

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΙΑΤΡΙΚΗ ΣΧΟΛΗ

ΘΕΡΑΠΕΥΤΙΚΗ ΚΛΙΝΙΚΗ ΝΟΣ. ΑΛΕΞΑΝΔΡΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΚΛΙΝΙΚΕΣ ΜΕΛΕΤΕΣ: ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΚΤΕΛΕΣΗ»

MSc: "Clinical Trials: Design and Conduct"

Διευθυντής

Ευάγγελος Τέρπος, Καθηγητής Ιατρικής Σχολής ΕΚΠΑ

Συμπληρώματα Μικροθρεπτικών Συστατικών στο Σύνδρομο Ευθραυστότητας: Μια Συστηματική Ανασκόπηση και Μέτα-Ανάλυση Τυχαιοποιημένων Κλινικών Δοκιμών

Micronutrient Supplementation in Frailty: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

Όνομα: Παρασκευάς Θεμιστοκλής

Αρ. μητρώου: 7450492100028

Επάγγελμα/ή Ιδιότητα: Ιατρός

Επιβλέπων καθηγητής ΜΔΕ: Σεργεντάνης Θεόδωρος, Επίκουρος Καθηγητής Επιδημιολογίας-Μεθοδολογίας της Έρευνας, Τμήμα Πολιτικών Δημόσιας Υγείας, Σχολή Δημόσιας Υγείας, ΠΑΔΑ

AOHNA 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΙΑΤΡΙΚΗ ΣΧΟΛΗ

ΘΕΡΑΠΕΥΤΙΚΗ ΚΛΙΝΙΚΗ ΝΟΣ. ΑΛΕΞΑΝΔΡΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΚΛΙΝΙΚΕΣ ΜΕΛΕΤΕΣ: ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΚΤΕΛΕΣΗ»

MSc: "Clinical Trials: Design and Conduct"

Διευθυντής

Ευάγγελος Τέρπος, Καθηγητής Ιατρικής Σχολής ΕΚΠΑ

Συμπληρώματα Μικροθρεπτικών Συστατικών στο Σύνδρομο Ευθραυστότητας: Μια Συστηματική Ανασκόπηση και Μέτα-Ανάλυση Τυχαιοποιημένων Κλινικών Δοκιμών

Micronutrient Supplementation in Frailty: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

Όνομα: Παρασκευάς Θεμιστοκλής

Αρ. μητρώου: 7450492100028

Επάγγελμα/ή Ιδιότητα: Ιατρός

<u>Τα Μέλη της Εξεταστικής Επιτροπής</u>

Επιβλέπων καθηγητής ΜΔΕ: Σεργεντάνης Θεόδωρος, Επίκουρος Καθηγητής Επιδημιολογίας-Μεθοδολογίας της Έρευνας, Τμήμα Πολιτικών Δημόσιας Υγείας, Σχολή Δημόσιας Υγείας, ΠΑΔΑ

Ψαλτοπούλου Θεοδώρα, Καθηγήτρια Θεραπευτικής - Επιδημιολογίας - Προληπτικής Ιατρικής, Ιατρική Σχολή ΕΚΠΑ

Ντάνασης-Σταθόπουλος Ιωάννης, PhD Ιατρός, Θεραπευτική Κλινική, Νοσοκομείο Αλεξάνδρα, Ιατρική Σχολή ΕΚΠΑ

AOHNA 2023

ΠΡΟΛΟΓΟΣ

Η παρούσα διπλωματική εργασία αποτελεί μια προσπάθεια ανασκόπησης της τρέχουσας βιβλιογραφίας για ένα σύνηθες κλινικό ερώτημα, που πρόκειται να συνεχίσει να μας απασχολεί τις επόμενες δεκαετίες. Ακολουθώντας αυστηρά τις σύγχρονες κατευθυντήριες οδηγίες γύρω από των τομέα των συστηματικών ανασκοπήσεων όχι μόνο καταλήγουμε σε αριθμητικά συμπεράσματα, αλλά συγχρόνως χαρτογραφούμε τις ελλείψεις τις διαθέσιμης βιβλιογραφίας και συνεπώς της έρευνας που διεξάγεται παγκοσμίως. Τέλος, τονίζουμε τη σημασία της αξιολόγησης της ποιότητας των διαθέσιμων στοιχείων, κάτι που συχνά αγνοείται στην κλινική πράξη.

Θα ήθελα να ευχαριστήσω πρωτίστως τον επίκουρο καθηγητή και επιβλέποντα αυτής της διατριβής κύριο Θεόδωρο Σεργεντάνη για την συνεχή στήριξη και εμπιστοσύνη που μου προσέφερε, καθώς και τα υπόλοιπα μέλη της τριμελούς επιτροπής.

Τέλος, ευχαριστώ θερμά την οικογένεια μου, την Έλσα, τον αναπληρωτή καθηγητή Παθολογίας, ΠΓΝΠ, Δημήτριο Βελισσάρη για την κλινική καθοδήγηση και τον αναπληρωτή καθηγητή Παιδιατρικής, Lund University, Matteo Bruschettini που με εισήγαγε στη μεθοδολογική προσέγγιση της Cochrane.

ΠΙΝΑΚΑΣ ΠΕΡΙΟΧΟΜΕΝΩΝ

A. Abstract	6
A1. Abstract in Greek	6
A2. Abstract in English	7
B. Introduction	7
B1. Description of the Condition	7
B2. Description of the Intervention	8
B3. How the Intervention Might Work	8
B4. Why it is important to do this Review	9
C. Methods	9
C1. Eligibility Criteria	9
C1.1 Types of Studies	9
C1.2 Types of Participants	10
C1.3 Types of Interventions and Co-Interventions	
C1.4 Types of Outcome Measures	10
C2. Information Sources and Search Strategy	11
C2.1 Electronic Searches	11
C3. Selection and Data Collection Process	11
C3.1 Selection of Studies	11
C3.2 Data Extraction and Management	11
C4. Study Risk of Bias Assessment	11
C5. Effect Measures	11
C6. Data Synthesis	11
C7. Subgroup Analysis and Investigation of Heterogeneity	11
C8. Sensitivity Analysis	12
C9. Summary of Findings And Assessment of the Certainty of the Evidence	12
D. Results	12
D1. Results of the Search	13
D2. Included Studies	13

D3. Risk of Bias in Included Studies	13
D4. Effect of Interventions	15
D4.1 Vitamin-D Supplementation	18
D4.2 Multicomponent Supplementation	22
E. Discussion	27
F. Conclusion	28
G. References	28
H. Tables	32
H1. Table 1: Characteristics of Included Studies on Vitamin-D Supplementation	32
H2. Table 2: Characteristics of Included Studies on Multicomponent Supplementation	41
H3. Table 3: Risk of Bias of Included Studies on Vitamin-D Supplementation	50
H4. Table 4: Risk of Bias of Included Studies on Multicomponent Supplementation	55

Micronutrient Supplementation in Frailty: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Περίληψη

Εισαγωγή: Τα άτομα με σύνδρομο ευθραυστότητας βρίσκονται σε κίνδυνο για αυξημένη νοσηρότητα και θνησιμότητα. Τα χαμηλά επίπεδα πολλών βιταμινών και μετάλλων έχουν συσχετιστεί με μεγαλύτερη επίπτωση και βαρύτητα του συνδρόμου ευθραυστότητας. Συχνά στην κλινική πράξη χρησιμοποιούνται από του στόματος συμπληρώματα χωρίς επαρκείς ενδείξεις.

Στόχοι: Να καθορίσουμε το αποτέλεσμα των συμπληρωμάτων μικροθρεπτικών συστατικών σε μέτρα σωματικής ευθραυστότητας, στην θνησιμότητα και άλλες εκβάσεις που σχετίζονται με τον ασθενή.

Μέθοδοι: Τον Σεπτέμβριο του 2022 πραγματοποιήθηκε μια συστηματική αναζήτηση στις βάσεις δεδομένων PubMed και Embase και συμπεριλήφθηκαν τυχαιοποιημένες κλινικές που διερεύνησαν την επίδραση της συμπλήρωσης μικροθρεπτικών συστατικών σε άτομα με σύνδρομο ευθραυστότητας. Η βεβαιότητα των διαθέσιμων στοιχείων (certainty of evidence) καθορίστηκε βάσει των κατευθυντήριων οδηγιών GRADE.

Αποτελέσματα: Συμπεριλάβαμε 18 μελέτες που περιγράφονται σε 30 δημοσιευμένα άρθρα. Όλες οι μελέτες αναφέρονταν σε συμπληρώματα βιταμίνης D, είτε σε πολυσυμπληρώματα που περιείχαν έναν αριθμό μικροθρεπτικών. Μόνο 7 από τις 18 μελέτες χρησιμοποίησαν μια καθιερωμένη κλίμακα ευθραυστότητας για την αξιολόγηση των συμμετεχόντων. Όσον αφορά τον κίνδυνο συστηματικού σφάλματος, η συνολική ποιότητα των μελετών ήταν μέτρια. Για τα συμπληρώματα βιταμίνης D, 7 μελέτες (2600 συμμετέχοντες) ανέφεραν την ολική θνησιμότητα (RR: 1.04, 95% CI: 0.83 to 1.31, I²=35%) με μέτριο βεβαιότητα, ενώ μόνο μία μελέτη ανέφερε τις αλλαγές των επιπέδων ευθραυστότητας. Για τα πολυσυμπληρώματα, βρήκαμε 4 μελέτες (180 συμμετέχοντες) για την θνησιμότητα (δεν πραγματοποιήθηκε ποσοτική σύνθεση) και 2 μελέτες για τις αλλαγές των επιπέδων ευθραυστότητας (MD= -0.28, 95% CI: -0.71 to 0.16, I²=0%) με πολύ χαμηλή βεβαιότητα και για τις δύο εκβάσεις.

Συμπεράσματα: Η λήψη συμπληρωμάτων βιταμίνης D πιθανώς οδηγεί σε μικρή ή καθόλου αλλαγή στη θνησιμότητα από κάθε αιτία και στη συχνότητα πτώσης, ενώ μπορεί να οδηγήσει σε μικρή διαφορά στα κατάγματα σε άτομα με σύνδρομο ευθραυστότητας. Για πολυσυμπληρώματα, η βεβαιότητα των διαθέσιμων στοιχείων ήταν πολύ χαμηλή για τις κύριες και τις δευτερεύουσες εκβάσεις. Η μελλοντική έρευνα για το σύνδρομο ευθραυστότητας θα πρέπει να επικεντρωθεί σε εκβάσεις που σχετίζονται με τον ασθενή, όπως η αλλαγή στα επίπεδα αδυναμίας, η γνωστική λειτουργία και σε λειτουργικά μέτρα.

Abstract

Introduction: Frail individuals are at risk of high morbidity and mortality. Low levels of a number of vitamins and minerals has been associated with higher frailty incidence and severity. Oral supplementation of these micronutrients is often used in clinical practice without enough backing evidence.

Objectives: To determine the effect of micronutrient supplementation on measures of physical frailty, mortality and other patient-related outcomes.

Methods: A systematic search in PubMed and Embase was conducted on September 2022 and randomized controlled trials investigating the effect of micronutrient supplementation in frail individuals were included. The GRADE guidelines were used to assess the certainty of available evidence.

Results: We included 18 studies described in 30 published articles, reporting on the effect of either Vitamin-D supplementation or multicomponent supplementation, which consisted of a number of micronutrients. Only 7 of 18 studies used a an established frailty scale to assess participants. Regarding risk of bias, overall quality of studies was moderate. For Vitamin D supplementation, 7 studies (2600 participants) reported all-cause mortality (RR: 1.04, 95% CI: 0.83 to 1.31, I²=35%) with moderate certainty of evidence, while only one study reported on change in frailty levels. For multicomponent supplementation, we found 4 studies (180 participants) on mortality and 2 studies on change in frailty levels (MD= -0.28, 95% CI: -0.71 to 0.16, I²=0%) with very low certainty of evidences.

Conclusion: Vitamin D supplementation probably leads to little or no change in all-cause mortality and fall incidence, while it may lead to little difference in fractures in frail individuals. For multicomponent supplementation, the certainty of evidence was very low for our main and secondary outcomes. Future research in frailty should focus on patient-related outcomes, such as change in frailty levels, cognitive function and functional measures.

Main Text

Introduction

Description of the Condition

Frailty syndrome is defined as a clinically recognizable state in the elderly population, that is associated with increased vulnerability resulting from decreased physiologic reserves and multiorgan dysfunction, that leads to inability cope with everyday and acute stressors. Frailty syndrome is a disease of the elderly and is an emerging threat in modern societies. The ever-growing, aging population demands for change in public health policies in order to appropriately address this issue. According to WHO, by 2030 one in six people will be aged 60 years or over and as a result will be in risk of frailty.

The incidence of frailty differs between countries and settings, but it is estimated that one in six community-dwelling older people may have frailty (Ofori-Asenso *et al*, 2019). Additionally, pre-frailty, a state associated with increased risk of morbidity and frailty development, prevails in the elderly. Prevalence of pre-frailty is reported to be as high as 40% in older adults in Germany (Hajek *et al*, 2022).

Diagnosis of frailty is made using clinical criteria. While there is no "gold standard" in the diagnosis of frailty, the two main methods to diagnose frailty are Fried's Frailty Phenotype and Rockwood's Frailty Index. Fried's Frailty Phenotype assess physical frailty by measuring five characteristics: slowness, weakness, exhaustion, low physical activity and weight loss. Rockwood's Frailty Index considers frailty to be a continuum of accumulated deficits and assesses a number of criteria to define frailty, including comorbidities, polypharmacy, difficulty in activities of daily living, cognitive examination and physical measures such as gait speed and handgrip strength. While these two definitions of frailty fundamentally differ in their approach towards the syndrome, both can reliably predict adverse outcomes associated with frailty. While Fried's Phenotype can be used to assess individuals in a short amount of time, Frailty Index is considered to be more sensitive to longitudinal changes in frailty.

Description of the Intervention

Vitamins and minerals are essential *nutrients* that are required in small amounts for the proper function of biological organisms. Humans get them from food, but it is common among older people to take oral supplements with or without medical prescription. Oral supplements may include a number of components such as proteins, carbohydrates, fat, vitamins and minerals. Some available supplements may only contain a single micronutrient, more commonly vitamin D. In 2018 NHS published a guidance for over the counter medication, stating that the annual spend for vitamins and minerals is circa £ 48,100,000 and that with the exception of vitamin d they should not be routinely prescribed due to insufficient evidence of effectiveness. According to the National Institute for Health and Care Excellence, oral multivitamin and mineral supplements should help individuals who are eating poorly to meet their vitamin and mineral requirement.

How the Intervention might work

Vitamin D effects multiple pathways in humans, as vitamin D receptors are found throughout the human body. If affects muscle function, bone structure and cardiovascular health, as well as

inflammation, cell growth and metabolism. Vitamin D is linked with frailty, as it controls protein anabolism in muscle tissue and has anti-inflammatory properties (Bruyère *et al*, 2017).

In pre-clinical models evidence show that vitamin supplementation could be used to attenuate frailty (Bisset and Howlett, 2022). Vitamin D3 supplementation in rats led to significantly lower frailty index compared to age-matched controls. Another study in mice reported increased physical frailty in vitamin D3 deficient rats.

Vitamin and mineral deficiency is common among frail older individuals. Observational studies in humans suggest a strong association between vitamin D deficiency and measures of physical frailty (Kotlarczyk *et al*, 2017). However there evidence on the efficacy of vitamin-d supplementation in elderly are controversial (Reid and Bolland, 2019; Murphy, 2022).

Large population based studies report that this association exists for other vitamins as well. Low intake of B6, C, E and folate was associated with a higher risk for frailty in Spanish population study (Balboa-Castillo *et al*, 2018). Greater severity of frailty was found in older hospitalized patients with vitamin-C deficiency (Sharma *et al*, 2021).

Similarly to vitamins, other micronutrient deficiency could lead to frailty through modulation of inflammation, oxidative stress, muscle and bone metabolism (Semba *et al*, 2006). According to a recent systematic review of observational studies, higher dietary and plasma levels of carotenoid were associated with reduced odds of frailty (Zupo *et al*, 2022). With regard to minerals, low levels of selenium (which has pleiotropic effects including protection from oxidative stress and inflammation) were associated with mortality in frail elderly (Giovannini *et al*, 2018). Additionally, magnesium seems to impact frailty development, based on a study in community-dwelling older Japanese women (Kaimoto *et al*, 2021).

Why it is important to do this review

Nutritional supplements are commonly used by elderly and frail individuals, but it is usually suggested with limited backing evidence. The aim of this systematic review is to determine the effect of micronutrient supplementation on measures of physical frailty, mortality and relevant clinical outcomes related with aging in frail elder adults.

Methods

Eligibility criteria

Types of studies

We Included randomized controlled trials (RCTs), cluster-RCTs and quasi-RCTs. As we are interested in the effectiveness of an intervention, non-randomized studies were excluded from this review. Editorials, letters, commentaries, cross-sectional studies were also not eligible for inclusion.

Types of participants

We included frail and pre-frail individuals irrespective of their housing conditions (resident homes, community-dwelling etc.). As there is no single gold-standard in the diagnosis of frailty, we considered all studies that described their population as frail eligible for this review. Studies that investigated the role of supplements in acute conditions (e.g. SARS-CoV2 infection) were excluded.

Types of interventions (and co interventions)

In this review we expected to find two types of interventions, either supplementation with a single vitamin or micronutrient or with a formulation including numerous vitamins and micronutrients. These two types of interventions were analyzed and synthesized separately.

Additionally we expected that some studies would investigated the effect of supplementation along or versus exercise. If possible, we excluded "exercise" arms or combined "exercise-supplementation" arms, but we included studies in which all participants received exercise.

We included studies that use the following comparison groups:

- Placebo
- No intervention
- Different Dose

Type of Outcome Measures

Primary Outcomes

- 1) All-cause mortality
- 2) Frailty levels, as measured by validated frailty scales, such as Frailty Index, and Fried's Frailty Phenotype.

Secondary Outcomes

- 1) Falls measured as count of falls, prevalence of falls, time to first fall.
- 2) Fractures, including hip fractures, vertebral fractures etc.
- 3) Muscle strength as measured by handgrip strength
- 4) Gait speed
- 5) Body mass measures including lean mass, fat free mass, total mass, BMI.
- 6) Cognitive function as measured by validated scales such as Mini Mental State Exam
- 7) Inflammatory markers including but not limited to cytokines and CRP.
- 8) Physical performance and functionality

Information Sources and Search Strategy

Electronic Searches

In September 2022, we conducted a comprehensive search on PubMed/Medline and Embase using the following terms: (vitamin* OR mineral* OR lycopene OR ascorbic OR tocopherol OR retinol OR folate OR carotenoid* OR betacarotene] OR selenium OR pyridoxine OR iron) AND ("frail elderly"[MeSH Terms] OR "frail*" OR "frailty").

Selection and Data Collection Process

After the removal of duplicate articles, screening was performed and full text copies of all relevant manuscripts were retrieved. Data were extracted using pre-specified forms.

Study risk of bias assessment

The Cochrane Risk of Bias Tool was used to assess potential risk of bias.

Effect Measures

Statistical analysis was performed using RevMan Web

For dichotomous data, number of events and number of participants for each group were extracted to calculate summary risk ratios and confidence intervals. For continuous data, mean difference, mean change from baseline or postintervention mean for each groups and the respective standard deviations were extracted to calculate summary mean difference and confidence intervals. If this measures were not available, the calculator tool in RevMan Web was used to transform p values, t values, 95% CI or SEMs.

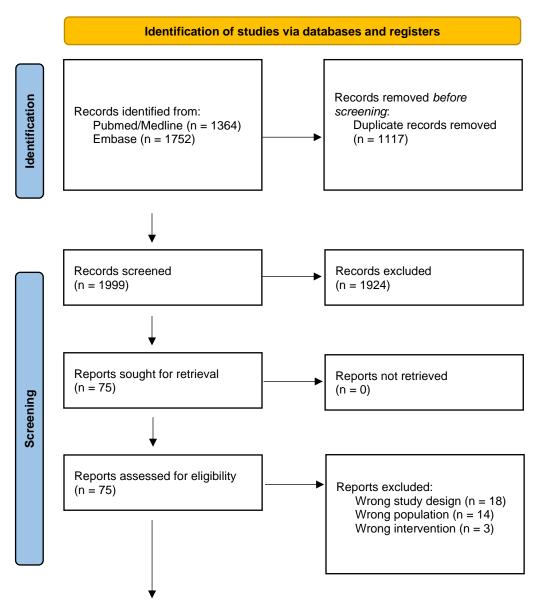
Data synthesis

Random-effects were used in quantitative meta-analysis, due to the expected clinical heterogeneity of the populations in frailty studies, the definition of frailty and different types of intervention.. We included change scores in the meta-analysis using the guidance from the Cochrane Handbook (Chapter 10.5). When appropriate, we combined intervention groups as per the guidance from the Cochrane Handbook (Chapter 6.5.2).

Subgroup analysis and investigation of heterogeneity

We intended to perform subgroup analysis, if substantial heterogeneity was identified, to investigate the following variables:

- Frailty severity
- Different dose/form of intervention


Sensitivity analysis

We planned to perform sensitivity analysis by excluding studies that did not use an established frailty scale, but enough data was not available

Summary of findings and assessment of the certainty of the evidence

The GRADE system was used to assess the certainty of the evidence. For reach outcome, we downgraded appropriately according to the trial's limitations.

Results

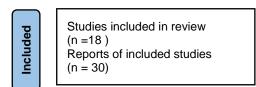


Figure 1: PRISMA Flowchart

Results of the search

Our search in Pub/Med and Embase resulted in 1364 and 1752 articles respectively. After duplicate removal, a total of 1999 articles were screened resulting in 75 potentially eligible reports. 18 reported were excluded due to wrong study design (non-randomized studies, study protocols), 14 due to wrong population and 3 due to wrong intervention. Finally, we included 18 studies described in 30 reports.

Included studies

We identified 9 studies (14 reports) investigating the effect of Vitamin D supplementation in frail elderly. 5 of these studies used an established frailty scale to assess participants; 3 used the Fried's Frailty Scale, 1 used the Winograd Criteria and 1 used the Frail Elderly Functional Assessment. The studies that did not used an established scale were relatively older with the most recent being published in 2011 (Neelemaat *et al*, 2011). The majority included studies administered daily doses of Vitamin D analogues (cholecalciferol, ergocalciferol, calcidiol, alphcalcidiol). Most of these studies used between 400 IU and 1000 IU per day, ranging from 200 IU to 4000 IU in the dose-finding phase STURDY trial (Appel *et al*, 2021). 2 older studies used very high doses of Vitamin D supplementation (Gloth *et al*, 1995: 400 IU per day to 100,000 IU every 3 months and Latham *et al*, 2003: single 300.000 IU dose).

Additionally, we found 9 studies (15 reports) on the effect of multicomponent supplementation in frail elderly. Only 2 of these studies used an established frailty scale, namely the Fried's Phenotype (Na *et al*, 2021; Biesek *et al*, 2021). Different formulations and enriched products that contained a number of vitamins and minerals, but also protein carbohydrate and fat. Extensive description of the included studies can be found in the *-Table of Included Studies*-.

Risk of bias in included studies

The overall quality of studies was moderate as 12 out of 18 studies had at least one domain with high risk of bias and only 1 study had low risk of vias in all domains (Vaes *et al*, 2018).

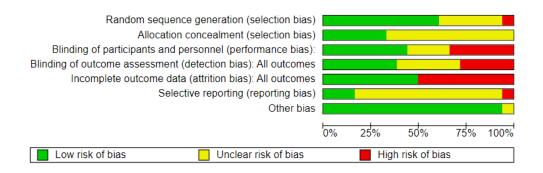


Figure 2: Risk of bias graph with overall bias in included studies

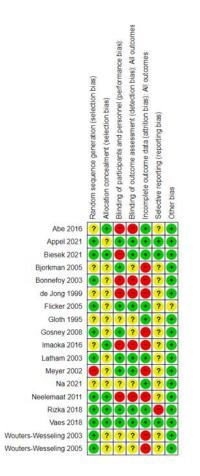


Figure 3: Risk of bias summary in included studies

Allocation

Out of 9 studies on Vitamin D supplementation, 6 had low, 2 unclear and 1 high risk of randomization bias. We considered the randomization method in the study by Meyer et al. to be insufficient, as they divided patients in groups based on date of birth. Additionally, allocation methods were not described adequately in 6 out of 9 studies (Meyer *et al*, 2002).

Regarding studies on multicomponent supplementation, 5 and 6 out of 9 studies did not provide enough details on randomization and allocation concealment respectively.

Blinding

Overall, blinding methods were judged to be adequate in studies on Vitamin D supplementation, with only 1 study having high risk of bias (participants, personnel and outcome assessors) (Neelemaat *et al*, 2011) as participants and researchers were not blinded to the intervention, 1 study had unclear risk of bias (blinding methods for participants personnel and outcome assessors were not described in text) (Gloth *et al*, 1995) and 1 had unclear risk only regarding blinding of outcome assessment (Bjorkman *et al*, 2008).

Contrariwise, studies investigating multicomponent supplementation had mostly high risk of detection and/or performance bias (5 out of 9 studies) and the remaining studies had unclear risk of bias in at least one of the two domains.

Incomplete outcome data

3 studies on Vitamin D supplementation and 5 studies on multicomponent supplementation had high risk of attrition bias, as less than 85% of randomized participants were analyzed in these studies.

Selective reporting

The study protocol was not available in 6 Vitamin D and 8 multicomponent supplementation studies, which were all judged to have unclear risk of bias in this domain. Additionally, we considered the study by Rizka to be in high risk of bias, as incidence of respiratory tract infection, which is the main outcome in the registered protocol, is not reported (Rizka *et al*, 2018).

Other potential sources of bias

Only 1 included study had unclear risk of other bias, as the supplement dose and frequency was changed during the conduction of the study. Reported conflicts of interest and funding for each can be found in the Table of Study Characteristics.

Intervention	Outcome	Studies/ Participants	Summary Effect Measure	Heterogeneity	GRADE
Vitamin D	All-cause	7 studies/	RR: 1.04,	I ² =35%	Moderate
supplementation	mortality	2600	95% CI:		
		participants			

Effect of interventions

vs placebo or			0.83 to		
control			1.31		
	Frailty levels	-			
	At least one fall	2 studies/ 847 participants	RR:0.99, 95% CI: 0.82 to 1.21	I ² =55%	Moderate
	Fracture	2 studies/ 1769 participants	RR:0.77,95%CI:0.59to1.01	I ² =0%	Low
	Muscle strength (kg)	3 studies/ 27 participants	MD:-0.62, 95% CI: - 1.74 to 0.50	I ² =0%	Very low
	Gait speed	No quantitative synthesis			
	Weight Indices	No quantitative synthesis			
	Cognitive function	-			
	Inflammatory	No			
	markers	quantitative synthesis			
	Functional	No			
	measures	quantitative			
		synthesis			
Multicomponent	All-cause	4 studies/			Very low
supplementation	mortality	4 studies/			very iow
vs placebo or		participants			
control		(only 2			
		deaths were reported in total)			
	Frailtylevels(meanFried'sFrailty	2 studies/ 86 participants	MD: -0.28, 95% CI: -	I ² =0%	Very low

Phenoty	ne			0.71	to		
score)				0.16			
At least	one fall	-	ntitative				
		synt	hesis				
Fracture		-				2	
Muscle	strength	4	studies/	MD:(I ² =31%	Very low
(kg)		153 parti	icipants	95% 1.35,	CI: - 2.8		
Gait spec	ed	No quar	ntitative hesis				
Weight Indices	BMI	2 157 parti	studies/ icipants		0.69, CI: - to	I ² =21%	Very low
	Body weight (kg)	4 188 part	studies/ icipants		1.23, CI: - to	I ² =30%	Very low
Cognitiv function (MMSE score)			udies/ 89 icipants		1.34, CI: - to	I ² =0	Very low
Inflamm markers	atory	-	ntitative hesis				
Function measure		-	ntitative hesis				

Comparison 1: Vitamin D supplementation

Outcomes

1. All-cause mortality

Seven studies with a total of 2600 participants reported the effect of Vitamin D supplementation on mortality. The studies by Rizka and Vaes followed participants for 3 and 6 months respectively and did not report any deaths during the trial's period (Rizka *et al*, 2018; Vaes *et al*, 2018). Compared to placebo or no intervention, Vitamin D supplementation probably results in little to no difference in mortality (RR: 1.04, 95% CI: 0.83 to 1.31, $I^2=35\%$). The certainty of evidence was moderate, we downgraded one point for high risk of bias, mainly in the trial by Meyer (Meyer *et al*, 2002).

	Experin	nental	Cont	trol		Risk ratio	Risk ratio		R	isk	ofE	Bias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	Α	в	с	D	Е	FG
Bjorkman 2005	27	150	9	68	9.2%	1.36 [0.68 , 2.73]		?	?	÷	?	•	? 🕂
Flicker 2005	76	313	85	312	34.0%	0.89 [0.68 , 1.16]	-	•	?	Ŧ	÷	+ (??
Latham 2003	11	121	3	122	3.2%	3.70 [1.06 , 12.92]		•	?	Ŧ	÷	+ (? 🕂
Meyer 2002	163	569	169	575	45.2%	0.97 [0.81 , 1.17]	•	•	?	Ŧ	•		? 🕇
Neelemaat 2011	14	105	11	105	8.3%	1.27 [0.61 , 2.67]		•	•	•	•	•	? 🖣
Total (95% CI)		1258		1182	100.0%	1.04 [0.83 , 1.31]	•						
Total events:	291		277				ľ						
Heterogeneity: Tau ² =	0.02; Chi ²	= 6.17, d	f = 4 (P = 0	0.19); I ² =	35%		01 0.1 1 10 1	- 00					
Test for overall effect:	Z = 0.34 (F	P = 0.74)					experimental] Favours [con						
Test for subgroup diffe	erences: No	ot applica	ble				·	,					

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

(G) Other bias

Figure 4: Meta-analysis of studies that reported the effect Vitamin-D supplementation on mortality in frail individuals

2. Frailty levels, as measured by validated frailty scales, such as Frailty Index, and Fried's Frailty Phenotype.

Two studies investigated the effect on Vitamin D supplementation on frailty status. In the trial by Appel, there was no difference between pooled higher doses (1000 IU/d, 2000 IU/d, 4000 IU/d) and control dose (200 IU/d) in risk of frailty incidence, frailty worsening or improving (Appel *et al*, 2021). Interestingly, during the dose-finding phase of the trial the 2000 IU/d group had higher risk of worsening frailty status (hazard ratio (HR) = 1.89, 95% CI: 1.13–3.16, p = 0.015), while the 4000 IU/d dose had lower risk for developing frailty (HR = 0.22, 95% CI: 0.05–0.97, p = 0.045). These differences might be spurious findings or might be attributed to baseline Vitamin D status.

Gloth et al. did not report the comparison between the two arms (Gloth et al, 1995).

3. Falls

We found three studies investigating the number of participants with at least one fall with each study considering a different dose of Vitamin D supplementation, ergocalciferol 1000 IU/d, single oral dose of 300.000 IU and high doses of cholecalciferol 1000-4000 IU/d (Flicker *et al*, 2005; Latham *et al*, 2003). The latter used a low dose of 200 IU/d in the control group. None of these studies found a sinificant effect on supplementation on the number of people with at least one fall. Vitamin D supplementation does not reduc e falls in frail individuals (RR=0.99, 95% CI: 0.82 to 1.21, I2=55%, Grade: Moderate, downgrade 1 point for inconsistency).

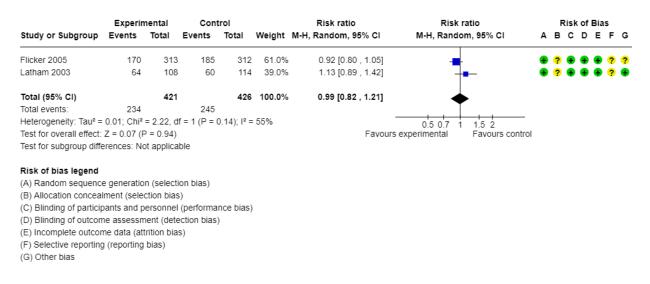
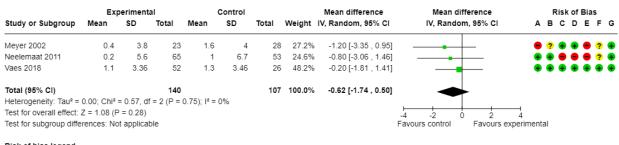


Figure 5: Meta-analysis of studies that reported the effect Vitamin-D supplementation on number of frail participants with at least one fall

4. Fractures, including hip fractures, vertebral fractures etc.


Fractures were reported by three studies. Compared to the other two studies Meyer et al. investigated a relatively lower dose of intervention of cholecalciferol 440 IU/d, but there was no significant differences between the intervention and the control group in any of the studies (Appel *et al*, 2021; Flicker *et al*, 2005; Meyer *et al*, 2002). Compared to placebo, Vitamin D supplementation may result to little or no difference on fractures (RR: 0.77, 95% CI: 0.59 to 1.01, $I^2=0\%$, Grade: low, downgrade 1 point for wide CI, 1 point for ROB).

	Experin	nental	Cont	trol		Risk ratio	Risk ratio		R	lisk	(of	Bia	s	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl	Α	в	С	D	Е	F	G
Flicker 2005	25	313	35	312	29.7%	0.71 [0.44 , 1.1	6]	•	?	÷	÷	÷	?	?
Meyer 2002	60	569	76	575	70.3%	0.80 [0.58 , 1.1	0] –	•	?	Ŧ	•	•	?	Ŧ
Total (95% CI)		882		887	100.0%	0.77 [0.59 , 1.0	1] 🔶							
Total events:	85		111				•							
Heterogeneity: Tau ² =	0.00; Chi2	= 0.15, d	f = 1 (P = (0.70); I ² =	0%		0.1 0.2 0.5 1 2 5 10							
Test for overall effect:	Z = 1.91 (F	^o = 0.06)				Fav	vours experimental Favours control							
Test for subgroup diffe	erences: No	ot applica	ble											
Risk of bias legend														
(A) Random sequence	e generatio	n (selecti	on bias)											
(B) Allocation conceal	ment (sele	ction bias	;)											
(C) Blinding of particip	ants and p	ersonnel	, (performa	nce bias)										
(D) Blinding of outcom				,										
(E) Incomplete outcom		· ·		r										
(F) Selective reporting			-,											
(G) Other bias	, (reperting	2100)												
(0) 00101 0100														

Figure 6: Meta-analysis of studies that reported the effect Vitamin-D supplementation on fractures in frail individuals

5. Muscle strength as measured by handgrip strength

Meyer, Neelemaat and Vaes investigated the change in handgrip strength after 12, 3 and 6 months of supplementation respectively (Meyer *et al*, 2002; Neelemaat *et al*, 2011; Vaes *et al*, 2018). All studies had negative findings. This outcome was available in a small number of participants of the Meyer trial (n=51) in a secondary report. In the quantitative synthesis, the two arms in the Vaes study (10 mcg/d of 25(OH)D3 and 20 mcg/d of cholecalciferol) were combined. The evidence is very uncertain about the effect of Vitamin D on handgrip strength (MD:-0.62, 95% CI: -1.74 to 0.50, I²: 0%, Grade: Very low, downgrade 2 points for imprecision due to low number of participants and wide CI overlapping the line of no effect and 1 point for ROB).

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

Figure 7: Meta-analysis of studies that reported the effect Vitamin-D supplementation on handgrip strength in frail individuals

6. Gait speed

Regarding change in gait speed, Appel did not find significant differences between the higher pooled doses group vs the low dose group after 3 and 6 months of supplementation, but the higher doses provided a small but significant protective effect after 12 months of supplementation (MD=0.06 m/sec, 95% CI: 0.02-0.10) (Appel *et al*, 2021). Additionally, there was a significant reduction from baseline after 6 and 12 months of supplementation in both arms. Vaes followed patients up to 6 months and did not find any significant differences between the three arms (250HD3, cholecalciferol and placebo) regarding gait speed (Vaes *et al*, 2018). Similarly to Appel, there was a within group decrease from baseline during the study period.

7. Body mass measures including lean mass, fat free mass, total mass, BMI.

Two studies reported changes in body mass indexes. Neelemaat did not find any significant differences in fat free mass after 3 months of supplementation, but in subgroup analysis there was a significant increase in participants with weight > 63.9 kg at baseline (mean difference 3.4, 95% CI: 0.2-6.6) (Neelemaat *et al*, 2011). Similarly, in the trial by Vaes supplementation with vitamin D for 6 months did not result in a change in total lean mass compared to placebo (Vaes *et al*, 2018).

8. Cognitive function as measured by validated scales such as Mini Mental State Exam

No studies reported this outcome.

9. Inflammatory markers including but not limited to cytokines and CRP.

Bjorkman et al. did not find any significant differences after different doses of cholecalciferol compared to placebo in either CRP (p=0.523) or fibrinogen (p=0.184). Extreme changes in CRP (e.g. -96.75 to 395.62 in the 1200IU/d arm) might be attributed to other factors, such as acute inflammatory procedures (Bjorkman *et al*, 2011).

In the trial by Rizka et al. supplementation with 0.5 mcg alphcalcidiol daily for 90 days result in significant changes in IL-10 levels, IL-6/IL-10 ratio, CD4/CD8 ratio and CD8+ CD28- percentage. This changes suggest a shift towards a more anti-inflammatory state (Rizka *et al*, 2018).

10. Functionality

Latham et al reported a number of different measures regarding functionality, including Barthel Index, Adelaide activities profile and Medical Outcomes Study 36-item short form questionnaire (SF-36), but did not find any significant differences 3 months after a single high dose vitamin D dose (Latham *et al*, 2003). Likewise, in the Neelemaat et al. study 3 month supplementation of 400 IU vitamin D3 did not lead in significant between group changes in functional limitation score, physical performance score or physical limitation score (Neelemaat *et al*, 2011).

Multicomponent Supplementation

1. All-cause mortality

Four studies with a total of 180 participants reported this outcome, but overall there were only 2 deaths (one in each group) in the study by Imaoka (Imaoka *et al*, 2016). Thus, the evidence is very uncertain about the effect of multicomponent supplementation on mortality in frail individuals.

2. Frailty levels, as measured by validated frailty scales, such as Frailty Index, and Fried's Frailty Phenotype.

Two studies with 86 participants evaluated the effect of multicomponent supplementation on frailty measured with the Fried's Frailty Phenotype (MD= -0.28, 95% CI: -0.71 to 0.16, $I^2=0\%$) (Biesek *et al*, 2021; Na *et al*, 2021). The evidence is very uncertain about the effect of multicomponent supplementation on frailty levels (Grade: Very low, downgrade 2 for imprecision and 1 for risk of bias).

	Ex	perimenta	d .		Control			Mean difference	Mean diff	erence	r	Risk	of B	ias	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random	, 95% CI	АВ	С	DE	F	G
Biesek 2021	0.66667	0.90749	18	0.8	0.94112	15	46.6%	-0.13 [-0.77 , 0.50)	_	• •	•	• •	• •	•
Na 2021	1.2	1.1	28	1.6	1.1	25	53.4%	-0.40 [-0.99 , 0.19	9] —		??	?	?	• ?	•
Total (95% CI)			46			40	100.0%	-0.28 [-0.71 , 0.16	5] 🔶						
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.36, df	= 1 (P = 0	0.55); I² =	0%										
Test for overall effect:	Z = 1.25 (F	P = 0.21)							-4 -2 0	2 4					
Test for subgroup diffe	erences: No	ot applicab	le					Fav	ours experimental	Favours control					

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

Figure 8: Meta-analysis of studies that reported the effect multicomponent supplementation on frailty levels in frail individuals

3. Falls

Only one study investigated the effect of multicomponent supplementation on falls ((Imaoka *et al*, 2016)). While they did not find significant differences between either the supplementation or the exercise group compared to the placebo, the group that received both interventions had a significantly lower hazard compared to placebo (adjusted for sex and age, HR= 0.276, 95% CI: 0.083-0.924, p=0.037).

4. Fractures, including hip fractures, vertebral fractures etc.

No studies reported this outcome.

5. Muscle strength as measured by handgrip strength

Four studies with a total of 153 participants were included in the meta-analysis (MD=0.76, 95% CI: -1.35, 2.87, I^2 =31%) (Abe *et al*, 2016; Imaoka *et al*, 2016; Biesek *et al*, 2021; Na *et al*, 2021). All four studies had negative findings. Additionally de Jong, did not find significant differences between the supplementation and placebo group, but was not included in the meta-analysis as they reported median, 10th and 90th percentile values. The evidence is very uncertain about the effect of multicomponent supplementation on frailty levels (Grade: Very low, downgrade 2 for imprecision and 1 for ROB)

	Exp	erimenta	al		Control			Mean difference	Mean difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	ABCDEFG
Abe 2016	11.17	3.97	24	9.8	5.5	10	22.7%	1.37 [-2.39 , 5.13]		? • • • • ? •
Biesek 2021	21.4	4.5	17	20.1	5.4	15	25.5%	1.30 [-2.17 , 4.77]		
Imaoka 2016	10.2	5.3	17	13.5	7.6	17	17.9%	-3.30 [-7.70 , 1.10]	_	? 🔒 🖨 🖨 ? 🧲
Na 2021	13.1	5.5	28	11	4.8	25	33.9%	2.10 [-0.67 , 4.87]	+	?????
Total (95% Cl)			86			67	100.0%	0.76 [-1.35 , 2.87]	•	
Heterogeneity: Tau ² =	1.43; Chi ² :	= 4.32, df	= 3 (P =	0.23); I ² =	31%					
Test for overall effect:	Z = 0.71 (P	= 0.48)							-10 -5 0 5	10
Test for subgroup diffe	rences: No	t applicat	ole						Favours control Favours ex	perimental

Risk of bias legend

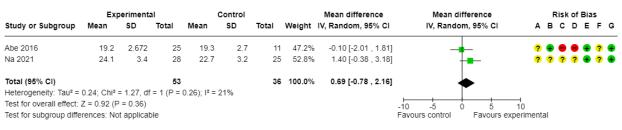
(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias)


Figure 9: Meta-analysis of studies that reported the effect multicomponent supplementation on handgrip strength in frail individuals

6. Gait speed

Abe et al. analyzed changes after 3 months of supplementation and found a significant difference between the three arms, with the group receiving multicomponent supplementation that included medium-chain acids showing a slight increase compared to baseline (Abe *et al*, 2016). The other two groups (supplementation that included long-chain acids and control) showed a small decline from baseline. It must be noted that there was high attrition in this outcome (only 24 participants analyzed in total) and that the medium-chain acids group had numerically higher walking speed at baseline. Due to these differences, we did not pool the data from the two intervention groups. In the study by Bonnefoy, supplementation did not have a significant effect on 6 meter walk time at 3 and 9 months (Bonnefoy *et al*, 2003). Similarly in the trial by de Jong, changes from baseline were similar for the intervention and the control group $(0.0\pm0.1 \text{ and } 0.1\pm0.1 \text{ m/sec})$.

7. Body mass measures including lean mass, fat free mass, total mass, BMI.

Five studies reported the effect of multicomponent supplementation on body mass indexes. We performed 2 separate meta-analyses for BMI (MD: 0.69, 95% CI: -0.78 to 2.16, $I^2=21\%$) and body weight (MD: 1.23, 95% CI: -0.91 to 3.37, $I^2=30\%$). The evidence is very uncertain about the effect of multicomponent supplementation on both indexes (Grade Very Low, downgrade 2 for imprecision and 1 for ROB). The findings of Bonnefoy et al. were not included in the analysis, as they only report % variation from baseline (Bonnefoy *et al* 2003). However they did find a significant increase in BMI compared to the control group after 3 and 9 months of supplementation using nutritional supplements consisting of proteins, carbohydrates, lipids, minerals and vitamins twice daily.

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias)

Figure 10: Meta-analysis of studies that reported the effect multicomponent supplementation on BMI in frail individuals

	Exp	perimenta	al		Control			Mean difference	Mean difference			Ris	k of	Bia	s	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	Α	в	С	D	Е	F	G
Abe 2016	43.18	7.42	25	42.9	6.1	11	16.3%	0.28 [-4.35 , 4.91]		?	4	•	•	÷	?	•
Biesek 2021	67	11.3	16	66.5	12.2	15	6.1%	0.50 [-7.79 , 8.79]		•	•	•	•	Ŧ	Ŧ	Ŧ
de Jong 1999	0.2	1.2	35	-0.3	1.7	33	63.4%	0.50 [-0.20 , 1.20]		?	?	•	•	•	?	
Na 2021	57.7	10.1	28	51.8	8.7	25	14.2%	5.90 [0.84 , 10.96]	— •—	?	?	?	?	÷	?	Ŧ
Total (95% CI)			104			84	100.0%	1.23 [-0.91 , 3.37]								
Heterogeneity: Tau ² =	1.76; Chi2:	= 4.31, df	= 3 (P =	0.23); I ² =	30%				•							
Test for overall effect:	Z = 1.13 (P	9 = 0.26)							-20 -10 0 10 20)						
Test for subgroup diffe	erences: No	t applicat	ole						Favours control Favours exper	iment	tal					
Risk of bias legend																
(A) Random sequence	e generatio	n (selectio	on bias)													
(B) Allocation conceal	ment (seled	ction bias)													
(C) Blinding of particip	ants and p	ersonnel	(performa	nce bias)												
(D) Blinding of outcom	ne assessm	ent (dete	ction bias)												
(E) Incomplete outcon	ne data (att	rition bias	;)													

(F) Selective reporting (reporting bias)

(G) Other bias

Figure 11: Meta-analysis of studies that reported the effect multicomponent supplementation on body weight in frail individuals

8. Cognitive function as measured by validated scales such as Mini Mental State Exam

Two studies with a total of 89 participants reported on the effect of multicomponent supplementation on MMSE score (MD: 1.34, 95% CI: -1.45 to 4.14, I^2 =0%, Grade: Very low, downgrade 2 for imprecision due to low amount of events and participants and 1 for high ROB). The evidence is very uncertain about the effect of multicomponent supplementation MMSE score. Wouters-Wesseling et al. investigated a number of memory tests and found significant differences in word learning test and category fluency (professions) but not in delayed word learning test, recognition memory test for words or category fluency (animals) (Wouters-Wesseling *et al*, 2005). This study was in a high risk of bias due to attrition and these inconsistent findings require further validation.

Regarding dementia, there was a significant difference in Nishimura Geriatric Scale between the intervention groups (nutritional supplementation and different form of fatty acids) and the control group (MD: 9.10, 95% CI: 5.12 to 13.08) (Abe *et al*, 2016). Imaoka et al. did not find a significant effect on Hasegawa's Dementia Scale after 3 months of supplementation (Imaoka *et al*, 2016).

Gosney et al. evaluated the effect of multicomponent supplementation on mood scores (HAD anxiety and depression score and MADR depression score) (Gosney *et al*, 2008). They reported an trend towards positive effect in HAD depression score in the intervention group and contrariwise a trend towards positive effect in HAD anxiety score in the control group. This study was prone to significant attrition bias and enrolled a small number of participants (59 participants were analyzed).

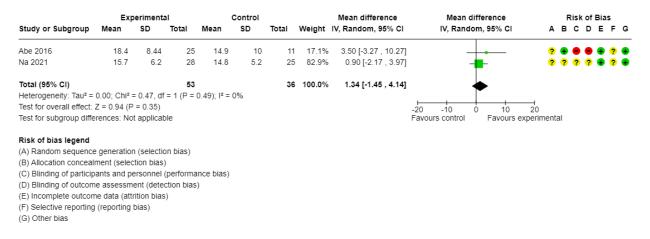


Figure 12: Meta-analysis of studies that reported the effect multicomponent supplementation on MMSE in frail individuals

9. Inflammatory markers including but not limited to cytokines and CRP.

Biesek et al. did not find a significant change in IL-6 levels neither between nor within groups after 3 months of supplementation (Biesek *et al*, 2021). It must be noted that only 9 and 11 participants were analyzed in the control and protein supplementation group respectively. Similar findings were reported by de Jong for CRP (MD: 0.3 CI:95%: -1.5 to 2.2) and ferritin (MD:-7, CI:95%: -18 to 5), but according to the authors there CRP was calculated only in 11 participants (de Jong *et al*, 1999). The exact number of participants that had a ferritin measurement is not reported by the authors.

10. Functionality

We identified three studies that reported a number of different measures regarding the effect of multicomponent supplementation on functionality. More specifically, Imaoka reported on functional independence measures after 6 months, de Jong on activities of daily living score, mobility score and self-care score after 17 weeks and Na on activities of daily living after 3 months (de Jong *et al*, 1999; Imaoka *et al*, 2016; Na *et al*, 2021). None of these between group comparison revealed a significant between group difference.

Discussion

We included 18 studies presented in a total of 30 reports, that compared either vitamin D or multicomponent supplementation to no treatment or placebo in frail elderly population. In outcomes with enough data to perform quantitative synthesis, we did not find significant differences between supplementation and control groups. Quality of evidence was moderate only in all-cause mortality and falls in the vitamin D analysis, while it was low or very low for all other outcomes. Meta-analysis of two studies (1769 participants) reporting on fractures showed a trend towards lower fracture incidence in participants receiving vitamin D supplementation. Limited positive findings were reported in the literature suggesting that vitamin D supplementation might lead towards a more prominent anti-inflammatory state.

According to our findings, high quality evidence on this subject are currently lacking. Misclassification of participants as frail due to not utilizing frailty scales might limit the generalizability of the findings in the included studies. We could not perform an appropriate a priori subgroup analysis and funnel plots to detect differential effects and publication bias respectively because of the paucity of the included studies. The overall quality of evidence of included studies was moderate to low, as 12 out of 18 studies had high risk of bias in at least one domain.

Similar to our study, a recent systematic review by Prokopidis et al. did not find a positive effect in sarcopenic older adults after vitamin d monotherapy (Prokopidis *et al*, 2022). Nevertheless, the inverse association between serum 25(OH)D concentration and frailty severity, make vitamin D analogues an attractive choice for further testing (Marcos-Pérez *et al*, 2020; Zhou *et al*, 2016). Considering the multi-faceted nature of frailty, multifactorial interventions might be more appropriate and supplementation monotherapy (Lee *et al*, 2020). On this notion, exercise has been shown to improve physical performance in frail individuals and the combination of these interventions might produce better results (Gielen *et* al, 2021; Huang *et al*, 2022; Kirwan *et al*, 2022; Weng *et al*, 2022).

Strengths and Limitations: We have performed a rigorous and strict search and screening strategy in order to locate all relevant studies on this subject. Manuscripts for all eligible studies were available. Inclusion of studies that do not utilize an established frailty scale to diagnose frailty syndrome, might limit the applicability of the results and introduce systematic bias.

Due to the low quality of available evidence, the results of this review cannot suggest for or against the use of micronutrient supplementation in the frail elderly in clinical practice. Prior to prescribing such formulations, medical practitioners should inform their patients on the lack of strong evidence on the respective clinical outcomes. Future research on this subject should perform proper geriatric assessment in all elderly participants to allow for more robust recommendations in this vulnerable population. Longer follow-up and consideration of frailty levels as a relevant outcome should be considered when designing such trials.

Conclusion

Vitamin D supplementation probably leads to little or no change in all-cause mortality and fall incidence, while it may lead to little difference in fractures in frail individuals. For multicomponent supplementation, the certainty of evidence was very low for our main and secondary outcomes. Future research in frailty should focus on patient-related outcomes, such as change in frailty levels, cognitive function and functional measures.

Conflicts of Interest: We have no conflicts of interest to disclose

References

Abe, Sakiko et al. "Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Increase Muscle Strength and Function in Frail Elderly Adults in a Randomized Controlled Trial." *The Journal of nutrition* vol. 146,5 (2016): 1017-26

Abe, Sakiko et al. "Medium-Chain Triglycerides (8:0 and 10:0) Increase Mini-Mental State Examination (MMSE) Score in Frail Elderly Adults in a Randomized Controlled Trial." *The Journal of nutrition* vol. 150,9 (2020): 2383-2390

Appel, Lawrence J et al. "The Effects of Four Doses of Vitamin D Supplements on Falls in Older Adults : A Response-Adaptive, Randomized Clinical Trial." *Annals of internal medicine* vol. 174,2 (2021)

Balboa-Castillo, Teresa et al. "Low vitamin intake is associated with risk of frailty in older adults." *Age and ageing* vol. 47,6 (2018): 872-879

Biesek, Simone et al. "Effects of Exergames and Protein Supplementation on Body Composition and Musculoskeletal Function of Prefrail Community-Dwelling Older Women: A Randomized, Controlled Clinical Trial." *International journal of environmental research and public health* vol. 18,17 9324. 3 Sep. 2021

Bisset, Elise S, and Susan E Howlett. "The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models." *Nutrients* vol. 14,14 2806. 8 Jul. 2022

Björkman, Mikko et al. "Vitamin D supplementation has minor effects on parathyroid hormone and bone turnover markers in vitamin D-deficient bedridden older patients." *Age and ageing* vol. 37,1 (2008): 25-31

Bjorkman, M P et al. "C-reactive protein and fibrinogen of bedridden older patients in a six-month vitamin D supplementation trial." *The journal of nutrition, health & aging* vol. 13,5 (2009): 435-9

Bonnefoy, M et al. "The effects of exercise and protein-energy supplements on body composition and muscle function in frail elderly individuals: a long-term controlled randomised study." *The British journal of nutrition* vol. 89,5 (2003): 731-9

Bruyère, Olivier et al. "Relevance of vitamin D in the pathogenesis and therapy of frailty." *Current opinion in clinical nutrition and metabolic care* vol. 20,1 (2017): 26-29

Cai, Yurun et al. "The effects of vitamin D supplementation on frailty in older adults at risk for falls." *BMC geriatrics* vol. 22,1 312. 10 Apr. 2022

Chin A Paw, M J et al. "Physical exercise and/or enriched foods for functional improvement in frail, independently living elderly: a randomized controlled trial." *Archives of physical medicine and rehabilitation* vol. 82,6 (2001): 811-7

Chin A Paw, M J M et al. "Physical exercise or micronutrient supplementation for the wellbeing of the frail elderly? A randomised controlled trial." *British journal of sports medicine* vol. 36,2 (2002): 126-31

de Jong, N et al. "Functional biochemical and nutrient indices in frail elderly people are partly affected by dietary supplements but not by exercise." *The Journal of nutrition* vol. 129,11 (1999): 2028-36

de Jong, N et al. "Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons." *American journal of public health* vol. 90,6 (2000): 947-54

de Jong, N et al. "Effect of dietary supplements and physical exercise on sensory perception, appetite, dietary intake and body weight in frail elderly subjects." *The British journal of nutrition* vol. 83,6 (2000): 605-13

de Jong, N et al. "Nutrient-dense foods and exercise in frail elderly: effects on B vitamins, homocysteine, methylmalonic acid, and neuropsychological functioning." *The American journal of clinical nutrition* vol. 73,2 (2001): 338-46

Flicker, Leon et al. "Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial." *Journal of the American Geriatrics Society* vol. 53,11 (2005): 1881-8

Gielen, Evelien et al. "Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and metaanalyses." *Nutrition reviews* vol. 79,2 (2021): 121-147

Giovannini, S et al. "Selenium Concentrations and Mortality among Community-Dwelling Older Adults: Results from IISIRENTE Study." *The journal of nutrition, health & aging* vol. 22,5 (2018): 608-612 Gloth, F M 3rd et al. "Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D-deficient older people." *Journal of the American Geriatrics Society* vol. 43,11 (1995): 1269-71

Gosney, M A et al. "Effect of micronutrient supplementation on mood in nursing home residents." *Gerontology* vol. 54,5 (2008): 292-9

Hajek, André et al. "Prevalence of Prefrailty and Frailty Among Older Adults in Germany: A Systematic Review, Meta-Analysis and Meta-Regression." *Frontiers in medicine* vol. 9 870714. 22 Apr. 2022

Hangelbroek, Roland W J et al. "No effect of 25-hydroxyvitamin D supplementation on the skeletal muscle transcriptome in vitamin D deficient frail older adults." *BMC geriatrics* vol. 19,1 151. 28 May. 2019

Huang, Chia-Yu et al. "The effect of Tai Chi in elderly individuals with sarcopenia and frailty: A systematic review and meta-analysis of randomized controlled trials." *Ageing research reviews* vol. 82 (2022): 101747

Kaimoto, Kaori et al. "Association of Protein and Magnesium Intake with Prevalence of Prefrailty and Frailty in Community-Dwelling Older Japanese Women." *Journal of nutritional science and vitaminology* vol. 67,1 (2021): 39-47

Kirwan, Richard P et al. "Protein interventions augment the effect of resistance exercise on appendicular lean mass and handgrip strength in older adults: a systematic review and metaanalysis of randomized controlled trials." *The American journal of clinical nutrition* vol. 115,3 (2022): 897-913

Kotlarczyk, M P et al. "Vitamin D deficiency is associated with functional decline and falls in frail elderly women despite supplementation." *Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA* vol. 28,4 (2017): 1347-1353

Latham, Nancy K et al. "A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS)." *Journal of the American Geriatrics Society* vol. 51,3 (2003): 291-9

Lee, Seon Heui, and Soyoung Yu. "Effectiveness of multifactorial interventions in preventing falls among older adults in the community: A systematic review and meta-analysis." *International journal of nursing studies* vol. 106 (2020): 103564

Marcos-Pérez, Diego et al. "Low Vitamin D Levels and Frailty Status in Older Adults: A Systematic Review and Meta-Analysis." *Nutrients* vol. 12,8 2286. 30 Jul. 2020

Masakazu Imaoka, et al. "Low-frequency Exercise and Vitamin D Supplementation Reduce Falls Among Institutionalized Frail Elderly". International Journal of Gerontology 10. 4(2016): 202-206.

Meyer, Haakon E et al. "Can vitamin D supplementation reduce the risk of fracture in the elderly? A randomized controlled trial." *Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research* vol. 17,4 (2002): 709-15

Murphy, Jane. "Do oral nutritional supplements effectively reduce malnutrition or its adverse outcomes in older people with frailty?." *The lancet. Healthy longevity* vol. 3,10 (2022): e637-e638.

Na, Woori et al. "Evaluation of Oral Nutritional Supplementation in the Management of Frailty among the Elderly at Facilities of Community Care for the Elderly." *Clinical nutrition research* vol. 10,1 24-35. 27 Jan. 2021

Neelemaat, Floor et al. "Post-discharge nutritional support in malnourished elderly individuals improves functional limitations." *Journal of the American Medical Directors Association* vol. 12,4 (2011): 295-301

Ofori-Asenso, Richard et al. "Global Incidence of Frailty and Prefrailty Among Community-Dwelling Older Adults: A Systematic Review and Meta-analysis." *JAMA network open* vol. 2,8 e198398. 2 Aug. 2019

Prokopidis, Konstantinos et al. "Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis." *Journal of cachexia, sarcopenia and muscle* vol. 13,3 (2022): 1642-1652

Reid, Ian R, and Mark J Bolland. "Controversies in medicine: the role of calcium and vitamin D supplements in adults." *The Medical journal of Australia* vol. 211,10 (2019): 468-473

Rizka, Aulia et al. "Effect of Alfacalcidol on Inflammatory markers and T Cell Subsets in Elderly with Frailty Syndrome: a Double Blind Randomized Controlled Trial." *Acta medica Indonesiana* vol. 50,3 (2018): 215-221.

Semba, Richard D et al. "Low serum micronutrient concentrations predict frailty among older women living in the community." *The journals of gerontology. Series A, Biological sciences and medical sciences* vol. 61,6 (2006): 594-9

Sharma, Yogesh et al. "Prevalence of Hypovitaminosis C and its Relationship with Frailty in Older Hospitalised Patients: A Cross-Sectional Study." *Nutrients* vol. 13,6 2117. 20 Jun. 2021

Smedshaug, Guro B. et al. "Can vitamin D supplementation improve grip strength in elderly nursing home residents? A double-blinded controlled trial." Scandinavian Journal of Food & Nutrition vol. 51,2 (2007): 74–78

Vaes, Anouk M M et al. "Cholecalciferol or 25-Hydroxycholecalciferol Supplementation Does Not Affect Muscle Strength and Physical Performance in Prefrail and Frail Older Adults." *The Journal of nutrition* vol. 148,5 (2018): 712-720

Wanigatunga, Amal A et al. "The effects of vitamin D supplementation on types of falls." *Journal of the American Geriatrics Society* vol. 69,10 (2021): 2851-2864

Weng, Wei-Han et al. "Effects of strength exercises combined with other training on physical performance in frail older adults: A systematic review and meta-analysis." *Archives of gerontology and geriatrics* vol. 102 (2022): 104757

Wouters-Wesseling, Wendeline et al. "Biochemical antioxidant levels respond to supplementation with an enriched drink in frail elderly people." *Journal of the American College of Nutrition* vol. 22,3 (2003): 232-8

Wouters-Wesseling, Wendeline et al. "Effect of an enriched drink on cognitive function in frail elderly persons." *The journals of gerontology. Series A, Biological sciences and medical sciences* vol. 60,2 (2005): 265-70

Zhou, Jianghua et al. "Association of vitamin D deficiency and frailty: A systematic review and meta-analysis." *Maturitas* vol. 94 (2016): 70-76

Zupo, Roberta et al. "Role of Dietary Carotenoids in Frailty Syndrome: A Systematic Review." *Biomedicines* vol. 10,3 632. 9 Mar. 2022

Tables

	Methods	Participants	Interventio	Outcomes	Notes
Study			n		
Vaes	randomiz	\geq 65 y of age, had a serum	Arms 1	Strength	
2018 (incl	ed,	25(OH)D concentration	(n=26), 2	test and	
Hangelbr	double-	between 20 and 50 nmol/L, a	(n=26) and	physical	
oek 2019	blind,	BMI (in kg/m2) between 18.5	3(n=26)	performanc	
	placebo-	and 35, and who were prefrail	received a	e (maximal	
	controlle	or frail based on the frailty	capsule of	knee-	
	d trial	criteria of Fried	10mcg	extension	
			25(OH)D3	and knee-	
			(calfecidiol	flexion,	
), 20 mcg	hand grip	
			Vitamin D3	strength,	
			(cholecalcif	SPPB,	
			erol) or	timed up	

			placebo respectivel y. Study supplement s were identical in appearance and taste	and go test, gait speed, chair rise-5 stands, 95% ellipse), serum 25(OH)D, plasma PTH, serum calcium, urine calcium-to- creatinine ratio, muscle fiber type and size, total lean mass, safety evaluation, transcripto mic analysis. Follow-up 6 months.
Neelemaa t 2011	randomiz ed controlle d trial	elderly patients (inclusion criteria: ≥60 years of age, expected length of hospital admission >2 days) newly admitted to the departments of general internal medicine, rheumatology, gastr oenterology, dermatology, nephrology, orthopedics, traumatology, and vascular surgery. Participants described as frail	Interventio n group (n=105) received 400 IU vitamin D3 and 500 mg calcium per day for 3 months. Additional oral	Functional limitations score, Physical performanc e score, Physical activity score, changes in body weight and

		by study authors, but a frailty scale was not used.	nutritional supplement leading to an expected increase in intake of 2520 kJ/d and 24 g protein/d and telephone counseling by a dietitian. Control group (n=105) received usual care.	fat free mass, changes in handgrip strength.	
Flicker 2005	Randomi zed, placebo- controlle d double- blind, trial	Older people resident in 60 hostels and 89 nursing homes. Participants described as frail by study authors, but a frailty scale was not used. Mean Age (83.3 ± 8.8 vs 83.6 ± 7.8). Subjects whose 25D level was less than 25 nmol/L or above 90 nmol/L were excluded.	All randomized subjects were prescribed 600 mg of elemental calcium in the form of calcium carbonate to be taken daily. Interventio n group (n=313) received 10,000 IU ergocalcifer ol tablets once per	Falls, fractures, compliance with therapy.	

			week, which was changed to o 1000 IU ergocalcifer ol capsules given once daily due to discontinua tion of the original product. Placebo arm received placebo identical to both supplement s and in identical fashion.		
Appel 2021 (includes Cai 2022 and Wanigat unga 2021)	Two- stage, Bayesian , response- adaptive randomiz ed trial	688 participants, community dwelling, aged ≥70 years, with elevated fall risk and serum 25- hydroxyvitamin D level of 25– 72.5nmol/L. 61% of the participants were pre-frail and 13 % were frail at baseline (Fried's Frailty Phenotype). 91 more randomized at the confirmatory stage.	The control group dose, 200IU/day. The interventio n group was assigned to 1000, 2000 or 4000 IU/day during the dose- finding part of the study. The 1000IU/day dose was	The primary outcome was time to first fall or death over two years, whichever occurred first. The secondary outcome was gait speed, although study documents	

1 1 1.1	
declared the	
best dose	that other
and	study
participants	outcomes
previously	were
randomized	secondary.
to 2000 and	Gait speed
4000IU/day	was
were	obtained
switched to	from the
1000IU/day	timed 4-
	meter walk
	component
	of the Short
	Physical
	Performan
	ce Battery
	and was
	measured
	at baseline
	and 3, 12,
	and 24
	months.
	Rates of
	SAEs,
	serious
	falls (fall
	resulting in
	a fracture
	or
	dislocation
	or a fall
	associated
	with a
	hospitalizat
	ion or other
	SAE), falls
	with
	hospitalizat
	ion, and
	ion, and

				serious	
				events	
				potentially	
				related to	
				vitamin D	
				were	
				examined	
				for safety.	
				Frailty	
				component	
				s (Fried's	
				Frailty	
				Phenotype)	
				and	
				additional	
				informatio	
				n about	
				falls	
				(indoors,	
				outdoors,	
				fracture	
				etc.) in	
				separate	
				publication	
				S.	
Latham	Multicen	Aged 65 and older, considered	Factorial	Self-rated	Effects
2003	ter,	frail according to simple	2x2 design.	physical	for each
	randomiz	clinical measures of frailty as	Arm 1: The	health	interven
	ed,	described by Winograd ((meets	vitamin D	(physical	tion are
	controlle	any one of the following	interventio	component	reported
	d trial	criteria) Cerebrovascular	n was given	of the SF-	separate
	with a	accident Chronic and disabling	in a single	36	ly.
	factorial	illness Confusion Dependence	oral dose.	questionnai	
	design	in ADL's Depression Falls	Patients	re) at 3	
		Impaired mobility	received	months and	
		Incontinence Malnutrition	either six	falls	
		Polypharmacy Pressure sore	1.25-mg	(number of	
		Prolonged bedrest Restraints	calciferol	falls,	
		Sensory impairment	(300,000	number of	
			IU) or	people who	

		Socioeconomic/family problems).	matching placebo tablets. Arm 2: The resistance exercise interventio n consisted of a quadriceps exercise program using adjustable ankle cuff weights undertaken three times per week for 10 weeks. Arm 3: Combinatio n. Arm 4: Control	fell) over the 6- month period.	
Gloth 1995	Randomi zed, controlle d interventi on study	Frail homebound community- dwelling older people. Patients who were less than 65 years old or who had been outside in the previous 6 months were ineligible for this study.	All subjects received either calcium or calcium and vitamin D (400 IU per day to 100,000 IU every 3 months of ergocalcifer ol).	Change in Frail Elderly Functional Assessmen t score.	Number of participa nts randomi zed in each group not reported
Rizka 2018	Double blind	Elderly subjects aged >60 years old who visited a geriatric	IL-6, IL-10 and IFNγ		

	randomiz ed controlle d trial	clinic. 24.5% of the participants were pre-frail and 50.9% were frail.	and percentage of CD4, CD8, CD8+ CD28- T cell.	
Bjorkma n 2005 (includin g Bjorkma n 2009	Randomi zed double- blind controlle d trial	Long-term inpatients aged over 65 years, chronically impaired mobility, stable general condition, and no known present disease (except osteoporosis) or medication (vitamin D supplements, glucocorticoids, antiepileptics, etc.) affecting calcium or bone metabolism.	Participants were randomized in three groups receiving cholecalcif erol in Migliol oil in dose equivalent to 0 IU (n=68), 400 IU (n=77) or 1200 IU (n=73) respectivel y. Participants with insufficient consumptio n of dairy products received calcium supplement ation during the interventio n.	Mortality, 25(OH)Vit -d, PTH, Carboxy- terminal telopeptide of type I collagen, amino- terminal propeptide of type I procollage n, calcium, phosphoro us, creatinine, GFR, albumin, CRP.

Meyer	Double-	Frail elderly nursing home	The	Hip
2002	blinded	residents, mean age at baseline	interventio	fracture
(includin	randomiz	was 84.7 years (SD ± 7.4	n group	(defined as
g	ed	years).	(n=569)	cervical or
Smedsha	controlle		received 5	trochanteri
ug 2007)	d trial		ml of	c fracture),
			ordinary	all
			cod liver oil	nonvertebr
			including	al
			2.2 μg/ml	fractures,
			vitamin	mortality,
			D3 daily,	grip
			whereas the	strength,
			placebo	25-
			(n=575)	hydroxyvit
			was	amin D
			ordinary	(calcidiol),
			cod liver oil	osteocalcin
			in which	,
			vitamin D	parathyroid
			had been	hormone
			removed	(PTH), and
			(0.1-0.2	ionized
			µg/ml	calcium.
			vitamin	
			D3). The	
			difference	
			between	
			groups was	
			10 μg per 5-	
			ml dose.	

Table 1: Characteristics of included studies on Vitamin D supplementation.

Study	Methods	Participant	Intervention	Outcomes	Notes
		S			
Imaoka	randomized,	Frail elderly	The control group	Mortality, hand	Only
2016	non-	who lived in	(n = 23) was	grip strength,	nutrition vs
	blind, contro	the care	provided usual care.	25(OH)D,	control
	lled clinical	facility and	The low-exercise	skeletal muscle	groups were
	trial	not received	group $(n = 22)$ did	index,	included in
		any regular	not perform group	hasegawa's	this review
		supplementa	exercise, but were	dementia scale,	(n=46).
		tion	provided two	functional	
		of vitamin	sessions of	independence	
		D during the	individualized	measure, falls.	
		previous 12	exercise each week.		
		months. A	The nutrition group		
			(n = 23) was given		
			daily oral vitamin D		
			(900 IU), via		
			an Isocal jelly PCF		
			(500 IU) and a		
			supplement		
			(400 IU).		
			Supplementation		
			included natrium,		
			kalium, magnesium,		
			phopsphorus, iron,		
			zinc, copper,		
			selenium, vitamin d,		
			niacin, vitamin-		
			b12. The combined		
			group $(n = 23)$		
			performed the same		
			exercise as the low-		
			exercise group and		
			received the same		
			vitamin D		
			supplementation as		
			the nutrition group.		
Bonnef	factorial non	Frail elderly	Factorial 2x2	Changes in	Outcome
oy 2003	blinded	living in	design. Group 1:	quadriceps	measures are
0j 2003	Jindeu	inving ill	design. Oroup 1.	quadriceps	measures are

	randomized controlled trial	0	Received nutritional supplements twice daily, consisting of proteins, carbohydrates, lipids, minerals (Ca, P, Mg, Fe) and vitamins (A, B1, B2, B5, B6, nicotinamide ,B12, C, E, D3, biotin, folic acid). Placebo for nutritional supplementation had an identical packaging. Group 2: Received moderate exercise three times weekly for 60 minutes. Weekly memory sessions served as placebo for exercise program. Group 3: Combination. Group	changes in fat—free mass, 6m walk time, six-stair climb time, BMI, resting metabolic rate. Assessments	given for nutritional intervention (n=30) vs placebo (n=27) (effect of intervention)
Biesek 2021	randomized controlled clinical trial	Pre-frail older women (according to Fried's Frailty Scale) with moderate" kidney functioning (i.e., a glomerular filtration rate (GFR) of 30–60	4: Placebo. Participants were divided into five groups (18 participants in each group): control (CG); exergames training (ETG); protein supplementation (PSG); exergames combined with protein supplementation (ETPSG);	Frailty score after 12 weeks, bmi, lean mass, appendicular skeletal muscle mass, IL-6, 25(OH)D, handgrip strength, peak torque, food intake.	Only protein supplementa tion and control groups were included in this study.

		mL/min/1.7 3 m ²),	exergames combined with		
		estimated by the Chronic	isoenergetic supplementation		
		Kidney Disease	(ETISG). Protein supplementation		
		Epidemiolog y	group received a supplement once		
		Collaboratio	daily which		
		n (CKD- EPI)	included why protein isolate,		
		equation; if presented,	carbohydrates, lipids, minerals		
		TypeIIdiabeteshad	(sodium, potassium, chloride, calcium,		
		to be compensate	iron, phosphorus, magnesium, zinc,		
		d (<8% glycated	copper, manganese ,molybd		
		hemoglobin) ; and had	enum, selenium,		
		adequate	chromium, iodine) and vitamins (A, D,		
		visual acuity assessed by	E, K, B1, B2, niacin, pantothenic acid,		
		the Snellen card (20/70 unilateral).	B6, folic acid, B12, biotin). Isoenergetic supplementation		
		unnaciai).	provided amount of kcal similar to the		
			protein supplementation group. Exercise		
			consisted of physical training twice a week for 12		
***		P	weeks.		
Wouter s-	Randomized , double-	Frail elderly people 65	Theinterventiongroup(n=28)	Plasma antioxidant	
Wesseli ng 2003	blind, placebo	years of age or older	received an enriched drink contained		

	controlled	were	energy (100	supplementatio	
	trial	selected	kcal/100 mL),	n. Vitamin E,	
		based on a	protein,	Vitamin C,	
		body mass	carbohydrate, fat	Trolox	
		index (BMI)	and micronutrients	equivalent	
		of less than	in amounts of	-	
		25 kg/m2	approximately 30%	capacity, uric	
		and	to 150% of US	acid, cysteine,	
			RDA, with higher	•	
		a home for	levels of	glutathione	
		the elderly	antioxidants,	peroxidase.	
		or sheltered		peroxidase.	
		housing. A	chloride, calcium,		
		frailty scale	phosphorus,		
		-			
		was not used.	magnesium, iron, zinc, copper,		
		useu.	, 11 ,		
			manganese,		
			fluoride,		
			molybdenum,		
			selenium, chlorium,		
			iodine, vitamins A,		
			D, E, K, C, B1, B2,		
			B6, B12,		
			carotenoids, niacin,		
			pantothenic acid,		
			folate). The placebo		
			(n=27) contained no		
			energy or		
	D 1 1	D 1 1.	micronutrients.		
Wouter	Randomized	Frail white	The intervention	1.0	
S-	, double-	persons aged	group (n=34)	gical tests,	
Wesseli	blind,	-	received an enriched	plasma	
ng 2005	placebo-	older who	drink contained	homocysteine,	
	controlled	had a BMI	energy (100)	plasma B12.	
	trial	less than 25	kcal/100 mL),	Assessments	
		kg/m2 and	protein,	were done after	
		resided in a	carbohydrate, fat		
		home for	and micronutrients	supplementatio	
		elderly	in amounts of	n.	
		persons or	approximately 30%		

		sheltered housing residence.	to 150% of US RDA, with higher levels of antioxidants, (sodium, potassium, chloride, calcium, phosphorus, magnesium, iron, zinc, copper, manganese, fluoride, molybdenum, selenium, chlorium, iodine, vitamins A, D, E, K, C, B1, B2, B6, B12, carotenoids, niacin, pantothenic acid, folate). The placebo (n=33) contained no energy or micronutrients.		
Na 2021	Case- controlled, double- blind, and randomized controlled trial.	Elderly at community care facilities. 73% of the participants were pre- frail and 11% were frail at baseline. Mean age 80.8±7. The frailty status was determined using the Korean	Intervention group (n=31) received daily oral nutritional supplement including protein, carbohydrate, fat, minerals (sodium, calcium, phosphorus, potassium, magnesium, iron, zinc), vitamins (A, B1, B2, B6, B12, C, D, E, folic acid, niacin, pantothenic acid, biotin) for 90 days. Supplementation in	Change in weight, BMI, arm and calf circumference, body fat, lean mass, hand grip strength, appendicular skeletal muscle mass, activities of daily living, simplified nutritional appetite questionnaire, MMSE, frailty levels, changes in dietary	

		version of the fatigue, resistance, ambulation, illnesses, and loss of weight scale (K-FRAIL).	controlgroup(n=31)wasbuthadloweramountsofcarbohydrate,fat,protein,calcium,phosphorus,zinc,vitamins A, C, D, E.	intake. Assessments were done after 3 months of supplementatio n.	
Gosney 2008	Double- blinded randomized controlled trial	Frail elderly residents from nursing and residential homes aged over 60 years. Median age was 82 years.	The micronutrient supplement and placebo (n=37) were identical in appearance. Participants took two tablets, twice a day for 8 weeks. The intervention group (n=33) received an active supplement including minerals (iron, zinc, copper, iodine, manganese, chromium, selenium, molybdenum, calcium, magnesium) and vitamins (A, D3, E, B1, B2, B6, B12, C nicotinamide, folic acid, biotin, calcium pantothenate).	HADS anxiety score, HADS depression score, MADRS score	
de Jong 1999	Randomized controlled trial	Free-living frail elderly Dutch people. The following	Factorial2x2design.Nutritiongroup(n=37)receivedof twoenrichedproducts	Dietary intake, blood vitamins levels, biochemical, hematological	

criteria	were daily ,	which and	
used:	delivered ~	100% of inflamma	atory
requiren	nent the	Dutch markers	serum
of h	ealth recommende	ed daily levels,	smell,
care, suc	ch as allowance (l	RDA) of taste	and
home ca	re or the fo	ollowing appetite	
meals-or	n- vitamins:	D, E, changes,	grip
wheels	thiamin, rib	oflavin, strength,	
service;	age B-6, folic ac	id, B-12 walking	speed,
(≥ 70 y	; no and C and	$\sim 25-$ chair	stands,
regular	100% of th	e Dutch fitness	score,
exercise		the activities	s of
body	mass following n	ninerals: daily	living,
index	calcium	-	score,
(BMI)3			score,
w ave	-		y mass,
(≤25	(50%) and	iodine performa	ance
kg/m2 o	n (100%). Sub	jects in score,	
the basi	s of the control	•	vcholo
self-repo			test,
weight		• •	ogical
height)	or amount o	of the wellbein	g
recent	regular	products (SSWO	score),
weight		-	ve 🛛
no use			
multivit		ducts at involven	nent.
supplem	0 1	15% of Assessm	ent
; and al	_		
to	enriched p	roducts. of interve	ention.
understa	-	group	
the s	tudy (n=35)	received	
procedu	res. twice	daily	
A fi	ailty moderate, g	radually	
scale	was increasing		
not	ised. intensity. Co	ombinati	
145 ou	-		
217	received	both	
randomi	zed intervention	s.	
participa	ints		

Table 2: Characteristics of included studies on multicomponent supplementation.

Study	Random	Allocation	Blinding of	Blinding of	Incomplete	Selective	Other bias
	sequence	concealment	participants and	outcome	outcome	reporting	
	Generation		personnel	assessment	data		
Vaes 2018	Low/	Low/	Low/ Double-	Low/	Low/75 out	Low/	Low/ Falls not reported,
(incl	Randomization	Investigators	Blinded and study	Investigators	of 78	Minimal	One author has a related
Hangelbroek	in permuted	blinded to	supplements were	blinded to	participants	deviations	patent, Sponsors not
2019	blocks and	allocation	identical in	treatment.	completed	from	reported in manuscript.
	stratified by	treatment.	appearance and		the study.	published	
	sex and BMI.		taste.			protocol.	
Neelemaat	Low/ A	Low/	High/	High/	High/30 out	Unclear/	Low/ The Netherlands
2011	computerized	Consecutively	Participants,	Research	of 105	Netherlands	Organization for Health
	random	numbered	research assistant,	assistant, and	patients in	registry is	Research and
	number	opaque	and researcher	researcher	each group	no longer	Development (ZonMw)
	generator was	envelope	were not blinded.	were not	were lost to	available.	funded the trial, project
	used to assign	containing the		blinded.	follow up.		number 94506203.
	patients, in	patients'		When	Even higher		
	blocks of 10.	group		performing	attrition for		
		assignment.		the analyses,	some		
				the primary	outcomes.		
				investigator			
				was not aware			
				of the			
				patients'			
				group			
				assignment.			

Flicker 2005	Low/ Subjects	Unclear/ Not	Low/Residents,	Low/	Low/ 10%	Unclear/	Unclear / Study
There 2000	were	described in	institutional staff,	Institutional	attrition	Protocol	supplement changed
	randomized	text.	and study staff	staff, and	after 1 year	not	during the trial.
	via computer-		were blinded to	study staff	and 15%	available.	Funding for this study
	-			were blinded		avallable.	
	generated lists.		treatment		after 2 years		was provided by
			allocation.	to treatment	of study.		(Australian) National
				allocation.			Health and Medical
							Research Council
							(NHMRC) Project
							Grants 964135 and
							139124 and the
							Victorian Health
							Promotion Foundation
							(VHPF). The NHMRC
							and VHPF played no
							role in the study design
							or in the collection,
							analysis, or
							interpretation of data.
							Dr. Stein received
							financial support from
							the Wenkart
							Foundation and the
							Royal Australasian
							College of Physicians
							Vincent Fairfax Family
							Foundation Research
							Fellowship.
							Supplements and
							supplementes and

							placebos were purchased commercially, and the suppliers played no role in the study design or in the collection, analysis, or interpretation of data.
Appel 2021	Low/	Unclear/ Not	Low / Study	Low/ Triple-	Low/ 779	Low/ All	Low/ The NIA
(includes Cai	Assignments	described in	personnel and	blinded, study	patients	outcomes in	encouraged several
2022 and	were generated	text.	participants were	personnel and	randomized,	study	design features,
Wanigatunga	using a		masked to	were masked	data on 688	protocol	including an adaptive
2021)	computer-		randomized dose,	to randomized	patients,	have been	trial to assess the
	generated		occurrence of	dose,	15%	reported.	efficacy and dose-
	random		adaptations, and	occurrence of	attrition		response of vitamin D
	number and a		the transition	adaptations,	during the		supplementation for fall
	web-based		from dose-finding	and the	4-year		prevention and a non-
	application.		to confirmatory	transition	duration of		placebo control group.
			stage.	from dose-	the trial.		The NIA had no role in
				finding to			the collection, analysis,
				confirmatory			and interpretation of
				stage.			data; no role in the
							preparation, review,
							and approval of the
							manuscript; and no role
							in the decision to
							submit this manuscript
							for publication

Latham 2003	T. erry/	II. alaan/ Not	Low/ Doutining	I arry/	Low/ 7	Unclear/	Low/ Currented 1
Latham 2003	Low/		Low/ Participants	Low/			Low/ Supported by
	Computerized	described in	and personnel	"Research	participants	Protocol	grants from the Health
	central	text.	blinded for	nurses who	withdrawn.	not	Research Council of
	randomization		Vitamin-d	were blinded		available.	New Zealand, the
	scheme.		intervention.	to the			Auckland University of
				assigned			Technology Research
				treatments			Fund, and a bequest
				conducted			from the Lenore Wilson
				follow-up			Estate.
				visits at 3 and			
				6 months post			
				randomization			
				in the			
				patients' place			
				of residence."			
Gloth 1995	Unclear/ Not	Unclear/ Not	Unclear/ Not	Unclear/ Not	Low/ All	Unclear/	Low/ Funding not
	described in	described in	described in text.	described in	subjects	Protocol	reported.
	text.	text.		text.	completed	not	
					follow-up.	available.	
					1		
Rizka 2018	Low/	Low/	Low/ Subjects	Low/	Low/ All	High/	Low/ Sources of
	Computerized	Allocation	and investigators	Outcome	randomized	Incidence	funding not reported.
	random	concealment	were blinded.	assessors	studies were	of	
	sequence	was		were blinded.	analyzed.	respiratory	
	generation	performed.			-	tract	
	program.	-				infection	
	1 0					(main	

						outcome in registered protocol) is not reported.	
Bjorkman 2005 (including Bjorkman 2009	Unclear/ Not described in text.	Unclear/ Not described in text.	Low/ Patients and ward nurses were blinded to the intervention.	Unclear/ Not described in text.	High/ 173 out of 218 participants analyzed (21% attrition).	Unclear/ Protocol not available.	Low/ The study was funded by a special governmental subsidy for health sciences research and training to Helsinki University Central Hospital.
Meyer 2002 (including Smedshaug 2007)	High/ Before the study started, the days of the month (1-31 days) were divided randomly into group A and group B, and based on the day of birth, a participant was placed	Unclear/ The nursing staff was not aware of the details in the allocation procedures	Low/ The participants, the nursing staff and the investigators were blinded.	Low/ The outcome assessor was not otherwise involved in the study and had no knowledge about the study participants	High/ 449 out of 1144 stopped treatment for other reasons except death.	Unclear/ Protocol not available.	Low/ Funding not reported.

automatically			
in group A or			
group B when			
registered in			
the study			
database.			

Table 3: Risk of bias of included studies on Vitamin D supplementation.

Study	Random sequence Generation	Allocation concealment	Blinding of participants and	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
		.	personnel	· · · · · /		TT 1 /	
Imaoka	Unclear/ Not	Low/ Opaque	High/	High/	High/34 out of	Unclear/	Low/ This study
2016	described in text.	envelopes were	Blinding was	Blinding was	46 participants	Protocol	was funded
		used	not	not	were analyzed	not	by Nestle
			performed.	performed.	(26% attrition).	available.	Health
							Science (Tokyo,
							Japan). The
							sponsor of the
							study had no
							role in the study

							design, conduct of the study, data collection, data interpretation or, preparation of the report.
Bonnefoy	Low/ Centralized	Unclear/ Not	High/	High/	High/42 out of	Unclear/	Low/ Funding
2003	and stratified	described in	Blinding was	Blinding was	57 were	Protocol	and conflicts of
	between the homes	text.	not	not	analyzed (26%	not	interest not
	and occurred the		performed.	performed.	attrition).	available.	reported.
	same day before						
	starting sessions for						
	participants in each home, using a						
	remote data-entry						
	system						
Biesek	Low/	Low/ Described	High/	Low/ In	Low/ 3	Low/	Low
2021	Randomization into	in study	Personnel	study	participants lost	Outcomes	
	blocks was	protocol.	who carried	protocol:	to follow up in	reported	
	performed at		out the	"the	control group	as	
	randomization.com.		interventions	researchers	and 0 in the	described	
			was blinded	who carry out the	protein	in protocol	
			to the group, but	out the evaluations	supplementation group.	protocol.	
			participants	and	group.		
			in the control	interventions			

Wouters- Wesseling 2003 Wouters- Wesseling 2005	Unclear/ Not described in text. Low/Randomly assigned, in groups of four matched for body mass index.	Unclear/ described text. Unclear/ described text.	Not in Not in	didnotreceiveplacebo.placebo.vv<	will be blinded to blinded to the to allocation of allocation of the groups and the box and the box sizes''. only Unclear/ nol text (only double-blind only described in text (only described in described in text (only double-blind in text (only double-blind in text (only double-blind in text (only double-blind in reported). in	Low/ No patients were lost to follow- up. High/ 67 out of 101 patients analyzed (33% attrition).	Unclear/ Protocol not available. Unclear/ Protocol not available.	Low/The study was sponsored by Numico Research B.V. Low/ Sponsored by Numico Research B.V., Wageningen, The Netherlands
Na 2021	Unclear/ Randomization based on sex and frailty status via stratified cluster random sampling.	Unclear/ described text.	Not in	Unclear/ Only characterized as double- blind with no further information.	Unclear/ only characterized as double- blind with no further information.	Low/ 53 out of 62 subjects analyzed (14% attrition).	Unclear/ Protocol not available.	Low/ NOS- NPO [®] and Placebo product were provided by Deasang Corporation, Korea.
Gosney 2008	Low/ Random numbers generated by the Hospital	Unclear/ described text.	Not in	Low/ Participants and researchers	Unclear/ Not described in text.	High/ 59 out of 73 participants were analyzed (20% attrition).	Unclear/ Protocol not available.	Low/ The micronutrient supplement and placebo were

	Pharmacy Trials Unit.		blinded to the intervention.				suppliedbyRecipABSwedenFundingandpotentialconflictsofinterestnotreported
de Jong 1999	Unclear/ Randomized through selection of sealed envelopes.	Unclear/ Randomized through selection of sealed envelopes.	High/ Participants and personnel were not blinded.	High/ Outcome assessors not blinded.	High/145 out of 217 randomized participants were analyzed (33% attrition).	Unclear/ Protocol not available.	Low/ Supported by funds from the Dutch Dairy Foundation on Nutrition and Health, Maarssen, The Netherlands, and the Health Research Council, The Netherlands.
Abe 2016	Unclear/ Through shuffling.	Low/ Allocation was conducted by a person who was not a member of this study. Sealed envelopes were used.	High/ Participants were only blinded between group 1 and group 2 and personnel	High/ Outcome assessor for walking speed was blinded, but this is not the	Low/36 out of 38 participants analyzed.	Unclear/ Protocol not available.	Low/ TGs were provided by the Nisshin OilliO Group Ltd. (Kanagawa, Japan). Potential conflicts of

wasnotcase forblinded.outcom	

Table 4: Risk of bias of included studies on multicomponent supplementation.