
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES
“THEORETICAL COMPUTER SCIENCE”

MASTER THESIS

Sampling Methods, Spectrahedra and Convex
Optimization

Panagiotis G. Repouskos

Supervisors: Ioannis Emiris, Professor
Vassilis Zissimopoulos, Professor
Gregory Karagiorgos, Associate Professor

ATHENS

February 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ
“ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ”

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μέθοδοι Δειγματοληψίας, Σπεκτράεδρα και Κυρτή
Βελτιστοποίηση

Παναγιώτης Γ. Ρεπούσκος

Επιβλέποντες: Ιωάννης Εμίρης, Καθηγητής
Ζησιμόπουλος Βασίλειος, Καθηγητής
Γρηγόρης Καραγιώργος, Αναπληρωτής Καθηγητής

ΑΘΗΝΑ

Φεβρουάριος 2023

MASTER THESIS

Sampling Methods, Spectrahedra and Convex Optimization

Panagiotis G. Repouskos
R.N.: cs1180004

SUPERVISORS: Ioannis Emiris, Professor
Vassilis Zissimopoulos, Professor
Gregory Karagiorgos, Associate Professor

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μέθοδοι Δειγματοληψίας, Σπεκτράεδρα και Κυρτή Βελτιστοποίηση

Παναγιώτης Γ. Ρεπούσκος
Α.Μ.: cs1180004

ΕΠΙΒΛΕΠΟΝΤΕΣ: Ιωάννης Εμίρης, Καθηγητής
Ζησιμόπουλος Βασίλειος, Καθηγητής
Γρηγόρης Καραγιώργος, Αναπληρωτής Καθηγητής

ABSTRACT

Wepresent algorithmic, complexity, and implementation results on the problem of sampling
points in the interior and the boundary of a spectrahedron, that is the feasible region of a
semidefinite program.

Our main tool is random walks. We define and analyze a set of primitive geometric
operations that exploits the algebraic properties of spectrahedra and the polynomial eigenvalue
problem, and leads to the realization of a broad collection of efficient random walks. We
demonstrate random walks that experimentally show faster mixing time than the ones
used previously for sampling from spectrahedra in theory or applications, for example Hit
and Run. Consecutively, the variety of random walks allows us to sample from general
probability distributions, for example the family of log-concave distributions which arise
frequently in numerous applications.

We apply our tools to specialize a randomized convex optimization algorithm for spectrahedra,
that is to solve semidefinite programs. We provide a C++ open source implementation
of several random walks that scale efficiently to a high number of dimensions (in our
experiments we tested till 300 dimensions) and of the convex optimization algorithm tailored
for spectrahedra.

SUBJECT AREA: Random Walks, Geometry, Convex Optimization, Linear Algebra

KEYWORDS: sampling, convex optimization, spectrahedra, linear matrix inequalities,
geometric random walks, semidefinite programming

ΠΕΡΙΛΗΨΗ

Παρουσιάζουμε αποτελέσματα σε αλγορίθμους, πολυπλοκότητα και υλοποίηση σχετικά με
το πρόβλημα δειγματοληψίας του εσωτερικού και του συνόρου ενός σπεκτραέδρου.

Το κύριο εργαλείο μας είναι οι τυχαίοι περίπατοι. Ορίζουμε και αναλύουμε ένα σύνολο
βασικών γεωμετρικών πράξεων, οι οποίες εκμεταλλεύονται τις αλγεβρικές ιδιότητες των
σπεκτραέδρων και το πολυωνυμικό πρόβλημα ιδιοτιμών, και οδηγούν στην πραγματοποίηση
μίας ευρείας συλλογής αποδοτικών τυχαίων περιπάτων. Δείχνουμε τυχαίους περιπάτους,
οι οποίοι πειραματικά έχουν ταχύτερο χρόνο σύγκλισης από όσους χρησιμοποιούνταν
μέχρι τώρα, είτε σε θεωρία είτε σε εφαρμογές. Αυτοί οι τυχαίοι περίπατοι μας επιτρέπουν
να κάνουμε δειγματοληψία από μία μεγάλη οικογένεια κατανομών, οι οποίες προκύπτουν
σε διάφορες εφαρμογές.

Χρησιμοποιούμε αυτά τα εργαλεία για να ειδικεύσουμε έναν τυχαιοκρατικό αλγόριθμο κυρτής
βελτιστοποίησης σε σπεκτράεδρα. Παρέχουμε μία C++ υλοποίηση ανοιχτού κώδικα, διαφόρων
τυχαίων περιπάτων (οι οποίοι δουλεύουν και σε περισσότερες από 300 διαστάσεις) και του
αλγορίθμου κυρτής βελτιστοποίησης για σπεκτράεδρα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τυχαίοι Περίπατοι, Γεωμετρία, Κυρτή Βελτιστοποίηση,
Γραμμική Άλγεβρα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: δειγματοληψία, κυρτή βελτιστοποίηση, σπεκτράεδρα, γεωμετρικοί
τυχαίοι περίπατοι

ACKNOWLEDGEMENTS

At this point, I should express my gratitude towards the people that played major roles
in this study, Firstly, I would like to thank both Dr. Ioannis Emiris and Dr. Gregory
Karagiorgos, whose courses in the University of Athens provided a solid background in
the areas of this work and, were always eager to provide advice.

I should especially mention Dr. Elias Tsigaridas, who not only helped in developing many
of the theoretical results, but was also willing to provide tutoring in whatever I needed.
Also, I would like to thank Dr. Vissarion Fisikopoulos, who provided the foundations for
the software we developed with the C++ library volesti and throughout the project assisted
in both theory and coding. Last, but by no means least, I would like to thank Apostolos
Chalkis, at this time, a PHD student. He played major role in the software development,
in the understanding of the underlying theory and in every step of the research. Part of
this thesis will also be published in a separate paper 1.

1https://hal.inria.fr/hal-02572792

CONTENTS

List of Figures 11

List of Tables 12

1 INTRODUCTION 13

1.1 Introduction . 13

1.2 Notation . 13

1.3 Background . 13

1.3.1 Spectrahedra . 13

1.3.2 Geometric Random Walks . 14

1.3.3 An algorithm for Polynomial Eigenvalue Problems 16

1.3.4 Semidefinite Programming . 18

2 BASIC GEOMETRIC OPERATIONS 19

2.1 membership . 19

2.2 intersection . 19

2.2.1 Complexity of intersection . 21

2.3 reflection . 21

2.3.1 Complexity of reflection . 24

2.4 An example in 2D . 24

3 SOME RANDOM WALKS 26

3.1 Hit and Run . 26

3.2 Billiard walk . 26

3.3 Hamiltonian Monte Carlo with Reflections. 27

4 SAMPLING AND OPTIMIZATION 29

4.1 Simulated Annealing Algorithm . 29

4.2 Heuristics . 30

4.2.1 Choosing a Random Walk . 30

4.2.2 Estimating Diameter and Temperature schedule 30

4.3 Implementation and Benchmarks . 31

4.3.1 HMC and Boltzmann Distribution 31

4.3.2 Linear Algebra . 31

4.4 Benchmarks . 33

4.4.1 Generating Random Dense Problems 33

4.4.2 Against SDPA. 33

ACRONYMS 36

REFERENCES 37

LIST OF FIGURES

Figure 1 A randomly generated spectrahedron and uniform samples in its
interior. 14

Figure 2 A step of the billiard walk in a polytope. 15

Figure 3 A spectrahedron S described by F (x) and a parameterized curve
Φ. The point p0 = Φ(0) lies in the interior of S, and the points p+ = Φ(t+)
and p− = Φ(t−) on the boundary. The vector w is the surface normal of ∂S
at p+ and u the direction of Φ at time t = t+. 20

Figure 4 The i-th step of the W-Billard [5] (left) and of the W-HMC-r [6] (right)
random walks. 24

Figure 5 Samples from the uniform distribution with W-Billard (left) and from
the Boltzmann distribution π(x) ∝ e−cx/T , where T = 1, c = [−0.09, 1]T , with
W-HMC-r (right). The volume of this spectrahedron is 10.23. 28

Figure 6 Different temperature schedules (left) for different values of k in
Equation 4.3 and the corresponding time ratios SA / SDPA (right). 34

Figure 7 Simulated annealing with k = 0.25 in Equation 4.3 (left) and the time
ratio SA / SDPA (right), with m = 100 and varying d. 34

Figure 8 Simulated annealing with k = 0.25 in Equation 4.3 (left) and the time
ratio SA / SDPA (right), with d = 100 and varying m. 35

LIST OF TABLES

Table 1 The per-step complexity of the random walks in Sec. 3. 27

Table 2 The average#iteration / runtime / failures over 10 generated S-n-m,
to achieve error ϵ ≤ 0.05. The walk length is one for W-HMC-r and W1 =
4
√
n and W2 = 4n for W-HnR. With ”failures” we count the number of times

the method fails to converge. Also m is the dimension of the matrix in LMI
and n is the dimension that S-n-m lies. 30

Sampling Methods, Spectrahedra and Convex Optimization

1. INTRODUCTION

1.1 Introduction

In this thesis, we deal with the problem of sampling points from the interior and boundary of
spectrahedra, via the use of geometric random walks. We explore some random walks,
which are for general convex bodies, and tailor them for spectrahedra. This requires
the development of basic geometric operations on spectrahedra and subsequently, the
implementation of a membership or boundary oracle, which will allow the randoms walk
to ”navigate” in the spectrahedron.

As to why spectrahedra are of particular interest, we mention that spectrahedra are the
most studied convex bodies other than polytopes and, can be regarded as their generalization.
Efficient methods for sampling points in spectrahedra are crucial for many applications,
such as volume approximation [11], integration [26], semidefinite optimization [26, 19]
and applications in robust control analysis [8, 7, 37]. Our focus will be using geometric
random walks and a randomized convex optimization algorithm [20] to solve semidefinite
programs.

In the remainder of this chapter, we provide some basic background on semidefinite
programming, geometric random walks and polynomial eigenvalue problems. In Chapter
2, we develop three basic geometric operations on spectrahedra and demonstrate them
in an example in two dimensions. In Chapter 3, we present some well known random
walks, tailored for spectrahedra, based on the developed geometric operations of Chapter
2. Finally, in Chapter 4, we use a randomized convex optimization algorithm to solve
semidefinite programs.

1.2 Notation

We denote byO, resp. OB, the arithmetic, resp. bit, complexity and we use Õ, respectively
ÕB, to ignore (poly-)logarithmic factors. The bitsize of a univariate polynomial A ∈ Z[x] is
the maximum bitsize of its coefficients. We use bold letters for matrices, A, and vectors,
v; we denote by Ai,j, resp. vi, their elements; A⊤ is the transpose and A∗ the adjoint of
A. If x = (x1, . . . , xn), then F (x) = A0+

∑n
i=1 xiAi, see (1.1). For two points x and y, we

denote the line through them by ℓ(x,y) and their segment as [x,y]. For a spectrahedron
S, lets its interior be S◦ and its boundary ∂S. We represent a probability distribution π with
a probability density function π(x). When π is truncated to S the support of π(x) is S. If π
is log-concave, then π(x) ∝ e−αf(x), where f : Rd → R a convex function. Finally, let Bn
be the n-dimensional unit ball and denote by ∂Bn its boundary.

1.3 Background

1.3.1 Spectrahedra

Spectrahedra are probably themost well studied shapes after polyhedra. We can represent
polyhedra as the intersection of the positive orthant with an affine subspace. Spectrahedra

P. Repouskos 13

Sampling Methods, Spectrahedra and Convex Optimization

Figure 1: A randomly generated spectrahedron and uniform samples in its interior.

generalize polyhedra, in the sense that they are the intersection of the cone of positive
semidefinite matrices with an affine space. Lets define positive definite matrices and
spectrahedra.

Definition 1 (Positive definite matrix) AmatrixA ∈ Sm is called positive definite, denoted
by A � 0, if one of the following holds:

• x⊤Ax > 0 for all nonzero x ∈ Rn

• all eigenvalues of A are positive

Moreover, if one condition holds, so must the other. If x⊤Ax ≥ 0 and all eigenvalues of
A are non negative, then A is called positive semidefinite. We denote the set of positive
definitem×mmatrices by Sm

++ and the set of positive semidefinitem×mmatrices by Sm
+ .

Definition 2 (Spectrahedron) A spectrahedron S ⊂ Rn is the feasible set of a linear
matrix inequality. That is, if

F (x) = A0 + x1A1 + · · ·+ xnAn, (1.1)

Ai are symmetric matrices in Rm×m, then S = {x ∈ Rn |F (x) � 0}.

We assume that S is bounded of dimension n. Spectrahedra are convex sets (Fig. 1) and
every polytope is a spectrahedron, but not the opposite. They are the feasible regions of
semidefinite programs [33] - as seen from the Definition 4 of semidefinite programs - in
the same way that polyhedra are the feasible regions of linear programs.

Efficient methods for sampling points in spectrahedra are crucial for many applications,
such as volume approximation [11], integration [26], semidefinite optimization [26, 19]
and applications in robust control analysis [8, 7, 37]. To sample in the interior or on the
boundary of S, we employ geometric random walks [41].

1.3.2 Geometric Random Walks

We want to address the problem of sampling a convex region. A way to achieve this, is
to use geometric random walks. Intuitively, a geometric random walk on a body S, starts

P. Repouskos 14

Sampling Methods, Spectrahedra and Convex Optimization

Figure 2: A step of the billiard walk in a polytope.

at some interior point and, at each step moves to a ”neighboring” point, chosen according
to some distribution depending only on the current point. For example, in the so-called
Billiard walk [17], starting from a point, we randomly and uniformly choose a direction,
a distance to travel, and move towards that direction till we have covered the required
distance. If we hit the boundary, we continue on a reflected trajectory (Fig 2).

More formally, geometric random walks are Markov chains. To sample under a specific
distribution, we set up a randomwalk in a way, that its steady state is that desired distribution.
A random sample is obtained after a sufficient number of steps. The complexity of a
random walk depends on its mixing time —the number of steps required to bound the
distance between the current and the stationary distribution— and the complexity of the
basic geometric operations that we perform at each step of the walk (in the example of
the Billiard walk, computing the intersection point of the trajectory with the boundary and
the reflection); we also call the latter per-step complexity.

The majority of geometric random walks are defined for general convex bodies and are
based on an oracle; usually in literature the membership oracle, though we in this work
employ boundary oracles. A boundary oracle, given a convex body S, a point p ∈ S and
a polynomial curve ϕ(t) (we restrict to univariate polynomials, with t serving as a time
parameter), it outputs the distance we can travel till we reach the boundary of S, walking
on that curve. The complexity of boundary oracles dominates the complexity of a single
step of the random walk.

There are also a few, e.g., Vaidya walk [9], sub-linear ball walk [28], specialized for
polytopes. Most results on their analysis focus on convergence and mixing time, while
the operations they perform at each step are defined abstractly and are enclosed in the
corresponding oracle. That is why the complexity bounds involve the number of oracle
calls.

To specialize a random walk for a family or representation of convex bodies one has
to come up with efficient algorithms for the basic geometric operations to realize the
(various) oracles. These operations should exploit the underlying geometric and algebraic
properties and are of independent interest. Evenmore, they dominate the per-step complexity
and they are crucial both for the overall complexity to sample a point from the target
distribution and for an implementation.

The study of basic geometric operations to sample from non-linear convex objects finds
its roots in non-linear computational geometry. During the last two decades, there are

P. Repouskos 15

Sampling Methods, Spectrahedra and Convex Optimization

combined efforts [6] to develop efficient algorithms for the basic operations (predicates)
that are behind classical geometric algorithms, like convex hull, arrangements, Voronoi
diagrams, to go beyond points and lines and handle curved objects.

To our knowledge, only the Hit and Run (HnR) random walk [35] has been studied for
spectrahedra [7]. To exploit the various other walks, like Ball walk [41], Billiard walk [17],
Hamiltonian Monte Carlo (HMC) [1] we need to provide geometric operations, such as the
reflection of a curve at the boundary and computing the intersection point of a curve at the
boundary.

We should mention that there is a gap [12, 5] between the theoretical worst case bounds
for the mixing times and the practical performance of the random walk algorithms. Thus,
it is not accurate to claim (for all the random walks) that the speed of convergence to the
target distribution is the same for different families of convex bodies. Furthermore, there
are random walks without known theoretical mixing times, such as Coordinate Directions
HnR, billiard walk or HMC with reflections. To study them experimentally, the efficient
realization of the corresponding oracles is crucial.

1.3.2.1 Previous Work on Geometric Random Walks in Spectrahedra

Sampling convex sets via random walks has attained a lot of interest in the last decades.
Most of the works assume either convex sets or polytopes; [28] provides an overview of the
state-of-the-art. Random walks on spectrahedra are studied in [31, 14], where it exploits
the Hit and Run walk and the computation of the intersection reduces to a generalized
eigenvalue problem.

The Billiard walk [17] is a general way of sampling in convex or non-convex shapes from
the uniform distribution. A mathematical billiard consists of a domain D and a point-mass,
moving freely in D [36]. When this point-mass hits the boundary, it performs a specular
reflection, albeit without losing velocity. An application of billiards is the study of optical
properties of conics [36, Sec. 4].

If the trajectory is not a line, but rather a parametric curve, then the intersection operation
reduces to the polynomial eigenvalue problem (PEP). HMC with reflections requires this
operation. PEP is a well-studied problem in computational mathematics, e.g., [38], and
it appears in many applications. There are important results both for the perturbation
analysis of PEP [38, 4, 15], as well as for the condition-based analysis of algorithms for
the real and complex versions of PEP, if we assume random inputs [2, 3].

1.3.3 An algorithm for Polynomial Eigenvalue Problems

To estimate the complexity of the geometric operations defined in chapter 2 we need the
complexity of PEP. The Polynomial Eigenvalue Problem (PEP) consists in computing λ ∈
R and x ∈ Rm that satisfy the (matrix) equation

P (λ)x = 0⇔ (Bdλ
d + · · ·+B1λ+B0)x = 0 , (1.2)

where Bi ∈ Rm×m. We further assume that Bd and B0 are invertible. In general, there
are δ = md values of λ. We refer the reader to [38, 39] for a thorough exposition of PEP.

One approach for solving PEP is to linearalize the problem and to express λ’s as the
eigenvalues of a bigger matrix. For this we transform Eq. (1.2) into a linear pencil of

P. Repouskos 16

Sampling Methods, Spectrahedra and Convex Optimization

dimension δ. Following closely [4], the Companion Linearization consists in solving the
generalized eigenvalue problem C0 − λC1, where

C0 =

Bd 0 · · · 0

0 Im
. . .

...
...

. . .
. . . 0

0 · · · 0 Im

 and C1 =

Bd−1 Bd−2 · · · B0

−Im 0 · · · 0
...

. . .
. . .

...
0 · · · −Im 0

 ,

and Im denotes the m × m identity matrix. The eigenvectors x and z are related z =
[1, λ, . . . , λd−2, λd−1]⊤ ⊗ x.

To obtain an exact algorithm for PEP we exploit the assumption that Bd is invertible to
transform the problem to the following classical eigenvalue problem (λId − C2)z = 0,
where

C2 =

Bd−1B

−1
d Bd−2B

−1
d · · · B0B

−1
d

−Im 0 · · · 0
...
0 · · · −Im 0

 .

The eigenvectors are roots of the characteristic polynomial of C2. Therefore, the problem
is to compute the eigenvalues of C ∈ Rδ×δ. From a complexity point of view the best
algorithm to compute the eigenvalues relies on computing the roots of the characteristic
polynomial [34]. We also follow this approach. However, in practise other methods are
more efficient and stable.

Lemma 1.3.1 Consider a PEP of degree d, involving matrices of dimension m ×m, with
integer elements of bitsize at most τ , see (1.2). There is a randomized algorithm for
computing the eigenvalues and the eigenvectors of PEP up to precision ϵ = 2−L, in
ÕB(δ

ω+3L), where δ = md and L = Ω(δ3τ). The arithmetic complexity is Õ(δ2.697 +
δ lg(1/ϵ)).

Proof 1 (Proof of Lemma 1.3.1) We can compute the characteristic polynomial of anN×
N matrixM in ÕB(N

2.697+1 lg‖M‖) using a randomized algorithm, see [21] and references
therein. Here ‖M‖ denotes the largest entry in absolute value. In our case, the elements
of C2 have bitsize Õ(δτ) and its characteristic polynomial is of degree d and coefficient
bitsize ÕB(δ

2τ). We compute it in ÕB(δ
2.697+1δτ) = ÕB(δ

4.697τ). We isolate all its real roots
in ÕB(δ

5 + δ4τ) [29]; they correspond to the real eigenvalues of PEP. We can decrease
the width of the isolating interval by a factor of ϵ = 2−L for all the roots in ÕB(δ

3τ + δL)

[30]. Thus, the overall complexity is ÕB(δ
5 + δ4.697τ + δL).

It remains to compute the corresponding eigenvectors. For each eigenvalue λ we can
compute the corresponding eigenvector z by performing Gaussian elimination and back
substitution to the (augmented) matrix [λIδ −C2 |0]. We can do this with Õ(δω) arithmetic
operations. However, as λ is a root of the characteristic polynomial we have to perform
operations with algebraic numbers, which a highly non-trivial task and it is not clear what
is the number of bits that we need to compute the elements of z correctly and to recover
x. For this task we employ the separation bounds for polynomial system adopted to the
problem of eigenvector computation [16]. We need, as in the case of eigenvalues, ÕB(δ

4+
δ3τ) bits to isolate the coordinates of the eigenvectors. To decrease the width of the
corresponding isolating intervals by a factor of ϵ = 2−L, then the number of bits becomes
ÕB(δ

4+δ3τ+L). Thus, we compute the eigenvectors in ÕB(δ
ω(δ4+δ3τ+L)) = ÕB(δ

ω+4+
δω+3τ + δωL).

P. Repouskos 17

Sampling Methods, Spectrahedra and Convex Optimization

For the arithmetic complexity we proceed as follows: We compute the characteristic polynomial
in Õ(δ2.697), we approximate its roots up to ϵ in Õ(δ lg(1/ϵ)). Finally, we compute the
eigenvectors with Õ(δω) arithmetic operations. So the overall cost is Õ(δ2.697 + δ lg(1/ϵ)).

We do not claim that the algorithm that we presented for PEP is the best algorithm to use
in practice. There are several superior numerical algorithms for this task. However, our
approach is convenient to deduce Boolean complexity estimates.

1.3.4 Semidefinite Programming

Semidefinite optimization is a subarea of convex optimization, one of great theoretical and
practical interest. We could think of it, informally, as a generalization of linear programming,
where the decision variables are symmetricmatrices and, the inequalities can be perceived
as matrices being positive semidefinite.

Definition 3 (Semidefinite Programming - Primal Form) A semidefinite program has the
following form:

Minimize 〈C,X〉
subject to 〈Ai,X〉 ≤ bi, i = 1, · · · , n

X � 0

where C,Ai,X ∈ Sm and 〈A,B〉 denotes the operation
n∑

i=1

n∑
j=1

Ai,jBi,j = Tr
(
A⊤B

)
.

The feasible region of a semidefinite program is a spectrahedron; remember, in linear
programming the feasible region was a polyhedron. In the remaining of this work,we
will focus on the dual form of semidefinite programs. The reason is, that in its dual
representation, the constraint is (without loss of generality) a linear matrix inequality,
which is a compact way to describe spectrahedra and will be of use when developing
the geometric operations.

Definition 4 (Semidefinite Program - Dual Form) The dual representation of a semidefinite
program is:

Minimize c⊤x

subject to A0 +
n∑

i=1

xiAi � 0

where c,x ∈ Rn and Ai ∈ Sm, i = 0, · · · , n. Note that the feasible region of this program,
described by A0 +

n∑
i=1

xiAi � 0, is a n-dimensional spectrahedron.

P. Repouskos 18

Sampling Methods, Spectrahedra and Convex Optimization

2. BASIC GEOMETRIC OPERATIONS

Our toolbox for computations with spectrahedra and implementing randomwalks, consists
of three basic geometric operations: membership, intersection, and reflection. For a
spectrahedron S, membership decides if a point is inside S, intersection computes the
intersection of an algebraic curved trajectory C with the ∂S, and reflection computes the
reflection of an algebraic curved trajectory when it hits ∂S. We need the last two operations
because random walks can move along non-linear trajectories inside convex bodies. For
the ones that we consider, the trajectories are parametric polynomial curves, of various
degrees. To compute with these curves we need to solve a polynomial eigenvalue problem
(PEP).

2.1 membership

The operation membership(F ,p) decides if a point p lies in the interior of a spectrahedron
S = {x ∈ Rn |F (x) � 0}. For this, first, we construct the matrix F (p). Next, if the matrix
is positive definite, then p ∈ S◦, if it is positive semidefinite, then p ∈ ∂S, and otherwise
p ∈ Rn \ S. The pseudo-code appears in Alg. 1.

Algorithm 1: membership(F ,p)

Input : An LMI F (x) � 0 representing a spectrahedron S and a point p ∈ Rn.
Output: true if p ∈ S, false otherwise.

1 λmin ← smallest eigenvalue of F (p);
2 if λmin ≥ 0 then return true ;
3 return false ;

Lemma 2.1.1 Alg. 1, membership(F ,p), requires Õ(nm2 +m2.697) arithmetic operations.
If F and p have integers elements of bitsize at most τ , resp. σ, then the bit complexity is
ÕB((nm

2 +m3.697)(τ + σ)).

Proof 2 (Proof of Lemma 2.1.1) We construct F (p) in O(nm2). Then, with O(m2.697)

operations we compute its characteristic polynomial [21] and in Õ(m) we decide if it has
negative roots, for example by solving [29] or using fast sub-resultant algorithms [22, 24].
For the bit complexity bound, the construction costs ÕB(nm

2(τ + σ) and computation of
the characteristic polynomial ÕB(m

2.697+1(τ + σ)) using a randomized algorithm [21]. We
test for negative roots, and thus eigenvalues, in ÕB(m

2n(τ + σ)) [24].

2.2 intersection

Consider a parametric polynomial curve C such that it has a non-empty intersection with a
spectrahedron S. Assume that the value of the parameter t = 0 corresponds to a point, p0,
that lies in C∩S◦. Further assume that the part of C that p0 lies on, intersects the boundary
of S transversally at two points, say p− and p+. The operation intersection computes the

P. Repouskos 19

Sampling Methods, Spectrahedra and Convex Optimization

Figure 3: A spectrahedron S described by F (x) and a parameterized curve Φ. The point p0 = Φ(0)
lies in the interior of S, and the points p+ = Φ(t+) and p− = Φ(t−) on the boundary. The vector w is

the surface normal of ∂S at p+ and u the direction of Φ at time t = t+.

parameters, t− and t+, corresponding to these two points. Fig. 3 illustrates this discussion
and the pseudo-code of intersection appears in Alg. 2.

To prove correctness and estimate its complexity we proceed as follows: As before, S is
the feasible region of an LMI F (x) � 0. Consider the real trace of a polynomial curve C,
with parametrization

Φ : R → Rn

t 7→ Φ(t) := (p1(t), . . . , pn(t)),
(2.1)

where pi(t) =
∑di

j=0 pi,jt
j are univariate polynomials in t of degree di, for i ∈ [m]. Also

let d = maxi∈[m]{di}. If the coefficients of the polynomials are integers, then we further
assume that the maximum coefficient’s bitsize is bounded by τ .

As t varies over the real line, theremay be several disjoint intervals, for which the corresponding
part of C lies in S◦. We aim to compute the endpoints, t− and t+, of a maximum interval
containing t = 0. Let p0 = Φ(0); by assumption it holds F (Φ(0)) = F (p0) � 0.

The input of intersection (Alg. 2) isF , the LMI representation of S, andΦ(t), the polynomial
parametrization of C. Its crux is a routine, PEP, that solves a polynomial eigenvalue
problem. The following lemma exploits this relation.

Algorithm 2: intersection(F ,Φ(t))

Input : An LMI F (x) � 0 for a spectrahedron S and a parametrization Φ(t) of a
polynomial curve C

Require: Φ(0) ∈ S◦

Output : t−, t+ s.t. Φ(t−),Φ(t+) ∈ ∂S

4 T := {t1 ≤ t2 ≤ · · · ≤ tℓ} ← PEP(F (Φ(t)));
5 t− ← max{t ∈ T | t < 0}; // max neg polynomial eigenvalue
6 t+ ← min{t ∈ T | t > 0}; // min pos polynomial eigenvalue
7 return t−, t+;

Lemma 2.2.1 (PEP and S ∩ C) Consider the spectrahedron S = {x ∈ Rn |F (x) � 0}.
Let Φ : R → Rn be a parametrization of a polynomial curve C, such that Φ(0) ∈ S◦. Let
[t−, t+] be the maximum interval containing 0, such that the corresponding part of C lies
in S. Then, t−, resp. t+, is the maximum negative, resp. minimum positive, polynomial
eigenvalue of F (Φ(t))x = 0, where F (Φ(t)) = B0 + tB1 + · · ·+ tdBd.

P. Repouskos 20

Sampling Methods, Spectrahedra and Convex Optimization

Proof 3 (Proof of Lemma 2.2.1) The composition of F (x) and Φ(t) gives

F (Φ(t)) = A0 + p1(t)A1 + · · ·+ pn(t)An. (2.2)

We rewrite (2.2) by grouping the coefficients for each tk, i ∈ [d], then

F (Φ(t)) = B0 + tB1 + · · ·+ tdBd, (2.3)

whereBk =
∑n

j=0 pj,k Aj, for 0 ≤ k ≤ d. We use the convention that pj,k = 0, when k > dj.

For t = 0, it holds, by assumption, that F (Φ(0)) = B0 � 0; that is the point Φ(0) is in the
interior S. Actually, for any x ∈ S◦ it holds F (x) � 0. On the other hand, if x ∈ ∂S, then
F (x) � 0. Our goal is to compute the maximal interval [t−, t+] that contains 0 and for every
t in it, we have F (Φ(t)) � 0.

Starting from the point Φ(0), by varying t, we move at the trajectory that C defines (in both
directions) until we hit the boundary of S. When we hit ∂S, the matrix F (Φ(t)) is not strictly
definite anymore. Thus, its determinant vanishes.

Consider the function θ : R→ R, where θ(t) = detF (Φ(t)) is a univariate polynomial in t.
If a point Φ(t) is on the boundary of the spectrahedron, then θ(t) = 0. We opt to compute
t− and t+, such that t− ≤ 0 ≤ t+ and θ(t−) = θ(t+) = 0. At t = 0, θ(0) > 0 and the graph
of θ is above the t-axis. So C intersects the boundary when the graph of θ touches the
t-axis for the first time at t1 ≤ 0 ≤ t2. It follows that t− = t1 and t+ = t2 are the maximum
negative and minimum positive roots of θ, or equivalently the corresponding polynomial
eigenvalues of F (Φ(t)).

2.2.1 Complexity of intersection

Wehave to construct PEP and solve it. IfΦ(t) has degree d, thenF (Φ(t)) = B0+tB1+· · ·+
tdBd. This construction costs O(dnm2) operations. The solving phase, from Lemma 1.3.1
requires Õ((md)2.697+md lgL) arithmetic operations and dominates the complexity bound
of the operation.

2.3 reflection

The reflection operation (Alg. 3) takes as input an LMIF representation of a spectrahedron
S and a polynomial curve C, given by a parametrization Φ. Assume that t = 0 corresponds
to a pointΦ(0) ∈ S◦∩C. Starting from t = 0, we increase t along the positive real semi-axis.
As t changes, we move along the curve C through Φ(t), until we hit the boundary of S at
the point p+ := Φ(t+) ∈ ∂S, for some t+ > 0. Then, a specular reflection occurs at this
point with direction s+; this is the reflected direction. We output t+ and s+. Fig. 3 depicts
the procedure.

The boundary of S, ∂S, with respect to the Euclidean topology, is a subset of the real
algebraic set {x ∈ Rn | det(F (x)) = 0}. The latter is a real hypersurface defined by one
(determinantal) equation. For any x ∈ ∂S we have rank(F (x)) ≤ m− 1. We assume that
p+ = Φ(t+) is such that rank(F (p+)) = m− 1. The normal direction at a point p ∈ ∂S, is
the gradient of detF (p).

P. Repouskos 21

Sampling Methods, Spectrahedra and Convex Optimization

We compute the reflected direction using the following formula

s+ = u− 2
|w|2 〈u,w〉w, (2.4)

wherew is the normalized gradient vector at the pointΦ(t+) andu = dΦ
dt
(t+) is the direction

of the trajectory at this point. We illustrate the various vectors in Fig. 3.

Algorithm 3: reflection (F ,Φ(t))

Input : An LMI F (x) � 0 for a spectrahedron S and a parametrization Φ(t) of a
polynomial curve C.

Require: (i) Φ(0) ∈ S◦

(ii) C intersects ∂S transversally at a smooth point.
Output : t+ such that Φ(t+) ∈ ∂S and the direction of the reflection, s+, at this point.

8 t−, t+ ← intersection (F ,Φ(t));
9 w ← ∇detF (Φ(t+));
10 w ← w

∥w∥ ; // Normalize w

11 s+ ← dΦ
dt
(t+)− 2 〈∇dΦ

dt
(t+),w〉w;

12 return t+, s+;

Lemma 2.3.1 (Gradient of detF (x)) Assume that x ∈ ∂S and the rank of the m × m
matrix F (x) is m− 1. Then

∇det(F (x)) = c · (v⊤A1v, · · · ,v⊤Anv), (2.5)

where c = µ(F (x))
|v|2 , µ(F (x)) is the product of the nonzero eigenvalues of F (x), and v is

a non-trivial vector in the kernel of F (x). If rank(F (x)) ≤ m − 2, then the gradient is the
zero.

To prove lemma 2.3.1 we will need the following lemmas.

Lemma 2.3.2 (Partial Derivative of Determinant) Let A be a symmetric m ×m matrix.
Then

∂ detA
∂Aij

= cij

where cij the cofactor of Aij.

Proof 4 From Laplace expansion:

detA =
m∑
j=1

Aijcij

Notice that c1j, · · · , cmj are independent of Aij, so we have

∂ detA
∂Aij

= cij

P. Repouskos 22

Sampling Methods, Spectrahedra and Convex Optimization

Lemma 2.3.3 Let F (x) = A0 + x1A1 + · · ·+ xnAn. Then

∂ detF (x)

∂xk

= Tr (F (x)∗Ak))

Proof 5 The function detF (x) is the composition of detA andA = F (x), so from Lemma
2.3.2 and the chain rule:

∂ detF (x)

∂xk

=
m∑
i=1

m∑
j=1

∂ detF
∂Fij

· ∂Fij

∂xk

=
m∑
i=1

m∑
j=1

cijA
k
ij = Tr (F (x)∗Ak)

where Ak
ij the ij-th element of matrix Ak

Lemma 2.3.4 (Adjoint Matrix of A) LetA be am×mmatrix of rank r(A) = m−1. Then

A∗ = µ(A)
vu⊤

u⊤v

where µ(A) is the product of the m − 1 non-zero eigenvalues of A, and x and y satisfy
Av = A⊤u = 0 (see chapter 3.2 in [27]).

Proof 6 (Proof of Lemma 2.3.1) From Lemma 2.3.3:

∂ detF (x)

∂xk

= Tr (F (x)∗Ak) (2.6)

If rank(F (x)) ≤ −2, then F (x)∗ is the zero matrix. Supposing rank(F (x)) = m− 1, from
Lemma 2.3.4:

Tr (F (x)∗Ak) = Tr

(
µ(F (x))

vu⊤

u⊤v
Ak

)
=

µ(F (x))

u⊤v
· Tr

(
vu⊤Ak

)
=

µ(F (x))

u⊤v
· u⊤Akv

but since F (x) is symmetric, we can choose v = u, so:

µ(F (x))

u⊤v
· u⊤Akv =

µ(F (x))

|v|2
· v⊤Akv

reflection exploits Lemma 2.3.1. Nevertheless, it is not necessary to perform all computations
indicated by the lemma. Since, we will normalize the resulting vector and we do not need
its actual direction (internal or external), we can omit the computation of c. Moreover, the
nonzero vector v s.t. F (p)v = 0, corresponds to the eigenvector w.r.t. the eigenvalue t+
from the PEP (Lem. 2.2.1). This holds because p = Φ(t+) ∈ ∂S and thus detF (Φ(t+)) =
0.

P. Repouskos 23

Sampling Methods, Spectrahedra and Convex Optimization

Figure 4: The i-th step of the W-Billard [5] (left) and of the W-HMC-r [6] (right) random walks.

Wecompute the eigenvalues of PEP up to some precision. Sincematrix-vectormultiplication
is backward stable, a small perturbation on v does not affect the computation of each
coordinate of∇det(F (x)) [40, p. 104]. We quantify the accuracy of the computed∇det(F (x))
using floating point arithmetic as follows:

Lemma 2.3.5 The relative error of each coordinate of the gradient given in Lemma 2.3.1
when we compute it using floating point arithmetic with machine epsilon ϵM is O(ϵM

σmax(Ai)
),

for i ∈ [n], where σmax is the largest singular value of Ai.

Proof 7 (Proof of Lemma 2.3.5) Let A ∈ Rm×m be a symmetric matrix and consider the
map f : v 7→ vTAv. The relative condition number of f as defined in [40, p. 90] is

k(v) =
||J(v)||

||f(v)||/||v||
= 2
||Av||
vTAiv

= 2
σmax(A)

σ2
max(A)

=
2

σmax(A)

where J(·) is the Jacobian of f . According to Theorem 15.1 in [40, p. 111], sincematrix-vector
multiplication is backward stable, the relative error of each coordinate in the gradient
computation of Lemma 2.3.1 is O(ϵM

σmax(Ai)
), i = 1, . . . , n.

2.3.1 Complexity of reflection

As mentioned, for∇det(F (x)) we just need to compute (v⊤A1v, · · · ,v⊤Anv). If we have
already computed v, then we need O(nm2) operations. Computing the derivative of Φ(t)
is straightforward, since Φ is a univariate polynomial. Taking into account the complexity
of intersection, the total complexity for reflection is Õ((md)2.697+md lgL+dnm2+nm2) =

Õ((md)2.697 + md lgL + dnm2).

2.4 An example in 2D

Consider a spectrahedron S in the plane (Fig. 4), given by an LMI F (x) = A0 + x1A1 +
x2A2. The spectrahedronwas randomly generated as in [14]. Due to space considerations,
the entries of the matrices are rounded to the first decimal.

P. Repouskos 24

Sampling Methods, Spectrahedra and Convex Optimization

A0 =

16.7 3.7 12.3 8.7 5.1 10.4
3.7 9.4 2.3 4 −2.3 −1
12.3 2.3 26.8 18.7 7.1 16.7
8.7 4 18.7 20 3.7 12.3
5.1 −2.3 7.1 3.7 6.1 5.4
10.4 −1 16.7 12.3 5.4 18.7

 (2.7)

A1 =

0.5 −0.4 2.7 0 0
−0.4 1.4 −0.2 0 0 0
2.7 −0.2 1.7 0 0 0
0 0 0 0.5 −0.4 2.7
0 0 0 −0.4 1.4 −0.2
0 0 0 2.7 −0.2 1.7

 (2.8)

A2 =

2.6 −0.1 3 0 0 0
−0.1 1 −0.1 0 0 0
3 −0.1 −1 0 0 0
0 0 0 2.6 −0.1 3
0 0 0 −0.1 1 −0.1
0 0 0 3 −0.1 −1

 (2.9)

Starting from point p0 = (−1, 1)⊤, we walk along the line L with parametrization: Φ(t) =
p0 + tu, where u = (1.3, 0.8)⊤. Then, intersection finds the intersection of S with L, by
solving the degree one PEP, (B0+ tB1)x = 0, whereB0 = F (p0) andB1 = u1A1+u2A2.
Acquiring t− = −0.8 and t+ = 0.5, we get the intersection point p1, which corresponds to
p0 + t+u = (−0.3, 1.4)⊤.

To compute the direction of the trajectory, immediately after we reflect on the boundary of
S at p1, reflection computes

w =
∇detF (Φ(t+))

|∇detF (Φ(t+))|
= (v⊤A1v,v

⊤A2v)
⊤ = (−0.2,−1)⊤, (2.10)

where v is the eigenvector of (B0+ tB1)x = 0, with eigenvalue t+. The reflected direction
is u′ = u− 2〈u,w〉w = (0.8,−1.3)⊤.

P. Repouskos 25

Sampling Methods, Spectrahedra and Convex Optimization

3. SOME RANDOM WALKS

Using the basic geometric operations of Sec. 2, we implement and analyze three random
walks for spectrahedra: Hit and Run (W-HnR) , Billiard Walk (W-Billard), and Hamiltonian
Monte Carlo with reflections (W-HMC-r). In Table 1, we present the per-step arithmetic
complexity for each random walk.

3.1 Hit and Run

W-HnR (Alg. 4) is a randomwalk that samples from any probability distribution π, truncated
to a convex body K; in our case a spectrahedron S. However, for its mixing time, there
exist bounds only when π is log-concave distribution (e.g. the uniform distribution), which
is Õ(n3). At the i-th step, W-HnR chooses uniformly at random a (direction of a) line ℓ,
passing from its current position pi. Let p1,p2 be the intersection points of ℓ with S. Let
πℓ be the restriction of π on the segment [p2,p2]. Then, we choose pi+1 from [p1,p2] w.r.t.
the distribution πℓ.

Algorithm 4: Hit-and-Run_Walk (W-HnR)
Input : LMI F (x) � 0 for a spectrahedron S & a point pi.
Require: pi ∈ S
Output : The point pi+1 of the (i+ 1)-th step of the walk.

13 v ←R U(∂Bn); // choose direction
14 Φ(t) := pi + tv; // define trajectory
15 t−, t+ ← intersection (F ,Φ(t));
16 pi+1 ←R [pi + t−v, pi + t+v] w.r.t. πℓ;
17 return pi+1;

The per-step complexity of W-HnR is dominated by the intersection, which requiresO(nm2)

operations for the construction of the PEP and Õ(m2.697 + m lg 1/ϵ) for solving it, where
we want to approximate the intersection point up to a factor or 2−L.

There is a variation of W-HnR, the coordinate directions Hit and Run (W-CHnR) [35], in
which the direction vector is chosen randomly and uniformly from the vector basis {ei, i ∈
[n]}. In W-CHnR, for every step aside the first, the construction of the PEP takes O(m2)
operations, and the complexity does not depend on the dimension n. The reason is, that
to build the PEP F (pi) + tej) = F (pi) + tAj, the value of F (pi) can be obtained via
F (pi) = F (pi−1) + t̂Ak, assuming in the previous step ek was chosen as direction. There
is not a theoretical mixing time for W-CHnR.

3.2 Billiard walk

W-Billard [32], Alg. 5, is used to sample a convex body K under the uniform distribution;
no theoretical results for its mixing time exist. At i-th step, being on position pi, it chooses
uniformly a direction vector v and a number L, where L = −τ ln η, η ∼ U(0, 1). Then, it
moves at the direction of v for distance L. If during the movement, it hits the boundary
without having covered the required distance L, then it continues on a reflected trajectory.

P. Repouskos 26

Sampling Methods, Spectrahedra and Convex Optimization

Table 1: The per-step complexity of the random walks in Sec. 3.

per-step Complexity
W-HnR O(m2.697 +m lgL+ nm2)
W-CHnR O(m2.697 +m lgL+m2)

W-Billard Õ(ρ(m2.697 +m lgL+ nm2))

W-HMC-r Õ(ρ((dm)2.697 +md lgL+ dnm2))

If the number of reflections exceeds a bound ρ, it stays at pi. In [32] they experimentally
conclude that W-Billard mixes faster when τ ≈ diam(K).

Algorithm 5: Billiard_Walk (W-Billard)
Input : An LMI F (x) � 0 for a spectrahedron S, a point pi, the diameter τ of S and

a bound ρ on the number of reflections.
Require: pi ∈ S
Output : The point pi+1 of the (i+ 1)-th step of the walk.

18 L← −τ ln η ; η ←R U((0, 1)); // choose length
19 v ←R U(∂Bn); // choose direction
20 p← pi;
21 do
22 Φ(t) := p+ tv; // define trajectory
23 t+, s+ ← reflection (F ,Φ(t));
24 t̂← min{t+, L} ; p← Φ(t̂) ; v ← s+ ; L← L− t̂ ;
25 while L > 0;
26 if #{reflections} > ρ then return pi+1 = pi;
27 else return pi+1 = p ;

The per-step complexity of W-Billard is dominated by the reflection, which requires Õ(m2.697+
m lgL + nm2) arithmetic operations, when we want to approximate the intersection point
up to a factor of 2−L. Since we allow at most ρ reflections per step, the total complexity
become Õ(ρ(m2.697 +m lgL+ nm2)).

3.3 Hamiltonian Monte Carlo with Reflections

Hamiltonian Monte Carlo (HMC) samples from any probability distribution π. Our focus
lies again on the log-concave distributions (π(x) ∝ e−αf(x)). In this case, if we assume
that f is a strongly convex function, then the mixing time of HMC is O(k1.5 log(n/ϵ)), where
κ is the condition number of ∇2f [23]. If we truncate π in a convex body, then we can use
boundary reflections (W-HMC-r) to ensure that the random walk converges to the target
distribution [10]; however, in this case the mixing time is unclear.

The Hamiltonian dynamics behind HMC operate on a n-dimensional position vector p and
a n-dimensional momenta v, so the full state space has 2n dimensions. The system is
described by a function of p and v known as the Hamiltonian, H(p,v) = U(p) +K(v) =
f(p)+ 1

2
|v|2. To sample from π one has to solve the following system of Ordinary Differential

Equations (ODE):
dp

dt
=

∂H(p,v)

∂v
dv

dt
= −

∂H(p,v)

∂p

dv(t)
dt

= −α∇f(p)

dp(t)
dt

= v(t)

(3.1)

P. Repouskos 27

Sampling Methods, Spectrahedra and Convex Optimization

Figure 5: Samples from the uniform distribution with W-Billard (left) and from the Boltzmann
distribution π(x) ∝ e−cx/T , where T = 1, c = [−0.09, 1]T , with W-HMC-r (right). The volume of this

spectrahedron is 10.23.

If π(x) is a log-concave density, then we can approximate the solution of the ODE with
a low degree polynomial trajectory [23], using the collocation method. A degree d =
O(1/ log(ϵ)) suffices to obtain a polynomial trajectory with error O(ϵ), for a fixed time
interval, while we perform just Õ(1) evaluations of ∇f(x).

HMC at the i-th step uniformly samples a step ℓ from a proper interval to move on the
trajectory implied by ODE (3.1), choses v randomly fromN (0, I), and updates p using the
ODE in (3.1), for t ∈ [0, ℓ]. When π is truncated in a convex body, then W-HMC-r fixes
an upper bound ρ on the number of reflections and reflects a polynomial trajectory as we
describe in Sec. 2.3.

Algorithm 6: HMC_w_reflection (W-HMC-r)
Input : An LMI F (x) � 0 representing a spectrahedron S, a point pi, the diameter

τ of S and a bound ρ to the number of reflections.
Require: pi ∈ S
Output : The point pi+1 of the (i+ 1)-th step of the walk.

28 ℓ← τη; η ←R U((0, 1)); // choose length
29 v ←R N (0, Id); // choose direction
30 do
31 Compute trajectory Φ(t) from ODE (3.1);
32 t+, s+ ← reflection (F ,Φ(t));
33 t̂← min{t+, ℓ} ; p← Φ(t̂) ; v ← s ; ℓ← ℓ− t̂ ;
34 while L > 0;
35 if # {reflections} > ρ then return pi+1 = pi ;
36 return pi+1 = p ;

Each step of W-HMC-r, when π(x) is a log-concave density truncated by S, costs Õ(ρ((dm)2.697+
md lgL + dnm2)), if we approximate the intersection points up to a factor 2−L, where d is
the degree of the polynomial that approximates the solution of the ODE (3.1).

P. Repouskos 28

Sampling Methods, Spectrahedra and Convex Optimization

4. SAMPLING AND OPTIMIZATION

The use of geometric random walks opens new doors in convex optimization. In this
chapter we present a randomized convex optimization algorithm [20], which makes use
of random walks. This algorithm is agnostic to the type of the geometric bodies, the only
restriction being that they are convex. We will use the tools we developed in chapter 2 to
implement this algorithm for spectrahedra, that is to solve semidefinite programs.

4.1 Simulated Annealing Algorithm

The simulated annealing algorithm [20] employs a random walk to sample a convex body
under the Boltzmann distribution, to solve convex optimization problems. We will use
it to solve semidefinite programs, that is, we will restrict it for convex bodies which are
spectrahedra. In particular, we will solve problems of the form

min〈c,x〉, subject to x ∈ S. (4.1)

The strategy to approximate the optimal solution x∗ of Eq. (4.1), is based on sampling
from the Boltzmann distribution, i.e., π(x) ∝ e−cx/T , truncated to S. The scalar T , is called
temperature. As the temperature T diminishes, the mass of π tends to concentrate around
its mode, which is x∗. Thus, one could obtain a uniform point using the algorithm in [25],
and then use it as a starting point to sample from π0 ∝ e−cx/T0, where T0 = R and S ⊆ RBn.
Then, the cooling schedule Ti+1 = Ti(1 − 1/

√
n) guarantees that a sample from πi yields

a good starting point for πi+1. After Õ(
√
n) steps the temperature will be low enough, to

sample a point within distance ϵ from x∗ with high probability. Theorem 4.1.1 states exactly
that.

Algorithm 7: Simulated Annealing
Input : a convex body S, number of dimensions n, an initial point p0, direction of

minimization c with |c| = 1, diameter of body R, number of phases I
Require: p0 ∈ S◦ uniformly sampled
Output : A point pI s.t. E [c · pI] ≤ nTI +min

S
c · x

37 T0 ← R;
38 for i = 1, 2, · · · , I do
39 Ti ← Ti−1 ·

(
1− 1√

n

)
;

40 pi ←R S, under distribution e−c·x/Ti

41 return pI ;

Theorem 4.1.1 (Theorem 2.1 from [20]) With probability 1− δ and I = (
√
n log(Rn/ϵδ)),

Algorithm 7 outputs pI s.t.

c · pI ≤ min
x∈S

c · x+ ϵ (4.2)

P. Repouskos 29

Sampling Methods, Spectrahedra and Convex Optimization

Table 2: The average#iteration / runtime / failures over 10 generated S-n-m, to achieve error
ϵ ≤ 0.05. The walk length is one for W-HMC-r and W1 = 4

√
n and W2 = 4n for W-HnR. With ”failures”

we count the number of times the method fails to converge. Also m is the dimension of the matrix
in LMI and n is the dimension that S-n-m lies.

S-n-m W-HMC-r W-HnR W1 W-HnR W2

S-30-30 20.1 / 2.9/ 0 184.3 / 3.4 / 1 52.1 / 5.2 / 0
S-40-40 24.6 / 7.9 / 0 223.3 / 9.9 / 2 61.9 / 17.1 / 0
S-50-50 29.2 / 12.7 / 0 251.2 / 22.3 / 3 72.3 / 44.6 / 0
S-60-60 32.8 / 24.32 / 0 272.7 / 41.1 / 3 81.5 / 98.9 / 0

4.2 Heuristics

4.2.1 Choosing a Random Walk

At this point, we note that the algorithm in the original paper [20] is a bit different; the
author uses W-HnR combined with a heuristic for ”choosing a better direction”. This
heuristic takes into account the geometry of the body when choosing a random direction
and requires at each step of the algorithm the computation of a covariance matrix. In
algorithm 7, the random walk is not specified and the covariance matrix computation step
is omitted (this step does not make sense for all random walks and, is too expensive).

Indeed, in our implementation we use W-HMC-r instead of W-HnR. To make a case for
our choice, we present the following experiment. In Table 2 we follow the cooling schedule
described, after setting T0 ≈ R and sampling the first uniform point with W-Billard. We give
the optimal solution as input and we stop dropping T when an error ϵ ≤ 0.05 is achieved.
Even in the case when the walk length is set equal to one, W-HMC-r still converges to to
the optimal solution. To the best of our knowledge, this is the first time that a randomized
algorithm, which is based on random walks, is functional even when the walk length is
set to one. On the other hand, we set the walk length of W-HnR O(

√
n) or O(n) in our

experiments. Notice that for the smaller walk length, its runtime decreases, but themethod
becomes unstable, as it sometimes fails to converge. For both cases its runtime in is worse
than W-HMC-r.

4.2.2 Estimating Diameter and Temperature schedule

Algorithm 7, as well as W-HMC-r, require the diameter R of the convex body (in our case
spectrahedron) as input; in the simulated annealing to determine the starting temperature
and inW-HMC-r to determine the length of the trajectory. However, computing the diameter
of a body is NP-Hard, so we can only approximate it.

Of course, we need a fast method, since this is only a preparatory step, and we cannot
allow it to make a notable difference in the overall performance. In our implementation, we
use W-HnR (with coordinate directions) to sample some points (a function of

√
n, where n

is the number of dimensions) under the uniform distribution and, take as R, the maximum
distance between a pair of those points. We do not claim that this method offers a good
approximation of the actual diameter - indeed, even by sampling more points we get better
approximations - but for the purpose intended, it works.

Concerning the actual temperature schedule, in algorithm 7, at each phase the temperature

P. Repouskos 30

Sampling Methods, Spectrahedra and Convex Optimization

drops with the following schedule:

Ti ← Ti−1 ·
(
1− 1

nk

)
(4.3)

where k = 1
2
. In our tests, it appears that this is a conservative schedule and we can

decrease k, thus decreasing the factor
(
1− 1

nk

)
). More on section 4.4.2.

4.3 Implementation and Benchmarks

In this chapter we describe the implementation of the simulated annealing algorithm (Algorithm
7) as elaborated in Chapter 4, the geometric operations of Chapter 2 and some random
walks of Chapter 3. Specifically, we focus on the realization of the linear algebra operations
used by the above algorithms.

The implementation is based on and extends the functionalities of the open source, C++
GeomScale library1. Much of the programming and research took place amidst the Google
Summer of Code 2019 program2, though since then significant improvements were made.

4.3.1 HMC and Boltzmann Distribution

To sample from Boltzmann distributions with W-HMC-r, at each step, starting from pi and
with momenta vi, the ODE of Eq. (3.1) becomes

d2

dt2
p(t) = − c

T
,
d

dt
p(0) = vi, p(0) = pi. (4.4)

Its solution is the polynomial p(t) = − c
2T
t2+vit+pi, which is a parametric representation

of a polynomial curve, see Eq. (2.1).

Hence, the intersection for the boundary oracle requires solving the following QEP:

(A2t
2 +A1t+A0)x = 0 (4.5)

where A0 = F (p), A1 =
∑n

i=1 viAi and A2 = −
∑n

i=1
ci
2T
Ai.

4.3.2 Linear Algebra

4.3.2.1 Basic Linear Algebra Operations

The difficulty in implementing the random walks of Chapter 3, laid on implementing the
geometric operations of Chapter 2.

1https://github.com/GeomScale/volume_approximation
2https://summerofcode.withgoogle.com/archive/2019/projects/5081309804756992/

P. Repouskos 31

https://github.com/GeomScale/volume_approximation
https://summerofcode.withgoogle.com/archive/2019/projects/5081309804756992/

Sampling Methods, Spectrahedra and Convex Optimization

For basic linear algebra operations, such as arithmetic operations with matrices, we use
the Eigen3 library. It offers its own classes for matrices and vectors, various basic algebra
operations like matrix addition and multiplication, as well as more complex ones, such as
finding Eigenvalues.

One of its most attractive features is its overloaded operators and the way it evaluates
expressions. For example, the standard ⋆ operator, is overloaded for matrix by scalar,
matrix by matrix and matrix by vector multiplication.

More importantly, the operators such as ⋆, +, are responsible only for creating operation
expressions, and not for any actual computations. The actual computations take place
in the assignment operator =, so the library can optimize complex expressions, usually
avoiding many loops which would take place if computations were made separately by
each operator. Think of the expression A = 5 ∗B +6 ∗C, where A,B,C matrices. If the
computations took place at operators +, ∗ we would need three loops, while by computing
them at operator =, we need only one loop. In addition, by careful use of the library, we
can avoid creating temporary variables and unnecessary memory allocations.

To see the difference in efficiency between using the Eigen library against the C++ STL,
you can review this pull request4, in which we modify the random walks to use Eigen
(implemented for polytopes).

4.3.2.2 Polynomial Eigenvalue Problems

For the intersection operation (Algorithm 2) we need to solve a PEP of first degree for
W-HnR, that is a generalized eigenvalue problem (GEP) and, a PEP of second degree for
W-HMC-r, that is a quadratic eigenvalue problem (QEP).

Though Eigen provides functionality for solving generalized eigenvalue problems, it is too
expensive. It deals only with complex numbers while we have real and, it finds all the
eigenvalues, while we need only two (see section 2.2). To solve a GEP, we employ
ARPACK++5, which deals with the two issues above. ARPACK++ is compatible with
Eigen, in the sense that we can pass the Eigen matrices to ARPACK by pointer, without
copying them.

Finally, to solve theQEP 4.5, whereA0 is Hermitian and positive definite,A1,A2 Hermitian,
we transform it to a GEP, using the following linearization[18]:

t

[
A2 0
0 −A0

]
+

[
A1 A0

A0 0

]
(4.6)

Note that the resulting matrices are symmetric, but not positive definite.

Numerical Stability

During experiments we faced numerical stability issues when computing the polynomial
eigenvalues. More specific, sometimes we got wrong eigenvalue approximations and got
outside of the spectrahedron.

3http://eigen.tuxfamily.org/index.php?title=Main_Page
4https://github.com/GeomScale/volume_approximation/pull/29
5https://www.caam.rice.edu/software/ARPACK/

P. Repouskos 32

http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/GeomScale/volume_approximation/pull/29
https://www.caam.rice.edu/software/ARPACK/

Sampling Methods, Spectrahedra and Convex Optimization

The fix was, to make the following modifications:

• in the random walk, if the boundary oracle stated we could travel d units of distance
till the boundary, we traveled 0.995 ∗ d, and

• in Algorithm 7, after each iteration, we check if the point returned by the random walk
is inside the spectrahedron. If not, we repeat the same repetition. The overhead from
the check is not noticeable in the overall execution time.

4.4 Benchmarks

4.4.1 Generating Random Dense Problems

For the semidefinite programs, we generated random spectrahedra with dense matrices,
as described in [13]. In specific, the matrices Ai of F (x) = A0 + x1A1 + · · ·+ xnAn were
taken as such:

• A0 = Rm ·R⊤
m + I

• for i = 1, · · · , n

– M = Rm
2
+R⊤

m
2

– Ai =

(
−M 0
0 +M

)

where Rm is a randomly and uniformly generated matrix of odd numbers, of dimension
m. Note that A0 is positive definite, so F (0) � 0, that is 0 ∈ S◦. Indeed, this is the initial
interior point we use.

We should note, that the spectrahedra generated in this way may follow some pattern, for
example be well rounded, so additional tests are required. However, randomly generated
full dimensional and bounded spectrahedra is by no means trivial.

4.4.2 Against SDPA

In this section we present some benchmarks against the SDPA library [42]. The tests were
generated as described in chapter 4.4.1 and consist of dense matrices.

4.4.2.1 Choosing a Temperature Schedule

Remember from section 4.2.2, we have parameterized the temperature schedule of the
algorithm. In figure 6 there are time measurements compared to SDPA for problems with
n = m = 10, 20, · · · , 300, where n,m are as in the dual semidefinite program in Definition
4. For the randomized approach, the average was taken over three repeats of every
experiment. As for the stopping criterion, in each experiment we stopped when the relative
error dropped below 1%. We can see that the algorithm behaved the best for k = 0.25.

P. Repouskos 33

Sampling Methods, Spectrahedra and Convex Optimization

Figure 6: Different temperature schedules (left) for different values of k in Equation 4.3 and the
corresponding time ratios SA / SDPA (right).

Figure 7: Simulated annealing with k = 0.25 in Equation 4.3 (left) and the time ratio SA / SDPA
(right), with m = 100 and varying d.

4.4.2.2 Scaling of the Algorithm

We have generated tests with fixed m = 100 and n = 10, 20, · · · , 300 (Figure 7) and, tests
with fixed n = 100 and m = 10, 20, · · · , 300 (Figure 8).We run the SA algorithm till the
value of the objective function had a less than 10−2 relative error compared to the optimal
solution. The measurements are the average of three executions. We should mention
that SDPA failed to solve some of our tests, while our solver worked; these tests were
omitted, since we need to compare their execution times.

The following results are for k = 0.25 (see section 4.4.2.1). From Figures 8, 7, we can see
that SA scales better with respect to n than SDPA, while it is not far with respect tom. We
can conclude that our solver is comparable with SDPA, which is very impressive. SDPA
is a well developed package, with highly optimized linear algebra operations and many
heuristics, while our solver uses tools not tailored to our needs, especially when solving a
QEP, the core operation and bottleneck of the algorithm.

P. Repouskos 34

Sampling Methods, Spectrahedra and Convex Optimization

Figure 8: Simulated annealing with k = 0.25 in Equation 4.3 (left) and the time ratio SA / SDPA
(right), with d = 100 and varying m.

P. Repouskos 35

Sampling Methods, Spectrahedra and Convex Optimization

ACRONYMS

PEP Polynomial Eigenvalue Problem
GEP Generalized Eigenvalue Problem
QEP Quadratic Eigenvalue Problem
W-Billard Billiard Random Walk
W-HnR Random Directions Hit and Run Random Walk
W-CHnR Coordinate Directions Hit and Run Random Walk
W-HMC-r Hamiltonian Monte Carlo Random Walk with Reflections
LMI Linear Matrix Inequality
SDP Semidefinite Programming
SA Simulated Annealing

P. Repouskos 36

Sampling Methods, Spectrahedra and Convex Optimization

REFERENCES

[1] Hadi Mohasel Afshar and Justin Domke. Reflection, Refraction, and Hamiltonian Monte Carlo. In Proc.
28th NIPS, pages 3007–3015, Cambridge, MA, USA, 2015. MIT Press.

[2] Diego Armentano and Carlos Beltrán. The polynomial eigenvalue problem is well conditioned for random
inputs. SIMAX, 40(1):175–193, 2019.

[3] Carlos Beltrán and Khazhgali Kozhasov. The real polynomial eigenvalue problem is well conditioned on
the average. FoCM, pages 1–19, 2019.

[4] Michael Berhanu. The polynomial eigenvalue problem. PhD thesis, University of Manchester, 2005.
[5] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo, 2017.
[6] Jean-Daniel Boissonnat and Monique Teillaud. Effective computational geometry for curves and

surfaces. Springer, 2006.
[7] Giuseppe Calafiore. Random walks for probabilistic robustness. In Proc. CDC, volume 5, pages

5316–5321. IEEE, 2004.
[8] Giuseppe Calafiore and MC Campi. Robust convex programs: Randomized solutions and applications

in control. In Proc. CDC, volume 3, pages 2423–2428. IEEE, 2003.
[9] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu. Vaidya walk: A sampling algorithm based on the

volumetric barrier. In 2017 55th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1220–1227, Oct 2017.

[10] Augustin Chevallier, Sylvain Pion, and Frédéric Cazals. Hamiltonian Monte Carlo with boundary
reflections, and application to polytope volume calculations. Research Report RR-9222, INRIA Sophia
Antipolis, France, November 2018.

[11] B. Cousins and S. Vempala. Bypassing KLS: Gaussian cooling and an O∗(n3) volume algorithm. In
Proc. ACM STOC, pages 539–548, 2015.

[12] B. Cousins and S. Vempala. A practical volume algorithm. Mathematical Programming Computation,
8, June 2016.

[13] F. Dabbene, P. S. Shcherbakov, and B. T. Polyak. A randomized cutting plane method with probabilistic
geometric convergence. SIAM J. on Optimization, 20(6):3185–3207, October 2010.

[14] Fabrizio Dabbene, Pavel Shcherbakov, and Boris T. Polyak. A randomized cutting plane method with
probabilistic geometric convergence. SIOPT, 20:3185–3207, 2010.

[15] Jean-Pierre Dedieu and Françoise Tisseur. Perturbation theory for homogeneous polynomial
eigenvalue problems. Linear algebra and its applications, 358(1-3):71–94, 2003.

[16] Ioannis Emiris, Bernard Mourrain, and Elias Tsigaridas. Separation bounds for polynomial systems.
Journal of Symbolic Computation, 2019.

[17] Elena Gryazina and Boris Polyak. Random sampling: Billiard walk algorithm. European Journal of
Operational Research, 238, 11 2012.

[18] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise Tisseur. Symmetric
Linearizations for Matrix Polynomials. SIAM Journal onMatrix Analysis and Applications, 29(1):143–159,
January 2007.

[19] Adam Tauman Kalai and Santosh Vempala. Simulated annealing for convex optimization. Math. Oper.
Res., 31(2):253–266, February 2006.

[20] Adam Tauman Kalai and Santosh Vempala. Simulated Annealing for Convex Optimization.
Mathematics of Operations Research, 31(2):253–266, May 2006.

[21] Erich Kaltofen and Gilles Villard. On the complexity of computing determinants. Computational
complexity, 13(3-4):91–130, 2005.

[22] Grégoire Lecerf. On the complexity of the Lickteig–Roy subresultant algorithm. Journal of Symbolic
Computation, 92:243–268, May 2019.

[23] Yin Tat Lee, Zhao Song, and Santosh S. Vempala. Algorithmic theory of odes and sampling from
well-conditioned logconcave densities, 2018.

[24] Thomas Lickteig and Marie-Françoise Roy. Sylvester–habicht sequences and fast cauchy index
computation. Journal of Symbolic Computation, 31(3):315–341, March 2001.

[25] L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume algorithm. In
In Proc. FOCS, volume 2003, pages 650–659, 2003.

[26] L. Lovasz and S. Vempala. Fast algorithms for logconcave functions: Sampling, rounding, integration
and optimization. In Proc. FOCS, pages 57–68, 2006.

[27] J.R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and
Econometrics (Revised Edition). John Wiley & Sons Ltd, 1999.

P. Repouskos 37

Sampling Methods, Spectrahedra and Convex Optimization

[28] O. Mangoubi and N. K. Vishnoi. Faster polytope rounding, sampling, and volume computation via a
sub-linear ball walk. In Proc. FOCS, pages 1338–1357, 2019.

[29] Victor Y Pan. Univariate polynomials: nearly optimal algorithms for numerical factorization and
root-finding. J. of Symbolic Computation, 33(5):701–733, 2002.

[30] Victor Y Pan and Elias P Tsigaridas. Nearly optimal refinement of real roots of a univariate polynomial.
Journal of Symbolic Computation, 74:181–204, 2016.

[31] Boris Polyak and Pavel Shcherbakov. The d-decomposition technique for linear matrix inequalities.
Automation and Remote Control, 67:1847–1861, 11 2006.

[32] B.T. Polyak and E.N. Gryazina. Billiard walk - a new sampling algorithm for control and optimization.
IFAC Proceedings Volumes, 47(3):6123 – 6128, 2014.

[33] M. Ramana and A. Goldman. Some geometric results in semidefinite programming. Journal of Global
Optimization, 7, 02 1999.

[34] Arnold Schönhage. The fundamental theorem of algebra in terms of computational complexity.
Manuscript. Univ. of Tübingen, Germany, 1982.

[35] Robert L. Smith. Efficient monte carlo procedures for generating points uniformly distributed over
bounded regions. Operations Research, 32(6):1296–1308, 1984.

[36] Serge Tabachnikov. Geometry and billiards. Student mathematical library. American Mathematical
Society, Providence, RI, 2005.

[37] Roberto Tempo, Giuseppe Calafiore, and Fabrizio Dabbene. Randomized algorithms for analysis and
control of uncertain systems: with applications. Springer Science, 2012.

[38] Françoise Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra
and its Applications, 309(1):339–361, 2000.

[39] Françoise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem. SIAM review,
43(2):235–286, 2001.

[40] Lloyd N. Trefethen and David Bau. Numerical linear algebra. SIAM, 1997.
[41] S. Vempala. Geometric random walks: A survey. Combinatorial and Computational Geometry MSRI

Publications Volume, 52, 01 2005.
[42] Makoto Yamashita, Katsuki Fujisawa, and Masakazu Kojima. Implementation and evaluation of sdpa

6.0. Optimization Methods and Software, 18(4):491–505, 2003.

P. Repouskos 38

	CONTENTS
	List of Figures
	List of Tables
	INTRODUCTION
	Introduction
	Notation
	Background
	Spectrahedra
	Geometric Random Walks
	An algorithm for Polynomial Eigenvalue Problems
	Semidefinite Programming

	BASIC GEOMETRIC OPERATIONS
	membership
	intersection
	Complexity of intersection

	reflection
	Complexity of reflection

	An example in 2D

	SOME RANDOM WALKS
	Hit and Run
	Billiard walk
	Hamiltonian Monte Carlo with Reflections

	SAMPLING AND OPTIMIZATION
	Simulated Annealing Algorithm
	Heuristics
	Choosing a Random Walk
	Estimating Diameter and Temperature schedule

	Implementation and Benchmarks
	HMC and Boltzmann Distribution
	Linear Algebra

	Benchmarks
	Generating Random Dense Problems
	Against SDPA

	ACRONYMS
	REFERENCES

