
Department of Physics
Section of Electronic Physics
and Systems Ensuring

Ensuring consensus on trust issues in
capability-limited node networks with

Blockchain technology

Maria Koutsoukou, 2020513

MSc Electronics and Radioelectrology
Control and Computing

Stathes Hadjiefthymiades, Professor
Michail Chatzidakis, Senior Researcher

Dionisis Reisis, Professor
Paskalis Sarantis, Laboratory Teaching Staff

Athens, 2023

Contents

Abstract 5

Περίληψη 6

Introduction 7

1 Current Framework 9
1.1 Overview . 9

1.1.1 Mobile Ad-Hoc Networks 10
1.1.2 Network Security . 10
1.1.3 Network Clustering . 11

1.2 Cluster Formation and Maintenance 12
1.2.1 Trust Vectors . 12
1.2.2 Cost of Analysis/Processing 13
1.2.3 Cluster head election 13
1.2.4 Transactions mechanism 14
1.2.5 Trust evaluation . 16
1.2.6 Preservation of trust information 16

1.3 Simulation Description and Assumptions 17

2 Blockchain Fundamentals 22
2.1 Overview . 22
2.2 Features . 23
2.3 Concepts . 25

2.3.1 Cryptography, hashing and digital signature 26
2.3.2 Immutable ledger . 28
2.3.3 P2P network . 28
2.3.4 Public, Private, Permissioned networks 29
2.3.5 Consensus Algorithms 30
2.3.6 Smart Contracts . 34
2.3.7 Blockchain Formation 35

1

3 Related Work in Blockchain Based Trust Management 39
3.1 Blockchain in Vehicular Network 39
3.2 Multichain for IoT devices . 41
3.3 TrsutChain for IoT supported Supply Chains 44
3.4 Blockchain using Mobile Edge Nodes 47

4 Hyperledger Fabric 50
4.1 Overview . 50
4.2 Features . 51
4.3 Concepts . 53

4.3.1 The Model . 53
4.3.2 The Network Structure 54
4.3.3 Identity and MSPs . 56
4.3.4 Policies . 57
4.3.5 Ledger . 58
4.3.6 Smart Contracts/Chaincode 58
4.3.7 Chaincode Lifecycle . 59
4.3.8 Security Model . 59
4.3.9 Fabric Gateway . 60

4.4 Transaction Flow . 60

5 Proposed Framework 63
5.1 Overview . 63
5.2 Blockchain-assisted MANET 64

5.2.1 Chaincode . 64
5.2.2 Application Layer - MANET Simulation 66

5.3 Simulation and Results . 69
5.3.1 Simulation . 69
5.3.2 Results . 70
5.3.3 Caliper . 74

5.4 Future Work . 76
5.4.1 Security . 77
5.4.2 Efficiency-Scalability 79
5.4.3 Ensuring Consensus . 80

Conclusions 82

References 86

2

A Chaincode 87
A.1 Node . 87
A.2 NodeTransaction . 89
A.3 TransactionStatus . 89
A.4 NodeQueryResult . 89
A.5 Manet . 90

B Client Application 97
B.1 Node . 97
B.2 ClHeadElection . 101
B.3 RegisterUser . 102
B.4 EnrollAdmin . 104
B.5 ClientApp . 105
B.6 ClientTest . 119

C Benchmark Files 121
C.1 Test Configuration . 121
C.2 QueryNode . 122
C.3 ChangeNodeTrust . 123
C.4 AddTransactionClient . 124

3

List of Figures

1.1 MANET clustering example 14
1.2 Transaction flowchart . 15
1.3 Healthy to malicious transition 17
1.4 A1 metric . 20
1.5 A2 metric . 20

2.1 The structure of blocks in a blockchain 25
2.2 Block header format . 26
2.3 Merkle Tree . 37

3.1 System design of blockchain-based decentralized trust man-
agement . 41

3.2 System design of blockchain-based decentralized trust man-
agement for IoT . 43

3.3 Structure of the TrustChain Framework 45
3.4 BBTM with mobile edge nodes architecture 49

4.1 Fabric Blockchain Network . 56
4.2 Transaction flow . 62

5.1 Nodes’ Query Result . 69
5.2 Results of a Complete Simulation Run 71
5.3 A1 metric frequency distribution 72
5.4 A2 metric frequency distribution 73
5.5 A3 metric frequency distribution 74
5.6 CreateNode Transaction’s Latency, Throughput 75
5.7 ChangeNodeTrust Transaction’s Latency, Throughput 75

4

Abstract

In this thesis, we review how the blockchain protocol could be applied so
as to ensure the consensus of the network nodes on matters of trust, while
taking into account the limited resources of the nodes. First, we will present
the system we will be working on, a Mobile Ad Hoc Network (MANET)
which uses a clustering scheme, based on the cost of analysis/processing
concept, along with a trust mechanism that together result in cluster persis-
tence and quick discovery of malicious nodes. Then, we will introduce the
blockchain protocol and its main concepts. A review of related work will be
conducted to assess the various approaches utilized by others in incorporat-
ing the blockchain protocol into their respective systems. Subsequently, the
Hyperledger Fabric framework, which shall aid in the implementation of the
proposed system, shall be presented in detail. Finally, the proposed system,
which merges the given MANET simulation with the blockchain technology
enabled by Hyperledger Fabric, will be presented, and its results discussed.
Our analysis will also include an evaluation of its effectiveness in addressing
consensus on trust issues, and possible avenues for future enhancements.

Keywords – Blockchain, MANET, Hyperledger Fabric, Clustering, Trust
Consensus

5

Περίληψη

Σε αυτή τη διπλωματική εργασία, εξετάζουμε πώς θα μπορούσε να εφαρμοστεί
το πρωτόκολλο blockchain, ώστε να διασφαλιστεί η συναίνεση των κόμβων
του δικτύου σε θέματα εμπιστοσύνης, λαμβάνοντας παράλληλα υπόψη τους πε-
ριορισμένους πόρους των κόμβων. Αρχικά, θα παρουσιάσουμε το σύστημα
στο οποίο θα εργαστούμε, ένα Mobile Ad Hoc Network (MANET) το οποίο
χρησιμοποιεί ένα σχήμα ομαδοποίησης, βασισμένο στην έννοια του κόστους
ανάλυσης/επεξεργασίας, μαζί με έναν μηχανισμό εμπιστοσύνης που από κοινού
έχουν ως αποτέλεσμα τη διαρκή και γρήγορη ανακάλυψη κακόβουλων κόμβων.
Στη συνέχεια, θα παρουσιάσουμε το πρωτόκολλο blockchain και τις κύριες
έννοιές του. Μια ανασκόπηση της σχετικής εργασίας θα διεξαχθεί για να αξι-
ολογηθούν οι διάφορες προσεγγίσεις που χρησιμοποιούνται από άλλους για την

ενσωμάτωση του πρωτοκόλλου blockchain στα αντίστοιχα συστήματά τους.
Στη συνέχεια, θα παρουσιαστεί αναλυτικά το Hyperledger Fabric framework,
το οποίο θα βοηθήσει στην εφαρμογή του προτεινόμενου συστήματος. Τέλος,
θα παρουσιαστεί το προτεινόμενο σύστημα, το οποίο συγχωνεύει τη δεδομένη
προσομοίωσηMANET με την τεχνολογία blockchain μέσα από το Hyperledger
Fabric και θα συζητηθούν τα αποτελέσματά του. Η ανάλυσή μας θα περιλ-
αμβάνει, επίσης, αξιολόγηση της αποτελεσματικότητάς του στην διασφάλιση
της συναίνεσης των κόμβων σε θέματα εμπιστοσύνης και πιθανές μελλοντικές

βελτιώσεις.

Λέξεις κλειδιά – Blockchain, MANET, Hyperledger Fabric, Clustering,
Συναίνεση Εμπιστοσύνσης

6

Introduction

In this thesis, we review how the blockchain protocol could be applied so as to
ensure the consensus of the network nodes on matters of trust, while taking
into account the limited resources of the nodes. Blockchain technology was
initially used in the field of cryptocurrency (and digital currencies in gen-
eral), but it can have wider applications in other areas such as e-commerce,
the transparency of historical, financial and other records, in areas such as
banking, construction sectors, in news transparency, etc.

Blockchain is ideal for delivering information because it provides immedi-
ate, shared and completely transparent information stored on an immutable
ledger that can be accessed either by anyone or only by permissioned net-
work members. A blockchain network can track orders, payments, accounts,
production and much more. And because members share a single view of the
truth, you can see all details of a transaction end to end, giving you greater
confidence, as well as new efficiencies and opportunities.

The same technology could be applied in the case of e.g. mobile unstruc-
tured networks, the Internet of Things (IoT) and generally any network of
nodes with possibly limited capabilities in which security and trust issues
arise in transactions between nodes. However, the limited capabilities (com-
puting, memory, energy) of the nodes impose limitations on the techniques
for detecting malicious nodes and disseminating this information in the net-
work.

Through the next chapters, we will look into how we could integrate the
blockchain protocol into a Mobile Ad Hoc Network (MANET) and examine
how its security and efficiency could be improved.

In Chapter 1, we will present the system we will be working on as the
current framework, a MANET which uses a clustering scheme, based on
the cost of analysis/processing concept, along with a trust mechanism that
together result in cluster persistence and quick discovery of malicious nodes.

In Chapter 2, we will introduce the blockchain protocol in a theoretical
perspective. The main focus of the present chapter is to review the funda-
mentals of the blockchain technology and its concepts.

7

In Chapter 3, related work will be studied in order to assess the various
approaches utilized by others in incorporating the blockchain protocol into
their respective systems.

In Chapter 4, the Hyperledger Fabric framework, which we will be using
in our proposed system, shall be presented in detail.

Finally, in Chapter 5, the proposed system, which combines the given
MANET simulation with the blockchain technology facilitated by Hyper-
ledger Fabric, will be presented and its results discussed. Also, an evaluation
of the system’s effectiveness in addressing consensus on trust issues will be
conducted, and prospects for future improvements will be explored.

8

Chapter 1

Current Framework

1.1 Overview

The given framework [1], [2], [3], this project is based on, is a Mobile Ad-Hoc
Network (MANET), which is efficiently clustered based on the cost of analysis
concept and then using nodes’ experience, trust information dissemination is
achieved through the network.

The nodes of such network have limited capabilities, processing power,
energy and memory. Meanwhile, they are prone to a growing number of ma-
licious attacks, meaning systems like this increase the need for trust. Thus,
the network under study focuses on trust establishment and trust manage-
ment of nodes. Following its deployment, the network should be able to
operate without hindrances, fending off security threats while establishing
the integrity of the exchanged data.

In this framework, the nodes are first clustered together, each cluster
made up of one leader, the cluster head (CH), who is chosen after an elec-
tion precedes, and its cluster members (CMs). Trust information exchange
occurs when the cluster is initially formed and later when a cluster mem-
ber queries the cluster head for trust information on another cluster member
before proceeding with a transaction with it.

In order to keep these interactions honest, a mechanism, that promptly
and accurately alerts the network for malicious node activity, has been devel-
oped. It may, also, be used to restore the trust of a node in case of rejecting
former malicious behaviour or in case it was wrongly classified as malicious.
Such mechanism is quite convenient when it comes to avoiding network at-
tacks which can be devastating for the network performance and the integrity
of the exchanged data.

9

1.1.1 Mobile Ad-Hoc Networks

MANETs consist of mobile nodes connected wirelessly without having a fixed
infrastructure. They may move in specific paths, but usually the nodes are
free to move randomly as the network topology changes frequently. Each
node is required to behave as a router, provide intrusion detection services
and the ability to pass on information to other nodes, using available re-
sources.

The first thing that needs to be fulfilled in such network is an efficient
power management scheme to ensure the availability of the nodes. Nodes
must always be available to perform the services they are required to. In-
ability to do so may prove to be catastrophic to the whole network. In case
of such an event, a temporary solution would be the diversion of traffic to
other nodes. Yet, a network crash may still be unavoidable due to heavy
traffic in the alternate paths [4].

Another thing that should be properly handled, is the trust management
mechanism. This will ensure that if any malicious nodes are present in the
network, they will be timely identified and isolated until their honest be-
haviour is restored. So as to make this possible, the network must not be
plagued with high latency as this will hinder the immediate propagation
of trust information and the respective response of the nodes to malicious
behaviour [5].

Lastly, if the malicious node does indeed restore its previously healthy
behaviour, the trust management mechanism should be able to re-enter the
node to the network. The same should be done in case the node in question
was falsely classified as malicious.

All these issues are addressed in this framework and will be explained in
detail in the following sections.

1.1.2 Network Security

Network security in MANET is the most important issue for the basic func-
tionality of the network [6]. It is what protects the network from activities
that threaten its smooth operation and its intended purpose.

Security issues present a challenge in MANET networks due to power
constrains, transmission range and the mobility of the nodes. The CIA model
is used to address the security needs of the MANET; Confidentiality, Integrity
of the data and Availability of the network services.

Confidentiality refers to the protection of sensitive information from unau-
thorized access. In MANETs, this can be achieved through the use of en-
cryption algorithms, such as Advanced Encryption Standard (AES), to secure

10

communication between nodes.
Integrity refers to the protection of information from unauthorized mod-

ification or alteration. In MANETs, this can be achieved through the use of
digital signatures and message authentication codes (MACs) to ensure that
data has not been tampered with during transmission. This usually calls
for a third party trusted Certificate Authority (CA), which adheres to the
X.509 standard. By using a trusted CA, nodes in a MANET can be assured
that their communication partners are indeed who they claim to be, thus
enhancing the security of the network. For that to be successfully applied
in a mobile network the nodes must initially be within the CA transmission
range, which will severely restrain the node deployment.

Availability refers to ensuring that authorized users have access to the
information they need, when they need it. In MANETs, this can be achieved
through the use of routing protocols that help to maintain connectivity be-
tween nodes, even in the presence of node failures or network partitions.

There are also several security mechanisms that can be used to enhance
the CIA security of MANETs, such as firewalls, intrusion detection systems
(IDSs), and secure routing protocols. Additionally, it’s important to follow
best practices for security, such as regularly updating software and firmware,
using strong passwords, and disabling unnecessary services.

1.1.3 Network Clustering

Nodes are exposed to various kinds of risks, some of which can be confronted
by properly clustering the network [1]. Clustering can also be an asset when
required to uniformly exploit network resources in order to optimally diffuse
information throughout the network. Furthermore, in the event of depletion
of energy in a vital number of nodes, the network could avoid an imminent
termination if enough nodes may still have adequate power and resources to
keep functioning. In pursuit of these benefits, the correct clustering algorithm
must be selected to suit the network topology in question.

An appropriate resource management scheme will increase the longevity,
efficiency and credibility of the network. To create a scheme like that, the
Cost of Analysis/Processing (CoA/P) as an extension of Cost of Analysis [7]
will be utilized. CoA/P has been proven to be reliable and secure to deal
with issues that in any other case would require the system to reveal sensitive
information about the status of specific node resources parameters, such as
the node’s power status. If that were to happen, for example one node’s
computational capabilities be revealed, the node could potentially become a
target of an attack and potentially be used to corrupt the whole network.

As stated before, the cluster will consist of the CH and the CMs. The

11

main role will be acquired by the CH, which will be of immense help to
the cluster even though it is an ordinary node. CH stores routing paths
information and trust information in respect to their CMs. They act as
a council to CMs during their transactions with other CMs. They, also,
monitor their CMs for malicious behaviour and in such case they immediately
inform the other CMs. They promptly notify their CMs for an opposite
transition, as well. On top of that, they run Intrusion Detection Software
(IDS), which, in our case, is substituted by the task of maintaining trust
values for the cluster, processing them and responding to pertinent queries.
All these services are energy heavy for one node, thus motivating a node to
undertake that role is of great importance. This is possible through a reward
scheme, as proposed in [7], which offers the CH future privileges such as
increased bandwidth and service priority.

1.2 Cluster Formation and Maintenance

The concept of CoA/P and payment [7] was introduced to incentivise nodes
to accurately reveal their ability to serve as CHs without compromising the
security of the node or the network. This clustering method, forming 1-hop
clusters, motivates the nodes to be truthful when the time comes to be elected
as CHs without revealing sensitive information, such as the energy level of
the node. The proposal aims to address the issue of nodes potentially lying
about their energy levels to conserve it or to become a CH and negatively
impact the cluster. Thus, the node who actually has the most resources
will be elected by neighbouring nodes as CH until another election is held.
Due to the additional responsibilities the CH has, the CH will probably have
consumed most of its resources by the time the next election is held, so a
different CH will most certainly be elected. Thus, the tasks burdening the
former CH will now be transferred to the new CH. In the next sections,
the cluster formation and maintenance will be presented in more detail, as
proposed in [1], [2].

1.2.1 Trust Vectors

Every node in the network has its own Local Trust Vector (LTV) which
reflects its evaluation of the trustworthiness of all other nodes. The LTV
components range from 0 to 1, where 0 represents the least trusted node
and 1 represents a node that is fully trusted. After a cluster has been
formed, the CH’s LTV is elevated to the Global Trust Vector (GTV). The
CH then requests a trust report, called Trep, from every node in the cluster.

12

These reports consist of the node’s LTV components and are represented
as Trep(i, j, t), where i is the reporting node, j is the node whose trust is
reported by i node and t is the time this trust was calculated. This system
allows each node to maintain its own trust evaluations of other nodes, while
also promoting the CH’s LTV to serve as a collective trust evaluation for the
entire cluster. In short, the trust vector of an ordinary CM is referred to as
LTV, while that of the CH is referred to as GTV.

1.2.2 Cost of Analysis/Processing

Following [7], first the percentage of sampling needs to be defined, which is
essentially the relative reputation of node in question:

PSi =
Ri∑N
k=1Rk

, (1.1)

where Ri is the reputation of the node, i.e. the trust score the CH has stored
in its LTV component for this node, and

∑N
k=1Rk is the total reputation of

the nodes in the network that appear in the CH’s LTV.
Now, the CoA/P may be defined as:

ci =

∞, if Ei < Ech
Ri∑N

k=1
Rk

Ei
, otherwise

, (1.2)

where Ei is the energy of the node and Ech is the minimum energy required
for the operation of the cluster.

1.2.3 Cluster head election

Elections for a new CH are held whenever is deemed necessary. That is, at
the beginning of the MANET’s operation, when nodes move in or out of the
cluster, and can have an impact on the entire network, or when a CH quits
due to energy levels dropping below a certain, CH-specific, threshold, as seen
in eq. 1.2, a node like that will have ci = ∞. On the other end, small values
of ci indicate that a node has enough resources to act as a CH.

The election process begins with each node broadcasting its own cost of
analysis/processing ci to the nodes that are within transmission range. The
nodes receive the ci of all of their neighbours and sort them in ascending
order. CoA/P ci does not reveal sensitive information about the node, yet it
serves as measure of the node’s capability to act as a CH.

Once the cost of analysis for all nodes is known, each node votes for its
neighbour or itself, with the lowest cost of analysis ci as it appears in the

13

respective node list. The CH is elected by its 1-hop neighbours. All the
nodes that are 1-hop away from the CH become CMs. The result of this
procedure will be 1-hop clusters, since only the CMs that are within range
of one another vote, preventing cluster overpopulation as shown in Fig. 1.1.
Note that isolated nodes, and thus with no neighbours, are considered to be
CHs, forming clusters with only themselves.

Figure 1.1: MANET clustering example

1.2.4 Transactions mechanism

Once the cluster is formed, the CH merges the LTVs of its CM’s with its own
and updates the respective GTV appropriately. Now, members of the same
cluster can begin interacting with each other with the transaction mechanism.
The client node, the one that initiates the transaction, and the server node
follow the procedure shown in Fig. 1.2. If the server node is available to
proceed with the transaction with the client node, then the client node must
consult the CH for the server’s estimated trust level.

Trust Tij is a float number in the [0, 1] range which reflects the opinion

14

that node i has, regarding node j, and is formed from past observations
of the behavior of node j and a weighted consultation of the reputation
vector kept by the CH. The closest to 1, the more reputable node j is.
Therefore, a trust Tij value above a certain threshold, set by the client node,
will initiate the transaction, while the opposite will cause the client node to
abort the transaction. If the transaction is ended successfully, the client node
evaluates the transaction in terms of trust, updates its LTV and notifies the
CH about the new trust value of the server-node so that the GTV is updated
accordingly.

Figure 1.2: Transaction flowchart

The GTV components may be changed in two occasions. Firstly, as al-
ready stated, when a transaction is completed successfully and the client
node transmits the server’s trust evaluation, according to its behaviour dur-
ing the transaction, to the CH. The CH, then, combines this evaluation to
its own and broadcasts the new GTV. Secondly, when the CH concludes that
a node is malicious due to other nodes’ evaluations. The CH proceeds with
the broadcast of the proper message.

Therefore, the GTV is disseminated to every CM, so that every node is
up to date when it comes to trust information. The GTV is a reflection of a
node’s reputation in the cluster by the whole cluster and it will be preserved
even if the cluster is reformed due to a new round of elections.

Bear in mind that a node that is beyond CH’s broadcasting range can
not initiate a transaction, since it cannot receive CH’s consultation, or report

15

back the outcome of the transaction.

1.2.5 Trust evaluation

As discussed, before a client-node proceeds with a transaction with a server-
node, the client-node must consult its CH first. The client-node’s i LTV
is updated after the CH transmits a message CHrep(i, j, t) containing the
estimation of the reputation, at a specific time t, regarding the server-node
j, as shown below:

Tij = LTV (j, t) = eLTV ×CHrep(i, j, t)+(1−eLTV)×LTV (j, t−1), (1.3)

where eLTV is the weighing factor which is node-specific.
Thus, the trust Tij the node i has for node j is estimated. If Tij ≥ Tthr,

where Tthr is the trust threshold of node i, the transaction is initiated. At
the end of the transaction, node i reports to the CH about the outcome of
this transaction regarding the behaviour of the server-node j, at a certain
time t, in a message Trep(i, j, t). In the opposite case, Tij < Tthr, where Tthr,
the transaction is cancelled.

The CH collects all the information from the CMs and integrates it to its
GTV as follows:

GTV (j, t) = aLPF ×
∑n

i=1 Trep(i, j, t)

N
+(1−aLPF)×GTV (j, t−1), (1.4)

where aLPF is CH’s weighing factor in the range [0, 1] or else an α-parameter
low-pass filter and N is the number of reporting nodes. It expresses the
behavior of the CH. A “selfish” CH would have an aLPF closer to 0 and
vice versa. The aLPF can also be chosen as a function of time to reflect the
information aging, as older information may be of less importance.

In the event that a client node observes malicious behavior from a server
node that reduces the trust level of the node to the point of characterizing
that node malicious, then an epidemic algorithm is invoked and this infor-
mation is spread throughout the network. Direct effect of that is that trust
information is readily available and the network reaction time is minimized.

1.2.6 Preservation of trust information

When an election is initiated, the clusters as were before and after the new
election will most likely be different. It is of vital importance to preserve trust

16

information during re-clustering by transferring it intact to the newly formed
clusters. Thus, trust information is disseminated through the network and
can be used to predict the future behavior of CMs. Meanwhile, malicious
nodes need to be kept at bay so as not to disseminate false information
regarding the trust of other nodes, also known as badmouthing attack.

Right after cluster formation, the CH’s LTV remains the same. Then,
all the nodes that belong to the newly formed cluster report to the CH their
own LTVs so they can be incorporated in the CH’s GTV alongside its own
LTV. All CMs will carry the same-accurate-information that was acquired
before the cluster re-formation. This way, malicious nodes, if present in a
cluster, will be prevented from announcing false LTVs as they have no way of
knowing if some of the former CMs, that may have flagged them as malicious,
are also participating in the new cluster. It is not in the malicious node’s
best interest to be revealed from the beginning so the only option they have,
at least during re-clustering, is to announce the correct LTV.

1.3 Simulation Description and Assumptions

For simulation purposes, Java was used to set up a MANET with nodes
moving in a rectangle field (1000 units × 1000 units) following a Random
Waypoint pattern. Each node is able to determine its exact location on the
field. The nodes are uniquely identified by an ID number and are able to
transmit information up to a certain range (100 units). In this simulation, no
cryptographic scheme was applied. The motion data file was generated using
mobism [8]. The healthy-to-malicious and malicious-to-healthy transition is
shown in Fig. 1.3 along with the transition probabilities.

Figure 1.3: Healthy to malicious transition

Some assumptions made for the purpose of the simulation are shown

17

below [1]:

• Node number: Any number between 20 - 100 will be sufficient as it
will allow as to have adequate clusters to draw conclusions, while not
making the simulation too heavy. For the purposes of the project, we
chose 100.

• Simulation duration: 5000 clock ticks.

• Node range: 100 units will suffice, as a short range leads to a large
number of unstable clusters, while a long range leads to stable but
overpopulated clusters.

• Transaction duration and mean time between transactions: Exponen-
tially distributed with λ = 0.1, using [log(1−randomFloat)

(−1)×lambda
+ 1].

• Trust threshold: We set the trust threshold to 0.5 for every node.

• Initial trust: We assumed that all nodes are equally trustworthy, at the
beginning of the simulation, by setting a trust value 0.6 for all. Any-
thing lower will exclude many nodes from further transactions, while
higher is too optimistic and possibly exposes the entire network to risks.

• Trust evaluation following a transaction: It is essentially a decimal
number in the range [0, 1], although this is typically assessed and
quantified by the user or an intelligent agent with user defined param-
eters. In our case, following the performance of a certain transaction,
this is quantified at random following the normal distribution with ex-
pectation (mean) EV = 0.5 and standard deviation σ = 0.1, using
randomGaussian× σ + EV .

• aLPF parameter of CH’s low pass filter: We set aLPF = 0.4 which
means that, for the GTV formation and update, the CH relies 60% on
its own opinion and 40% on the opinion of the cluster members.

• eLTV parameter of cluster members: Similar to the above, we chose
eLTV = 0.8.

• Node energy: All nodes have an initial energy in the range of [3000,
4000]. With energy in this range we end up with only a couple of inac-
tive nodes at the end of the simulation, which we consider acceptable.

• Transaction cost: The energy cost of a transaction is 1 energy unit per
time unit.

18

• Healthy-to-malicious probability: The probability of a healthy node to
become malicious was assumed to be 0.01.

• Malicious-to-healthy probability: The probability of a malicious node
to become healthy was assumed to be 0.03.

• Malicious behavior penalty: If a node exhibits malicious behavior for
more than 50% of the transaction duration, gets a penalty of 0.5 de-
crease to its trust which is enough to exclude it from future transac-
tions.

• Trust restoration: Provision is made for the trust restoration of (possi-
bly ex-) malicious nodes.The A3 metric deals with that, which will be
discussed below.

After initialization and the first election which will lead to the formation
of the clusters each node will have a table of its 1-hop neighbours. At some
point a node will choose to have a transaction with a random neighbour. As
already stated, the client-node will consult the CH for the server-node’s trust
evaluation and after combining it with its own opinion will end up with a
trust value either above the trust threshold, which will allow the client node
to proceed with the transaction, or below, which means the transaction will
be cancelled.

The transaction will terminate successfully if the nodes remain within
range throughout the transaction. When the transaction is completed, the
client-node will evaluate the server-node regarding its trust level. At first,
the client-node will update its LTV. Then, it will inform the CH with its
evaluation, who in turn will update its GTV accordingly. In case the server-
node shows signs of malicious behaviour for more than 50% of the transaction
duration, it will be penalized by a 0.5 decrease to its trust by the client-node.

We assume 3 metrics, namely A1, A2 and A3 to measure how quickly the
mechanism responds to changes in the node environment.

• A1: The A1 metric refers to the time interval between a healthy-to-
malicious transition when spotted by a client-node, as shown in Fig.
1.4. At the beginning of the transaction server-node’s trust was above
the trust threshold, thus it was initiated. While the transaction was
taking place, the server-node fell to a malicious state which lasted for
more than 50% of the total transaction time resulting to the server-node
receiving the malicious behaviour penalty.

• A2: The A2 metric refers to the time interval from a healthy-to-
malicious transition until the beginning of a transaction, which was

19

ultimately canceled. The client will not initiate a transaction with a
server-node that has a low trust score, even if it is not malicious.

• A3: The A3 metric refers to the time interval from a healthy-to-
malicious transaction, until the trust of the node is restored. The
CH intervenes by increasing the trust value of the low-trust node in its
GTV.

Figure 1.4: A1 metric

Figure 1.5: A2 metric

In our case, in order to spot a malicious node at least one transaction
with it must happen before the node is evaluated and flagged as malicious.
Furthermore, it is not certain that a node is malicious based only on the
trust evaluation of the node. The A1 metric shows how many nodes seemed
healthy prior to a transaction. The A2 metric refers to nodes that have
already been evaluated, meaning that at least one transaction with another
client-node has already taken place, and have been assigned a trust level
value below the trust threshold. This will show how many of the low-trust
nodes are actually healthy and transactions with them are unfairly cancelled
either because they were strictly evaluated earlier, or they were malicious but
they have been restored to healthy in the course of the simulation. The A3
metric deals with the restoration of healthy status. CHs will randomly select
nodes that are classified as malicious and restore their health status in order

20

to give them a chance to improve their trust level in future transactions. The
risk involved in such a decision must be taken by the CH.

Note that the aLPF parameter, which shows how selfish the CH behavior
is, in this simulation does not account for the age of the information received,
as the more recent means more reliable, or the trust of the reporting node,
as the evaluation of a trusted node should be more valuable than that of a
low-trust node.

21

Chapter 2

Blockchain Fundamentals

2.1 Overview

Blockchain is a distributed and immutable database or ledger that is shared
among the nodes of a computer network consisting of growing lists of defi-
nite and verifiable records of every single event ever occurred securely linked
together using cryptography, as mentioned in [9] and [10]. As a database, a
blockchain stores information electronically in digital format. The cryptocur-
rency systems, such as Bitcoin, use the blockchain to maintain a secure and
decentralized record of transactions. The novelty of a blockchain is that it
guarantees the credibility and security of a data file and assures trust without
the need for a trusted authority or central server.

The main difference between a typical database and a blockchain is how
the data is structured. A typical database usually structures its data into
tables, whereas a blockchain structures its data into groups, known as blocks,
that are linked together forming a chain of data known as the blockchain.
This data structure inherently makes an irreversible timeline of data when
implemented in a decentralized nature. When a block is filled, it cannot be
tampered with and becomes a part of this timeline.

Blocks have certain storage capacities and, when filled, are closed and
linked to the previously filled block. Each block contains a cryptographic
hash of the previous block, an exact timestamp when it is added to the
chain, and transaction data (generally represented as a Merkle tree, where
data nodes are represented by leaves). The timestamp proves that the trans-
action data existed when the block was created. Since each block contains
information about the previous block, they effectively form a chain (linked
list data structure), with each additional block linking to the ones before it.
Consequently, blockchain transactions are irreversible in that, once they are

22

recorded, the data in any given block cannot be altered retroactively without
altering all subsequent blocks.

Blockchain communications are typically peer-to-peer (P2P). Nodes col-
lectively adhere to a consensus algorithm protocol to add and validate new
transaction blocks. The consensus algorithm has been designed to achieve
reliability in a network that includes unreliable nodes. The consensus algo-
rithm within the blockchain network ensures that all network agents have
the same copy of the ledger. Confirmation of transactions and aggregation
in blockchain is accomplished through consensus protocols.

One more thing that needs to be mentioned is that blockchain networks
can be categorised into public, private or permissioned [11]. Public block-
chains can be accessed by anyone, private blockchains are accessed only by
selected users and permissioned blockchains are a hybrid of public and private
blockchains where anyone can access them as long as they have permission
from the administrators to do so.

2.2 Features

Now that we have some basic understanding of blockchain technology let us
review its primary features, as in [12], [13].

• Decentralization: With an increasing number of IoT devices in a net-
work, the use of centralized framework may not be feasible, as such an
approach exposes the network to the single point of failure problem.
Blockchain technology utilizes the idea of distributed and decentral-
ized computing and storage, meaning that a group of nodes maintains
the network, making it decentralized. Each entity will be in charge of
storing its own copy of the blockchain. Hence, there is no need for a
central management entity and the problems that follow. The decen-
tralization of a system makes it highly fault-tolerant, as it is organized
by algorithms, and less prone to breakdowns from malicious attacks,
since attacking the system is more expensive for hackers. Moreover,
users have control over their properties, as they don’t have to rely on
any third party to maintain their assets, and they will not be scammed
as the systems run purely on algorithms.

• Immutability: Immutability means something that can’t be changed
or altered. One of the key characteristics of blockchain technology
that ensures that the network remains permanent and unalterable. As
previously noted, every node in the system has a copy of the digital
ledger, contributing to the stability and consistency of the network. In

23

order to add a transaction every node needs to check its validity. If the
majority thinks it’s valid, then it’s added to the ledger, otherwise it will
not be added. This promotes transparency and makes it corruption-
proof. So, once a piece of information is recorded and confirmed in the
blockchain, then it cannot be modified or deleted from the network.
Also, information cannot be added arbitrarily.

• Security: Security is comprised mainly of confidentiality, integrity, and
availability. Blockchain uses cryptography to add another layer of pro-
tection for users. Cryptography is a rather complex mathematical al-
gorithm that acts as a firewall for attacks. Hash functions are used to
chain blocks which ensures integrity and immutability. Once blocks are
connected, data contained within cannot be subsequently altered, as it
will mean changing the hash IDs, which is impossible. The availability
requirement is fulfilled inherently in blockchain given its distributed
nature and that data is always available. The confidentiality require-
ment is achieved in permissioned blockchain solutions, where users are
permitted to access just the data they are authorized to access through
the use of permissions. Let us not forget the fact that transactions
are encrypted before being linked to the existing ledger. Moreover, for
each entity willing to join the blockchain network, there is a need for
membership authentication. When entities’ identities are verified in
accordance with the established security policies, it results in the gen-
eration of specific keys to ensure secure authentication; a private key
to access the data and its pair, a public key to make transactions.

• Traceability and Transparency: Blockchain provides effective sharing
of historical information, thus guarantying traceability and transaction
transparency. The decentralized nature of technology creates a trans-
parent profile of every node/participant, as it stores details of every sin-
gle transaction or event that occurs. Every change on the blockchain
is viewable and makes it more concrete. In the area of IoT applica-
tions tracing historical data is crucial. For instance, by reviewing data,
identifying factors that might impact product quality is possible. By
filtering through the data, weak spots in production may be discovered.

• Faster transactions: Blockchain offers a faster settlement compared to
other systems. It is very easy to set up a blockchain, and the trans-
actions are confirmed very fast. It takes only a few seconds to a few
minutes to process the transactions or events. Another feature is the
smart contract system. This can allow making faster settlements for
any kind of contract.

24

2.3 Concepts

In this section, we will analyse the main concepts of the blockchain technol-
ogy. But before that let’s review how a blockchain is formed [14].

In a blockchain, once a full node is connected to its peers, it first tries
to construct a complete blockchain. The root of the blockchain is a genesis
block, the first block in the blockchain. It is the common origin of all blocks
and contains the information that is generally known to all nodes. The
block consists of cryptographic hashes of records, with each block holding
the information about the previous block’s hash, forming a chain of data,
and creating a blockchain, as shown in Fig. 2.1.

Figure 2.1: The structure of blocks in a blockchain

The blockchain begins with a genesis block on top of which stacked the
successor blocks. The structure of each block contains a block header and
a block body. The block header consists of a previous block’s hash, nonce,
timestamp, as well as the Merkle root, as shown in Fig. 2.2. The block
body contains lists of transactions and some additional data, depending on
the requirement of the blockchain. Each current block is interconnected with
the previous block, using the hash of the previous block like a chain. For
immutability, the transactions should be hashed using a Merkle hash, which
needs to be included in the block header. In other words, the blocks are
cryptographically verified and chained up to form an immutable chain of
blocks called a blockchain or a ledger. More on that in the next sections.

25

Figure 2.2: Block header format

2.3.1 Cryptography, hashing and digital signature

The blockchain has gained huge popularity due to its security features of us-
ing cryptography. As mentioned before, all data in the blockchain is secured
by cryptographic hashing and digital signature.

Hashing

As stated in [15], hashing refers to the concept of taking an arbitrary amount
of input data, applying some algorithm to it, and generating a fixed-size
output data called the hash. The input can be any number of bits that
could represent a single character or something infinitely big. The hashing
algorithm can be chosen depending on the needs of the project. There are
many publicly available, for example, the secure hash algorithm with a digest
size of 256 bits, or SHA256 algorithm, is one of the most widely used.

A hash is used to verify that a file has not been tampered with or mod-
ified in any way not intended by the creator. Let us assume that someone
publishes a set of files along with their MD5 hashes. Then, whoever down-
loads those files can verify their ownership by calculating the MD5 hash of
the downloaded files. If the hash does not match what was published by the
creator, then it is certain that the file has been modified in some way.

Hashes are used in blockchain to represent the current state of the block-
chain. The input is the entire state of the blockchain, which includes all
the transactions that have taken place so far and the resulting output hash

26

represents the current state of the blockchain. The hash is used to reach an
agreement between all parties that the blockchain state is one and the same.

The hash of each block in the blockchain is generated by the hash of
its own transactions as well as the hash of the previous block. Since the
blockchain is formed with each new block hash pointing to the block hash
that came before, it is guaranteed that no transaction in the history can be
tampered with. That is because if any single part of the transaction changes,
so does the hash of the block to which it belongs, and any following blocks’
hashes as a result. It would be fairly easy to catch any tampering as a result,
because it would suffice to compare the hashes. Furthermore, hashes cannot
be reverse-engineered, meaning users cannot make use of the output string
for the purpose of finding the input data.

Therefore, everyone on the blockchain only needs to agree on 256 bits to
represent the potentially infinite state of the blockchain. For instance, the
Ethereum blockchain is currently tens of gigabytes, but the current state of
the blockchain, as of this recording, is this hexadecimal hash representing
256 bits.

Digital Signatures

Digital signatures are a way to prove that somebody is who they claim to be,
except that cryptography or math is used, which is more secure and cannot
easily be forged compared to handwritten signatures [15].

In asymmetric encryption systems, users generate a pair of related keys
(one public key and one private key), using some known algorithm, to encrypt
and decrypt a message and protect it from unauthorized access or use. The
public key and private key are are mathematically connected with each other.
This relationship between the keys differs from one algorithm to another.
The algorithm is basically a combination of the encryption function and
decryption function.

On one hand, the public key is intended for public distribution, to serve
as an address to receive messages from other users, like an IP address. On
the other hand, the private key is used to digitally sign messages sent to
other users and it must be accessible only to the owner of the key pair. The
signature is included in the message so that the recipient can verify using
the sender’s public key. This way, the recipient can ascertain that only the
sender could have sent this message. This is how authenticity is ensured, as
well as the validity of the message.

Generating a key pair is like creating an account on the blockchain, but
without having to actually register anywhere. Also, every transaction that
is executed on the blockchain is digitally signed by the sender using their

27

private key. This signature ensures the authenticity of the transactions.
To bring it all together, blockchain could not exist without hashing and

digital signatures. Hashing provides a way for everyone on the blockchain to
agree on the current blockchain state, while digital signatures provide a way
to ensure that all transactions are only made by the rightful owners. We rely
on these two properties to ensure that the blockchain has not been corrupted
or compromised.

2.3.2 Immutable ledger

The core of the blockchain ledger is the security of data and the proof that
data remain unaltered. Therefore, an immutable ledger cannot be tampered
with and hence the data cannot be changed with ease, thereby establishing
that the security is quite tight. Immutability means that it is very difficult to
make changes without collusion. So, blockchain offers an immutable ledger
that records every state change in history. In its technical nature offers an
immutable database. Hence, it’s impossible to manipulate data already in
the blockchain afterwards.

As we said before, each of the blocks contains a hash value or digital
signature for itself and for the previous one as well, making them retroac-
tively coupled together. This way no one is able to interfere with the sys-
tem or change the already saved data into the block. Cryptographic hashes
and digital signature are among the most important elements that make the
blockchain ledger immutable.

In this regard, it is also quite essential to know that blockchain is dis-
tributed and decentralized in nature [16]. In order to deal with the different
copies of the data, a consensus is made. It is this consensus that makes sure
the originality of data is rightly maintained. More will be explained in the
next sections.

2.3.3 P2P network

Before we move any further, it is important to understand the role of P2P
network in the blockchain [17]. P2P network is a decentralized network com-
munications model that consists of a group of devices, representing the nodes
of the system. Each node acts as an individual peer and may communicate
with other nodes without the need of a third party. In other words, the
exchange of data occurs without a central server, each computer or node can
act as both a file server and a client, which means all nodes are equal and
perform the same tasks, whereas in the traditional client-server architecture,
there is a dedicated server and specific clients.

28

P2P architecture is suitable for various use cases and can be categorized
into structured, unstructured, and hybrid P2P networks. The unstructured
P2P networks are formed by nodes randomly connecting with each other,
but they are inefficient compared to structured ones, where the nodes are
organized, and every node can efficiently search the network for the desired
data. Hybrid models, a combination of P2P and client-server models, com-
pared to the previous two systems tend to present improved overall perfor-
mance.

Blockchain is a decentralized ledger tracking of one or more digital assets
on a P2P network. In such a network, all the computers are connected in
some way, and each maintains a complete copy of the ledger and compares it
to other devices to ensure the data is accurate. Thus, the system is backed up
by every single node participating in the network. No centralized authority
manages the blockchain networks and only the participant nodes can validate
blocks among each other. This new form of distributed data storage and
management acts as a digital ledger that publicly records all transactions
and events.

Now, there are many benefits in utilizing the P2P architecture in the
blockchain. Due to P2P networking capability, the system is always available.
Even if one peer gets down, the other peers are still present. Thus nobody
can take down the blockchain. Also, P2P networks offer greater security
compared to traditional client-server systems. The distributed P2P network,
when paired with a majority consensus requirement, gives blockchain a rela-
tively high degree of resistance to malicious activity. More than that, these
systems are virtually immune to the Denial-of-Service (DoS) attacks. Finally,
the absence of third parties makes these networks more privacy-friendly than
centralized networks, as there’s no need for a central authority to store or
access user data.

P2P network in blockchain, however, raises a few concerns. Distributed
ledgers must be updated on every single node, and adding transactions re-
quires a considerable amount of computational power. Although this provides
an increased level of security, it significantly reduces efficiency, and this acts
as one of the main hindrances in terms of scalability and mass adoption.

2.3.4 Public, Private, Permissioned networks

As already mentioned, blockchain networks can be categorised into public,
private or permissioned.

Public blockchains are extraordinarily valuable since more and more users
may easily join, keeping the network agile and safe from data breaches,
hacking attempts, or other cybersecurity issues. The more participants, the

29

safer a blockchain is. In other words, the network is highly secure, as there
are simply too many nodes to allow a cyberattacker to take control of the
decentralized network. Also, all transactions are recorded and can’t be al-
tered. However, many public blockchains require heavy energy consumption
to maintain them. Low throughput is another disadvantage caused by try-
ing to reach consensus with a disparate group of users. Also, since they are
public there is the issue of the lack of complete privacy and anonymity.

Private blockchains focus on privacy, operating as a closed database se-
cured with cryptographic concepts and the organization’s needs. Only those
with permission can run a full node, make transactions, or validate/authen-
ticate the blockchain changes. Also, they prioritize efficiency and immutabil-
ity as there are a handful of users who need to achieve consensus to validate
transactions. Despite the advantages of a faster, more efficient and trusted
system, private blockchains also come with disadvantages as well. As they
are usually built to accomplish specific tasks and functions, more often than
not they are not widely applicable. In this respect, private blockchains are
susceptible to data breaches and other security threats, as there is generally a
limited number of validators used to reach a consensus, if there is a consensus
mechanism.

Permissioned blockchain offers better performance, varying levels of de-
centralization and customizability. Since permissioned blockchains are closed
to the public, they are usually much “lighter” than public blockchains, mean-
ing less data in the chain clogging the network which leads to faster trans-
actions and improved overall performance. The network operators of per-
missioned blockchains can choose the desired level of decentralization, from
partly decentralized to fully centralized, and also the different roles they may
give to each participant. The hybrid nature of this chain carries with it the
disadvantages of public and private blockchains, depending on how they are
configured. One major drawback is that the security of these blockchains
relies entirely on the chosen consensus algorithm and participants, which in
case of malicious nodes, can compromise the entire network.

2.3.5 Consensus Algorithms

From what we reviewed, we know that blockchain is a distributed decentral-
ized network that provides immutability, privacy, security, and transparency.
There is no central authority present to validate and verify the transactions,
yet every transaction in the blockchain is considered to be completely secured
and verified. Furthermore, all entities have the same copy of the ledger, a
single history of blocks. This is possible only because of the presence of the
consensus protocol which is a fundamental component of every blockchain.

30

A consensus algorithm is a procedure that ensures an agreement is reached
between participants to support decision making. In other words, a protocol
which all the nodes in the blockchain network use in order to come to a
common consensus on the current data state in the ledger and whether or
not to trust unknown peers in the network. With this mechanism, for every
new block added to the blockchain a decision needs to be made and must be
agreed upon by all the nodes in the blockchain. That is, if the block is the one
and only version of the truth. Essentially, consensus algorithms provide a set
of rules that enable the addition of new blocks to the chain while protecting
the network against attackers. Blocks cannot be added to the chain until
they are validated. Thus, a consensus algorithm aims at finding a common
agreement that is a win for the entire network.

How consensus is reached could easily impact the security and the per-
formance of the blockchain network. In the current literature, several ap-
proaches were developed to reach consensus [18], [14], [19], among them:

• Proof of Work (PoW): In the proof of work algorithm, customary in
public blockchains, the validators or miners or node participants, need
to prove that the work they have done and submitted gives them the
right to add new transactions to the blockchain network. To achieve
this, miners must compete against each other to solve a computer prob-
lem –calculate a nonce value to meet certain value requirements of the
block hash– with a difficulty d, on the new block before approving it to
the ledger. After that, the solution is forwarded to other validators and
verified by them before accepting the copies of the ledger. A PoW con-
sensus algorithm is a cryptographic puzzle that is very hard to solve,
but once all inputs are known, it is easy for others to verify. Using
PoW verification eliminates duplicate transactions in the blockchain
network,as they will be seen in the system and will not be accepted.
Hence, no one can change the transaction once it has been verified and
approved by every node participant.

• Proof of Stake (PoS): This is the most common alternative to PoW,
popular in public blockchains. In this type of consensus algorithm,
instead of investing in expensive hardware to solve a complex puzzle,
validators invest in the currency of the system by locking up some
of their currency as stakes. The miners are required to stake their
assets, by placing a bet if they discover a block that they think can be
added to the chain, and validate ownership without being required to
prove the legitimacy of each transaction. Based on the actual blocks
added in the blockchain, all the validators get a reward proportionate to

31

their bets and their stake increase accordingly. Meanwhile, the more
currency forgers exist, the greater chance they have to generate the
next block. In the end, a validator is chosen to generate a new block
based on its economic stake in the network. Thus, PoS encourages
validators through an incentive mechanism to reach to an agreement.
This approach is introduced to reduce energy and time. It is further
categorized into Byzantine Fault Tolerant-based Proof-of-Stake (BFT-
PoS) and chain-based PoS.

– In BFT-PoS protocol, the validators keep a full copy of the block-
chain and are identified by their public keys. However, the major-
ity decides, i.e., 2/3 of all validators, whether or not to approve
the proposed block. This may take several rounds before the block
gets finalized. Simply put, a BFT system is used to fix the problem
of unreliable nodes in the network, as it can continuously operate
even when nodes act maliciously or fail.

– In the chain-based PoS, a validator is chosen at random and given
an opportunity to create a block, as long as they own currency on
that particular chain. They are selected at random using a specific
set of criteria; if they don’t produce a block within some time limit
or have some other rules, they are replaced with another randomly
selected participant. Then, the new block is linked with the hash
of the previous block of the longest chain. A block is finalized
when there is no chance of it being revised. The validators are
required to vote and sign their votes before propagating it in the
network, using a single type of message, i.e., vote, which combines
the roles of preparing and committing.

• Practical byzantine fault tolerance (PBFT): This consensus strategy,
commonly used in private blockchains, ensures a consensus regardless
of malicious node behaviors on the part of some participating nodes.
The algorithm used is made to tolerate byzantine failures. All nodes
interconnect with each other, and the legitimate nodes contribute to
reaching a consensus regarding the state of the system using the ma-
jority rule, meaning that a validator requires the consensus of the re-
maining nodes to generate new blocks in the chain. The assumption
here being that the sum of malicious nodes cannot exceed the 1/3 of
the overall nodes in the network. That said, the more the nodes join
the PBFT network, the more secure the network is.

• Proof of Elapsed Time (PoET): This is a private blockchain consensus
mechanism that needs all participating nodes to identify themselves

32

before they participate in the network. It requires the nodes to wait
for a random time period before achieving the consensus on a new
block. The idea behind PoET is based on a fair lottery system. For
the nodes to win the lottery, they need to select a short random time
and have to complete certain waiting time. So, whenever a block is
available and the node is activated, that node gets the authority to
share the information on the network and earn rewards.

• Proof of Authority (PoA): This consensus algorithm uses the value
of identities, so the block validators don’t stake currency but their
reputations. Since it depends on the limited number of validators, it
is used in private blockchains and it makes the system highly scalable
while maintaining privacy.

• Raft: This system consists of usually five server nodes. Two nodes are
allowed to fail at the same time. The server node has three states:
leader, follower, and candidate. Usually, there is only one leader who is
responsible for handling all of the client requests while other servers are
followers. The third state elects a new leader. A candidate receiving
votes from the majority of the cluster now becomes the new leader of
the consensus mechanism.

• RR (Round Robin): Here, generation of a valid blockchain is achieved
through permitted entities creating blocks in rotation. Every entity in a
given time window can only create a finite number of blocks calculated
using a network parameter called mining diversity that determines the
number of blocks that should be wait for before attempting to mine
again.

A misjudgement in the selection of a consensus algorithm may lead to
compromised data being recorded on the blockchain. Below are some of the
issues that can result when the consensus mechanism fails [18].

• Blockchain Fork: This happens whenever the chain splits, producing a
second blockchain that shares all of its history with the original, but
is headed off in a new direction. It can result in different nodes in the
system converging on different blocks as being part of the blockchain.
In some cases temporary forks may naturally exist, as the protocol is
designed such that all nodes will eventually converge on a single chain.
In other cases, forks can be catastrophic as they can lead to completely
inconsistent view of data recorded on the blockchain thereby forcing
applications to behave in an unpredictable manner.

33

• Consensus Failure: When the consensus algorithm chosen for the sys-
tem cannot guarantee reaching consensus, a consensus failure occurs.
For example, in case of a majority rule requirement, if the majority
cannot be secured because of node or network failures, non-compliant
nodes or as a result of valid honest nodes not being able to make a
decision due to inconsistent messages received from other nodes, it will
most certainly lead to a consensus failure.

• Dominance: If for any reason, one or a handful of malicious nodes can
control millions of identities, consensus outcomes can be manipulated.
Having such dominance allows the dominating group to confirm the
transactions and blocks as per their rules.

• Cheating: In the event the consensus algorithm selected leaves room for
validating malicious nodes which can independently maintain parallel
forks in the blockchain of fraudulent transactions or alter reality, then
that algorithm has failed.

• Poor Performance: Depending on the design of the consensus algo-
rithm, it may require more time under certain conditions for consen-
sus to converge. This issue may arise when other nodes have turned
malicious or a network partition delays messages that are exchanged
between nodes, etc. This may manifest as inconsistently high latencies
in applications.

In conclusion, there is not one algorithm that surpasses the others. It
all depends on the platform that it’s going to be used in and the type of
functionality the platform needs to provide along with its timidness to gain
integrity. All these algorithms have the same purpose; to reach an agreement
(consensus) in the decentralized blockchain network in order to verify and
validate the blockchain authenticity.

Most protocols and their implementation are still subject to a thorough,
peer-reviewed correctness and reliability analysis as there might be several
vulnerabilities, security issues and protocol weakness. In respect of security,
till now, the PoW is considered to be the most effective consensus mechanism
although it has some flaws, such as scalability, transaction finalization, etc.

2.3.6 Smart Contracts

Smart contracts are self-executing programs stored on a blockchain that run
automatically when specific conditions are met. They are used to automate

34

the execution of agreements between parties, eliminating the need for inter-
mediaries and reducing the time it takes to complete transactions. The con-
tracts work by using ”if/when...then...” statements written into code, and are
verified and executed by a network of computers. The terms and conditions
of the contract are established by the participants and can be customized to
meet their needs. The contract can be programmed by a developer, or made
easier to use with templates, web interfaces, and online tools provided by
organizations using blockchain for business. The outcome of the contract is
recorded and updated on the blockchain, and cannot be changed, ensuring
the transparency and security of the transaction.

2.3.7 Blockchain Formation

By now we have mentioned the validity of the blockchain and the valida-
tion of blocks several times, yet haven’t explained in great detail how it is
achieved and the process that is followed. To reiterate how the blockchain
is formed, first a node records new data values and broadcasts them to the
network where the receiving nodes verify the data and store them in a block.
Then all nodes in the network perform the mining process, where the con-
sensus algorithm is used to reach consensus in order to add the block to the
blockchain. Finally the blockchain is updated for all nodes in the network.

A node’s records are transactions and related data. A transaction refers
to a contract, agreement, transfer, or exchange of assets between two or
more parties. In simple terms, a transaction is nothing but data transmis-
sion across the blockchain network. On a number of occasions, to perform
transactions on the blockchain, a wallet is needed, a program linked with
the blockchain to which only the node who owns the wallet has access, that
keeps track of the node’s data. Each wallet is protected by a private and a
public key. With their wallet, a node (whoever has the private key) can au-
thorize or sign transactions and thereby transfer value to a new owner. The
transaction is then broadcast to the network to have its validity confirmed
for the purpose of being included in the blockchain.

After a transaction takes place it needs to be selected to be part of a block
that is going to be added to the blockchain. As long as it is not picked up, it
hovers in a ‘pool of unconfirmed transactions’ [20]. This pool is a collection
of unconfirmed transactions on the network that are waiting to be processed.
These unconfirmed transactions are usually not collected in one giant pool,
but more often in small subdivided local pools.

Then, the mining process needs to take place. That means miners on the
network select transactions from these pools and form them into a ‘block’.
A block is basically a collection of transactions (at this moment in time, still

35

unconfirmed transactions), in addition to some extra metadata. Every miner
constructs their own block of transactions. Multiple miners can select the
same transactions to be included in their block.

The mining process can be either done individually (solo mining) or col-
lectively (pool mining) [21]. When mining is done by an individual, user
registration as a miner is necessary. As soon as transactions are selected to
be included in a block, the first one satisfying the chosen consensus tries to
add it to the blockchain. All the other miners in the blockchain network
will validate the block and then add it to the blockchain. Thus, verifying
the transactions. On the other hand, in pool mining, a group of users works
together to approve the transactions picked up from the pool of unconfirmed
transactions. After the validation of the result, the reward is then split be-
tween all users.

Despite how the process is handled, solo or not, by selecting transactions
and adding them to their block, miners create a block of transactions. To
add this block of transactions to the blockchain, having all the nodes on
the blockchain register the transactions in this block that is, the block must
be validated. This means that every transaction in the block must also
be verified by checking the digital signatures of the parties involved in the
transaction, as well as the validity of the transaction itself. For instance, in
an exchange fund transaction, the transaction will be rendered invalid if one
party does not possess the amount of funds that need to be exchanged.

There are a number of different consensus mechanisms that can be used to
validate a block, and each has its own strengths and weaknesses, as explained
in previous sections. No matter which one is selected, in the end, after
reaching consensus, a block of transactions will be added to the blockchain.

Every new block added on top of the block that has just been added to
the blockchain counts as ‘confirmation’ for that block. It counts as a confir-
mation because every time another block is added on top of it, the blockchain
reaches consensus again on the complete transaction history, including the
transaction and the block in question. Essentially, it means that the trans-
action has been confirmed as many times as the blocks added after it at that
point. The more confirmations the transaction has, or else the deeper the
block is embedded in the chain, the harder it is for attackers to alter it.

Succeeding the addition of the new block to the chain, all miners need
to start all over again by forming a new block of transactions. Miners can-
not continue mining of the block they were working on earlier because of
two reasons. Firstly, it may contain transactions that have been already
confirmed by the last block that was added to the blockchain as multiple
miners can include the same transactions in the block they are working on.
Any of those transactions initiated again could render them invalid, because

36

the conditions of this transactions have changed. And secondly, since every
next block needs to include the hash of the previous block into its own data,
if a miner keeps mining the same block other miners will notice that the
hash output does not correspond with that of the latest added block on the
blockchain, and will therefore reject the block.

Merkle Trees

Merkle trees, also referred to as binary hash trees, serve to encode blockchain
data more efficiently and securely. The Merkle hash is derived from the
Merkle algorithm [22], which is a cryptographic algorithm that hashes all
transactions of the block to get the Merkle root.

The Merkle tree has a binary tree structure with the leaf nodes as the
hashes of transaction in a block, also known as transaction IDs (TXIDs),
the intermediate hashes, the non-leaf nodes that are hashed together in pairs
and store the hash of the two leaf nodes they represent, and, finally, the root
as the hash that combines the hashes of all transactions. This is depicted
in Fig. 2.3. The Merkle root is what is eventually appended in the block
header. The leaf nodes (transaction IDs/hashes) at the base of the Merkle
tree can be verified using the Merkle root.

Figure 2.3: Merkle Tree

The benefit of Merkle tree is that it is able to break large pieces of data
into considerably smaller chunks, ensuring that all the transactions can be
verified promptly. The unique hash value it generates is used to verify the
integrity of all transactions underneath it, and the size of the Merkle hash is

37

very small as compared with the whole size of all transactions. As a result
of its functionalities, Merkle trees are utilized more effectively and securely
to encrypt blockchain data.

38

Chapter 3

Related Work in Blockchain
Based Trust Management

In order to cope with the problems of centralization mentioned before, de-
centralized systems are often chosen for trust management. More and more
so blockchain-based or assisted systems, which is what we hope to utilise in
this work. Some of the research done on the matter will be presented below
in order to give us an idea of that which we are trying to achieve.

3.1 Blockchain in Vehicular Network

In [23], the authors review a decentralized trust management system in ve-
hicular networks based on the blockchain. Much like a MANET, the vehic-
ular network consists of vehicles, mobile nodes, that generate and broadcast
messages with ultimate goal to improve traffic safety and efficiency. Here,
vehicles can validate the received messages from neighbouring vehicles using
Bayesian Inference Model and based on the outcome generate a rating for the
vehicle that send that message. Roadside Units (RSU’s) use this ratings to
calculate trust value offsets of the involved vehicles and insert these data into
a block. With a joint PoW and PoS consensus mechanism, each RSU will
attempt to add their blocks to the blockchain. Meaning that the higher the
total value of trust value offsets is in the block - representing the stake here -
the easier it will be for the RSU to find the hash function - representing the
PoW. All RSUs cooperate to maintain an up-to-date and consistent, among
all nodes, blockchain. Thus, all RSU participate in the network and all RSU’s
are provided with trust information of all the vehicles in the network.

In more detail, RSUs are responsible for collecting ratings of messages sent
by vehicles and using them to calculate trust values for each vehicle. These

39

trust values represent the historical credibility of the vehicle’s messages and
can be queried by other vehicles. The ratings are collected by RSUs, as
vehicles are not able to store them locally long term due to fast-changing
traffic environments and limited capacity of on-board devices.

On the other hand, vehicles use on-board devices to automatically detect
traffic-related events and send warning messages to others using communica-
tion standards. However, not all messages are useful, so each vehicle main-
tains a reference set of neighbouring vehicles considered relevant to its traffic
safety. These messages from the reference set provide insight into the current
traffic conditions, but they may not always be trustworthy. Therefore, the
vehicle needs to use specific models to aggregate the messages and determine
which are credible, using a majority rule for example. Then, the vehicle gen-
erates ratings for the messages based on their credibility and uploads them
to the RSUs.

Yet, vulnerabilities are found in both vehicles and RSUs. Two types of
adversaries are considered: malicious vehicles and compromised RSUs. Ma-
licious vehicles may deliberately broadcast fake messages (message spoofing
attack) or generate unfair ratings on messages to degrade traffic safety or ef-
ficiency (bad mouthing and ballot stuffing attack). Compromised RSUs may
have their data tampered with by attackers, but this is only a temporary and
limited problem due to frequent security checks and the limited capacity of
attackers.

As shown in Fig. 3.1, vehicles assess the credibility of received messages
and generate ratings for them, which are then uploaded to an RSU. The RSU
uses these ratings to calculate trust value offsets for each vehicle and packs
them into a candidate block. The RSU then uses a joint PoW and PoS miner
election scheme, where the sum of absolute values of offsets in the candidate
block is used as the stake, to add the block to the blockchain. This ensures
the timely update of trust values in the blockchain, and allows the RSU to
obtain real-time trust values for each vehicle.

When the RSU receives a block from the miner, before adding it to the
blockchain its validity of the nonce must be checked. When the RSU receives
more than one block at the same time, the blockchain starts to fork. Each
RSU chooses one fork and continues to add new blocks to it, with the fork
acknowledged by the largest number of RSUs growing faster than others.
Eventually, the longest fork becomes the consensus of the network, and the
other forks are discarded. Each RSU then collects blocks from discarded forks
and tries to add them to the blockchain in the future to ensure consistency
among all RSUs.

40

Figure 3.1: System design of blockchain-based decentralized trust management

As far as the security of this system is concerned, there are methods of
defending against malicious vehicles and compromised RSUs in a vehicular
network that utilizes blockchain technology. For the defense against malicious
vehicles, the system uses a Bayesian Inference-based rating generation scheme
to thwart message spoofing attacks and limit the effects of bad mouthing
and ballot stuffing attacks. For the defense against compromised RSUs, it is
assumed that only a small portion of RSUs may be compromised for a short
period of time. Due to the use of blockchain techniques, where all RSUs
store the same version of the blockchain, compromised RSUs can be detected
by their differences from others. The system also includes a mechanism to
prevent compromised RSUs from generating too many fake blocks by limiting
the upper bound of the stakes in each block.

Similar technology is used in [24].

3.2 Multichain for IoT devices

In [13], a secure trust management system based on blockchain technology is
proposed. The system aims to provide benefits such as tamper-proof data,
improved trust information integrity verification, and enhanced privacy and
availability during trust information sharing and storage. The system in-

41

cludes a blockchain-based trust management architecture to collect trust ev-
idence, establish trust scores for devices, and securely store and share trust
information with other devices in the network through blockchain transac-
tions. Essentially, it aims to assign trust scores to devices, store and share
those scores securely while ensuring transparency, integrity, authenticity, and
authorization.

Further reading shows that the system is composed of a number of manu-
facturing zones, each consisting of physical resources, an authentication man-
ager, and a trust manager, as shown in Fig. 3.2. Miners are also deployed
to receive trust data, create blocks and broadcast them in the blockchain
network. The architecture of the system is detailed in the paper, with inter-
actions between the different modules presented. The design only considers
one zone, so interactions between devices belonging to different zones are not
considered.

The proposed system includes the device layer which consists of IoT de-
vices that gather and process information, and also execute additional tasks
related to trust management. These devices assess the behavior of other
devices they interact with, using metrics such as packet delivery ratio and
community of interest, to determine a trust score. This trust score is then
sent to a trust manager entity and added to the blockchain network for se-
cure storage and sharing with other devices within the system. This allows
devices and industrial applications to make decisions and obtain data in a
reliable way based on the trust scores of other devices.

The system management layer is responsible for ensuring the security and
reliability of the proposed trust management system. It performs computa-
tions and verifications on trust-related information, stores trust and reputa-
tion scores securely in a decentralized structure, and manages access to trust
data. It also guarantees the integrity and validation of actions through a net-
work of consensus entities, authenticates devices and manages their access
to trust data.

42

Figure 3.2: System design of blockchain-based decentralized trust management
for IoT

One of the entities in the system management layer is the trust manager,
who is responsible for creating a secure environment for devices to interact
with one another and with industrial IoT services by assessing trust scores.
Trust is defined as a relationship between a trustor and a trustee, which
is limited to a specific time and based on direct observations and recom-
mendations from neighbours. The entity uses a cyclical process to collect
trust-related information, calculate trust scores for each entity, and produce
an overall trust value for the system. The trust scores are based on properties
such as cooperativeness, competence, and community of interest, and take
into account past trust evaluations to account for changes in behavior over
time.

Another entity in this layer is the authenticator, who is responsible for
verifying the validity of devices’ identities and the legitimacy of requests
sent to trust data storage and management systems. The framework uses
the openID Connect protocol, which allows for clients to verify the identity
of a device and obtain basic profile information in a REST-like manner. The
entity has two subcomponents: the Policy Decision Component (PDC) and
the Key Management Component (KMC). The PDC is in charge of making

43

authorization decisions based on policies and generating access tokens for
successful authentication processes. The KMC generates authentication and
transaction-related keys to authenticate devices and digitally sign actions
on trust scores. These keys include a transaction private key, used to sign
requests for trust data access, and a transaction public key, used to verify
the requester’s identity and encrypt packages sent to the requester device.

Last but not least, the miner entity that processes and verifies the au-
thenticity, validity, and integrity of trust records and transactions. These
records are broadcast to a network of miners who check their validity and
package them into blocks which are added to a ledger. Multichain is used,
a private blockchain protocol that manages access to the blocks using a list
of registered participants and uses the Round Robin algorithm for approv-
ing transactions. The choice of Multichain is due to its characteristics, such
as its private, permissioned nature, flexibility, ability to change permissions
and delegations, and use of the Round Robin consensus mechanism which
does not require complex computation resources. Additionally, it is based on
streams that act as an independent append-only collection of items, which
enforces data confidentiality, and does not require the use of currencies or
computational power, like some other blockchain solutions.

The necessary message exchange and interactions that occur among dif-
ferent entities in the proposed system can be illustrated through a scenario
that considers an IoT device attempting to store trust scores on a blockchain
network. The process is split into three main stages. In the first stage, the
device must have valid authorization credentials to access the system, and
if it does not, it contacts an authenticator entity to obtain them. During
this stage, the authenticator entity makes authorization decisions based on
policies defined in the PDC. In the second stage, the device monitors the
behavior of its neighbours and assesses their trustworthiness level, resulting
in an experience score. This score is signed with a transaction private key
and sent to the trust manager entity. In the third stage, the trust manager
entity computes a reputation score and overall trust score, then sends the
transaction to the miners, who check its validity and add it to the existing
ledger.

3.3 TrsutChain for IoT supported

Supply Chains

In [25], TrustChain is proposed, which is a three-layered trust management
framework that uses a consortium blockchain to track interactions among

44

supply chain participants and dynamically assign trust and reputation scores
based on these interactions. The key features of TrustChain include: a repu-
tation model that evaluates the quality of commodities and the trustworthi-
ness of entities based on multiple observations of supply chain events, support
for reputation scores that separate between a supply chain participant and
products, use of smart contracts for transparent, efficient, secure, and au-
tomated calculation of reputation scores, and minimal overhead in terms of
latency and throughput compared to a simple blockchain-based supply chain
model. The framework is organized into three layers, as seen in Fig. 3.3:
data, blockchain, and application, with smart contracts used to automate
the process of generating reputation and trust values. TrustChain is imple-
mented on a blockchain-as-a-service platform and uses Hyperledger Fabric
for deployment, due to its support for business-related applications and ease
of deployment. The system assumes that entities maintain a static public
key for identification and use it to sign transactions.

Figure 3.3: Structure of the TrustChain Framework

The data layer of TrustChain is responsible for collecting and processing
data inputs from various sources such as sensor data streams, trade events,

45

and regulatory endorsements. The raw data collected at the data layer can be
stored in a database (off-chain) to improve scalability. Sensor data streams
from IoT sensors installed at different supply chain entities such as primary
producers, retailers, etc. are used to monitor the quality of food products.
Temperature sensors are used as an example, and the commodity is given
a rating based on the temperature readings. Warning messages can also be
generated if the reported sensor temperature is out of bounds of the desired
range. Trade events, such as a change of ownership of a commodity, are
recorded on the blockchain, along with a rating attributed by the buyer for
the seller. This rating is based on a quality assessment of the traded com-
modity. Regulatory endorsements, such as certificates and reports generated
by food safety authorities, are also used to generate ratings. All these rat-
ings are used by the trust and reputation module to calculate reputation and
trust values for the supply chain entities and commodities.

The blockchain layer consists of the transactions, the smart contracts and
the trust module. Transactions invoked at the data layer include the create
transaction (TXcr), the trade transaction (TXtr), the sensory transaction
(TXsens), the regulator transaction (TXReg), and the receipt of commodity
transaction (TXrec) to record supply chain events, changes in the state of
entities and commodities on the ledger. These transactions are governed by
an Access Control List (ACL) which defines the permissions for submitting
transactions, read/write access to the ledger, updating profiles and other
actions for supply chain entities.

Additionally, these transactions invoke smart contracts which are used
to automate the reputation calculation and update the overall rating of the
commodity throughout the product chain. This information is made visible
to consumers via the application layer for transparency and traceability in
the supply chain. Quality Contracts are smart contracts that are installed
for each supply chain commodity and specify the quality rating criteria, such
as temperature thresholds, for the commodity. These contracts also gener-
ate warning notifications and reputation scores for the commodity based on
temperature inputs. The Rating Contract is another type of smart contract
that is invoked to compute the reputation of a seller based on inputs such
as the reputation score of the commodity, the regulator’s rating, and the
buyer’s rating. These contracts help to ensure that the calculation of rat-
ings is transparent, secure, efficient, and automated, eliminating the need for
intermediaries.

The reputation and trust module in TrustChain uses smart contracts to
calculate reputation scores for supply chain entities and commodities based
on supply chain events recorded on the blockchain. The reputation model
uses an aggregation function and a time-varying, amnesic trust score calcu-

46

lation that adapts to recent events and gives them higher weight than older
events. When a trader joins the network, they are assigned an initial trust
score that must be maintained to participate. The trust score is updated
by the reputation and trust module and involves calculating the overall rep-
utation score and the trust score based on the reputation score and other
application-specific features. The overall reputation score considers current
and previous supply chain events and uses a forgetting factor to give more
weight to recent events. The reputation of a trader for trading a single type
of commodity is stored separately for multiple types of commodities and can
be calculated periodically by network administrators.

The application layer of TrustChain addresses queries and transaction
requests from administrators, regulators and consumers. It uses smart con-
tracts to calculate ratings for entities and commodities in a transparent,
secure and automated way. The application layer also includes rewards and
penalties mechanisms to motivate supply chain entities to contribute trust-
worthy data to the network. Queries can include transactions to read or
write data from the blockchain, and rewards can include publishing entities
with high trust scores on the network. Penalties can include revoking entities
from participating in the network for a certain period of time or publishing
a list of revoked participants on the network.

In respect of security and privacy TrustChain may be able to fend off
various types of attacks that can be made against a reputation system. These
attacks include entities faking data, modifying sensor feeds, creating false
commodities, ballot stuffing to raise the reputation of the malicious trader,
bad mouthing to lower the reputation of honest traders, among others.

3.4 Blockchain using Mobile Edge Nodes

In [26], a blockchain-based trust management mechanism (BBTM) is pro-
posed, where trustworthiness of sensor nodes is evaluated by mobile edge
nodes. BBTM uses smart contracts for trust computation and verifies the
computation process. The proposed method is analyzed for its trust accu-
racy, convergence, and resistance against attacks. The effectiveness of the
proposed method is also demonstrated through experimental results, and it
is also compared to other methods.

The framework includes 4 roles: sensor nodes, mobile edge nodes, miners,
and BBTM clients. Sensor nodes perform collaboration services and applica-
tions, while mobile edge nodes have stronger computing and storage abilities
and are responsible for evaluating the trustworthiness of sensor nodes within
their radius by collecting feedbacks. Miners add past transactions into blocks

47

and verify them for a reward, while BBTM clients are middleware that run
locally on IoT nodes and have the ability to publish, receive, and finish trust
computation tasks, and create smart contracts for trust computation. The
trustworthiness of sensor nodes is calculated by mobile edge nodes using the
subjective logic method, and feedback scores are written into the blockchain
after the collaboration is completed. This allows for a decentralized, auto-
mated, and secure trust evaluation process in IoT environments.

This BBTM framework is divided into two layers, as shown in Fig. 3.4:
the BBTM client layer and the blockchain layer. The BBTM client layer
includes modules for publishing, receiving, and finishing trust computation
tasks, a blockchain wallet for key management, smart contract creation, and
a user interface for transactions. The blockchain layer is responsible for
executing and verifying transactions and storing trust computation results.
The protocols used in the blockchain layer include consensus protocols such
as PoW and P2P network protocols for connecting nodes directly to each
other in a flat network topology. The goal of the framework is to provide a
more accurate trust evaluation method for sensor nodes in the presence of
untrustworthy recommendations.

Smart contracts are used to depict the agreement between sensor nodes
and mobile edge nodes for the process of trust computation task publish-
ing, receiving, finishing, and reward assignment. The main type of smart
contract is the Working Contract (WC) between the sensor node and mobile
edge node. This contract contains functions for checking a mobile edge node’s
trust computation capacity, computing the trustworthiness of collaboration
partners, evaluating the trust computation outcomes, and punishing sensor
nodes for giving out malicious feedback scores. Additionally, there are two
other types of smart contracts, the Mobile Edge Node Management Con-
tract (MENMC) and Sensor Node Management Contract (SNMC), which
store information about the node’s resources and performance. These smart
contracts can be associated with the same task ID and can be reused for the
same collaboration type to increase efficiency.

48

Figure 3.4: BBTM with mobile edge nodes architecture

BBTM aims to prevent malicious behavior from sensor nodes and mobile
edge nodes. Malicious sensor nodes may aim to obtain trust computation
outcomes without rewards, while malicious mobile edge nodes may attempt
to obtain rewards without putting in enough effort. The security of BBTM
relies on the honesty of most nodes, and it assumes that sensor nodes can
bring back their rewards for mobile edge nodes and miners if they get ef-
fective trust computation outcomes, and mobile edge nodes and miners can
only obtain rewards if they submit trust computation outcomes on time or
contribute high-quality outcomes. However, the security of the underlying
blockchain is also a concern, as malicious miners may collude to validate in-
valid blocks. Additionally, the framework is best suited for networks with a
large number of IoT devices, and the weaknesses of the consensus algorithm
present challenges for its practical implementation.

49

Chapter 4

Hyperledger Fabric

4.1 Overview

Hyperledger Fabric [27] is a blockchain platform that is designed to be used
in enterprise contexts. It is built on a highly modular and configurable ar-
chitecture, which allows for versatility and optimization for a wide range of
industry use cases. The platform is permissioned, meaning that participants
are known to each other and can operate under a governance model based
on existing trust between them.

One of Fabric’s key technical differentiators is its support for smart con-
tracts written in general-purpose programming languages such as Java, Go,
and Node.js, rather than in a constrained domain-specific language. This
makes it more accessible to developers and eliminates the need for additional
training. Fabric also supports pluggable consensus protocols, which allows
for customization of the platform to fit specific use cases and trust models.
This is particularly useful for situations where a fully Byzantine fault-tolerant
consensus might be considered excessive, such as when deployed within a sin-
gle enterprise. Another important aspect of Fabric is that it does not require
a native cryptocurrency, which reduces risk and attack vectors. Instead,
it leverages consensus protocols that do not involve cryptographic mining
operations, making it more cost-effective to deploy and operate.

Overall, the combination of these technical features makes Fabric a plat-
form that offers high performance and low latency for transaction processing
and confirmation, and provides privacy and confidentiality for transactions
and smart contracts.

50

4.2 Features

The main features of Hyperledger Fabric are described below:

• Modularity: Hyperledger Fabric has been designed to have a modu-
lar architecture to meet the needs of diverse enterprise use cases. The
platform has a pluggable design, allowing for customization of key com-
ponents such as consensus, identity management, key management, and
cryptographic libraries. The main components of Fabric include a plug-
gable ordering service for establishing consensus, a membership service
for associating entities with cryptographic identities, a gossip service
for disseminating blocks, chaincode smart contracts that run within a
container environment, a ledger that can support various DBMSs, and
a pluggable endorsement and validation policy enforcement. With its
modular design, Fabric can be configured in multiple ways to meet the
needs of different use cases.

• Permissioned Blockchain: In a permissioned blockchain, access is re-
stricted to a pre-authorized set of participants and the consensus mech-
anism is designed to be faster and more efficient compared to permis-
sionless blockchains. The identities of participants are known and the
network operates under a governance model that provides a degree of
trust. This results in a lower risk of malicious activity and easier identi-
fication of bad actors compared to permissionless blockchains. Permis-
sioned blockchains also allow for the use of more traditional consensus
protocols (e.g. BFT), making them faster and less resource-intensive.
However, the trade-off is a lack of decentralization and reduced censor-
ship resistance compared to permissionless blockchains.

• Smart Contracts: Smart contracts, also known as ”chaincode” in Fab-
ric, is a trusted and distributed application that gains its security/trust
from the blockchain and the consensus among the peers. Smart con-
tracts in most blockchain platforms follow the order-execute architec-
ture where the consensus protocol validates and orders transactions
before they are executed sequentially by all peer nodes. However,
since many smart contracts run concurrently, there is a risk of non-
determinism, which can lead to issues with consensus. To address
this, many platforms require smart contracts to be written in domain-
specific languages to eliminate non-determinism, but this could hinder
widespread adoption. Furthermore, the sequential execution of trans-
actions by all nodes can limit performance and scale. Complex mea-

51

sures must be taken to protect the system from potentially malicious
contracts and ensure the overall system’s resiliency.

• Execute-order-validate architecture: Unlike the traditional order-ex-
ecute model, Fabric executes transactions before reaching final agree-
ment on their order. This allows for parallel execution and increased
performance and scale of the system. Fabric also eliminates non-deter-
minism by filtering out inconsistent results before ordering, making it
possible to use standard programming languages. The endorsement
policy, which specifies the peer nodes responsible for endorsing a trans-
action, helps maintain the security and trust of the system.

• Privacy and Confidentiality: The lack of confidentiality in public, per-
missionless blockchain networks can be problematic for certain busi-
ness and enterprise use cases. Approaches such as encryption and zero
knowledge proofs are being explored to address this issue, but they
come with trade-offs such as risk of data compromise or performance
impact. In a permissioned context, such as Hyperledger Fabric, confi-
dentiality is achieved through channels and private data features, where
a sub-network of authorized nodes have access to the smart contract
and transaction data, preserving their privacy and confidentiality.

• Pluggable Consensus: In Fabric, the transaction ordering is handled
by a separate component called the ordering service. This design al-
lows the platform to have flexibility in choosing the type of consensus
algorithm that best fits the needs of a particular deployment or solu-
tion. The ordering service can be either crash fault-tolerant (CFT) or
byzantine fault-tolerant (BFT) based on the trust assumptions of the
network. Fabric currently provides a CFT ordering service implementa-
tion based on the Raft protocol and the etcd library. The platform also
supports having multiple ordering services for different applications or
requirements within the same network.

• Performance and Scalability: Hyperledger Fabric is designed to address
these performance challenges by providing a scalable, flexible, and se-
cure platform for building blockchain applications. The execute-order-
validate architecture and modular consensus design enable the platform
to achieve high levels of performance by separating the transaction flow
into multiple phases, reducing non-determinism and allowing for paral-
lel execution. Additionally, the channel architecture and private data
feature enable network participants to transact and store confidential
information, further improving performance by reducing the amount of

52

data transmitted and stored across the network. However, as with any
system, the specific performance of a Hyperledger Fabric network will
depend on the specific use case and deployment configurations.

All in all, Hyperledger Fabric is a highly scalable system for permissioned
blockchains that supports a wide range of industry use cases due to its flexible
trust assumptions. It is the most active of the Hyperledger projects with a
growing community and continuous innovation.

4.3 Concepts

Hyperledger Fabric is a private and permissioned blockchain platform within
the Hyperledger project. This project, initiated by the Linux Foundation,
aims to promote cross-industry blockchain technologies through a collab-
orative community approach. Hyperledger Fabric enables participants to
manage their transactions with a ledger, smart contracts and pluggable op-
tions, such as multiple data storage formats, customizable consensus mech-
anisms, and support for different Membership Service Providers (MSPs).
This blockchain platform also provides the ability to create channels, al-
lowing groups of participants to establish separate ledgers of transactions,
ensuring privacy in a Business-to-Business (B2B) network. The ledger sub-
system in Hyperledger Fabric comprises two components: the world state
and the transaction log, both of which are accessible to every participant
in the network. Smart contracts in this platform are written in chaincode
and are invoked by external applications when they need to interact with the
ledger. The degree of privacy offered by Hyperledger Fabric can vary, de-
pending on the requirements of the network. The consensus mechanism used
in the platform is flexible and can be customized to suit the relationships
between participants in the network.

4.3.1 The Model

Hyperledger Fabric is a comprehensive and customizable enterprise block-
chain solution that offers several key design features to fulfill its promise.
These features include assets, chaincode, ledger features, privacy, security
and membership services, and consensus.

Assets in Hyperledger Fabric can be anything with monetary value, from
real estate to contracts and intellectual property. They are represented as
key-value pairs and their state changes are recorded as transactions on a
channel ledger. Chaincode is the business logic that defines the assets and the

53

instructions for modifying them. Chaincode functions are executed against
the ledger’s current state database and are initiated through a transaction
proposal.

The ledger is a tamper-resistant record of all state transitions in the fabric,
which result from chaincode invocations submitted by participating parties.
Each peer maintains a copy of the ledger for each channel of which they are
a member. The ledger is comprised of a blockchain and a state database,
and it provides query and update capabilities using key-based lookups, range
queries, and composite key queries.

Privacy is achieved in Hyperledger Fabric through the use of channels and
private data collections. A ledger exists within the scope of a channel and can
be either shared or privatized to include only specific participants. Private
data collections are used to segregate confidential data in a private database,
accessible only to authorized organizations. Values within chaincode can also
be encrypted using common cryptographic algorithms to further obfuscate
the data.

Security and membership services in Hyperledger Fabric provide a trusted
blockchain network where participants know that all transactions can be
detected and traced by authorized regulators and auditors. This is achieved
through permissioned membership.

Consensus in Hyperledger Fabric is achieved through a unique approach
that provides the flexibility and scalability required for the enterprise. This
enables the network to reach agreement on the next set of updates to the
ledger, ensuring that all participants have a consistent view of the network
state.

4.3.2 The Network Structure

Fabric networks are composed of participants, who can be organizations,
individuals, or devices that interact with the network by creating, validating,
or executing transactions. Each participant operates one or more nodes,
which are instances of the Fabric software running on a server or device.
There are two types of nodes in a Fabric network: Peer nodes and orderer
nodes. Peer nodes execute chaincode, participate in validating transactions
and maintain the ledger. Peers can be configured to play different roles in
the network, such as endorsement, committing, and delivering transactions.
They also play a role in access control. ACLs are used to define which users
and applications are authorized to access and execute chaincode on a specific
peer. On the other hand, orderer nodes are responsible for ensuring the
ordering and delivery of transactions to the peer nodes. They also enforce
basic access control for channels, restricting who can read and write data to

54

them, and who can configure them.
Each participant in a Fabric network is identified by a unique digital

identity, represented by a public key. This identity is used to sign transactions
and secure the network. Fabric uses a public key infrastructure (PKI) to
manage these digital identities and ensure the authenticity of transactions
within the network.

Participants can communicate with each other through channels. A chan-
nel is a private ledger within the Fabric network, which can only be accessed
by participants who have joined it. This allows for transactions within the
channel to be kept private among the members of that channel, while preserv-
ing the confidentiality and integrity of their transactions. Channels allow a
group of participants to reach a consensus on a shared ledger, enabling them
to share a common view of the state of their transactions. Each channel has
its own ledger and chaincode, which is the smart contract logic that exe-
cutes transactions on the network and is installed on the peer nodes. The
ledger provides a secure and transparent history of all transactions within
the channel, and the chaincode contains the business rules that govern the
transactions within the network.

In summary, the structure of Fabric networks is designed to provide se-
cure and transparent means of executing transactions between participants.
By combining participants with unique digital identities, nodes that store
and validate transactions, and channels that provide private ledgers and
chaincode, Fabric networks provide a highly flexible and scalable solution
for executing transactions and maintaining a secure and transparent ledger
of all transactions. A simple depiction of a hyperledger fabric network can
be seen in 4.1.

55

Figure 4.1: Fabric Blockchain Network

4.3.3 Identity and MSPs

In Fabric, a blockchain network is comprised of various actors such as peers,
orderers, client applications, administrators, etc. Each of these actors has
a unique digital identity encapsulated in an X.509 digital certificate. These
identities determine the level of access and permission over resources and
information in the network. In addition to the digital identity, additional
attributes are also associated with the identity, forming a principal. A prin-
cipal is simply a combination of an identity and its associated attributes and
is used to determine the permissions of an actor.

For the identity to be considered verifiable, it must be issued by a trusted
authority, known as an MSP. The MSP is responsible for managing the dig-

56

ital identities of participants in the network and for defining the rules that
govern the valid identities in the organization. The MSP provides a way to
define the relationships between different participants in the network, such
as which participants are allowed to join a particular channel, who is autho-
rized to transact on the network, and who can serve as an administrator for
the network. It also defines the cryptographic material, such as public and
private keys, that are used to secure transactions and establish the identity
of participants. The MSP is used to ensure the confidentiality and privacy of
transactions within the network by establishing secure communication chan-
nels between participants and enforcing access control policies. For example,
an MSP can be used to define a policy that only authorized participants
can transact on the network, and that transactions from unauthorized par-
ticipants will be rejected. The MSP also provides a way to manage the
revocation of identities in the network. If a participant’s identity is com-
promised, the MSP can be used to revoke that identity and prevent further
access to the network.

Fabric uses X.509 certificates as identities, and adopts a traditional PKI
hierarchical model. The PKI provides secure communication in the network
and is responsible for dispensing various verifiable identities. The role of the
CA within a PKI is to issue digital certificates to parties, such as users or
service providers, who then use these certificates to authenticate themselves
in their communication. The CA’s Certificate Revocation List (CRL) keeps
a record of certificates that are no longer valid. Revocation of a certificate
may occur due to various reasons, including exposure of the cryptographic
private material associated with the certificate.

A PKI is crucial to ensure secure communication between network par-
ticipants and to authenticate messages posted on the blockchain.

4.3.4 Policies

Hyperledger Fabric policies define the rules and regulations for access control,
validation, and execution of transactions within a network. These policies
are used to ensure that all participants in the network follow a specific set of
guidelines, and are an essential component in maintaining the security and
integrity of the network. The policies can be specified at various levels within
the network, including the channel, peer, and application levels.

At the channel level, policies determine the level of permission that dif-
ferent participants have within the channel. For example, a policy can be set
up to restrict the ability of certain participants to execute transactions on
the network. At the peer level, policies can be used to define the validation
rules for incoming transactions, ensuring that all transactions conform to

57

specific standards before they are processed through ACLs. Finally, at the
application level, policies can be used to control access to specific resources
and functions within the application.

Policies in Hyperledger Fabric are defined using a declarative language
called “policy syntax”. The syntax provides a concise and easy-to-use way
to specify the conditions under which transactions can be executed, allowing
for a wide range of use cases and flexible policy implementation. Additionally,
policies can be easily modified or updated as the needs of the network evolve.

Overall, Hyperledger Fabric policies play a crucial role in maintaining the
security and integrity of the network. By defining clear rules and regulations
for access control, validation, and execution of transactions, they help to
ensure that all participants in the network are able to trust each other and
the network as a whole.

4.3.5 Ledger

The ledger in Hyperledger Fabric is a data structure that records all the
transactions that occur in the network. It’s made up of multiple components,
including the world state, blocks, transactions, and endorsements.

The world state represents the current state of all the assets in the net-
work. It’s updated with every transaction and stores the latest version of the
asset data.

Blocks are a collection of transactions that are grouped together and
added to the ledger in a sequential manner. Each block contains a unique
identifier and a list of transactions.

Transactions represent an exchange of information or assets within the
network. They must be endorsed by multiple participants before being added
to the ledger as a block.

Endorsements are a way to ensure the validity of transactions. They act
as a form of consensus and help prevent fraud or tampering with the ledger.
Endorsers are participants in the network who validate transactions before
they are added to the ledger.

4.3.6 Smart Contracts/Chaincode

In Hyperledger Fabric, smart contracts, also called chaincode, are programs
that run on a network of peer nodes. They serve as the business logic of a
blockchain network, defining the rules and policies that govern interactions
between participants. When a transaction is submitted to the network, it
triggers the execution of one or more smart contracts, which perform opera-

58

tions like reading and writing data to the ledger, updating the state of assets,
and triggering other smart contract executions.

Smart contracts in Hyperledger Fabric have access to a ledger, which is a
shared database that is distributed across all the peer nodes in the network.
This ledger provides a tamper-proof record of all transactions and states,
allowing for transparency and trust in the network.

Hyperledger Fabric provides a secure and flexible framework for devel-
oping, deploying, and executing smart contracts. The smart contract code
is stored on the peer nodes, and can be updated or replaced as necessary.
The network’s consensus mechanism ensures that all nodes agree on the cur-
rent state of the ledger, and all transactions are validated before they are
committed to the ledger.

4.3.7 Chaincode Lifecycle

The Hyperledger Fabric Chaincode Lifecycle refers to the process of creat-
ing, installing, instantiating, upgrading, and ultimately deprecating smart
contracts in a Hyperledger Fabric network.

First, a chaincode must be written in a supported programming language.
Next, the chaincode is installed onto the peers that will run it. After installa-
tion, the chaincode is instantiated on the channel and available for use. The
chaincode can be later upgraded to add new functionality or fix bugs. The
chaincode can also be deprecated, which means it is no longer used by the
network and can be deleted from the peer nodes.

The lifecycle is managed through a series of REST APIs or command-
line tools, which allow network administrators to control the various stages
of the chaincode’s existence. These tools provide an easy and secure way for
administrators to manage the deployment and operation of chaincodes in a
Hyperledger Fabric network.

4.3.8 Security Model

The security model aims to ensure the confidentiality, integrity, and avail-
ability of transactions and data on the network. This is achieved through
a combination of authentication, authorization, encryption, and consensus
mechanisms. Authentication verifies the identity of users, peers, and clients
accessing the network. This is done through digital certificates, which are
issued and managed by a certificate authority. Authorization defines the
access and permissions granted to users, peers, and clients on the network.
This is determined by the channel configuration and smart contract code.
Encryption is used to secure sensitive information as it is transmitted and

59

stored on the network. This includes data encryption, channel encryption,
and end-to-end encryption. Consensus ensures that all participants in the
network agree on the current state of the ledger, and that all transactions
are valid. This is achieved through a consensus algorithm, such as PBFT
or Raft. Overall, the security model in Hyperledger Fabric aims to main-
tain the privacy and security of transactions and data, while still enabling
participants to collaborate effectively on the network.

4.3.9 Fabric Gateway

The Hyperledger Fabric Gateway provides an interface for applications to
interact with a Fabric network. It abstracts the underlying implementation
details of the network, such as the communication with peers, and offers a
higher-level API for accessing the network’s capabilities.

Applications can use the gateway to connect to a Fabric network, enroll
a user, and execute transactions. The gateway can also be used to query the
ledger for data. The gateway can be configured with one or more connections
to Fabric networks, and each connection can be associated with a specific
user identity. This allows for secure and controlled access to the network’s
resources, as each user is only able to perform actions for which they have
been authorized.

To interact with the network, the gateway must first be connected to a
network, and the user must be enrolled. The enrollment process involves the
user providing their cryptographic materials, such as a private key, which
are then used to authenticate the user to the network. Once connected and
enrolled, the gateway can be used to execute transactions and query the
ledger. The transactions are processed by the peers in the network, and the
ledger is updated accordingly. The results of transactions and queries can be
accessed through the gateway’s API.

The Fabric Gateway offers a simplified and secure way for applications to
interact with a Fabric network, abstracting the implementation details and
providing a higher-level API.

4.4 Transaction Flow

A client application wants to access the ledger in a Fabric network. To do this,
the client connects to the Fabric Gateway service running on a peer. Through
the connection with the gateway, the client can run chaincodes to query
or update the ledger. When a ledger update (write) is performed, it goes

60

through three phases: Transaction Proposal and Endorsement, Transaction
Submission and Ordering, and Transaction Validation and Commitment.

In the first phase, the client application submits a signed transaction
proposal to the gateway service. The gateway selects a peer to execute
the transaction, and the selected peer executes the chaincode, generates a
proposal response, and signs it. The gateway repeats this process for each
organization required by the endorsement policies. If the results collectively
satisfy the endorsement policies, the proposal is forwarded to the ordering
service running on orderer nodes, which are special nodes in the network
working with the peers to facilitate the respective consensus.

In the second phase, the ordering service orders and packages the trans-
actions into blocks. These blocks, which consist of endorsed and ordered
transactions, make up the Fabric blockchain ledger.

In the third phase, the orderer distributes the ordered blocks to the peers.
Each peer validates the transaction by checking the signatures and the read-
write sets. If the transaction is valid, each peer commits it to the channel
ledger, and sends the client a commit status event with proof of the ledger
update. The world state of the channel is updated with the results of valid
transactions only. Once all peers have completed this process, the ledger is
consistent across the network and the gateway service informs the relevant
applications that the transaction has been committed.

The transaction flow in Hyperledger Fabric can be summarised, as seen
in Fig. 4.2, in the following steps:

1. A client sends a transaction proposal to one or more peers in the net-
work.

2. The receiving peer(s) evaluate the proposal against the chaincode’s
endorsement policy.

3. If the proposal is valid, the peer signs the proposal response with its
endorsement.

4. The client collects the endorsement responses from the peers and sub-
mits the transaction to the ordering service.

5. The ordering service orders the transactions and adds them to a block.

6. The block is then broadcast to all peers in the network for validation.

7. Each peer validates the transactions in the block, checking the state of
the world and the chaincode’s endorsement policy. If the transactions
are valid, the peers update their state databases accordingly. The block

61

is committed to the ledger on the peer and the updated state is now
visible to the network.

Note that the above steps happen in a decentralized manner, with each
peer acting as an independent validator and maintaining its own copy of the
ledger. This helps ensure the integrity of the network and eliminates the
need for a central authority.

Figure 4.2: Transaction flow

Overall, the Fabric Gateway SDKs make it easy for developers to interact
with the ledger by implementing these phases seamlessly, and the Fabric
network ensures that the ledger is kept consistent and current by peers and
orderers.

62

Chapter 5

Proposed Framework

5.1 Overview

The proposed blockchain-assisted framework uses the MANET described in
Chapter 1 to incorporate the Blockchain protocol. Specifically, we will be
using Hyperledger Fabric to implement the ledger.

Most commonly used blockchains are centered around managing and
transferring digital assets. This gives them the ability to maintain the ac-
curacy and authenticity of the stored data through the use of public key
cryptography and digital signatures. For instance, in the case of Bitcoin, the
transfer of bitcoins is secured through a PoW consensus mechanism. But
when it comes to physical assets and commodities, the blockchain acts as a
digital ledger of information related to these assets. However, since the infor-
mation recorded on the blockchain only represents physical events and is not
necessarily verified, the trustworthiness of the data becomes questionable,
leading to questions about the data’s integrity on the blockchain.

Even though blockchain can be a useful tool for keeping track of infor-
mation, it is not enough to ensure the trustworthiness of the data about
entities. If malicious actors input false information, it becomes permanent
once recorded on the blockchain. To enhance the reliability of the data, ac-
countability and incentive systems can be employed. These systems would
penalize untruthful participants while rewarding trustworthy ones.

In this project, we will be using the MANET simulation of Chapter 1 to
evaluate the reliability of the data recorded on the blockchain, to implement
penalties and incentives, and ensure that the solution does not negatively
impact the scalability of the platform. Here, we have made an effort to
put together a blockchain-assisted implementation using Hyperledger Fab-
ric. We opted to use Hyperledger Fabric [28] for deployment because it’s

63

easy to deploy and has various tools available for blockchain deployment,
management, data querying, implementing smart contracts, and facilitating
cross-organizational collaboration.

5.2 Blockchain-assisted MANET

As previously mentioned, maintaining traceability and integrity are signifi-
cant hurdles in MANET systems. To address these issues, firstly, the infor-
mation that provides traceability and integrity of reputation events must be
recorded in a way that is resistant to tampering, and secondly, the recorded
data must be genuine and reflect the actual observations of the mobile nodes.
The blockchain technology satisfies the first requirement with its decentral-
ized and secure ledger. The second requirement is fulfilled by the already
developed mechanisms that establish trust in the data at its source and
guarantee that the data recorded on the blockchain is trustworthy by the
MANET network. Our work focuses on combining these two and reporting
our observations.

Our framework is organized into two sections: the chaincode and the
application. The chaincode is used to handle the ledger, while the application
executes our simulation along with the transactions. In the following sections,
we describe the functionality in detail.

5.2.1 Chaincode

We will be using the chaincode, presented in Appendix A, to handle the
ledger. The initial state of the ledger holds the profiles of the 100 nodes that
we will be using in our MANET simulation. These profiles are merely entries
in the ledger that show the state of each node at any moment. Therefore,
they store the node’s id, the trust score of the node, the health status of
the node, the cluster id of the node, the CH of the cluster the node belongs
to and an array of all the transactions these node has been taking part in,
either as a client or a server.

In the chaincode we can see the transactions that the application may
invoke.

• queryNode: With this query any node can search and retrieve the
profile of another node with a specified key.

• queryNodeCH: With this query a node that is a cluster head may search
and retrieve the profile of another node with a specified key.

64

• queryAllNodes: This query will return all the nodes from the ledger.

• setCluster: This transaction is used to specify the cluster id and the
cluster head of each node.

• changeNodeTrust: This transaction changes the trust score of a node
on the ledger.

• changeNodeHS: This transaction changes the health status of a node
on the ledger.

• isCH: This query checks if a node is cluster head.

• addTransactionClient: This adds a new transaction to the client node.
The transaction, here, represents the transactions that occurs between
nodes in the simulation. More on that in the next section.

• addTransactionServer: This adds a new transaction to the server node.

• queryNodeTransactions: This may be used to return all the transac-
tions a specific node has been involved in.

Note that the cluster head check on the transactions is there to simulate
the restriction that only a cluster head may access the ledger.

The chaincode will be deployed using Hyperledger Fabric test network.
The test-network consists of multiple peers, that stores and processes trans-
actions. These peers are organized into organizations, each representing a
separate entity in the network. The organizations can be run by different en-
tities, such as businesses, governments, or individuals, and each organization
has its own set of peers.

The configuration of the Hyperledger Fabric test-network is specified us-
ing a set of configuration files. These files define the properties of the net-
work, including the identities of the organizations and peers, the rules for
processing transactions, and the network topology. More on that in the next
section.

The Hyperledger Fabric test-network is run using Docker containers,
which provide a secure and isolated environment for running the network
components. This makes it easy to set up and run the network, and ensures
that the network components are isolated from other processes running on
the same machine.

65

5.2.2 Application Layer - MANET Simulation

The application layer will execute the MANET simulation that was presented
in Chapter 1 and address queries and transaction requests for the chaincode
to execute. The simulation, shown in Appendix B, begins by initialising
and setting up a file system-based wallet and a Gateway connection to a
blockchain network. The wallet is used to store and manage the identities
that will be used to interact with the blockchain network, while the Gateway
provides a connection to the network and enables the identities stored in
the wallet to interact with it. The blockchain network is represented by
a ”Connection Profile” (CCP) file, which contains information about the
network, including the configurations of the organizations that are part of it.

The identity for the Gateway is specified using the wallet and the ”ap-
pUser” identity stored in the wallet. The CCP for the network is specified
using the networkConfigPath. The ”discovery” property is set to ”true”,
which means that the Gateway will discover and connect to peers in the net-
work, and the ”commitHandler” property is set to ”NONE”, which means
that the Gateway will not wait for commit events after submitting a trans-
action. These settings ensure that the code is set up to interact with the
blockchain network as efficiently as possible.

After some initial node set up, the simulation will try to create a con-
nection to the specified gateway in order to access the blockchain network
and interact with a specific smart contract within the network. This includes
submitting transactions to the network, querying the state of the contract,
and executing smart contract functions. The simulation using time instances
will begin right after.

At the start of each iteration, every node undergoes a self-assessment
process, evaluating its own cost of analysis and measuring the proximity be-
tween itself and its neighbouring nodes. This self-check is crucial to ensure
that there have been no alterations to these parameters. If any node that had
previously made a positive impact on the overall cohesion of the network sud-
denly exits, an election process is initiated to determine a replacement. This
method of self-evaluation and monitoring ensures the stability and continued
cohesiveness of the network.

When an election is initiated, an election table is established to facilitate
the voting process. Nodes with no neighbouring nodes will cast a vote in
favor of themselves. However, if the node has neighbours, it will consider
the cost of analysis of the neighbouring node. If the cost of analysis of the
neighbour is lower, the node will cast its vote in favor of the neighbour. If
the cost of analysis is higher, the node will vote for itself.

Once the voting is completed, the election table is sorted, and the cluster

66

creation process begins. All nodes that have the first node of the election
table as their first neighbour are deemed to have voted for that node and
are assigned the same cluster ID as the first node, who becomes the CH.
Any node with the CH as its first neighbour becomes a member of the CH’s
cluster. This process continues until all nodes have been assigned to a cluster.

Once the cluster creation process is completed, a transaction is submitted
to the deployed contract to set the cluster ID and cluster head ID for each
node. This information is used to update the cluster neighbours array for
each node, removing any outdated information. It’s important to note that
these neighbours are 1-hop neighbours.

Next, the trust arrays are updated. If the CH has no neighbours, its LTV
remains unchanged. However, if the CH has neighbours, it updates its own
LTV based on the opinions of its neighbours for each node.

Finally, every CH submits a transaction that updates the trust score of
each of its CMs according to its own LTV, which is the equivalent of the
GTV. This process ensures the accuracy and reliability of the trust scores
within the network.

The transaction process begins by checking if each node has sufficient
energy to proceed. If there is any waiting time remaining, the node will wait
until it is ready to proceed.

Once the node is available and has cluster neighbours, a random neigh-
bour is selected as a candidate server. If the server is available, the client
consults the CH. The CH retrieves the trust score of the server from the
ledger and reports back to the client. If the trust score is low, the CH may
give the server a second chance to prove its trustworthiness.

The client takes the trust score provided by the CH and combines it with
its own assessment to produce a final trust score vector. This final trust score
is then compared to a threshold. If the trust score is above the threshold, the
transaction begins. If the trust score is below the threshold, the transaction
is aborted. In this case, the node could either be malicious or healthy with
low trust score.

If the transaction is approved, the duration of the transaction and the
time it began are stored. Both the client and the server are made unavailable
to prevent other nodes from starting a transaction with them. In the event
of a malicious server, the client stores the time the health status was last
changed.

If the server is not available, it means it must be in a transaction, and
the client can identify the server it is transacting with based on the stored
server ID. If the server is within range, the transaction duration is reduced
by 1 and the energy of both the client and the server is also reduced.

The transaction is stopped and the nodes are reset if the server is out

67

of range or if either the client or the server runs out of energy during the
transaction. These situations result in a failed transaction. If the server
becomes malicious during the transaction, the malicious node and the time
it became malicious are recorded.

The transaction is considered successful if both the client and the server
remain within range for the duration of the transaction and have enough
energy to complete it. Upon completion, an evaluation takes place to assess
the success of the transaction.

The process of evaluating the performance of a node, after a transaction
is completed, is a crucial aspect of the simulation. Each node is given a
score based on its behavior during the transaction, with a positive score in-
dicating honest behavior and a negative score indicating malicious behavior.
This score, known as the evaluation, is calculated by comparing the node’s
behavior with predetermined standards.

If the node behaved honestly, its evaluation will be positive, ranging from
0 to 1. On the other hand, if the node engaged in malicious behavior, it will
be penalized by -0.5 to its evaluation. Regardless of whether the transaction
was successful, failed due to energy or range constraints, or was aborted, the
transaction is recorded in the ledger for both the client and the server and
added to the list of all transactions that each node has taken part in. Figure
5.1 shows the information retrieved after the ledger was queried to obtain
the nodes’ attributes along with the list of transactions associated with the
nodes

Once the transaction is recorded, the client reports its evaluation for the
server to the CH, who will combine this evaluation with its own opinion and
update the ledger accordingly. This information is then used to update the
trust scores of the nodes and to detect any malicious behavior. Finally, after
the evaluation, the nodes are reset and the simulation produces its results.

68

Figure 5.1: Nodes’ Query Result

5.3 Simulation and Results

5.3.1 Simulation

The network starts with setting up the infrastructure, which includes two
organizations, two peers, one orderer, and one channel. The first step is to
create a blockchain network using Hyperledger Fabric, which is a permis-
sioned blockchain network. This network has two organizations, each with
its own peer. The peers in each organization are responsible for maintaining
the ledger and verifying transactions.

Next, an orderer node is added to the network to act as a centralized
entity responsible for ordering transactions and ensuring consistency across
all peers. This orderer node receives transactions from the peers and orders
them into a single, consistent view of the ledger.

Once the network infrastructure is in place, a channel is created on the
network. A channel is a private network within the overall fabric network,
and it allows multiple parties to transact privately and securely on the same
network.

After setting up the network infrastructure, the next step is to deploy a
chaincode, as shown in Appendix A, which is a smart contract that runs on
the network. This chaincode defines the rules and logic of the network and

69

contains the ledger of all transactions.
Finally, an application client is set up with one admin and one user,

as shown in Appendix B. The application client is the simulation of the
network and is used to submit transactions and interact with the ledger.
The admin and the user represent the different entities that can participate
in the network and submit transactions.

With the network infrastructure, chaincode, and application client in
place, the network is now ready to start executing transactions and ensuring
consensus on trust issues. The simulation runs on the application client and
uses the ledger on the chaincode to keep track of transactions and evaluate
the trustworthiness of nodes in the network. The network uses a combination
of voting and trust scores to achieve consensus on trust issues and maintain
a secure and trustworthy network.

5.3.2 Results

Multiple simulations with different initial conditions were conducted, and
the results were found to be, more or less, consistent across all simulations.
Figure 5.2 is a table of two simulation runs, where at first we set the trust
threshold to 0.5 and then to 0.4. It is important to note that at the end of the
simulation, some transactions were still ongoing and had not yet been com-
pleted. These transactions were considered initiated but were not included
in the count of successful or failed transactions (about 20 transactions out of
roughly 24000, a discrepancy which we consider negligible).

70

Figure 5.2: Results of a Complete Simulation Run

As stated before, the A1 metric tracks the time it takes for a client-node
to detect a server-node’s switch from a healthy state to a malicious state
during a transaction. If this change occurs for over 50% of the transaction’s
duration, the client-node will penalize the server-node’s trust at the end of the
transaction, making the malicious state known to other nodes. This metric is
important because it shows how long it takes for a client-node to realize that
the server-node has become malicious, even though the server-node appeared
healthy at the beginning of the transaction.

In Fig. 5.2, we can see the total number of successful transactions and
the total number of transactions that involved a malicious server. Fig. 5.3
displays the frequency of the time span between a healthy node becoming
malicious and when it was detected by another node. Finally, the mean time
required to spot a malicious node with A1 metric is 25.81.

71

Figure 5.3: A1 metric frequency distribution

According to the analysis, out of a total of 10278 transactions that were
successfully completed, the 2257 involved a malicious server-node, which is
18.01%. This means that less than two in ten transactions involved a ma-
licious node, which initially appeared to be perfectly healthy. However, the
evaluation of the trust of a node through a transaction carries a certain risk,
as it requires a transaction to take place before the trust can be evaluated
and there is no guarantee that a node is actually malicious based solely on
the trust evaluation.

The A2 metric measures the time from when a previously healthy node
turns malicious to when a client-node discovers this change and cancels the
transaction before it starts. It concerns nodes that have been previously
assessed and have a trust level below the trust threshold. This means that
they have had at least one interaction with another client-node, hence why
the recorded time in the A2 metric is higher. In Fig. 5.2, we see the results
of a simulation run for this metric. The frequency distribution of the A2
metric is shown in Fig. 5.4. The mean time of the A2 metric is 29.48.

It’s found that a significant proportion (66.36%) of nodes with low trust
are actually healthy and transactions with them are cancelled. This can
happen because they were previously evaluated by a high-standard node or
because they were once malicious but have recovered. Therefore, provisions
must be made for restoring the trust of these nodes.

72

Figure 5.4: A2 metric frequency distribution

The A3 metric focuses on addressing the issue of restoring trust to nodes
that have previously been evaluated as malicious or have a low trust level.
It measures the time it takes for a node’s trust to be restored after tran-
sitioning from a healthy state to a malicious state. This is done through
intervention by the CH, who increases the node’s trust value by adjusting
its GTV component, although there is inherent risk in this decision. It is
the responsibility of the CH to assess and manage this risk. Fig. 5.5 shows
the time distribution of the trust restorations. The mean time interval for a
node’s trust to be restored is 14.11.

73

Figure 5.5: A3 metric frequency distribution

At this point, we should mention that the behavior of the CH is de-
termined by the α parameter in the low pass filter. In our simulation, a
value of 0.4 was used, but this doesn’t take into account the timeliness of
the information or the trustworthiness of the reporting node. A more recent
evaluation from a trustworthy node is more reliable than an old evaluation
from a low-trust node. This is something to implement in future works.

5.3.3 Caliper

Caliper is a blockchain performance benchmark tool developed by the Hy-
perledger project. It provides a means of measuring the performance of a
blockchain network and its components, such as the ledger, consensus al-
gorithms, and smart contract execution. Caliper is used to evaluate the
scalability, efficiency, and stability of a blockchain network, providing valu-
able insights into the network’s strengths and weaknesses. With Caliper,
various types of tests can be performed, including transactions per second
(TPS) tests, latency tests, and resource consumption tests. This information
can be used to optimize the performance of a blockchain network and ensure
that it can meet the demands of real-world applications.

We used Caliper to run a series of tests on our network, which was com-
prised of two organizations, two peers, one orderer, one communication chan-
nel, and a chaincode. The chaincode, the configuration file and some of the
transactions files that were used to execute the tests are shown in Appendix
C.

74

The test involved 5 worker nodes, executing 7 rounds of transactions.
Each round involves a different set of operations such as creating a node,
setting a cluster, changing the node’s trust and health status, adding client
and server transactions and querying the nodes. The transactions in each
round were executed at a fixed rate of 10 transactions per second to 80
transactions per second. The configuration includes 500 assets, which are
used as arguments in the different workload modules. The results for the
ChangeNodeTrust transaction and –even though we are not currently using
it in the simulation– the CreateNode transaction, are shown below. The rest
produce, more or less, the same results.

Figure 5.6: CreateNode Transaction’s Latency, Throughput

Figure 5.7: ChangeNodeTrust Transaction’s Latency, Throughput

75

The results of the Caliper benchmark test show the relationship between
transaction load, throughput, and latency. Here is a brief explanation of each
of these metrics regarding the ChangeNodeTransaction:

• Transaction load: This refers to the number of transactions that were
sent to the blockchain network during the benchmark test. In this test,
we varied the transaction load from 10 to 80, with each increment of
10 representing an increase in the number of transactions.

• Throughput (TPS): This is the number of transactions that were pro-
cessed by the blockchain network per second. In this test, the through-
put increased as the transaction load increased, indicating that the
network was able to handle more transactions per second. The highest
throughput was 160.4 transactions per second, achieved with a trans-
action load of 50.

• Latency: This is the amount of time it takes for a transaction to be
processed by the blockchain network. From [29], it can be concluded
that the transaction latency is made up of various components such as
endorsement latency, broadcast latency, commit latency, and ordering
latency. However, Caliper only provides the total delay and does not
break it down into these individual parts. In any way, in this test, the
latency was relatively low, ranging from 0.15 to 0.32 seconds, even as
the transaction load increased. This indicates that the network was
able to process transactions quickly, without experiencing significant
delays or bottlenecks.

Overall, the results of the Caliper benchmark test suggest that the block-
chain network and chaincode are performing well, with a high throughput
and low latency even under increased transaction load. However, it’s impor-
tant to note that benchmark test results may vary depending on the specific
network and hardware configuration, as well as the type and complexity of
the transactions being processed.

Note that the simulation and the performance tests are carried out on a
Dell PC (Intel Core i7, 3.60 GHz, 8 GB memory).

5.4 Future Work

Now, we will explore several ways to improve the efficiency, security, scal-
ability, and consensus of our simulation. As the number of nodes in our
simulation grows, so does the complexity of managing the interactions be-
tween them. To ensure the trustworthiness of our simulation, it is important

76

to ensure that it is secure against malicious actors and to maintain consen-
sus among the nodes. Furthermore, as the simulation grows, we must also
consider its scalability to ensure that it remains manageable and performant.
With these considerations in mind, we will explore various techniques for im-
proving the efficiency, security, scalability, and consensus of our simulation,
such as optimizing the data model, improving the validation of transactions,
enhancing privacy, increasing fault tolerance, and implementing more robust
consensus algorithms. By implementing these improvements, we can create
a simulation that is both realistic and secure, allowing us to gain valuable
insights into how distributed systems can be used to model complex interac-
tions between nodes.

5.4.1 Security

In order to improve security in our system, we could introduce access control
rules in the chaincode. These can be implemented in several ways, here are
a few approaches:

• Role-based access control: We could define roles, such as CH and CM,
in the chaincode and assign permissions to each role. For example, we
could allow CHs to write to the ledger and restrict other nodes from
writing.

• Condition-based access control: We could specify conditions in the
chaincode that determine if a node can perform a specific action, such
as writing to the ledger. For example, we could check if a node is a CH
before allowing it to write to the ledger.

• Use of smart contracts: We could write smart contracts in the chain-
code that enforce access control rules. The smart contract can define
the conditions that must be met before a node can interact with the
ledger. For example, we could specify that before a node can add a
transaction to the ledger, it must meet certain conditions such as hav-
ing a minimum trust score or being a member of a specific cluster.

• Authentication and authorization: We could use authentication and
authorization mechanisms, such as digital signatures, private keys, and
encryption algorithms, to control access to the ledger. The chaincode
can validate the authenticity and authorization of a node before allow-
ing it to interact with the ledger.

77

Fabric’s ACLs can be used to enhance the security and access control of
this system by specifying who can perform certain actions or access certain
resources within the network.

One way we could exploit Fabric’s ACLs to make our system better is by
using them to enforce fine-grained access control. This means that we can
define access control policies for each resource or action in the network, and
limit access to only those parties that need it. For example, we could use
ACLs to restrict access to sensitive data, such as the trust scores of nodes,
to only authorized parties such as CHs. This can help prevent unauthorized
access or tampering with sensitive data by malicious actors.

Another way we could exploit Fabric’s ACLs is to implement a layered
access control model. By defining different access levels for different roles
within the network, we can limit access to only those resources and actions
that are necessary for each role to perform their duties. For example, we
could define an access control policy that allows CHs to modify trust scores,
but only allows regular nodes, CMs, to view their own trust score. This can
help prevent accidental or intentional modifications to data by unauthorized
parties.

We could also use Fabric’s ACLs to restrict access to authorized parties.
This can help prevent unauthorized nodes from joining the network and
potentially compromising its security. Additionally, we could use ACLs to
define policies for managing the addition and removal of nodes from the
network, further enhancing the security and scalability of the system.

In order to implement this, first, we would need to define the access
rules that specify who can read or write the data on the ledger. This would
involve setting up a list of entities that are allowed to access the ledger and
specifying the actions they can perform. Next, we would send the message
digest of the data to the blockchain layer in the form of transactions. The
transactions would be stored on the ledger and processed according to the
access rules defined by the ACL. To ensure that the transactions are valid
and do not violate the access rules, the validating peers would verify them
before adding them to the ledger. This would involve checking whether the
entity submitting the transaction is allowed to perform the requested action.

Once the transactions are added to the ledger, they would invoke smart
contracts that generate reputation and trust values for entities and quality
ratings for commodities using the reputation and trust module. The smart
contracts would also emit warning events depending on predefined conditions,
i.e. if a node becomes malicious. The reputation and trust values would be
stored on the digital profiles of the nodes on the blockchain. The digital
profiles would be mapped to the nodes using their unique IDs, such as their
public keys.

78

Finally, the application layer would interact with the blockchain layer
through queries about the trust scores. The CHs would query about the
trust scores of nodes in their clusters, and the quality of the interactions and
transactions involving those nodes. Based on the retrieved scores, the CHs
would take actions such as rewarding nodes with high scores by providing
them with more privileges or authority within the cluster, and penalizing
nodes with low scores by reducing their privileges or even removing them
from the cluster. These actions would help to ensure the overall health and
trustworthiness of the network.

Overall, by utilizing Fabric’s ACLs, we can enhance the security, access
control, and scalability of the network, making it more robust and resistant
to malicious attacks or unauthorized access.

One more thing that could improve the security of the network are regular
audits. We could conduct regular audits of the ledger to identify any security
issues or anomalies. By monitoring the ledger for unusual activity, we could
detect potential security breaches and take appropriate action to address
them.

5.4.2 Efficiency-Scalability

The system can become more efficient and scalable by having the chaincode
handle the election process. First, the requirements for becoming a CH can
be clearly defined within the chaincode, allowing for a clear and consistent
understanding of what is required. This can simplify the election process and
help to minimize confusion or uncertainty. Additionally, the chaincode can
automatically initiate elections based on a set schedule or certain criteria,
such as the current CH’s trust score dropping below a certain threshold.
This can improve the speed and reliability of the election process, as well as
ensure that elections are conducted in a fair and transparent manner.

Furthermore, having the chaincode handle the election process can reduce
the amount of manual intervention required, which can free up resources
and allow for more efficient and streamlined operations. Overall, having the
chaincode handle the election process can help to improve the scalability and
efficiency of the system, as well as provide greater control and transparency
over the election process.

One other way to improve scalability and efficiency in the system is to
transfer the trust reputation calculation to the chaincode. This way, we can
ensure the security of the simulation by preventing nodes from tampering
with their own trust scores. The trust score of each node would be calculated
using a validation function defined in the chaincode. This function would be
based on the interactions stored in the ledger and would take into account

79

each node’s behavior and interactions with other nodes. By relying on the
chaincode to calculate trust scores, we would reduce the risk of fraud and
increase the accuracy of the results. Furthermore, this would allow the CHs
to easily update the trust scores of their nodes without the need for manual
calculation, freeing up resources and speeding up the overall process.

The chaincode could also handle the evaluation process. Then, the sim-
ulation would become more automated and efficient. The chaincode would
define the criteria for evaluating a node’s trust score, such as the number of
successful transactions and positive feedback from other nodes. This elimi-
nates the need for CHs to manually adjust trust scores, freeing them up to
focus on other tasks that require their attention. Automating the evaluation
process through the chaincode also ensures that the calculations are consis-
tent and unbiased, improving the overall accuracy and reliability of the trust
score evaluation. Additionally, moving the evaluation process to the chain-
code adds an extra layer of security, as it prevents nodes from tampering
with their own trust scores. The use of a chaincode in this manner helps to
improve both the scalability and efficiency of the simulation.

5.4.3 Ensuring Consensus

The proposed framework is designed to provide a basis for a sturdy trust
management system by utilizing a combination of voting algorithms, cluster
formation, trust evaluation mechanisms and the ability to detect and prevent
malicious nodes. The consensus on trust issues is ensured through the use
of trusted intermediaries (CHs) and the enforcement of rules and conditions
through smart contracts.

This approach provides a good foundation for ensuring consensus on trust
issues in a limited-capabilities node network using the blockchain protocol.
However, it may not be sufficient to fully address all the challenges that come
with trust management in blockchain networks.

It’s important to keep in mind that blockchain networks are decentralized
and rely on a large number of nodes to maintain their security and trust.
The use of a trust score and election of CHs can provide some level of trust
management, but it may not be sufficient to fully address all the potential
security and trust issues that may arise in a decentralized network.

For example, in a network with limited-capabilities nodes, the trust score
assigned to a node may not accurately reflect its true trustworthiness, as the
node may not have the necessary resources or capabilities to participate in
transactions. This could lead to security vulnerabilities and trust issues in
the network.

Additionally, relying on a single trusted intermediary, such as the CH,

80

may not be enough to ensure consensus on trust issues in a large and complex
network. The CH could be compromised, or its decisions could be influenced
by malicious actors. This could undermine the trust and security of the
network.

Another possibility could be to implement a mechanism for verifying the
trustworthiness of the CHs themselves. This could be done by having a
secondary layer of nodes that oversee the actions of the CHs and provide
additional oversight to ensure that the trust scores being reported are accu-
rate. Additionally, implementing a mechanism for dispute resolution in case
of conflicting trust scores could help to further ensure consensus on trust
issues.

To improve the trust management system, additional factors could be
considered when calculating the trust score, such as the node’s past perfor-
mance in transactions or its reputation in the community. By implementing
a reputation system that tracks the past behavior of each node it would lead
to more accurate calculations of the trust scores and provide more accurate
recommendations for the CH elections. Assuming that the trust score of each
candidate CH was taken into account in the election process.

Furthermore, using multiple ledgers, where each ledger is managed by a
different CH or another trusted entity, can improve the consensus on trust
issues. Each ledger can have its own method of trust evaluation, which can
then be combined to produce a final trust score.

Taking it one step further, incorporating machine learning algorithms can
help identify and detect malicious nodes based on their behavior patterns.
This can help prevent malicious nodes from affecting the overall trust evalu-
ation of the network.

Therefore, while this approach provides a good starting point, it may
be necessary to supplement it with additional security measures and trust
management techniques to ensure consensus on trust issues in a limited-
capabilities node network using the blockchain protocol. By implementing
these measures, we can ensure that consensus on trust is maintained across
the entire system and that the system is able to identify and mitigate any
trust issues that may arise.

81

Conclusions

This thesis has explored the integration of blockchain technology into a
MANET that employs a clustering scheme and a trust mechanism to de-
tect malicious nodes. The proposed system, which utilizes the Hyperledger
Fabric framework, presents a promising foundation for achieving consensus
on trust issues within a resource-constrained network.

We conducted a review of related work which proposed different ap-
proaches to incorporating the blockchain protocol, demonstrating the ver-
satility of the technology. Our proposed system builds on these approaches,
utilizing a unique clustering scheme based on the cost of analysis/processing
concept, specifically designed for MANETs. The system also incorporates a
trust mechanism to ensure network integrity and address malicious nodes.

In order to fully understand the Blockchain protocol we conducted a
thorough analysis of its features and key concepts. We also delved into Hy-
perledger Fabric, which was selected as the framework to implement the
blockchain protocol. The analysis of Hyperledger Fabric covered various as-
pects, such as its structure, the chaincode, the transaction flow. This enabled
us to develop our proposed system that merges the blockchain technology
with the given MANET simulation.

Next, the proposed framework was presented along with the results it
generated. As previously discussed, it is designed to ensure consensus on trust
issues by utilizing a combination of voting algorithms, cluster formation, and
trust evaluation mechanisms. A clustering scheme is utilized based on cost
of analysis/processing, along with a trust mechanism, to ensure transparent
and objective cluster formation. Each cluster is headed by a CH who is
responsible for maintaining the trust scores of nodes within the cluster. The
trust scores are stored on the ledger, along with other node attributes such
as health status, cluster ID, and transaction history, and used to determine
node trustworthiness.

To ensure only trustworthy nodes participate in transactions, the pro-
posed system uses the CH as a trusted intermediary. The CH consults the
ledger about the trust scores of the nodes involved in the transaction and only

82

approves it if the trust score of the other node is above a certain threshold.
By relying on the trust scores maintained by the CHs, the system achieves
consensus on trust and maintains the integrity of the network. If a malicious
node is discovered, the trust score of that node can be adjusted accordingly,
and the CH is informed. This helps to prevent malicious nodes from partic-
ipating in transactions.

The ledger is updated accordingly after each transaction through the use
of smart contracts. Smart contracts ensure that transactions are recorded
in a tamper-proof manner on the ledger, and that all parties involved in the
transaction can agree on the outcome. This adds an additional layer of trust
and security to the network, as all peers can independently verify the state
of the ledger.

In conclusion, the proposed system stands out due to its unique design and
provides a good starting point to start building a robust trust management
solution for addressing trust and consensus issues in MANETs. The combi-
nation of trust scores, the election process, smart contracts, and the ability
to detect and prevent malicious nodes makes the proposed system unique
and promising for future work in this area. While there is still room for im-
provement in terms of performance optimization, scalability, and enhanced
security features, the proposed framework represents a solid foundation for
integrating blockchain technology into MANETs. As blockchain technology
continues to evolve, there will undoubtedly be more opportunities to explore
and enhance the capabilities of this proposed system.

83

References

[1] Michail Chatzidakis and Stathes Hadjiefthymiades. “Trust management in
mobile ad hoc networks”. In: 2014 16th International Telecommunications
Network Strategy and Planning Symposium (Networks). 2014, pp. 1–6. doi:
10.1109/NETWKS.2014.6958525.

[2] Michail Chatzidakis and Stathes Hadjiefthymiades. “Location Aware Clus-
tering and Epidemic Trust Management in Mobile Ad Hoc Network”. In:
2019 28th International Conference on Computer Communication and Net-
works (ICCCN). 2019, pp. 1–7. doi: 10.1109/ICCCN.2019.8847166.

[3] Michail Chatzidakis and Stathes Hadjiefthymiades. “A trust change detec-
tion mechanism in mobile ad-hoc networks”. In: Computer Communications
187 (2022), pp. 155–163. issn: 0140-3664. doi: https://doi.org/10.
1016/j.comcom.2022.02.007. url: https://www.sciencedirect.com/
science/article/pii/S0140366422000445.

[4] W.A. Jabbar, M. Ismail, R. Nordin and S. Arif. “Power-efficient routing
schemes for MANETs: a survey and open issues”. In: Wireless Networks 23
(2017), pp. 1917–1952. doi: 10.1007/s11276-016-1263-6. url: https:
//doi.org/10.1007/s11276-016-1263-6.

[5] Kajal S. Patel and J. S. Shah. “Detection and avoidance of malicious node in
MANET”. In: 2015 International Conference on Computer, Communication
and Control (IC4). 2015, pp. 1–4. doi: 10.1109/IC4.2015.7375729.

[6] Kirti Gupta and Pardeep Mittal. “An Overview of Security in MANET”.
In: International Journal of Advanced Research in Computer Science and
Software Engineering 7 (June 2017), pp. 151–156. doi: 10.23956/ijarcsse/
V7I6/0254.

[7] Noman Mohammed et al. “Mechanism Design-Based Secure Leader Elec-
tion Model for Intrusion Detection in MANET”. In: IEEE Transactions on
Dependable and Secure Computing 8.1 (2011), pp. 89–103. doi: 10.1109/
TDSC.2009.22.

84

https://doi.org/10.1109/NETWKS.2014.6958525
https://doi.org/10.1109/ICCCN.2019.8847166
https://doi.org/https://doi.org/10.1016/j.comcom.2022.02.007
https://doi.org/https://doi.org/10.1016/j.comcom.2022.02.007
https://www.sciencedirect.com/science/article/pii/S0140366422000445
https://www.sciencedirect.com/science/article/pii/S0140366422000445
https://doi.org/10.1007/s11276-016-1263-6
https://doi.org/10.1007/s11276-016-1263-6
https://doi.org/10.1007/s11276-016-1263-6
https://doi.org/10.1109/IC4.2015.7375729
https://doi.org/10.23956/ijarcsse/V7I6/0254
https://doi.org/10.23956/ijarcsse/V7I6/0254
https://doi.org/10.1109/TDSC.2009.22
https://doi.org/10.1109/TDSC.2009.22

[8] S. M. Mousavi et al. “MobiSim: A Framework for Simulation of Mobility
Models in Mobile Ad-Hoc Networks”. In: Third IEEE International Confer-
ence on Wireless and Mobile Computing, Networking and Communications
(WiMob 2007). 2007, pp. 82–82. doi: 10.1109/WIMOB.2007.4390876.

[9] Blockchain Overview. url: https://en.wikipedia.org/wiki/Blockchain.

[10] Blockchain Overview. url: https://www.investopedia.com/terms/b/
blockchain.asp.

[11] Public, Private, Permissioned Blockchains. url: https://www.investopedia.
com/news/public-private-permissioned-blockchains-compared/.

[12] Blockchain Features. url: https://101blockchains.com/introduction-
to-blockchain-features/.

[13] Asma Lahbib et al. “Blockchain based trust management mechanism for
IoT”. In: 2019 IEEE Wireless Communications and Networking Conference
(WCNC). 2019, pp. 1–8. doi: 10.1109/WCNC.2019.8885994.

[14] Rakesh Shrestha et al. “A new type of blockchain for secure message ex-
change in VANET”. In: Digit. Commun. Networks 6 (2020), pp. 177–186.

[15] Digital Signature. url: https://blockgeeks.com/what- is- hashing-
digital-signature-in-the-blockchain/.

[16] Immutable Ledger. url: https://www.solulab.com/what-is-immutable-
ledger-in-blockchain-and-its-benefits/.

[17] P2P Networks. url: https://www.blockchain-council.org/blockchain/
blockchain-role-of-p2p-network/.

[18] Arati Baliga. “Understanding Blockchain Consensus Models”. In: 2017.

[19] Consensus Algorithms. url: https : / / www . decipherzone . com / blog -

detail/consensus-algorithms.

[20] Mining Transactions. url: https://blog.goodaudience.com/how- a-
miner- adds- transactions- to- the- blockchain- in- seven- steps-

856053271476.

[21] Blockchain Mining. url: https://intellipaat.com/blog/tutorial/
blockchain-tutorial/what-is-bitcoin-mining/.

[22] Ralph C. Merkle. “A Digital Signature Based on a Conventional Encryp-
tion Function”. In: Advances in Cryptology — CRYPTO ’87. Ed. by Carl
Pomerance. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–
378. isbn: 978-3-540-48184-3.

[23] Zhe Yang et al. “Blockchain-Based Decentralized Trust Management in Ve-
hicular Networks”. In: IEEE Internet of Things Journal 6.2 (2019), pp. 1495–
1505. doi: 10.1109/JIOT.2018.2836144.

85

https://doi.org/10.1109/WIMOB.2007.4390876
https://en.wikipedia.org/wiki/Blockchain
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared/
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared/
https://101blockchains.com/introduction-to-blockchain-features/
https://101blockchains.com/introduction-to-blockchain-features/
https://doi.org/10.1109/WCNC.2019.8885994
https://blockgeeks.com/what-is-hashing-digital-signature-in-the-blockchain/
https://blockgeeks.com/what-is-hashing-digital-signature-in-the-blockchain/
https://www.solulab.com/what-is-immutable-ledger-in-blockchain-and-its-benefits/
https://www.solulab.com/what-is-immutable-ledger-in-blockchain-and-its-benefits/
https://www.blockchain-council.org/blockchain/blockchain-role-of-p2p-network/
https://www.blockchain-council.org/blockchain/blockchain-role-of-p2p-network/
https://www.decipherzone.com/blog-detail/consensus-algorithms
https://www.decipherzone.com/blog-detail/consensus-algorithms
https://blog.goodaudience.com/how-a-miner-adds-transactions-to-the-blockchain-in-seven-steps-856053271476
https://blog.goodaudience.com/how-a-miner-adds-transactions-to-the-blockchain-in-seven-steps-856053271476
https://blog.goodaudience.com/how-a-miner-adds-transactions-to-the-blockchain-in-seven-steps-856053271476
https://intellipaat.com/blog/tutorial/blockchain-tutorial/what-is-bitcoin-mining/
https://intellipaat.com/blog/tutorial/blockchain-tutorial/what-is-bitcoin-mining/
https://doi.org/10.1109/JIOT.2018.2836144

[24] Cong Pu. “A Novel Blockchain-Based Trust Management Scheme for Vehic-
ular Networks”. In: 2021 Wireless Telecommunications Symposium (WTS).
2021, pp. 1–6. doi: 10.1109/WTS51064.2021.9433711.

[25] Sidra Malik et al. “TrustChain: Trust Management in Blockchain and IoT
Supported Supply Chains”. In: 2019 IEEE International Conference on
Blockchain (Blockchain). 2019, pp. 184–193. doi: 10.1109/Blockchain.
2019.00032.

[26] Xu Wu and Junbin Liang. “A blockchain-based trust management method
for Internet of Things”. In: Pervasive and Mobile Computing 72 (2021),
p. 101330. issn: 1574-1192. doi: https://doi.org/10.1016/j.pmcj.2021.
101330. url: https://www.sciencedirect.com/science/article/pii/
S1574119221000079.

[27] Hyperledger Fabric Documentation. url: https://hyperledger-fabric.
readthedocs.io/en/release-2.5/.

[28] C. Cachin. “Architecture of the hyperledger blockchain fabric”. In:Workshop
on Distributed Cryptocurrencies and Consensus Ledgers 310 (2016).

[29] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. “Performance Bench-
marking and Optimizing Hyperledger Fabric Blockchain Platform”. In: 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). 2018, pp. 264–
276. doi: 10.1109/MASCOTS.2018.00034.

86

https://doi.org/10.1109/WTS51064.2021.9433711
https://doi.org/10.1109/Blockchain.2019.00032
https://doi.org/10.1109/Blockchain.2019.00032
https://doi.org/https://doi.org/10.1016/j.pmcj.2021.101330
https://doi.org/https://doi.org/10.1016/j.pmcj.2021.101330
https://www.sciencedirect.com/science/article/pii/S1574119221000079
https://www.sciencedirect.com/science/article/pii/S1574119221000079
https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://doi.org/10.1109/MASCOTS.2018.00034

Appendix A

Chaincode

A.1 Node
1 import org.hyperledger.fabric.contract.annotation.DataType;

2 import org.hyperledger.fabric.contract.annotation.Property;

3 import com.owlike.genson.annotation.JsonProperty;

4 import org.hyperledger.fabric.contract.annotation.Transaction;

5 import java.util.ArrayList;

6 import java.util.List;

7 import java.util.Objects;

8

9 @DataType()

10 public final class Node {

11

12 @Property()

13 private int nodeId;

14

15 @Property()

16 private double trustScore;

17

18 @Property()

19 private int healthStatus;

20

21 @Property()

22 private int clusterId;

23

24 @Property()

25 private int clusterHead;

26

27 @Property

28 private List<NodeTransaction> transactions;

29

30 public Node(@JsonProperty("nodeId") final int nodeId, @JsonProperty("trustScore") final double

31 trustScore, @JsonProperty("healthStatus") final int healthStatus, @JsonProperty("clusterId")

32 final int clusterId, @JsonProperty("clusterHead") final int clusterHead,

33 @JsonProperty("transactions") final List<NodeTransaction> transactions) {

34 this.nodeId = nodeId;

35 this.healthStatus = healthStatus;

36 this.trustScore = trustScore;

37 this.clusterId = clusterId;

38 this.clusterHead = clusterHead;

39 this.transactions = transactions;

87

40 }

41

42 public int getClusterHead() {

43 return clusterHead;

44 }

45

46 public int getClusterId() {

47 return clusterId;

48 }

49

50 public int getNodeId() {

51 return nodeId;

52 }

53

54 public double getTrustScore() {

55 return trustScore;

56 }

57

58 public int getHealthStatus() {

59 return healthStatus;

60 }

61

62 public List<NodeTransaction> getTransactions() {

63 return transactions;

64 }

65

66 public void addTransaction(NodeTransaction tx){

67 this.transactions.add(tx);

68 }

69

70 @Override

71 public boolean equals(final Object obj) {

72 if (this == obj) {

73 return true;

74 }

75

76 if ((obj == null) (getClass() != obj.getClass())) {

77 return false;

78 }

79

80 Node other = (Node) obj;

81

82 return Objects.deepEquals(new String[] {String.valueOf(getNodeId()), String.valueOf(getTrustScore()),

83 String.valueOf(getHealthStatus()),String.valueOf(getClusterId()),

84 String.valueOf(getClusterHead())}, new String[] {String.valueOf(other.getNodeId()),

85 String.valueOf(other.getTrustScore()), String.valueOf(other.getHealthStatus()),

86 String.valueOf(other.getClusterId()), String.valueOf(other.getClusterHead())});

87 }

88

89 @Override

90 public int hashCode() {

91 return Objects.hash(getNodeId(), getTrustScore(), getHealthStatus(), getClusterId(), getClusterHead());

92 }

93

94 @Override

95 public String toString() {

96 return this.getClass().getSimpleName() + "@" + Integer.toHexString(hashCode()) + " [nodeId="

97 + nodeId + ", trustScore=" + trustScore + ", healthStatus=" + healthStatus + ", clusterId="

98 + clusterId + ", clusterHead=" + clusterHead + ", transactions = " + transactions + "]";

99 }

100 }

88

A.2 NodeTransaction
1 import com.owlike.genson.annotation.JsonProperty;

2 import org.hyperledger.fabric.contract.annotation.Property;

3

4 public class NodeTransaction {

5 @Property

6 private int clientId;

7 @Property

8 private int serverId;

9 @Property

10 private double evaluation;

11 @Property

12 private TransactionStatus status;

13

14 public NodeTransaction(@JsonProperty("clientId") final int clientId, @JsonProperty("serverId")

15 int serverId, @JsonProperty("evaluation") final double evaluation,

16 @JsonProperty("status") final TransactionStatus status) {

17 this.clientId = clientId;

18 this.serverId = serverId;

19 this.evaluation = evaluation;

20 this.status = status;

21 }

22

23 public int getClientId() {

24 return clientId;

25 }

26

27 public int getServerId() {

28 return serverId;

29 }

30

31 public double getEvaluation() {

32 return evaluation;

33 }

34

35 public TransactionStatus getStatus() {

36 return status;

37 }

38 }

A.3 TransactionStatus
1 public enum TransactionStatus {

2 SUCCESSFUL,

3 FAILED_ENERGY,

4 FAILED_RANGE,

5 ABORTED;

6 }

A.4 NodeQueryResult
1 import com.owlike.genson.annotation.JsonProperty;

2 import org.hyperledger.fabric.contract.annotation.Property;

3 import java.util.Objects;

4

89

5 public class NodeQueryResult {

6 @Property()

7 private final String key;

8

9 @Property()

10 private final Node record;

11

12 public NodeQueryResult(@JsonProperty("Key") final String key, @JsonProperty("Record")

13 final Node record) {

14 this.key = key;

15 this.record = record;

16 }

17

18 public String getKey() {

19 return key;

20 }

21

22 public Node getRecord() {

23 return record;

24 }

25

26 @Override

27 public boolean equals(final Object obj) {

28 if (this == obj) {

29 return true;

30 }

31

32 if ((obj == null) (getClass() != obj.getClass())) {

33 return false;

34 }

35

36 NodeQueryResult other = (NodeQueryResult) obj;

37

38 Boolean recordsAreEquals = this.getRecord().equals(other.getRecord());

39 Boolean keysAreEquals = this.getKey().equals(other.getKey());

40

41 return recordsAreEquals && keysAreEquals;

42 }

43

44 @Override

45 public int hashCode() {

46 return Objects.hash(this.getKey(), this.getRecord());

47 }

48

49 @Override

50 public String toString() {

51 return this.getClass().getSimpleName() + "@" + Integer.toHexString(hashCode()) +

52 " [key=" + key + ", record=" + record + "]";

53 }

54 }

A.5 Manet
1 import java.util.ArrayList;

2 import java.util.List;

3 import java.util.regex.Matcher;

4 import java.util.regex.Pattern;

5 import java.util.stream.Collectors;

6 import java.util.stream.Stream;

90

7 import org.hyperledger.fabric.contract.Context;

8 import org.hyperledger.fabric.contract.ContractInterface;

9 import org.hyperledger.fabric.contract.annotation.Contract;

10 import org.hyperledger.fabric.contract.annotation.Default;

11 import org.hyperledger.fabric.contract.annotation.Info;

12 import org.hyperledger.fabric.contract.annotation.Transaction;

13 import org.hyperledger.fabric.shim.ChaincodeException;

14 import org.hyperledger.fabric.shim.ChaincodeStub;

15 import org.hyperledger.fabric.shim.ledger.KeyValue;

16 import org.hyperledger.fabric.shim.ledger.QueryResultsIterator;

17 import com.owlike.genson.Genson;

18

19 /**

20 * Java implementation of the Manet Contract

21 */

22 @Contract(

23 name = "Manet",

24 info = @Info(

25 title = "Manet contract",

26 description = "The hyperlegendary node contract",

27 version = "0.0.1-SNAPSHOT"

28))

29

30 @Default

31 public final class Manet implements ContractInterface {

32

33 public static final int MAX_NODES = 100;

34 public static final double INIT_TRUST = 0.6;

35 private final Genson genson = new Genson();

36

37 private enum ManetErrors {

38 NODE_NOT_FOUND,

39 NODE_NOT_CH,

40 TRANSACTION_NOT_FOUND,

41 TRANSACTION_ALREADY_EXISTS,

42 INVALID_STATUS

43 }

44

45 /**

46 * Creates initial Nodes on the ledger.

47 *

48 * @param ctx the transaction context

49 */

50 @Transaction()

51 public void initLedger(final Context ctx) {

52 ChaincodeStub stub = ctx.getStub();

53

54 for (int i = 0; i < MAX_NODES; i++) {

55 String key = String.format("NODE%d", i);

56 Node node = new Node(i, INIT_TRUST,1, 0, 0, new ArrayList<NodeTransaction>());

57 String nodeState = genson.serialize(node);

58 stub.putStringState(key, nodeState);

59 }

60 }

61

62 /**

63 * Retrieves a node with the specified key from the ledger.

64 *

65 * @param ctx the transaction context

66 * @param key the key

67 * @return the Node found on the ledger if there was one

68 */

91

69 @Transaction()

70 public Node queryNode(final Context ctx, final String key) {

71 ChaincodeStub stub = ctx.getStub();

72 String nodeState = stub.getStringState(key);

73

74 if (nodeState.isEmpty()) {

75 String errorMessage = String.format("Node %s does not exist", key);

76 System.out.println(errorMessage);

77 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_FOUND.toString());

78 }

79

80 Node node = genson.deserialize(nodeState, Node.class);

81

82 return node;

83 }

84

85 /**

86 * Retrieves a node with the specified key from the ledger.

87 *

88 * @param ctx the transaction context

89 * @param key the key

90 * @param ch_key the key of the cluster head that makes the query

91 * @return the Node found on the ledger if there was one

92 */

93 @Transaction()

94 public Node queryNodeCH(final Context ctx, final String ch_key, final String key) {

95 if(!isCH(ctx, ch_key)) {

96 String errorMessage = String.format("Node %s is not clusterhead", ch_key);

97 System.out.println(errorMessage);

98 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_CH.toString());

99 }

100 Node node = queryNode(ctx, key);

101 return node;

102 }

103

104 /**

105 * Retrieves all nodes from the ledger.

106 *

107 * @param ctx the transaction context

108 * @return array of Nodes found on the ledger

109 */

110 @Transaction()

111 public String queryAllNodes(final Context ctx) {

112 ChaincodeStub stub = ctx.getStub();

113

114 final String startKey = "NODE0";

115 final String endKey = "NODE99";

116 List<NodeQueryResult> queryResults = new ArrayList<NodeQueryResult>();

117

118 QueryResultsIterator<KeyValue> results = stub.getStateByRange(startKey, endKey);

119

120 for (KeyValue result: results) {

121 Node node = genson.deserialize(result.getStringValue(), Node.class);

122 queryResults.add(new NodeQueryResult(result.getKey(), node));

123 }

124

125 final String response = genson.serialize(queryResults);

126

127 return response;

128 }

129

130 /**

92

131 * Sets a node's cluster on the ledger.

132 *

133 * @param ctx the transaction context

134 * @param key the key

135 * @param clusterId the id of the node's cluster

136 * @param clusterHead the id of the cluster's cluster head

137 * @return the updated Node

138 */

139 @Transaction()

140 public Node setCluster(final Context ctx, final String key, final String clusterId,

141 final String clusterHead) {

142 ChaincodeStub stub = ctx.getStub();

143

144 String nodeState = stub.getStringState(key);

145

146 if (nodeState.isEmpty()) {

147 String errorMessage = String.format("Node %s does not exist", key);

148 System.out.println(errorMessage);

149 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_FOUND.toString());

150 }

151

152 Node node = genson.deserialize(nodeState, Node.class);

153

154 Node newNode = new Node(node.getNodeId(), node.getTrustScore(), node.getHealthStatus(),

155 Integer.parseInt(clusterId), Integer.parseInt(clusterHead),

156 node.getTransactions());

157 String newNodeState = genson.serialize(newNode);

158 stub.putStringState(key, newNodeState);

159

160 return newNode;

161 }

162

163 /**

164 * Changes the trust score of a node on the ledger.

165 *

166 * @param ctx the transaction context

167 * @param key the key

168 * @param ch_key the key of the cluster head that makes the query

169 * @param newTS the new trust score

170 * @return the updated Node

171 */

172 @Transaction()

173 public Node changeNodeTrust(final Context ctx, final String ch_key, final String key,

174 final String newTS) {

175 ChaincodeStub stub = ctx.getStub();

176

177 if(!isCH(ctx, ch_key)) {

178 String errorMessage = String.format("Node %s is not clusterhead", ch_key);

179 System.out.println(errorMessage);

180 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_CH.toString());

181 }

182

183 Node node = queryNode(ctx, key);

184 Node newNode = new Node(node.getNodeId(), Double.parseDouble(newTS), node.getHealthStatus(),

185 node.getClusterId(), node.getClusterHead(), node.getTransactions());

186 String newNodeState = genson.serialize(newNode);

187 stub.putStringState(key, newNodeState);

188

189 return newNode;

190 }

191

192 /**

93

193 * Changes the health status of a node on the ledger.

194 *

195 * @param ctx the transaction context

196 * @param key the key

197 * @param newHS the new reputation

198 * @return the updated Node

199 */

200 @Transaction()

201 public Node changeNodeHS(final Context ctx, final String key, final String newHS) {

202 ChaincodeStub stub = ctx.getStub();

203

204 Node node = queryNode(ctx, key);

205 Node newNode = new Node(node.getNodeId(), node.getTrustScore(), Integer.parseInt(newHS),

206 node.getClusterId(), node.getClusterHead(), node.getTransactions());

207 String newNodeState = genson.serialize(newNode);

208 stub.putStringState(key, newNodeState);

209

210 return newNode;

211 }

212

213 /**

214 * Check CH status.

215 *

216 * @param ctx the transaction context

217 * @param key the key

218 * @return true if node is ClusterHead. else false

219 */

220 @Transaction()

221 public Boolean isCH(final Context ctx, final String key) {

222 Node node = queryNode(ctx, key);

223

224 if(node.getClusterHead() == node.getNodeId()){

225 return true;

226 }

227 return false;

228 }

229

230 /**

231 * Adds new transaction to the client node

232 *

233 * @param ctx the transaction context

234 * @param ch_key the key of the cluster head that makes the query

235 * @param client the clientId

236 * @param server the serverId

237 * @param evaluation the evaluation the client gave to the server

238 * @param status the transaction status

239 * @return the updated Node

240 */

241 @Transaction()

242 public Node addTransactionClient(final Context ctx, final String ch_key,

243 final String client, final String server,

244 final String evaluation, final String status) {

245 ChaincodeStub stub = ctx.getStub();

246

247 if(!isCH(ctx, ch_key)) {

248 String errorMessage = String.format("Node %s is not clusterhead", ch_key);

249 System.out.println(errorMessage);

250 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_CH.toString());

251 }

252

253 Pattern p = Pattern.compile("[a-z]+|\\d+");

254 Matcher m = p.matcher(client);

94

255 String clientId = "";

256 while (m.find()) {

257 clientId = m.group();

258 }

259

260 NodeTransaction transaction = new NodeTransaction(Integer.parseInt(clientId),

261 Integer.parseInt(server), Double.parseDouble(evaluation),

262 TransactionStatus.valueOf(status));

263

264 Node node = queryNode(ctx, client);

265 node.addTransaction(transaction);

266 Node newNode = new Node(node.getNodeId(), node.getTrustScore(), node.getHealthStatus(),

267 node.getClusterId(), node.getClusterHead(), node.getTransactions());

268 String newNodeState = genson.serialize(newNode);

269 stub.putStringState(client, newNodeState);

270

271 return newNode;

272 }

273

274 /**

275 * Adds new transaction to the server node

276 *

277 * @param ctx the transaction context

278 * @param ch_key the key of the cluster head that makes the query

279 * @param client the clientId

280 * @param server the serverId

281 * @param evaluation the evaluation the client gave to the server

282 * @param status the transaction status

283 * @return the updated Node

284 */

285 @Transaction()

286 public Node addTransactionServer(final Context ctx, final String ch_key,

287 final String client, final String server,

288 final String evaluation, final String status) {

289 ChaincodeStub stub = ctx.getStub();

290

291 if(!isCH(ctx, ch_key)) {

292 String errorMessage = String.format("Node %s is not clusterhead", ch_key);

293 System.out.println(errorMessage);

294 throw new ChaincodeException(errorMessage, ManetErrors.NODE_NOT_CH.toString());

295 }

296

297 Pattern p = Pattern.compile("[a-z]+|\\d+");

298 Matcher m = p.matcher(server);

299 String serverId = "";

300 while (m.find()) {

301 serverId = m.group();

302 }

303

304 NodeTransaction transaction = new NodeTransaction(Integer.parseInt(client),

305 Integer.parseInt(serverId), Double.parseDouble(evaluation),

306 TransactionStatus.valueOf(status));

307

308 Node node = queryNode(ctx, server);

309 node.addTransaction(transaction);

310 Node newNode = new Node(node.getNodeId(), node.getTrustScore(), node.getHealthStatus(),

311 node.getClusterId(), node.getClusterHead(), node.getTransactions());

312 String newNodeState = genson.serialize(newNode);

313 stub.putStringState(server, newNodeState);

314

315 return newNode;

316 }

95

317

318 /**

319 * Query a transaction

320 *

321 * @param ctx the transaction context

322 * @param key the key of the node

323 * @return the updated Node

324 */

325 @Transaction()

326 public List<NodeTransaction> queryNodeTransactions(final Context ctx, final String key) {

327 ChaincodeStub stub = ctx.getStub();

328 Node node = queryNode(ctx, key);

329 return node.getTransactions();

330 }

331 }

96

Appendix B

Client Application

B.1 Node
1 import java.util.Random;

2

3 public class Node {

4

5 //----------------general node parameters----------------------

6 Random rnd = new Random();

7 int x = -1;

8 int xPrev = -1;

9 int y = -1;

10 int yPrev = -1;

11 int k = 0;

12 int i = 0;

13 int nodeNo = 100;

14 int nodeId = 0;

15 float cohesion = 0;

16 float initialTrust = 0.6f;

17 int healthStatus = 1; //1=healthy, 0=malicious

18 float probMal = 0.01f; //probability to become malicious

19 float probHealth = 0.03f; //probability to become healthy

20 float aLPF = 0.4f;

21 //for the markovian

22 float[][] healthProbArr = {{probHealth, (1 - probHealth)},

23 {probMal, (1 - probMal)}};

24 int malTimeStamp = 0; //last timestamp that the node was malicious

25 int nIndex = 0;

26 int wTime = 0; //mean time between transactions

27 float lamda = 0.1f;

28 public float nodeRep = 0.5f;

29 //random or else for t=1 there is a problem

30 int nodeEnergy = rnd.nextInt(1000) + 3000;

31 int nodeEnergyThreshold = 10;

32 public double costOfAnalysis;

33 public int clusterId = 0;

34 public int clusterHeadId = 0;

35 public boolean isClHead = true;

36 // new/old neighbour arrays and temp for sorting

37 //if there is a change, calls for election

38 int[] electors = new int[nodeNo];

39 double[][] neighbours = new double[nodeNo][5];

97

40 //neighbourhood array

41 //for every neighbour: id and cost of analysis

42 //for Cluster Head election

43 double[][] oldNeighbours = new double[nodeNo][4];

44 //array with neighbours' ids for the previous timestamp

45 //if previous neighbours are different from current, calls for election

46 int[] clusterNeighbours = new int[nodeNo];

47 double[][] temp = new double[1][5];

48 //array for trust vector sorting

49 float[][] trustVector = new float[nodeNo][2];

50

51 //----------------client node parameters--------------

52 float eLTV = 0.8f;

53 boolean avClient = true; //if available for client

54 int transStart = 0; //timestamp when the transaction starts

55 //duration of server being malicious

56 int malTimeCounter = 0;

57 //timestamp when the server became malicious

58 int serverMalTS = -1;

59 int serverId = -1; //if there is a server

60 int dur = 0;

61 int durLeft = -1;

62 //----------------server node parameters--------------

63 boolean avServer = true; //if available for server

64 //==

65

66 void setTransStart(int time) {

67 this.transStart = time;

68 }

69

70 void node(int nodId, int x, int y) {

71 this.nodeId = nodId;

72 this.x = x;

73 this.y = y;

74 }

75

76 void initNeighbourArray() {

77 for (k = 0; k < nodeNo; k++) {

78 for (i = 0; i < 5; i++) {

79 neighbours[k][i] = -1;

80 }

81 //resets the pointer to the beginning so that the next time

82 //the addneighbour is executed will rewrite from the beginning

83 this.nIndex = 0;

84 }

85 }

86

87 void clearClNeighbours() {

88 for (i = 0; i < nodeNo; i++) {

89 clusterNeighbours[i] = -1;

90 }

91 }

92

93 void transferNeighbours() {

94 for (i = 0; i < nodeNo; i++) {

95 System.arraycopy(neighbours[i], 0, oldNeighbours[i], 0, 4);

96 }

97 }

98

99 void addNeighbour(int neighbourId, double costOfAnalysis, float dist, float distPrev) {

100 this.neighbours[nIndex][0] = neighbourId;

101 this.neighbours[nIndex][1] = costOfAnalysis;

98

102 this.neighbours[nIndex][2] = dist;

103 this.neighbours[nIndex][3] = distPrev;

104 if (this.neighbours[nIndex][2] < this.neighbours[nIndex][3]) {

105 this.neighbours[nIndex][4] = 1;

106 } else {

107 neighbours[nIndex][4] = 0;

108 }

109 nIndex++;

110 }

111

112 void sortNeighbours() { //sort by cost of analysis

113 for (k = 1; k < (nodeNo - 1); k++) {

114 for (i = 0; i < (nodeNo - k); i++) {

115 if (neighbours[i + 1][0] == -1) {

116 break;

117 }

118 if (neighbours[i + 1][1] < neighbours[i][1]) {

119 temp[0][0] = neighbours[i][0];

120 temp[0][1] = neighbours[i][1];

121 temp[0][2] = neighbours[i][2];

122 temp[0][3] = neighbours[i][3];

123 temp[0][4] = neighbours[i][4];

124 neighbours[i][0] = neighbours[i + 1][0];

125 neighbours[i][1] = neighbours[i + 1][1];

126 neighbours[i][2] = neighbours[i + 1][2];

127 neighbours[i][3] = neighbours[i + 1][3];

128 neighbours[i][4] = neighbours[i + 1][4];

129 neighbours[i + 1][0] = temp[0][0];

130 neighbours[i + 1][1] = temp[0][1];

131 neighbours[i + 1][2] = temp[0][2];

132 neighbours[i + 1][3] = temp[0][3];

133 neighbours[i + 1][4] = temp[0][4];

134 }

135 }

136 }

137 }

138

139 void initElectCopy() {

140 for (i = 0; i < nodeNo; i++) {

141 electors[i] = -1;

142 }

143 }

144

145 int countNeighbours() {

146 i = 0;

147 while (this.neighbours[i][0] != -1) {

148 i++;

149 }

150 return i;

151 }

152

153 int countClNeighbours() {

154 i = 0;

155 while (this.clusterNeighbours[i] != -1) {

156 i++;

157 }

158 return i;

159 }

160

161 boolean isClNeighbour(int serverNode) {

162 for (k = 0; k < nodeNo; k++) {

163 if (this.clusterNeighbours[k] == serverNode) {

99

164 return true;

165 }

166 }

167 return false;

168 }

169

170 void setWTime() { //sets an exponential waiting time

171 this.wTime = (int) ((Math.log(1 - rnd.nextFloat()))

172 / ((-1) * lamda)) + 1;

173 }

174

175 void decrDelay() {

176 this.wTime = this.wTime - 1;

177 }

178

179 void costCalc(float totRep) {

180 this.costOfAnalysis = (this.nodeRep / totRep) / this.nodeEnergy;

181 }

182

183 void setClusterId(int id) {

184 this.clusterId = id;

185 }

186

187 void setHead() {

188 this.isClHead = true;

189 }

190

191 void setClusterHeadId(int id) {

192 this.clusterHeadId = id;

193 }

194

195 void electionReset() {

196 this.clusterId = 0;

197 this.clusterHeadId = -1;

198 this.isClHead = false;

199 }

200

201 void initTrustVector() { //initialise the trust vector

202 for (i = 0; i < nodeNo; i++) {

203 trustVector[i][0] = initialTrust;

204 trustVector[i][1] = 1;

205 }

206 }

207

208 void setDur() {

209 //keep the duration to be used in trust

210 this.dur = this.durLeft;

211 }

212

213 //changes or keeps the same health status

214 void healthProbe(int time) {

215 if (rnd.nextDouble() < this.healthProbArr[healthStatus][0]) {

216 this.healthStatus = (this.healthStatus + 1) % 2;

217 //when it becomes malicious, store the timestamp

218 if (this.healthStatus == 0) {

219 this.malTimeStamp = time;

220 }

221 }

222 }

223

224 int getMalTimeStamp() {

225 return this.malTimeStamp;

100

226 }

227

228 void malCounterReset() {

229 this.malTimeCounter = 0;

230 }

231

232 float CH_Report(int node) {

233 if (this.trustVector[node][0] < 0.5) {

234 //2nd chance

235 return this.trustVector[node][0] + rnd.nextFloat() / 4f;

236 }

237 return this.trustVector[node][0];

238 }

239

240 float CH_Timestamp(int node) {

241 return this.trustVector[node][1];

242 }

243

244 void report(int server, float trust, int time) {

245 this.trustVector[server][0] = aLPF * trust + (1 - aLPF)

246 * this.trustVector[server][0];

247 this.trustVector[server][1] = time;

248 }

249

250 void LTVupdate(int node, float trust, int time, float timestamp) {

251 this.trustVector[node][0] = eLTV * trust + (1 - eLTV)

252 * this.trustVector[node][0];

253 this.trustVector[node][1] = time;

254 }

255

256 void eLTV_restore() {

257 this.eLTV = 1f;

258 }

259

260 void resetClient() {

261 this.avClient = true;

262 this.transStart = 0;

263 this.malTimeCounter = 0;

264 this.serverMalTS = -1;

265 this.serverId = -1;

266 this.dur = 0;

267 this.durLeft = -1;

268 }

269

270 void resetServer() {

271 this.avServer = true;

272 }

273

274 void decEnergy() {

275 this.nodeEnergy--;

276 }

277 }

B.2 ClHeadElection
1 public class ClHeadElection {

2

3 int nodeNo = 100;

4 int i = 0, k = 0, l = 0;

101

5 int elecNo = 0;

6 int[][] elecTable = new int[nodeNo][2];

7 int[] elecTableSorted = new int[nodeNo];

8 int[][] temp = new int[1][2];

9

10 void initElect() {

11 for (i = 0; i < nodeNo; i++) {

12 elecTable[i][0] = i;

13 elecTable[i][1] = 0;

14 }

15 }

16

17 void sortElecTable() {

18 for (k = 0; k < nodeNo; k++) {

19 elecTableSorted[k] = elecTable[0][0];

20 for (l = 0; l < nodeNo; l++) {

21 if (elecTable[l][1] > elecTable[elecTableSorted[k]][1]) {

22 elecTableSorted[k] = elecTable[l][0];

23 }

24 }

25 elecTable[elecTableSorted[k]][1] = -1;

26 }

27 }

28

29 void delSRow(int cl) {

30 for (i = 0; i < nodeNo; i++) {

31 if (this.elecTableSorted[i] == cl) {

32 this.elecTableSorted[i] = -1;

33 }

34 }

35 }

36

37 void printElecTable() {

38 for (i = 0; i < nodeNo; i++) {

39 System.out.println(this.elecTable[i][0] + " "

40 + this.elecTable[i][1]);

41 }

42 }

B.3 RegisterUser
1 import java.nio.file.Paths;

2 import java.security.PrivateKey;

3 import java.util.Properties;

4 import java.util.Set;

5

6 import org.hyperledger.fabric.gateway.Wallet;

7 import org.hyperledger.fabric.gateway.Wallets;

8 import org.hyperledger.fabric.gateway.Identities;

9 import org.hyperledger.fabric.gateway.Identity;

10 import org.hyperledger.fabric.gateway.X509Identity;

11 import org.hyperledger.fabric.sdk.Enrollment;

12 import org.hyperledger.fabric.sdk.User;

13 import org.hyperledger.fabric.sdk.security.CryptoSuite;

14 import org.hyperledger.fabric.sdk.security.CryptoSuiteFactory;

15 import org.hyperledger.fabric_ca.sdk.HFCAClient;

16 import org.hyperledger.fabric_ca.sdk.RegistrationRequest;

17

18 public class RegisterUser {

102

19

20 static {

21 System.setProperty("org.hyperledger.fabric.sdk.service_discovery.as_localhost", "true");

22 }

23

24 public static void main(String[] args) throws Exception {

25

26 // Create a CA client for interacting with the CA.

27 Properties props = new Properties();

28 props.put("pemFile",

29 "../../test-network/organizations/peerOrganizations/org1.example.com/

30 ca/ca.org1.example.com-cert.pem");

31 props.put("allowAllHostNames", "true");

32 HFCAClient caClient = HFCAClient.createNewInstance("https://localhost:7054", props);

33 CryptoSuite cryptoSuite = CryptoSuiteFactory.getDefault().getCryptoSuite();

34 caClient.setCryptoSuite(cryptoSuite);

35

36 // Create a wallet for managing identities

37 Wallet wallet = Wallets.newFileSystemWallet(Paths.get("wallet"));

38

39 // Check to see if we've already enrolled the user.

40 if (wallet.get("appUser") != null) {

41 System.out.println("An identity for the user \"appUser\" already exists in

42 the wallet");

43 return;

44 }

45

46 X509Identity adminIdentity = (X509Identity)wallet.get("admin");

47 if (adminIdentity == null) {

48 System.out.println("\"admin\" needs to be enrolled and added to the wallet first");

49 return;

50 }

51 User admin = new User() {

52

53 @Override

54 public String getName() {

55 return "admin";

56 }

57

58 @Override

59 public Set<String> getRoles() {

60 return null;

61 }

62

63 @Override

64 public String getAccount() {

65 return null;

66 }

67

68 @Override

69 public String getAffiliation() {

70 return "org1.department1";

71 }

72

73 @Override

74 public Enrollment getEnrollment() {

75 return new Enrollment() {

76

77 @Override

78 public PrivateKey getKey() {

79 return adminIdentity.getPrivateKey();

80 }

103

81

82 @Override

83 public String getCert() {

84 return Identities.toPemString(adminIdentity.getCertificate());

85 }

86 };

87 }

88

89 @Override

90 public String getMspId() {

91 return "Org1MSP";

92 }

93

94 };

95

96 // Register the user, enroll the user, and import the new identity into the wallet.

97 RegistrationRequest registrationRequest = new RegistrationRequest("appUser");

98 registrationRequest.setAffiliation("org1.department1");

99 registrationRequest.setEnrollmentID("appUser");

100 String enrollmentSecret = caClient.register(registrationRequest, admin);

101 Enrollment enrollment = caClient.enroll("appUser", enrollmentSecret);

102 Identity user = Identities.newX509Identity("Org1MSP", enrollment);

103 wallet.put("appUser", user);

104 System.out.println("Successfully enrolled user \"appUser\" and imported it

105 into the wallet");

106 }

107 }

B.4 EnrollAdmin
1 import java.nio.file.Paths;

2 import java.util.Properties;

3

4 import org.hyperledger.fabric.gateway.Wallet;

5 import org.hyperledger.fabric.gateway.Wallets;

6 import org.hyperledger.fabric.gateway.Identities;

7 import org.hyperledger.fabric.gateway.Identity;

8 import org.hyperledger.fabric.sdk.Enrollment;

9 import org.hyperledger.fabric.sdk.security.CryptoSuite;

10 import org.hyperledger.fabric.sdk.security.CryptoSuiteFactory;

11 import org.hyperledger.fabric_ca.sdk.EnrollmentRequest;

12 import org.hyperledger.fabric_ca.sdk.HFCAClient;

13

14 public class EnrollAdmin {

15

16 static {

17 System.setProperty("org.hyperledger.fabric.sdk.service_discovery.as_localhost", "true");

18 }

19

20 public static void main(String[] args) throws Exception {

21

22 // Create a CA client for interacting with the CA.

23 Properties props = new Properties();

24 props.put("pemFile",

25 "../../test-network/organizations/peerOrganizations/org1.example.com/

26 ca/ca.org1.example.com-cert.pem");

27 props.put("allowAllHostNames", "true");

28 HFCAClient caClient = HFCAClient.createNewInstance("https://localhost:7054", props);

29 CryptoSuite cryptoSuite = CryptoSuiteFactory.getDefault().getCryptoSuite();

104

30 caClient.setCryptoSuite(cryptoSuite);

31

32 // Create a wallet for managing identities

33 Wallet wallet = Wallets.newFileSystemWallet(Paths.get("wallet"));

34

35 // Check to see if we've already enrolled the admin user.

36 if (wallet.get("admin") != null) {

37 System.out.println("An identity for the admin user \"admin\" already exists

38 in the wallet");

39 return;

40 }

41

42 // Enroll the admin user, and import the new identity into the wallet.

43 final EnrollmentRequest enrollmentRequestTLS = new EnrollmentRequest();

44 enrollmentRequestTLS.addHost("localhost");

45 enrollmentRequestTLS.setProfile("tls");

46 Enrollment enrollment = caClient.enroll("admin", "adminpw", enrollmentRequestTLS);

47 Identity user = Identities.newX509Identity("Org1MSP", enrollment);

48 wallet.put("admin", user);

49 System.out.println("Successfully enrolled user \"admin\" and imported it into the wallet");

50 }

51 }

B.5 ClientApp
1 import java.io.BufferedWriter;

2 import java.io.File;

3 import java.io.FileWriter;

4 import java.math.BigDecimal;

5 import java.nio.file.Path;

6 import java.nio.file.Paths;

7 import java.util.Random;

8 import java.util.Scanner;

9 import org.hyperledger.fabric.gateway.*;

10 import org.json.simple.JSONObject;

11 import org.json.simple.parser.JSONParser;

12

13 public class ClientApp {

14

15 static {

16 System.setProperty("org.hyperledger.fabric.sdk.service_discovery.as_localhost",

17 "true");

18 }

19

20 public static void main(String[] args) throws Exception {

21 // Load a file system based wallet for managing identities.

22 Path walletPath = Paths.get("wallet");

23 Wallet wallet = Wallets.newFileSystemWallet(walletPath);

24 // load a CCP

25 Path networkConfigPath = Paths.get("..", "..", "test-network",

26 "organizations", "peerOrganizations",

27 "org1.example.com", "connection-org1.yaml");

28

29 Gateway.Builder builder = Gateway.createBuilder();

30 builder.identity(wallet, "appUser").networkConfig(networkConfigPath).discovery(true);

31 //Do not wait for any commit events to be received from peers

32 //after submitting a transaction since we use only one client

33 builder.commitHandler(DefaultCommitHandlers.valueOf("NONE"));

34

105

35 int i, j, k, l; //counters

36 boolean electionFlag = true;

37 int time; //the number of time snapshots

38 int nodeNo = 100;

39 int maxTime = 5000;

40 float dist; // node euclidean distance

41 float distPrev; //previous distance

42 int range = 100; //distance of interest

43 int boxr; //box range

44 int candServer; //variable for canditare server

45 float lamda = 0.1f;

46 float totRep = 0; //total reputation

47 int clusterId;

48 int clusterNodeNo = 0; //number of cluster members (without CH)

49 float aLPF = 0.4f; //low pass filter parameter

50 float trustThreshold = 0.4f; //node trust threshold

51 int cH;

52 int tStarted = 0; //initiated transactions

53 int sTrans = 0; //successful transactions

54 int fTrans = 0; //failed transactions

55 int mTrans = 0; //transactions with malicious server

56 int falseMal = 0;

57 int trustFailed = 0; //failed due to trust

58 int clusterCount;

59 float minTrust = 0;

60 float maxTrust = 1;

61 float evaluation;

62 float[] tempTrustVector = new float[nodeNo];

63 int[] blackList = new int[nodeNo];

64 byte[] result;

65 JSONParser parser = new JSONParser();

66 int lastHS ;

67

68 //files for metrics

69 FileWriter fstreamA1 = new FileWriter("A1_metrics.txt");

70 FileWriter fstreamA2 = new FileWriter("A2_metrics.txt");

71 FileWriter fstreamA3 = new FileWriter("A3_metrics.txt");

72 //FileWriter fstreamNodes = new FileWriter("allNodes.txt");

73 FileWriter fstreamWt = new FileWriter("wtime.txt");

74 FileWriter fstreamDur = new FileWriter("Dur.txt");

75 FileWriter fstream = new FileWriter("sig.txt");

76 FileWriter fstreamGen = new FileWriter("gen.txt");

77

78 BufferedWriter outA1 = new BufferedWriter(fstreamA1);

79 BufferedWriter outA2 = new BufferedWriter(fstreamA2);

80 BufferedWriter outA3 = new BufferedWriter(fstreamA3);

81 //BufferedWriter outNodes = new BufferedWriter(fstreamNodes);

82 BufferedWriter outSig = new BufferedWriter(fstream);

83 BufferedWriter outGen = new BufferedWriter(fstreamGen);

84 BufferedWriter outWt = new BufferedWriter(fstreamWt);

85 BufferedWriter outDur = new BufferedWriter(fstreamDur);

86

87 ClHeadElection elect = new ClHeadElection(); //for CH election

88

89 Random rnd = new Random();

90

91 Scanner s = new Scanner(new File("100.txt"));

92 Scanner sPrev = new Scanner(new File("100.txt"));

93

94 Node[] nodeArr = new Node[nodeNo]; //creation of nodes

95 for (i = 0; i < nodeNo; i++) {

96 nodeArr[i] = new Node();

106

97 //initialisation of node's trust vector

98 nodeArr[i].initTrustVector();

99 //so that everyone does not start transactions in t=1

100 nodeArr[i].setWTime();

101 outWt.write("\n" + String.valueOf(nodeArr[i].wTime));

102 }

103

104 for (i = 0; i < nodeNo; i++) {

105 blackList[i] = -1;

106 }

107 // create a gateway connection

108 try (Gateway gateway = builder.connect()) {

109

110 // get the network and contract

111 Network network = gateway.getNetwork("mychannel");

112 Contract contract = network.getContract("manet");

113 // network.getChannel().registerBlockListener(blockEvent -> {

114 // System.out.println("Block submitted");

115 // });

116

117 for (time = 1; time <= maxTime; time++) {

118 //filling Node with id, x, kai y (x,y change)

119 for (i = 0; i < nodeNo; i++) {

120 s.nextInt();

121 nodeArr[i].nodeId = s.nextInt();

122 nodeArr[i].x = s.nextInt();

123 nodeArr[i].y = s.nextInt();

124 //skips unnecessary mobisim data

125 s.nextInt();

126 s.nextInt();

127 }

128 //filling node with previous data. May not be used in the new version

129 //version where election occurs based on cohesion

130 for (i = 0; i < nodeNo; i++) {

131 if (time == 1) {

132 nodeArr[i].xPrev = nodeArr[i].x;

133 nodeArr[i].yPrev = nodeArr[i].y;

134 continue;

135 }

136 sPrev.nextInt();

137 sPrev.nextInt();

138 nodeArr[i].xPrev = sPrev.nextInt();

139 nodeArr[i].yPrev = sPrev.nextInt();

140 //skips unnecessary mobisim data

141 sPrev.nextInt();

142 sPrev.nextInt();

143 }

144 //health status. With some probability it changes in some nodes

145 for (i = 0; i < nodeNo; i++) {

146 lastHS = nodeArr[i].healthStatus;

147 nodeArr[i].healthProbe(time);

148 if(!(lastHS == nodeArr[i].healthStatus)) {

149 contract.submitTransaction("changeNodeHS",

150 "NODE" + nodeArr[i].nodeId, String.valueOf(nodeArr[i].healthStatus));

151 }

152 }

153 //calculate the cost of analysis of every node

154 for (i = 0; i < nodeNo; i++) {

155 if(time>1)

156 nodeArr[i].nodeRep =

157 nodeArr[nodeArr[i].clusterHeadId].trustVector[nodeArr[i].nodeId][0];

158 totRep += nodeArr[nodeArr[i].clusterHeadId].trustVector[i][0];

107

159 }

160 //the analysis cost is calculated by each node

161 //separately because private information is required.

162 //cost of analysis is not private

163 for (i = 0; i < nodeNo; i++) {

164 nodeArr[i].costCalc(totRep);

165 }

166

167 System.out.println("\n[Time: " + time + "]");

168 //print node energy deactivation: 50% faster!

169 // for (i = 0; i < nodeNo; i++) {

170 // System.out.println(nodeArr[i].nodeId

171 // + " (" + nodeArr[i].nodeEnergy + ") ");

172 // }

173

174 //It transports the old neighbors to the old neighbor array

175 //so that they can be compared with the new neighbors in case of changes

176 for (i = 0; i < nodeNo; i++) {

177 nodeArr[i].transferNeighbours();

178 nodeArr[i].initNeighbourArray();

179 }

180

181 //search for nodes that are within given range

182 boxr = range; //it doesn't make sense for them to be different

183 for (i = 0; i < nodeNo; i++) { //i is the current node

184 for (j = 0; j < nodeNo; j++) { //is the neighbor under consideration

185 if (i == j) { //so that they are not looking for themselves

186 continue;

187 }

188

189 //compute dist only if node is in box

190 if (Math.abs(nodeArr[i].x - nodeArr[j].x) < boxr

191 && Math.abs(nodeArr[i].y) - nodeArr[j].y < boxr) {

192

193 dist = (float) Math.sqrt(Math.pow((nodeArr[i].x

194 - nodeArr[j].x), 2)

195 + Math.pow((nodeArr[i].y

196 - nodeArr[j].y), 2));

197

198 distPrev = (float) Math.sqrt(Math.pow((nodeArr[i].xPrev

199 - nodeArr[j].xPrev), 2)

200 + Math.pow((nodeArr[i].yPrev

201 - nodeArr[j].yPrev), 2));

202

203 //adds j node to i node's neighbor list

204 if (dist <= range) {

205 nodeArr[i].addNeighbour(nodeArr[j].nodeId,

206 nodeArr[j].costOfAnalysis,

207 dist, distPrev);

208 }

209 }//end of boxr

210 }//telos j

211 }//telos i

212 if (time == 1) {

213 continue;

214 }

215 //so far each node has been informed about its own position

216 //and their neigbour array for available neighbours

217 for (i = 0; i < nodeNo; i++) {

218 nodeArr[i].sortNeighbours();

219 }

220 //so far the neighbor tables are sorted by the cost of analysis

108

221 //if there is an exit of any node that initially had a positive contribution

222 //in the cohesion an election begins

223 outerloop:

224 for (i = 0; i < nodeNo; i++) {

225 if (time == 2) {

226 System.out.println("\nInitial CH election");

227 break;

228 }

229 //then each CH checks if any of the electors (those who initially

230 //contributed positively to the cohesion of the cluster), gets out of CH's range

231 //if it comes out, a new election round begins

232 if (nodeArr[i].isClHead == true) {

233 j = 0;

234 while ((int) nodeArr[i].electors[j] != -1) {

235 if ((float) Math.sqrt(Math.pow((nodeArr[i].x

236 - nodeArr[nodeArr[i].electors[j]].x), 2)

237 + Math.pow((nodeArr[i].y - nodeArr[nodeArr[i].electors[j]].y), 2))

238 < ((float) range)) {

239 j++;

240 continue;

241 }

242 electionFlag = true;

243 System.out.println("\nNode " + nodeArr[i].nodeId

244 + " calls for elections");

245 break outerloop;

246 }

247 }

248 }

249 //=============================== election =========================//

250 //flag = true when neighbours change

251 if (electionFlag == true) {

252 //resets in order to not continue from the previous value

253 clusterId = 1;

254 elect.initElect(); //initialise election table

255 //initialize nodes in case of any old values

256 for (i = 0; i < nodeNo; i++) {

257 nodeArr[i].electionReset();

258 }

259

260 for (i = 0; i < nodeNo; i++) {

261 //if it has no neighbors it votes for itself

262 if (nodeArr[i].countNeighbours() == 0) {

263 elect.elecTable[nodeArr[i].nodeId][1]++;

264 continue;

265 }

266 //if the cost of the previous neighbor(sorted)

267 //is less than its own

268 //it votes for the neighbor, otherwise it votes for itself

269 if (nodeArr[(int) nodeArr[i].neighbours[0][0]].costOfAnalysis

270 < nodeArr[i].costOfAnalysis) {

271 elect.elecTable[(int) nodeArr[i].neighbours[0][0]][1]++;

272 } else {

273 elect.elecTable[nodeArr[i].nodeId][1]++;

274 }

275 }

276

277 elect.sortElecTable(); //sort election table

278

279 //cluster creation: all nodes that have as first neighbor

280 //the first node of the elekTable means that they voted

281 //for him therefore they will get the same cluster id

282 //with the first node as the clusterhead

109

283 for (k = 0; k < nodeNo; k++) {

284 //in combination with delRow

285 if (elect.elecTableSorted[k] == -1) {

286 //ignored as they already belong in a cluster

287 continue;

288 }

289 cH = elect.elecTableSorted[k]; //CH election

290 nodeArr[cH].setClusterHeadId(cH); //defining itself

291 nodeArr[cH].setHead(); //sethead = true

292 //defining CH's clusterid

293 nodeArr[cH].setClusterId(clusterId);

294

295 //whoever has as first neighbour the CH

296 //becomes a member of the cluster

297 for (i = 0; i < nodeNo; i++) {

298 if ((int) nodeArr[i].neighbours[0][0] == cH

299 && nodeArr[i].isClHead == false) {

300 nodeArr[i].setClusterId(clusterId);

301 nodeArr[i].setClusterHeadId(cH);

302 }

303 }

304

305 for (i = 0; i < nodeNo; i++) {

306 if (nodeArr[i].clusterId == clusterId) {

307 for (j = 0; j < nodeNo; j++) {

308 if (nodeArr[j].clusterId == clusterId

309 && nodeArr[j].isClHead == true) {

310 //set cluster in the BC

311 contract.submitTransaction("setCluster",

312 "NODE"+nodeArr[j].nodeId, String.valueOf(clusterId),

313 String.valueOf(nodeArr[j].nodeId));

314 break;

315 }

316 }

317 for (i = 0; i < nodeNo; i++) {

318 if (nodeArr[i].clusterId == clusterId

319 && nodeArr[i].isClHead == false) {

320 //set cluster in the BC

321 contract.submitTransaction("setCluster",

322 "NODE" + nodeArr[i].nodeId, String.valueOf(clusterId),

323 String.valueOf(nodeArr[i].clusterHeadId));

324 }

325 }

326 }

327 } //end of defining clusters

328

329 // ------------------------Print cluster------------------------

330 // for (i = 0; i < nodeNo; i++) { //ektiposi clusterhead

331 // if (nodeArr[i].clusterId == clusterId) {

332 // System.out.println("\nCluster Id: " + clusterId);

333 // for (j = 0; j < nodeNo; j++) {

334 // if (nodeArr[j].clusterId == clusterId

335 // && nodeArr[j].isClHead == true) {

336 // System.out.println("Clusterhead Id: "

337 // + nodeArr[j].nodeId);

338 // break;

339 // }

340 // }

341 // //print cluster members

342 // System.out.print("Cluster member Ids: ");

343 // for (i = 0; i < nodeNo; i++) {

344 // if (nodeArr[i].clusterId == clusterId

110

345 // && nodeArr[i].isClHead == false) {

346 // System.out.print(nodeArr[i].nodeId + " ");

347 // }

348 // }

349 // System.out.print("\n");

350 // }

351 // }

352

353 //delete the election table of the specific nodes of the cluster

354 //in order to be ready for the next election

355 for (i = 0; i < nodeNo; i++) {

356 if (nodeArr[i].clusterId == clusterId) {

357 elect.delSRow(nodeArr[i].nodeId);

358 }

359 }

360 clusterId++;

361 }

362

363 //update cluster neighbour array for each node

364 //1-hop neighbours

365 //delete previous cluster neighbours

366 for (i = 0; i < nodeNo; i++) {

367 nodeArr[i].clearClNeighbours();

368 }

369 //update the array with the new cluster neighbours

370 //i index for the node to update

371 for (i = 0; i < nodeNo; i++) {

372 j = 0; //j index for the cluster neighbour array

373 //k index for the neighbour under consideration

374 for (k = 0; k < nodeNo; k++) {

375 if (nodeArr[i].neighbours[k][0] == -1) {

376 break;

377 }

378 if (nodeArr[(int) nodeArr[i].neighbours[k][0]].clusterId

379 == nodeArr[i].clusterId) {

380 nodeArr[i].clusterNeighbours[j]

381 = (int) nodeArr[i].neighbours[k][0];

382 j++;

383 }

384 }

385 }

386

387 //end of cluster array update

388 //elect.printElecTable();

389 elect.elecNo++; //to check how many elections occur

390 electionFlag = false;

391

392 //from here on out update the trust array

393 //==

394 clusterCount = 0;

395 //how many clusters

396 for (i = 0; i < nodeNo; i++) {

397 if (nodeArr[i].isClHead) {

398 //to ensure that the updated CH are in a block

399 //failsafe for the queries

400 while (!"true".equals(new String(contract.evaluateTransaction("isCH",

401 "NODE" + nodeArr[i].nodeId)))) {

402 contract.submitTransaction("setCluster", "NODE" + nodeArr[i].nodeId,

403 String.valueOf(nodeArr[i].clusterId),

404 String.valueOf(nodeArr[i].nodeId));

405 }

406 clusterCount++;

111

407 }

408 }

409

410 for (i = 1; i <= clusterCount; i++) { //for every cluster i

411 //tempTrustVector = 0

412 for (l = 0; l < nodeNo; l++) {

413 tempTrustVector[l] = 0;

414 }

415 //counts nodes (minus CH) for the current i cluster

416 for (l = 0; l < nodeNo; l++) {

417 if (nodeArr[l].clusterId == i && nodeArr[l].isClHead == true) {

418 //CH's cl neighbours

419 clusterNodeNo = nodeArr[l].countClNeighbours();

420 break;

421 }

422 }

423 //if CH has no neighbours, its LTV remnains the same

424 if (clusterNodeNo != 0) {

425 //examines node k if it belongs in i cluster

426 for (k = 0; k < nodeNo; k++) {

427 if (nodeArr[k].clusterId == i && nodeArr[k].isClHead == false) {

428 //LTV components to tempTrustVector

429 for (l = 0; l < nodeNo; l++) {

430 tempTrustVector[l] += nodeArr[k].trustVector[l][0];

431 } //end of transfer of k node's trust

432 } //end of loop if it is cl member but no CH

433 } //end of loop for all cluster members

434 //tempTrustVector to CH LTV

435 for (k = 0; k < nodeNo; k++) {

436 if (nodeArr[k].clusterId == i && nodeArr[k].isClHead == true) {

437 for (l = 0; l < nodeNo; l++) {

438 nodeArr[k].trustVector[l][0]

439 = (1.0f - aLPF) * nodeArr[k].trustVector[l][0]

440 + (aLPF * (tempTrustVector[l]

441 / clusterNodeNo));

442 //no more than maxtrust

443 if (nodeArr[k].trustVector[l][0] > maxTrust) {

444 nodeArr[k].trustVector[l][0] = maxTrust;

445 }

446 //no less than mintrust

447 if (nodeArr[k].trustVector[l][0] < minTrust) {

448 nodeArr[k].trustVector[l][0] = minTrust;

449 }

450 nodeArr[k].trustVector[l][1] = time; //timestamp

451 }

452 //initiates tempTrustVector

453 for (l = 0; l < nodeNo; l++) {

454 tempTrustVector[l] = 0;

455 }

456

457 for(int n : nodeArr[k].clusterNeighbours){

458 if(n == -1)

459 break;

460 //equivalent of GTV

461 contract.submitTransaction("changeNodeTrust",

462 "NODE"+nodeArr[k].nodeId, "NODE"+nodeArr[n].nodeId,

463 String.valueOf(nodeArr[k].trustVector[n][0]));

464 }

465 }

466 }

467 }

468 }//end of loop for all clusters

112

469 for (i = 0; i < nodeNo; i++) {

470 if (nodeArr[i].isClHead == true) {

471 nodeArr[i].initElectCopy();

472 int elec = 0;

473 k = 0;

474 while (nodeArr[i].neighbours[k][0] != -1) {

475 if (nodeArr[i].clusterId ==

476 nodeArr[(int) nodeArr[i].neighbours[k][0]].clusterId

477 && nodeArr[i].neighbours[k][4] == 1) {

478 nodeArr[i].electors[elec] = (int) nodeArr[i].neighbours[k][0];

479 k++;

480 elec++;

481 continue;

482 }

483 k++;

484 }

485 }

486 }

487 }

488 //-------------------------- end of election ------------------------//

489 System.out.println("Start of transaction phase");

490 // result = contract.evaluateTransaction("queryAllNodes");

491 // System.out.println(new String(result));

492 //-------------------------- start transaction------------------------//

493 for (i = 0; i < nodeNo; i++) { //for every node i

494

495 if (nodeArr[i].nodeEnergy <= nodeArr[i].nodeEnergyThreshold) {

496 System.out.println("Node " + nodeArr[i].nodeId

497 + " is out of energy");

498 continue; //not enough energy

499 }

500 //if there is any remaining wTime, the node is waiting

501 if (nodeArr[i].wTime != 0) {

502 nodeArr[i].decrDelay(); //reduce wTime by 1

503 //if there is waiting time, next node

504 if (nodeArr[i].wTime != 0) {

505 continue;

506 }

507 }

508

509 //if available, with cluster neighbours

510 //(and the waiting time has passed)

511 if (nodeArr[i].avClient == true

512 && nodeArr[i].countClNeighbours() != 0) {

513 //a random neighbour is selected as a candidate

514 //checks if available

515 candServer = nodeArr[i].clusterNeighbours[rnd.nextInt(nodeArr[i].countClNeighbours())];

516 if (nodeArr[candServer].avServer == false

517 nodeArr[candServer].nodeEnergy

518 < nodeArr[candServer].nodeEnergyThreshold) {

519 System.out.print(nodeArr[i].nodeId + " --X--> "

520 + candServer + "\tServer unavailable.");

521 nodeArr[i].setWTime();

522 outWt.write("\n" + String.valueOf(nodeArr[i].wTime));

523 System.out.println("Delay set for " + nodeArr[i].nodeId

524 + ": " + nodeArr[i].wTime);

525 continue;

526 } else { //server is available so a CH consulatation is in order

527 // nodeArr[i].LTVupdate(candServer,

528 // nodeArr[nodeArr[i].clusterHeadId].

529 // CH_Report(candServer), time,

530 // nodeArr[nodeArr[i].clusterHeadId].CH_Timestamp(candServer));

113

531

532 //query BC

533 result = contract.evaluateTransaction("queryNode",

534 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

535 "NODE"+nodeArr[candServer].nodeId);

536 JSONObject json = (JSONObject) parser.parse(new String(result));

537 float trustScore =

538 BigDecimal.valueOf((double) json.get("trustScore")).floatValue();

539

540 if (trustScore < 0.5) {

541 //2nd chance

542 trustScore = nodeArr[nodeArr[i].clusterHeadId].trustVector[candServer][0]

543 + rnd.nextFloat() / 4f;

544 contract.submitTransaction("changeNodeTrust",

545 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

546 "NODE"+nodeArr[candServer].nodeId,

547 String.valueOf(trustScore));

548 }

549

550 nodeArr[i].LTVupdate(candServer, trustScore, time,

551 nodeArr[nodeArr[i].clusterHeadId].CH_Timestamp(candServer));

552

553 if (nodeArr[i].trustVector[candServer][0]

554 >= trustThreshold) {

555 nodeArr[i].serverId = candServer;

556 nodeArr[i].durLeft

557 = (int) ((Math.log(1 - rnd.nextFloat()))

558 / ((-1) * lamda)) + 1;

559 //stores duration for trust calculations

560 nodeArr[i].setDur();

561 outDur.write("\n" + String.valueOf(nodeArr[i].dur));

562 //stores the time the transaction begun

563 nodeArr[i].setTransStart(time);

564 //binds ton server

565 nodeArr[nodeArr[i].serverId].avServer = false;

566 //binds ton client

567 nodeArr[i].avClient = false;

568 if (blackList[candServer] != -1) {

569 outA3.write("\n"

570 + String.valueOf(time - blackList[candServer]));

571 blackList[candServer] = -1;

572 }

573 System.out.println("\n" + nodeArr[i].nodeId + " -----> "

574 + nodeArr[i].serverId

575 + "\tTransaction started. Duration: "

576 + nodeArr[i].durLeft);

577

578 //in case of malicious server, stores the time

579 //that health was last changed

580 if (nodeArr[nodeArr[i].serverId].healthStatus == 0

581 && nodeArr[i].serverMalTS == -1) {

582 nodeArr[i].serverMalTS = nodeArr[nodeArr[i].serverId].getMalTimeStamp();

583 }

584 tStarted++;

585 continue;

586 } else {

587 System.out.println("Server trust too low, "

588 + "aborting transaction");

589

590 contract.submitTransaction("addTransactionClient",

591 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

592 "NODE"+nodeArr[i].nodeId,

114

593 String.valueOf(nodeArr[candServer].nodeId), "0", "ABORTED");

594 contract.submitTransaction("addTransactionServer",

595 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

596 String.valueOf(nodeArr[i].nodeId),

597 "NODE"+nodeArr[candServer].nodeId, "0", "ABORTED");

598

599 blackList[candServer] = time;

600 if (nodeArr[candServer].healthStatus == 0) {

601 outA2.write("\n" + String.valueOf(time

602 - nodeArr[candServer].malTimeStamp));

603 } else {

604 falseMal++;

605 }

606

607 trustFailed++;

608 nodeArr[i].setWTime();

609 nodeArr[i].eLTV_restore();

610 outWt.write("\n" + String.valueOf(nodeArr[i].wTime));

611 }

612 } //end of available server

613 } //end of available client

614

615 //if unavailable server or client, then they are in a transaction

616 //id there is serverId, the node is client

617 //so if its server is within range,

618 //reduces the transaction duration by 1.

619 //otherwise, it stops the transaction and resets the nodes

620 if (nodeArr[i].avClient == false && nodeArr[i].serverId

621 != -1) {

622 if (nodeArr[i].isClNeighbour(nodeArr[i].serverId)) {

623 //reduces the remaining duration by 1

624 nodeArr[i].durLeft--;

625 //reduces the client's energy

626 nodeArr[i].decEnergy();

627 //reduces the server's energy

628 nodeArr[nodeArr[i].serverId].decEnergy();

629 if (nodeArr[i].nodeEnergy < nodeArr[i].nodeEnergyThreshold

630 nodeArr[nodeArr[i].serverId].nodeEnergy

631 < nodeArr[nodeArr[i].serverId].nodeEnergyThreshold) {

632 System.out.println("Transaction failled "

633 + "due to energy lack");

634

635 contract.submitTransaction("addTransactionClient",

636 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

637 "NODE"+nodeArr[i].nodeId,

638 String.valueOf(nodeArr[i].serverId),

639 String.valueOf(0), "FAILED_ENERGY");

640

641 rcontract.submitTransaction("addTransactionServer",

642 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

643 String.valueOf(nodeArr[i].nodeId),

644 "NODE"+nodeArr[i].serverId,

645 String.valueOf(0), "FAILED_ENERGY");

646

647 fTrans++;

648 nodeArr[nodeArr[i].serverId].resetServer();

649 nodeArr[i].resetClient();

650 nodeArr[i].eLTV_restore();

651 continue;

652 }

653 //to record malicious server IF it becomes malicious

654 //during the transaction

115

655 if (nodeArr[nodeArr[i].serverId].healthStatus == 0

656 && nodeArr[i].serverMalTS == -1) {

657 nodeArr[i].serverMalTS = nodeArr[nodeArr[i].serverId].getMalTimeStamp();

658 }

659 if (nodeArr[nodeArr[i].serverId].healthStatus == 0) {

660 //increase malicious time counter by 1

661 nodeArr[i].malTimeCounter++;

662 }

663 //dur=0 => end of transaction

664 if (nodeArr[i].durLeft == 0) {

665 System.out.print("\n" + nodeArr[i].nodeId

666 + "--X-->" + nodeArr[i].serverId

667 + "\tTransaction completed successfully.");

668 System.out.println("\nEnergy levels: "

669 + nodeArr[i].nodeId + ": "

670 + nodeArr[i].nodeEnergy + "\t"

671 + nodeArr[i].serverId + ": "

672 + nodeArr[nodeArr[i].serverId].nodeEnergy);

673

674 //==================A1 metrics==============================//

675 if (nodeArr[i].serverMalTS != -1

676 && (float) (nodeArr[i].malTimeCounter

677 / nodeArr[i].dur) > 0.5) {

678 //we count the time from the most recent G2B

679 outA1.write("\n" + String.valueOf(time

680 - nodeArr[i].serverMalTS));

681 mTrans++;

682 }

683

684 //-------------Evaluation----------

685 evaluation = (float) (rnd.nextGaussian() * 0.1 + 0.5);

686 if (evaluation > 1) { //no more than 1

687 evaluation = 1;

688 }

689 if (evaluation < 0) { //no les than 0

690 evaluation = 0;

691 }

692

693 if (((float) nodeArr[i].malTimeCounter

694 / nodeArr[i].dur) > 0.5) {

695 }

696 if (((float) nodeArr[i].malTimeCounter

697 / nodeArr[i].dur) > 0.5

698 && evaluation > 0.5) {

699 evaluation -= 0.5; //penalty for malicious

700 }

701

702 contract.submitTransaction("addTransactionClient",

703 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

704 "NODE"+nodeArr[i].nodeId,

705 String.valueOf(nodeArr[i].serverId),

706 String.valueOf(evaluation), "SUCCESSFUL");

707 contract.submitTransaction("addTransactionServer",

708 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId, String.valueOf(nodeArr[i].nodeId),

709 "NODE"+nodeArr[i].serverId,

710 String.valueOf(evaluation), "SUCCESSFUL");

711

712 outSig.write("\n" + String.valueOf(evaluation));

713 //---

714

715 nodeArr[i].LTVupdate(nodeArr[i].serverId, evaluation, time, time);

716 nodeArr[nodeArr[i].clusterHeadId].report(nodeArr[i].serverId, evaluation, time);

116

717

718 contract.submitTransaction("changeNodeTrust",

719 "NODE" + nodeArr[nodeArr[i].clusterHeadId].nodeId,

720 "NODE" + nodeArr[i].serverId,

721 String.valueOf(nodeArr[nodeArr[i].clusterHeadId]

722 .trustVector[nodeArr[i].serverId][0]));

723 //

724 // To update all CH using some epidemic algorithm

725 //

726 for (j = 1; j < nodeNo; j++) {

727 if (j == i) continue;

728 nodeArr[nodeArr[j].clusterHeadId].report(nodeArr[i].serverId,

729 evaluation, time);

730 }

731

732 sTrans++;

733 //reset

734 nodeArr[nodeArr[i].serverId].resetServer();

735 nodeArr[i].resetClient();

736 nodeArr[i].eLTV_restore();

737 nodeArr[i].setWTime();

738 outWt.write("\n" + String.valueOf(nodeArr[i].wTime));

739 System.out.println("Delay set for "

740 + nodeArr[i].nodeId + ": " + nodeArr[i].wTime);

741

742 }

743 } else {//out of range...

744 System.out.print(nodeArr[i].nodeId

745 + " --X--> " + nodeArr[i].serverId

746 + "\tTransaction failed (server out of reach) ");

747

748 contract.submitTransaction("addTransactionClient",

749 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

750 "NODE"+nodeArr[i].nodeId,

751 String.valueOf(nodeArr[i].serverId),

752 "0", "FAILED_RANGE");

753 contract.submitTransaction("addTransactionServer",

754 "NODE"+nodeArr[nodeArr[i].clusterHeadId].nodeId,

755 String.valueOf(nodeArr[i].nodeId),

756 "NODE"+nodeArr[i].serverId, "0", "FAILED_RANGE");

757

758 fTrans++;

759 if (nodeArr[i].serverMalTS != -1) {

760 System.out.println("Node " + i + " should know that node "

761 + nodeArr[i].serverId + " was malicious"

762 + (time - nodeArr[i].malTimeStamp)

763 + " time slots ago...");

764 }

765 //reset

766 nodeArr[nodeArr[i].serverId].resetServer();

767 nodeArr[i].resetClient();

768 nodeArr[i].setWTime();

769 outWt.write("\n" + String.valueOf(nodeArr[i].wTime));

770 System.out.println(" Delay set for " + nodeArr[i].nodeId

771 + ": " + nodeArr[i].wTime);

772 }

773 }

774 }

775 }//end time loop

776 //for debugging when time <3000

777 //after that the message beacomes too large

778 //result = contract.evaluateTransaction("queryAllNodes");

117

779 //outNodes.write("\n" + new String(result));

780 }

781

782 //statistics

783 System.out.println("Range: " + range);

784 System.out.println("Elections: " + elect.elecNo);

785 System.out.printf("Mean time between elections: %.2f",

786 ((float) (time - 1) / elect.elecNo));

787 System.out.println("\nTransactions started: " + tStarted);

788 System.out.println("Succesfull Transactions: " + sTrans);

789 System.out.println("Failed Transactions: " + fTrans);

790 System.out.println("Didn't start due to low trust: "

791 + trustFailed);

792 System.out.println("Percentage of malicious transactions "

793 + (float) ((mTrans / (sTrans + fTrans))));

794 System.out.println("Malicious nodes at the end of the simulation: ");

795 for (i = 0; i < nodeNo; i++) {

796 if (nodeArr[i].healthStatus == 0) {

797 System.out.println(nodeArr[i].nodeId);

798 }

799 }

800 /*System.out.println("Healthy nodes at the end of the simulation: ");

801 for (i = 0; i < nodeNo; i++) {

802 if (nodeArr[i].healthStatus == 1) {

803 System.out.println(nodeArr[i].nodeId);

804 }

805 }*/

806 System.out.println("Nodes out of energy");

807 for (i = 0; i < nodeNo; i++) {

808 if (nodeArr[i].nodeEnergy <= 10) {

809 System.out.println(nodeArr[i].nodeId);

810 }

811 }

812 System.out.println("\nA1 metrics");

813 System.out.println("Succesfull Transactions: " + sTrans);

814 System.out.println("Total Malicious Transactions: "

815 + String.valueOf(mTrans));

816 System.out.println("Percentage: "

817 + String.valueOf((float) mTrans

818 / (mTrans + sTrans) * 100) + "%");

819 System.out.println("\nA2 metrics");

820 System.out.println("Total transactions that didn't start "

821 + "due to low trust: "

822 + trustFailed);

823 System.out.println("False Malicious: " + String.valueOf(falseMal));

824 System.out.println("Percentage: "

825 + String.valueOf((float) falseMal

826 / trustFailed * 100) + "%");

827 outGen.write("\nRange: " + String.valueOf(range));

828 outGen.write("\nElections: " + String.valueOf(elect.elecNo));

829 outGen.write("\nMean time between elections: "

830 + String.valueOf(((float) (time - 1) / elect.elecNo)));

831 outGen.write("\nTransactions started: "

832 + String.valueOf(tStarted));

833 outGen.write("\nSuccesfull Transactions: "

834 + String.valueOf(sTrans));

835 outGen.write("\nFailed Transactions: "

836 + String.valueOf(fTrans));

837 outGen.write("\nDidn't start due to low trust: "

838 + String.valueOf(trustFailed));

839 outGen.write("\nPercentage of malicious transactions "

840 + String.valueOf((float) mTrans / (sTrans + fTrans)));

118

841 outGen.write("\nMalicious nodes at the end of the simulation: ");

842 for (i = 0; i < nodeNo; i++) {

843 if (nodeArr[i].healthStatus == 0) {

844 outGen.write("\n" + String.valueOf(nodeArr[i].nodeId));

845 }

846 }

847 outGen.write("\nHealthy nodes at the end of the simulation: ");

848 for (i = 0; i < nodeNo; i++) {

849 if (nodeArr[i].healthStatus == 1) {

850 outGen.write("\n" + String.valueOf(nodeArr[i].nodeId));

851 }

852 }

853 outGen.write("\nNodes out of energy");

854 for (i = 0; i < nodeNo; i++) {

855 if (nodeArr[i].nodeEnergy <= 10) {

856 outGen.write("\n" + String.valueOf(nodeArr[i].nodeId));

857 }

858 }

859 outGen.write("\nA1 metrics");

860 outGen.write("\nSuccesfull Transactions: "

861 + String.valueOf(sTrans));

862 outGen.write("\nTotal Malicious Transactions: "

863 + String.valueOf(mTrans));

864 outGen.write("\nPercentage: "

865 + String.valueOf((float) mTrans

866 / (sTrans + mTrans) * 100) + "%");

867 outGen.write("\nA2 metrics");

868 outGen.write("\nTotal transactions that didn't start "

869 + "due to low trust: "

870 + String.valueOf(trustFailed));

871 outGen.write("\nFalse Malicious: " + String.valueOf(falseMal));

872 outGen.write("\nPercentage: " + String.valueOf((float) falseMal

873 / trustFailed * 100) + "%");

874

875 System.out.println("\nEnd");

876 outA1.close();

877 outA2.close();

878 outA3.close();

879 //outNodes.close();

880 outWt.close();

881 outDur.close();

882 outSig.close();

883 outGen.close();

884 s.close();

885 sPrev.close();

886 } //end main

887 }//end class

B.6 ClientTest
1 import org.hyperledger.fabric.gateway.Contract;

2 import org.hyperledger.fabric.gateway.ContractException;

3 import org.hyperledger.fabric.gateway.Gateway;

4 import org.hyperledger.fabric.gateway.Network;

5 import org.junit.Test;

6 import java.nio.charset.StandardCharsets;

7 import java.util.concurrent.TimeoutException;

8

9 public class ClientTest {

119

10 @Test

11 public void testManet() throws Exception {

12 EnrollAdmin.main(null);

13 RegisterUser.main(null);

14 ClientApp.main(null);

15 }

16 }

120

Appendix C

Benchmark Files

C.1 Test Configuration
1 test:

2 workers:

3 number: 5

4 rounds:

5 - label: Set cluster.

6 txDuration: 30

7 rateControl:

8 type: fixed-load

9 opts:

10 transactionLoad: 5

11 workload:

12 module: benchmarks/samples/fabric/manet/setCluster.js

13 arguments:

14 assets: 500

15 - label: ChangeNodeTrust.

16 txDuration: 30

17 rateControl:

18 type: fixed-load

19 opts:

20 transactionLoad: 5

21 workload:

22 module: benchmarks/samples/fabric/manet/changeNodeTrust.js

23 arguments:

24 assets: 500

25 - label: ChangeNodeHS.

26 txDuration: 30

27 rateControl:

28 type: fixed-load

29 opts:

30 transactionLoad: 5

31 workload:

32 module: benchmarks/samples/fabric/manet/changeNodeHS.js

33 arguments:

34 assets: 500

35 - label: Query a node.

36 txDuration: 30

37 rateControl:

38 type: fixed-load

39 opts:

121

40 transactionLoad: 5

41 workload:

42 module: benchmarks/samples/fabric/manet/queryNode.js

43 arguments:

44 assets: 500

45 - label: Add client transaction.

46 txDuration: 30

47 rateControl:

48 type: fixed-load

49 opts:

50 transactionLoad: 5

51 workload:

52 module: benchmarks/samples/fabric/manet/addTransactionClient.js

53 arguments:

54 assets: 500

55 - label: Add server transaction.

56 txDuration: 30

57 rateControl:

58 type: fixed-load

59 opts:

60 transactionLoad: 5

61 workload:

62 module: benchmarks/samples/fabric/manet/addTransactionServer.js

63 arguments:

64 assets: 500

C.2 QueryNode

1 'use strict';

2

3 const { WorkloadModuleBase } = require('@hyperledger/caliper-core');

4

5 /**

6 * Workload module for the benchmark round.

7 */

8 class QueryNodeWorkload extends WorkloadModuleBase {

9 /**

10 * Initializes the workload module instance.

11 */

12 constructor() {

13 super();

14 this.txIndex = 0;

15 this.limitIndex = 0;

16 }

17

18 /**

19 * Initialize the workload module with the given parameters.

20 * @param {number} workerIndex The 0-based index of the worker instantiating the workload module.

21 * @param {number} totalWorkers The total number of workers participating in the round.

22 * @param {number} roundIndex The 0-based index of the currently executing round.

23 * @param {Object} roundArguments The user-provided arguments for the round from the benchmark config file.

24 * @param {BlockchainInterface} sutAdapter The adapter of the underlying SUT.

25 * @param {Object} sutContext The custom context object provided by the SUT adapter.

26 * @async

27 */

28 async initializeWorkloadModule(workerIndex, totalWorkers, roundIndex, roundArguments,

29 sutAdapter, sutContext) {

30 await super.initializeWorkloadModule(workerIndex, totalWorkers,

31 roundIndex, roundArguments, sutAdapter, sutContext);

122

32

33 this.limitIndex = this.roundArguments.assets;

34 }

35

36 /**

37 * Assemble TXs for the round.

38 * @return {Promise<TxStatus[]>}

39 */

40 async submitTransaction() {

41 this.txIndex++;

42 let nodeNumber = 'Client' + this.workerIndex + '_NODE' + this.txIndex.toString();

43

44 let args = {

45 contractId: 'manet',

46 contractVersion: 'v1',

47 contractFunction: 'queryNode',

48 contractArguments: [nodeNumber],

49 timeout: 30,

50 readOnly: true

51 };

52

53 if (this.txIndex === this.limitIndex) {

54 this.txIndex = 0;

55 }

56

57 await this.sutAdapter.sendRequests(args);

58 }

59 }

60

61 /**

62 * Create a new instance of the workload module.

63 * @return {WorkloadModuleInterface}

64 */

65 function createWorkloadModule() {

66 return new QueryNodeWorkload();

67 }

68

69 module.exports.createWorkloadModule = createWorkloadModule;

C.3 ChangeNodeTrust

1 'use strict';

2

3 const { WorkloadModuleBase } = require('@hyperledger/caliper-core');

4

5 const trustNo = ["0.1", "0.2", "0.3", "0.4", "0.45", "0.5", "0.55",

6 "0.6", "0.65", "0.7", "0.8" , "0.9"];

7

8 class ChangeNodeTrustWorkload extends WorkloadModuleBase {

9

10 constructor() {

11 super();

12 this.txIndex = 0;

13 }

14

15 async submitTransaction() {

16 this.txIndex++;

17 let nodeNumber = 'Client' + this.workerIndex + '_NODE' + this.txIndex.toString();

18 let newNodeTrust = trustNo[Math.floor(Math.random() * trustNo.length)];

123

19

20 let args = {

21 contractId: 'manet',

22 contractVersion: 'v1',

23 contractFunction: 'changeNodeTrust',

24 contractArguments: [nodeNumber, newNodeTrust],

25 timeout: 60

26 };

27

28 if (this.txIndex === this.roundArguments.assets) {

29 this.txIndex = 0;

30 }

31

32 await this.sutAdapter.sendRequests(args);

33 }

34 }

35

36 function createWorkloadModule() {

37 return new ChangeNodeTrustWorkload();

38 }

39

40 module.exports.createWorkloadModule = createWorkloadModule;

C.4 AddTransactionClient
1 'use strict';

2

3 const { WorkloadModuleBase } = require('@hyperledger/caliper-core');

4

5 const evals = ["0.1", "0.2", "0.3", "0.4", "0.45", "0.5", "0.55",

6 "0.6", "0.65", "0.7", "0.8", "0.9"];

7 const stats = ["SUCCESSFUL", "FAILED_ENERGY", "FAILED_RANGE", "ABORTED"];

8 const ids = ["1","5","10","28","15","16","22","27","46","74","87",

9 "93","48","34","65","85","43","12","39","21"];

10

11 class AddTransactionClientWorkload extends WorkloadModuleBase {

12

13 constructor() {

14 super();

15 this.txIndex = 0;

16 }

17

18 async submitTransaction() {

19 this.txIndex++;

20 let nodeNumber = 'Client' + this.workerIndex + '_NODE' + this.txIndex.toString();

21 let evaluation = evals[Math.floor(Math.random() * evals.length)];

22 let status = stats[Math.floor(Math.random() * stats.length)];

23 let id = ids[Math.floor(Math.random() * ids.length)];

24

25 let args = {

26 contractId: 'manet',

27 contractVersion: 'v1',

28 contractFunction: 'addTransactionClient',

29 contractArguments: [nodeNumber, id, evaluation, status],

30 timeout: 60

31 };

32

33 if (this.txIndex === this.roundArguments.assets) {

34 this.txIndex = 0;

124

35 }

36

37 await this.sutAdapter.sendRequests(args);

38 }

39 }

40

41 function createWorkloadModule() {

42 return new AddTransactionClientWorkload();

43 }

44

45 module.exports.createWorkloadModule = createWorkloadModule;

125

	Abstract
	Περίληψη
	Introduction
	Current Framework
	Overview
	Mobile Ad-Hoc Networks
	Network Security
	Network Clustering

	Cluster Formation and Maintenance
	Trust Vectors
	Cost of Analysis/Processing
	Cluster head election
	Transactions mechanism
	Trust evaluation
	Preservation of trust information

	Simulation Description and Assumptions

	Blockchain Fundamentals
	Overview
	Features
	Concepts
	Cryptography, hashing and digital signature
	Immutable ledger
	P2P network
	Public, Private, Permissioned networks
	Consensus Algorithms
	Smart Contracts
	Blockchain Formation

	Related Work in Blockchain Based Trust Management
	Blockchain in Vehicular Network
	Multichain for IoT devices
	TrsutChain for IoT supported Supply Chains
	Blockchain using Mobile Edge Nodes

	Hyperledger Fabric
	Overview
	Features
	Concepts
	The Model
	The Network Structure
	Identity and MSPs
	Policies
	Ledger
	Smart Contracts/Chaincode
	Chaincode Lifecycle
	Security Model
	Fabric Gateway

	Transaction Flow

	Proposed Framework
	Overview
	Blockchain-assisted MANET
	Chaincode
	Application Layer - MANET Simulation

	Simulation and Results
	Simulation
	Results
	Caliper

	Future Work
	Security
	Efficiency-Scalability
	Ensuring Consensus

	Conclusions
	References
	Chaincode
	Node
	NodeTransaction
	TransactionStatus
	NodeQueryResult
	Manet

	Client Application
	Node
	ClHeadElection
	RegisterUser
	EnrollAdmin
	ClientApp
	ClientTest

	Benchmark Files
	Test Configuration
	QueryNode
	ChangeNodeTrust
	AddTransactionClient

