoupling of the wavefunctions of electron states on the top and
bottom surfaces, while on the other hand it is thin enough to be numerically manageable.
It has been shown that the chosen thickness can give reliable results [98] by ab initio
calculations. The Fermi level was firstly determined in the valence band, and is shifted
into the middle of the band gap to correct the error caused by the truncation to the
finite angular momentum cutoff (lmax = 3) in the calculations. The correction of the
Fermi level was performed by applying Lloyd’s formula [101, 102] for the convergence of

49



SOT effect on magnetic defects
in the Bi2Te3 surface

the final potential of the host system. The lattice constant of the host crystal structure,
which is used, is a = 10.47 Å.

For the computation of the band structure diagram (Fig. 5.4), we used 100 energy
points and 51 k-points along each direction, Γ → M and Γ → K.

5.4 Bi2Te3 with magnetic defects

Here, we consider the doping of the surface of Bi2Te3 [98] with magnetic transition-metal
impurities. We study the four different defects systems Cr/Bi2Te3, Mn/Bi2Te3, Fe/Bi2Te3,
and Co/Bi2Te3.

The impurity atoms are embedded in the interstitial position between the first Te
and Bi layer, in fcc hollow site according to the experiments [84], as it is shown in
Figs. 5.3(a,b), where the position of the defect in the first quintuple layer is shown from
a side-view and in a top-view, respectively. In particular, the impurity position layer is
shifted inward by 0.9Å with respect to the first Te layer [84]. For sure, in experiment, the
exact position can change for different impurity types. This should have no qualitative
consequences on our conclusions, which are related primarily to the simple form of the
spin scattering of the Fermi-surface states, as we elaborate in the following Sections.

In the context given in Sec. 5.4.1, we consider two different defects concentrations
in Bi2Te3 surface: 2%, corresponding to Ndef = 51 defects, randomly placed within a
disk of Ndisk = 2539 positions (Fig. 5.5), and 5%, corresponding to Ndef = 51 defects
within a disk of Ndisk = 1027 positions. A statistical averaging is achieved by considering
Nconf = 20 different random configurations, which were generated by a random number
generator. For comparison with the conventional Boltzmann formalism, we also calculate
results using the scattering rate from a single defect (neglecting multiple scattering).

We take the defect magnetic moments to be perpendicular to the surface, in accordance
to findings [82–84] for the Mn/Bi2Te3 and Fe/Bi2Te3 systems. Furthermore, we assume a
ferromagnetic alignment of the magnetic defects, as has been observed experimentally at
2% concentration for Mn defects and at > 3% for Co defects [83]. The aforementioned
assumptions have not been experimentally verified for all considered defect types at
all concentrations (e.g., for Co, antiferromagnetic interactions appear at 2% concentra-
tion [83]). Extending the assumptions of out-of-plane orientation and ferromagnetism
to all cases should be considered a numerical experiment. A qualitative argument for
ferromagnetic interactions at not too low concentrations is that the Fermi wavelength
in the Bi2Te3 surface is longer than the average distance between defects, so that the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction does not change sign. Moreover,
we know from previous studies [83] that ferromagnetic interactions can be engineered
by appropriate doping that shifts the Fermi level of the system and could conceivably
be achieved in all four types of defects. Analogous engineering is conceivable for the
magnetic anisotropy. In addition, by treating all types of defects on the same footing, we
gain understanding of the chemical trends of the SOT mechanism.
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Figure 5.5: Schematic representation of the random positions of the defects on the surface
in one of the random configurations. The filled red (gray-colored in gray-
scale) circles represent the magnetic transition metal defects. The filled black
and empty circles depict unoccupied surface impurity sites (threefold hollow
positions with fcc stacking with respect to the surface layer), respectively
inside and outside the disk in which the 51 impurities are embedded.
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We carried out first-principles calculations for the impurity systems. The computed
spin magnetic moments mat of the impurity atoms are presented in Table 5.1. We find
large spin magnetic moment for Mn and Cr impurities, while we observe a decrease for Fe
and Co atoms. This result is in agreement with Hund’s rule, as according to the electron
configuration of Cr and Mn, they have half filled d-shells, while for Fe and Co are more
than half-filled.

Impurity type mat (µB)
Cr 3.331
Mn 3.456
Fe 2.382
Co 1.027

Table 5.1: The computed spin magnetic moments mat of the magnetic defects, embedded
in Bi2Te3 surface.

The scattering process that will be discussed in following Sections, depends directly
on the electronic structure of the impurity in the system. For this reason, we study the
local density of states of the impurity atoms Cr, Mn, Fe and Co in Bi2Te3 surface, which
is depicted in Fig. 5.6. The magnetic moment of the impurity atom is perpendicular
to the plane of the surface. We observe that the majority-spin channel (↑) is occupied
for all impurity atoms. In contrast, the minority-spin channel (↓) is partially occupied
for Fe, and Co, while for Mn and Cr is unoccupied. We also find the Fe atom presents
resonance at the Fermi level, that may affect the scattering process.

5.4.1 Multiple scattering and averaging over configurations

The Fermi wavevector in Bi2Te3 is of the order of kF ≈ 0.2Å−1, which gives an estimated
Fermi wavelength of λF = 2π/kF ≈ 50Å ≈ 12aNN, where aNN = 4.38Å is the nearest-
neighbor distance in the surface. At the surface concentrations of 2% and 5%, that
we wish to study, the average distance between impurities is of the order of 7aNN and
4.5aNN. Clearly, many defects will be present within a radius of one wavelength around
the impurity. Therefore, the approximation of independent impurity scattering, that is
conventionally used in the Boltzmann equation, becomes questionable. In other words,
the scattering rate wkk′ cannot be approximated by the rate of a single impurity, scaled
by the concentration.

Hence, we take a different approach, that bears an analogy with the explicit supercell
averaging used for SOT calculations in a Co/Pt bilayer (see Ref. [103]). We explicitly
consider a collection of Ndef = 51 defects, randomly placed within a circular disc of
a radius of a few λF , while outside the disk we consider boundary conditions of the
pristine host (see Fig. 5.5). The radius is adjusted so that the number of defects in the
disk corresponds to the concentration. Formally, this collection is treated as a single
super-impurity, for which the Green function Gimp, the scattering states (Eq. (2.66)) and
the transition matrix (Eq. (2.78)) are calculated. The resulting scattering states and
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Figure 5.6: The local spin-resolved density of states (DOS) of the Cr, Mn, Fe and Co
impurity atoms. The positive y axis corresponds to majority spin (↑) and
the negative y axis to minority spin (↓).

scattering rate include the amplitudes and phases of all multiple scattering events off
defects within this radius, summed to all orders. In a second step, the scattering rate is
scaled by an appropriate concentration of super-impurities, so that the physically correct
concentration of defects is matched. Thus, if c is the wished defect concentration, then
the disk radius is adjusted to enclose Ndisk = Ndef/c surface atoms. If the calculated
scattering rate by the super-impurity of Ndef atoms is wkk′ , then we set a concentration
of ximp = c/Ndef in the Boltzmann equation (3.24)

(ximpΛk · n̂E)Ncr = τk

[
vk · n̂E +Ncr

∑
k′

wkk′(ximpΛk′ · n̂E)

]
,

with Ncr the total number of atoms in the crystal. The problem of finding the Green
function of a system with 51 defects poses no numerical difficulty (see Subsection 5.4.4).

In a third step, we calculate a number of Nconf = 20 different random defects configu-
rations, but always fixing one defect at the center of the disk. We consider this central
defect as the most representative of the situation of a homogeneously doped surface. In
the results we show the torque acting on the moment of the central defect only.

Computational details

The self-consistent potential of the single impurity atom was computed using the Jülich
KKR impurity-embedding code KKRimp [69] in a cluster around the impurity including
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the 14 nearest neighboring sites of the impurity for solving the Dyson equation, which
is sufficient for the correct charge screening, due to the metallic surface states 4. The
calculations for the convergence of the potential were performed including the Lloyd’s
formula [101, 102]. In the calculations of the many impurities system, this converged
impurity-atom potential is then placed in the respective 51 random impurity positions.
This approximation saves computational time compared to a fully self-consistent calcula-
tion of the system of 51 impurities together. Tests have shown that the approximation
is adequate for the description of the potential, if the impurities occupy farther than
nearest-neighbour positions, which holds for the great majority of cases at low concentra-
tion. The multiply scattered wavefunction and the scattering rate for the spin-transport
calculations (Sec. 5.5) are calculated in this way.

5.4.2 Validity of the independent scattering approximation

In order to investigate the validity of the independent scattering approximation, we
analyze the inverse relaxation time τ−1

k (Eq. (3.21)), which represents the k-resolved
scattering rate. Within the KKR method we can compute the scattering rate in terms of
the T -matrix with the help of the Green functions, as mentioned in Chapter 2.4. By the
integration of equation (2.77) over the Fermi surface, we obtain the inverse relaxation
time of each state by the expression

τ−1
k = 2πximpNcr

1

ΩBZ

∫
FS

dk′|Tk′k|2. (5.5)

In this way, the approximation of independent scattering behind the Boltzmann
equation is critically examined, by comparing the calculated scattering rate off single
impurity versus multiple defects system. In Table 5.2 the ratio of the average scattering
rate of the many defects system for the different configurations to the scattering rate
of the single defect system is presented. We find that there is no linear scaling of the
scattering rate with the number of impurities in the system. This is consistent with the
observation that the Fermi wavelength is longer than the average distance between the
impurities. Loosely speaking, after a scattering event of a wavepacket off a defect, there is
not enough space for a new wavepacket to be formed, before it is scattered from another
impurity. As a result, the consideration of the multiple scattering among impurities
becomes important.

5.4.3 Simple model calculations

In addition, we examine the approach of the independent impurity scattering on the 3D
topological insulators surface, investigating analytically and numerically the scattering
off magnetic impurities on the surface. As it has been mentioned, the surface electrons

4 Tests have been carried out for a larger cluster (considering up to the third shell of neighbors), as well
as for a smaller cluster, considering the single-site approximation (taking into account no neighbors
in the defect cluster), which has proven that the single-site limit is not enough [104].
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Impurity type τ−1
51imp/τ

−1
1imp

Cr 141.3
Mn 248
Fe 68.5
Co 260.6

Table 5.2: The average scattering rate of the many impurities systems for the 20 different
configurations τ−1

51imp divided by the scattering rate of the single impurity
system τ−1

1imp, in the presence of 2% defects concentration in the (Cr, Mn, Fe,
Co)/Bi2Te3 systems. Within the independent scattering approximation, the
ratio should be equal to 51.

are characterized by spin-momentum locking. Because of this, we apply a model based
on k · p theory in order to calculate the relaxation time.

The surface states electrons on the surface Dirac cone of topological insulators, can be
described by the following k · p Hamiltonian [39, 105].

H0(k) = v(k× σ) · ẑ, (5.6)

with the parameter v=2.55 eV·Å, taken from Ref. [39], which depends on the dispersion
of the surface state. The spin matrices are replaced in Eq. (5.6) and the Hamiltonian is
expressed as the following 2× 2 matrix

H0(k) = v

(
0 −ik−
ik+ 0

)
, (5.7)

where the abbreviations k− = kx − iky and k+ = kx + iky have been used. Then, the
eigenvalue problem

H0ψk = E0ψk, (5.8)

with ψT
k = (w1(k), w2(k)), can be solved. We find the following eigenenergies

E±(k) = ±vk (5.9)

and the following eigenvectors

w1(k) =
1√
2

(
−ie−iϕk

1

)
, w2(k) =

1√
2

(
ieiϕk

1

)
, (5.10)

where the angle ϕk = tan−1 ky
kx

is introduced, which is defined as the ΓK direction, i.e.
represents the angle between the k-vector and the x̂-axis. The diagonalization of this
Hamiltonian can be achieved applying the transformation from global to local spin frame,
which is expressed in terms of the unitary (U † = U−1) operator

Ûk =

(
1√
2
ie−iϕk − 1√

2
ie−iϕk

1√
2

1√
2

)
. (5.11)
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The knowledge of the eigenenergies allows us to write the Green function of the
non-perturbing surface, in the local spin frame

Ghost(k;E) =

(
(E + i0− E+(k))

−1 0
0 (E + i0− E−(k))

−1

)
. (5.12)

Next, we consider the presence of an impurity on the topological insulator surface.
The scattering off an impurity can be approximated by a δ-scatterer, considering a
short-ranged scatterer 5. The impurity Hamiltonian Himp contains a scalar part V0, which
describes the scattering strength of the scattering center, and a magnetic part m · σ
with m represents the relative strength of the impurity’s magnetic moment.

Himp = V0[1 −m · σ] (5.13)

Using the unitary operator (5.11), the impurity Hamiltonian is transformed into the local
spin frame of the host’s electrons according to the relation Û−1HimpÛ , where σ ∥ ẑ. In
the local spin frame the impurity Hamiltonian is given as

Himp = V0(σ0 +m · σx), (5.14)

with m = m · ẑ. Thus, in the k-representation the impurity Hamiltonian is expressed
as [65]

Himp(k,k
′) =

∫
drV0(σ0 +m · σx)e−i(k−k′)·r. (5.15)

The knowledge of the Hamiltonian of the perturbed system and the Green function
of the host system, as we discussed in Chapter 2.2, allows us to estimate the electronic
properties of scattering off an impurity by the transition matrix (T -matrix):

T (k,k′) = Himp(k,k
′) +

∑
k′′k′′′

Himp(k,k
′′)Ghost(k′′,k′′′)T (k′′′,k′), (5.16)

which is computed in the iterative approach of a Born series

T = Himp +HimpG
hostHimp +HimpG

hostHimpG
hostHimp + · · · . (5.17)

Finally, we can calculate the relaxation rate:

τ−1
k = 2π

1

ΩBZ

1

v

∫
FS

dk′|Tk′k|2 (5.18)

Numerical results

Eq. (5.18) for the computation of the inverse relaxation time is solved numerically and
the results, which are presented in Fig 5.7, are compared with the corresponding findings

5We can consider a short-ranged scatterer, since the Fermi surface is close to the Brillouin zone center,
i.e., the Fermi wavelength is quite long.
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of the simulations based on KKR Green function method combined with Boltzmann
formalism for the topological insulator Bi2Te3 with impurities on its surface (presented
in Table 5.2).

The model calculations were performed for the k-points which correspond to the Fermi
energy of the computed Bi2Te3 Fermi surface within KKR Green function method. A
strong magnetic scatterer is considered, setting its strength of the magnetic momentm = 2.
The T -matrix was calculated taking into account the first four terms of the Born series
(T = Himp+HimpG

hostHimp+HimpG
hostHimpG

hostHimp+HimpG
hostHimpG

hostHimpG
hostHimp.)

In Fig. 5.7 the ratio of the scattering rate of a system with N imp impurities to the
scattering rate of a single impurity system as a function of the number of impurities
(N imp) on the surface, is shown. The impurities are randomly placed, as described
in detail in the beginning of Section 5.4 with respect to the configuration of magnetic
impurities in the Bi2Te3 surface. We observe that the dependence of scattering rate with
the number of impurities in the system is not linear.

Figure 5.7: The scattering rate of a system with many impurities τ−1
N imp divided by the

scattering rate of the single impurity system τ−1
1imp, as a function of the

number of impurities N imp on the topological insulator surface. The solid
straight line represents the expected linear scaling (τ−1

N imp = τ−1
1impN imp) of

the independent scattering approximation.
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As a result, we found reasonable qualitative agreement between the model calculations
based on k · p theory with our findings based on Boltzmann formalism within KKR
method, concerning the scattering rate off multiple impurities.

5.4.4 Numerical considerations on the Green function of the
system with defects

The Green function of the impurity system is calculated in the KKR method by means
of the algebraic Dyson equation

Gimp,nn′

LL′ = Gnn′′

LL′ +
∑

n′′L′′L′′′

Gnn′

LL′′(t
imp,n′′

L′′L′′′ − tn
′′

L′′L′′′), G
imp,n′′n′

L′′′L′ (5.19)

where n, n′, n′′ are atom-site-indices and L,L′, . . . are indices combining the angular-
momentum and spin of an atom at a site. t(E) and timp(E) are the T -matrices of the
host and impurity atoms, respectively. Gimp(E) is the unknown matrix for the Green
function of the system with impurities and G(E) is the known matrix of the host system.
This linear set of equations has a dimension proportional to the number of sites for which
timp,n′′

L′′L′′′ (E) ̸= tn
′′

L′′L′′′(E), i.e., to the number of defects. In this way the problem at hand
becomes numerically tractable, since the number of defects (51) that we place in the disk
results in a linear system of dimension Ndef × 2(lmax + 1)2 = 1632, where the number of
spin and angular-momentum components at a cutoff of lmax = 3 has been accounted for
[2(lmax + 1)2 = 32].

5.5 Response coefficients to the electric field
We follow up our analysis, with the main purpose of this Chapter, the investigation
of the linear response of the spin-orbit torque exerted on the magnetic moment of the
impurity atoms embedded in Bi2Te3, under the application of an external electric field in
the system.

For this study, we apply the KKR Green function method combined with the Boltzmann
transport equation. The formalism which is used is given in details in Chapter 4. The
development of the formalism is based on the work of Géranton et al. [16], who studied
the spin-orbit torque effect on the atoms of the magnetic host system FePt/Pt. We extend
this methodology to the spin orbit-torque effect on the impurity atoms. In particular,
we perform the calculations for the impurity scattering wavefunctions ψimp

k (Eq. (2.66))
instead of the host Bloch wavefunctions ψk. In addition, the multiple scattering of
electrons off impurities is included in our study.

In a first step, we find the states of the host system ψk on the Fermi surface, which
obey the Bloch’s theorem, making use of the KKR secular equation. Then, multiple
scattering problem due to the existence of the impurities in the surface of Bi2Te3, is
solved. Thus, the impurity scattering wavefunctions are determined by the Lippmann-
Schwinger equation. The knowledge of the impurity wavefunctions on the scattering
states on the Fermi surface, allows us to determine the expectation values of the spin
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⟨σiµ⟩k (Eq. (4.14)), torque ⟨Tiµ⟩k (Eq. (4.19)) and spin flux ⟨Qiµ⟩k (Eq. (4.25)) based on
the formalism outlined in Section 4.2.

In a second step, we investigate the scattering properties in the non-equilibrium state,
considering the application of an external magnetic field in the system. Having solved
the multiple scattering problem in KKR representation, first-principle calculations are
performed for the solution of the self-consistent Boltzmann equation (5.4.1). Thus, by the
determination of the mean free path combined with the calculated spin accumulation, spin-
orbit torque and spin flux in the equilibrium state, we can compute the spin accumulation
χ (Eq. (4.32)), the spin-orbit torque t (Eq. (4.36)) and the spin flux q (Eq. (4.39)) in
response to the application of an external electric field in the system, as analytically
given in Section 4.3.

Fermi surface of Bi2Te3

The secular equation (2.58) is solved for the converged system of the topological in-
sulator Bi2Te3 and its computed Fermi surface is shown in Fig. 5.8. We observe a
hexagonal snowflake-shaped form of the Fermi surface, which has also been determined
experimentally [38].

Figure 5.8: The spin-polarization of the Fermi surface states of Bi2Te3 film. The arrows
represent the spin direction on the xy plane. The color code corresponds to
the z component of the spin σz.

In Fig. 5.8 each arrow indicates the spin-polarization of each surface state. Each state
is characterized by a certain spin-polarization, as there is no degeneracy on these metallic
topological surface states. We observe that the rotation of the projection of electron spin,
σx, σy, on xy plane is clockwise.
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Spin-orbit torque

We follow up our analysis with the results of the spin-transport calculations. Here, the
results of the tensor components in response to the electric field in y direction Ey, which
respects the reflection symmetry over the y− z plane in the host structure, are presented.
The corresponding results of the tensor components in response to the electric field in
the x direction are omitted, since we found that the results do not change appreciably.
Obviously, the z component of the torkance is zero, since the moments point along the
z axis. Testing the simple, single-defect case, we found that the torkance is odd with
respect to reversal of the impurity magnetic moment, i.e., the SOT is field-like. Thus, in
the following, the response coefficients of the spin-orbit torque, the spin accumulation χ
and the spin flux q, are investigated for the different impurities systems, Cr, Mn, Fe and
Co in Bi2Te3 surface.

At first, we study the computed coefficient of the spin-orbit torque t. In Fig. 5.9(a-d)
each point represents the torque acting on the spin moment of the impurity atom. We
examine the solution of the Boltzmann transport equation, within the approximation of
the independent scattering approximation. We consider a single impurity atom in Bi2Te3
surface, neglecting the multiple scattering, which is depicted in Fig. 5.9(a-d) with black
rectangular. We find that this system, the single impurity system is not representative in
general, comparing the results of the single defect system with the corresponding results
for the central atom of the many impurities system for the 20 different configurations (red
circles), as it is shown in Figs. 5.9(a-d). This is anticipated, as the independent scattering
approximation is not valid in this system, in other case the average torkance over the
many impurities systems would correspond to the single impurity system (The detailed
analysis can be found in Sec. 5.4.2). Instead, we observe that the torkance presents a
spread for all different types of impurities systems. Comparing the different impurities
systems, we also find that the largest value of the torkance is exerted on the Mn moment.
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Figure 5.9: The y component of the torkance tyy as a function of the x component of
the torkance txy, on the central (a) Cr, (b) Mn, (c) Fe, and (d) Co impurity
atom in the presence of 1 defect (black squares) and 2% defects concentration
for 20 different distributions (red circles), embedded in Bi2Te3 surface. The
results are scaled to a 2% concentration of defects. The electric field is taken
in y direction. The torkance is given in units of eaB = 9× 10−5µBT/(V/cm).
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Spin accumulation

In Figs. 5.10(a-d), the torkance versus the response coefficient of the spin accumulation is
plotted. We observe that there is no linear dependence of the spin-orbit torque with the
spin accumulation. Although, from simple models one might except a linear correlation
between the spin of the conduction electrons and the spin-orbit torque, we find this
absence of linear correlation due to the certain atom size. Because of this the torkance is
calculated by a convolution involving one integral which includes the external product
(see Eq. (4.19)), and it is not a product of the total spin and magnetic field.

Spin flux

In the following, the response coefficient of the spin flux is investigated, in order to
examine if the current which enters in the impurity atomic sphere all contributes to create
the torque. In Figs. 5.11(a,b,d) we observe that the torque has almost a linear dependence
on the spin flux for the system of Bi2Te3 doped with Cr, Mn, and Co impurities. This
demonstrates that the SOT exerted on the impurity moment is essentially mediated by
spin currents in these systems, while the spin-lattice contribution due to the spin-orbit
coupling in the impurity atomic sphere is negligible. On the contrary, there is still a
correlation between the SOT and the spin flux, but not as strong as the other impurities
systems, as it is shown in Fig. 5.11(c), as a result the spin-lattice interaction is significant
on the Fe impurities system. The latter indicates that in the Fe/Bi2Te3 system a part
of the current contributes to the spin precession of the Fe impurity, while the rest is
lost to the spin-lattice interaction. From the density of states (DOS) of the impurity
atoms (Fig. 5.6), it is observed that the Fe impurity presents a resonance exactly on
the Fermi level, whereas the resonance of the other impurity atoms (Co, Mn, Cr) is
somewhat shifted with respect to the Fermi level. Therefore, a longer delay time [68]
of the scattered conduction electron in the Fe system is expected. The Wigner delay
time tD determines the time that the electron interacts with the impurity atom during
the scattering process before it leaves the impurity again, i.e. describes the delay of the
scattered wave compared the unperturbed, and is defined by the following equation [71]

tD = 2
dδl
dE

, (5.20)

where δl is the phase shift. Thus, we find that the electron interact a longer time with
the spin-orbit field of the nucleus. As a consequence, there is a strong interaction of the
spin with the lattice in the Fe/Bi2Te3 system.
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Figure 5.10: The y component of the torkance tyy as a function of the response coefficient
of the spin accumulation χxy on the central (a) Cr, (b) Mn, (c) Fe, and
(d) Co impurity atom in the presence of 1 defect (squares) and 2% defects
concentration for 20 different distributions (circles), embedded in Bi2Te3
surface. The results are scaled to a 2% concentration of defects. The
electric field is taken in y direction. The torkance is given in units of
eaB = 9 × 10−5µBT/(V/cm). The spin accumulation is given in units of
eaBµBRy

−1 = 3× 10−10µB/(V/cm).
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Figure 5.11: The y component of the torkance tyy as a function of the response coefficient
of the spin flux qyy, on the central (a) Cr, (b) Mn, (c) Fe, and (d) Co impurity
atom in the presence of 1 defect (squares) and 2% defects concentration
for 20 different distributions (circles), embedded in Bi2Te3 surface. The
results are scaled to a 2% concentration of defects. The electric field is
taken in y direction. The torkance and the spin flux are given in units of
eaB = 9× 10−5µBT/(V/cm).
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5.5 Response coefficients to the electric field

Systems with different impurities concentration

Next, we compare the results of the systems with 2% and 5% defects concentration, in
order to find how the impurities concentration affects the spin, the spin-orbit torque, and
the spin flux. The absolute response coefficients of the averaged spin-orbit torque t, the
spin flux q, and the spin accumulation χ in an applied electric field Ey, determined as

t =

∑
i t

i

i
, ti =

√
(tixy)

2 + (tiyy)
2 (5.21)

q =

∑
i q

i

i
, qi =

√
(qixy)

2 + (qiyy)
2 (5.22)

χ =

∑
i χ

i

i
, χi =

√
(χi

xy)
2 + (χi

yy)
2, (5.23)

where i represents the configuration, are presented for the two different defect concentra-
tions in Fig. 5.12. Comparing Figs. 5.12(a) and 5.12(b), we find that the magnitude of
the torkance, the spin flux and the spin accumulation is greater in the case of the lower
concentration 2% for all types of impurities. This observation is consistent with the fact
that a lower concentration leads to a less perturbed topological surface state. This case
is closer to the ideal situation, where the electron states incident on the defects have
their spin in-plane, perpendicular to the defect magnetization, and produce maximal
torque. We also observe that the Mn/Bi2Te3 system displays the largest torkance at both
concentrations, in agreement with the results of Fig. 5.9. The lowest torkance is found in
the Fe/Bi2Te3 system, for which we expect the strongest resonant scattering.

Important quantities for practical applications

For practical applications we are also interested in the time needed for a reversal of
the impurity moment direction. We can estimate this by means of the angular rotation
velocity per unit electric field which normalises the torkance to the impurity moment
modulus mat:

ω =
1

E
θ̇

=
2µB

ℏmat

t. (5.24)

Moreover, having computed the conductivity tensor, according to Eq. (3.28), we can
find the longitudinal resistivity of the impurity atoms, in the application of an electric
field in y-direction. This is calculated as the inverse of the conductivity tensor, i.e.,
ρyy = σ−1

yy . By the knowledge of the torkance and the resistivity, the torque for a given
current density jy can be derived. We define the linear-response coefficient

t̃ =
T

jy

= t · ρyy. (5.25)
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Figure 5.12: (a) The average torkance t (circles), spin flux q (triangles) and spin accumu-
lation χ (squares) on the central atom in the presence of 2% and (b) 5%
concentration of Cr, Mn, Fe, and Co impurities embedded in the Bi2Te3
surface. The values are averaged over the 20 different configurations and
the error bars indicate the standard deviation of the values.
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5.5 Response coefficients to the electric field

In the above equation (5.25) we have used the definition of the SOT (4.35) and Ohm’s
law (3.26), from the first to the second line. This quantity t̃ is important, because its
knowledge serves two purposes. First, it promotes the viewpoint of the torque resulting as
a response to the current, instead of the electric field. This picture is convenient especially
in magnetic-impurity systems: we have the spin of the current-carrying electronic states
of the host, on the one hand, and the electronic and magnetic structure of the impurity,
on the other hand. The interaction of the two, due to spin scattering, produces the
torque. The electric field does not enter the above picture, even though in reality it is
the cause of the current.

The second purpose of introducing t̃, is that its product with the torkance, (t̃ t), is
related to the Joule heat produced per unit time and volume, Q̇, in order to achieve a
given torque value T :

Q̇ = ρyy j
2
y (5.26)

=
T 2

t̃ t
. (5.27)

The Eq. (5.26) represents the Joule’s first law, according to which the Joule heating, i.e.,
the power of heating generated by a conductor, is expressed in terms of its resistance ρyy
and current jy. The equation (5.27) was obtained using the Ohm’s law (3.26) and the
definition of the linear response of the torque (4.35). What we calculate here is actually
a lower bound to the Joule heat, assuming that the magnetic-impurity scattering is the
dominant source of resistivity.

The results of the resistivity (ρyy), the ratio of the SOT to the current density (t̃),
and the rotation velocity (ω) for Cr, Mn, Fe and Co impurity atoms are depicted in Fig.
5.13. One can easily observe that the Mn/Bi2Te3 system presents the lowest resistivity, a
large spin-orbit torque for a given current, and large rotation velocity. In this system the
magnetic moment of the Mn impurity atom is the largest, compared to other impurity
types systems (Table 5.1). As a consequence, this system is optimal for applications.
Although a large torque for a given current is calculated in the Fe/Bi2Te3 system, this
system presents the largest resistivity due to the resonant scattering of the Fe atoms,
rendering it less optimal for applications.

The factor ⟨(t̃ t)−1⟩, averaged over the 20 configurations, is presented in Table 5.3. We
find that the Joule heat for a given spin-orbit torque is much smaller in Mn/Bi2Te3 than
the other impurity types systems, that results in fastest and energetically most efficient
switching, i.e., has the lowest resistivity and the Joule heat production.

Impurity type ⟨(t̃ t)−1⟩ (S/(e2a2B))
Cr 2497.407
Mn 51.207
Fe 1160.321
Co 175.831

Table 5.3: The computed Joule heat factor ⟨(t̃ t)−1⟩ of the magnetic defects.
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Figure 5.13: The resistivity ρyy (circles), the torkance on the central impurity atom
multiplied by the resistivity t̃ = tρyy (Eq. (5.25)) (triangles), and the
angular rotation velocity ω per unit electric field (Eq. (5.24)) (squares),
averaged over the 20 different configurations, in the presence of 2% defects
concentration in the (Cr, Mn, Fe, Co)/Bi2Te3 systems. The electric field is
taken in y direction.

Computational details

The self-consistent potential of the host system and the potential of the impurity atoms,
that is found as described in previous Sections, are used for the solution of the scattering
problem on the Fermi surface states, performing first-principles calculations with the
JuKKR-KKRhost code [100]. The calculations for the expectation values of the spin,
spin-orbit torque and spin flux on impurity atoms, in the absence of an electric field on
the system, are also carried out with the modified JuKKR-KKRhost code.

The calculations for the charting of Fermi surface and the Boltzmann transport
computations were performed with the highly parallelized JuKKR-PKKR code [79]. The
existing code was improved, to include the calculations of the response coefficients of
the spin, spin-orbit torque, and spin flux on the impurity magnetic moment. For these
calculations 78 k-points in the full Fermi surface of Bi2Te3 were used, which is adequate,
since the FS consists of only a single closed loop near the center of the Brillouin zone
surface.
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6

6.1 Introduction

The first theoretical prediction of magnetic skyrmions came about twenty years ago [106,
107] in ferromagnetic materials in the B20 structure [107], while a few years later they
were experimentally detected [49, 108]. Concerning technological applications, significant
attention is given to two-dimensional skyrmions in thin ferromagnetic layers deposited
on heavy metal substrates [41, 109].

The unique properties of magnetic skyrmions make them very promising for applications
in spintronic devices. They have nanoscale size, ideally the skyrmions used in applications
should be individual small skyrmions of ≃ 10nm size at room temperature. Another
special characteristic of skyrmions is that they are topologically protected, as they
cannot be continuously transformed into the ferromagnetic state by a rotation of the
magnetization direction, while keeping the magnetization modulus constant. Because of
this, stable skyrmions are expected even at small sizes above room temperature, making
them ideally as carriers of information in future racetrack memory devices. In addition,
their formation and their detection is possible, assisted by their non-coplanar texture.

Here, our target is the skyrmions formation in a transition-metal ferromagnetic (FM)
layer on a heavy metal (HVM) substrate characterised by a strong spin-orbit coupling [46,
110]. In particular, we focus in the investigation of the electronic structure of small
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magnetic skyrmions in the magnetic thin film Pd/Fe/Ir(111).
This Chapter is structured as follows. In Section 6.2 we give the theoretical foundation

of magnetic skyrmions. An introduction on the topological nature of skyrmions and
the theoretical model which can describe the skyrmion formation is presented. The
electronic structure of Pd/Fe/Ir(111) system is studied in Section 6.3, as this film will be
used as the host system in our calculations for the skyrmions formation. The effect of
the breaking of time-reversal symmetry in the Fe/Ir interface is also discussed, and the
Fermi surface of this system, in which spin transport properties can be investigated, is
presented. Finally, we present the results of our ab-initio simulations for the formation
of stable magnetic skyrmions of different sizes in Pd/Fe/Ir(111) film in Section 6.4.

6.2 Introduction to magnetic skyrmions
The magnetic skyrmion is a spin texture, which is formed in the midst of a ferromagnetic
state by a swirl of the magnetization direction toward a center, where the magnetization
takes an opposite direction to the ferromagnetic surroundings and is separated from
them by a circular domain wall (Fig. 6.1). This topologically non-trivial spin texture,
that behaves like a particle, is localized in space. Due to its topological protection, the
skyrmion cannot be transformed to a different magnetic state (e.g., to the ferromagnetic
state) by continuous rotations of the magnetization rotation field. For the transition to the
ferromagnetic state, skyrmions need to overcome a high energy barrier. Because of this,
skyrmions are described as stable magnetic excitations and are also called 2-dimensional
topological solitons.

Figure 6.1: Schematic representation of a magnetic skyrmion formed by a swirl of the
magnetization on a ferromagnetic state. Figure from Lux et al. [111].

Skyrmion Topology

The topological nature of skyrmions is defined by the topological charge Qsk (also called
skyrmion number) [109], which is a measure of the winding of the normalized local
magnetization, m. The different types of magnetic skyrmions, which are characterized
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by different spin structures, can be classified based on their topological nature. The
topological charge Qsk is found according to the relation [112, 113]

Qsk =
1

4π

∫
m(r) ·

(
∂m(r)

∂x
× ∂m(r)

∂y

)
d2r. (6.1)

The integration is performed over the area of the skyrmion and the unit vector m, which
points towards the direction of the local magnetization can be expressed in spherical
coordinates according to the symmetry of the skyrmion. It is written in terms of the polar
angle θ and the azimuthal angle ϕ, m = (sin θ cosϕ, sin θ sinϕ, cos θ), and the vector r is
expressed in polar coordinates r = r(cosα, sinα). Then, the topological charge takes the
form

Qsk =
1

4π

∫ ∞

0

dr

∫ 2π

0

dα
∂θ(r)

∂r

∂ϕ(α)

∂α

= −1

2
cos θ(r)

∣∣∣∞
r=0

· 1

2π
ϕ(α)

∣∣∣2π
α=0

. (6.2)

Thus, the integral is simplified to a product of the polarity p, which defines the reversion
of the out-of-plane magnetization of a skyrmion comparing to its center, with the vorticity
v that determines the wrap of the angle [114]

Qsk = p · v. (6.3)

Therefore, the topological charge takes only integer numbers for different types of
skyrmions, i.e., Qsk = ±1,±2, ...

As an example, for the skyrmion depicted in Fig. 6.1 the vorticity is v = +1 and the
polarity p = −1, corresponding to the topological charge Qsk = −1, considering the
ferromagnetic background parallel to the z-axis. The skyrmion which is shown in this
Figure is called Néel-type skyrmion, and is mostly observed at interfaces [57, 110], favored
by the interfacial Dzyaloshinskii-Moriya interaction of multilayers. There are numerous
different configurations of magnetic skyrmions, however, the most widely existing are
Néel- and Bloch-type skyrmions. Bloch skyrmions are typically found in bulk materials
and are characterized by the same topological charge as Néel-type, Qsk = −1. The
Néel-type is distinguished by the Bloch-type skyrmions according to the progression of
magnetization across the diameter, which is cycloidal in Néel (Fig. 6.2(a)), while at the
Bloch skyrmion is helical (Fig. 6.2(b)). Another well-known skyrmion category is the
antiskyrmions [115], with opposite skyrmion number, Qsk = 1.

Skyrmion description

The underlying mechanism for the skyrmion formation is a competition between three
types of interactions, a ferromagnetic interaction between atomic spins, an anisotropic
Dzyaloshinskii-Moriya (DM) interaction promoting an angle of 90° between them, and a
magneto-crystalline anisotropy developing an out-of-plane direction for the spins. Then,
an atomistic spin-lattice model for the capture of skyrmion formation can be described by
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Figure 6.2: Schematic representation of (a) Néel and (b) Bloch skyrmion. Fig. from
Kézmárki et al. [116].

the following spin Hamiltonian [49, 108], consisting of the Heisenberg exchange interaction,
the DM interaction, the magnetic anisotropy and an external magnetic field term:

H = −
∑
ij

Jijmimj −
∑
ij

Dij(mi ×mj)−
∑
i

mi ·Ki ·mi −
∑
i

Bextmi + · · · (6.4)

Here, mi and mj represent the atomic magnetic moments at sites i and j, respectively.
The parameter Jij is the symmetric Heisenberg exchange that aligns the spins in parallel,
Dij is the Dzyaloshinskii-Moriya (DM) interaction vector which gives a tendency for the
perpendicular mutual orientation of spins and can be considered as an antisymmetric
exchange interaction, i.e., Dij = −Dji. Ki is the on-site single-ion anisotropy constant,
and Bext is an external magnetic field. The easy axis (z-direction) is assumed to be
out-of-plane in thin magnetic films. The ellipsis at the end of Eq. (6.4) stands for possible
higher-order terms that may be needed, such as the four-spin interaction [110]. These
parameters define the skyrmion size and its stability.

In many cases, such as in our studied system, the magnetic anisotropy, as well as
the external magnetic field are not essential interactions for the skyrmion formation,
in contrast with the DM interaction, which is necessary condition for the skyrmion
stability. This interaction is responsible for the existence of the high energy barrier,
that favors the formation of stable skyrmions. The DM interaction is caused by the
spin-orbit interaction under a broken inversion symmetry, because of this it arises in
ferromagnets on top of a heavy metal [117–119]. The strength of the energy barrier
depends on the material and the interactions, nevertheless in a realistic case it can
be about 40 meV [120]. As a consequence, the formation of stabilized skyrmions is
expected even at room temperature in many systems. The lifetime of a skyrmion, i.e.,
its formation-annihilation rate, according to which the stability of the skyrmion can be
controlled, at a finite temperature for an energy barrier ∆E can be found according to
Arrhenius law τ ∼ τ0 exp

(
∆E
kBT

)
.

Because of their magnetic texture, skyrmions can be also described by a micromagnetic
model. Considering the simplest case, in which only the Heisenberg exchange and the
DM interactions contribute to the stabilization of skyrmions, the energy functional is
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written in the form

E(m) =

∫
R2

dr
[
J |∇m|2 +D[m(∇ ·m)− (m ·∇)m]

]
. (6.5)

According to Eq. (6.5) it becomes clear that the Dzyaloshinskii-Moriya interaction deter-
mines the preferred energy state of a material. Thus, the Néel-type skyrmions can be
classified in two categories according to the handedness (or rotational sense). The first
one Néel-type skyrmion is characterized by counter-clockwise magnetization rotation,
which corresponds to positive sign of DM interaction (D > 0), while on the other type
the whirling of the magnetization is clockwise, and the sign of the DM interaction is
negative (D < 0) (Fig. 6.3).

Figure 6.3: Néel-type magnetic skyrmion schematically shown with (a) a counterclockwise
and (b) a clockwise spin rotation. (c,d) Cross sections of the spin textures of
the magnetic skyrmions shown in (a), (b), respectively. Fig. adapted from [S.
Blügel, 2D Materials for Spin-Orbitronics, ICTP virtual meeting (2021)].

6.3 Electronic structure of Pd/Fe/Ir
At first, density functional theory calculations employing the full-potential relativistic
Korringa-Kohn-Rostoker (KKR) Green function method including spin-orbit interac-
tion [69, 100], were performed for the study of the electronic structure of the host system,
the magnetic thin film heterostructure Pd/Fe/Ir(111), in which stable magnetic skyrmions
will be formed.

Studied system

More specifically, the system is a magnetic thin film consisting of one atomic layer of
ferromagnetic Fe, deposited on metallic, non-magnetic heavy metal Ir substrate, and
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then covered by a monolayer of the magnetically susceptible Pd metal (Fig. 6.4(a)).
This heterostructure is chosen for the magnetic skyrmions formation, as the Ir substrate
provides the necessary strong spin-orbit coupling, which combined with the inversion-
symmetry broken at the Fe/Ir(111) interface, leads to a large DM interaction D within
the Fe layer. As it is mentioned in the previous Section 6.2, the DM interaction is
precondition for the formation of stabilized skyrmions. The Pd metal layer on top of
Fe/Ir(111) strengthens the Heisenberg exchange J . The size and the chirality of stabilized
skyrmions depends on the conflict between the DM interaction and the ferromagnetic
isotropic Heisenberg exchange interaction (Eq. (6.4)). This system has been well studied
experimentally [46, 47, 121], as well as in simulations [57, 58], and has been shown that
the formation of stabilized skyrmions is feasible.

In the host system, the atoms of Fe layer are in the ferromagnetic state, as it is
illustrated in Fig. 6.4(b), and in a next step we carry out calculations for the relaxation of
the magnetic moments in the non-collinear texture (Fig. 6.4(c)), achieving the skyrmion
formation, as will be described in the following Section.

In Table 6.1, the computed electronic charge n, and the spin magnetic moment ms of
the near-surface layers of Ir, Fe and Pd are given. We find a large spin magnetic moment
of Fe atom (ms = 2.53µB). We also observe a non-negligible spin magnetic moment of
Pd atom (ms = 0.29µB). The spin moment is induced from Fe to Pd atom, because Pd
is known as having a sizeable Stoner-enhanced susceptibility, thus it is easily polarized.
The strength of the isotropic exchange constant J between the Fe atoms is significantly
affected by the Pd layer. In particular, the absolute value of the constant J rises in this
system, i.e., Pd favors the ferromagnetic state of Fe atoms.

Z n ms (µB)

Ir 77 76.8 0.04
Fe 26 26.2 2.53
Pd 46 45.7 0.29

Table 6.1: The atomic number (Z), the computed electronic charge (n) and the spin
magnetic moment (ms) of the near-surface atomic layers of Ir, Fe and Pd, in the
ferromagnetic state of Pd/Fe/Ir(111), within our first-principles calculations.

In Figs. 6.4(d-e), the fcc crystal structure of Pd/Fe/Ir(111) film is depicted in a
perspective-view, and in a top-view, respectively. More specifically, the three layers
represent the Pd layer, the Fe layer, and its nearest Ir layer. As it is shown in Fig. 6.4(e) the
system presents 120° rotation symmetry, and 3 equivalent reflection planes perpendicular
to the surface, depicted with dashed lines. For example, the x = 0 plane is a reflection
plane, but the y = 0 plane is not, due to the fcc(111) structure. The absence of this
reflection symmetry is expected to influence the electronic structure properties of the
system.
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Figure 6.4: (a) Schematic representation of the heterostructure Pd/Fe/Ir(111). (b) Spin
texture of atoms in Fe layer in the ferromagnetic state, and (c) in the
non-collinear state, after the skyrmion formation. (d) Illustration of the
crystal structure of the near-surface atomic layers of Pd/Fe/Ir(111) film in a
perspective-view. The red, black, and blue circles represent the Fe layer, the
above Pd layer and the below Ir layer, respectively. (e) Similar representation
as (d) in a top-view. The red circles represent the sites of Fe atoms in the
crystal, the black triangles the sites of Pd atoms and the blue rectangular
depict the Ir atoms. The dashed lines show reflection planes perpendicular
to the surface.
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Band structure

We follow up our analysis, investigating the electronic properties of the host system.
Regarding the band structure, we must consider some symmetries which, if present,
enforce the relation Ek = E−k. One such symmetry is time reversal symmetry, which is
defined by the anti-unitary operator

iσyK =

(
0 1
−1 0

)
K,

where iσy is a spin-flip operator and K is the operation of complex conjugation, KΨ =
Ψ∗ [122]. In ferromagnets, the spin-flip operation is absent, but if the spin-orbit coupling
is absent, then the complex conjugation operation is present and is enough to enforce
Ek = E−k. In ferromagnets with spin-orbit coupling, also the complex conjugation is
absent, but Ek = E−k is enforced if space-inversion is a symmetry of the system. In the
present case, also space-inversion is absent, thus the relation Ek = E−k is expected to
hold only in certain directions that are connected by reflection symmetry over a reflection
plane.

In Fig. 6.5(a) the band structure of the states which are projected to spin down in
the Fe layer of Pd/Fe/Ir(111) film is shown, in the high symmetry Γ → K and Γ → −K
directions. We can observe that the energy bands in Γ → K are not identical to the
energy bands in Γ → −K direction. This asymmetry is justified due to the coexistence
of the spin-orbit interaction, magnetism, and lack of reflection symmetry about the
y = 0 plane in the Fe/Ir(111) interface. The broken symmetry is also confirmed by the
k-resolved density of states (DOS) at the Fermi energy in the corresponding directions in
the Fe layer, as it is depicted in Fig. 6.5(b). As we discussed in the previous Section 6.2,
the breaking of the Ek = E−k symmetry promotes a DM interaction. The latter indicates
that the formation of stabilized skyrmions is expected in this system.

On the contrary, according to Fig. 6.5(c) we find that the energy bands in Γ → M
and Γ → −M directions are equal. These symmetric energy bands are also shown in
the density of states (DOS) diagram of the corresponding directions (Fig. 6.5(d)). This
symmetry that appears in ΓM direction can be explained by the symmetries of the crystal
structure of the system, and in particular the reflection symmetry over the x = 0 plane,
as has been discussed above.

Fermi surface states

After the formation of stabilized skyrmions in this system, we aim to investigate spin
transport properties solving the Boltzmann equation. Because of this, we are interested
in the Fermi surface states.

In Fig. 6.6 the projection of the Fermi surface in the Fe layer, in which the skyrmion
is formed, is presented, for the states projected to spin down and spin up. Here, the
breaking of the conjugation symmetry is also noticed, as we distinguish in Figs. 6.6(left
and right) that the density of states in kx differs from the corresponding density on −kx
states. On the other hand, we observe the ky → −ky reflection symmetry.
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Figure 6.5: (a), (c) The band structure of Pd/Fe/Ir film, for the states which are projected
to spin down in Γ → K and Γ → −K directions, as well as in Γ → M and
Γ → −M directions, respectively. The line density defines the projection of
the density in Fe layer. (b), (d) The density of states (DOS) of Fe layer in
the corresponding directions. The Fermi level is EF = 12.5 eV.
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Figure 6.6: The projection of the Fermi surface states in Fe layer, for the states which
are projected to spin down (left) and spin up (right).

Computational details

The host crystal structure is simulated by a thin film of 42 layers in total, 34 Ir, 1 Fe and
1 Pd, including 3 vacuum layers on top and bottom, considering a fcc-stacking 1. The
thickness of the film is chosen to ensure the complete decoupling from top to bottom
surface states [57]. The parameters of the relaxed interlayer distances in the film that
are used, are presented in Table 6.2, as have been found by Dupé et al. [123]. The lattice
constant which is used, is equal to a = 3.793 Å, and is found according to the relation
dIr−Ir = a

√
3/3, where dIr−Ir is the distance between consecutive atomic planes. Thus,

the direct lattice vectors are given as

u1 = (0.707107, 0)a (6.6)
u2 = (0.353553, 0.612372)a (6.7)

(6.8)

and the reciprocal lattice cell vectors are found as

b1 = (1.414214,−0.816497)a (6.9)
b2 = (0, 1.632993)a (6.10)

The self-consistent calculations for the electronic structure of the ferromagnetic
Pd/Fe/Ir(111) host system, were performed considering the local density approximation
(LDA) for the exchange-correlation potential [63]. A finite angular momentum cutoff of
lmax = 2 is used, for the orbital expansions of the Green function, and a Brillouin zone
mesh of 30×30 k-points.

1 It has been found that the fcc-stacking is energetically favorable compared to hcp-stacking [123].
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Pd/Fe/Ir(111)
dIr−Ir 2.19Å
dFe−Ir 2.06Å
dPd−Fe 2.02Å

Table 6.2: The relaxed interlayer distances in the Pd/Fe/Ir(111) thin film, according to
Dupé et al. [123].

For the calculations of the bandstructure (Figs. 6.5(a), 6.5(c)), a k-mesh of 100×100
k-points was used in each direction. The high symmetry points Γ, K and M are
defined as Γ = (0, 0), K =

(√3|b1|
6

, |b2|
2

)
, and Γ⃗M = b1

2
. The density of states diagrams

(Figs. 6.5(b), 6.5(d)) were obtained by considering a k-mesh of 1000 points in each
symmetry direction. The Fermi surface calculations, as presented in Fig. 6.6 were carried
out within a mesh of 200×200 k-points. The aforementioned first-principles calculations
were performed with the Jülich KKRhost code [100].

6.4 Formation of stabilized skyrmions
The state-of-the-art way to predict skyrmion formation from microscopic theory is to
calculate the parameters of a spin Hamiltonian from first principles, i.e., from quantum
mechanical calculations of the electronic structure of the material, based on density-
functional theory (DFT) without adjustable parameters. The interaction parameters are
calculated by considering a number of different magnetic states and fitting the energy
differences to a model Hamiltonian [110, 124]. However, beyond the state of the art,
large-scale simulations [57, 58] have made possible the prediction of skyrmion stability
in fully ab-initio calculations, for skyrmions of a few nanometers in diameter, without
resorting to a model Hamiltonian. Such simulations are achievable only by using Green
function methods (in particular, the Korringa-Kohn-Rostoker (KKR) Green function
method), so that the self-consistent calculation is confined only in the skyrmion region
of a few hundreds of atoms, instead of thousands of atoms that would be minimally
required by wave-function methods.

Calculation of stable skyrmions within KKR Green function method

Here, we apply the KKR Green function method to form three different sizes skyrmions
in Pd/Fe/Ir from first-principles calculations. Within this approach, we consider the
skyrmion as a defect cluster embedded into the ferromagnetic host system Pd/Fe/Ir(111).
Then, the following Dyson equation is solved self-consistently, including the non-collinear
magnetism

Gdef = Ghost +Ghost∆V Gdef , (6.11)

which relates the Green function of the ferromagnetic host system Ghost to the Green
function of the perturbed non-collinear system Gdef through a perturbing potential V .
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The Green function is a matrix in spin space, as defined in Eq. (2.15). Thus, the Green
function of the non-collinear state at site i, GNC

ii , can be found via the Dyson equation [69,
125]

GNC
ii = GFM

ii +
∑
j

GFM
ij ∆VjG

NC
ji , (6.12)

where GFM
ii is the Green function of the corresponding ferromagnetic state i, in which the

spin moments are oriented along the z direction. The perturbed potential ∆V determines
the change of the potential due to the rotation of the magnetic moments, therefore
depends on the difference between the skyrmion magnetization and the magnetization in
the ferromagnetic state. In a simple approximation, it is expressed just by a rotation as

∆Vi = Bi(σ · êMi
− σ · êz), (6.13)

where Bi, which acts as a magnetic field, is the difference of the spin up and spin down
components of the potential in the ferromagnetic state, i.e., Bi = (V ↑

i − V ↓
i ), σ is the

Pauli vector, and êz the unit vector in z direction. In practice, beyond the simple
approximation, the atom-dependent change of the magnetic moment angle induces a
change of the potential as a function of position, V ↑

i (r) − V ↓
i (r), as well as the non-

magnetic part of the potential, (V ↑
i (r) + V ↓

i (r))/2, which is also accounted for in the
self-consistent calculations. The magnetization M rotation direction in the skyrmion
region is defined by the unit vector êMi

êMi
= (sin θ(r) cosϕ(r), sin θ(r) sinϕ(r), cos θ(r)). (6.14)

The skyrmion defect cluster consists of a disk of Fe atoms, including the first neighbors
of the Ir-layer below and the Pd-layer above. The size of the skyrmion is defined by
the number of atoms in the disk, which is biased by a boundary condition in the rim
of this disk, setting the atoms outside in the ferromagnetic state. The central atom
is also spin flipped (θ = 180°) as a boundary condition. The skyrmions formation is
established by the relaxation of the magnetization of the atoms in the defect cluster, in
size and direction, as well as the convergence of their potentials. We carry out DFT
calculations increasing the impurity atoms in the skyrmion disk until the relaxation of
the magnetization in the rim of this disk in the skyrmionic state (the ferromagnetic state)
is achieved.

More specifically, we consider three different sizes of skyrmion profiles. The smaller
skyrmion is formed within a disk consisting of 25 atoms in the defect cluster (1st, 2nd, and
3rd Fe neighbors of the central Fe atom, i.e., 19 Fe atoms, including the first neighbors
of Ir and Pd atoms). For the formation of the second skyrmion we consider a disk of
121 atoms in the defect cluster (1st, . . . , 5th Fe neighbors of the central Fe atom, i.e., 37
Fe atoms, including the neighboring atoms of the Ir substrate and Pd capping in the
region of the skyrmion). The third, largest skyrmion consists of 349 atoms in the defect
cluster (1st, . . . , 14th Fe neighbors of the central Fe atom, i.e., 121 Fe atoms, including
the nearest Ir and Pd atoms), that are allowed to relax their spin direction.

In Fig. 6.7, the spin structure of the three different skyrmions sizes, which are obtained
by our ab-initio calculations, are shown. We observe that the non-collinearity is more
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intense near the skyrmion core (the center of the skyrmion), independently of the
skyrmion size. We find that the direction of the magnetization and its deviation of the
ferromagnetic state is strongly dependent on the skyrmion size. In Fig. 6.7(c), we observe
that the magnetization in the rim has been relaxed in angle θ = 1.8°, i.e. very close
to the ferromagnetic state. As a consequence, the relaxation of the magnetization in
the skyrmionic state with respect to skyrmionic size has been achieved in this largest
skyrmion.

(a) (b)

(c)

Figure 6.7: Down: The magnetization after the relaxation of Fe spins in the corresponding
positions in the crystal surface, for the formation of different sizes of magnetic
skyrmions in Pd/Fe/Ir(111) film, consisting of (a) 19 Fe atoms, (b) 37 Fe
atoms and (c) 121 Fe atoms. Up: The angle θ is depicted for the central Fe
atom, and for the 1st, 2nd, etc., neighbors. The color code represents the
magnitude of the magnetization in z direction.
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The size of the skyrmion is of pivotal importance for its experimental observation, as
well as for potential applications. The skyrmion profile is determined by the skyrmion
radius rsk, which is defined as the distance in the crystal surface at which the z component
of the magnetization M changes sign, i.e., Mz(rsk) = 0, or respectively θ(rsk) = 90° [126,
127]. In Fig. 6.8 the magnetization profile θ(r) is depicted for the studied skyrmions.
Therefore, we can determine the skyrmion radius by the intersection of the skyrmion
profile with the horizontal dashed line at θ = π/2. Having estimated the radius of
the three different skyrmion sizes, we present the diameter dsk of the three different
skyrmion profiles in Table 6.3. Comparing our results with corresponding experimental
study [47], we calculate smaller skyrmions formed in Pd/Fe/Ir. It is known that in
the local spin density approximation, Pd shows an overestimated spin susceptibility
compared to experiment. In the present system, this means that the Pd capping shows
an overestimated strengthening of the exchange interaction between Fe atoms, i.e., an
increased spin stiffness and therefore a reduced skyrmion radius, according to [128].

Figure 6.8: Illustration of the magnetization profile of skyrmions θ(r). The angle θ as
a function of the distance r from the center of the skyrmion at r = 0 is
represented with black rectangular, red circles and blue triangles for the
skyrmions containing 19 Fe, 37 Fe and 121 Fe atoms, respectively. The
symbols refer to the distance of the corresponding atomic centers from the
skyrmion center. The intersection of the skyrmion profile with the horizontal
dashed line at θ = 90° determines the skyrmion radius rsk.
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skyrmion of dsk

19 Fe atoms 0.47 nm
37 Fe atoms 0.77 nm
121 Fe atoms 0.99 nm

Table 6.3: The skyrmion diameter dsk of the three different skyrmion sizes, as it is
determined by the magnetization profile of skyrmions (Fig. 6.8).

We also observe that the skyrmions which are formed in the studied system are Néel-
type skyrmions, as its spin texture is cycloidal (Fig. 6.7), as predicted for magnetic
thin films [129]. The progression of the magnetization of these Néel-type skyrmions is
counterclockwise. Consequently, the stabilized magnetic skyrmions which are finally
formed in Pd/Fe/Ir(111) film, based on our ab-initio calculations, are in agreement
with nano-skyrmions which have been detected with scanning tunneling microscopic
experiments [46], as well as with corresponding computational study [57].

Computational details

The formation of stable skyrmions, after the convergence of the Pd/Fe/Ir(111) film,
based on spin density functional theory calculations, was performed in two steps. At first,
a real space defect cluster is created and the Green function of the film was obtained
with the Jülich KKRhost code. In a second step, the impurity-embedding technique was
used, within the Jülich KKRimp code [100]. Setting as initial condition the spin-flipping
of Fe central atom in the defect cluster, i.e., (θ, ϕ)= (π, 0), the magnetic moments of
atoms within the defect cluster were allowed to relax its size and direction, and the
self-consistent potential of the impurity atoms was computed.

83





Topological Hall effect
from magnetic skyrmions

7

7.1 Introduction

The ab-initio calculation of spin-transport phenomena in collinear magnetic systems has
been established in a number of works, e.g., [14, 16, 130]. These are based either on the
Kubo/Berry-phase formulation, the coherent potential approximation for alloys, or on
the Boltzmann equation. The ab-initio approach is superior to model-based calculations,
since it accounts for the full electronic structure of the material, but is computationally
much heavier. Because of this, there are no reports of ab-initio simulations on spin
transport phenomena on skyrmions, since skyrmions entail a higher degree of complexity,
as they are non-collinear magnetic structures (i.e., the magnetization direction is position-
dependent in the system) without symmetry of periodic displacement (they are localized
in space).

Motivated by the potential application of skyrmions detection on spintronic devices [41],
the study of the topological Hall effect is pivotal. In this chapter the results of ab-initio
computational study of the Topological Hall effect in magnetic skyrmion systems are
included. Our focus is on the scattering properties of electrons spins off skyrmions formed
in Pd/Fe/Ir film, and in particular on the topological Hall effect, which is a means of
experimental detection of skyrmions in thin-film heterostructures [54, 131–135].

This Chapter is structured as follows. In Sec. 7.2 we give a short introduction to

85



Topological Hall effect
from magnetic skyrmions

the Ordinary and Anomalous Hall effect, and we describe the Topological Hall effect.
The results of the spin-transport calculations are presented in Sec. 7.3. The dependence
of the longitudinal resistivity and the topological Hall effect on an additional electron
scattering, which represents the disorder of the sample, is discussed.

7.2 Hall effects

Ordinary and Anomalous Hall effect

The ordinary Hall effect was proposed by E.H. Hall in 1879 [136], who discovered that a
transverse force is exerted on the electrons, when an electric current jy flows through
a conductive material in the presence of an external perpendicular magnetic field Hz,
deflecting the current toward one side of the conductor and producing a transverse
voltage.

A few years later Hall discovered a much stronger Hall effect in ferromagnetic materials,
the Anomalous Hall Effect (AHE) [56, 137, 138]. The description of this anomalous con-
tribution to Hall effect was proposed by Smith and Sears, by the following experimentally
established relation for the (off-diagonal) Hall resistivity in ferromagnets

ρHxy = ρOHE + ρAHE = R0H + 4πRsM. (7.1)

The first term, which is proportional to an external magnetic field H, corresponds to
the ordinary Hall resistivity ρOHE. The second term, with ρAHE the anomalous Hall
resistivity, describes the anomalous Hall effect, that depends on the presence of the
magnetization M , and can be observed even in the absence of an external magnetic
field. The spin-orbit interaction is a prerequisite for the existence of the anomalous Hall
effect [139], which as a result can be observed only in materials with broken conjugation
symmetry, HK ̸= KH (see Sec. 6.3). In most of materials, the anomalous (spontaneous)
Hall coefficient Rs is one of magnitude greater than the ordinary Hall coefficient R0.

Figure 7.1: Schematic representation of the (a) Ordinary and (b) Anomalous Hall effect.
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Topological Hall effect

The Hall effect in ferromagnetic materials with a nontrivial (chiral) spin texture is called
Topological Hall Effect (THE). This phenomenon is caused by the scalar spin chirality
Si · (Sj × Sk) which becomes nonzero when the spin configuration is noncoplanar. This
mechanism is described by the Berry phase concept: a fictitious magnetic flux proportional
to the spin chirality is created, as the noncoplanar magnetization texture is related to
the Berry curvature [140–142]. As a result, the spin-orbit coupling is not vital for the
existence of this mechanism on the contrary to the AHE. Then, the total Hall resistivity
in ferromagnets is given as the sum of the individual contributions of OHE, AHE and
THE:

ρxy = ρOHE + ρAHE + ρTHE. (7.2)

The topological Hall effect [51, 55] is observed when a lateral current is formed by
an applied electric field in a layered magnetic system with a skyrmion, caused by the
deflection of the moving electrons off the skyrmion’s non-collinear magnetic texture.

Figure 7.2: Schematic representation of the Topological Hall effect in a ferromagnetic
thin film when an external electric field is applied, caused by the non-collinear
spin configuration of a Néel-type skyrmion in a ferromagnetic thin film when
an external electric field is applied. Fig. by Zhang et al. [143].

7.3 Hall effect caused by magnetic skyrmions

Having already established the formation of stable magnetic skyrmions in Pd/Fe/Ir film,
as described in Chapter 6, we now focus on the study of spin-transport properties in the
presence of these skyrmions, based on first-principles calculations.

At first, non-collinear spin density functional theory calculations, employing the KKR
Green function method were performed for the solution of the scattering problem of the
surface electrons off skyrmions in Pd/Fe/Ir(111) film. Thus, we calculate the scattering
amplitude on the Fermi surface states. Next, combining the KKR method with the
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Boltzmann formalism, the semi-classical Boltzmann transport equation is solved based
on quantities given by ab-initio calculations. In this way, we compute the conductivity
tensor σ (Sec. 3.2). Therefore, the knowledge of the conductivity allows us to estimate
the resistivity, and the topological Hall angle, which are given by the conductivity tensor.

In order to examine the effect of the skyrmion size on spin-transport phenomena, we
perform the spin-transport calculations for two differently sized magnetic skyrmions,
which are formed in Pd/Fe/Ir film, as they are described in Chapter 6. The smaller
skyrmion which is investigated, is of the order of 37 Fe atoms in the defect cluster and
its diameter is found equal to 0.77 nm. The larger skyrmion consists of 121 Fe atoms in
the defect cluster, and its diameter is calculated 0.99 nm (Table 6.3).

At first, we study the scattering properties of the two different sizes of magnetic
skyrmions. In Fig. 7.3 the scattering rate off the skyrmions is presented for the states at
E = EF, integrated over the Fermi surface. The scattering rate is observed to be higher
in the larger skyrmion system.

Figure 7.3: The integrated scattering rate τ−1
k = Ω−1

BZ

∫
FS
v−1
k′ wkk′dk′ off the skyrmion of

diameter (a) d = 0.77 nm and (b) d = 0.99 nm on the Fermi surface.

Disorder induced band broadening

An additional electron scattering, due to the existence of other sources of scattering (such
as disorder by other defect types), is expected to affect experimental measurements.

In order to make our simulations more realistic, this scattering contribution is added
in our study, in analogy to a band broadening by the disorder. More specifically, an
additional constant energy term to the calculation of the relaxation time and the scattering
rate is inserted. The relaxation time τk (Eq. (3.21)) is reformulated to τ̃k according to
the following relation

1

τ̃k
=

1

τk
+

2Γ

ℏ
, (7.3)
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where the parameter Γ is a constant band broadening, which has energy dimensions of
the order of meV. This constant parameter indicates the disorder strength.

The matrix elements of the scattering rate wk′k must be also reformed in a consistent
way, in order to ensure that τ̃k = 1/

∑
k′ w̃k′k. Then, the scattering rate w̃k′k is calculated

by the equation

w̃k′k = wk′k +
2Γ

ℏn(E(k′))
δ(E(k)− E(k′)), (7.4)

where n(E) defines the density of states.
Therefore, the Boltzmann equation (Eq. (7.5)) is solved including the constant energy

term by the relaxation time τ̃k and the scattering rate w̃k′k, which are calculated according
to Eqs. (7.3),(7.4), as follows

Λk · n̂E = τ̃k

[
vk · n̂E +

∑
k′

w̃k′k(Λk′ · n̂E)

]
. (7.5)

Longitudinal resistivity

By the solution of the Boltzmann equation, we compute the conductivity tensor σ, as
described in Section 3.2. From this follows the resistivity tensor ρ,

ρ = σ−1. (7.6)

In the following, we investigate the computed longitudinal resistivity ρxx for the different
skyrmion sizes which is almost identical to ρyy, as we have found in the calculations.

Moreover, we derive results for five different skyrmion concentrations (0.1%, 2%, 4%,
6%, and 10%) in this system. Hence, we can find how the skyrmion concentration in
the film surface affects the spin-transport properties. In addition, considering different
skyrmion concentrations in the system, we can examine our calculations for numerical
noise. Nevertheless, the only realistic skyrmion concentration in the surface among the
different computed concentrations, is the lowest, i.e., 0.1% concentration of skyrmion in
the system surface 1. A system with 0.1% concentration of skyrmion in Pd/Fe/Ir film
is experimentally feasible. Otherwise, in the case of a defect (skyrmion) concentration
higher than 1%, the surface will be practically fully covered by skyrmions, at least in
the case of the skyrmions that are converged in diameter (0.99 nm, including 121 Fe
atoms). The higher concentrations should be considered numerical experiments for a
consistency check of our results.

In Figs. 7.4(a-b) the effect of the disorder strength Γ (Eq. (7.3)), induced by the band
broadening, on the longitudinal resistivity ρxx, is shown for the two different skyrmion
sizes. The scattering calculations were performed considering only the Fe atoms in the
skyrmion defect cluster (excluding from the scattering calculations the contribution of Ir
and Pd atoms in the skyrmion region). We find that the longitudinal resistivity has a linear
dependence on the band broadening in the realistic case of 0.1% skyrmion concentration

1 1% skyrmion concentration in the system surface corresponds to one single skyrmion in 100 atoms in
the surface.
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Figure 7.4: The longitudinal resistivity ρxx as a function of the disorder broadening
Γ (Eq. (7.3)) for the skyrmion with diameter (a) 0.77 nm (consists of 37
Fe spins) and (b) 0.99 nm (consists of 121 Fe spins), in Pd/Fe/Ir(111) film.
The black rectangular, red circles, pink down-triangles and green rhombus,
correspond to the five different skyrmion concentrations, 0.1%, 2%, 6% and
10% in Pd/Fe/Ir(111) film, respectively.
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in the system surface, whereas an almost linear correlation between the resistivity and
the constant energy parameter Γ, is observed in higher skyrmion concentrations. In
addition, comparing the two differently sized skyrmions, we find that the longitudinal
resistivity is independent of the skyrmion size, at least in the realistic system.

Hall angle

For the application of an external electric field Ey along the y-direction, and the prop-
agation of a perpendicular charge current along the x-direction, the anomalous Hall
conductivity (or the Hall conductivity in general) can be defined as the non-diagonal
xy-component of the charge conductivity tensor σc

xy. Then, the anomalous Hall angle is
defined as

αc =
σc
xy

σc
yy

. (7.7)

In analogy, we define the Hall angle due to topological Hall effect, arising from the
non-collinear spin texture of the magnetic skyrmions in Pd/Fe/Ir(111) film.

For practical applications, the behavior of the topological Hall angle (THA) (Eq. (7.7))
in the presence of the disorder in the sample is of great importance. In Figs. 7.5(a-b)
the topological Hall angle is depicted as a function of the disorder strength Γ for the
two differently sized skyrmion systems and for the different skyrmion concentrations
in the surface. Thus, we can analyze the influence of the skyrmion size on the THE
measurements. Comparing the extracted results of THA of the larger skyrmion system
(Fig. 7.5(b)) with the corresponding results of the smaller skyrmion system (Fig. 7.5(a)),
we can see that the Hall angle is one order of magnitude higher in the case of the larger
skyrmion. Since the longitudinal resistivity, i.e., the diagonal term of the conductivity
tensor, is quite similar for the different skyrmion sizes, we conclude that the larger Hall
angle which is calculated in the larger skyrmion system, arises from the non-diagonal
conductivity term. The latter indicates that the studied skyrmion system should be
converged with respect to its radius, without setting boundary conditions which limit
the skyrmion size, since the Hall effect is affected significantly. However, it should be
mentioned that in the experimentally feasible system of 0.1% skyrmion concentration,
the Hall angle becomes rather small as the disorder strength increases.

We follow up our analysis with the investigation of the topological Hall effect caused by
the larger formed stable magnetic skyrmion (of diameter 0.99 nm) in the Pd/Fe/Ir film.
We consider the 0.1% skyrmion concentration in the system surface, and we examine
the influence on the THA in the cases of either taking into account, or, alternatively,
excluding the Ir and Pd atoms in the skyrmion region in the scattering calculations. In
order to achieve this, we compute the resistivity and the Hall angle including in the
scattering region the Fe atoms, as well as the nearest Pd and Ir atoms which form the
skyrmion defect cluster (black rectangular in Fig. 7.6). Moreover, we calculate results
taking into account in our calculations the scattering caused by (i) only the Fe atoms (red
circles in Fig. 7.6), (ii) the Fe and the nearest Pd atoms (blue up-triangles in Fig. 7.6),
and (iii) the Fe and the nearest Ir atoms (pink down-triangles in Fig. 7.6).
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Figure 7.5: The Topological Hall angle as a function of the disorder broadening
Γ (Eq. (7.3)), for the skyrmion with diameter (a) 0.77 nm (consists of 37
Fe spins) and (b) 0.99 nm (consists of 121 Fe spins), in Pd/Fe/Ir(111) film.
The black rectangular, red circles, pink down-triangles and green rhombus,
correspond to the five different skyrmion concentrations, 0.1%, 2%, 6% and
10% in Pd/Fe/Ir(111) film, respectively.
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Figure 7.6: (a) The longitudinal resistivity ρxx and (b) the Topological Hall angle as
a function of the disorder broadening Γ (Eq. (7.3)) for the skyrmion of
diameter 0.99 nm, considering 0.1% skyrmion concentration in the surface of
Pd/Fe/Ir(111). The black rectangular represent the calculations, considering
in the scattering process the skyrmion consists of 349 atoms (121 Fe atoms,
including Ir and Pd atoms in the skyrmion region), the red circles represent
the scattering arising only by the skyrmion defect cluster consists of 121 Fe
atoms, the blue up-triangles to the skyrmion defect cluster of 121 Fe atoms
including the nearest Pd atoms, and the pink down-triangles to the skyrmion
defect cluster of 121 Fe atoms including the nearest Ir atoms.
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In Fig. 7.6 it is shown that the computed longitudinal resistivity (Fig. 7.6(a)) and
the topological Hall angle (Fig. 7.6(b)) differ if we take into account in the scattering
process the whole defect cluster of skyrmion (i.e., Fe, including nearest Pd and Ir atoms)
compared to the corresponding results that are found considering only the Fe atoms that
form the skyrmion. In contrast, we observe a similar behavior of the results of the whole
defect cluster with the corresponding results of the defect cluster which includes Fe and
its nearest Ir atoms.

Because of these findings, we calculate the longitudinal resistivity of the large, full-
skyrmion system, where the skyrmion defect cluster consists of Fe, as well as its nearest
Ir and Pd atoms. As it is shown in Fig. 7.7(a), the calculated resistivity of the systems
with higher skyrmion concentrations is one order of magnitude greater compared to the
results of the corresponding concentrations in the case that the scattering is calculated
for a skyrmion consisting of only Fe spins in the defect cluster (Fig. 7.4(b)).

In Fig. 7.7(b) the THA as a function of the disorder strength is depicted for different
skyrmion concentrations in the surface of Pd/Fe/Ir film. A decrease of the THA is seen
as the degree of the disorder increases. Therefore, the measured Hall angle in experiments
is expected to strongly depend on the degree of disorder of the sample. Comparison
of experiment with theory should be possible only if the degree and type of disorder is
known in experiment.

Computational details

In a first step, using the JuKKR-PKKprime code [100] we form the Fermi surface of
Pd/Fe/Ir film. Next, we apply the DFT within KKR Green function method in order to
compute the scattering matrix Tk′k elements (Section 2.4) on the Fermi surface states,
using the DFT-code JuKKR-KKRhost [100]. Combining the KKR method with the
Boltzmann formalism we solve the semi-classical Boltzmann transport equation self-
consistently (Section 3.1) with the JuKKR-PKKprime code. These calculations were
carried out considering an ultra thin film of Pd/Fe/Ir(111) system. This ultra thin film
is modeled by 17 Ir, 1 Fe and 1 Pd atomic layers, including 2 vacuum layers on top and
bottom, i.e., 23 atomic layers in total. For the computation of the conductivity tensor
we used 41700 k-points in the full Fermi surface of Pd/Fe/Ir.
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Figure 7.7: (a) The longitudinal resistivity ρxx and (b) the Topological Hall angle as
a function of the disorder broadening Γ (Eq. (7.3)) for the skyrmion of
diameter 0.99 nm in Pd/Fe/Ir(111) film. The black rectangular, red circles,
blue up-triangles, pink down-triangles and green rhombus, correspond to
the five different skyrmion concentrations, 0.1%, 2%, 4%, 6% and 10% in
Pd/Fe/Ir(111) system surface, respectively.
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Motivated by anticipated applications of topological materials in information technology,
this Thesis provides an ab-initio microscopic computational study of spin-transport phe-
nomena in topological insulators and magnetic skyrmions, based on electronic scattering
theory and density functional theory. For the calculation of the transport properties,
the linearized semiclassical Boltzmann equation is employed, with the scattering rate
provided by the Korringa-Kohn-Rostoker Green function method. Its solution gives the
non-equilibrium distribution function in terms of a mean free path, from which all linear
response coefficients to the external electric field follow.

The present Thesis studies phenomena extrinsic in their origin, i.e., arising from defects
(either impurity atoms or skyrmions). The applied methods are complementary to the
methods for the intrinsic spin torque or the intrinsic anomalous Hall effect in ferromagnets.
Both methodologies are necessary for a full picture of transport phenomena in topological
materials, contributing to applications in magnetism-based memory.

The first part of the results concerns the surface of the topological insulator Bi2Te3
doped with ferromagnetically coupled transition metal impurities (Cr, Mn, Fe, Co) at 2-
5% concentration. Among these systems, previous experimental and theoretical work [83]
has found a ferromagnetic state and an out-of-plane anisotropy. The quantity of interest
here is the spin-orbit torque on the impurity magnetic moments, which is found to be
sizeable. We find the Mn-doped system advantageous over the others because it also
shows low resistivity and Joule heat production. The effect of sizeable spin-orbit torque
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is traced back to a number of reasons. Firstly, all current flows through the surface, as
the bulk is insulating. Secondly, the absence of spin degeneracy in the topological surface
states means that an electric current is necessarily accompanied by a spin current and
a spin accumulation. These two facts are ubiquitous in topological insulators. Thirdly,
the spin polarization of the surface states is directed largely in-plane, as is the case in
topological insulators with a Dirac cone at the Brillouin zone center. In concurrence
with an out-of-plane direction of the impurity magnetic moment, this means that the
impurity and conduction spins are mutually perpendicular, resulting in a maximal torque.
Thus the sizeable spin-orbit torque depends on characteristics that could be repeated in
other similar systems. In particular, the ferromagnetic coupling of impurities relies on
the large Fermi wavelength and can be engineered by changing the concentration, while
the out-of-plane easy magnetization axis can be engineered by additional n or p doping.
Thus our conclusions are relevant from a wider point of view and reinforce the prospects
of such systems.

The second part of the results concerns the Hall effect caused by non-collinear, chi-
ral topological magnetic structures, in particular magnetic skyrmions, formed in the
Pd/Fe/Ir(111) heterostructure. The choice of the system is based on previous experiments
and density-functional calculations, that have shown its existence and stability. Here,
non-collinear spin density functional theory calculations within the KKR Green function
method were performed, examining the formation of differently sized stable magnetic
skyrmions in the Fe ferromagnetic layer. The skyrmion size is varied until a relaxation of
the magnetization was reached at a conventional skyrmion radius of 0.5 nm corresponding
to a magnetization angle of 2◦ at the rim (1.5 nm from the center). The skyrmion size
is smaller than the experimental result, probably due to an overestimation of the spin
stiffness in the local spin density approximation. Next, calculations based on the KKR
Green function method and the linearized Boltzmann equation show the emergence of
the topological Hall effect. Calculations on differently sized skyrmions demonstrate that
the topological Hall angle is significantly affected by the skyrmion size. In addition,
taking into account a generic form of disorder in the heterostructure reveals a strong
dependence of the topological Hall angle on the degree of the disorder.
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