National and Kapodistrian
University of Athens

Department of Physics
MSc on Control and Computing

Diploma Thesis
Title: User Mobility Analysis in Mobile
Communication Systems

By

Antonios Skarlatos
Supervised by Prof. Markos Anastasopoulos

Athens, February 2023

Table of Contents

A 6618 o Y LD o 3's 5
1.1 Purpose of ThesiS.......cooiuiii i 5
1.2 Theoretical Framework.oooiiiiiiiiiiiii e e e e

121 BigData....oooooiiii
1.22 Anaconda Framework. s
1.23 Project JUPYLer. . .o et
124 MySQL. e e
1.25 GeoJSON .. i
1.2.60 GaussSIan PrOCESS. . ouuiiii ettt et et ee e et e e
1.27 Cotrelation M atfIX. .o u e etitie e e ettt ttiee e et ettt ieee e e e e ereie e e e e e eeeeaaens 8
1.3 Python Librafies.........ooooiiiiiiiii i 9
130 NPy e e 9
1.32 MySqLCOnNECOr. . vttt 9
1.33 Shapely.geometry....o.ooiuiiiiiiii 9
1.34 Matplothb...o.ooniiiii 9
.35 REQUESTS. ..t 10
130 FOIUMI. .ttt e 10
137 Pandas. .. e e 10
138 SO . i e 10
00 TR B 1 1 ' o Pt 11
1.300 IPYWIA@ELS. . uvee e 11

2 Analyzing and Presenting the Telecommunication Activity on User-Input Routes

in Milan Province.....oovvieiiiiiiiiiiiiiiii i 12
2.1 INtrOdUCHON. .ottt 12
2.2 Presenting the Data..........oooiiiiiiiiiiii 13
2.3 Preprocessing and Saving to Databases.............ooooiiiiiiii 17
2.4 Data Analysis Procedures............ooiiiiiiiiiiiiii 23
2.5 Results and Conclusions..........oooiiiiiiiiiiii 41

3 Car Traffic — Telecommunication Activity Correlation...........cccvveviniiiinnnnene. 50
3.1 Introduction.ooiuiii e 50
3.2 Presenting the Data...........ooooiiiiiiiiiiiiii 51
3.3 Preprocessing and Saving to Databases..............oooiiiiiiiiiii 53
3.4 Data Analysis Procedures...........oooooiiiiiiiiiiiii 56
3.5 Results and Conclusions.oouiiiiitiiii i e 65

4 Conclusion

...

R IO ICES . et tiettieeierteeeuseeneeeseesseessesssssssssssessssssesssesssssssessesssesnes

1. Introduction

1.1. Purpose of Thesis

The main focus of this thesis is on using data analytics to extract information from
telecommunication data, specifically using data from the Telecom Italia Big Data Challenge. Time
and spatial analysis is applied to the data to gain a better understanding of user patterns of network
usage. In addition to that, this thesis also employs Gaussian processes and correlation matrices as
data analytics tools. These methods are used to predict network usage needs and the thesis includes a
thorough examination of these tools and their application on the data. The thesis also includes an
analysis of GPS data of vehicle traffic in the same areas in order to compare telecommunication and
car traffic and investigate any correlations between them. The findings from this research can be
useful in determining network handover needs in specific areas and optimizing network coverage.
Sequences of scripts are developed for each part of the analysis, with multiple examples provided and
with the aim of drawing conclusions about the performance of these methods. The overall goal is to
use data analytics to extract actionable insights and improve network performance in

telecommunication systems.

The thesis uses Python for data analytics and the development of scripts, and the data is stored in
MySQL tables. SQL is used for managing the data and making it accessible for the analysis. The
choice of Python and SQL as the primary tools for the analysis and management of the data, allows
the development of efficient and easily-replicable scripts, while being able to handle big amount of
data using MySQL. It also provides the capability of easy integration with other tools and making the
results of the analysis more accessible and meaningful.

1.2. Theoretical Framework

1.21. Big Data

‘Big Data’ refers to a field that constructs ways to analyze and systemically extract information from
datasets too big or too complicated to deal with, using traditional data processing software. Data with
many fields (rows) offer greater statistic power, while data with higher complexity
(columns/attributes) may lead to higher false rate. ‘Big Data Analytics’ includes tasks like harvesting
data, data storage, data analysis, search, sharing, transferting, visualizing, updating and more. Cutrent
usage of the term tends to refer to the use of predictive analytics or certain other advanced data
analytics methods that extract value from big datasets. The need of data analytics methods has grown
rapidly hand by hand with the data availability itself. The size and number of available datasets has
skyrocketed with the massive spread of data capturing devices. With it came the development of data
analytics, since big datasets hold valuable information to extract from. What qualifies as ‘big data’
varied depending on the capabilities of those analyzing it and their tools. In this project we will try to
deal with big datasets [,

1.2.2. Anaconda Framework

Anaconda is a distribution of the Python programming language for scientific computing purposes
(data science, machine learning, large-scale data processing, predictive analytics, etc.). It aims to
simplify the package management and data handling, while it offers data-science packages for
multiple environments (in this project it will be used in Windows environment). The package
management system is called ‘conda’, and through it we can import the libraries we need. Anaconda
Navigator is a desktop graphical user interface (GUI) included in Anaconda distribution that allows

users to launch all of Anaconda’s applications without using command-line commands.

There are more than 7,000 available open-source packages for Anaconda distribution. They can be
installed using either PyPI as well as the conda package. Furthermore, there is a virtual environment
manager that gives the ability to create different environments with different packages installed
(depending on the data processing challenges you are facing). We will use this feature later on.

1.2.3. ProjectJupyter

Jupyter Notebook (also known as IPython Notebook) is a web-based interactive computational
environment for creating notebook documents. A Jupyter Notebook document is a browser-based
language shell containing an ordered list of input/output cells which can contain code, text, plots ot
mathematics. A Jupyter Notebook is a JSON document, usually ending with the ‘.ipynb’ extension.
What makes Jupyter Notebook really useful is the local server-like attributes. Multiple code blocks
can be compiled in any order, with data saving (remain saved while Jupyter Notebook is active) 1.

JupyterLab is a newer user interface for Jupyter Notebook, offering a flexible user interface and more
features than the classic notebook UI Bl.

124. MySQL

MySQL s a free open-source relational database management system. MySQL has stand-alone
clients that allow users to interact directly with a MySQL database using SQL, but more often,
MySQL is used with other programs to implement applications that need the relational database
capability. We will use it to store our data through Jupyter using a suitable library ¥.

MySQL Workbench is a visual database design tool that integrates SQL development, administration,
database design, creation and maintenance into a single integrated development environment for the
MySQL database system.

12.5. GeoJSON

GeoJSON is an open standard format designed for representing simple geographical features, along
with their non-spatial attributes Bl. Itis based on the JSON format. Itis a format for encoding a
variety of geographical data structures. The feature may include points (addresses), line strings or
even polygons. It can also be used to describe a whole route or even the entire service coverage for
navigation apps. Geo]SON is widely supported across a range of geographical information systems
(GIS) and web mapping tools, making it a popular and interoperable format for exchanging and
visualizing geospatial data.

1.2.6. Gaussian Process

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and
probabilistic classification problems. GP are useful in statistical modelling, benefiting from properties
inherited from the normal distribution. While exact models scale pootly as the amount of data
increases, multiple approximation methods have been developed which often retain good accuracy
while drastically reducing computation time. Some Gaussian processes advantages include:

e The prediction interpolates the observations (at least for regular kernels).

e The prediction is probabilistic (Gaussian) so that one can compute empirical confidence
intervals and decide based on those if one should refit the prediction in some region.

e Versatile: different kernels can be specified. Common kernels are provided, but it is also
possible to specify custom kernels.

The most common application for the multi-output prediction problem is the Gaussian process
regression. It is a non-parametric, Bayesian approach designed to solve regression and classification
problems. We will the Python ‘sklearn’ package to implement it 161,

1.2.7. Correlation Matrix

When data are about alighed, we claim that the variables have linear relationship. In most cases
though, data deviate significantly from following a linear tendency. A whole-round measute to
describe the potential of linear relationship is correlation. Correlation sums up the strength and
direction of the linear relationship between two quantitative variables. Correlation values range
between -1 and 1, with the positive sign representing a positive correlation, while the opposite a
negative one. The closer the correlation is to 1, the more of a linear relationship the data have (the
data points fall closer to having linear variables correlating them). Accordingly, the closer the
correlation is to 0, the weaker linear relationship is.

A correlation matrix is a matrix that gives the correlation coetficients between different variables we
want to investigate. Every cell in the matrix represents the correlation between the varables crossing

axis x and y L.
There are 3 broad reasons to calculate a correlation matrix.

e To sum up big data, when the goal is to identify a pattern
e Introduction to new analysis

e Diagnostic measure to double check different data analysis procedures

In this project we will use ready-to-use libraries to calculate and plot correlation matrices.

1.3. Python Libraries

1.31. NumPy

‘Numpy'is a library for the Python programming language. It is the fundamental package for
scientific computing in Python, providing support for large, multi-dimensional arrays and matrices,
along with a large collection of high-level mathematical functions to operate these arrays. At the core
of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of
homogeneous data types, with many operations being performed in compiled code for performance.
NumPy arrays have some limitations, since their size is fixes at creation (unlike Python lists which
can grow dynamically), and the array elements are required to be of the same data type. But despite
these, they offer a strong, fast tool for advanced mathematical operations I,

1.3.2. Mysql.connector

MySQL provides standards-based drivers for multiple languages enabling developers to build
database applications in their language of choice. For our case, there is a Python Driver for MySQL
(developed and maintained by the MySQL community) named ‘mysql.connector’. It is a Python
library for connecting to and interacting with MySQL databases. It provides a low-level API for
sending and receiving data from a MySQL database, as well as tools for working with transactions,
handling errors, and more. It also provides the ability to execute multiple statements with a single
call, using batch execution. The above make it an essential tool for developers and data scientists
working with large datasets and databases on MySQL P,

1.3.3. Shapely.geometry

‘Shapely’ is a BSD-licensed Python package for manipulation and analysis of planar geometric
objects. Itis based on the widely deployed GEOS and JTS libraries. Shapely is not concerned with
data formats or coordinate systems, but can be readily integrated with packages that are. Shapely
geometry classes, such as shapely.Point, are the central data types in Shapely. Each geometry class
extends the shapely.Geometry base class, which is a container of the underlying GEOS geometry
object, to provide geometry type-specific attributes and behavior.

1.3.4. Matplotlib

‘Matplotlib’ is a plotting library for the Python programming language and its numerical mathematics
extension NumPy. It provides an object-oriented API for embedding plots into applications using
general-purpose GUI toolkits. It is designed to closely resemble the M ATLAB interface of plotting.
Since its release, it has been actively developed by the community and it is widely used in data
analysis, scientific computing, and many other fields [10],

1.3.5. Requests

‘Requests’ is a popular Python library for making HTTP requests, including GET, POST, PUT,
DELETE, and more. It abstracts the complexities of making requests behind a simple API, allowing

9

developers to send HT'TP/1.1 requests. It provides automatic decompression of gzip and deflates
encoded responses. Itis an essential tool for web scraping, interacting with APIs, and working with
web services, which is needed for this thesis.

1.3.6. Folium

‘Folium’ is a Python library for creating interactive maps for web browsers using the Leaflet
JavaScript library. It is a particularly useful for visualizing geospatial data and creating interactive
maps for data exploration and analysis. It has easy-to-use API for creating maps with markers, circles,
polylines and other features, which we will use later on.

1.3.7. Pandas

‘Pandas’ is a widely-used, open-source data analysis and data manipulation library for Python. It
provides data strictures for efficiently storing large datasets and tools for working with them. It is
particularly useful for data analysis, cleaning, and preparation Il Some of the key features of ‘pandas’
include:

¢ A ‘Dataframe’ object for representing and manipulating tabular data, similar to a spreadsheet
or SQL table.

e Methods for reading and writing data from a variety of soutces, including CSV, Excel, SQL
and more.

e Tools for cleaning and transforming data, including handling missing values, merging and
joining datasets, and pivoting data.

e [fficient handling of large datasets with support for handling missing data and dealing with
duplicate data.

e Built-in plotting and visualization capabilities using ‘matplotlib’.

1.3.8. Seaborn

‘Seaborn’ is a Python data visualization library based on ‘matplotlib’. It provides a high-level interface
for creating attractive and informative statistical graphics. It is particularly well suited for exploring
complex datasets and for visualizing relationships between multiple variables. Some of its key
features include a simple and intuitive API, support for multiple plot types, including heatmaps
(which we will use for the correlation visualization), violin plots, box plots, and built-in themes for
making plots look polished and professional. Additionally, ‘seaborn’ has integrated support for
working with ‘pandas’ dataframes, making it a popular choice among data scientists for data
exploration and analysis. Overall, ‘seaborn’ is a powerful library for creating visualization of complex
datasets and for exploring relationships between multiple variables in an intuitive and aesthetically
pleasing way [10],

1.3.9. Sklearn

‘Scikit-learn’ (often abbreviated as ‘skleam’) is a Python library for machine leaming. It provides a
wide range of algorithms for tasks such as classification, regression, clustering, and dimensionality
reduction, as well as tools for model evaluation and selection. The library has a consistent API and a

10

focus on practical, real-world applications. It is well-documented and has a large and active
community, making it a popular choice for building machine learning models in Python ['2. Some of
the key features of ‘sklearn’ include:

e A variety of algorithms for supervised and unsupervised learning
e FHasy-to-use APIs for training and evaluating models
e Built-in tools for preprocessing data and feature extraction

e Methods for model selection and evaluation, including cross-validation

1.3.10. Ipywidgets

‘Ipywidgets’ is a Python library for creating interactive, web-based widgets in Jupyter notebooks.
These widgets allow users to interact with and manipulate data within Jupyter notebooks in real-time,
making the process of data analysis more interactive and user-friendly. It includes a wide range of
widgets, such as sliders, buttons, and text boxes, as well as more specialized widgets for displaying
data such as graphs and tables. The library is easy to use and enables data scientists to create
interactive visualizations and dashboards within Jupyter notebooks, making it a valuable tool for data
exploration and analysis [13.

11

2. Analyzing and Presenting the Telecommunication Activity on
user-input Routes in Milan province

2.1. Introduction

In this part of the thesis we will analyze and process telecommunication activity data about some
public network usage. We will apply many different data analysis techniques, with the goal being to
draw conclusions about the general network activity and its characteristics. The purpose is for the
user to choose a desired route in the Milan province and the tool, which we are going to create, will
calculate and analyze the telecommunication activity in that route. The (also) user chosen output
options, will give useful information about the specific area’s activity and its characteristics. We then
could use these results to find ways to improve the network itself (e.g. an optimization problem) or
we could apply them to help us in a different analysis project (which will happen in the second part
of the thesis). The long term purpose of a tool like this is the overall improvement of the network
and the optimization towards 5% generation networks.

In order to be able to perform such an analysis, we would need a big data collection from a public
network. Data like this are difficult to acquire since they are confidential and there are legal
difficulties. Companies and institutes that own such datasets only share them with a selected few
research teams, which usually sign non-disclosure agreements (NDAs). This lack of data limits the
volume of public research from the wide scientific community.

In this context, the supply of such datasets to a large number of research teams is a structural
problem in the backbone of technological advancements in this field. An original example was given
by Telecom Italia in cooperation with other Italian institutions (EIT ICT Labs, SpazioDati, MIT
Media Lab, Northeastern University, Polytechnic University of Milan, Fondazione Bruno Kessler and
University of Trent), organizing the “T'elecom Italia Big Data Challenge’ [14. With this initiative many
anonymous datasets were made public. These datasets are unique in their kind, as they provide an,
open source, rich accumulation of data from many sources of many kinds (such as
telecommunication, weather, electricity data and others). These datasets have measurements over
long periods of time in the Milan and Trento provinces. We will only deal with the Milan data
because they are larger in size and so easier to analyze (and apply data analytics techniques). The only
datasets we will need for this project are the ones about the geographical grid and the
telecommunication activity. In the chapters to follow we will present and analyze them thoroughly.

12

2.2. Presenting the Data

The first dataset we will need for the analysis is the one containing the geographical grid of the areas
we will work on. These are the areas for which we have the telecommunication data. The
measurements are provided from different companies and institutions which use different systems to
record the spatial activity of their users. The variance of the geographical distribution from all the
different companies is taken into account and an accumulative grid of square cells is created. We
have the total telecommunication activity throughout this square-cell grid in Milan for a long period
of time. This adjustment provides us the ability to easily compare the telecommunication activity of
different Milan areas.

We end up with a grid of 10,000 square cells around the Milan province (every cell covers an area of
about 235m?). The link reference of the geographical grid data
(http://dx.doi.org/10.7910/dvn/QIWLEU) leads us to a ‘geojson’ file for the Milan province. We
can upload it to see the province distribution into square cells (Image 1).

—

Milanese
A Paderno

Bareggio

£z=0

L - . Emanuele

Image #1: Milan Grid

Every one of the small squares composes a cell. Every cell is numbered and is characterized by a
unique Cell-ID (Image 2). Additional information is stored in the ‘geojson’ file, like the exact

13

http://dx.doi.org/10.7910/dvn/QJWLFU

coordinates of the 4 corners of the square cell. This information is necessaty and will be further
analyzed later on.
il e

fill-opacity 05

cellid 5873

Add row ¥ Show style properties

Properties info

Save Cancel! © Delete feature

Image #2: Cell ID

The second dataset needed, is the one describing the telecommunication activity. The purpose of this
dataset is to represent all kinds of telecommunication traffic that took place on the grid above over a
long period of time. So, information, about all the ways users interacted with the network, is
provided. The link reference of the telecommunication dataset
(http://dx.doi.org/10.7910/dvn/EGZHFV), leads us to a list of ‘text’ files containing all the
necessary information. 62 of these files are provided for the Milan province over the period from
1/11/2013 to 1/1/2014; 1 file for each day. That means that every file contains the
telecommunication activity for the whole province over the course of 24 hours. The content of these
files, opened in an excel table, can be seen in Image 3.

The shape of the information provided is simple and easily comprehensible. We will explain shortly
what each one of the elements represents, and how we can translate them into useful information.

In the first column we have the Cell ID which was introduced above. It is a unique key that
constitutes the identity of a specific cell. Using the geographical grid that was described above, we
can identify the exact spatial area in which the telecommunication data (in the rest of the dataset)
refer to.

14

http://dx.doi.org/10.7910/dvn/EGZHFV

1564 1.38E+12 39 0.04652 0.100905 0.030778 0.001217 3.496653

1564 1.38E+12 0 0.00173

1564 1.38E+12 39 0.02459 0.049927 0.01163 0.038297 3.434974
1564 1.38E+12 0 0.038297

1564 1.38E+12 39 0.046945 0.074635 0.100905 3.235227
1564 1.38E+12 0 0.00173

1564 1.38E+12 39 0.169043 0.126975 0.01163 0.032509 2.646128
1564 1.3BE+12 39 0.102378 0.019149 0.057563 4.413893
1564 1.3BE+12 0 0.01163

1564 1.3BE+12 39 0.148762 0.061024 0.068736 3.964203
1564 1.3BE+12 39 0.249667 0.107033 0.019149 0.019145 3.454893
1564 1.38E+12 0 0.055833

1564 1.38E+12 39 0.1%96361 0.044133 0.038257 0.028297 2.397392
1564 1.38E+12 39 0.125835 0.030778 0.006921 0.00173 2.477859
1564 1.38E+12 0 0.00173

1564 1.38E+12 39 0.104366 0.005191 0.055333 0.01163 2.326744
1564 1.38E+12 39 0.111144 0.0873234 2.084419
1564 1.38E+12 39 0.178267 0.002461 2.952914
1564 1.38E+12 39 0.019145 0.04652 0.049587 2.359235

Image #3: Dataset in a 2D table

The second column contains the period of time in which the telecommunication data refer to. Itis a
natural number that represents milliseconds, and the time step is 600,000 milliseconds or 10 minutes.
The telecommunication data desctibe the network usage from the users in the specific geographical
area in the specific 10 minutes time (which starts in the moment the second column mentions). To
calculate the ending moment of the measurements, all we have to do is add 600,000 milliseconds to
that interval. It is obvious that, since every text file contains the entire daily data for the entire
province, it will have 144 time measurements (144 10-minute periods in 24 hours). This means that
the time column (milliseconds) will advance by 86,400,000 each day (or each file). So, every file
contains the telecommunication data for all the 144 time periods in the day and for the entire
province (all the square cells).

The column that contains the telecommunication data that interests us is the last one. To describe
this column we will introduce the concept of Call Detail Records (CDR). It is a measurement unit to
record the telecommunication traffic that increases in size every time a corresponding action takes
place in the specific 10 minute period in the specific area. The number in the last column is the CDR
measurement of the Internet usage activity. CDR increases every time a user is connected to the
wireless network in the given area and time. Also, CDR increases when a specific connection (uset-
network) lasts more than 15 minutes or the user consumes mote than 5SMB of Internet data.

Columns 4 to 7 describe the CDR of the incoming and outgoing phone calls and messages. We can
see that there are many black spaces in these columns. Since the data are broken down to very small
areas and time periods, there is a possible scenario that no such activity takes place in the specific
area and time (especially if the area has low population density and the time period is of less traffic).

That is the reason we will focus only on the Internet usage data. This kind of activity is the most

common service users rely on (compared to phone calls and SMSs). So, Internet usage CDR records

15

are significantly higher in size than the rest (which are often blank) and that will make the data
analytics procedures easier to implement. We ignore the rest of the telecommunication data, and we
will remove them later on.

The thirds column is just the phone code of the country to which the data are addressed to. We only
care about the rows in which the phone code is 39 (Italy phone code). T'o boil it down, this column is
only useful if we want to find out how many calls/SMSs where addressed abroad. There is no such
separation for the Internet data. The rows that contain the Internet usage CDR are the ones whete
phone code is 39.

Regarding the size of the data, each of the daily files has a size of about 80MB, and contains more

than 2 million rows of raw data. So, we are facing a small scale ‘Big Data’ problem.

This was all the data we are going to need for analyzing and presenting the telecommunication traffic
in the Milan province, according to user input.

16

2.3. Preprocessing and Saving to Databases

Having presented the shape of the data, we can now move on to the next step. Before starting up
with the analytics procedures on the data, we have to transform them in a way that fits the needs of
the analysis. That means, recognizing which of the data in our disposal are needed for the results we
seek to get, and which we have to get rid of. The goal of this chapter is to strip the data of everything
unnecessary and fit them in volume efficient database tables. That way, the data analytics to follow
will be fast and efficient. The procedure of obtaining data from the databases will easily be
automated.

We work with big data for this project. The databases will be large and sometimes difficult to handle
with. That is why in every such problem, it is of outmost importance to make the databases as light
as they can get.

At this point we have to point out that Python (and some SQL for the database handling) is used for
the entire programming taking place. We will use the Anaconda framework (mostly Jupyter
Notebook), which provides helpful tools for data analysis such as easy library imports and clever
documentation. More details will be provided.

For the storage and management of the databases we will use MySQL Workbench, and for creating,
accessing and altering the databases in any way desirable, we will use ‘mysql.connector’ library
through Jupyter Notebook. ‘Numpy’ library is also used to manipulate and transform the raw data.

17

e Database for Milan’s Cells

In this database we will register everything we need to know about the given cells that form the
surrounding area of Milan. For the (squarein shape) cells, all we could ever need for further
analyzing are the coordinates of the four squares, which give us the exact spatial distribution of the
cell grid. If we add the unique Cell ID each one is characterized by, we have the complete set of
information. This information can be found in the ‘geojson’ file described in the chapter before. The
contents of this file can be seen in Code Sample 1.

import json

data = json.load(cpen(r"C:\Users\Antonis\OneDrive\Bachelor Thesis\grids‘milano-grid.geojson"))
data

{'ers': {'type': 'name', 'properties': {'name': 'urn:ocgc:def:icrs:EPSG::4326"}},

'type': 'FeatureCollection',

'features': [{'geometry': {'type': 'Polygon',

'coordinates': [[[5.0114510478323, 45.358801314405%¢66],
[5.014451488013135, 45.35880097314403],
[5.01445059480813, 45.3566856534148¢],
[5.01145061569250%, 45.356685954655464],
[5.0114510478323, 45.35880131440%66]1111},

'type': 'Feature',

'id': 0,

'properties': {'cellId': 1}},
{'geometry': ['type': 'Polygon',

'coordinates': [[[S5.014451488013135, 45.35880057314403],
[2.017451528134044, 45.338800553060284],
[5.0174591276410173, 45.356685233361533],
[5.01445059480813, 45.3566856534148¢],
[5.014451488013135, 45.358800573144031111},

'type': 'Feature',
vidr: 1,
'properties': {'cellId': 2}},

Code Sample #1

All we have to do now is isolate the necessary information and save them in a dedicated database. In
the database table, we can fit this cell information in 9 columns, 8 of which will be assigned for
longitude and latitude of the 4 square-cell corners. The last one will save the unique Cell ID of the
corresponding cell.

Having this information saved, we can find where a random geographical point (longitude & latitude)
lies in the Milan grid using simple geometry. That means finding through its coordinates the exact
square cell in which it belongs. T'o perform this act in python we will use the ‘shapely.geometry’
library (more to follow).

The code for inserting the data above in the corresponding table can be seen in Code Sample 2.

18

import mysgl.connector

mydb = mysgl.connector.connect (

host="lccalhost",

user="root"

’

password

database="ce

antbestskadata3l3

1liddb"

mycursor = mydb.cursor (buffered=True)

1l = '""'CREAT

E TABLE celli
_lon double,

mycursor.execute (sgl)

Lk

fo

db . commit ()

r i in datal
sgl = ""'I
VAL

i['geometry']["coordinates
i['geometry']["coordinates
i['geomstry']["coordina
try']l['coordinates']

ir'
mycursor.e
mydb . commi

'featuresszs']:

NSERT INTC celli

UES ({}, {}.

geom
xecute (sgl)

£()

br_lat double,

ddb.cell

the {1 {1

tes']

"1I01[2100],
[01121001, iI
[0103]100], i

agE!115i9171LY,

idscecords; "™

idscoords (tl_lat
br lon double, b

{1,

Ulr 20

(tl_lat,

(.
['geometry'] ["coo
i['geometry'] |

double, tl lon double, tr

_lat double,

"geometry'] [
properties'] [

Code Sample #2

i[’ g;amet:y

bl lon doub

cellid’

01[1]1[1],
010211011,
01[311[11,

lat, br len, bl 1
nates'] [0] [

r

1011,

No further change will be needed on this data at any point of the analysis. We have all the cell
information needed, stored in the database named ‘celliddb’. A sample of the database can be seen in
Database Sample 1.

bl_1

on,

19

Database Sample #1

1_lat 1_lon r_lat tr_lon br_lat br_lon bi_lat bi_lon cellid
P |45.35880131440966 9.0114910478323 45,35880097314403 9.014491488013135 45.35668565341486 9.0144909430813 45,356685994655464 9.011490619692509 1
45.35880097314403 9.014491488013135 45, 00553060284 9.017491928134044 45.35668523336193 9.017491276410173 45.35668565341486 9.0144909480813 2
45.358800553060284 9.017491928134044 45.35880005415845 9.020492356518262 45.356684734496675 9.020491604566724 45.35668523336193 9.017491276410173 3
45.35880005415845 9.02049236818262 45.35879947643852 9.0234928081496456 45.35668415681913 9.023491932838542 45.356684734496675 9.020491604666724 4
45,35879947643852 9.023492808146456 45.35879881990051 9.026493248013145 45.35668350032926 9.02649226091323 45,35668415681913 9.023491932838542 5
45.35879881930051 9.026493248013145 45.35879808454441 9.029493687770275 45.35668275502711 9.029492588878375 45.35668350032926 9.02649226091323 [
45,35879808454441 9.029493687770275 45.35879727037025 9.032494127405446 45.356681950912666 9.032492916721573 45.35668276502711 9.029492538878375 7
45.35879727037025 9.032494127405446 45.358796377378034 9.035494566906245 45.356681057985945 9.035493244430421 45.356681950912666 9.032492916721573 8
45.358796377378034 9.035494556906245 45.35879540556776 9.038495006260266 45.356680086246946 9.03849357199251 45.356681057385945 9.035493244430421 9
45.35879540556776 9.038495006260266 45.358794354935945 9.041495445455103 45.3566790356957 9.041493899395435 45.356680086246946 9.03849357199251 10

ce

e Database for the Telecommunication Data

First step is the shapeshifting of the files from ‘.txt’ to “.csv’ format. We need the files to be in ‘csv’
format because then, through a simple SQL command, we can directly import them in a dedicated
MySQL database. The code which performs the procedure above can be seen in Code Sample 3.

import numpy as np
from numpy import genfromtxt

if 1 = 1:
tempstr = "2013-11-"
nof = 30
elif == 2:
tempstr = "2013-12-"
nof = 31
else
tempstr = "2014-01-"
nof = 1
for x in range(l, nof+l):
loadpath = r"C:\ProgramData\MySQL\MySQL Server B8.0\Uploads\Milanc\sms-call-internet-mi-" + str(tempstr)
savePath = loadPath
if x € 10:
loadPath = loadPath + "0" + str(x) + ".txt"
=zavePath = sawvePath + "0" + =tr(x) + ".csv"
else:
loadPath = loadPath + str(x) + ".txt"
savePath = savePath + stri(x) + ".csv"

print (loadPath)

e e

data = genfromtxt(loadPath, delimiter='+', filling_ values=0)
np.=savetxt (savePath, data, delimiter=",", fmt="%f")

Code Sample #3

The logic behind the above is quite simple. Iterating over all the files using exploiting some string
concatenation while using ‘genfromtxt’ and ‘savetxt’ commands to read and write the files in the
desired format.

Then, using the same iterating logic, we will use the ‘LOAD DATA INFILE’ SQL command to
import the ‘csv’ files directly into the dedicated database (Code Sample 4). The way to do this is
creating a unique database table for each of the 62 days’ worth of data (counting them from 1 to 62).
In the next step, we remove from these tables the unnecessaty rows (the ones with phone code
different than 39) and after that, the unnecessary columns (phone code, and all the ones skipped in
the previous chapter). Code Sample 5 contains the above.

20

dumbstr = '''CREATE TABLE testdb.day{}
int unsigned, Time stamp bigint unsigned,
int, smsi’_n double NULL DEFAULT NULL, sms cut double NULL DEFAULT NULL,

. double NULL DEFAULT NULL, Cill_DJZ double NULL DEFAULT NULL,
internet_traffic decimal(10,€));''".format (day)

mycursor = mydb2.cursor (buffered=True)
sql = dumbstr

mycursor.execute (sgl)

mydb2 . commit ()

mycursor.cleose ()

dumbstr = '''LOAD DATA INFILE

R

INTC TABLE testdb.day{}

(Cell_ID, Time_ stamp, phonecode, sms_in, sms_out, call_in, call_out, internet traffic)
;""" .format (loadPath, day)

mycursor = mydb2.cursor (buffered=True)
sql = dumbstr

mycursor.sxecute (sgl)

mydb2 . commit ()

mycursor.close ()

Code Sample #4

for i in range(l, 63):
print ("day{}".format (1))

mycurscor = mydb2.cursor (buffered=True)

sqgl = "DELETE FROM testdb.day{} WHERE phonecode <> 39;".format (i)
mycursor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

dumbstr = '''ALTER TABLE testdb.day{}
DROFP COLUMN phonecode,
DROF COLUMN sms_in,
DROFP COLUMN =ms_out,
DROF COLUMN call in,
DROF COLUMN ca;;_out;"'.format(i)

mycurscr = mydb2.cursor (buffered=True)
sql = dumbstr

mycursor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

Code Sample #5

We now have isolated the desired telecommunication data in our database. The database is named
‘testdb’ and 62 daily tables have been created inside it. They contain only the essential data, which is
the Internet usage in every Milan cell, for every 10 minutes throughout the day, for 62 days straight
(different tables). No further changes are needed on these tables. When we need some of the data,
we will fetch them and process them accordingly. A sample of the first table (first day of data) is
provided in Database Sample 2.

21

Cel_ID Time_stamp internet_traffic
1383260400000 11.028366
1383251000000 11.100963
1383261500000 10,892771
1383202200000 8.622425
1383262800000 8.009927
1383263400000 8.118420
1383264000000 8.026270
1383264600000 8.514179
1383265200000 6.833425
1383265800000 &.554605
1383266400000 7.338716
1383267000000 &.779705
1383267000000 7.192162
1383268200000 7.503314
1383268300000 6.1569534
1383269400000 7.605452
1383270000000 &6.5569565

T Y i S

Database Sample #2

We now have gathered and stored all the data we need in MySQL tables. The process of analyzing
them and presenting them according to user input follows.

22

2.4. Data Analysis Procedures

We are ready to continue with the development of an automated procedure that analyses and
presents the telecommunication data of the user-chosen route. The purpose of this part of the
project is as follows. The user inputs a desired start and end point in the Milan province, the route
that connects these points is tracked, and the telecommunication activity along that route is
calculated and analyzed according to user’s desire. We can later use this information for further
investigation of the network itself or combined with a different process altogether for a more
complex analysis. We will divide the work in logical steps and proceed linearly.

The first step is to determine the exact route on which we will apply the data analytics. That is,
finding the exact square cells from which the route traverses, and take advantage of the
telecommunication data we have stored. User inputs the coordinates (longitude and latitude) of the
pick-up and drop-off location. For the example procedure that will be presented along, we have set a
random set of coordinates for starting and finishing. The user can set these values to anything he
wants (inside the Milan province). We use an online tool called ‘Project-OSRM’, with the help of the
‘requests’ library (by requesting online using the correct URL). It is a navigation system, which gives
the fastest route connecting two points (sets of coordinates, starting and finishing) anywhere in the
world. By doing that, we get a set of spatial points that connect the starting and finishing points
(including these two). We then have the route we need as a set of coordinates (Code Sample 6). A
mapping plot of the route is included to help understanding it, using the “folium’ library (Code
Sample 7).

We input the route points (sets of coordinates) in a suitable database table (Code Sample 8). The next
step would be to convert the set of coordinate points, to a set of the corresponding Milan cells in
which they belong. But there is the risk, that the distance between two consecutive spatial points is
greater than the size of the square cells. That means, that an intermediate route cell could be skipped
and we need to prevent that from happening. That is why the next step is to call an SQL Procedure
(‘fullroute’ in MySQL) which will insert additional points in the space between consecutive
geographical points, until the distance between all the neighbor points is less than the length of the
square cell side (Code Sample 9). That is the only way to guarantee that no cells will be missed from
the route. The reason we can do the above is the following. ‘Project-OSRM’ adds a point to the
calculated route of points each time there is a change of direction. So there can be a large distance
between consecutive points, if the road is straight. Therefore, simply adding points in between causes
no errot, since they will fall on that same straight piece of road. We add a point between two
neighboring ones if and only if, their distance is bigger than a square cell side (otherwise, obviously
no cell can be skipped).

Now we have come to acquire the full route with dense points from start to finish. The next step is
to iterate over all the route points and find the square cell they belong to (the way this is
implemented is by iterating over every square cell and checking if the point falls inside). We have the
coordinates of the point we want to investigate, and the coordinates of the corners of all the square
cells stored in the database (we fetch the cell data from the database table they are saved into). The
‘shapely.geometry’ library is used (taking advantage of the classes ‘Polygon’ & ‘Point’) to check if the
point belongs in the square cell. When we find the cell we are looking for, we add it to an array (if it

23

is already in the array, we skip it to avoid duplicates). At the end of this procedure we come to know

all the cells from which the route passes through, saving them in a database table created for this
purpose. The above are executed in Code Sample 10.

1 import reguests
import folium
import polyline
import numpy as np

def get_route(pickup lon, pickup lat, dropoff lon, drcopoff lat):

urll = frouter.project-csrm.org/route/vl/driving/"

url2 = rmat (pickup lon, pickup lat, dropoff lon, dropoff lat)
urll = ves=falsegannotations=

r = requests.get{urll + url2 + url3)

if r.status_code != 200:

return {}

res['waypcints'] [0] ['location”] [0]]
end peint = [res['waypc res['waypoints'] [1]["location'] [0]]

distance = res['routes'

1]
]['distance']

out = {'route':routes,
t':start_point,
end point,
:distance

return cut, routes

he desirss (in our grid)

print("Give me pickup longitude and latitude: ")
nput (}

teckens = input_str.split()

a = float (tckens[0])

b = float(tckens[1])

input_|

print("Give me d

input

f lengitude and latitude: ")

tckens input_str.split ()

46 ¢ = float(tockens[0])
47 |d = float (tckens[1])

pickup lon, pickup lat, dropoff lon, dropeff lat = a, b, ¢, d

whole route, help route = get_route(pickup lon, pickup lat, dropoff lon, dropoff lat)

t (whole_route)
nt (help route)

Give me pickup longitude and latitude:
9.1e0535 45.50425¢
zive me dropcff longitude and latitude:
.178174 45.503461

21 (45.5021,

(4

[I R N =

Code Sample #6

24

1 def get map(whole_rcute, help route):
2
3 m = folium.Map(location = [(whole route['start point']l[0] + whole reoute['end point'][0]) /2,
4 (whole route['start point']l[l] + whole route['end point'][1]) /21,
5 zoom start = 12)
L3
7 folium.PolyLine(
8 whole route['route'],
9 weight = &,
10 color = 'blue',
11 opacity = 0.6
12 }-add_to(m)
13
14 for i in help_ route:
15 folium.Marker |
1& location = i,
17 icon = folium.Icon{icon = 'road', ceoler = 'gray', prefix="fa'})
18 }.add to(m)
19
20 folium.Marker |
21 location = whole route['start point'],
22 icon = folium.Icen{icon = "play', ceclor = 'green')
23) -add to(m)
24
25 folium.Marker |
26 location = whole route['end point'],
27 icon = folium.Icon(icon = "stop', color = 'red")
28 }.add_toim)
29
30
2l return m
32
33
34 | #dsl help route[l1]
35 | #dsl help route[-1}
3e
37 get_map(whole route, help route)

Bl LT
———=i Leaflet | Data by © OpenSiréefMan.

Code Sample #7

25

. under ODbL.

L3 T O S ey)

K. T TS N

N L R Do

B B

=)

2
4
35

L= I = Y L L

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

26

import mysql.connector

mydb = mysql.connector.connect (

host="1
user="r
passwor
databas

mycurscr

sql = "TR

mycurscr.

ccalhost",

cot",
d="antbestskadata3l3BASE!1!g!G1T7I"
e="celliddb"

= mydb.cursor (buffered=True)
LE celliddb.routecoords;”
execute (sql)

mydb.commit ()
mycursor.

a=710
for i in
mydi.

mycursor

clese ()

fered=Trus)

help route:

mycursor = mydb.curser (buffered=True)

sqgl = "INSERT INTO celliddb.routecoords (unigid,
mycursor.execute (sgl)

commit (}

a=2a+1

Code Sample #8

= mydb.cursor (buffered=True}

sgl = "CALL celliddbk.fullroute;"

mycursor.

execute (sql)

mydb.commit ()

mycursor.

DELIMITE

clese()

R //

CREATE PROCEDURE celliddb.fullroute()

BEGIN

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

SELECT C
SET i =
WHILE i

SET

SELE
SELE
SELE
SELE

SET
SET

CASE

n INT;

i INT;

Tlag TINYINT;
y1 DOUBLE;

x1 DOUBLE;
y2 DOUBLE;

x2 DOUBLE;
ystep DOUBLE;
xstep DOUBLE;

OUNT(*) FROM celliddb.routecoords INTO nj
4]

< (n-1) DO

Tlag=2;

CT latitude FROM celliddb.routecoords WHERE unigid = i INTO yl;
CT longitude FROM celliddb.routeccords WHERE unigid = i INTO x1;
CT latitude FROM celliddb.routecoords WHERE unigid = i+l INTO y2;
CT longitude FROM celliddb.routeccords WHERE unigid = i+1 INTO x2;

ystep = ABS(y2-yl);
xstep = ABS(x2-x1);

WHEN (ystep > ©.809219788766) OR (xstep > ©.@8299976654)
THEN UPDATE celliddb.routecoords SET uniqid = unigid + 1 WHERE unigid > ij
ELSE BEGIN END;

1

{1,

iddb. routecoerds (unigid ing, latitude doubls, longitude double) ;"

{})".format (a,

i[0]1,

i[1l]

32 END CASEj;

33
34 CASE
35 WHEN (ystep > ©.802187@0766) OR (xstep > ©.00299976654)
36 THEN INSERT INTO celliddb.routeccords (uniqid, latitude, longitude) VALUES (i+l, (yl+y2)/2, (xl+x2)/2);
37 ELSE BEGIN ENDj;
38 END CASE;
39
4a CASE
41 WHEN (ystep > ©.00218700766) OR (xstep > 0.00299976684)
4z THEN SET flag=1j;
43 ELSE BEGIN ENDj;
44 END CASE;
45
45
47
43
49 CASE
58 WHEN (flag = @)
51 THEN SET 1 = i + 1;
52 ELSE BEGIN ENDj;
53 END CASE;
54
55 SELECT COUNT(*) FROM celliddb.routecoords INTO nj
56 END WHILE;
57
58 END //
59
6@ #SET SQL_SAFE_UPDATES = @;
61 #CALL celliddb.fullroute;
Code Sample #9
1 mycurser = mydb.cursor (buffered=True})
2 sql = "SELECT ¥ FRCOM celliddb.routecoords ORDER BY unigid;™
3 mycurscr.execute (sql)
4 |myresult = mycursor.fetchall()
5 mycurscr.close ()
1 mycurscr = mydb.cursor (buffered=True)
2 sgl = "SELECT * FRCM celliddb.cellidscoords;"
3 'mycursecr.execute (sgql)
4 |cellids = mycurscr.fetchall ()
5 mycurser.clese()
True
1 from shapely.geometry import Point
2 from shapely.geometry.polygon import Polygon
4 routecells = []
5
& for i in myresult:
7 #print (i)
=) point = Point (i[1], i[2])
9
10 for j in cellids:
11 polygon = Polygon([(j[0], j[11), (3121, 3[31), (3[41. 3[S1). (3[€], 3[71}1)
12 checker = polygon.contains(point)
14 if (checker = True):
15 if j[8] mot in routecells:

reutecells.append(j[8])
break

9 |print (routecells)

[6950, 6851, £852, €053, €054, 7055, £835, £054)

27

1 mycursor = mydb.cursor (buffered=True}
2 sqgl = "TRU
3 mycursor.execute (sql)
4 mydb.commit ()

5 mycursor.clese()

TE TABLE celliddb.routecellids;"

ib.curscr (buf fered=True)
elliddb.routecellids {cellid) VALUES ({});".format(i)
execute (sgl)
it ()
r.close()

Code Sample #10

At this point, we have saved in the database the cells from which the user-selected route traverses
through. Next step is to isolate the telecommunication data of these cells, since we only need those
to describe the network demand around the road we analyze. To carry this task out, we need the daiy
telecommunication traffic data we have already saved. Using a repeating loop, we will iterate over
every daily traffic table, and forward the data we need (which are the ones of the route cells) to
dedicated temporary daily database tables. That way, we will have 62 new temporary tables (one for
cach day) for the daily telecommunication traffic of the cells we are interested on (route cells). Each
time this algorithm is rerun, the temporary tables will be truncated, and refilled with the new useful
data we want to analyze (Code Sample 11).

We take an extra step, to calculate the average daily telecommunication traffic (the time step is 10-
minutes as explained before) from the 62 days of data for the route cells. We also calculate the
standard deviation for every value and accordingly the coefficient of variation. We concatenate these
values in a single ‘average daily values’ table (Code Sample 12). We will use these data for plotting
and further processing.

import mysgl.cennector

mydb = mysgl.connector.connect (

oo s L B

password=
database=' ddb"

11 mycursecr = db . cursor (buffered=True)

12 | 3gl = "SEL * FROM celliddb.routecellids;"
13 mycurscr.execute (sql)

14 myresult = mycursor.fetchall()

15 myecursor.cleose ()
17 | route = []

1% for x in myresult:
20 route.append (x[0])

28

mydb2 = mysqgl.connecter.connect(

host="loccalhost",

root",

passwer !
database="testdb"

SR T R

dumbstr = ", ".jein("{:d}".format (i} for i in route)
print("Cell IDs: " + dumbstr)

for day in range(l, 63):

tempstr = "TRUNCATE TABLE testdb.tempday" + str(day) + ";"
mycursor = mydbZ.cursor {buffered=True}

sgl = tempstr

mycursor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

o e Lo B

tempstr = "INSERT INTO testdb.tempday{} SELECT * FROM testdb.day{} WHERE Cell ID in ({});".format(day, day, duml

mycursor = mydbZ.cursor (buffered=True}
gl = tempstr

mycursor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

S T AR ey

print ("Created temp database for day {}".format(day))

#Inserting the nesded data (with the specific cellids) in temp day table (not scrited in cellids).

Code Sample #11

alldata = []

@
[

for day in range(l,

tempstr = "SELECT % FROM testdb.tempday" + str(day) + ";"

mycursor = mydb2.cursor (buffered=True)
sgl = tempstr

mycursor.execute (sqgl)

data = mycursor.fetchall()
mycursor.close()

data = np.array(data)

alldata.append{data)

mp))

#print (np. shape (
avtraff = alldata[0]

for i in range (np.shape(alldata) [1]):
isum = 0
for x in range({np.shape(alldata) [0]):

isum += alldata[x][i] [2]

iav = isum/np.shape(alldata) [0]
avtraff[i] [2] = iaw

avtraff[i]
avtraff[i]
avtraff[i]

= avtraff

ff = np.zeros((np.shape (temp) [0], np.shape (temp) [1]1+2))

29

52 for i in range (np.shape(alldata) [1]):
sd = 0
for x in range(np.shape(alldata) [0]):

3d += pow({avtraff[i] [2]-alldata[x][i][2], 2}

sd = math.sgrt(sd/np.shape (alldata} [0])
avitraff[i] [3] = =d

for i in range (np.shape{avtraff) [0]):
6l Cv = avtraff[i] [3]/avtraff[i] [2]
62 avtraff[i] [4] = Cw

mycursor = mydb2.cursor (buffered=True)
3ql = "TRUNCATE TABLE testdb.temptimeav;"
mycursor.execute (sgl)

8 |mydb2.commit ()

% mycursor.clecse()

1 for row in avtraff:
2 mycurscr = mydb2.cursor(buffered=True)

5 sgl = (Cell ID, Time stamp, int time av, sd, cv) VALUES ({}, {}, {}. {}.,
T4 mycursor.execute (sql)
L mydb2.commit ()
7 mycursor.close()
78 print("Created temp database for average daily internet.")

Code Sample #12

We have now configured the data in a handy way to process them and plot the results. The route-
specific daily tables and the corresponding average daily traffic table have all the information we need
to continue with the analysis of the specific route. One last procedure takes place before moving on.
We want the data in the average daily traffic table to be sorted by the cell sequence in the route (data
of the first route cell go first, etc.). So we sort the average daily traffic table using the cell sequence
and re-store the data in the same table. The algorithm for thatis in Code Sample 13.

import numpy as np
import mysql.ceonnector

ntbestskadata3l3BASE!1!Q9!g171",

10 password="
1 database="testdb"

print (np.shape (data))

1 data = np.array({data)
18 datanew = []

for i in range(len({route)):
flag = route[i]

for row in data:
if row[0] == flag:
datanew.append (row)

30

2% mycursor
sql = "TRU
mycursor.execute (sgl)
mydb2.commit ()
mycursor.clese ()

dib2 . curscr (buffered=True)
TABLE testdb.temptimeaw;

for row in datanew:
mycursor = mydb2.cursor (buffered-True)
sgl = "INSERT IN t

T stdb.temptimeav (Cell ID, Time stamp, int time av, ad, cv) VALUES ({} { {} {yy;".£d
2 0 r 0 . Fe the s RS
mycursor.execute {sql

mydb?2 . commit ()
40 mycursor.close()

Code Sample #13

We are ready for the next part of the analysis. The first step for visualizing the information we have
isolated, is a time dependent plot. We will plot the average daily traffic of the route cells for the 24-
hour duration starting at 12 am (the day is divided in 10-minutes, so we have 144 traffic values in the
day for each cell). The code that performs this can be seen in Code Sample 14.

Another plot that can give us information about the uncertainty of the telecommunication traffic on
the road is a time dependent telecommunication traffic plot of a single cell (so it can be easier
understood) with its standard deviation as well as the coefficient of variation against time plot. These
values have already been calculated and stored in the average daily traffic database, so we just fetch
the data and plot them in Code Samples 15 & 16.

One last time dependent plot we will try is a bar plot of specific cells of the route in order to easier
identify a pattern of telecommunication traffic moving from one cell to another throughout the day
(Code Sample 17).

import numpy as np
import matplotlib.pyplot as plt

data = np.array(data)

D TR

a refer to the

(14,1

P figqure(figsize=
plt.title ("Time De;

10 plt.xlabel("§ o
plt.ylabel ("Ave

13 while i < np.shape{data) [0]:
14 label = data[i] [0]

15 plt.plot (data[i:i+144,1], data[i:i+144,2], label= "{}".format(label))
16 i+=144

18 plt.legend(bbox to anchor=(1.01, 1), lec="upper left', borderaxespad=0.)
1% plt.show()

Code Sample #14

31

import numpy as np
import matplotlib.pyplot as plt

S T ISRV C I
H:

i here will represent what cell of the rcad we want
i=0
pltc.figure(figsize=(16,10))
8 plt.title ("Time Dependence with Standard Deviation
% plt.xlabel("§# of l0-minutes in the day (144 in total,
10 plt.ylabel("Awerage Internet tr c")
12 |label = data[i*144] [0]
13 plt.errorbar(x=data[i*144:i%144+144,1],
14
15 |plt.legend(bbox to_anchor=({1.01, 1), leoc="upper
1e |plt.show()
Code
1 import numpy as np
2 import matpleotlib.pyplot as plt
4 # i here will represent what cell of the road we want to
5/i=20
7 plt.figure(figsize=(16,10})

.title ("Coefficient of Variation (Temp Milano
t.xlabel("# of l0-minutes in the day

t.ylabel ("Cv")

label = data[i*144] [0]
plt.plot (data[i*144:i%144+744,1],

plt.legend(bbox to anchor=(1.01, 1),
plt.show()

loe="upper

e]
L T N

Code

temparray.append({label}

t.xlabel("# of 10-mi
t.ylabel("Average Internet
t.legend(bbox to anchor=(1.01,
t.show()

£ic")

1).

Code

32

y=data[i*144:1*%144+144,2],

(144 in total,

data[i*144:1%144+144,4],

t.title ("Time Dependence, Bar plot (Temp Milano Road,
ates in the day (144 in total,

to =see

(Temp Milano Road) ™)
starting at 12 am)")

yerr=data[i*144:1%144+144,3], ceoleor="blue',

left', borderaxespad=0.)

Sample #15

Road) ")
starting at 12 am)"}

color="klu="', label= "[}".format (label)})

left', borderaxespad=0.)

Sample #16

1 import numpy as np

2 import matplotlib.pyplot as plt

4 |n=20

5 temparray = []

7|8

8|k

9| # we want te plot (starting and ending of the road, s < k)
10 #

12 plt.figure(figsize=(15,5))

14 |1 = (s-1)*144

15 while 1 < k*144:

16 label = data[i] [0]

18 stime = 50 ## this variable will represent the starting 10-minute of
149 etime = 60 ## same as above but ending 10-minute of the day (must be bi
21 # n variable will help us at separating the traffic of different cells at
22

23 plt.bar(data[i+stime:it+etime, 1]+ ((n-1)*0.1), datal[i+stime:it+etime, 2],
24 i+=144

25 n+=1

cells = {}}".format (temparray))

starting at 12 am)")

loc="upper left', borderaxespad=0.)

Sample #17

labe]

The next plot attempt will aim to find space dependency patterns. But first, we need to calculate the
average spatial telecommunication traffic. The way to do itis, take the telecommunication data of a
cell for an average day and calculate the average telecommunication traffic of that cell throughout the
day (or a specific time window). Since there is a large deviation of the traffic throughout the day
(network usage peaks around rush hours, and is greatly reduced during the night), it is better to
choose time windows that minimize the deviation as much as possible, so that the results are reliable.

The spatial distribution of the telecommunication traffic will be plotted with two different
approaches. Firstly, we calculate the average telecommunication traffic of each cell of the route
during a period we define as network rush hour. That period is approximately 10am-6pm. The
standard deviation is significantly lower when talking about that time period alone. We calculate the
average telecom traffic for each cell during that time window as well as the standard deviation and
the coefficient of variation and save the results in a dedicated table. The above are performed in
Code Sample 18.

A different approach based on the same idea is, choosing multiple shorter time periods through the
day to calculate the average cell traffic. That way, the precision of the results is increased since we the
variation is further decreased with smaller time windows. Another advantage is that we can plot all
the different time windows together and detect patterns of traffic movement from cell to cell for
different time periods. The code for calculating the average spatial traffic for short time periods is
identical with the last application. We will display one more example for the time period 11:30am-
2pm (only the time limits change) in Code Sample 19, and the code for more time windows is easily
derived from the previous ones (by only changing the time limits).

Code Samples 20 and 21 are the ones for the plot themselves. On Code Sample 20, we plot the
average spatial telecom traffic for the route during network rush hours together with the standard
deviation, as calculated before. On Code Sample 21, we do an identical plot for the average spatial
telecom traffic of 3 different time periods in the day, for which we did the calculations during the

previous steps.

33

s

34

temp = np.array{temp)

spav = []
automatically sets order by the fixed prefix (prefix
for i in range(leni{pr X))z
flag = prefix[i]
isum = 0
n=20
for row in temp:
if row[0] == flag and row[l] >= 60 and row[l]
isum += row[Z2]
n+=1

ispav = isum/n
late

We calcula

where wve consider it

k=20
sd = 0
for row in temp:
if row[0] = flag and row[l] »>= 60 and row[l]
sd += pow(ispav - rowl[2], 2)
k+=1

sd = math.sgrt(sd/k)
Cv = sd/ispav

temprow =
spav.append {temprow)

[prefix[i], ispawv, sd, Cv]

mycurser = mydb2.curscr{buffered=True)
sql = "TRUNCATE TABLE testdb.tempspaceav”
mycurscr.execute (sql)

mydb?2. commit ()

mycurscr.close ()

for row in spav:
mycursor = mydb2.cursor (buffered=True)
sgl = "INSERT INTC testdb.tempspaceav
mycursor.execute (sgl)
mydb2.commit ()
mycursor.close()

(cell ID,

the the average from time slots 60 t
to be the rush hour with muc.

_space av, s5d, cv)

tely 10am - épm,

VAL

Code Sample #18

spav = []

automatically ssts ordsr by the fixed prefix

for i im range (len{prefix)):
flag = prefix[i]

isum = 0
n=2~0
for row in temp:
if row[0] == flag and row[l] >= 70 and row[l]
isum += row[2]
n+=1
ispav = isum/n

We calculats

the the average from

k=20
sd = 0
for row in temp:
if row[0] == flag and rew[l] >= 70 and reow[l]
sd += pow(ispav - row[2], 2)
k4= 1

sd = math.sgrt({sd/k)
Cv = sd/ispav

temprow = [prefix[i],
spav.append (temprow)

ispaw, s5d, Cv]

-
i
=)

is approximately 11:30 -

85:

{1);". format (rew[0],

mycurser = mydb2.curscr (buffered=True)

sgl = "TRUNCATE TAELE testdb.tempspaceavtestl"
mycursocr.execute (sgl)

mydb2.commit ()

mycurscr.close ()

for row in spav:
mycursor = mydbl.cursor (buffered=True)
sql = "INSERT INTO testdb.tempspaceavtestl (Cell ID,
mycursor.execute (sql)
mydbZ . commit ()
mycursor.close()

t space av, sd,

e 4}, {}, {}):i".format (row

Code Sample #19

1 import numpy as np

2 import matplotlib.pyplot as plt

4 'mycursor = mydbZ.curscr(buffered=True)
sql = "SELECT * FROM testdb.tempspaceawv;"

mycursocr.execute (sgl)
temp = mycursor.fetchall()
mycurscr.close()

1y ot

10 temp = np.array(temp)
12 my xticks = prefix
14 plt.figure(figsize=(14,10})

itle("Space Dependence with Standard Devi
ylim(0, €00)

xlabel ("§# ocf Cell-id")
plt.ylabel ("Average Internet t
np.linspace(l, np.shape(

(Temp Milano Road, during rush hour, 10am - &pm)

oo '

np.shape (temp) [0])

20 errorbar (x=xt, emp[:,1], yerr=temp[:,2], color='blue', marker="x"}
21 xticks (xt, my x ks)
22 figtext (.2, "[The sequence of cell 's is based on their geographical position so to represent the rocad!]"]
23 .show()
Code Sample #20
1 import numpy as np
2 import matplotlib.pyplot as plt
4 mycurscr = mydb2.cursocr (buffered=True)
5 sgl = "SELECT ¥ FROM testdb.tempspaceavtestl;"
& mycursocr.execute (sql)
7 templ = mycurscr.fetchall({)

mycurscr.clese ()
templ = np.array(templ)

mycurscr = mydb2Z.curscr (buffered=True)

sql = "SELECT ¥ FROM testdb.tempspaceavtestl;"
mycursor.execute (sql)

tempd = mycursecr.fetchall ()

mycursocr.close ()

temp2 = np.array (temp)

mycurscr = mydbZ.curscr (buffered=True)

sql = "SELECT ¥ FROM testdb.tempspaceavtest3;"
mycursocr.execute (sqgl)

temp3 = mycursecr.fetchall ()

mycurscr.cleose ()

AN N,

temp3 = np.array (temp3)

J oo ot

my_xticks = prefix

plt.fiqure (figsize=(14,10)})
plt.t

itle ("Space Dependence with Standard Devi n (Temp Milano Road, during different timestamps)")}

32

35

#plit.

plt.xlabel ("§ of cell-id")

Xt = np.linspace(l,
icks{xt, my x

np.shape (templ) [0])

cell-id's is based on their geographical position sc to represent the reoad!]"]
labell = '11:30 14:00"
plt.errorbar(x=xt, y=templ[:,1l], yerr=templ[:,2], celor='blus', marker="x", label= "{}".format(labell))
label2 = '"14:00 - le:30"
plt.errorbar(x=xt, y=temp2[:,1], yerr=temp2[:,2], color='red', marker='x', label= "{]".format (labell))
labelld = '"16:30 - 19:00"
plt.errorbar(x=xt, y=temp3[:,1], yerr=temp3[:,2], ceclor='black', marker='x"', label= "{}".feormat (label3})

plt.legend(bbox to_anchor=(1l
.show()

left', borderaxespad=0.)

Code Sample #21

One more data analysis approach we will try is with Gaussian Processes. In the Code Sample 22, we
will plot the average daily telecom traffic for a random cell in the route as dots so we can have a
broader image of its form. Afterwards, in Code Sample 23, we apply Gaussian Process Regressors, to
fit the discrete data we have with a (predicted) continuous function, which will satisfactorily describe
the shape of the telecommunication traffic through the day.

12 mycurscr = mydb2.cursor {buffered=True)
sql = "SELECT * FROM testdb.temptimeawv;"
mycurscr.execute (sgl)

temp = mycursor.fetchall ()
mycurscr.close ()

temp = np.array(temp)

.figure(figsize=(16, 10
title ("Time Dependence (Temp Milano Road)")
.xlabel("# of 10-minutes in the day (144 in total, starting at 12 am}")

ylabel ("Aver "]
plot{temp[i* mp [1%*144:i1%144+144,2], marker=".", linestyle="Hecne', label= "{}".format(label))
legend (bbox to anchor= loc="'upper lef 5)

.show()

Code Sample #22

import numpy as np

from matplotlib import pyplot as plt

from sklearn.gaussian process import GaussianProcessRegressor

from sklearn.gaussian process.kernels import RBF, WhiteKernel, RationalQuadratic, ExpSineSqguared, ConstantKernel, M:

[

wn

re will represent what cell of the recad we want to ses

O W m

[16

for kernel in kernels:

r
W b

gp = GaussianProcessRegressor{kernel=kernel, alpha=0, copy X train=True, n_restarts optimizer=0,
optimizer=None, ncrmalize y=True, :ar.dom_state=NoneJ

ot

36

X = temp[i*144:i%1
y = temp[i*144:i%144
2 X = np.atleast_2d(X).T
21 y = atleast 2d(y).T
gp.£it(X, y)
5 x1 = np.atleast 2d(np.linspace(0, 144, 30)).T
27 y pred, sigma = gp.predict(xl, return std=True)
¢ plt.figqure(figsize=(14,10))

'Observations')

ot(X, y, 'r.', markersize=10, linestyle='N
'

label=
t(x1, pred - sigma, 'b-', label='Pre 2
Y_F g

, lw=2, zorder=2)

on (Temp Milanc Road)")

Code Sample #23

Lastly, we will try and create a Correlation Mattix for the telecommunication traffic of all the
different cells in the route. This way, we can find a connection for the network usage between
different cells and draw conclusions about correlations. To begin with, we have to convert the data in
a form applicable for the correlation function. The data have to be in a table with the first row
containing the Cell IDs (identity of the data below), and below each ID, the list of its 144
telecommunication traffic values. We save the result in a dedicated ‘csv’ file (we need to, in order to
read it later using Pandas Dataframe). The above can be seen in Code Sample 24.

Code Sample 25 focuses on plotting the Correlation Matrix. The data (in the correct form) are
fetched from the csv file using the Pandas library. This is because, Pandas gives the capability of
using the ‘.corr()’ function. This function automatically calculates the values of the correlation matrix,
leaving us with only the plotting. The linear correlation matrix (in route cells sequence) is easily
displayed using the ‘heatmap’ function of Seaborn library. One more option is added, called
‘clustermap’. This display, organizes the data categories (cells) in correlation order, and groups them

accordingly.

14 mycurscr = mydb2.curscr(buffered=True)
15 =gl = "SELECT % FROM testdb.temptimeawv;"
16 mycurscr.execute (sql)

17 temp = mycursor.fetchall()

18 mycurscr.close ()

temp = np.array{temp)

print (np.shape (temp))

Bt B

olddata = []

m ot

i=20a

while i < np.shape(temp) [0]:
temparray = [float(temp[i, 0])]

[I CR S I S SR SR gy

o m

37

for k in range(144):
temparray.append (float (temp[i+k,2]))

clddata.append{temparray)
i+=144

print (np.shape (olddata))

data = np.zeros{(np.shape({clddata) [1], np.shape{oclddata)[0]), dtype = float)
for i in range (np.shape(clddata) [0]):
for j in range(np.shape{clddata) [1l]):
data[j][i] = float({olddata[i][4])

print (np.shape (data))

51 np.savetxt(r"C:\Users\Antonis\Documents\Jupyter Notebocks\Thesis\Test\CorrMatTest\TempMiRead2.cav", data, delimiters

Code Sample #24

ne Road chosen by the user
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

from scipy.stats import norm

11 temparray = []

i=0

while i < np.shape(temp) [0]:
temparray.append (int (temp[i,0]))
16 1+=144

###

data = pd.read csv(r"C:\Users‘\&ntonis‘\Documents'Jupyter Notebooks\Thesis\Test\CorrMatTest\TempMiRoad2.cav")

print (np.shape (data))

##2

corrmat = data.corr ()

£, ax = plt.subplots(figsize =(%, 8))

sns.heatmap (corrmat, ax = ax ,cmap ="Y1GnBu", linewidths = 0.1, annot=True, xticklabels = temparray, yticklabels = i

corrmat = data.corr()

g = sns.clustermap (corrmat, cmap ="Y1GnBu", linewidths = 0.1, annot=True, xticklabels = temparray, yticklabels = t¢
1t.setplcg.ax _heatmap.yaxis.get majorticklabels(), rotaticn = 0)

3 og

Code Sample #25

An additional interesting task we can develop is a type of user interface for the user so that they can
input the needed coordinates and choose which of the outputs they want to be displayed. For this
task, we will use the Ipywidgets library, create a list of checkboxes (the desired outputs for the user)
and add a ‘Continue’ button which will start the analysis procedure and calculations according to the
uset’s choice. To petform this, we will use a different Jupyter Notebook, and run the notebooks we
have already developed remotely, depending on if the user has checked the according checkbox. The
code that performs the above is the following (Code Sample 206).

38

import ipywidgets as widgets

2
4 |print ("Give me pickup longitude and latitude: ")
5 | input_str = input()
& |tokens = input str.split ()
7 a = float (tckens[0])
b = float (tockens[1])

print ("Give me dropoff longitude and latitude: ")

selected data = []

11 | input = {)

12 |tokens = input_str.split()

13 ¢ = float(tckens)

14 ' d = float (teokens[l]

16 |pickup lon, pickup lat, drepoff lon, dropcff lat = a, b, ¢, d

20 |data = ['Time Dependency', 'Space Dependency', 'Gaussian processes', 'Correlatieon Matrix']
21 checkboxes = [widgets.Checkbox{value=False, descripticn=label) for label in data]

22 |output = widgets.VBox (children=checkboxes)

23 |display(output)

9 |butten = widgets.Butten(description='Continue')
30 |out = widgets.Output ()
32
33 |def on butten_clicked({_):
34 global selected data
"lin g function with output"

36 with cut:
37 # what I
38 #clsar o

for i in range (2, len(checkboxes)):
40 if checkbcoxes[i].value =— True:
41 selected data = selected data + [checkboxes[i].description]
4z print (selected data)
44 if selected data == []:

print ("Error: No choices checked"}
else:

)

$run ./UITempCoordsnew|[FULL].ipynb

$run ./TempCreateFull.ipynb

52

if 'Time Dependency' in selected data:
%run ./TempTimeDependency.ipynb

if 'Space Dependency' in selected data:
%run ./TempSpaceDependency.ipynb

if 'Gaussian processes' in selected data:
%run ./TempGaussian.ipynb

if 'Correlation Matrix' in selected data:
%run ./TempCorrMat.ipynb

on and ntction toge

k{on button clicked)

Code Sample #26

The UI resulting from the code above can be seen below (User Interface). We have already inserted
pick-up and drop-off longitude and latitude and then the checkboxes appear. User then picks the

desired ones and presses ‘Continue’. Then the program runs the first two codes we developed,

required for the initial pre-processing and cleansing of the data associated with the user-chosen route.

39

After that, all the notebooks according to the user’s choices are executed and the results are displayed
on the result pane, below the notebook. This is also handier, because we get all the results
concentrated and it is easier to study them.

Give me pickup longitude and latitude:
8.01292 45.4052
Give me dropocff longitude and latitude:
§.01195 45.40638

[J Time Dependency
[J Space Dependency
[J Gaussian processes

[Cerrelation Matrix

Continue

User Interface

This concludes the full data analysis procedure. We have all the data needed saved in dedicated
databases, and every time, according to users input, the same automated sequence of codes is
executed, printing all the results we need.

40

2.5. Results and Conclusions

The plot results, that will be included as an example of the procedure, belong to the route that we
randomly chose at the start (user inputs the coordinates). All the detailed plots of specific parts of the
route/data are also randomly chosen and can be altered easily because of the generalization of the
codes (when a specific part is plotted, the variables that describe that part, are visibly separated at the
top of the code). The results will be displayed and commented on.

Time Dependency Results 1-4 (corresponding to Code Samples 23-26):

Time Dependence (Temp Milano Road)

3
&
("}
=

300

b
wn
@
=}

250 1

[~
=
=

Average Internet traffic

]
=}

100

T T T T T T T T
] 20 40 60 80 100 120 140
of 10-minutes in the day (144 in total, starting at 12 am)

Time Dependency Result #1

41

500

400

Average Internet traffic
=]
a

200

100

06

0s

04

03

nz

42

Time Dependence with Standard Deviation (Temp Milano Road)

a0 60 B0 100 120 140
of 10-minutes in the day (144 in total, starting at 12 am)
Time Dependency Result #2
Coefficient of Variation (Temp Milano Read)
v v T v T T
100 120 140

80
of 10-minutes in the day (144 in total, starting at 12 am)

Time Dependency Result #3

—+— 69500

— 69500

Time Dependence, Bar plot (Temp Milano Road, cells = [6950.0, 6851.0, 6852.0])

. 59500

68510
501 - 8520
| |
5 54 5) 60

of 10-minutes in the day (144 in total, starting at 12 am)

I e
=) 2 =)

=1
8

Average Internet traffic

o

Time Dependency Result #4

The results are as expected. Traffic heats the lowest early in the morning and peak network traffic
falls together with regular traffic. The pattem is the same for every cell, but the value of the traffic
deviates depending on the density of the geographical area. Standard deviation is insignificant in the
early morning hours, meaning that every day the network needs during these hours decrease. On the
other hand, during rush hours, the standard deviation is quite significant compared to the total
telecommunication traffic. This means that network usage during the day is highly dependent on the
day itself. For example, weekday traffic is quite larger than weekends or holidays. Coefficient of
variation also gives us the same information. On the bar plot, we can recognize different traffic
growth patterns during a part of the day. That means, network usage is spatially dependent and
moves geographically during the day in our route cells. M ultiple conclusions like these can be drawn,
depending our needs and desires.

43

Space Dependency Results 1-2 (corresponding to Code Samples 29-30):

300 4

2751

250 1

Average Internet traffic

175 1

150

125 1

Average Internet traffic

44

225 1

200 1

Space Dependence with Standard Deviation (Temp Milano Road, during rush hour, 10am - 6pm)

[The sequer|ce of cell-id's is based on their geographical position so to represent the read!]

325

300

275

250

225

200

175

150

6950 &8‘51 68‘52 68‘53 68‘54 ?0‘55 68‘55 6956

of Cell-id

Space Dependency Result #1

Space Dependence with Standard Deviation (Temp Milano Road, during different timestamps)

[The sequer

ce of cell-id's is based on their geographical position s to represent the read!]

T T T T T T T
6950 6851 6852 6953 6954 7055 6955 6956

of Cell-id

Space Dependency Result #2

—4— 11:30- 14:00
—4— 14:00 - 16:30
—4— 16:30-19:00

Different telecommunication traffic values depending on the geographical area which is expected.

Low standard deviation shows that spatial deviation is almost time constant and dependent to the

population density ot even business/recreational areas. The plot with the 3 different time periods on

the other hand, shows that the route telecom traffic (which we considered time constant on spatial

dependency) geographically moves on different times of the day. Telecommunication traffic is time

dependent and it can move from cell to cell depending on the local human activity during the day.

Gaussian Processes Results 1-2 (corresponding to Code Samples 31-32):

300

250

el
=
=

Average Internet traffic

-
]
=]

100

45

Time Dependence (Temp Milano Road)

nsanan®

a 60 80 100
of 10-minutes in the day (144 in total, starting at 12 am)

Gaussian Processes Result #1

120 140

* 69500

Time Dependence with predicted distribution (Temp Milano Road)

300

250

200

internet traffic

150

100

T T T
o 20 40 60 80 100 120 140
time

Gaussian Processes Result #2

A continuous function to approximately represent the average daily traffic is successfully calculated.
An application like that (assuming constant day to day telecom traffic) can give us an approximation
for the desired value (telecommunication traffic) in any cell of the route anytime in the day. The
result is aligned with what we have seen already and confirms the difference in network usage

through the day.

46

Cortrelation Matrices Results 1-2 (corresponding to Code Sample 34):

BB52 851 B850

E953

BA55 7055 B854

E95E

Correlation Matrices Result #1

The correlation matrix above portrays the exact relationship between all the different cells of the
route. We can see that neighboring cells (the closer we are to the main diagonal) have the highest
values for the correlation, which is expected (we expect small deviation between neighboring cells).

47

-04

Correlation Matrices Result #2

One more display that can provide useful information is the clustering correlation matrix. In this type
of plotting, as we can see, the cells are organized in a way to group cells with high correlation. That
means that the cell sequence is sorted in a correlation way, to find patterns about the geographical
dependency of the telecommunication traffic.

48

These were the results the code sequence produced for the example route. Users choose the exact
coordinates they want, as well as the specific variables when the route is split to smaller parts.

The entire procedure lasts about 2-3 minutes on average (depending on the route length), which is
significantly faster compared to using numpy arrays instead of database tables for the data storage.
Considering the amount of data the tool has to process and calculate to get the results, we can
consider it efficient.

The results this project produces can give useful information about the general network usage. They
can also give indications on the needs of the network, and ways to improve and develop it. Apart
from that, the results and the codes in general can be used as a stepping stone in different projects,
so that, combined with additional analysis, they can offer necessary insights for the network

betterment.

An example like that will be given in the second part of the thesis. For that project we will use the
work done here, and combined with additional data and processes we will take it a step further.

49

3. Car Traffic — Telecommunication Activity Correlation

3.1. Introduction

In this part of the thesis we will deal with calculating the correlation of telecommunication activity
and car traffic in the Milan province. We will use published data about car traffic on the roads of
Milan as well as the data used in the previous project. They will be handled and processed according
to the current’s job needs. It is one more task that requires database handling and big data analytics.
The previous task (calculating the telecommunication traffic on any Milan route) will be taken
advantage of. Combined with the new data analysis procedure, it will produce entirely different
conclusions for an entirely different project.

The ultimate goal is to create an automated procedute which, given the data of the road we want to
study, will give a result about the car traffic — telecom activity correlation of that specific road. In
other words, by what factor is the network usage determined by mobile users. This information can
give us an insight about the network resource needs for servicing mobile users. This category of users
is special, because their ongoing call or data session needs to be transferred to the next base station
of the cellular network. This is a process known as handover, and its application needs extra network
functionality in comparison to servicing spatially stable users. Knowing beforehand, which parts of
the Milan province have greater handover handling needs, can be an important beneficial factor
towards strengthening and optimizing the network itself (could be work for a different project).

We will present the data, create fitting database tables and import them, and create an automated
sequence of codes which will fetch the specific data we need all the way to calculating the desired
correlation. After that, we will validate the tool’s results, comparing them to what we would expect

for specific roads according to their attributes.

50

3.2. Presenting the Data

The extra dataset we are going to need for this work is about car traffic on Milan roads. It has been
provided by the mapping and location technology company “TomTom’. The format the data were
published was in excel tables. One table for every hour of the day (12:00-01:00, etc.), every one of
which presents the number of cars passing from every road of the Milan province during that
specific hour. The data we have in our disposal are the average cars passing from each road during
that specific hour for the duration of a month. These data are more recent compared to the
telecommunication activity ones, but, given the fact that both the datasets are extended on long
periods of time, we make the assumption that they both describe the general patterns of network and
road usage, regardless of the day.

We mentioned the Milan province roads. There is one more table dedicated on the specific
information of these roads. This table we have available is desctribing more than 150.000 different
road parts throughout the Milan region, for which we have the starting and finishing coordinates, the
road name etc. Furthermore, every road chunk is characterized by a unique key (BS_Id). This keyis
used in the 24 tables representing the automobile traffic of the roads for every hour of the day. A
sample of the car traffic data and the road attributes can be seen in Image 4 and Image 5 respectively.

In Image 4 (car traffic data during 00:00-01:00) we can notice that there are data missing for some
road parts. The roads that have no traffic (0 ‘BS_Hits’) during the specific time window are skipped
completely from the report. We will need to fix the missing data issue later on.

These data combined with the ones used before will be used for this new analysis project.

51

BS_Id BS_Hits

52

37

Wt s s w M
L= T R T RN

I N N A =
W M= O W] = = I R T =]
MoWoW W
L= =R Y

[ERIT RS Bk owow
d885EE8 G

L w
[v:] =
R R B RN R R - - - R RN A RN - R RN RN RENEE- B RE- -]

60

Image #4

BS_Id

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
13

22

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Segment Id NewSegld Length FRC SpeedLimit StreetName

-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004531-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004931-
-1.38E+13 -00004531-

151.65
11.23
32.87

11.1

117.56
60.24
20.72
20.88
22.01
15.31

217.27
98.68

114.56

7.8
91.63
24.19

34.8
76.7

148.78

202.61
96.37

124.33
13.45

198.38
28.88
62.61
36.61

232.96
13.39

167.45
45.78
37.79

148.53
61.37
24.99

165.87

123.71
43.03
70.45

B B B L T o e B e L N L R N N L S N R N R TR T T R e SR RN

35 Strada Comunale Gaggiz 9.01292,45.4052

90 Via Manzoni 9.02239,45.40609
50 Strada Vigevanese 9.02279,45.40617
90 Via Manzoni 9.02284,45.40607
90 Strada Provinciale 38 9.03011,45.39619

50 5P139 9.10972,45.36605
50 5P139 9.10972,45.36605
50 5P139 9.10996,45.36597
50 5P139 9.11001,45.36578

50 Viale Longarone
70 Via dei Giovi

9.1235,45.36761
9.13428,45.36496

50 Strada Vigevanese 9.03177,45.41088
50 Strada Vigevanese 9.02992,45.41035
50 Viale Enrico Fermi 9.27183,45.56185
20 9.27156,45.54843

50 Via San Maurizio al Laml9.27591,45.54831
50 Via San Maurizio al Laml9.27635,45.54829
20 Via San Maurizio al Laml9.27596,45.549
20 Via Ghisallo 9.2793,45.54819
35 Via Monte Cervino 9.27944,45.55001
20 Via San Maurizio al Laml9.28089,45.54723
20 Via San Cristoforo 9.28368,45.55335
50 Via San Maurizio al Lami9.28387,45.54795
9.28424,45.54571
50 Via San Maurizio al Laml9.28423,45.54793
20 ViaTorazza 9.28491,45.55218
50 Via San Maurizio al Laml9.2847,45.54739
20 Via Moncenisio 9.28471,45.534579
50 Via San Maurizio al Laml9.28487,45.54789
20 Via Resegone 9.28537,45.54930
50 Via San Maurizio al Lami9.28546,45.54788
50 ViaTorazza 9.28503,45.55309
20 Villaggio Brugherio 9.2862,45.54916
50 ViaTorazza 9.28526,45.54953
20 ViaTorazza 9.28552,45.55075
20 9.28546,45.54738
20 Via Grigna 9.28577,45.548%6
50 Via San Maurizio al Laml9.286,45.54781
20 ViaTorazza 9.28559,45.55139

20 Via Gransasso

Image #5

Coordinates(start) Coordinates(finish) |

9.01195,45.40638
9.02241,45.40599
9.02262,45.40614
9.02279,45.40617
9.02988,45.39515
9.10927,45.36639
9.10965,45.36604
9.10985,45.36603
9.11001,45.36585
9.12333,45.36768
9.13367,45.36388
9.03084,45.41058
9.02984,45.41028
9.27173,45.56186
9.27164,45.54925
9.2756,45.54832

9.27591,45.54831
9.27591,45.54831
9.2792,45.54685

9.2793,45.54819

9.28089,45.5481

9.28357,45.55224
9.28369,45.54797
9.28369,45.54797
9.28387,45.54795
9.28411,45.55225
9.28423,45.54793
9.2847,45.54783

9.2847,45.54789

9.28527,45.54911
9.28487,45.54789
9.28489,45.55278
9.2859,45.54931

9.28517,45.5497

9.2852,45.55076

9.28544,45.54638
9.28556,45.54843
9.28546,45.54788
9.28552,45.55075

3.3. Preprocessing and Saving to Databases

Having presented the shape of the data, we can now move on to the next step. We will use the
database tables created already in MySQL, together with the ones we will create now. As before, the
databases will be managed through Jupyter Notebook, using the ‘mysql.connector’ library.

In this database, we are going to store all the data related to the Milan automobile traffic. The
necessary information for our job is the unique 1D, its name, the coordinates (the starting and ending
longitude and latitude is provided) as well as the car traffic over it for every hour of the day.

The first issue we need to resolve is the missing data problem. Rows with zero traffic are not
included in the traffic tables so we need to add them with value 0. We solve this like following. First
of all, we move all the data in hourly tables in the database in their exact form. This procedure can be
seenin Code Sample 27. We then create a temporaty table which contains the key values that have
been given to all the roads (that means an increasing value from 1 to 150924, the number of the
roads), which is displayed in Code Sample 28. Lastly, we create an iteration loop, which resorts to
every hourly traffic table and finds which key values (road IDs) are missing from every table, with the
help of the table that contains all the key values. It then inserts records with the missing keys and
zero value for the car counter. To complete the result we create a new table for every hour of the
day, and re-insert the already existing car traffic data in an increasing ID order while dropping the
unnecessary tables, so that we have the desired data sorted. This iteration loop can be seen in Code
Sample 29.

for hour in range (24):
loadPath = r"C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/Milanc Car Stats/April-2015_{}_00-{}_00.csv".format(
print (loadPath)
dumbstr = "CREATE TABLE cardb.hour{}_{} (road_id int unsigned, car_hits int unsigned);".format (hour, hour+l)
mycursor = mydb2.cursor (buffered=True)
sgl = dumbstr
mycursor.execute (sql)

mydb2 . commit ()
mycursor.close()

;'''.format (loadPath, hour, hour+l)

mycuzser = mydb2.cursor (buffered=True)
sgl = dumbstr

mycuzsor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

Code Sample #27

53

#one-time, auxill

import mysgl.connector

mydb2 = mysgl.connector.connect (

host— alhost",

user="r
password— 517
database—
}
mycursor = mydb2.cursor (buffe
sql = "CREATE TABLE cardb. p (id int NOT NULL AUTO_INC NT, primary key (id));’

mycursor.execute (sgl)
mydb2 . commit ()
mycursor.close ()

for i in range(l, 150925):
mycursor — mydb:
sgl = "INSERT INTO cardb.hour0 1 temp ¥
mycursor.exscute (sgql)
mydb2 . commit ()
mycursor.close ()

cursor (buffered=True)

Code Sample #28

for hour in zangs(l, 24):

mycursor = mydb2.curscr (buffered=True)
sql = "SELECT id FROM cardb.hour0_1 temp WHERE cardb.hour0_1 temp.id NOT IN (SELECT rocad id FROM cardb.hour{}_{
mycursor.execute (sgl)

data = mycurser.fetchall()

mycursor.close (}

print ("Hour: {}:00 - {}:00".format (hour, hour+l))
for i in rangs(len(data)):

mycursor = mydbZ.cursor (buffered=True)

sgl = "INSERT INTO cardb.hour{}_{} VALUES ({}, {});".format (hour, hour+l, data[i][0], 0)

mycursor.execute (sgl)
mydb2 . commit ()
mycursor.close ()

mycursor = mydb2.cursor (buffered=True)
=gl ='CREATE TABLE cardb.hour{}_{}_fin LIKE cardb.hour{}_{};'.format (hour, hour+l, heour, hour+l)
mycursor.execute (sgl)

mydb2 . commit ()

mycursor.close ()

mycurser = mydb2.curscr (buffered=True)

sql = 'INSERT INTO cardb.hour{}_{}_fin (SELECT * FROM cardb.hour{}_{} ORDER BY road id);'.format(hour, hour+l, 1
mycursor.execute (sgl)

mydb2 . commit {)

nmycurser.closs ()

mycurser — mydb2.cursor (buffered—Truc)

sgl = 'DROP T2ZBLE cardb.hour{}_{};'.format (hour, hour+l)
mycurser.execute (sql)

mydb2 . commit ()

mycursor.close ()

mycursor = mydb3.cursor (buffered=True)
sgql = 'RENAME TABLE cardb.hour{} {} fin TO cardb.hour{}_{};'.format (hour, hour+l, hour, hour+l)

mycursor.sxecute (sgl)
mydb2 . commit ()
mycursor.close ()

Code Sample #29

At this point we have created 24 hourly car traffic tables containing the data for all the road parts we

have available.

What we want to do next, in order to have all the data grouped, is unite the hourly traffic tables
together with the road attributes into one table, which will contain columns for the road 1D, the
starting and finishing longitude and latitude as well as the 24 columns for the hourly car traffic that
passes through it. These road parts are short and straight, so the edge coordinates provide all the
information we need about their geographical position. We carry this task out using Microsoft Excel.
We concatenate the data of Image 5 (while keeping only the ID and the coordinates) together with
24 Excel tables extracted from the 24 database tables containing the average houtly car traffic. We
now have all the information we need grouped in a single table and store it in a dedicated database

54

table containing all the necessary car traffic information, while deleting the unnecessary tables we
created before. The final procedure that executes the information storing can be seen in Code

Sample 30.

import mysgl.connectoxr

mydo2 = mysgl.connsctor.connect(
host="localhost",

user="ro

password 1917Ln
database="
}
ogramData/MySQL/MySQL Server 5.0/Uploads/Milanc_Car_ Stats lldata.csv"
T cazdb.fulldate (road id int unsigned, coords_long s varchaz (20), cocrds_lat_s vazchaz (20)
mycursor = mydb2.cursor (buffszed=True)
sgl — dumbstz
mycursor.execute (sql)
mydo2. commit ()
mycursor.close ()
dumbstr =
(, coords_long_s, coords_lat_s, coords_long_f, coords_lat_f, car_hits_0_1, car_hits_1_2, car_hits
;'''.format (loadPath)
mycursor = mydb2.cursor (buffered=Trus)

sgl — dumbstz
mycursor.execute (sgl)
mydb2. commit ()
mycursor.close ()

Code Sample #30

The resulting database table has the following shape (Database Sample 2)

rosd_id coordsong_s coords_lats coords ong_f coords lat_f car_hits 0_1 car_hits 12 car_hits 23 car hits 3 4 corhits 4.5 carhits 56 car hits 67 car_hits 78 car_hits 89 car_hits 9 10 car_hits_10_11

[9.01292 45.4052 9.01195 45,4064 0 0 o 0 0 o
2 9.02239 45,4061 9.02241 45,406 3 B] 1 1 4
3 9.02273 45,4062 9.02262 45,4061 57 37 27 8 8 3
4 9.02284 45.4061 9.02278 45,4062 7 7 8 1 0 0
5 9.03011 45.3962 9.02988 45,3951 2 3 0 1 1 4
3 9.10972 45,3661 9.10927 45,3664 3 0 3 1 2 4
7 9.10672 45,3661 9.10965 45,366 1 5 o 2 0 o
8 9.10996 45,366 9.10985 45,366 4 5 3 3 2 4

Database Sample #2

0
13
68
7
8
33
1
34

0
18
145
23
%
132
4
135

o
59
184
17
51
181
20
1

0
33
181
31
32
94
6
100

0
13
234
33
21
53
17
kol

car_hit
0

18

2m

39

24

55

1

&6

We create one more database table that looks exactly like the one in Image 5, with the road’s name,

ID and coordinates stored inside. We will need the road name for a procedure later on.

All the necessary road and car traffic information are now stored in MySQL tables, so we atre ready

for the next part of the project.

55

3.4. Data Analysis Procedures

At this point we will start creating the automated procedure we explained before. The goal is to
automatically calculate the telecommunication — car traffic correlation of a desired road by inserting
its attributes as starting input. This procedure will also be developed using the jupyter notebook,
creating a sequence of codes running linear.

First of all, to make the tool easier to use, we will create two different ways to input the desired road.
The first one (easier to implement), is for the user to directly input the ‘Road ID’ of the
corresponding road he want to study. In that case, we can directly find from the road database which
road that s, its coordinates and how many cars pass through in average. This method however, is not
ideal for the user because he will need to have the road data available, and then search for the desired
road.

Due to this we add a second choice, in which the user can input the name and the coordinates of the
road he wants. In that case, we need to add an extra step in the procedure. We search in the road
attributes database table for a road that fits the data given and keep the most fitting choice (that
means the Road ID, if there is a fitting choice). If we can find such a road, then we match the user
input to a corresponding Road ID and the rest of the procedure continues normally. If no such road
can be found in the data, an error message is printed and the procedure stops. That extra piece of

code can be seen in Code Sample 31.

#works only

mydk — mysgl.connector.connect (
host="localhost",

user="

password E!11919!7
)
mycursor = mydb.cursor (buffered=True)
sql = "SELECT coords_long_ s, coords lat s, coords long f, coords lat f, road id FROM cardb.roadinfo WHERE name='{}"
mycurscr.execute (sgl)
data — mycursexr.fetchall()
mycurscr.close ()
»
class St ion (Exception) :
def traceback [self):
pass
if (data — []):
print ('Ne zoad with these data found!')
zoad — None
raise StopExecution
import math
min=1 mi
for row in data:
x = rlong - (row[0l+row[2])/2

rlat - (row[l]+row[3])/2

if(math.sgzt(x*x + y*y) < min):
min = math.sgrt (x*x + y*y)
road = row[4]
slong = row[0]
slat = row[1]
flong = row[2]

flat = row[3]

56

rlong - (slong+flong) /2
rlat - (slat+flat) /2

¥
diserror = math.sqrt(x*x + y*y) #deviance from the cen

if diserror > 0

print ('No
road = None

raise StopExecution

"+str (road))

Code Sample #31

What it does is fetch from the data from the database that correspond the road name user selected. If
there is no such data the procedure is terminated with a suitable output. Otherwise, it goes through
all the data fetched, to spot the piece of road that s closer to the coordinates input. When that piece
of road is spotted an extra check is conducted, in which we find out if the chosen road is close
enough (arbitrary close) to the desired road. If not the procedure terminates with the same message,
since no road was found matching enough. The program stores the Road ID which we ended up
with, in the same variable it would be saved if the user would directly input the desired Road ID.
With the end of this code chunk, we have completed the Road ID search successfully, and we have
the Road ID we needed to continue with. The rest of the procedure goes exactly like we had been
given the Road ID from the start (the 2 methods overlap from now on). We will analyze the rest of
the procedure once, and it is used in both cases.

The next step, having acquired the Road ID, is to calculate the telecommunication traffic on that
piece of road. The car traffic is stored in the corresponding database, ready to be fetched for any
road. For the telecom traffic, on the other hand, it is a bit more complicated, because we have the
telecom traffic data for every Milan cell stored. That means, that the first thing we need to do is
match the specific route (piece of road), with the cells it traverses through. We need to be careful, so
that the exact piece of road for which we have the automobile data, is matched perfectly with a

sequence of cells, so that the results are valid.

But we have already created a code sequence that executes the above, during the previous part of the
thesis. We can use it exactly as it is with a few changes. The first change is about the input. We do
not ask the user for starting and ending latitude and longitude, as we did before. We have the Road
1D, so we just need to fetch the corresponding starting and finishing longitude and latitude from the
database that stores the road attributes. We then use the ‘Project-OSRM’ tool exactly as we have
already done. The second change, is that we test both ways of the route (from start to finish and
from finish to start) to determine which of the two is the shortest path (roads can be single direction,
so a wrong direction can produce entirely wrong routes). We then have come to know the shortest
path from start to finish in coordinate points, which we store in the dedicated database table (about
the path coordinates). We call again the ‘“fullroute’ procedure to fill the distance gaps in between the
coordinate points. Finally we match the route coordinates with the corresponding cells, by checking
in which specific cell each one of the points belong, and save the route cells in a dedicated MySQL
database table. The above can be seen in Code Sample 32. We have tested multiple times that the

57

sequence of cells which is produced is matching the desired road perfectly. An example will be
provided.

def get route(pickup lon, pickup lat, dropeff lon, dropoff lat):

urll =
20 url2 = dropoff lat)
21 urld =

r = reguests.get(urll + url2 + url3)

if r.status code != 200:

return {}

r.jscnf()
23 = polyline.decode(res['routes'] [0][
start_point = [res['waypoints'][0]['1l , res['waypoints'] [0]['location'] [0]]
30 end point = [res['waypoints'][1l]['lecat 1[1], res['waypoints'][1l]["location'][0O
31 distance = res['routes'][0]['distance"]
33 out = {'route':routes,

return cut, routes

mycurscr = mydb2.cursor (buffered=True)

sql = "SELECT coocrds_long s FROM newfulldata WHERE road id = {}".format (road)
mycurscr.execute (agl)
leng_s = mycursor.fetchall()

mycursor.cleose ()

mycurscr = mydb2.curscr (buffered=True)

sgl = "SELECT cocrds lat_s FROM newfulldata WEERE rcad_id = {}".format (road)
mycurscr.execute (agl)
lat_s = mycursor.fetchall()

mycursgor.cleose ()

mycursocr = mydb2.cursor (buffered=True)

sql = "SELECT coocrds long f FROM newfulldata WHERE road id = {]}".format (road)
mycurscr . execute (sgl)
long f = mycursor.fetchall()

mycursor.cleose ()

€l mycurscr = mydb2.cursor{buffersd=True)

sgl = "SELECT coords lat f FROM newfulldata WHERE road id = {}".format (road})
mycurscr.execute (sgl)
lat f = mycursor.fetchall{})

mycurser.clese ()

0 pickup lonl, pickup latl, dropoff lonl, dropeff latl =
1 | dropoff lon2, dropoff lat2, pickup lon2, pickup lat2 =

#5#
76 |whole routel, help routel = get_route(pickup lonl, pickup latl, dropoff lonl, dropoff latl)
77 |whole route2, help route2 = get_route(pickup lon2, pickup lat2, dropoff lon2, dropoff lat2)

8 | if whole routel['distance'] < whole route2['distance']:

80 whole route = whole routel
help route = help routel
else:
whole route = whole route2
84 help route = help route2

58

irsor (buffered=True)
ABLE celliddb.routecoords;"
{=gl)

11 mycursor =
sql = "TRU
mycursocr.execuc
mydb.commit ()

mycurscr.close ()

for i in help route:
mycursor = mydb.curscr (buffered=True)
sql = "INSERT INTC celliddb.routecoords (unigid, latitude, longitude) VALUES ({}, {}.,
mycursor.exscute (sql)
mydb . commit ()
mycursor.close()

a=a+ 1

G b b

R R R B B R
VL

1 mycurscr = mydb.cursor (buffered=True)
sql = "CALL celliddb.fullroute;"
mycurscr.execute (sgl)

mydb. commit ()

mycursor.close ()

[y

1 mycurscr = mydb.cursor (buffered=True)

sql = "SELECT * FROM celliddb.routecoords ORDER BY un
mycurscor.execute (sgl)

myresult = mycursor.fetchall()

ot

mycurscr.clese ()

1 mycurser = mydb.cursor (buffered=True)

sql = "SELECT * FROM celliddb.cellidscocrds;"
mycurscr.execute (2gl)

cellids = mycurscr.fetchall()

Wb

mycursocr.cleose ()

1 | from shapely.geometry import Point
2 from shapely.geometry.polygon import Polygon

routecells = []
for i in myresult:

#print (i

point = Point(i[1l], i[2]}

10 for j in cellids:
] pelygon = Pelygen([(3001, 3[11}, (3[2], 3[31), (3041, 3[31), (3[€l, 3I[71)1)
checker = polygon.contains (point)

if (checker == True):

if j[8] not in routecells:
3 routecells.append(j[8])
17 break

1 mycurser = mydb.cursor (buffered=True}

sgl = "TRUNCATE TABLE celliddb.rocutecellids;"
3 |mycursor.execute (sql)

mydb.commit ()

mycurscr.close()

for i in routecells:

A mycursor = mydb.cursecr (buffered=True)

9 sql = "INSERT INTO celliddb.routecellids (cellid) VALUES ({});".format (i)
10 mycursor.execute {sgl)

11 mydb. commit ()

12 mycursor.close()

Code Sample #32

{})".format (a,

i[01,

1[11])

At this point, we have stored in the database the cells through which the route traverses. Next step is
to isolate the telecommunication data of these cells, which desctibe the network demand in the area
of the road we want to study. To perform this, we will need the daily telecommunication traffic data

59

stored in the database. Exactly as we did in the previous part of the thesis, we will create an iterating
loop going through all the daily traffic tables and storing only the specific data we want (cells of the
route) in temporary database tables. That way, we will have 62 temporary tables (one for each day,
truncated before starting the procedure again) with the telecom traffic of the cells that interest us. We
do an extra step, and calculate the average daily telecom traffic from the 62 days. We save that new
average daily traffic in a dedicated database table. The execution of the above can be seen in Code
Sample 33.

mycursor = mydb.cursor (buffered=True)

sql = "SELECT * FR 1liddb.routecellids;"
mycurscr.execute (sgl)
myresult — mycursor.fetchall()

mycursor.close ()

route = []

for x in myresult:
route.append (x[0]

".join("{:d}".formaz (i) for i in route)
IDs: " + dumbstr)

mpday” + str(day) + ";"

mycursor = mydb2.cursor (buffered=True)
sql

tempstr
mycursor.execute (sgl)
mydbZ . commit ()
mycursor.close ()

tempstr = "INSERT INTO testdb.tempday{} SELECT ¥ FROM testdb.day{} WHERE Cell ID in ({});".format (day, day, dum}

mycursor = mydb2.cursor (buffered=True)
sql

tempstr
mycursor.execute (sqgl})
mydbZ . commit ()
mycursor.close ()

int ("Cre

; {}".format (day))

for day in range(l, 63):

tempstr = "SELECT * FROM testdb.tempday"™ + str(day) + ";"
mycursor = mydb2.cursor (buffered-True)
sqgl = tempstr
mycursor.execute(sql)
data = mycursor.fetchall()
mycursor.close()
data = np.array(data)
alldata.append(data)
p))
avtraff = alldatal[0]
for i in range(np.shape(alldata) [1]}:
isum = 0
for x in range(np.shape (alldata) [0]):
isum 4= =alldatafx] [1] [2]
iav = isum/np.shape(alldata) [0]
avtraff[i] [2] = iav
for i in range (np.shape{avtraff) [
1011 —=
1011 /=
1[1] +=1
temp = aviraff
avtraff = np.zeros((np.shape (temp) [0],np.shape (temp) [1]1+2))
avtraffl:,:-2] = temp

60

for i im range (np.shape(alldata) [1]}:
sd = 0
for x in range(np.shape{alldata) [0]):
ad += pow{avtraff[i] [2]-alldata[x] [i][2], 2)

sd = math.sgrt (sd/np.shape(alldata) [0])
avtraff[i] [3] = sd

for i in range (np.shape(avtraff) [0]):
Cv = avtraffl[i] [3]/avtraff[i][2]
avtraff[i] [4] = Cv

True)
CATE TAELE testdb.temptimeav;"

mycurscr = mydb2.curscr(buffered
sgl = "TRUN
mycurscr.execute (sqgl)
mydb2 . commit ()
mycursecr.close ()

1 for row in avtraff:
2 mycursor = mydb2.cursor (buffered=True)

"INSERT INTO

imeav (Cell ID, Time stamp, int time aw, sd, cv) VALUE

sgql =
4 mycursor.execute (sqgl)
5 mydbZ2 . commit ()

mycursor.close ()

(i Py e £
he {F, Lhe {}, {37

net.")

print("Created temp datakase for average daily im

Code Sample #33

We have now processed and saved all the telecom data needed to describe the user chosen road.
Specifically, we have calculated the average daily telecommunication traffic in the desired cells.
Furthermore, fetching the automobile data from the corresponding database tables is trivial, so we
have come to acquire all the needed data to move forward.

Next step is to plot our data. We fetch the average daily telecommunication traffic as well as the cells
the road is comprised from. We do an extra step to make sure that the sequence of the cells saved in

the average daily traffic table is the same with the geographical topology on the road (Code Sample
34).

18 datanew = []

for i in ra (len(ro

flag = :;u:e [i]

25 for row in data:
26 if row[0] =— flag:
2 datanew.append (row)

2% mycurscr = mydb2.curscr (buffered=True)
sgl = "TRUNCARTE TABLE testdb.ten

3]l mycurscr.execute (sgl)

32 |mydbZ.commit ()}

mycurseor.clese ()

for row in datanew:
mycursor = mydbZ.cursor (buffered=True)
sgl =
mycursor.execute (sql)

39 mydb?2 . commit ()

40 mycursor.close ()

.
(i}, {F, {3, L}, {}H)i"-fe

42 | print("Rearranged average daily in

Code Sample #34

61

We are now ready to plot the data we have calculated and isolated. In the first script (Code Sample
35), we plot the average daily traffic of every cell of the road. That is not enough though, because the
data for the telecommunication trafficare given in 10-minute intervals through the day, while for the
automobile traffic we have average hourly data. So for the next step, we calculate the hourly average
telecom traffic of each cell and proceed to plot it (Code Sample 36). For the next, and last plotting,
we add the hourly average car traffic of the road we study. Furthermore, instead of drawing each
cell’s traffic separately, we combine them to create united average telecommunication traffic for the

road (representative for the whole route). The code that performs that can be seen in Code Sample
37.

import numpy as np
import matplotlib.pyplot as plt

I .xlabel("#
plt.ylabel(

Aver

while i < np.shape(data) [0]:
lakel = datali] [0]
plt.plot{data[i:i
i+=144

44,1], data[i:i+144,2], label= "{}".format (lakel)

plt.legend(bbox to anchor=(1.01, 1),
plt. show()

, borderaxespad=0.)

Code Sample #35

import numpy as np
import matplotlib.pyplot as plt

i=

t.figure (figsize=(14,10)})
plt.title ("Time D lence,
plt.xlabel("#
plt.ylabel ("Av

while i < np.shape(data) [
label = data[i] [0]

mylist = []
for j in range(24):
itemp = i + j*6

telesum = 0
for k in range(6):

telesum += datal[itemp+k, 2]
teleav = telesum/&

mylist.append([j, teleav])

mylist = np.array(mylist)
plt.plot (mylist[0:24,0], mylist[0:24,1], label= "{}".format (labkel))
i+=144
plt.legend(bbox to_anchor=(1.01, 1), left', borderaxespad=0.)
1t.show()

Code Sample #36

62

W H

i=10
mylist = []
while i < np.shape(data) [0]:
label = data[i] [O]
for j in range{(24):
itemp = 1 + Jj*&6
telesum = 0
for k in range(€):
telesum += datal[itemptk,2]
teleav = telesum/é
mylist.append([j, teleav])

i+=144

evlist will contain the average of the hourly average telecom activity of each

mynewlist = []

for hour in range (24):
sumhat = 0

£t =10

for row in mylist:

if row[0] = hour:
sumhat += row[l]
t+=1

avhat = sumhat/t
mynewlist.append([hour, avhat])

mynewlist = np.array({mynewlist}

mycarlist = []
for hour in range (24):
mycursor = mydb.cursor (buffered=True)
sql = "SELECT car_hits {}_{} FROM cardb.newfulldata WHERE road id = {}".format (hour, hour+l, rocad)
mycursor.execute (sgl)
car hits = mycursocr.fetchall()
mycursor.close()
mycarlist.append([hour, car hits[0][0]])

mycarlist = np.array(mycarlist)

plt.plot{mynewlist[0:24,0], mynewlist[0:24,1], label= Hourly Telecom Traffic for the Road")
plt.plot{mycarlist[0:24,0], mycarlist[0:24,1], label= "
plt.legend(bbox to_anchor=(1.01, 1), loc="upper left', borderazespad=0.)

plt.show()

Code Sample #37

The scripts above are about visualizing the data we desire. Apart from that, we will need to store
these last data we formed (average houtly telecom and car traffic) in a new temporary database table,
in order to use them for our next step (Code Sample 38). We perform this action in order to
implement the main target of this part of the thesis, which is calculating the correlation between
telecom and car traffic for the user chosen road.

mycurser = mydb.cursor (buffered=True)

sql = 'TRUNCATE TABLE testdb.24cartel;’

mycurseor.execute (3gl)

mydb.commit ()
mycurser.clese ()

for i in range(24):
x = mycarlist[i][1]
¥ mynewlist[i][1]

mycursor = mydb.curscr (buffered=True)

sql = 'INSERT INTO testdb.24cartel VALUES ({}, {});'.format(x, y)
mycursor.execute (sqgl)

mydb . commit (}

mycursor.close ()

Code Sample #38

63

In order to calculate the correlation and plot it as a correlation matrix we will need to use the
appropriate Python libraries (pandas and seaborn). These libraries provide tools that automatically
calculate the desired correlation from appropriately shaped data. To give that appropriate shape, we
make an extra step to save the table in a ‘csv’ type file, since that is the format accepted by the library
functions. We can see in Code Sample 39 how this procedure is implemented, and the functions used
for the correlation matrix calculation and plotting,

myeurscr = mydb2.curscr (buff
sgl = "SELECT * FROM
myenrser.execute (aql)

temp = mycursor.fetchall ()
mycurser.cleose ()

mp = np.array(temp

1t (np. shape (temp))

Te

np.savetxt (r"C:\U
temp,

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

from scipy.stats import norm

of

data = pd.read csv(r"C:\Users\Antonis\Documents\Jupyter Notebooks\Thesis\Test\CorrMatTest\CarTel.csv")
corrmat = data.corz()

£, ax = plt.subplots(figsize =(%, B})

sns.heatmap (corrmat, ax = ax ,cmap ="Y1lGnBu", linewidths = 0.1, annot=True)

Code Sample #39

The script sequence thoroughly presented and explained in this chapter is the whole procedure that
calculates the telecom — car traffic correlation for the user desired road, starting from the basic data

that have been provided. In the next chapter we will present results for some roads and comment on
them.

64

3.5. Results and Conclusions

In this chapter, we will run the code sequence we developed on some Milan roads. The goal is to
verify the validity of the tool. This will occur in two steps.

Firstly, by inserting the data of the road we want (name & coordinates) we will validate that the script
chooses the correct cells, in which the road belongs to. Essentially, we check if the
telecommunication traffic is chosen correctly from the database. The second validation is a bit more
intuitive. We will choose road parts from big roadways which means, cells in which the
telecommunication traffic is almost entirely dependent to the passing vehicles. In such road parts we
expect much larger telecom-car traffic correlation, since the car traffic will highly affect the network
usage in that area. Respectively, we can pick more secluded roads, next to residences, universities,
recreation areas etc. In such spots we expect significant lower telecom-car traffic correlation, since
the network usage is mostly due to spatially stable users. So, the target is to confirm that the expected
correlation coincides with the tool’s result. We will perform the procedure on roads from both
categories mentioned.

The first road for which we will run the scripts can be seen in Images 6 and 7. In the first one we can
see the cell in which the road belongs to (ID: 4154).

X | Oltreunpo’ Teatrc
\ Scuola di Teatrc
N Apoyatind ExoM
\ onmma
oaymté ot naxéto
\\ : +Tlapaboor
N —
— A\
N\ e
& o ®
X o
fil P
o Centro Casa Belfanti
~_- Serramenti Moderni
fil-opacty : Kataornpa xouptay |
i
cellid
+ Addrow 8 Show style properties = = ’ £ —
= " SPexssiy W o =
Properties Info - — — = S11 " Piazza e st
—serafino — -
Cancel © Delete feature e Viale Liguria () : Belfanti | ‘
=~y s 8l Viale Liguria Viale Ligyria @
iquria - — = = a B VileL
i SRS e e
= — s '€ Liguria o
- = 9 e lISPexsS11
Sagam | Service 4 -
Audi eVolkswagenQ ENI \ 2
FuvepyEio UTOKIVATWY Beviwabio =i i
Riderstore Milan | % \
Used Phones o Oin v
Image #6 Image #7

Itis a main roadway passing through the outskirts of the city center. We expect a high correlation
between the telecommunication and car traffic, since it is a busy roadway comprising most of the cell
it belongs to. We run the code sequence by inserting the road name and coordinates, and the outputs
can be seen in Images 8 and 9.

65

66

Time Dependence (Cells of the Milano Road)

450

350

300

Average Internet traffic

250

200

400

350

300

Average Internet traffic

250

200

20

B0 80 100
of 10-minutes in the day (144 in total, starting at 12 am)

Time Dependence, hourly (Cells of the Milano Road)

140

T T
10 15
of hours in the day (starting at 12 am)

20

— 4154.0

— 4154.0

Average Internet traffic, and car hits

800

€00

500

400

200

100

Car

Telecom

Time Dependence, hourly + car hits (Average of the Cells of the Milano Road)

T 10 15
of hours in the day (starting at 12 am)

Image #8

-100

-0.98

-0.96

-0.94

-0.92

-0.90

Clar Telelcom

Image #9

—— Average Hourly Telecom Traffic for the Road
Car Hits

As we can see, the program has chosen the correct cell (4154), and the correlation result is very high

(0.88) as expected. That means that the result for this road input is successfully validated.

67

We will perform the procedure one more time. We can see the new road in Images 10 and 11.

Autotrasporti Villa
Augusto & C. (SNC)

fill

Parco Argelati W-opecly
ANPOTIXS MAPKO
calild

+ Addrow Show style properties

' Properties Info

© Delete feature

&
3
$
A7
&
N

5
S

d

Image #10 Image #11

Itis an isolated road passing by park, industrial areas and public spaces. This means that the
telecommunication traffic will be mostly due to the geographically stable users rather than passing
vehicles. In other words, we expect a smaller telecom-car traffic correlation. The results of the code
sequence can be seen in Images 12 and 13.

Time Dependence (Cells of the Milano Road)
20 — 42530

g

Average Internet traffic

60 a0 100 20 140
of 10-minutes in the day (144 in total, starting at 12 am)

68

69

Time Dependence, hourly (Cells of the Milano Road)

180

-
=

g

Average Internet traffic

100

— 42530

-

15 0

0
of hours in the day (starting at 12 am)

Time Dependence, hourly + car hits (Average of the Cells of the Milanc Road)

Average Internet traffic, and car hits

15 20

a4
"

10
of hours in the day (starting at 12 am)

Image #12

—— Average Hourly Telecom Traffic for the Road
—— Car Hits

-09

-0.8

Car

-07

-06

-05

-04

Telecom

-03

Clar Telelcom

Image #13

The program has chosen the right cell (4253). Furthermore, the result of the correlation is low (0.24)
as expected.

More test runs were implemented, and in accordance with the examples above, the validity of our
tool has been verified. When given a random road part in the Milan province, it calculates the
telecom-car traffic correlation of that specific road (if these data exist) and prints the output. This
information can be helpful in order to better understand the network and its needs. Handover
frequency is necessary information for optimizing the network and making it more robust.

In this part of the thesis, we had the chance to store and manipulate large scale datasets as well as
extracting information from their processing,

70

4. Conclusion

At the center of our focus is the better understanding of the use of the telecommunications network
to benefit society. All the different studies and approaches we have done in this project are aimed to
draw conclusions towards that direction. By arriving at such conclusions, we can inform and improve
the design and function of these networks. This thesis demonstrates the utility of data analytics in
extracting actionable insights from telecommunication data. Through the use of time and spatial
analysis, Gaussian processes, and correlation matrices, the research successfully gains a better
understanding of user patterns of network usage, predicts network usage needs and investigates any
correlations between telecommunication and vehicle traffic.

The use of Python and SQL as primary tools for the analysis and management of data allows for
efficient and easily-replicable scripts, and the ability to handle large amounts of data using MySQL

The findings from this research have the potential to improve network petformance in
telecommunication systems by determining network handover needs in user-chosen areas and
optimizing network coverage. This thesis is an important step in leveraging data analytics to gain a
deeper understanding of telecommunication systems and improve their performance.

71

References

72

SR s o=

N

70.
11.
12.

13.
4.

Big data: A review, S. Sagiroglu, D. Sinanc, 2013

Project Jupyter: A Computer Code that Transformed Science, Linda Vu, 2021.

Data Science Notebooks get real: [upyterlab releases to users, Andrew Brust, 2018.

“What is MySQL2” MySOL 8.0 Reference Manual, Oracle Corporation, 2020.

Geojson, Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Stefan Hagen, Tim Schaub,
Erik Wilde, 2014.

Gaussian Process Regression Analysis for Functional Data, Jian Qing Shi, Taeryon Choi, 2011.

A correlation-matrix-based bierarchical clustering method for functional connectivity analysis, Xiao Liu,
Xiao-Hong Zhu, Peihua Qiu, Wei Chen, 2012.

A guide to NumPy, Travis E. Oliphant, 2006.

MySQL. Connector/ Python Revealed, W Krogh, G Krogh, Gennick, 2018.

Matplotlib and seaborn, E. Bisong, 2019.

Pandas, python data anabysis library, W. McKinney, 2015.

Scikit-learn: Machine learming in Python, F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, 2011.

“Tupyter Widgets” documentation, Project Jupyter, 2022.
A multi-source dataset of urban life in the city of Milan and the Province of Trentino, Gianni Barlacchi,
Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana Chitic, Giovanni Torrisi,
Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland & Bruno Lepri, 2015.

