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ΠΕΡΙΛΗΨΗ 

 

Οι κατανεμημένες συναλλαγές αποτελούν κρίσιμο συστατικό των σύγχρονων 

κατανεμημένων συστημάτων, καθώς εξασφαλίζουν τη συνοχή και την ακεραιότητα των 

δεδομένων σε πολλαπλές βάσεις δεδομένων, διακομιστές ή υπηρεσίες. Είναι ιδιαίτερα 

σημαντικές στα σύγχρονα κατανεμημένα συστήματα, τα οποία είναι συχνά πολύπλοκα, 

δυναμικά με πολλά διασυνδεδεμένα στοιχεία, καθώς και σε συστήματα που 

περιλαμβάνουν ευαίσθητα ή κρίσιμα δεδομένα. Χωρίς κατανεμημένες συναλλαγές, θα 

ήταν δύσκολο να διασφαλιστεί ότι τα δεδομένα ενημερώνονται με συνέπεια και 

ορθότητα σε πολλαπλά συστήματα, γεγονός που θα μπορούσε να οδηγήσει σε 

ασυνέπειες και απώλεια δεδομένων. 

Ο στόχος μιας κατανεμημένης συναλλαγής είναι να διασφαλίσει ότι όλες οι λειτουργίες 

είτε όλες δεσμεύονται και τίθενται σε ισχύ είτε όλες ανακαλούνται και δεν έχουν κανένα 

αποτέλεσμα, ακόμη και σε περίπτωση αποτυχιών ή σφαλμάτων. Ωστόσο, οι 

παραδοσιακές προσεγγίσεις για την υλοποίηση κατανεμημένων συναλλαγών, όπως το 

Two-Phase Commit protocol (2PC), μπορεί να είναι πολύπλοκες και επιρρεπείς σε 

σφάλματα. 

Το πρότυπο SAGA είναι μια πολλά υποσχόμενη εναλλακτική προσέγγιση για την 

υλοποίηση κατανεμημένων συναλλαγών, καθώς επιτρέπει μεγαλύτερη ευελιξία και 

ανθεκτικότητα στα κατανεμημένα συστήματα. Σε ένα SAGA, κάθε βήμα αντιμετωπίζεται 

ως ξεχωριστή συναλλαγή, και εάν κάποιο βήμα αποτύχει, η διαδικασία ανατρέπεται σε 

μια προηγούμενη γνωστή καλή κατάσταση και ενεργοποιείται μια διαδικασία χειρισμού 

σφαλμάτων. Αυτό επιτρέπει τη μερική αποτυχία και τη δυνατότητα ανάκαμψης από 

αυτήν, καθιστώντας το πρότυπο SAGA ιδιαίτερα κατάλληλο για χρήση σε σύγχρονα 

κατανεμημένα συστήματα. 

Σε αυτή τη διπλωματική εργασία, θα διερευνήσουμε τη χρήση του προτύπου Saga για 

την υλοποίηση κατανεμημένων συναλλαγών σε κατανεμημένα συστήματα. Θα 

ξεκινήσουμε παρέχοντας μια επισκόπηση των κατανεμημένων συναλλαγών και των 

προκλήσεων που θέτουν στα σύγχρονα κατανεμημένα συστήματα. Στη συνέχεια θα 

παρουσιάσουμε το πρότυπο SAGA και θα συζητήσουμε τα οφέλη και τις προκλήσεις 

του. Αμέσως μετά, θα παρουσιάσουμε μια μελέτη περίπτωσης που υλοποιεί την 

«orchestrated» προσέγγισή μας - piSaga - για κατανεμημένες συναλλαγές σε Spring 

Boot microservices και θα πραγματοποιήσουμε ορισμένα πειράματα προκειμένου να 

μετρήσουμε την απόδοσή της σε σχέση με μια «choreographed» λύση. Τέλος, θα 

καταλήξουμε συνοψίζοντας τις βασικές ιδέες και τις συνεισφορές της ανάλυσής μας.  

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένα Συστήματα  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: SAGA, κατανεμημένες συναλλαγές, μηχανική λογισμικού, 

αρχιτεκτονική λογισμικού, microservices   



ABSTRACT 

 

Distributed transactions are a crucial component of modern distributed systems, as they 

ensure data consistency and integrity across multiple databases, servers, or services. 

They are essential in modern distributed systems, which are often complex and 

dynamic environments with many interconnected components, and in systems that 

involve sensitive or critical data. Without distributed transactions, ensuring that data is 

consistently and correctly updated across multiple systems would be challenging, which 

could lead to inconsistencies and data loss. 

The goal of a distributed transaction is to ensure that all operations either commit and 

take effect or roll back and have no effect, even in the case of failures or errors. 

However, traditional approaches to implementing distributed transactions, such as the 

Two-Phase commit (2PC) protocol, can be inflexible and prone to failure in complex and 

dynamic environments. 

The SAGA pattern is a promising alternative approach to implementing distributed 

transactions, as it allows for more flexibility and resilience in distributed systems. In a 

SAGA, each step in a long-running business process is treated as a separate 

transaction, and if any step fails, the process is rolled back to a previously known good 

state, and an error-handling process is triggered. This allows for partial failures and the 

ability to recover from them, making the SAGA pattern particularly well-suited for use in 

modern distributed systems. 

In this thesis, we will explore the use of the SAGA pattern for implementing distributed 

transactions in distributed systems. We will begin by providing an overview of 

distributed transactions and their challenges in modern distributed systems. We will 

then introduce the SAGA pattern and discuss its benefits and challenges. Next, we will 

present a case study that implements our orchestrated approach - piSaga - for 

distributed transactions in Spring Boot microservices. We will also conduct experiments 

to measure its performance against a choreographed solution. Finally, we will 

summarize the key insights and contributions of our analysis. 
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1. INTRODUCTION 

Microservices are a popular architectural style for building software systems that are 

independently deployable, scalable, flexible, resilient, and modular. They are well-suited 

for use in modern distributed systems that handle a large and unpredictable workload 

and require high availability. 

In order to support such a system, we also need distributed transactions. Distributed 

transactions ensure that data is consistently and correctly updated across multiple 

microservices and databases, which helps maintain the integrity and reliability of the 

system. Moreover, they allow for partial failures and the ability to recover from them, 

which makes the system more fault-tolerant and resilient. This is especially important in 

mission-critical systems that need to be highly available. In addition to these benefits, 

distributed transactions can also improve the performance of a system by allowing 

multiple microservices to execute concurrently while reducing the need for costly and 

time-consuming communication between microservices. 

This thesis aims to examine, understand, and evaluate the SAGA pattern. SAGA is a 

distributed transaction model that is an alternative to several traditional protocols like 

Two-Phase commit (2PC), Two-Phase Commit with Recovery (2PC*), Try, Commit, and 

Cancel (TCC), and Generalized Recursive Idealized Transactions (GRIT). Compared to 

the transaction protocols mentioned above, a SAGA transaction is composed of a series 

of sub-transactions, each of which can be undone (compensated) if necessary. This 

allows for more flexibility in handling failures and errors, as the system can recover from 

a failure by undoing any changes made as part of a sub-transaction. They also allow for 

more fine-grained control over the scope of a transaction, as sub-transactions can be 

nested and composed in various ways. Additionally, SAGA transactions can be used 

where traditional ACID transactions may not be feasible, such as in systems with high 

levels of data consistency or systems that need to support long-running operations. 

However, SAGA transactions are also more complex to implement than traditional ACID 

transactions, and they may require more resources to maintain the necessary state 

information for undoing sub-transactions. Therefore, we develop piSaga, a Java library 

for Spring Boot. This library's primary goal is to successfully define the necessary 

contracts to represent our SAGA transactions using a state machine model. We aim to 

make SAGAs easier to understand by employing sensible naming conventions and 

clarifying the development process. 

Lastly, we conducted several experiments to evaluate piSaga's performance and 

determine whether or not it can overcome the lack of isolation. For this reason, we 

came up with three distinct scenarios, running them utilizing cache-less and cache 

implementations. In the first scenario, we measure the number of requests that can be 

handled within 30 seconds. We achieved this by considering only the successfully 

completed requests and repeating the experiment for 1, 10, and 25 virtual users. In the 

second scenario, we examine how long it takes to complete a batch of requests when 

either the Warehouse-Service or the Payment-Service encounters an error. In the last 
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scenario, we aim to investigate how piSaga performs under heavy load of request using 

stress testing. We achieve this by calculating the time it takes to cancel an order when 

10 and 50 virtual users stream 10000 and 100000 requests, respectively. 

Overall, this work makes the following contributions: 

• We explain the differences between SAGA and several other protocols. 

• We present the SAGA pattern and its variations. 

• We develop piSaga - a Java library - to help developers apply the SAGA pattern 

in Spring Boot applications. 

• We evaluate the performance of the piSaga library based on three scenarios and 

compare it with a more straightforward implementation. 

The rest of the thesis is structured as follows: Section 2 discusses related work in the 

field. Section 3 provides the necessary background knowledge. In Section 4, we 

elaborate on the characteristics of the SAGA pattern and present its variations. In 

Section 5, we introduce the piSaga library, and in Section 6, we present the 

experimental results. We conclude the thesis in section 7. 
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2. BACKGROUND 

To understand distributed transactions, one should have a basic understanding of 

distributed systems, the CAP theorem, databases, concurrency control, the ACID 

properties, isolation issues in distributed systems, and measures to address isolation 

issues such as ACD and compensating transactions. These concepts are fundamental 

for understanding how distributed transactions work in a world of microservices and the 

trade-offs that must be made when designing a distributed system that supports 

distributed transactions.  

 

2.1 CAP Theorem  

The CAP theorem [1][2][3], also known as Brewer's theorem after computer scientist 

Eric Brewer, states that any distributed system can provide only a combination of two 

out of the following three guarantees: 

• Consistency 

The “consistency” of the CAP theorem denotes that all clients simultaneously 

observe the same data, regardless of the node to which they connect. For 

instance, to be successful, a write operation to one node must also be replicated 

or sent to all other nodes in the system simultaneously. 

• Availability 

Any client requesting data will receive a response as long as the CAP theorem 

holds, even if one or more nodes are unavailable. So, all active nodes in a 

distributed system always respond appropriately to every request. 

• Partition tolerance 

In the presence of partition tolerance, the cluster will continue to operate despite 

any number of communication failures between nodes. 

 

Figure 2-1 Graphical representation of the CAP theorem  
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So, our system could be classified as the following [3]: 

• CP (Consistency – Partition Tolerance) 

A CP system offers consistency as well as partition tolerance. However, this 

comes at the sacrifice of availability. When two nodes partition, the system must 

shut down the inconsistent node until the partition is resolved. 

• AP (Availability – Partition Tolerance) 

An AP system's availability and partition tolerance come at the cost of data 

consistency. All nodes remain available throughout a partition; however, those in 

the incorrect state may retrieve outdated data. 

• CA (Consistency - Availability) 

The CA systems are consistent and available between nodes. As a result, it 

cannot provide fault tolerance if there is a partition between any two system 

nodes. 

 

2.2 ACID  

The acronym ACID describes the essential characteristics of database transactions that 

lead to a trustworthy method for preserving the integrity of our data. This acronym 

stands for atomicity, consistency, isolation, and durability. It guarantees that each read, 

write, or modification of a table is aligned with the following properties [4][5][7]: 

• Atomicity 

Ensures that all of the attempted operations inside a transaction either succeed 

or fail. If any of the adjustments we attempt to make are unsuccessful for 

whatever reason, the entire process will be canceled, and it will be as if no 

changes were ever made. 

• Consistency 

The database is always left in a valid, consistent condition after any modifications 

are made to it. 

• Isolation 

Permits concurrent operation of numerous transactions without interference. This 

is accomplished by guaranteeing that any state modifications performed during a 

transaction are not visible to subsequent transactions. 

• Durability 

Guarantees that its associated data will remain safe after a transaction has been 

processed, even if the underlying system crashes. 
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2.3 ACD 

Through its isolation attribute, ACID transactions guarantee that the results of running 

several transactions simultaneously are equivalent to doing them in a particular order 

[8]. The database gives the impression that each ACID transaction has exclusive data 

access. Isolation makes it much easier to write business logic that runs concurrently.  

On the other hand, the ACD properties provided by distributed transactions ensure that 

data is always consistent and that changes are permanent, making it an essential tool 

for maintaining data integrity in a distributed environment. However, multiple 

transactions could interfere with one another. Thus, the lack of isolation can cause a 

number of problems that can compromise the integrity and consistency of data.  

An example of ACD properties in action would be a distributed transaction that updates 

multiple databases across different systems. The transaction ensures that all updates 

are treated as a single, indivisible unit of work and that the data remains consistent 

across all systems. If any part of the transaction fails, the entire transaction is rolled 

back, and the data remains in a consistent state. 

 

2.3.1 Lack of Isolation 

The lack of isolation can generate anomalies [8] since it is a critical attribute in 

distributed transactions. Isolation guarantees that numerous transactions are conducted 

separately, without interfering with one another, because it helps preserve data 

consistency and avoid conflicts and deadlocks. Without isolation, distributed 

transactions can result in a variety of issues that jeopardize data consistency and 

integrity. 

Inconsistent data is one of the primary challenges produced by the lack of isolation. 

Numerous transactions can access the same data without isolation, resulting in 

inconsistencies. For instance, if two transactions update the same record 

simultaneously, the record's final value may be unexpected, leading to data 

discrepancies. This can lead to system errors and the production of inaccurate results. 

Deadlocks are another issue created by the lack of isolation. Without isolation, several 

transactions may end up in a deadlock state, where one transaction is awaiting the 

completion of the other before continuing. This may cause the machine to become 

inactive and unresponsive. 

Concurrent access is an additional problem induced by the lack of isolation. Multiple 

transactions may access the same data concurrently in the absence of isolation, 

resulting in Concurrent Access concerns such as race conditions, lost updates, and dirty 

reads. 

 

 

 



Distributing transactions using the SAGA pattern  

P. Ioannidis   20 

So, the isolation anomalies can be categorized as follows: 

• Lost updates 

A lost update anomaly happens when one SAGA completely overwrites an 

update made by another. 

• Dirty reads 

A dirty read happens when one SAGA accesses data that another SAGA is 

currently updating. 

• Fuzzy reads 

Two separate phases of a SAGA read the same data, but each one provides 

different outcomes because another SAGA has made modifications.  

 

2.3.2 Countermeasures 

A set of countermeasures exists for addressing anomalies brought on by the lack of 

isolation, intending to prevent anomalies or lessen their impact [8][9]. 

• Semantic lock 

The compensable transaction sets a flag in every record it creates or edits. The 

flag shows that the record has not yet been saved so that it could change. The 

flag can either be a lock that stops other transactions from accessing the record 

or a warning that other transactions should be careful with that record. It is 

resolved either with a retriable transaction, which indicates that it is successfully 

finishing or through a compensatory transaction, which indicates that it is rolling 

back. 

• Commutative updates 

Commutativity refers to the ability of a set of operations to be performed in any 

given order. This countermeasure is effective since it prevents lost updates. 

• Pessimistic view 

The pessimistic view countermeasure reorders the steps of a SAGA to minimize 

business risk due to a dirty read.  

• Reread value 

The countermeasure for rereading values prevents lost updates. Using this 

countermeasure, a transaction participant rereads a record before updating it, 

confirms that it is unchanged, and then updates it. If the record has changed, the 

transaction terminates and possibly starts over. 

• Version file 

The version file countermeasure keeps track of the actions done on a record in 

order to reorganize them.  
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• By value  

It is a method for selecting concurrent techniques based on the level of business 

risk. The attributes of each request are evaluated by an application that 

implements this countermeasure in order to determine whether or not to employ 

sagas or distributed transactions. 

 

2.4 Microservices 

Microservices is a trendy architectural style that has grown significantly in the past few 

years [7]. "Microservices Architecture" has emerged to represent a specific approach to 

structuring software programs as collections of independently deployable services. 

While this architectural style has no specific definition, it has similar traits around 

business capability, automated deployment, intelligence in the endpoints, and 

decentralized management of languages and data [11]. 

In a nutshell, the microservice architectural style is a method for building a single 

application as a collection of independent services that share only a common set of 

data, run in their own processes, and communicate with one another using lightweight 

mechanisms, like RESTful APIs [11]. These services are based on business capabilities 

and may be independently deployed using a fully automated deployment strategy. 

These services have minimal centralized administration, which may be implemented in 

different programming languages and utilize various data storage systems. 

 

 

Figure 2-2 Microservices architecture high-level design 

 

Initially, microservices were hosted in physical computers, but now they have shifted to 

virtual machines and containers [10][12]. Separating the services this much makes it 
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easy to solve a common problem in architectures that host many kinds of applications 

on the same infrastructure. For example, using an application server to manage multiple 

running applications lets us reuse network bandwidth, memory, and disk space, among 

other things. However, if all the apps that can use the shared infrastructure continue to 

expand, there will be a shortage of some kind. 

Separating each service into its own procedure eliminates any issues caused by 

sharing. Before the gradual growth of publicly accessible open-source operating 

systems and the development of automated machine provisioning, it was impracticable 

for each domain to have its infrastructure. However, now more than ever, thanks to 

cloud computing and containerization, we can benefit from extreme decoupling at the 

domain and operational levels. 

On the other hand, microservices can suffer from poor performance because of their 

decentralized architecture. Network calls are significantly slower than method calls, and 

security verification at each endpoint adds additional processing time. 

 

2.5 SAGA compared to other distributed transactions protocols  

Distributed transactions are a way to ensure the atomicity of a series of operations that 

are carried out across multiple nodes in a distributed system. There have been 

numerous approaches to implementing distributed transactions in the field of distributed 

systems. Below, we list some of the most well-known and compare them with the SAGA 

pattern. 

 

2.5.1 Two-Phase commit (2PC) 

Two-Phase commit (2PC) [14][19] is a protocol used to ensure the atomicity of a 

distributed transaction, which involves multiple participants that may be distributed 

across different systems or locations. In 2PC, a coordinator coordinates the commit or 

rollback of a transaction across all participants. The coordinator sends a prepare 

request to each participant, deciding whether it is ready to commit. If all participants are 

ready, the coordinator sends a commit request to all participants, causing them to 

commit the transaction. If any participant is not ready, the coordinator sends a rollback 

request to all participants, causing them to roll back the transaction. 

2PC and SAGA are designed to serve the same purpose, and they are both distributed 

transaction models used to ensure the consistency and reliability of transactions across 

multiple resources. However, they have a few key differences. 

One of the main differences between 2PC and SAGA is how they handle 

communication between participants in a transaction. 2PC is a synchronous model, 

while SAGA is an asynchronous model. In 2PC, all participants in the transaction must 

communicate with the coordinator before the transaction can be committed, and all 

participants must be available and responsive during the commit phase. In contrast, 

SAGA allows participants to commit their changes independently and reconcile conflicts 
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later. This means that SAGA is more flexible in handling errors and failures as it allows 

participants to fail or be unavailable during the transaction. 

Another difference between 2PC and SAGA is how they handle a transaction's 

outcome. In 2PC, the transaction is either committed or rolled back as a whole. The 

transaction is rolled back if a participant fails during the commit phase. In contrast, in 

SAGA, a transaction can be partially committed. This allows for more flexibility in 

handling errors and failures as it allows for compensating actions to be taken for a 

participant that failed during a transaction. 

 

2.5.2 Two-Phase Commit with Recovery (2PC*) 

Two-Phase Commit with Recovery (2PC*) [20] is an extension of the classic 2PC 

protocol that adds support for recovery from failures. It is designed to address the 

problem of indeterminate outcomes in 2PC, which can occur when the coordinator fails 

before sending a commit or rollback request to the participants. In 2PC*, each 

participant maintains a log of the prepare and commit/rollback requests it has received 

from the coordinator. If a participant does not receive a commit or rollback request from 

the coordinator, it can use its log to determine the appropriate action based on the 

prepare requests it has received. 2PC* provides more robust atomicity guarantees than 

2PC because it allows recovery from coordinator failures. However, it requires 

additional storage and processing resources to maintain the log of requests, which may 

impact performance. It is also more complex to implement than 2PC. 

Distributed transaction models like 2PC* and SAGA are used to guarantee the integrity 

of transactions over a network of computers and other devices. When comparing 2PC* 

to SAGA, it is essential to keep in mind that 2PC* is an extension of the classic 2PC 

concept, whereas SAGA is a whole new approach. With the addition of recovery 

methods, 2PC* can deal with errors during the commit phase. Because of this, errors 

may be handled synchronously in 2PC*. However, SAGA provides a more adaptable 

method for addressing errors and failures by permitting compensatory transactions. 

Thus, SAGA is built with asynchronous fault tolerance in mind. 

Another difference is that in 2PC*, the entire transaction is committed or rolled back. 

However, with SAGA, it is possible to commit a transaction partly. 

 

2.5.3 Try, Commit, and Cancel (TCC) 

Try, Commit, and Cancel (TCC) [21] is a protocol used to implement distributed 

transactions in a way that is more efficient than traditional 2PC protocols. It is also 

known as “Optimistic Two-Phase Commit” or “Single-Phase Commit with 

Compensations”. In the TCC protocol, a coordinator sends each participant a “Try” 

request, indicating that it would like to commit a transaction. If all participants are able to 

commit, the coordinator sends a commit request to all participants, causing them to 

commit the transaction. If any participant cannot commit, the coordinator cancels the 
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transaction by sending a cancel request to all participants. The TCC protocol has 

several benefits compared to 2PC. It is faster because it does not require a separate 

prepare phase, and it is more resilient to failures because it does not require the 

coordinator to send a commit or rollback request to each participant. However, it is less 

widely supported than 2PC and may not provide the same level of guarantee of 

atomicity in all cases. 

TCC and SAGA differ significantly in how they handle the various stages of a 

transaction. Unlike SAGA, which consists of several phases, TCC only has three. The 

TCC model divides the transaction into three steps: Try, Commit, and Cancel. On the 

other hand, SAGA divides the transaction into many stages, each of which may include 

several sub-steps depending on the nature of the transaction and the requirement for 

compensating actions. 

How successful and unsuccessful transactions are handled is another area in which 

TCC and SAGA diverge. With TCC, we can only commit or cancel the transaction as a 

whole. In contrast, SAGA allows only a portion of a transaction to be committed 

simultaneously. As a result, there is more flexibility for dealing with errors and failures, 

as compensatory steps can be performed for a failed participant in a transaction. 

 

2.5.4 Generalized Recursive Idealized Transactions (GRIT) 

Generalized Recursive Idealized Transactions (GRIT) [22] is a protocol for 

implementing distributed transactions that are based on the idea of "idealized 

transactions", which are transactions that are free from conflicts and can be executed in 

any order. GRIT allows for the efficient execution of transactions that can be 

decomposed into smaller transactions that can be executed concurrently. In GRIT, a 

coordinator coordinates the execution of a transaction by dividing it into smaller 

transactions and sending each of these transactions to a different participant to be 

executed. The coordinator then waits for a response from each participant indicating 

whether the transaction was successful or not. If all participants respond successfully, 

the coordinator sends a commit request to all participants, causing them to commit the 

transaction. If any participant responds with a failure, the coordinator sends a rollback 

request to all participants, causing them to roll back the transaction. GRIT is a highly 

efficient protocol that allows for the concurrent execution of transactions, which can 

significantly improve the performance of distributed systems. Therefore, it requires that 

transactions be decomposed into smaller transactions that can be executed 

concurrently, which may not always be possible. 

One of the commonalities between GRIT and SAGA is that they both manage 

distributed transactions via nested transactions. However, GRIT and SAGA do not have 

many similarities. In contrast to GRIT's emphasis on short-lived transactions that can be 

made of numerous sub-transactions, SAGA prioritizes long-running transactions 

composed of multiple sub-transactions. Thus, SAGA is better suited for complex, long-
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running business processes, while GRIT is better suited for simple, transient 

transactions. 

Another distinction between GRIT and SAGA is their consistency policies. While GRIT 

relies on a consensus mechanism, SAGA employs a state machine replication strategy 

to guarantee data integrity. This implies that while GRIT uses a consensus mechanism 

to verify that all nodes in the system agree on the state of a transaction, SAGA relies on 

replicating the state of a transaction across various nodes in the system.  

Furthermore, unlike GRIT, SAGA permits compensatory transactions, which may be 

used to reverse the effects of prior transactions. If a long-running transaction fails in 

SAGA, the database may be restored to an earlier point, which is impossible in GRIT. 
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3. RELATED WORK 

Our community has been trying to find viable solutions for the distributed transactions 

problem for a long time. Thus, many implementations aim to improve this space. This 

section presents piSaga and a few well-known libraries related to the SAGA pattern and 

orchestration in general. 

Implementing the MicroProfile Long Running Actions (LRA) in an application provides 

several benefits, including simplified management of long-running tasks and better 

control over transactional behavior [28][33]. This feature ensures that long-running 

operations can be handled effectively and that the system remains responsive during 

the operation. The microservice architecture allows the application to scale horizontally 

by breaking down tasks into smaller chunks. Moreover, it reduces the chance of data 

inconsistencies and failures in long-running operations. However, there are some 

potential drawbacks to consider when implementing the MicroProfile LRA, including the 

increased complexity of implementing a microservice architecture, which requires a 

good understanding of the architecture and design of the application. Additionally, the 

distributed nature of microservices may require additional infrastructure and operational 

considerations, such as service discovery, load balancing, and failover. 

The Saga pattern implementation in Apache Camel is a practical, open-source 

approach for managing distributed transactions in a reliable and scalable manner 

[30][31]. The advantages of using Apache Camel include improved reliability, flexibility, 

scalability, and ease of implementation. However, this approach also has some 

potential disadvantages, including increased complexity in the code, limited rollback 

capabilities, potential performance impact, and difficulty debugging. While the Apache 

Camel Saga pattern implementation can ensure data consistency and handle large 

numbers of transactions and messages, its impact on system performance and 

complexity should also be considered. 

The primary goal of implementing the Eventuate Tram SAGA framework is to provide a 

distributed, scalable, and reliable solution for managing long-running transactions 

across microservices [29][8]. The framework offers a declarative programming approach 

that simplifies handling distributed transactions, decreasing the chance of data 

inconsistencies and allowing developers to add new business processes or alter 

existing ones swiftly. The framework's benefits include better fault tolerance, scalability, 

and maintainability of microservice-based systems. Additionally, the framework's use of 

the event sourcing pattern enables the tracing of events and provides a reliable audit 

trail of changes to the system. Yet, there are possible drawbacks to consider while 

utilizing the Eventuate Tram SAGA framework, such as the requirement for a robust 

infrastructure to manage events and transactions, the complexity of integrating existing 

services with the framework, and the steep learning curve for developers. 

The Axon Framework SAGA implementation gives several benefits, including enhanced 

transaction management stability, scalability, and maintainability [28][32]. The 

framework makes it easier to manage distributed transactions by giving developers a 
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declarative programming approach that does not need them to write complicated code. 

This method lessens the possibility of data discrepancies and allows developers to 

implement new business processes or alter current ones quickly and simply. The Axon 

Framework also offers event sourcing and command handling capabilities to guarantee 

the system's scalability and resilience. Nevertheless, there are some negatives to 

consider while using the Axon Framework SAGA, including the necessity for developers 

to learn a new programming paradigm and framework, which can raise the learning 

curve. Additionally, because the framework is based on CQRS and event sourcing, 

extra operational and technical concerns, such as database architecture, versioning, 

and event storage, may be required.  

Despite the fact that piSaga is a simple implementation of the SAGA pattern, it can 

accomplish its objectives successfully. piSaga enables developers to design their 

implementations based on the state-machine paradigm. This state machine is 

composed of a set of states and events that move the machine from one state to 

another. Moreover, piSaga is a handy solution for handling distributed transactions in a 

reliable and scalable manner. Using piSaga can result in increased reliability, flexibility, 

and scalability. In addition, there is a slight learning curve because piSaga provides only 

the necessary contracts to develop a SAGA. However, piSaga is not a divine solution 

for distributed transactions; there are a few potential drawbacks to take into account. 

First, it is not a battle-tested solution. Second, the IPC of piSaga depends on Apache 

Kafka, at least for now. Next, it has limited integration with some enterprise systems 

since it focuses on Spring Boot. 

Last but not least, piSaga is an open-source library whose purpose is to contribute to 

the open-source community and be a small but meaningful contribution to computer 

science and distributed systems. 
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4. TRANSACTIONAL SAGA 

The notion of a SAGA in architecture predates microservices, as it was first concerned 

with restricting the scope of database locks in the early distributed systems [14][15][17]. 

The SAGA pattern for microservices is characterized as a succession of local 

transactions in which each update triggers the next update in the sequence by 

publishing an event. If any of these updates fail, the SAGA will issue a series of 

compensatory updates by erasing the previous alterations made throughout the 

workflow. Thus, the SAGA pattern should leverage coordination, consistency, and inter-

process communication (IPC) to perform optimally.  

Coordination refers to the process of managing access to shared resources by multiple 

processes, ensuring that they are used in a consistent and synchronized manner. 

Consistency, on the other hand, refers to the property of the system that ensures that all 

processes have a consistent view of the shared state. Inter-process communication is 

the mechanism through which processes coordinate and share information with each 

other. To understand the SAGA pattern, it is essential to have a solid understanding of 

these concepts and how they relate to distributed systems.  

This section of the thesis will delve deeper into these concepts and explore how the 

SAGA pattern incorporates them to achieve scalability and fault tolerance in distributed 

systems. Additionally, we will elaborate on the eight variations of the SAGA pattern. 

 

4.1 Coordination 

The implementation of a SAGA comprises logic that organizes the SAGA's stages. 

When a system command initiates a SAGA, the coordination logic must identify the first 

SAGA participant and instruct it to conduct a local transaction. As soon as this 

transaction concludes, the SAGA's sequencing coordination identifies and activates the 

subsequent SAGA participant. This procedure continues till each phase of the SAGA 

has been carried out. If a local transaction fails, the SAGA must perform compensatory 

operations in reverse order. There are two types of coordination, choreography and 

orchestration. 

 

4.1.1 Choreography 

Using choreography is one method for implementing a SAGA [10]. There is no mediator 

in charge of informing every service in a SAGA on how to continue the workflow. The 

SAGA participants subscribe to each other's events and respond accordingly. 
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Figure 4-1 Choreography coordination 

 

When building choreography-based SAGAs, there are several interservice 

communication-related factors to consider. The initial concern is ensuring that a SAGA 

participant publishes an event and updates its database as part of a database 

transaction. Each step of a choreography-based SAGA updates the database and 

publishes an event. The database update and event publication must occur 

simultaneously. Therefore, for reliable communication, SAGA participants must employ 

transactional messaging. The second thing to think about is ensuring that each 

participant in the SAGA can map each event it gets to the data it has on its own end. A 

SAGA participant must publish events with a correlation id assigned to them. This 

correlation id will help the rest of the SAGA participants to access the correct data. 

Choreography has both benefits and drawbacks. Its benefits are “simplicity” and “loose 

coupling”. The services broadcast events when creating, updating, or deleting business 

objects. Moreover, the SAGA participants subscribe to events without direct knowledge 

of one another.  

On the other hand, it is not easy to understand where choreography has been used. It 

spreads the execution of the SAGA among the several services. In addition, there might 

be circular dependencies between the services because the SAGA participants would 

subscribe to each other's events. Also, due to the fact that each service should 

subscribe to every other event, we could result in a tightly coupled system. 

 

4.1.2 Orchestration 

SAGAs may also be implemented using orchestration [10]. When utilizing orchestration, 

we must establish a class whose primary function is to orchestrate the SAGA 

participants on what actions to perform. The SAGA orchestrator connects with the 

participants utilizing a command/asynchronous-response interaction approach. In order 

to execute a SAGA step, it sends a command message to a participant specifying the 
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operation to be performed. After completing the operation, the participant in the SAGA 

sends a response message to the orchestrator. The orchestrator then analyses the 

message and decides which SAGA step to execute next. 

 

 

Figure 4-2 Orchestration coordination 

 

A service updates a database and publishes a message at each stage of an 

orchestration-based saga. Hence, it must utilize transactional messaging to update the 

database atomically and publish messages. 

Orchestration is not the silver bullet. It has both strengths and weaknesses. First, the 

orchestration has the advantage of not introducing circular dependencies. The 

orchestrator invokes the participants in the workflow, but the participants do not invoke 

the orchestrator. Therefore, there are no circular dependencies because the 

orchestrator depends on the participants but not vice versa. Second, it favors loose 

coupling since each service has its API that the orchestrator calls; the orchestrator need 

not be aware of the events published by the SAGA's participants. Last but not least, it 

enhances the separation of concerns and simplifies business logic. The SAGA 

coordination logic is centralized within the SAGA orchestrator. The domain objects are 

less complex and are unaware of the sagas in which they engage. 

While orchestration has many benefits, there is also a potential downside in centralizing 

too much business logic in the orchestrator. The resulting architecture has the intelligent 

orchestrator instructing the naive services on how to carry out their tasks. The critical 

point to avoid this situation is to develop orchestrators that are simply responsible for 

managing the request workflow and do not contain any other business logic. 
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4.2 Inter-process Communication 

Microservices are required to connect through an inter-process communication (IPC) 

mechanism [16]. So, when defining how the services will connect, we need to consider 

a number of challenges, including how services interact with one another, how to 

declare the API for each service, how APIs might grow, and how to deal with partial 

failure. Microservices can employ two types of IPC mechanisms: synchronous and 

asynchronous communication. 

 

4.2.1 Synchronous communication 

Using synchronous communication [7][16], a service sends a request of some form to a 

downstream process (usually to another microservice) and blocks until the call 

completes and probably until a response is received. 

A synchronous blocking call often awaits a response from a downstream operation. This 

might be because the call's outcome is required for subsequent action or because the 

system wants to ensure the call succeeded and retried if necessary. 

Consequently, synchronous calls make a system more vulnerable to cascading 

problems caused by downstream failures than the usage of asynchronous calls. 

 

4.2.2  Asynchronous communication 

When using asynchronous communication [7][16], the microservice that is issuing a call 

will not become blocked while the call is being sent out across the network. It can 

proceed with any additional processing without waiting for a response. There is a wide 

variety of nonblocking asynchronous communication protocols, but the most well-known 

is communication through message queues and event streams. 

Nonblocking asynchronous communication allows for the temporary decoupling of the 

service making the initial call and the service(s) receiving the call. It is not necessary for 

the services that receive the call to be reachable at the exact same moment that the call 

is being made. This communication style is also beneficial if the functionality is triggered 

by a call that will take a long time to process. 

 

4.3 Consistency 

When we talk about consistency, we refer to the transactional integrity level that must 

be maintained throughout all communication calls. There are two types of consistency 

the atomic and the eventual. 
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4.3.1 Atomic consistency 

All the steps of a transaction must be completed successfully in order for the transaction 

to be considered atomic [13]. All previously performed steps must be reversed if even a 

single step fails. For this reason, an operation is said to be atomic if it either takes place 

in its entirety or does not take place at all. 

One of the most significant issues with atomicity in microservices is that a single 

transaction may involve several independent tasks being completed by separate 

microservices. Thus, a method is needed to undo previously completed transactions if a 

local transaction fails. 

 

4.3.2 Eventual consistency 

Eventual consistency [6][25] is a model used in distributed computing to ensure high 

availability. This model provides an informal promise that if no additional modifications 

are made to a particular data item, all accesses to that item will ultimately return the 

most recently modified value.  

If there are no system failures, the maximum size of the inconsistency window may be 

calculated by considering variables such as communication delays and the number of 

copies participating in the replication scheme. When a system has reached eventual 

consistency, it is commonly referred to as having converged or having achieved replica 

convergence. 

 

4.4 Transaction types 

A functional SAGA structure paradigm is proposed in [9]. In this paradigm, a SAGA is 

composed of the following three types of transactions: 

• Compensable transactions 

Transactions that may be reversed via a compensating transaction. 

• Pivot transaction 

A successful commit to the pivot transaction will cause the SAGA to continue till 

its completion. A pivot transaction is a transaction that is neither compensable 

nor retriable.  

• Retriable transactions 

Transactions that are guaranteed to succeed after the pivot transaction.  

 

4.5 State machine modeling 

A state machine is a powerful and intuitive modeling tool for understanding the inner 

workings of a SAGA orchestrator. At its core, a state machine comprises a collection of 

states and events that allow the machine to transition from one state to another. These 
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transitions can be accompanied by an action, which in the context of a SAGA typically 

involves the invocation of a SAGA participant. 

One key aspect of a state machine in the context of a SAGA is how it handles local 

transactions executed by SAGA participants. When a local transaction is completed, it 

can trigger a transition between states. The current state of the machine and the 

outcome of the local transaction determines the specific transition and corresponding 

action. 

Using a state machine paradigm to model a SAGA makes it significantly easier to 

design, construct, and test the orchestrator. The clear and visual representation of 

states and transitions allows developers to reason easily about the different paths a 

SAGA can take and the actions that are invoked at each step. Using a state machine 

also allows more flexibility to handle failures, debugging, and troubleshooting processes 

and become more efficient. 

 

4.6 The variations of the SAGA pattern 

Distributed transactions are a key component of many distributed systems since they 

coordinate operations across numerous nodes in a manner that guarantees the 

atomicity, consistency, and isolation of these processes. The SAGA pattern is a popular 

implementation strategy for distributed transactions in distributed systems. Since its 

introduction in 1987 by Hector Garcia-Molina and Kenneth Salem [14][15][17], it has 

been a cornerstone in distributed system design. 

The SAGA pattern is based on the concept of long-running transactions that span 

numerous systems or locations, and that can be deconstructed into smaller, 

simultaneously executable transactions. It employs a process orchestration 

methodology in which a coordinator organizes the execution of a transaction by sending 

requests to various participants to conduct smaller transactions. The coordinator checks 

the status of these transactions and takes corrective action in the event of errors or 

failures. 

One of the distinguishing characteristics of the SAGA pattern is the use of 

compensating transactions, which undo the consequences of prior operations and 

restore the system to a consistent state. This enables the SAGA pattern to tolerate 

faults and errors gracefully and to maintain the atomicity and consistency of a 

transaction, notwithstanding these obstacles. 

There are several variations of the SAGA pattern. We can distinguish them based on 

their communication, consistency, and coordination approach. Table 4-1 lists the eight 

most well-known variations. 
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Table 4-1 Saga pattern variations 

Name Communication Consistency Coordination 

SAO Synchronous Atomic Orchestrated 

SAC Synchronous Atomic Choreographed 

SEO Synchronous Eventual Orchestrated 

SEC Synchronous Eventual Choreographed 

AAO Asynchronous Atomic Orchestrated 

AAC Asynchronous Atomic Choreographed 

AEO Asynchronous Eventual Orchestrated 

AEC Asynchronous Eventual Choreographed 

 

4.6.1 SAO SAGA Pattern 

The SAO SAGA pattern (SAO) is considered the "traditional" SAGA pattern. Because of 

how it works, it is also called an "Orchestrated SAGA". Its dimension correlations are 

illustrated in Figure 4-3. 

 

Figure 4-3 SAO utilizes Sync communication, Atomic consistency, Orchestrated coordination 

 

Here, an orchestrator manages a workflow that involves updates for three services that 

are supposed to happen transactionally - either all three calls are successful or none 

are, Figure 4-4. If any of the calls fail, the prior state is restored. This coordination 

challenge may be solved in a number of different ways in distributed architectures. Such 

transactions are incompatible with many databases and are notorious for their frequent 

failure types.  
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Figure 4-4 Communication between microservices in the SAO SAGA pattern 

In a distributed transaction, a compensating transaction undoes a data write action 

carried out by another service, e.g., undoing an update, reinserting a previously deleted 

row, or deleting a previously inserted row. While compensating updates seek to undo 

changes to restore distributed data sources to their initial state before a distributed 

transaction begins, they are full of complex issues, obstacles, and trade-offs. 

Unfortunately, the challenges are brought on by the error conditions. As shown in Figure 

4-5, the orchestrator service is responsible for monitoring the success of calls and 

initiating compensating calls to other services in the event that one or more of the 

requests are unsuccessful. 

 

 

Figure 4-5 Compensatory transactions are issued by the orchestrator when an error occurs 

 

The orchestrator service both handles the requests and manages the transaction 

workflow. As we can see, the calls on the first two services were successful, but the 

third call failed. To achieve atomic consistency, as specified by the SAO, the 
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orchestrator must employ compensatory transactions to request that the other two 

services roll back the previously performed operation, restoring the system to its state 

before the transaction. 

The SAO has a distinct advantage over competing solutions due to its monolithic-like 

transactional coordination. On the other hand, the drawbacks are numerous and 

diverse. First, the combination of orchestration with transactionality may affect 

operational architectural features like performance, scalability, and flexibility. The 

orchestrator must ensure that all participants in the transaction have succeeded or 

failed, causing time bottlenecks. Second, the different patterns used to create 

distributed transactionality, like compensating transactions, are susceptible to a broad 

range of failures and introduce intrinsic complexity through undo operations.  

The following features distinguish the SAO SAGA pattern. This design demonstrates 

exceptionally high degrees of coupling across all available dimensions, including 

synchronous communication, atomic consistency, and orchestrated coordination. This is 

not unexpected, as it mirrors the communication behavior of strongly connected 

monolithic systems, but it poses various problems in distributed designs. 

Added to the necessity for atomicity, error conditions and other heavy coordination add 

complexity to this design. Using synchronous calls reduces some of the complexity 

since developers do not have to worry about race situations and deadlocks during calls. 

Orchestration impedes responsiveness, particularly when it must coordinate 

transactional atomicity. This style employs synchronous calls, which hinders 

performance and responsiveness further. This pattern will fail if any services are 

unavailable or an unrecoverable error occurs. Similar to responsiveness, the bottleneck, 

and coordination needed to implement this pattern make it difficult to address the 

system's scalability. 
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4.6.2 SAC SAGA Pattern 

The main difference between the SAC SAGA pattern (SAC) and the SAO is that the 

SAC uses choreography instead of orchestration, Figure 4-6.  

 

 

Figure 4-6 SAC utilizes Sync communication, Atomic consistency, Choreographed coordination 

 

Hence, the structural communication illustrated in Figure 4-7 is undergoing the 

equivalent modification. 

 

 

Figure 4-7 Each microservice is responsible to issue its own compensatory transactions 

 

The SAC combines atomicity with choreography with no explicit orchestrator. However, 

atomicity requires some cooperation. In Figure 4-7, the service that was first called 

becomes the coordination point, also known as the front controller. It then forwards the 
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request to the subsequent service in the process, which continues until the workflow 

completes. However, if an error occurs, each service must have business logic to 

support compensating requests. 

Due to the importance of coordinating atomicity in transactions, this logic must be 

located someplace in the architecture. As a result, domain services need to have more 

logic about the workflow environment in which they operate, such as error handling and 

routing. The front controller in this design becomes as complicated as most mediators 

when used to more advanced processes, which lessens the pattern's usefulness and 

popularity. Therefore, this design pattern is frequently employed for low-complexity 

operations that demand increased scalability at the expense of some speed. 

Even with synchronous communication, using choreography reduces bottlenecks under 

non-error situations. The final service in the process can return the result, allowing for 

more throughput and fewer bottlenecks. Due to a lack of coordination, the performance 

can be increased compared to the SAO. However, resolving error conditions will be 

significantly slower in the absence of an orchestrator since each service must unwind 

the call chain, which increases the coupling between services. 

A positive aspect of non-orchestrated designs is the absence of a coupling singularity or 

a single point to which the workflow couples. In general, coupling reduction promotes 

scalability. As the scalability increases without orchestration, the domain services 

become more complicated to handle the workflow issues in addition to their primary 

function. 

The SAC SAGA pattern has a relatively unique mix of characteristics. Typically, 

choreography is correlated with asynchronicity. In certain instances, synchronous calls 

eliminate race situations by ensuring that each domain service completes its part of the 

workflow prior to invoking the next.  
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4.6.3 SEO SAGA Pattern 

The SEO SAGA pattern (SEO) utilizes synchronous communication, eventual 

consistency, and orchestration, as shown in Figure 4-8. 

 

 

Figure 4-8 SEO utilizes Sync communication, Eventual consistency, Orchestrated coordination 

 

This structure of communication eases the strict atomic constraint, giving system 

designers a plethora of new opportunities. For instance, if a service is momentarily 

unavailable, eventual consistency permits data caching until the service is restored. 

Figure 4-9 depicts the design of the SEO SAGA pattern.  

 

 

Figure 4-9 Compensatory transactions are issued by the orchestrator when an error occurs 
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In this paradigm, request, response, and handling of errors are all coordinated by an 

orchestrator. However, the orchestrator is not responsible for transaction management, 

which remains the responsibility of each domain service. Because of this, the 

orchestrator can handle compensation calls, even if they do not happen within a 

currently running transaction. 

Having an orchestrator makes it simpler to manage processes. Synchronous 

communication is simpler than asynchronous, and eventual consistency eliminates the 

most challenging coordination obstacle, especially when dealing with errors. The 

absence of holistic transactions is the most enticing feature of SEO. Each domain 

service handles its transactional behavior, relying on eventual workflow consistency. 

This pattern demonstrates a balanced set of trade-offs compared to many other 

patterns. The orchestrator must continue to handle complicated workflows but is not 

constrained to do so inside a transaction. SEO is not overly complex; it provides the 

most convenient possibilities with the fewest constraints. Even though the calls are 

synchronous, the mediator only needs to keep a less time-sensitive state regarding 

current transactions, which allows for better load balancing and hence greater 

responsiveness. In general, reducing transactional coupling will allow each service to 

expand more independently, leading to greater scalability. 

 

4.6.4 SEC SAGA Pattern 

The SEC SAGA pattern (SEC) is characterized by choreographed workflow, 

synchronous communication, and eventual consistency, Figure 4-10. This approach 

eliminates a central mediator by placing the workflow duties completely on the 

participating domain services, Figure 4-11. 

 

 

Figure 4-10 SEC utilizes Sync communication, Eventual consistency, Choreographed 

coordination 
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Figure 4-11 Communication between microservices in the SEC SAGA pattern 

 

In this process, one service receives a request, processes it, and then passes it on to 

the next service. This architecture can implement the Chain of Responsibility design 

pattern [18] and the hexagonal architecture style [8], as well as any workflow with a 

sequence of one-way stages. Given that each service "owns" its own transactionality 

under this pattern, the workflow for the error conditions must be incorporated into the 

domain architecture. Due to the absence of built-in coordination via a mediator, there is 

a proportionate complexity link between process complexity and choreographed 

solutions—the more complicated the workflow, the more complex the choreography.   

Workflows are simpler to represent using the SEC since no transactions are involved. 

Most workflow states and metadata must be stored in each domain service without an 

orchestrator. Hence, this pattern is best suited for simple processes. This pattern works 

exceptionally well for systems that benefit from high throughput. However, domain 

services must handle errors and coordination since no orchestrator exists. 

In the SEC SAGA pattern, the coupling is moderate. This is because the reduced 

coupling caused by the absence of an orchestrator is compensated by the continued 

coupling of synchronous communication. The elimination of transactionality reduces the 

complexity of this pattern. This is well-suited to high-throughput, one-way 

communication systems, and its coupling level is well-suited to this architectural style. 
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4.6.5 AAO SAGA Pattern 

The AAO SAGA pattern (AAO) utilizes atomic consistency, asynchronous 

communication, and orchestrated coordination, Figure 4-12. 

 

 

Figure 4-12 AAO utilizes Async communication, Atomic consistency, Orchestrated coordination 

 

This pattern is similar to the SAO in all areas except communication. This design 

employs asynchronous communication rather than synchronous communication. 

 

 

Figure 4-13 Compensatory transactions are issued by the orchestrator when an error occurs 

 

However, asynchronicity is not a straightforward modification; it adds several levels of 

complexity to architecture, particularly in the area of coordination, necessitating an 

orchestrator with significantly more complexity. The orchestrator is responsible for 
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monitoring the status of all ongoing transactions, Figure 4-13. Adding asynchronicity to 

orchestrated workflows introduces an asynchronous transactional state, which can lead 

to deadlocks, race situations, and other difficulties inherent in parallel systems since it 

eliminates serial assumptions about ordering. 

In addition to design difficulty, there is also the debugging and operational complexity of 

dealing with large-scale asynchronous workflows. As a result of this pattern's effort at 

transactional coordination across calls, responsiveness will be negatively degraded 

overall and catastrophic if any of the services are unavailable. 

 

4.6.6 AAC SAGA Pattern 

The AAC SAGA pattern (AAC) is distinguished by its use of asynchronous 

communication, atomic consistency, and choreographed coordination, Figure 4-14. 

 

 

Figure 4-14 AAC utilizes Async communication, Atomic consistency, Choreographed coordination 

 

It combines the strictest consistency-based atomic consistency with the two loosest 

coupling methods, asynchronous and choreography. Figure 4-15 shows the structural 

communication for this design. 
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Figure 4-15 Each microservice is responsible to issue its own compensatory transactions 

 

No intermediary is used in this pattern's asynchronous service-to-service 

communication model; hence transactions between different services might be 

inconsistent. Consequently, each domain service must keep track of undo information 

for many pending transactions, which may occur out of sequence due to asynchronicity, 

and coordinate under error conditions. Imagine that transaction T1 begins, and while it 

is waiting, transaction T2 begins. The choreographed services must reverse the 

sequence of execution, reversing each piece of the transaction along the way because 

one of the calls for the T1 transaction has failed. 

This design tries to implement a transactional dependency, which is the worst sort of 

single coupling. However, it alleviates the other two by eliminating the need for a 

mediator and coupling, boosting synchronous communication. Additionally, its 

complexity is horrifying, since it demands the most rigorous criterion (transactionality) 

and the most challenging combination of other criteria to meet that requirement 

(asynchronicity and choreography). On the other hand, this design scales better than 

others with a mediator, and asynchronicity offers the capacity to do additional tasks 

concurrently. 
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4.6.7 AEO SAGA Pattern 

The AEO SAGA pattern (AEO) has two significant changes compared to the SAO, 

making it easier to implement. It is based on asynchronous communication and 

eventual consistency. Figure 4-16 depicts the dimensional diagram of the AEO. 

 

 

Figure 4-16 AEO utilizes Async communication, Eventual consistency, Orchestrated coordination 

 

This pattern employs an orchestrator, which makes it appropriate for complicated 

procedures. However, it employs asynchronous communication, which enables 

improved responsiveness and parallel processing. The domain services are responsible 

for pattern consistency, as they may need to synchronize shared data in the 

background or via the orchestrator.  

 

 

Figure 4-17 The orchestrator communicates asynchronously with the microservices 
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For instance, if an erroneous workflow execution happens, it might be resolved in a 

number of ways, including by the orchestrator sending asynchronous messages to all 

affected domain services to retry the modification or to synchronize the data. The lack of 

transactionality increases the load on the orchestrator to fix workflow errors and other 

problems. Even though asynchronous communication provides superior 

responsiveness, resolving timing and synchronization concerns is more challenging. 

Race situations, deadlocks, queue reliability, and other distributed architecture 

headaches might be raised. 

This design has a low coupling level, isolating the coupling-intensifying power of 

transactions to the scope of their respective domain services. In addition, it uses 

asynchronous communication, which further decouples services from wait conditions 

and enables more parallel processing. The complexity of the AEO is likewise minimal, 

reflecting the previously mentioned reduction in coupling. This pattern is straightforward, 

and the orchestration enables simplified workflow and error-handling solutions. 

This design scaled well thanks to asynchronous communication and reduced 

transaction boundaries, providing effective separation between services. For example, 

some endpoint services might require higher levels of scale and elasticity in a 

microservices architecture. In contrast, the backend services might not require scale but 

relatively higher levels of security. This case can be resolved by separating the two 

types of services into separate layers. Additionally, domain-level transaction isolation 

allows the architecture to scale independently of the domain's notions. 

Due to the absence of coordinated transactions, this architecture's responsiveness is 

excellent. Moreover, because each of these services retains its own transactional 

context, this architecture is well-suited to highly varying service performance footprints 

amongst services. 
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4.6.8 AEC SAGA Pattern 

The AEC SAGA pattern (AEC) employs asynchronous communication, eventual 

consistency, and choreographed coordination, giving the least linked example of these 

patterns, Figure 4-18. 

 

 

Figure 4-18 AEC utilizes Async communication, Eventual consistency, Choreographed 

coordination 

 

Figure 4-19 shows how the AEC uses message queues to send messages to other 

domain services in a way that does not require orchestration. This means that each 

domain service must provide additional context about the task flows in which they 

participate, such as error handling and other coordination mechanisms, because each 

service maintains its own transactional integrity, and there is no orchestrator. 

 

 

Figure 4-19 The microservices communicate asynchronously with each other 
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While the lack of orchestration increases the complexity of services, it also enables 

greater throughput, scalability, and flexibility in the underlying operational architecture. 

This design has no bottlenecks or coupling choke points, allowing for exceptional 

responsiveness and scalability.  

This pattern is optimal for basic, predominantly linear workflows requiring high 

processing throughput. It has the greatest potential for high performance and scalability, 

making it a good option when these characteristics are essential. On the contrary, this 

pattern is not optimal for handling complicated procedures, especially those revolving 

around fixing inconsistencies in data. Also, the degree of decoupling makes 

coordination difficult, and it is prohibitive for complicated or important procedures. 
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5. PISAGA 

The need for a Java library that implements the SAGA pattern arises from the 

increasing popularity of distributed systems and the need for a robust and scalable 

solution to manage coordination and consistency in these systems. The SAGA pattern, 

which is based on the idea of using long-lived transactions and compensating actions, is 

an effective way to achieve scalability and fault tolerance in distributed systems. 

However, the current state of the art in the field of SAGA implementation is either 

complex or expensive to use since it is part of commercial products. 

We were inspired to develop a Java library that implements the SAGA pattern because 

of our experience working with distributed systems and the difficulty we encountered 

finding a simple and practical solution that implements the SAGA pattern. The benefits 

of such a library to the community are numerous. First, it would allow developers to 

quickly implement the SAGA pattern in their systems, increasing their systems' 

scalability and fault tolerance. Additionally, it would encourage other developers to 

contribute to the library and enhance its functionality, which would benefit the entire 

community. 

In this section, we present the piSaga1 library. We provide information about its 

dependencies, inner functionality, and the case study we created to evaluate it.   

 

5.1 Dependencies 

The piSaga library has been developed to implement the SAGA patterns on 

microservices based on Spring Boot, and they communicate through Apache Kafka. 

Together, they are a powerful combination for creating microservices. Spring Boot 

provides the infrastructure and functionality needed to create microservices. In contrast, 

Apache Kafka provides messaging and event-streaming capabilities to handle the real-

time data flow between microservices. The combination of these two technologies 

allows for the creation of highly scalable, fault-tolerant microservices that can handle a 

large number of events in real-time. 

 

5.1.1 Spring Boot 

Spring Boot [23] is a subproject of the Spring Framework, which is a Java-based 

platform that provides comprehensive infrastructure support for developing Java 

applications. It was designed to simplify the process of creating stand-alone, production-

grade Spring-based applications by providing tools and libraries that allow developers to 

quickly create and deploy Spring applications with minimal configuration. 

Spring Boot takes an opinionated view of building Spring applications, meaning it has a 

pre-defined way of doing things in the best way. This means that it makes assumptions 

 

1 https://github.com/ioannidis/pisaga 
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about the configuration and dependencies of a Spring application and automatically 

configures and sets them up for the developer. This can save developers a lot of time 

and effort, as they do not have to manually configure and set up the various 

components of a Spring application. 

Spring Boot also provides many valuable features and tools, such as: 

• Embedded servers allow developers to run their applications as standalone Java 

applications efficiently. 

• The automatic configuration of Spring and its dependencies are based on added 

jar dependencies. 

• Support for a wide range of external libraries and frameworks, such as Hibernate, 

Jackson, and Lombok. 

• A Command Line Interface (CLI) that allows developers to quickly create and run 

Spring Boot applications from the command line 

Overall, Spring Boot is a powerful and easy-to-use platform for developing and 

deploying Spring-based applications. It can significantly reduce the time and effort 

required to set up and configure a Spring application and provides several useful 

features and tools to help developers create high-quality, production-ready applications. 

 

5.1.2 Apache Kafka 

Apache Kafka [24] is a distributed, fault-tolerant publish-subscribe messaging system. It 

was originally developed by LinkedIn and later donated to the Apache Software 

Foundation. Kafka is designed to be horizontally scalable, fast, and able to handle large 

volumes of data with low latency. 

One of the key features of Kafka is its ability to process and transmit streaming data, 

which makes it a popular choice for building real-time data pipelines and streaming 

applications. Kafka is often used to build real-time data pipelines that ingest data from 

multiple sources and process and transmit the data to multiple consumers. 

In addition to its streaming capabilities, Kafka also provides a number of other useful 

features, such as: 

• Durable message storage: Kafka stores all published messages for a 

configurable amount of time, allowing consumers to read messages at their own 

pace. 

• High throughput: Kafka is designed to handle high volumes of data with low 

latency, making it suitable for use cases requiring high data ingestion and 

processing levels. 

• Scalability: Kafka is horizontally scalable, which can be easily deployed across a 

cluster of machines to support high data ingestion and processing levels. 

Overall, Apache Kafka is a robust, scalable, and fault-tolerant publish-subscribe 

messaging system well-suited for building real-time data pipelines and streaming 

applications. 
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5.2 piSaga library 

As we said earlier, the state machine is a useful modeling choice when attempting to 

understand how a SAGA orchestrator works. A state machine is made up of a set of 

states and a set of events that move the machine from one state to another. Each 

transition might have an action, which in the context of a SAGA, is the invocation of a 

SAGA participant. Completing a local transaction executed by a SAGA participant 

triggers the transitions between states. The existing state and the precise outcome of 

the local transaction determine the state transition and subsequent action. 

Consequently, employing a state machine paradigm makes developing, constructing, 

and testing sagas easier. 

Therefore, the piSaga defines the contracts needed to model our SAGA transactions as 

a state machine. We aim to simplify the sagas using intuitive naming conventions, 

enlightening the development process. The following list contains details about piSaga’s 

implementation. 

• interface DomainEvent 

DomainEvent interface defines a contract for the behavior of an object that 

represents the events of the domain model. 

• class DomainModelAndEvents 

Sometimes, when we update the domain model, we need both the update 

domain model and the events that correspond to the update. Thus, here is where 

the DomainModelAndEvents come into the picture. The “model” attribute 

contains the updated domain model, and the “events” attribute is a list that 

contains all the related events. 

• abstract class SagaCommand 

The SagaCommand abstract class is used to model the commands that the 

orchestrator sends to the SAGA participants. A SAGA command contains three 

attributes. The id, type, and the actual command data. 

• @interface SagaCommandListener 

The SagaCommandListener annotation is used to annotate the class, which is 

responsible for listening to the commands published to the specified topic. 

• @interface SagaCommandHandler 

The SagaCommandHandler annotation is used to annotate the methods that will 

handle and process the incoming SAGA commands. Each SAGA command 

handler method is responsible for handling the specified SAGA command type 

that is defined by the method argument. 

• abstract class SagaEvent 

The SagaEvent abstract class is used to model the events that the SAGA 

participants send to the orchestrator. A SAGA event contains three attributes. 

The id, type, and the actual event data. 

• @interface SagaEventListener 

The SagaEventListener annotation is used to annotate the class, which is 

responsible for listening for the events that are published to the specified topic. 
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• @interface SagaEventHandler 

The SagaEventHandler annotation is used to annotate the methods that will 

handle and process the incoming SAGA events. Each SAGA event handler 

method is responsible for handling the specified SAGA event type that is defined 

by the method argument. 

• class UnsupportedStateTransitionException 

The UnsupportedStateTransitionException exception is used to notify the 

developers that the attempted state transition is not supported. 

 

5.3 piSaga case study 

In order to demonstrate and evaluate the capabilities of the piSaga library, we have 

created a case study based on online orders. The goal of this system is to observe the 

responsiveness and measure the performance of our library. Multiple experiments were 

performed for validation and evaluation purposes. The results indicate that the proposed 

method can address the absence of isolation in the SAGA pattern.  

We have implemented two functionalities, the creation of a new order and the 

cancellation of an order. Figure 5-1 depicts the Create Order SAGA state machine: 

 

 

Figure 5-1 Create order state machine model 
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• Initializing Order - The initial state. 

• Reserve Items – Waiting for the Warehouse Service to reserve the requested 

product. 

• Pay Order - Waiting for Payment Service to complete the payment. 

• Order Approved - A final state indicating that the SAGA was completed 

successfully. 

• Order Rejected - A final state indicating that the Order was rejected by one of the 

participants. 

Additionally, the state machine defines multiple state transitions. For instance, the state 

machine transitions from the “Initializing Order” state to “Reserve Items” or “Rejected 

Order”. When it receives a successful reply to the “Reserve Items” command, it 

switches to the “Payment” state. Alternatively, the state machine moves to the “Rejected 

Order” state if the Payment-Service cannot complete the payment. 

The initial operation of the state machine is to emit the “Reserve Items” command to 

Warehouse-Service. Warehouse-Service's reaction initiates the subsequent state shift. 

If the reservation of the item was successful, the payment is initialized, and the state is 

changed to “Pay Order”. However, if the item reservation fails, the “Order” is rejected, 

and the SAGA enters the “Rejecting Order” state. The state machine endures multiple 

additional state changes, driven by the responses from SAGA participants until it 

achieves either “Order Approved” or “Order Rejected” as its final state. 

Figure 5-2 depicts the Cancel Order SAGA state machine: 

 

 

Figure 5-2 Cancel order state machine model 

 

• Canceling order - The initial state. 

• Order canceled - A final state indicating that the SAGA canceled successfully. 
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6. EVALUATION 

We have conducted several experiments to evaluate piSaga’s performance and ability 

to overcome the lack of isolation. The experiments’ infrastructure consists of the Order-

Service, Warehouse-Service, and Payment-Service. Additionally, we deployed Apache 

Kafka and PostgreSQL on Docker. 

For the evaluation, we used Apache JMeter [26]. JMeter is an open-source performance 

testing tool used to analyze and measure the performance of various services and 

applications. It is particularly useful for measuring the performance of web applications. 

Hence, JMeter simulates a heavy server load and analyzes overall performance under 

different load types. 

To evaluate the behavior of piSaga under different situations, we created three 

scenarios with various configurations.  

6.1 Implementations 

We decided to execute the scenarios on two popular variations of the SAGA pattern 

combined with the default cache that Spring Boot provides.  

We implemented the SAC variation by creating Spring Boot microservices that 

communicate with each other using the OpenFeign integration. OpenFeign [27] is a 

Java library that allows you to create declarative HTTP clients. It simplifies the process 

of interacting with RESTful web services by providing an easy-to-use, type-safe, and 

expressive interface for making HTTP requests. The SAC SAGA pattern combines the 

principles of atomicity and choreography without the need for a designated orchestrator. 

However, to achieve atomicity, some degree of cooperation is necessary. The initially 

accessed service is the Order-Service, which acts as the front controller responsible for 

initiating the workflow. It then forwards the request to the subsequent service in the 

process, continuing until the workflow is completed successfully. All services implement 

the corresponding business logic to support compensating requests. By utilizing 

synchronous communication and choreography, bottlenecks can be minimized in non-

error scenarios. The benefits of this pattern include improved throughput and reduced 

bottlenecks, as the final service in the process can return the result. However, the lack 

of a mediator can negatively impact performance, as communication between services 

is necessary. 

Next, we developed the AOE variation by developing microservices that communicate 

using the piSaga library and Apache Kafka. The AEO pattern is based on asynchronous 

communication and eventual consistency. This strategy employs an orchestrator 

responsible for managing the whole transaction process, making it suited for 

complicated operations. In our experiments, the orchestrator is a component of the 

Order-Service. Each microservice that participates in the workflow is accountable for 

maintaining a consistent state, as they may need to synchronize shared data in the 

background or via the orchestrator. This solution is straightforward, and the 

orchestration feature enables simplicity, flexibility, and error-handling solutions. 
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It is important to note that even though the SAGA orchestrator resides in the Order-

Service, it still sends a command message to the Order-Service in the very last step. 

Theoretically, the “Create Order SAGA” might approve the Order by directly modifying it. 

To maintain consistency, however, the SAGA treats Order-Service as another 

participant. 

 

6.1.1 ConcurentHashMap cache 

Spring Boot supports default caching by integrating the Spring Framework's caching 

abstraction. This abstraction allows developers to use different caching providers in 

their applications without changing the code. 

The default caching implementation in Spring Boot uses a simple in-memory cache 

based on the ConcurrentMapCacheManager, which is a thread-safe implementation of 

the CacheManager interface that stores cache entries in a ConcurrentHashMap. This 

means that each cache is essentially a map, with the cache name as the key and a 

ConcurrentMap as the value. The advantages of using a ConcurrentHashMap as a 

cache in Spring Boot are that it is easy to configure, swift and efficient, and allows 

multiple threads to access the cache simultaneously without requiring explicit locks. 

In our experiments, we will use the ConcurentHashMap cache in order to cache the 

SAGAs. So there is a difference between the implementations that utilize cache and the 

others that will not. When we do not use the cache, every time that we perform an 

operation on a SAGA, we have to retrieve it from the database. On the other hand, 

when we use a cache, we need to access the database only the first time we retrieve a 

SAGA. Then, any subsequent operation will retrieve the corresponding SAGA from the 

cache. By doing this, we improve the performance of our application since database 

access is expensive, especially on distributed systems. 

 

6.2 Experiment Scenarios 

The system’s performance will be evaluated using the following three different 

scenarios:  

1.  Successful completion of transaction - no exceptions. 

2.  An exception occurred during the item’s reservation in Warehouse-Service or 

the payment in Payment-Service. 

3.  Order cancellation by the user. 

 

6.2.1 Scenario 1 – Successful order creation 

When the orchestrator has captured a "Create Order Event", the event workflow will be 

taken care of by the microservices that are relevant to that event. First, the Order-

Service initializes the order. Second, the Warehouse-Service initiates the retrieval of the 
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requested quantity of products. Next, the validation of the payment will subsequently be 

handled by the Payment-Service.  

The Order-Service completes the order and updates the necessary information, 

including the order status in the last step. The workflow will be ended, and the order will 

be marked as “APPROVED” since the transaction will be completed successfully, 

Figure 6-1. 

 

 

Figure 6-1 Successful order creation workflow 

 

The steps for this scenario are the following: 

1.  Order-Service receives a request for a new order. 

2.  Order-Service creates an Order and a Create Order Orchestrator. 

3.   The Create Order Orchestrator sends a ReserveOrderItemsCommand 

command to Warehouse-Service, via the warehouse_topic. 

4.  Warehouse-Service replies with an OrderItemsReservedEvent event to 

Create Order Orchestrator, via the create_order_reply_topic. 

5.   The Create Order Orchestrator sends a PayOrderCommand to Payment-

Service, via the payment_topic. 

6.   Payment-Service replies with a PaymentApprovedEvent event via the 

create_order_reply_topic. 

7.   The Create Order Orchestrator sends an ApproveOrderCommand 

command to Order-Service, via the order_topic. 

 

6.2.2 Scenario 2 – Order creation fails at items reservation 

Following the orchestrator's successful capture of a "create-order-event," the event 

process will be handled by the appropriate microservices. The Order-Service starts the 
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ordering process. Second, when a customer has placed an order, Warehouse-Service 

begins pulling the necessary inventory. Here, an error will occur because the requested 

amount is unavailable. Hence, the order must be rejected. 

The Warehouse-Service will fire an event, informing the orchestrator that the requested 

amount could not be allocated. Then the orchestrator will initiate the procedure for 

rejecting the order, Figure 6-2. 

 

 

Figure 6-2 Compensatory workflow when an error occurs at the Warehouse-Service 

 

For this scenario, the flow is as follows: 

1. Order-Service receives a request for a new order. 

2. Order-Service creates an Order and a Create Order Orchestrator. 

3. The Create Order Orchestrator sends a ReserveOrderItemsCommand 

command to Warehouse-Service, via the warehouse_topic. 

4. The Warehouse-Service replies with an OrderItemsOutOfStockEvent event 

via the create_order_reply_topic. 

5. The Create Order Orchestrator sends a RejectOrderCommand command to 

Order-Service, via the order_topic. 

 

6.2.3 Scenario 2 – Order creation fails at payment 

Following the orchestrator's successful capture of a "Create Order Event", the event 

process will be handled by the relevant microservices. The Order-Service initiates the 

ordering procedure. Second, when a consumer has put in an order, the Warehouse-

Service pulls the required inventory. Next, the payment will be handled by the Payment-

Service. At this point, we will experience an error because the user will not have the 

needed amount of money to pay the order. Hence, the order must be rejected. 
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Nevertheless, we also have to revert the actions made in Warehouse-Service for the 

corresponding order. 

The Payment-Service will emit an event informing the orchestrator that the user does 

not have the credit to pay for the order. Then the orchestrator will initiate the procedure 

for rejecting the order, sending a “Reject Order” command to Warehouse-Service and 

Order-Service, Figure 6-3.  

 

 

Figure 6-3 Compensatory workflow when an error occurs at the Payment-Service 

 

This flow contains a few more steps in addition to the previous one: 

1. Order-Service receives a request for a new order. 

2. Order-Service creates an Order and a Create Order Orchestrator. 

3. The Create Order Orchestrator sends a ReserveOrderItemsCommand 

command to Warehouse-Service, via the warehouse_topic. 

4. Warehouse-Service replies with an OrderItemsReservedEvent event to 

Create Order Orchestrator, via the create_order_reply_topic. 

5. The Create Order Orchestrator sends a PayOrderCommand to Payment-

Service, via the payment_topic. 

6. Payment-Service replies with a PaymentRejectedEvent event, via the 

create_order_reply_topic. 

7. The Create Order Orchestrator sends a RejectOrderCommand command to 

Warehouse-Service, via the warehouse_topic. 

8. The Create Order Orchestrator sends a RejectOrderCommand command to 

Order-Service, via the order_topic. 
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6.2.4 Scenario 3 – Cancelling order 

The difference between this scenario and scenarios 2, and 3 is that the cancellation of 

the order is performed by the user. This action is not part of the automated workflow 

that the SAGA provides. The order can be canceled when the state is 

“WAREHOUSE_APPROVED” or “PAYMENT_APPROVED”.  

The compensating transactions that should be emitted depend on the current state of 

the order. If the current state is “WAREHOUSE_APPROVED” then the orchestrator 

sends only a “Cancel Order” command to Order-Service, Figure 6-4.  

 

 

Figure 6-4 Order cancellation workflow at “WAREHOUSE_APPROVED” state 

 

The flow for this scenario is the following: 

1. Order-Service receives a request to cancel an order. 

2. Order-Service creates a Cancel Order Orchestrator. 

3. The Create Order Orchestrator sends a CancelOrderCommand command to 

Warehouse-Service, via the warehouse_topic. 

4. The Create Order Orchestrator sends a CancelOrderCommand command to 

Order-Service, via the order_topic. 

If the current state is “PAYMENT_APPROVED” the orchestrator sends the “Cancel 

Order“ command both to Warehouse-Service and Order-Service, Figure 6-5. 
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Figure 6-5 Order cancellation workflow at “PAYMENT_APPROVED” state 

 

The flow for this scenario is the following: 

1.  Order-Service receives a request to cancel an order. 

2.  Order-Service creates a Cancel Order Orchestrator. 

3.   The Create Order Orchestrator sends a CancelOrderCommand command 

to Warehouse-Service, via the warehouse_topic. 

4. The Create Order Orchestrator sends a CancelOrderCommand command to 

Payment-Service, via the payment_topic. 

5. The Create Order Orchestrator sends a CancelOrderCommand command to 

Order-Service, via the order_topic. 

 
6.3 Experimental Results 

We ran the experiment scenarios we extensively described in the previous section using 

various parameters. As we mentioned earlier, the scenarios will be applied to two 

systems composed by: 

1.  Choreographed microservices using RESTful communication based on the SAC 

pattern. 

2.  Orchestrated microservices using the piSaga event-driven communication based 

on the AOE pattern. 

It is worth mentioning that during the execution of all of the experiments with the piSaga 

library, we did not face any errors related to the lack of isolation. This means that the 

piSaga successfully handles the isolation at the application level of each microservice. 
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6.3.1 Scenario 1 – Throughput 

As throughput, we define the number of requests processed in 30 seconds. We 

consider only the requests in the “APPROVED” state as completed. We evaluated the 

performance of various configurations in terms of throughput by running the scenario 

with 1, 10, and 25 virtual users. We achieved this by configuring the virtual users in 

jMeter to stream requests for 30 seconds. Then we counted how many SAGA flows had 

been successfully completed. The experiment was repeated five times to ensure the 

consistency and accuracy of the results.  

 

6.3.1.1 1 virtual user 

The results for having a single virtual user are presented in Table 6-1. The baseline 

configuration is “OpenFeign without cache”, with an average throughput of 8222.2 

requests per 30 seconds. 

When comparing the baseline configuration with the “piSaga without cache” 

configuration, we can see that the latter performs slightly better, with an average 

throughput of 8331.6 requests per 30 seconds. This represents an improvement of 

1.33%. The “OpenFeign with cache” configuration also improves over the baseline, with 

an average throughput of 8407 requests per 30 seconds, representing an improvement 

of 2.5%. However, the best performance is achieved by the “piSaga with cache” 

configuration, which reaches an average throughput of 8516.6 requests per 30 seconds. 

This represents an improvement of 3.58% over the baseline configuration. 

It is clear that the configuration of “piSaga with cache” provides the highest throughput 

among all the configurations we tested. The difference in throughput between the best 

option and the other configurations is 3.58%, 2.22%, and 1.30%, respectively. 

 

Table 6-1 Successful-request/30sec for 1 virtual user 

  No Cache Cache 

 # OpenFeign  piSAGA OpenFeign  piSAGA 

1 8199 8372 8343 8545 

2 8199 8285 8430 8574 

3 8170 8343 8430 8401 

4 8314 8343 8401 8545 

5 8229 8315 8431 8518 

avg 8222.2 8331.6 8407 8516.6 
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Figure 6-6 Graphical representation of throughput for 1 virtual user 

 

6.3.1.2 10 virtual users 

The results for having 10 virtual users are presented in Table 6-2. The first configuration 

we evaluated used the “OpenFeign without cache”, resulting in an average throughput 

of 9480.5 requests per 30 seconds.  

This configuration serves as the baseline for comparison with the other configurations. 

Additionally, using “piSaga without cache” resulted in an average throughput of 9588 

requests per 30 seconds, showing an improvement of 1.13% compared to the baseline. 

Using “OpenFeign with cache” resulted in an average throughput of 9671.5 requests per 

30 seconds, showing an improvement of 2.01% compared to the baseline. Last, it was 

found that using “piSaga with cache” resulted in the highest average throughput at 

9837.5 requests per 30 seconds. This configuration showed a significant improvement 

of 3.77% compared to the baseline 

Based on the results, it is clear that the combination of piSaga with a cache resulted in 

the highest throughput of 9837.5 requests per 30 seconds. It is important to note that 

the percentage differences between the best option and the others are 3.77%, 2.60%, 

and 1.72%, respectively. 

 

Table 6-2 Successful-request/30sec for 10 virtual user 

  No Cache Cache 

 # OpenFeign  piSAGA OpenFeign  piSAGA 

1 9518 9719 9778 9787 

2 9387 9486 9652 9817 

3 9463 9562 9695 9795 

4 9644 9677 9745 9912 

5 9428 9627 9594 9826 

avg 9480.5 9588 9671.5 9837.5 
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Figure 6-7 Graphical representation of throughput for 10 virtual users 

 

6.3.1.3 25 virtual users 

The results for having 25 virtual users are presented in Table 6-3.  The implementation 

with “OpenFeign without cache” resulted in an average throughput of 9993.4 requests 

per 30 seconds and served as the baseline for comparison. 

It can be observed that the implementation with “piSaga without cache”, which resulted 

in an average throughput of 10151.2 requests per 30 seconds, has a 1.58% higher 

throughput compared to the baseline. Next, implementing “OpenFeign with cache” 

resulted in an average throughput of 10251.2 requests per 30 seconds and a 2.58% 

higher throughput than the baseline. Lastly, the implementation with “piSaga with 

cache” resulted in an average throughput of 10403.6 requests per 30 seconds and a 

4.10% higher throughput than the baseline. 

It can be concluded that the configuration with cache and piSaga is the best option, 

providing the highest throughput. The difference in throughput between the best option 

and the other configurations is relatively small, with the most significant difference being 

4.06% between the best option and the others are 4.10%, 2.49%, and 1.49%, 

respectively. 

 

Table 6-3 Successful-request/30sec for 25 virtual user 

  No Cache Cache 

 # OpenFeign  piSAGA OpenFeign  piSAGA 

1 9915 10150 10034 10256 

2 9892 10284 10372 10601 

3 10099 10174 10131 10240 

4 10052 10054 10405 10495 

5 10009 10094 10314 10426 

avg 9993.4 10151.2 10251.2 10403.6 
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Figure 6-8 Graphical representation of throughput for 25 virtual users 

 

6.3.1.4 Experiment outcome 

Based on the experimental results, it can be concluded that the combination of piSaga 

with a cache consistently results in the highest throughput across all configurations and 

virtual user scenarios. The improvement in throughput ranges from 1.13% to 4.10% 

compared to the baseline configuration of “OpenFeign without cache”. Additionally, the 

difference in throughput between the best option and the other configurations is 

relatively small. The most significant difference is 4.06% between the best option and 

the implementation with “OpenFeign without cache”. 

It is also worth noting that using cache alone, whether with OpenFeign or piSaga, 

results in a slight improvement in throughput compared to the baseline configuration. 

This suggests that using a cache is an essential factor in optimizing performance. 

In summary, the best option for improving performance and increasing throughput is to 

use the configuration of piSaga with a cache. This configuration consistently results in 

the highest throughput across all scenarios and significantly improves performance 

compared to the baseline configuration. 

 

6.3.2  Scenario 2 – Required time to complete requests 

In this scenario, we investigate how long it takes to complete 10000 requests when 

there is an error either in the Warehouse-Service or the Payment-Service. Hence, using 

jMeter, we configured the 1 virtual user to stream 10000 requests.  

 

6.3.2.1 Experiment 1 

In this experiment, 20% of the incoming requests will fail in the Warehouse-Service; 

hence compensation transactions will be made to revert the corresponding order to a 

valid state. We measure how long it takes to either approve or reject an order. 
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Table 6-4 Required time, in seconds, to complete 10000 requests 

Error Rate No Cache Cache 

WS PS OpenFeign  piSAGA OpenFeign  piSAGA 

20% 0% 39 36 35 33 

 

The results in Table 6-4 show that “piSaga with cache” performed the best, taking only 

33 seconds to complete 1000 requests. This is a significant improvement over the other 

configurations, with “OpenFeign with cache” coming in second place at 35 seconds, 

“piSaga without cache” taking 36 seconds, and “OpenFeign without cache” taking the 

longest at 39 seconds. 

It is clear from these results that the use of a cache can significantly improve the 

performance of the system, with the “piSaga with cache” configuration reducing the 

required time by 9.38% compared to “piSaga without cache”, and by 18.75% compared 

to “OpenFeign without cache”. Additionally, using “piSaga with cache” outperforms 

“OpenFeign with cache”, reducing the required time by 6.25%. 

 

 

Figure 6-9 Cache-piSaga needs 33 seconds to complete 10000 requests 

 

6.3.2.2 Experiment 2 

In this experiment, 40% of the incoming requests will fail in the Warehouse-Service. 

Next, 20% - out of the 60% of the requests that the Warehouse-Service approved - will 

fail in the Payment-Service. Therefore, a compensation transaction will be made in 

order to revert the corresponding order to a valid state. We measure how long it takes to 

either approve or reject an order. 
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Table 6-5 Required time, in seconds, to complete 10000 requests 

Error Rate No Cache Cache 

WS PS OpenFeign  piSAGA OpenFeign  piSAGA 

40% 20% 34 30 31 28 

 

The results in Table 6-5 show that the best performance was achieved by the “piSaga 

with cache” approach, which took only 28 seconds to complete the task. This is a 

significant improvement when compared to the other approaches. The “piSaga withour 

cache” approach was the second-best option, taking 30 seconds, followed by the 

“OpenFeign with cache” and “OpenFeign without cache” with 31 and 34 seconds, 

respectively. 

Comparing the best option to the other approaches, we can see that it had a 6.90% 

improvement over the “piSaga without cache”, an 10.34% improvement over the 

“OpenFeign with cache”, and a 20.69% improvement over the “OpenFeign without 

cacahe”. 

 

 

Figure 6-10 Cache-piSaga needs 28 seconds to complete 10000 requests 

 

6.3.2.3 Experiment 3 

In this experiment, 60% of the incoming requests will fail in the Warehouse-Service. 

Next, 40% - out of the 40% of the requests that the Warehouse-Service approved - will 

fail in the Payment-Service. Therefore, a compensation transaction will be made in 

order to revert the corresponding order to a valid state. We measure how long it takes to 

either approve or reject an order. 
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Table 6-6 Required time, in seconds, to complete 10000 requests 

Error Rate No Cache Cache 

WS PS OpenFeign  piSAGA OpenFeign  piSAGA 

60% 40% 32 30 28 26 

 

Table 6-6 shows that “piSaga with cache” performs better than the other approaches, 

needing only 26 seconds. This is a 7.96% improvement over the second-best option, 

which is “OpenFeign with cache”, with 28 seconds. The no-cache options, piSaga, and 

OpenFeign, have average completion times of 30 and 32 seconds, respectively. These 

results suggest that incorporating a cache system, specifically using piSaga, can 

significantly improve the efficiency and speed of the system in high error rate scenarios. 

Additionally, the percentage difference between the best option and the no-cache 

options in this scenario is 15.38% and 26.92% for piSaga and OpenFeign, respectively. 

 

 

Figure 6-11 Cache-piSaga needs 26 seconds to complete 1000 requests 

 

6.3.2.4 Experiment outcome 

In summary, the experimental results show that incorporating a cache system can 

significantly improve the performance of the system. The best configuration was found 

to be “piSaga with cache”, which had the fastest completion time in all runs. This 

configuration outperformed the other approaches, reducing the required time by at least 

6.90% compared to the no-cache options and by 6.25% compared to OpenFeign. The 

results also suggest that piSaga is more effective than OpenFeign in high error rate 

scenarios.  
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6.3.3 Scenario 3 – Processing time for order cancellation 

Our goal for this performance test is to investigate how piSaga performs under heavy 

load of request using stress testing [34]. To accomplish this, we run two experiments on 

that scenario. In the first one, we configured 10 virtual users on jMeter to stream 10000 

requests, and in the second 50 virtual users to stream 100000 requests. We compared 

only the implementations with ConcurrentHashMap cache, both using OpenFeign and 

piSaga, since they are the ones that perform the best.  

We measured the “Processing time” and the “Total time”. As “Processing time”, we 

define the time between the last sent request and the last processed order, whereas the 

“Total time” is the time between the first sent request and the final processed order. 

 

6.3.3.1 Experiment 1 

Table 6-7 presents the results of the performance execution when 10 virtual users 

initiated 1000 requests, resulting in a total of 10000 requests. The results show that 

piSAGA performs better than OpenFeign, with a processing time of 34 seconds 

compared to 38 seconds for OpenFeign. Additionally, the total time for piSAGA is 38 

seconds, while it is 42 seconds for OpenFeign. This results in a percentage difference 

of 11.76% in processing time and 10.53% in total time in favor of piSAGA. 

 

Table 6-7 Processing and total time, in seconds, for 10 virtual uses and 10000 in total   

  Processing time Total Time 

OpenFeign  38 42 

piSAGA 34 38 

 

 

Figure 6-12 piSaga needs 38 seconds to complete 10000 cancellation requests 
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6.3.3.2 Experiment 2 

In Figure 6-8 we present the results of the performance execution when 50 virtual users 

initiated 2000 requests. So, the total number of requests is 100000. This experiment 

shows that processing time and total time are shorter when using piSAGA than 

OpenFeign. Specifically, the processing time for piSAGA is 599 seconds, while for 

OpenFeign, it is 608 seconds, representing a 1.5% difference. Similarly, the total time 

for piSAGA is 613 seconds, while for OpenFeign, it is 625 seconds, representing a 

1.96% difference. 

 

Table 6-8 Processing and total time, in seconds, for 50 virtual uses and 100000 in total 

  Processing time Total Time 

OpenFeign  608 625 

piSAGA 599 613 

 

 

Figure 6-13 piSaga needs 613 seconds to complete 100000 cancellation requests 

 

6.3.3.3 Experiment outcome 

In conclusion, based on the results of both experiments on this scenario, it can be seen 

that piSAGA performs better than OpenFeign in terms of processing time and total time. 

This suggests that piSAGA may be a better option for systems that require low latency 

and fast processing times. It is important to note that these results are obtained from a 

specific set of conditions. The performance may vary depending on factors such as 

network conditions and the specific implementation of the tested system. Additionally, 

we can see that piSaga outperforms OpenFeign by at least 1.5% and 1.96% in 

processing and total time, respectively, in both experiments. These results demonstrate 

that using piSaga with a cache is an efficient and effective approach for improving 

system performance. 
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7. CONCLUSION 

In conclusion, the SAGA pattern is a powerful approach to implementing distributed 

transactions in distributed systems. It provides robust assurances of atomicity, 

consistency, and managing isolation on the application level while permitting the 

execution of long-running transactions that may span several systems or locations. 

Another significant feature of the SAGA pattern is its ability to handle failures and errors 

gracefully. In the event of a failure or error, the SAGA pattern permits the execution of 

compensating transactions that can undo the results of prior operations and restore the 

system to a consistent state. This is particularly crucial in distributed systems, where 

failures and errors are more frequent due to the complexity and diversity of the involved 

systems. 

Despite these advantages, it is essential to carefully analyze the SAGA pattern's trade-

offs. Specifically, the high amount of coordination and communication needed by the 

SAGA pattern may have a negative impact on performance, especially in systems with 

high concurrency. In addition, implementing the SAGA pattern may be more complex 

than other approaches to distributed transactions, which may raise the risk of errors and 

the amount of time necessary to design and maintain the system. 

Regarding the piSaga library, we can see that the “piSaga with cache” approach 

performs better than all the other approaches. Based on the extended experiments, 

simulating three scenarios with several configurations, we can see that it provides better 

throughput and needs less time to successfully serve the same number of requests 

(reaching a final state). Ultimately, cache can significantly improve the performance of 

the system piSaga is a good option for developing practical microservices that support 

distributed transactions.  

Overall, the SAGA pattern is a valuable tool for developers who wish to create scalable 

and reliable distributed systems since it offers a variety of advantages that may 

significantly boost the performance and reliability of these systems. However, it is 

essential to carefully consider the trade-offs associated with it and select the best 

suitable technique for a specific use case. 
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8. ABBREVIATIONS - ACRONYMS 

2PC Two-Phase Commit 

2PC* Two-Phase Commit with Recovery 

ACD  Atomicity Consistency Durability  

ACID  Atomicity Consistency Isolation Durability  

CAP  Consistency Availability Partition-Tolerance 

CA Consistency Availability 

CP Consistency Partition-Tolerance 

AP Availability Partition-Tolerance 

IPC Inter-process Communication 

RESTful Representational state transfer 

TCC Try, Commit and Cancel 

GRIT Generalized Recursive Idealized Transactions 

μService Microservice 
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