

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE PROGRAM

COMPUTER SCIENCE

MASTER THESIS

Distributed Transactions using the SAGA pattern

Panagiotis I. Ioannidis

Supervisor: Mema Roussopoulos, Professor

ATHENS

March 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένες Συναλλαγές με χρήση του προτύπου SAGA

Παναγιώτης Ι. Ιωαννίδης

Επιβλέπουσα: Μέμα Ρουσσοπούλου, Καθηγήτρια

ΑΘΗΝΑ

Μάρτιος 2023

MASTER THESIS

Distributed Transactions using the SAGA pattern

Panagiotis I. Ioannidis

S.N.: CS2200006

SUPERVISOR: Mema Roussopoulos, Professor

THESIS COMMITTEE: Alex Delis, Professor
Mema Roussopoulos, Professor
Panagiotis Liakos, Postdoctoral Researcher

March 2023

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Κατανεμημένες Συναλλαγές με χρήση του προτύπου SAGA

Παναγιώτης Ι. Ιωαννίδης

Α.Μ.: CS2200006

ΕΠΙΒΛΕΠΟΥΣΑ: Μέμα Ρουσσοπούλου, Καθηγήτρια

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Αλέξης Δελής, Καθηγητής
Μέμα Ρουσσοπούλου, Καθηγήτρια
Παναγιώτης Λιάκος, Μεταδιδακτορικός Ερευνητής

Μάρτιος 2023

ΠΕΡΙΛΗΨΗ

Οι κατανεμημένες συναλλαγές αποτελούν κρίσιμο συστατικό των σύγχρονων

κατανεμημένων συστημάτων, καθώς εξασφαλίζουν τη συνοχή και την ακεραιότητα των

δεδομένων σε πολλαπλές βάσεις δεδομένων, διακομιστές ή υπηρεσίες. Είναι ιδιαίτερα

σημαντικές στα σύγχρονα κατανεμημένα συστήματα, τα οποία είναι συχνά πολύπλοκα,

δυναμικά με πολλά διασυνδεδεμένα στοιχεία, καθώς και σε συστήματα που

περιλαμβάνουν ευαίσθητα ή κρίσιμα δεδομένα. Χωρίς κατανεμημένες συναλλαγές, θα

ήταν δύσκολο να διασφαλιστεί ότι τα δεδομένα ενημερώνονται με συνέπεια και

ορθότητα σε πολλαπλά συστήματα, γεγονός που θα μπορούσε να οδηγήσει σε

ασυνέπειες και απώλεια δεδομένων.

Ο στόχος μιας κατανεμημένης συναλλαγής είναι να διασφαλίσει ότι όλες οι λειτουργίες

είτε όλες δεσμεύονται και τίθενται σε ισχύ είτε όλες ανακαλούνται και δεν έχουν κανένα

αποτέλεσμα, ακόμη και σε περίπτωση αποτυχιών ή σφαλμάτων. Ωστόσο, οι

παραδοσιακές προσεγγίσεις για την υλοποίηση κατανεμημένων συναλλαγών, όπως το

Two-Phase Commit protocol (2PC), μπορεί να είναι πολύπλοκες και επιρρεπείς σε

σφάλματα.

Το πρότυπο SAGA είναι μια πολλά υποσχόμενη εναλλακτική προσέγγιση για την

υλοποίηση κατανεμημένων συναλλαγών, καθώς επιτρέπει μεγαλύτερη ευελιξία και

ανθεκτικότητα στα κατανεμημένα συστήματα. Σε ένα SAGA, κάθε βήμα αντιμετωπίζεται

ως ξεχωριστή συναλλαγή, και εάν κάποιο βήμα αποτύχει, η διαδικασία ανατρέπεται σε

μια προηγούμενη γνωστή καλή κατάσταση και ενεργοποιείται μια διαδικασία χειρισμού

σφαλμάτων. Αυτό επιτρέπει τη μερική αποτυχία και τη δυνατότητα ανάκαμψης από

αυτήν, καθιστώντας το πρότυπο SAGA ιδιαίτερα κατάλληλο για χρήση σε σύγχρονα

κατανεμημένα συστήματα.

Σε αυτή τη διπλωματική εργασία, θα διερευνήσουμε τη χρήση του προτύπου Saga για

την υλοποίηση κατανεμημένων συναλλαγών σε κατανεμημένα συστήματα. Θα

ξεκινήσουμε παρέχοντας μια επισκόπηση των κατανεμημένων συναλλαγών και των

προκλήσεων που θέτουν στα σύγχρονα κατανεμημένα συστήματα. Στη συνέχεια θα

παρουσιάσουμε το πρότυπο SAGA και θα συζητήσουμε τα οφέλη και τις προκλήσεις

του. Αμέσως μετά, θα παρουσιάσουμε μια μελέτη περίπτωσης που υλοποιεί την

«orchestrated» προσέγγισή μας - piSaga - για κατανεμημένες συναλλαγές σε Spring

Boot microservices και θα πραγματοποιήσουμε ορισμένα πειράματα προκειμένου να

μετρήσουμε την απόδοσή της σε σχέση με μια «choreographed» λύση. Τέλος, θα

καταλήξουμε συνοψίζοντας τις βασικές ιδέες και τις συνεισφορές της ανάλυσής μας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κατανεμημένα Συστήματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: SAGA, κατανεμημένες συναλλαγές, μηχανική λογισμικού,

αρχιτεκτονική λογισμικού, microservices

ABSTRACT

Distributed transactions are a crucial component of modern distributed systems, as they

ensure data consistency and integrity across multiple databases, servers, or services.

They are essential in modern distributed systems, which are often complex and

dynamic environments with many interconnected components, and in systems that

involve sensitive or critical data. Without distributed transactions, ensuring that data is

consistently and correctly updated across multiple systems would be challenging, which

could lead to inconsistencies and data loss.

The goal of a distributed transaction is to ensure that all operations either commit and

take effect or roll back and have no effect, even in the case of failures or errors.

However, traditional approaches to implementing distributed transactions, such as the

Two-Phase commit (2PC) protocol, can be inflexible and prone to failure in complex and

dynamic environments.

The SAGA pattern is a promising alternative approach to implementing distributed

transactions, as it allows for more flexibility and resilience in distributed systems. In a

SAGA, each step in a long-running business process is treated as a separate

transaction, and if any step fails, the process is rolled back to a previously known good

state, and an error-handling process is triggered. This allows for partial failures and the

ability to recover from them, making the SAGA pattern particularly well-suited for use in

modern distributed systems.

In this thesis, we will explore the use of the SAGA pattern for implementing distributed

transactions in distributed systems. We will begin by providing an overview of

distributed transactions and their challenges in modern distributed systems. We will

then introduce the SAGA pattern and discuss its benefits and challenges. Next, we will

present a case study that implements our orchestrated approach - piSaga - for

distributed transactions in Spring Boot microservices. We will also conduct experiments

to measure its performance against a choreographed solution. Finally, we will

summarize the key insights and contributions of our analysis.

SUBJECT AREA: Distributed Systems

KEYWORDS: SAGA, distributed transactions, software engineering, software

architecture, microservices

To my family for supporting me throughout my entire academic journey.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my family for their

constant support and encouragement throughout my academic journey. Their

unwavering belief in my abilities has been a constant source of motivation and

inspiration.

I would also like to extend my heartfelt thanks to my professors, and especially to

Professor Mema Roussopoulos, for their invaluable guidance and mentorship. Their

expertise, knowledge, and passion for their subjects have profoundly impacted my

academic and professional development. Their generous assistance and support have

been instrumental in helping me achieve my goals. Additionally, I would like to thank

Professor Alex Delis and Panagiotis Liakos for honoring me with their presence and

their participation as my thesis committee.

Finally, I would like to thank all of the individuals who have directly and indirectly

contributed to this research and my degree completion. I am deeply grateful for their

help and support.

 CONTENTS

1. INTRODUCTION .. 15

2. BACKGROUND ... 17

2.1 CAP Theorem ... 17

2.2 ACID .. 18

2.3 ACD ... 19

2.3.1 Lack of Isolation .. 19

2.3.2 Countermeasures .. 20

2.4 Microservices ... 21

2.5 SAGA compared to other distributed transactions protocols .. 22

2.5.1 Two-Phase commit (2PC) ... 22

2.5.2 Two-Phase Commit with Recovery (2PC*) ... 23

2.5.3 Try, Commit, and Cancel (TCC).. 23

2.5.4 Generalized Recursive Idealized Transactions (GRIT) .. 24

3. RELATED WORK .. 26

4. TRANSACTIONAL SAGA ... 28

4.1 Coordination ... 28

4.1.1 Choreography ... 28

4.1.2 Orchestration ... 29

4.2 Inter-process Communication .. 31

4.2.1 Synchronous communication .. 31

4.2.2 Asynchronous communication .. 31

4.3 Consistency .. 31

4.3.1 Atomic consistency ... 32

4.3.2 Eventual consistency .. 32

4.4 Transaction types .. 32

4.5 State machine modeling ... 32

4.6 The variations of the SAGA pattern ... 33

4.6.1 SAO SAGA Pattern ... 34

4.6.2 SAC SAGA Pattern ... 37

4.6.3 SEO SAGA Pattern ... 39

4.6.4 SEC SAGA Pattern ... 40

4.6.5 AAO SAGA Pattern ... 42

4.6.6 AAC SAGA Pattern ... 43

4.6.7 AEO SAGA Pattern ... 45

4.6.8 AEC SAGA Pattern ... 47

5. PISAGA .. 49

5.1 Dependencies ... 49

5.1.1 Spring Boot.. 49

5.1.2 Apache Kafka .. 50

5.2 piSaga library ... 51

5.3 piSaga case study.. 52

6. EVALUATION .. 54

6.1 Implementations .. 54

6.1.1 ConcurentHashMap cache.. 55

6.2 Experiment Scenarios ... 55

6.2.1 Scenario 1 – Successful order creation .. 55

6.2.2 Scenario 2 – Order creation fails at items reservation .. 56

6.2.3 Scenario 2 – Order creation fails at payment .. 57

6.2.4 Scenario 3 – Cancelling order ... 59

6.3 Experimental Results .. 60

6.3.1 Scenario 1 – Throughput ... 61

6.3.2 Scenario 2 – Required time to complete requests .. 64

6.3.3 Scenario 3 – Processing time for order cancellation .. 68

7. CONCLUSION ... 70

8. ABBREVIATIONS - ACRONYMS .. 71

REFERENCES .. 72

LIST OF FIGURES

Figure 2-1 Graphical representation of the CAP theorem .. 17

Figure 2-2 Microservices architecture high-level design .. 21

Figure 4-1 Choreography coordination .. 29

Figure 4-2 Orchestration coordination ... 30

Figure 4-3 SAO utilizes Sync communication, Atomic consistency, Orchestrated

coordination ... 34

Figure 4-4 Communication between microservices in the SAO SAGA pattern 35

Figure 4-5 Compensatory transactions are issued by the orchestrator when an error

occurs .. 35

Figure 4-6 SAC utilizes Sync communication, Atomic consistency, Choreographed

coordination ... 37

Figure 4-7 Each microservice is responsible to issue its own compensatory transactions

 .. 37

Figure 4-8 SEO utilizes Sync communication, Eventual consistency, Orchestrated

coordination ... 39

Figure 4-9 Compensatory transactions are issued by the orchestrator when an error

occurs .. 39

Figure 4-10 SEC utilizes Sync communication, Eventual consistency, Choreographed

coordination ... 40

Figure 4-11 Communication between microservices in the SEC SAGA pattern 41

Figure 4-12 AAO utilizes Async communication, Atomic consistency, Orchestrated

coordination ... 42

Figure 4-13 Compensatory transactions are issued by the orchestrator when an error

occurs .. 42

Figure 4-14 AAC utilizes Async communication, Atomic consistency, Choreographed

coordination ... 43

Figure 4-15 Each microservice is responsible to issue its own compensatory

transactions ... 44

Figure 4-16 AEO utilizes Async communication, Eventual consistency, Orchestrated

coordination ... 45

Figure 4-17 The orchestrator communicates asynchronously with the microservices ... 45

Figure 4-18 AEC utilizes Async communication, Eventual consistency, Choreographed

coordination ... 47

Figure 4-19 The microservices communicate asynchronously with each other 47

Figure 5-1 Create order state machine model ... 52

Figure 5-2 Cancel order state machine model ... 53

Figure 6-1 Successful order creation workflow .. 56

Figure 6-2 Compensatory workflow when an error occurs at the Warehouse-Service .. 57

Figure 6-3 Compensatory workflow when an error occurs at the Payment-Service 58

Figure 6-4 Order cancellation workflow at “WAREHOUSE_APPROVED” state 59

Figure 6-5 Order cancellation workflow at “PAYMENT_APPROVED” state 60

Figure 6-6 Graphical representation of throughput for 1 virtual user 62

Figure 6-7 Graphical representation of throughput for 10 virtual users 63

Figure 6-8 Graphical representation of throughput for 25 virtual users 64

Figure 6-9 Cache-piSaga needs 33 seconds to complete 10000 requests 65

Figure 6-10 Cache-piSaga needs 28 seconds to complete 10000 requests 66

Figure 6-11 Cache-piSaga needs 26 seconds to complete 1000 requests 67

Figure 6-12 piSaga needs 38 seconds to complete 10000 cancellation requests 68

Figure 6-13 piSaga needs 613 seconds to complete 100000 cancellation requests 69

LIST OF TABLES

Table 4-1 Saga pattern variations .. 34

Table 6-1 Successful-request/30sec for 1 virtual user ... 61

Table 6-2 Successful-request/30sec for 10 virtual user ... 62

Table 6-3 Successful-request/30sec for 25 virtual user ... 63

Table 6-4 Required time, in seconds, to complete 10000 requests 65

Table 6-5 Required time, in seconds, to complete 10000 requests 66

Table 6-6 Required time, in seconds, to complete 10000 requests 67

Table 6-7 Processing and total time, in seconds, for 10 virtual uses and 10000 in total

 .. 68

Table 6-8 Processing and total time, in seconds, for 50 virtual uses and 100000 in total

 .. 69

Distributing transactions using the SAGA pattern

P. Ioannidis 15

1. INTRODUCTION

Microservices are a popular architectural style for building software systems that are

independently deployable, scalable, flexible, resilient, and modular. They are well-suited

for use in modern distributed systems that handle a large and unpredictable workload

and require high availability.

In order to support such a system, we also need distributed transactions. Distributed

transactions ensure that data is consistently and correctly updated across multiple

microservices and databases, which helps maintain the integrity and reliability of the

system. Moreover, they allow for partial failures and the ability to recover from them,

which makes the system more fault-tolerant and resilient. This is especially important in

mission-critical systems that need to be highly available. In addition to these benefits,

distributed transactions can also improve the performance of a system by allowing

multiple microservices to execute concurrently while reducing the need for costly and

time-consuming communication between microservices.

This thesis aims to examine, understand, and evaluate the SAGA pattern. SAGA is a

distributed transaction model that is an alternative to several traditional protocols like

Two-Phase commit (2PC), Two-Phase Commit with Recovery (2PC*), Try, Commit, and

Cancel (TCC), and Generalized Recursive Idealized Transactions (GRIT). Compared to

the transaction protocols mentioned above, a SAGA transaction is composed of a series

of sub-transactions, each of which can be undone (compensated) if necessary. This

allows for more flexibility in handling failures and errors, as the system can recover from

a failure by undoing any changes made as part of a sub-transaction. They also allow for

more fine-grained control over the scope of a transaction, as sub-transactions can be

nested and composed in various ways. Additionally, SAGA transactions can be used

where traditional ACID transactions may not be feasible, such as in systems with high

levels of data consistency or systems that need to support long-running operations.

However, SAGA transactions are also more complex to implement than traditional ACID

transactions, and they may require more resources to maintain the necessary state

information for undoing sub-transactions. Therefore, we develop piSaga, a Java library

for Spring Boot. This library's primary goal is to successfully define the necessary

contracts to represent our SAGA transactions using a state machine model. We aim to

make SAGAs easier to understand by employing sensible naming conventions and

clarifying the development process.

Lastly, we conducted several experiments to evaluate piSaga's performance and

determine whether or not it can overcome the lack of isolation. For this reason, we

came up with three distinct scenarios, running them utilizing cache-less and cache

implementations. In the first scenario, we measure the number of requests that can be

handled within 30 seconds. We achieved this by considering only the successfully

completed requests and repeating the experiment for 1, 10, and 25 virtual users. In the

second scenario, we examine how long it takes to complete a batch of requests when

either the Warehouse-Service or the Payment-Service encounters an error. In the last

Distributing transactions using the SAGA pattern

P. Ioannidis 16

scenario, we aim to investigate how piSaga performs under heavy load of request using

stress testing. We achieve this by calculating the time it takes to cancel an order when

10 and 50 virtual users stream 10000 and 100000 requests, respectively.

Overall, this work makes the following contributions:

• We explain the differences between SAGA and several other protocols.

• We present the SAGA pattern and its variations.

• We develop piSaga - a Java library - to help developers apply the SAGA pattern

in Spring Boot applications.

• We evaluate the performance of the piSaga library based on three scenarios and

compare it with a more straightforward implementation.

The rest of the thesis is structured as follows: Section 2 discusses related work in the

field. Section 3 provides the necessary background knowledge. In Section 4, we

elaborate on the characteristics of the SAGA pattern and present its variations. In

Section 5, we introduce the piSaga library, and in Section 6, we present the

experimental results. We conclude the thesis in section 7.

Distributing transactions using the SAGA pattern

P. Ioannidis 17

2. BACKGROUND

To understand distributed transactions, one should have a basic understanding of

distributed systems, the CAP theorem, databases, concurrency control, the ACID

properties, isolation issues in distributed systems, and measures to address isolation

issues such as ACD and compensating transactions. These concepts are fundamental

for understanding how distributed transactions work in a world of microservices and the

trade-offs that must be made when designing a distributed system that supports

distributed transactions.

2.1 CAP Theorem

The CAP theorem [1][2][3], also known as Brewer's theorem after computer scientist

Eric Brewer, states that any distributed system can provide only a combination of two

out of the following three guarantees:

• Consistency

The “consistency” of the CAP theorem denotes that all clients simultaneously

observe the same data, regardless of the node to which they connect. For

instance, to be successful, a write operation to one node must also be replicated

or sent to all other nodes in the system simultaneously.

• Availability

Any client requesting data will receive a response as long as the CAP theorem

holds, even if one or more nodes are unavailable. So, all active nodes in a

distributed system always respond appropriately to every request.

• Partition tolerance

In the presence of partition tolerance, the cluster will continue to operate despite

any number of communication failures between nodes.

Figure 2-1 Graphical representation of the CAP theorem

Distributing transactions using the SAGA pattern

P. Ioannidis 18

So, our system could be classified as the following [3]:

• CP (Consistency – Partition Tolerance)

A CP system offers consistency as well as partition tolerance. However, this

comes at the sacrifice of availability. When two nodes partition, the system must

shut down the inconsistent node until the partition is resolved.

• AP (Availability – Partition Tolerance)

An AP system's availability and partition tolerance come at the cost of data

consistency. All nodes remain available throughout a partition; however, those in

the incorrect state may retrieve outdated data.

• CA (Consistency - Availability)

The CA systems are consistent and available between nodes. As a result, it

cannot provide fault tolerance if there is a partition between any two system

nodes.

2.2 ACID

The acronym ACID describes the essential characteristics of database transactions that

lead to a trustworthy method for preserving the integrity of our data. This acronym

stands for atomicity, consistency, isolation, and durability. It guarantees that each read,

write, or modification of a table is aligned with the following properties [4][5][7]:

• Atomicity

Ensures that all of the attempted operations inside a transaction either succeed

or fail. If any of the adjustments we attempt to make are unsuccessful for

whatever reason, the entire process will be canceled, and it will be as if no

changes were ever made.

• Consistency

The database is always left in a valid, consistent condition after any modifications

are made to it.

• Isolation

Permits concurrent operation of numerous transactions without interference. This

is accomplished by guaranteeing that any state modifications performed during a

transaction are not visible to subsequent transactions.

• Durability

Guarantees that its associated data will remain safe after a transaction has been

processed, even if the underlying system crashes.

Distributing transactions using the SAGA pattern

P. Ioannidis 19

2.3 ACD

Through its isolation attribute, ACID transactions guarantee that the results of running

several transactions simultaneously are equivalent to doing them in a particular order

[8]. The database gives the impression that each ACID transaction has exclusive data

access. Isolation makes it much easier to write business logic that runs concurrently.

On the other hand, the ACD properties provided by distributed transactions ensure that

data is always consistent and that changes are permanent, making it an essential tool

for maintaining data integrity in a distributed environment. However, multiple

transactions could interfere with one another. Thus, the lack of isolation can cause a

number of problems that can compromise the integrity and consistency of data.

An example of ACD properties in action would be a distributed transaction that updates

multiple databases across different systems. The transaction ensures that all updates

are treated as a single, indivisible unit of work and that the data remains consistent

across all systems. If any part of the transaction fails, the entire transaction is rolled

back, and the data remains in a consistent state.

2.3.1 Lack of Isolation

The lack of isolation can generate anomalies [8] since it is a critical attribute in

distributed transactions. Isolation guarantees that numerous transactions are conducted

separately, without interfering with one another, because it helps preserve data

consistency and avoid conflicts and deadlocks. Without isolation, distributed

transactions can result in a variety of issues that jeopardize data consistency and

integrity.

Inconsistent data is one of the primary challenges produced by the lack of isolation.

Numerous transactions can access the same data without isolation, resulting in

inconsistencies. For instance, if two transactions update the same record

simultaneously, the record's final value may be unexpected, leading to data

discrepancies. This can lead to system errors and the production of inaccurate results.

Deadlocks are another issue created by the lack of isolation. Without isolation, several

transactions may end up in a deadlock state, where one transaction is awaiting the

completion of the other before continuing. This may cause the machine to become

inactive and unresponsive.

Concurrent access is an additional problem induced by the lack of isolation. Multiple

transactions may access the same data concurrently in the absence of isolation,

resulting in Concurrent Access concerns such as race conditions, lost updates, and dirty

reads.

Distributing transactions using the SAGA pattern

P. Ioannidis 20

So, the isolation anomalies can be categorized as follows:

• Lost updates

A lost update anomaly happens when one SAGA completely overwrites an

update made by another.

• Dirty reads

A dirty read happens when one SAGA accesses data that another SAGA is

currently updating.

• Fuzzy reads

Two separate phases of a SAGA read the same data, but each one provides

different outcomes because another SAGA has made modifications.

2.3.2 Countermeasures

A set of countermeasures exists for addressing anomalies brought on by the lack of

isolation, intending to prevent anomalies or lessen their impact [8][9].

• Semantic lock

The compensable transaction sets a flag in every record it creates or edits. The

flag shows that the record has not yet been saved so that it could change. The

flag can either be a lock that stops other transactions from accessing the record

or a warning that other transactions should be careful with that record. It is

resolved either with a retriable transaction, which indicates that it is successfully

finishing or through a compensatory transaction, which indicates that it is rolling

back.

• Commutative updates

Commutativity refers to the ability of a set of operations to be performed in any

given order. This countermeasure is effective since it prevents lost updates.

• Pessimistic view

The pessimistic view countermeasure reorders the steps of a SAGA to minimize

business risk due to a dirty read.

• Reread value

The countermeasure for rereading values prevents lost updates. Using this

countermeasure, a transaction participant rereads a record before updating it,

confirms that it is unchanged, and then updates it. If the record has changed, the

transaction terminates and possibly starts over.

• Version file

The version file countermeasure keeps track of the actions done on a record in

order to reorganize them.

Distributing transactions using the SAGA pattern

P. Ioannidis 21

• By value

It is a method for selecting concurrent techniques based on the level of business

risk. The attributes of each request are evaluated by an application that

implements this countermeasure in order to determine whether or not to employ

sagas or distributed transactions.

2.4 Microservices

Microservices is a trendy architectural style that has grown significantly in the past few

years [7]. "Microservices Architecture" has emerged to represent a specific approach to

structuring software programs as collections of independently deployable services.

While this architectural style has no specific definition, it has similar traits around

business capability, automated deployment, intelligence in the endpoints, and

decentralized management of languages and data [11].

In a nutshell, the microservice architectural style is a method for building a single

application as a collection of independent services that share only a common set of

data, run in their own processes, and communicate with one another using lightweight

mechanisms, like RESTful APIs [11]. These services are based on business capabilities

and may be independently deployed using a fully automated deployment strategy.

These services have minimal centralized administration, which may be implemented in

different programming languages and utilize various data storage systems.

Figure 2-2 Microservices architecture high-level design

Initially, microservices were hosted in physical computers, but now they have shifted to

virtual machines and containers [10][12]. Separating the services this much makes it

Distributing transactions using the SAGA pattern

P. Ioannidis 22

easy to solve a common problem in architectures that host many kinds of applications

on the same infrastructure. For example, using an application server to manage multiple

running applications lets us reuse network bandwidth, memory, and disk space, among

other things. However, if all the apps that can use the shared infrastructure continue to

expand, there will be a shortage of some kind.

Separating each service into its own procedure eliminates any issues caused by

sharing. Before the gradual growth of publicly accessible open-source operating

systems and the development of automated machine provisioning, it was impracticable

for each domain to have its infrastructure. However, now more than ever, thanks to

cloud computing and containerization, we can benefit from extreme decoupling at the

domain and operational levels.

On the other hand, microservices can suffer from poor performance because of their

decentralized architecture. Network calls are significantly slower than method calls, and

security verification at each endpoint adds additional processing time.

2.5 SAGA compared to other distributed transactions protocols

Distributed transactions are a way to ensure the atomicity of a series of operations that

are carried out across multiple nodes in a distributed system. There have been

numerous approaches to implementing distributed transactions in the field of distributed

systems. Below, we list some of the most well-known and compare them with the SAGA

pattern.

2.5.1 Two-Phase commit (2PC)

Two-Phase commit (2PC) [14][19] is a protocol used to ensure the atomicity of a

distributed transaction, which involves multiple participants that may be distributed

across different systems or locations. In 2PC, a coordinator coordinates the commit or

rollback of a transaction across all participants. The coordinator sends a prepare

request to each participant, deciding whether it is ready to commit. If all participants are

ready, the coordinator sends a commit request to all participants, causing them to

commit the transaction. If any participant is not ready, the coordinator sends a rollback

request to all participants, causing them to roll back the transaction.

2PC and SAGA are designed to serve the same purpose, and they are both distributed

transaction models used to ensure the consistency and reliability of transactions across

multiple resources. However, they have a few key differences.

One of the main differences between 2PC and SAGA is how they handle

communication between participants in a transaction. 2PC is a synchronous model,

while SAGA is an asynchronous model. In 2PC, all participants in the transaction must

communicate with the coordinator before the transaction can be committed, and all

participants must be available and responsive during the commit phase. In contrast,

SAGA allows participants to commit their changes independently and reconcile conflicts

Distributing transactions using the SAGA pattern

P. Ioannidis 23

later. This means that SAGA is more flexible in handling errors and failures as it allows

participants to fail or be unavailable during the transaction.

Another difference between 2PC and SAGA is how they handle a transaction's

outcome. In 2PC, the transaction is either committed or rolled back as a whole. The

transaction is rolled back if a participant fails during the commit phase. In contrast, in

SAGA, a transaction can be partially committed. This allows for more flexibility in

handling errors and failures as it allows for compensating actions to be taken for a

participant that failed during a transaction.

2.5.2 Two-Phase Commit with Recovery (2PC*)

Two-Phase Commit with Recovery (2PC*) [20] is an extension of the classic 2PC

protocol that adds support for recovery from failures. It is designed to address the

problem of indeterminate outcomes in 2PC, which can occur when the coordinator fails

before sending a commit or rollback request to the participants. In 2PC*, each

participant maintains a log of the prepare and commit/rollback requests it has received

from the coordinator. If a participant does not receive a commit or rollback request from

the coordinator, it can use its log to determine the appropriate action based on the

prepare requests it has received. 2PC* provides more robust atomicity guarantees than

2PC because it allows recovery from coordinator failures. However, it requires

additional storage and processing resources to maintain the log of requests, which may

impact performance. It is also more complex to implement than 2PC.

Distributed transaction models like 2PC* and SAGA are used to guarantee the integrity

of transactions over a network of computers and other devices. When comparing 2PC*

to SAGA, it is essential to keep in mind that 2PC* is an extension of the classic 2PC

concept, whereas SAGA is a whole new approach. With the addition of recovery

methods, 2PC* can deal with errors during the commit phase. Because of this, errors

may be handled synchronously in 2PC*. However, SAGA provides a more adaptable

method for addressing errors and failures by permitting compensatory transactions.

Thus, SAGA is built with asynchronous fault tolerance in mind.

Another difference is that in 2PC*, the entire transaction is committed or rolled back.

However, with SAGA, it is possible to commit a transaction partly.

2.5.3 Try, Commit, and Cancel (TCC)

Try, Commit, and Cancel (TCC) [21] is a protocol used to implement distributed

transactions in a way that is more efficient than traditional 2PC protocols. It is also

known as “Optimistic Two-Phase Commit” or “Single-Phase Commit with

Compensations”. In the TCC protocol, a coordinator sends each participant a “Try”

request, indicating that it would like to commit a transaction. If all participants are able to

commit, the coordinator sends a commit request to all participants, causing them to

commit the transaction. If any participant cannot commit, the coordinator cancels the

Distributing transactions using the SAGA pattern

P. Ioannidis 24

transaction by sending a cancel request to all participants. The TCC protocol has

several benefits compared to 2PC. It is faster because it does not require a separate

prepare phase, and it is more resilient to failures because it does not require the

coordinator to send a commit or rollback request to each participant. However, it is less

widely supported than 2PC and may not provide the same level of guarantee of

atomicity in all cases.

TCC and SAGA differ significantly in how they handle the various stages of a

transaction. Unlike SAGA, which consists of several phases, TCC only has three. The

TCC model divides the transaction into three steps: Try, Commit, and Cancel. On the

other hand, SAGA divides the transaction into many stages, each of which may include

several sub-steps depending on the nature of the transaction and the requirement for

compensating actions.

How successful and unsuccessful transactions are handled is another area in which

TCC and SAGA diverge. With TCC, we can only commit or cancel the transaction as a

whole. In contrast, SAGA allows only a portion of a transaction to be committed

simultaneously. As a result, there is more flexibility for dealing with errors and failures,

as compensatory steps can be performed for a failed participant in a transaction.

2.5.4 Generalized Recursive Idealized Transactions (GRIT)

Generalized Recursive Idealized Transactions (GRIT) [22] is a protocol for

implementing distributed transactions that are based on the idea of "idealized

transactions", which are transactions that are free from conflicts and can be executed in

any order. GRIT allows for the efficient execution of transactions that can be

decomposed into smaller transactions that can be executed concurrently. In GRIT, a

coordinator coordinates the execution of a transaction by dividing it into smaller

transactions and sending each of these transactions to a different participant to be

executed. The coordinator then waits for a response from each participant indicating

whether the transaction was successful or not. If all participants respond successfully,

the coordinator sends a commit request to all participants, causing them to commit the

transaction. If any participant responds with a failure, the coordinator sends a rollback

request to all participants, causing them to roll back the transaction. GRIT is a highly

efficient protocol that allows for the concurrent execution of transactions, which can

significantly improve the performance of distributed systems. Therefore, it requires that

transactions be decomposed into smaller transactions that can be executed

concurrently, which may not always be possible.

One of the commonalities between GRIT and SAGA is that they both manage

distributed transactions via nested transactions. However, GRIT and SAGA do not have

many similarities. In contrast to GRIT's emphasis on short-lived transactions that can be

made of numerous sub-transactions, SAGA prioritizes long-running transactions

composed of multiple sub-transactions. Thus, SAGA is better suited for complex, long-

Distributing transactions using the SAGA pattern

P. Ioannidis 25

running business processes, while GRIT is better suited for simple, transient

transactions.

Another distinction between GRIT and SAGA is their consistency policies. While GRIT

relies on a consensus mechanism, SAGA employs a state machine replication strategy

to guarantee data integrity. This implies that while GRIT uses a consensus mechanism

to verify that all nodes in the system agree on the state of a transaction, SAGA relies on

replicating the state of a transaction across various nodes in the system.

Furthermore, unlike GRIT, SAGA permits compensatory transactions, which may be

used to reverse the effects of prior transactions. If a long-running transaction fails in

SAGA, the database may be restored to an earlier point, which is impossible in GRIT.

Distributing transactions using the SAGA pattern

P. Ioannidis 26

3. RELATED WORK

Our community has been trying to find viable solutions for the distributed transactions

problem for a long time. Thus, many implementations aim to improve this space. This

section presents piSaga and a few well-known libraries related to the SAGA pattern and

orchestration in general.

Implementing the MicroProfile Long Running Actions (LRA) in an application provides

several benefits, including simplified management of long-running tasks and better

control over transactional behavior [28][33]. This feature ensures that long-running

operations can be handled effectively and that the system remains responsive during

the operation. The microservice architecture allows the application to scale horizontally

by breaking down tasks into smaller chunks. Moreover, it reduces the chance of data

inconsistencies and failures in long-running operations. However, there are some

potential drawbacks to consider when implementing the MicroProfile LRA, including the

increased complexity of implementing a microservice architecture, which requires a

good understanding of the architecture and design of the application. Additionally, the

distributed nature of microservices may require additional infrastructure and operational

considerations, such as service discovery, load balancing, and failover.

The Saga pattern implementation in Apache Camel is a practical, open-source

approach for managing distributed transactions in a reliable and scalable manner

[30][31]. The advantages of using Apache Camel include improved reliability, flexibility,

scalability, and ease of implementation. However, this approach also has some

potential disadvantages, including increased complexity in the code, limited rollback

capabilities, potential performance impact, and difficulty debugging. While the Apache

Camel Saga pattern implementation can ensure data consistency and handle large

numbers of transactions and messages, its impact on system performance and

complexity should also be considered.

The primary goal of implementing the Eventuate Tram SAGA framework is to provide a

distributed, scalable, and reliable solution for managing long-running transactions

across microservices [29][8]. The framework offers a declarative programming approach

that simplifies handling distributed transactions, decreasing the chance of data

inconsistencies and allowing developers to add new business processes or alter

existing ones swiftly. The framework's benefits include better fault tolerance, scalability,

and maintainability of microservice-based systems. Additionally, the framework's use of

the event sourcing pattern enables the tracing of events and provides a reliable audit

trail of changes to the system. Yet, there are possible drawbacks to consider while

utilizing the Eventuate Tram SAGA framework, such as the requirement for a robust

infrastructure to manage events and transactions, the complexity of integrating existing

services with the framework, and the steep learning curve for developers.

The Axon Framework SAGA implementation gives several benefits, including enhanced

transaction management stability, scalability, and maintainability [28][32]. The

framework makes it easier to manage distributed transactions by giving developers a

Distributing transactions using the SAGA pattern

P. Ioannidis 27

declarative programming approach that does not need them to write complicated code.

This method lessens the possibility of data discrepancies and allows developers to

implement new business processes or alter current ones quickly and simply. The Axon

Framework also offers event sourcing and command handling capabilities to guarantee

the system's scalability and resilience. Nevertheless, there are some negatives to

consider while using the Axon Framework SAGA, including the necessity for developers

to learn a new programming paradigm and framework, which can raise the learning

curve. Additionally, because the framework is based on CQRS and event sourcing,

extra operational and technical concerns, such as database architecture, versioning,

and event storage, may be required.

Despite the fact that piSaga is a simple implementation of the SAGA pattern, it can

accomplish its objectives successfully. piSaga enables developers to design their

implementations based on the state-machine paradigm. This state machine is

composed of a set of states and events that move the machine from one state to

another. Moreover, piSaga is a handy solution for handling distributed transactions in a

reliable and scalable manner. Using piSaga can result in increased reliability, flexibility,

and scalability. In addition, there is a slight learning curve because piSaga provides only

the necessary contracts to develop a SAGA. However, piSaga is not a divine solution

for distributed transactions; there are a few potential drawbacks to take into account.

First, it is not a battle-tested solution. Second, the IPC of piSaga depends on Apache

Kafka, at least for now. Next, it has limited integration with some enterprise systems

since it focuses on Spring Boot.

Last but not least, piSaga is an open-source library whose purpose is to contribute to

the open-source community and be a small but meaningful contribution to computer

science and distributed systems.

Distributing transactions using the SAGA pattern

P. Ioannidis 28

4. TRANSACTIONAL SAGA

The notion of a SAGA in architecture predates microservices, as it was first concerned

with restricting the scope of database locks in the early distributed systems [14][15][17].

The SAGA pattern for microservices is characterized as a succession of local

transactions in which each update triggers the next update in the sequence by

publishing an event. If any of these updates fail, the SAGA will issue a series of

compensatory updates by erasing the previous alterations made throughout the

workflow. Thus, the SAGA pattern should leverage coordination, consistency, and inter-

process communication (IPC) to perform optimally.

Coordination refers to the process of managing access to shared resources by multiple

processes, ensuring that they are used in a consistent and synchronized manner.

Consistency, on the other hand, refers to the property of the system that ensures that all

processes have a consistent view of the shared state. Inter-process communication is

the mechanism through which processes coordinate and share information with each

other. To understand the SAGA pattern, it is essential to have a solid understanding of

these concepts and how they relate to distributed systems.

This section of the thesis will delve deeper into these concepts and explore how the

SAGA pattern incorporates them to achieve scalability and fault tolerance in distributed

systems. Additionally, we will elaborate on the eight variations of the SAGA pattern.

4.1 Coordination

The implementation of a SAGA comprises logic that organizes the SAGA's stages.

When a system command initiates a SAGA, the coordination logic must identify the first

SAGA participant and instruct it to conduct a local transaction. As soon as this

transaction concludes, the SAGA's sequencing coordination identifies and activates the

subsequent SAGA participant. This procedure continues till each phase of the SAGA

has been carried out. If a local transaction fails, the SAGA must perform compensatory

operations in reverse order. There are two types of coordination, choreography and

orchestration.

4.1.1 Choreography

Using choreography is one method for implementing a SAGA [10]. There is no mediator

in charge of informing every service in a SAGA on how to continue the workflow. The

SAGA participants subscribe to each other's events and respond accordingly.

Distributing transactions using the SAGA pattern

P. Ioannidis 29

Figure 4-1 Choreography coordination

When building choreography-based SAGAs, there are several interservice

communication-related factors to consider. The initial concern is ensuring that a SAGA

participant publishes an event and updates its database as part of a database

transaction. Each step of a choreography-based SAGA updates the database and

publishes an event. The database update and event publication must occur

simultaneously. Therefore, for reliable communication, SAGA participants must employ

transactional messaging. The second thing to think about is ensuring that each

participant in the SAGA can map each event it gets to the data it has on its own end. A

SAGA participant must publish events with a correlation id assigned to them. This

correlation id will help the rest of the SAGA participants to access the correct data.

Choreography has both benefits and drawbacks. Its benefits are “simplicity” and “loose

coupling”. The services broadcast events when creating, updating, or deleting business

objects. Moreover, the SAGA participants subscribe to events without direct knowledge

of one another.

On the other hand, it is not easy to understand where choreography has been used. It

spreads the execution of the SAGA among the several services. In addition, there might

be circular dependencies between the services because the SAGA participants would

subscribe to each other's events. Also, due to the fact that each service should

subscribe to every other event, we could result in a tightly coupled system.

4.1.2 Orchestration

SAGAs may also be implemented using orchestration [10]. When utilizing orchestration,

we must establish a class whose primary function is to orchestrate the SAGA

participants on what actions to perform. The SAGA orchestrator connects with the

participants utilizing a command/asynchronous-response interaction approach. In order

to execute a SAGA step, it sends a command message to a participant specifying the

Distributing transactions using the SAGA pattern

P. Ioannidis 30

operation to be performed. After completing the operation, the participant in the SAGA

sends a response message to the orchestrator. The orchestrator then analyses the

message and decides which SAGA step to execute next.

Figure 4-2 Orchestration coordination

A service updates a database and publishes a message at each stage of an

orchestration-based saga. Hence, it must utilize transactional messaging to update the

database atomically and publish messages.

Orchestration is not the silver bullet. It has both strengths and weaknesses. First, the

orchestration has the advantage of not introducing circular dependencies. The

orchestrator invokes the participants in the workflow, but the participants do not invoke

the orchestrator. Therefore, there are no circular dependencies because the

orchestrator depends on the participants but not vice versa. Second, it favors loose

coupling since each service has its API that the orchestrator calls; the orchestrator need

not be aware of the events published by the SAGA's participants. Last but not least, it

enhances the separation of concerns and simplifies business logic. The SAGA

coordination logic is centralized within the SAGA orchestrator. The domain objects are

less complex and are unaware of the sagas in which they engage.

While orchestration has many benefits, there is also a potential downside in centralizing

too much business logic in the orchestrator. The resulting architecture has the intelligent

orchestrator instructing the naive services on how to carry out their tasks. The critical

point to avoid this situation is to develop orchestrators that are simply responsible for

managing the request workflow and do not contain any other business logic.

Distributing transactions using the SAGA pattern

P. Ioannidis 31

4.2 Inter-process Communication

Microservices are required to connect through an inter-process communication (IPC)

mechanism [16]. So, when defining how the services will connect, we need to consider

a number of challenges, including how services interact with one another, how to

declare the API for each service, how APIs might grow, and how to deal with partial

failure. Microservices can employ two types of IPC mechanisms: synchronous and

asynchronous communication.

4.2.1 Synchronous communication

Using synchronous communication [7][16], a service sends a request of some form to a

downstream process (usually to another microservice) and blocks until the call

completes and probably until a response is received.

A synchronous blocking call often awaits a response from a downstream operation. This

might be because the call's outcome is required for subsequent action or because the

system wants to ensure the call succeeded and retried if necessary.

Consequently, synchronous calls make a system more vulnerable to cascading

problems caused by downstream failures than the usage of asynchronous calls.

4.2.2 Asynchronous communication

When using asynchronous communication [7][16], the microservice that is issuing a call

will not become blocked while the call is being sent out across the network. It can

proceed with any additional processing without waiting for a response. There is a wide

variety of nonblocking asynchronous communication protocols, but the most well-known

is communication through message queues and event streams.

Nonblocking asynchronous communication allows for the temporary decoupling of the

service making the initial call and the service(s) receiving the call. It is not necessary for

the services that receive the call to be reachable at the exact same moment that the call

is being made. This communication style is also beneficial if the functionality is triggered

by a call that will take a long time to process.

4.3 Consistency

When we talk about consistency, we refer to the transactional integrity level that must

be maintained throughout all communication calls. There are two types of consistency

the atomic and the eventual.

Distributing transactions using the SAGA pattern

P. Ioannidis 32

4.3.1 Atomic consistency

All the steps of a transaction must be completed successfully in order for the transaction

to be considered atomic [13]. All previously performed steps must be reversed if even a

single step fails. For this reason, an operation is said to be atomic if it either takes place

in its entirety or does not take place at all.

One of the most significant issues with atomicity in microservices is that a single

transaction may involve several independent tasks being completed by separate

microservices. Thus, a method is needed to undo previously completed transactions if a

local transaction fails.

4.3.2 Eventual consistency

Eventual consistency [6][25] is a model used in distributed computing to ensure high

availability. This model provides an informal promise that if no additional modifications

are made to a particular data item, all accesses to that item will ultimately return the

most recently modified value.

If there are no system failures, the maximum size of the inconsistency window may be

calculated by considering variables such as communication delays and the number of

copies participating in the replication scheme. When a system has reached eventual

consistency, it is commonly referred to as having converged or having achieved replica

convergence.

4.4 Transaction types

A functional SAGA structure paradigm is proposed in [9]. In this paradigm, a SAGA is

composed of the following three types of transactions:

• Compensable transactions

Transactions that may be reversed via a compensating transaction.

• Pivot transaction

A successful commit to the pivot transaction will cause the SAGA to continue till

its completion. A pivot transaction is a transaction that is neither compensable

nor retriable.

• Retriable transactions

Transactions that are guaranteed to succeed after the pivot transaction.

4.5 State machine modeling

A state machine is a powerful and intuitive modeling tool for understanding the inner

workings of a SAGA orchestrator. At its core, a state machine comprises a collection of

states and events that allow the machine to transition from one state to another. These

Distributing transactions using the SAGA pattern

P. Ioannidis 33

transitions can be accompanied by an action, which in the context of a SAGA typically

involves the invocation of a SAGA participant.

One key aspect of a state machine in the context of a SAGA is how it handles local

transactions executed by SAGA participants. When a local transaction is completed, it

can trigger a transition between states. The current state of the machine and the

outcome of the local transaction determines the specific transition and corresponding

action.

Using a state machine paradigm to model a SAGA makes it significantly easier to

design, construct, and test the orchestrator. The clear and visual representation of

states and transitions allows developers to reason easily about the different paths a

SAGA can take and the actions that are invoked at each step. Using a state machine

also allows more flexibility to handle failures, debugging, and troubleshooting processes

and become more efficient.

4.6 The variations of the SAGA pattern

Distributed transactions are a key component of many distributed systems since they

coordinate operations across numerous nodes in a manner that guarantees the

atomicity, consistency, and isolation of these processes. The SAGA pattern is a popular

implementation strategy for distributed transactions in distributed systems. Since its

introduction in 1987 by Hector Garcia-Molina and Kenneth Salem [14][15][17], it has

been a cornerstone in distributed system design.

The SAGA pattern is based on the concept of long-running transactions that span

numerous systems or locations, and that can be deconstructed into smaller,

simultaneously executable transactions. It employs a process orchestration

methodology in which a coordinator organizes the execution of a transaction by sending

requests to various participants to conduct smaller transactions. The coordinator checks

the status of these transactions and takes corrective action in the event of errors or

failures.

One of the distinguishing characteristics of the SAGA pattern is the use of

compensating transactions, which undo the consequences of prior operations and

restore the system to a consistent state. This enables the SAGA pattern to tolerate

faults and errors gracefully and to maintain the atomicity and consistency of a

transaction, notwithstanding these obstacles.

There are several variations of the SAGA pattern. We can distinguish them based on

their communication, consistency, and coordination approach. Table 4-1 lists the eight

most well-known variations.

Distributing transactions using the SAGA pattern

P. Ioannidis 34

Table 4-1 Saga pattern variations

Name Communication Consistency Coordination

SAO Synchronous Atomic Orchestrated

SAC Synchronous Atomic Choreographed

SEO Synchronous Eventual Orchestrated

SEC Synchronous Eventual Choreographed

AAO Asynchronous Atomic Orchestrated

AAC Asynchronous Atomic Choreographed

AEO Asynchronous Eventual Orchestrated

AEC Asynchronous Eventual Choreographed

4.6.1 SAO SAGA Pattern

The SAO SAGA pattern (SAO) is considered the "traditional" SAGA pattern. Because of

how it works, it is also called an "Orchestrated SAGA". Its dimension correlations are

illustrated in Figure 4-3.

Figure 4-3 SAO utilizes Sync communication, Atomic consistency, Orchestrated coordination

Here, an orchestrator manages a workflow that involves updates for three services that

are supposed to happen transactionally - either all three calls are successful or none

are, Figure 4-4. If any of the calls fail, the prior state is restored. This coordination

challenge may be solved in a number of different ways in distributed architectures. Such

transactions are incompatible with many databases and are notorious for their frequent

failure types.

Distributing transactions using the SAGA pattern

P. Ioannidis 35

Figure 4-4 Communication between microservices in the SAO SAGA pattern

In a distributed transaction, a compensating transaction undoes a data write action

carried out by another service, e.g., undoing an update, reinserting a previously deleted

row, or deleting a previously inserted row. While compensating updates seek to undo

changes to restore distributed data sources to their initial state before a distributed

transaction begins, they are full of complex issues, obstacles, and trade-offs.

Unfortunately, the challenges are brought on by the error conditions. As shown in Figure

4-5, the orchestrator service is responsible for monitoring the success of calls and

initiating compensating calls to other services in the event that one or more of the

requests are unsuccessful.

Figure 4-5 Compensatory transactions are issued by the orchestrator when an error occurs

The orchestrator service both handles the requests and manages the transaction

workflow. As we can see, the calls on the first two services were successful, but the

third call failed. To achieve atomic consistency, as specified by the SAO, the

Distributing transactions using the SAGA pattern

P. Ioannidis 36

orchestrator must employ compensatory transactions to request that the other two

services roll back the previously performed operation, restoring the system to its state

before the transaction.

The SAO has a distinct advantage over competing solutions due to its monolithic-like

transactional coordination. On the other hand, the drawbacks are numerous and

diverse. First, the combination of orchestration with transactionality may affect

operational architectural features like performance, scalability, and flexibility. The

orchestrator must ensure that all participants in the transaction have succeeded or

failed, causing time bottlenecks. Second, the different patterns used to create

distributed transactionality, like compensating transactions, are susceptible to a broad

range of failures and introduce intrinsic complexity through undo operations.

The following features distinguish the SAO SAGA pattern. This design demonstrates

exceptionally high degrees of coupling across all available dimensions, including

synchronous communication, atomic consistency, and orchestrated coordination. This is

not unexpected, as it mirrors the communication behavior of strongly connected

monolithic systems, but it poses various problems in distributed designs.

Added to the necessity for atomicity, error conditions and other heavy coordination add

complexity to this design. Using synchronous calls reduces some of the complexity

since developers do not have to worry about race situations and deadlocks during calls.

Orchestration impedes responsiveness, particularly when it must coordinate

transactional atomicity. This style employs synchronous calls, which hinders

performance and responsiveness further. This pattern will fail if any services are

unavailable or an unrecoverable error occurs. Similar to responsiveness, the bottleneck,

and coordination needed to implement this pattern make it difficult to address the

system's scalability.

Distributing transactions using the SAGA pattern

P. Ioannidis 37

4.6.2 SAC SAGA Pattern

The main difference between the SAC SAGA pattern (SAC) and the SAO is that the

SAC uses choreography instead of orchestration, Figure 4-6.

Figure 4-6 SAC utilizes Sync communication, Atomic consistency, Choreographed coordination

Hence, the structural communication illustrated in Figure 4-7 is undergoing the

equivalent modification.

Figure 4-7 Each microservice is responsible to issue its own compensatory transactions

The SAC combines atomicity with choreography with no explicit orchestrator. However,

atomicity requires some cooperation. In Figure 4-7, the service that was first called

becomes the coordination point, also known as the front controller. It then forwards the

Distributing transactions using the SAGA pattern

P. Ioannidis 38

request to the subsequent service in the process, which continues until the workflow

completes. However, if an error occurs, each service must have business logic to

support compensating requests.

Due to the importance of coordinating atomicity in transactions, this logic must be

located someplace in the architecture. As a result, domain services need to have more

logic about the workflow environment in which they operate, such as error handling and

routing. The front controller in this design becomes as complicated as most mediators

when used to more advanced processes, which lessens the pattern's usefulness and

popularity. Therefore, this design pattern is frequently employed for low-complexity

operations that demand increased scalability at the expense of some speed.

Even with synchronous communication, using choreography reduces bottlenecks under

non-error situations. The final service in the process can return the result, allowing for

more throughput and fewer bottlenecks. Due to a lack of coordination, the performance

can be increased compared to the SAO. However, resolving error conditions will be

significantly slower in the absence of an orchestrator since each service must unwind

the call chain, which increases the coupling between services.

A positive aspect of non-orchestrated designs is the absence of a coupling singularity or

a single point to which the workflow couples. In general, coupling reduction promotes

scalability. As the scalability increases without orchestration, the domain services

become more complicated to handle the workflow issues in addition to their primary

function.

The SAC SAGA pattern has a relatively unique mix of characteristics. Typically,

choreography is correlated with asynchronicity. In certain instances, synchronous calls

eliminate race situations by ensuring that each domain service completes its part of the

workflow prior to invoking the next.

Distributing transactions using the SAGA pattern

P. Ioannidis 39

4.6.3 SEO SAGA Pattern

The SEO SAGA pattern (SEO) utilizes synchronous communication, eventual

consistency, and orchestration, as shown in Figure 4-8.

Figure 4-8 SEO utilizes Sync communication, Eventual consistency, Orchestrated coordination

This structure of communication eases the strict atomic constraint, giving system

designers a plethora of new opportunities. For instance, if a service is momentarily

unavailable, eventual consistency permits data caching until the service is restored.

Figure 4-9 depicts the design of the SEO SAGA pattern.

Figure 4-9 Compensatory transactions are issued by the orchestrator when an error occurs

Distributing transactions using the SAGA pattern

P. Ioannidis 40

In this paradigm, request, response, and handling of errors are all coordinated by an

orchestrator. However, the orchestrator is not responsible for transaction management,

which remains the responsibility of each domain service. Because of this, the

orchestrator can handle compensation calls, even if they do not happen within a

currently running transaction.

Having an orchestrator makes it simpler to manage processes. Synchronous

communication is simpler than asynchronous, and eventual consistency eliminates the

most challenging coordination obstacle, especially when dealing with errors. The

absence of holistic transactions is the most enticing feature of SEO. Each domain

service handles its transactional behavior, relying on eventual workflow consistency.

This pattern demonstrates a balanced set of trade-offs compared to many other

patterns. The orchestrator must continue to handle complicated workflows but is not

constrained to do so inside a transaction. SEO is not overly complex; it provides the

most convenient possibilities with the fewest constraints. Even though the calls are

synchronous, the mediator only needs to keep a less time-sensitive state regarding

current transactions, which allows for better load balancing and hence greater

responsiveness. In general, reducing transactional coupling will allow each service to

expand more independently, leading to greater scalability.

4.6.4 SEC SAGA Pattern

The SEC SAGA pattern (SEC) is characterized by choreographed workflow,

synchronous communication, and eventual consistency, Figure 4-10. This approach

eliminates a central mediator by placing the workflow duties completely on the

participating domain services, Figure 4-11.

Figure 4-10 SEC utilizes Sync communication, Eventual consistency, Choreographed

coordination

Distributing transactions using the SAGA pattern

P. Ioannidis 41

Figure 4-11 Communication between microservices in the SEC SAGA pattern

In this process, one service receives a request, processes it, and then passes it on to

the next service. This architecture can implement the Chain of Responsibility design

pattern [18] and the hexagonal architecture style [8], as well as any workflow with a

sequence of one-way stages. Given that each service "owns" its own transactionality

under this pattern, the workflow for the error conditions must be incorporated into the

domain architecture. Due to the absence of built-in coordination via a mediator, there is

a proportionate complexity link between process complexity and choreographed

solutions—the more complicated the workflow, the more complex the choreography.

Workflows are simpler to represent using the SEC since no transactions are involved.

Most workflow states and metadata must be stored in each domain service without an

orchestrator. Hence, this pattern is best suited for simple processes. This pattern works

exceptionally well for systems that benefit from high throughput. However, domain

services must handle errors and coordination since no orchestrator exists.

In the SEC SAGA pattern, the coupling is moderate. This is because the reduced

coupling caused by the absence of an orchestrator is compensated by the continued

coupling of synchronous communication. The elimination of transactionality reduces the

complexity of this pattern. This is well-suited to high-throughput, one-way

communication systems, and its coupling level is well-suited to this architectural style.

Distributing transactions using the SAGA pattern

P. Ioannidis 42

4.6.5 AAO SAGA Pattern

The AAO SAGA pattern (AAO) utilizes atomic consistency, asynchronous

communication, and orchestrated coordination, Figure 4-12.

Figure 4-12 AAO utilizes Async communication, Atomic consistency, Orchestrated coordination

This pattern is similar to the SAO in all areas except communication. This design

employs asynchronous communication rather than synchronous communication.

Figure 4-13 Compensatory transactions are issued by the orchestrator when an error occurs

However, asynchronicity is not a straightforward modification; it adds several levels of

complexity to architecture, particularly in the area of coordination, necessitating an

orchestrator with significantly more complexity. The orchestrator is responsible for

Distributing transactions using the SAGA pattern

P. Ioannidis 43

monitoring the status of all ongoing transactions, Figure 4-13. Adding asynchronicity to

orchestrated workflows introduces an asynchronous transactional state, which can lead

to deadlocks, race situations, and other difficulties inherent in parallel systems since it

eliminates serial assumptions about ordering.

In addition to design difficulty, there is also the debugging and operational complexity of

dealing with large-scale asynchronous workflows. As a result of this pattern's effort at

transactional coordination across calls, responsiveness will be negatively degraded

overall and catastrophic if any of the services are unavailable.

4.6.6 AAC SAGA Pattern

The AAC SAGA pattern (AAC) is distinguished by its use of asynchronous

communication, atomic consistency, and choreographed coordination, Figure 4-14.

Figure 4-14 AAC utilizes Async communication, Atomic consistency, Choreographed coordination

It combines the strictest consistency-based atomic consistency with the two loosest

coupling methods, asynchronous and choreography. Figure 4-15 shows the structural

communication for this design.

Distributing transactions using the SAGA pattern

P. Ioannidis 44

Figure 4-15 Each microservice is responsible to issue its own compensatory transactions

No intermediary is used in this pattern's asynchronous service-to-service

communication model; hence transactions between different services might be

inconsistent. Consequently, each domain service must keep track of undo information

for many pending transactions, which may occur out of sequence due to asynchronicity,

and coordinate under error conditions. Imagine that transaction T1 begins, and while it

is waiting, transaction T2 begins. The choreographed services must reverse the

sequence of execution, reversing each piece of the transaction along the way because

one of the calls for the T1 transaction has failed.

This design tries to implement a transactional dependency, which is the worst sort of

single coupling. However, it alleviates the other two by eliminating the need for a

mediator and coupling, boosting synchronous communication. Additionally, its

complexity is horrifying, since it demands the most rigorous criterion (transactionality)

and the most challenging combination of other criteria to meet that requirement

(asynchronicity and choreography). On the other hand, this design scales better than

others with a mediator, and asynchronicity offers the capacity to do additional tasks

concurrently.

Distributing transactions using the SAGA pattern

P. Ioannidis 45

4.6.7 AEO SAGA Pattern

The AEO SAGA pattern (AEO) has two significant changes compared to the SAO,

making it easier to implement. It is based on asynchronous communication and

eventual consistency. Figure 4-16 depicts the dimensional diagram of the AEO.

Figure 4-16 AEO utilizes Async communication, Eventual consistency, Orchestrated coordination

This pattern employs an orchestrator, which makes it appropriate for complicated

procedures. However, it employs asynchronous communication, which enables

improved responsiveness and parallel processing. The domain services are responsible

for pattern consistency, as they may need to synchronize shared data in the

background or via the orchestrator.

Figure 4-17 The orchestrator communicates asynchronously with the microservices

Distributing transactions using the SAGA pattern

P. Ioannidis 46

For instance, if an erroneous workflow execution happens, it might be resolved in a

number of ways, including by the orchestrator sending asynchronous messages to all

affected domain services to retry the modification or to synchronize the data. The lack of

transactionality increases the load on the orchestrator to fix workflow errors and other

problems. Even though asynchronous communication provides superior

responsiveness, resolving timing and synchronization concerns is more challenging.

Race situations, deadlocks, queue reliability, and other distributed architecture

headaches might be raised.

This design has a low coupling level, isolating the coupling-intensifying power of

transactions to the scope of their respective domain services. In addition, it uses

asynchronous communication, which further decouples services from wait conditions

and enables more parallel processing. The complexity of the AEO is likewise minimal,

reflecting the previously mentioned reduction in coupling. This pattern is straightforward,

and the orchestration enables simplified workflow and error-handling solutions.

This design scaled well thanks to asynchronous communication and reduced

transaction boundaries, providing effective separation between services. For example,

some endpoint services might require higher levels of scale and elasticity in a

microservices architecture. In contrast, the backend services might not require scale but

relatively higher levels of security. This case can be resolved by separating the two

types of services into separate layers. Additionally, domain-level transaction isolation

allows the architecture to scale independently of the domain's notions.

Due to the absence of coordinated transactions, this architecture's responsiveness is

excellent. Moreover, because each of these services retains its own transactional

context, this architecture is well-suited to highly varying service performance footprints

amongst services.

Distributing transactions using the SAGA pattern

P. Ioannidis 47

4.6.8 AEC SAGA Pattern

The AEC SAGA pattern (AEC) employs asynchronous communication, eventual

consistency, and choreographed coordination, giving the least linked example of these

patterns, Figure 4-18.

Figure 4-18 AEC utilizes Async communication, Eventual consistency, Choreographed

coordination

Figure 4-19 shows how the AEC uses message queues to send messages to other

domain services in a way that does not require orchestration. This means that each

domain service must provide additional context about the task flows in which they

participate, such as error handling and other coordination mechanisms, because each

service maintains its own transactional integrity, and there is no orchestrator.

Figure 4-19 The microservices communicate asynchronously with each other

Distributing transactions using the SAGA pattern

P. Ioannidis 48

While the lack of orchestration increases the complexity of services, it also enables

greater throughput, scalability, and flexibility in the underlying operational architecture.

This design has no bottlenecks or coupling choke points, allowing for exceptional

responsiveness and scalability.

This pattern is optimal for basic, predominantly linear workflows requiring high

processing throughput. It has the greatest potential for high performance and scalability,

making it a good option when these characteristics are essential. On the contrary, this

pattern is not optimal for handling complicated procedures, especially those revolving

around fixing inconsistencies in data. Also, the degree of decoupling makes

coordination difficult, and it is prohibitive for complicated or important procedures.

Distributing transactions using the SAGA pattern

P. Ioannidis 49

5. PISAGA

The need for a Java library that implements the SAGA pattern arises from the

increasing popularity of distributed systems and the need for a robust and scalable

solution to manage coordination and consistency in these systems. The SAGA pattern,

which is based on the idea of using long-lived transactions and compensating actions, is

an effective way to achieve scalability and fault tolerance in distributed systems.

However, the current state of the art in the field of SAGA implementation is either

complex or expensive to use since it is part of commercial products.

We were inspired to develop a Java library that implements the SAGA pattern because

of our experience working with distributed systems and the difficulty we encountered

finding a simple and practical solution that implements the SAGA pattern. The benefits

of such a library to the community are numerous. First, it would allow developers to

quickly implement the SAGA pattern in their systems, increasing their systems'

scalability and fault tolerance. Additionally, it would encourage other developers to

contribute to the library and enhance its functionality, which would benefit the entire

community.

In this section, we present the piSaga1 library. We provide information about its

dependencies, inner functionality, and the case study we created to evaluate it.

5.1 Dependencies

The piSaga library has been developed to implement the SAGA patterns on

microservices based on Spring Boot, and they communicate through Apache Kafka.

Together, they are a powerful combination for creating microservices. Spring Boot

provides the infrastructure and functionality needed to create microservices. In contrast,

Apache Kafka provides messaging and event-streaming capabilities to handle the real-

time data flow between microservices. The combination of these two technologies

allows for the creation of highly scalable, fault-tolerant microservices that can handle a

large number of events in real-time.

5.1.1 Spring Boot

Spring Boot [23] is a subproject of the Spring Framework, which is a Java-based

platform that provides comprehensive infrastructure support for developing Java

applications. It was designed to simplify the process of creating stand-alone, production-

grade Spring-based applications by providing tools and libraries that allow developers to

quickly create and deploy Spring applications with minimal configuration.

Spring Boot takes an opinionated view of building Spring applications, meaning it has a

pre-defined way of doing things in the best way. This means that it makes assumptions

1 https://github.com/ioannidis/pisaga

Distributing transactions using the SAGA pattern

P. Ioannidis 50

about the configuration and dependencies of a Spring application and automatically

configures and sets them up for the developer. This can save developers a lot of time

and effort, as they do not have to manually configure and set up the various

components of a Spring application.

Spring Boot also provides many valuable features and tools, such as:

• Embedded servers allow developers to run their applications as standalone Java

applications efficiently.

• The automatic configuration of Spring and its dependencies are based on added

jar dependencies.

• Support for a wide range of external libraries and frameworks, such as Hibernate,

Jackson, and Lombok.

• A Command Line Interface (CLI) that allows developers to quickly create and run

Spring Boot applications from the command line

Overall, Spring Boot is a powerful and easy-to-use platform for developing and

deploying Spring-based applications. It can significantly reduce the time and effort

required to set up and configure a Spring application and provides several useful

features and tools to help developers create high-quality, production-ready applications.

5.1.2 Apache Kafka

Apache Kafka [24] is a distributed, fault-tolerant publish-subscribe messaging system. It

was originally developed by LinkedIn and later donated to the Apache Software

Foundation. Kafka is designed to be horizontally scalable, fast, and able to handle large

volumes of data with low latency.

One of the key features of Kafka is its ability to process and transmit streaming data,

which makes it a popular choice for building real-time data pipelines and streaming

applications. Kafka is often used to build real-time data pipelines that ingest data from

multiple sources and process and transmit the data to multiple consumers.

In addition to its streaming capabilities, Kafka also provides a number of other useful

features, such as:

• Durable message storage: Kafka stores all published messages for a

configurable amount of time, allowing consumers to read messages at their own

pace.

• High throughput: Kafka is designed to handle high volumes of data with low

latency, making it suitable for use cases requiring high data ingestion and

processing levels.

• Scalability: Kafka is horizontally scalable, which can be easily deployed across a

cluster of machines to support high data ingestion and processing levels.

Overall, Apache Kafka is a robust, scalable, and fault-tolerant publish-subscribe

messaging system well-suited for building real-time data pipelines and streaming

applications.

Distributing transactions using the SAGA pattern

P. Ioannidis 51

5.2 piSaga library

As we said earlier, the state machine is a useful modeling choice when attempting to

understand how a SAGA orchestrator works. A state machine is made up of a set of

states and a set of events that move the machine from one state to another. Each

transition might have an action, which in the context of a SAGA, is the invocation of a

SAGA participant. Completing a local transaction executed by a SAGA participant

triggers the transitions between states. The existing state and the precise outcome of

the local transaction determine the state transition and subsequent action.

Consequently, employing a state machine paradigm makes developing, constructing,

and testing sagas easier.

Therefore, the piSaga defines the contracts needed to model our SAGA transactions as

a state machine. We aim to simplify the sagas using intuitive naming conventions,

enlightening the development process. The following list contains details about piSaga’s

implementation.

• interface DomainEvent

DomainEvent interface defines a contract for the behavior of an object that

represents the events of the domain model.

• class DomainModelAndEvents

Sometimes, when we update the domain model, we need both the update

domain model and the events that correspond to the update. Thus, here is where

the DomainModelAndEvents come into the picture. The “model” attribute

contains the updated domain model, and the “events” attribute is a list that

contains all the related events.

• abstract class SagaCommand

The SagaCommand abstract class is used to model the commands that the

orchestrator sends to the SAGA participants. A SAGA command contains three

attributes. The id, type, and the actual command data.

• @interface SagaCommandListener

The SagaCommandListener annotation is used to annotate the class, which is

responsible for listening to the commands published to the specified topic.

• @interface SagaCommandHandler

The SagaCommandHandler annotation is used to annotate the methods that will

handle and process the incoming SAGA commands. Each SAGA command

handler method is responsible for handling the specified SAGA command type

that is defined by the method argument.

• abstract class SagaEvent

The SagaEvent abstract class is used to model the events that the SAGA

participants send to the orchestrator. A SAGA event contains three attributes.

The id, type, and the actual event data.

• @interface SagaEventListener

The SagaEventListener annotation is used to annotate the class, which is

responsible for listening for the events that are published to the specified topic.

Distributing transactions using the SAGA pattern

P. Ioannidis 52

• @interface SagaEventHandler

The SagaEventHandler annotation is used to annotate the methods that will

handle and process the incoming SAGA events. Each SAGA event handler

method is responsible for handling the specified SAGA event type that is defined

by the method argument.

• class UnsupportedStateTransitionException

The UnsupportedStateTransitionException exception is used to notify the

developers that the attempted state transition is not supported.

5.3 piSaga case study

In order to demonstrate and evaluate the capabilities of the piSaga library, we have

created a case study based on online orders. The goal of this system is to observe the

responsiveness and measure the performance of our library. Multiple experiments were

performed for validation and evaluation purposes. The results indicate that the proposed

method can address the absence of isolation in the SAGA pattern.

We have implemented two functionalities, the creation of a new order and the

cancellation of an order. Figure 5-1 depicts the Create Order SAGA state machine:

Figure 5-1 Create order state machine model

Distributing transactions using the SAGA pattern

P. Ioannidis 53

• Initializing Order - The initial state.

• Reserve Items – Waiting for the Warehouse Service to reserve the requested

product.

• Pay Order - Waiting for Payment Service to complete the payment.

• Order Approved - A final state indicating that the SAGA was completed

successfully.

• Order Rejected - A final state indicating that the Order was rejected by one of the

participants.

Additionally, the state machine defines multiple state transitions. For instance, the state

machine transitions from the “Initializing Order” state to “Reserve Items” or “Rejected

Order”. When it receives a successful reply to the “Reserve Items” command, it

switches to the “Payment” state. Alternatively, the state machine moves to the “Rejected

Order” state if the Payment-Service cannot complete the payment.

The initial operation of the state machine is to emit the “Reserve Items” command to

Warehouse-Service. Warehouse-Service's reaction initiates the subsequent state shift.

If the reservation of the item was successful, the payment is initialized, and the state is

changed to “Pay Order”. However, if the item reservation fails, the “Order” is rejected,

and the SAGA enters the “Rejecting Order” state. The state machine endures multiple

additional state changes, driven by the responses from SAGA participants until it

achieves either “Order Approved” or “Order Rejected” as its final state.

Figure 5-2 depicts the Cancel Order SAGA state machine:

Figure 5-2 Cancel order state machine model

• Canceling order - The initial state.

• Order canceled - A final state indicating that the SAGA canceled successfully.

Distributing transactions using the SAGA pattern

P. Ioannidis 54

6. EVALUATION

We have conducted several experiments to evaluate piSaga’s performance and ability

to overcome the lack of isolation. The experiments’ infrastructure consists of the Order-

Service, Warehouse-Service, and Payment-Service. Additionally, we deployed Apache

Kafka and PostgreSQL on Docker.

For the evaluation, we used Apache JMeter [26]. JMeter is an open-source performance

testing tool used to analyze and measure the performance of various services and

applications. It is particularly useful for measuring the performance of web applications.

Hence, JMeter simulates a heavy server load and analyzes overall performance under

different load types.

To evaluate the behavior of piSaga under different situations, we created three

scenarios with various configurations.

6.1 Implementations

We decided to execute the scenarios on two popular variations of the SAGA pattern

combined with the default cache that Spring Boot provides.

We implemented the SAC variation by creating Spring Boot microservices that

communicate with each other using the OpenFeign integration. OpenFeign [27] is a

Java library that allows you to create declarative HTTP clients. It simplifies the process

of interacting with RESTful web services by providing an easy-to-use, type-safe, and

expressive interface for making HTTP requests. The SAC SAGA pattern combines the

principles of atomicity and choreography without the need for a designated orchestrator.

However, to achieve atomicity, some degree of cooperation is necessary. The initially

accessed service is the Order-Service, which acts as the front controller responsible for

initiating the workflow. It then forwards the request to the subsequent service in the

process, continuing until the workflow is completed successfully. All services implement

the corresponding business logic to support compensating requests. By utilizing

synchronous communication and choreography, bottlenecks can be minimized in non-

error scenarios. The benefits of this pattern include improved throughput and reduced

bottlenecks, as the final service in the process can return the result. However, the lack

of a mediator can negatively impact performance, as communication between services

is necessary.

Next, we developed the AOE variation by developing microservices that communicate

using the piSaga library and Apache Kafka. The AEO pattern is based on asynchronous

communication and eventual consistency. This strategy employs an orchestrator

responsible for managing the whole transaction process, making it suited for

complicated operations. In our experiments, the orchestrator is a component of the

Order-Service. Each microservice that participates in the workflow is accountable for

maintaining a consistent state, as they may need to synchronize shared data in the

background or via the orchestrator. This solution is straightforward, and the

orchestration feature enables simplicity, flexibility, and error-handling solutions.

Distributing transactions using the SAGA pattern

P. Ioannidis 55

It is important to note that even though the SAGA orchestrator resides in the Order-

Service, it still sends a command message to the Order-Service in the very last step.

Theoretically, the “Create Order SAGA” might approve the Order by directly modifying it.

To maintain consistency, however, the SAGA treats Order-Service as another

participant.

6.1.1 ConcurentHashMap cache

Spring Boot supports default caching by integrating the Spring Framework's caching

abstraction. This abstraction allows developers to use different caching providers in

their applications without changing the code.

The default caching implementation in Spring Boot uses a simple in-memory cache

based on the ConcurrentMapCacheManager, which is a thread-safe implementation of

the CacheManager interface that stores cache entries in a ConcurrentHashMap. This

means that each cache is essentially a map, with the cache name as the key and a

ConcurrentMap as the value. The advantages of using a ConcurrentHashMap as a

cache in Spring Boot are that it is easy to configure, swift and efficient, and allows

multiple threads to access the cache simultaneously without requiring explicit locks.

In our experiments, we will use the ConcurentHashMap cache in order to cache the

SAGAs. So there is a difference between the implementations that utilize cache and the

others that will not. When we do not use the cache, every time that we perform an

operation on a SAGA, we have to retrieve it from the database. On the other hand,

when we use a cache, we need to access the database only the first time we retrieve a

SAGA. Then, any subsequent operation will retrieve the corresponding SAGA from the

cache. By doing this, we improve the performance of our application since database

access is expensive, especially on distributed systems.

6.2 Experiment Scenarios

The system’s performance will be evaluated using the following three different

scenarios:

1. Successful completion of transaction - no exceptions.

2. An exception occurred during the item’s reservation in Warehouse-Service or

the payment in Payment-Service.

3. Order cancellation by the user.

6.2.1 Scenario 1 – Successful order creation

When the orchestrator has captured a "Create Order Event", the event workflow will be

taken care of by the microservices that are relevant to that event. First, the Order-

Service initializes the order. Second, the Warehouse-Service initiates the retrieval of the

Distributing transactions using the SAGA pattern

P. Ioannidis 56

requested quantity of products. Next, the validation of the payment will subsequently be

handled by the Payment-Service.

The Order-Service completes the order and updates the necessary information,

including the order status in the last step. The workflow will be ended, and the order will

be marked as “APPROVED” since the transaction will be completed successfully,

Figure 6-1.

Figure 6-1 Successful order creation workflow

The steps for this scenario are the following:

1. Order-Service receives a request for a new order.

2. Order-Service creates an Order and a Create Order Orchestrator.

3. The Create Order Orchestrator sends a ReserveOrderItemsCommand

command to Warehouse-Service, via the warehouse_topic.

4. Warehouse-Service replies with an OrderItemsReservedEvent event to

Create Order Orchestrator, via the create_order_reply_topic.

5. The Create Order Orchestrator sends a PayOrderCommand to Payment-

Service, via the payment_topic.

6. Payment-Service replies with a PaymentApprovedEvent event via the

create_order_reply_topic.

7. The Create Order Orchestrator sends an ApproveOrderCommand

command to Order-Service, via the order_topic.

6.2.2 Scenario 2 – Order creation fails at items reservation

Following the orchestrator's successful capture of a "create-order-event," the event

process will be handled by the appropriate microservices. The Order-Service starts the

Distributing transactions using the SAGA pattern

P. Ioannidis 57

ordering process. Second, when a customer has placed an order, Warehouse-Service

begins pulling the necessary inventory. Here, an error will occur because the requested

amount is unavailable. Hence, the order must be rejected.

The Warehouse-Service will fire an event, informing the orchestrator that the requested

amount could not be allocated. Then the orchestrator will initiate the procedure for

rejecting the order, Figure 6-2.

Figure 6-2 Compensatory workflow when an error occurs at the Warehouse-Service

For this scenario, the flow is as follows:

1. Order-Service receives a request for a new order.

2. Order-Service creates an Order and a Create Order Orchestrator.

3. The Create Order Orchestrator sends a ReserveOrderItemsCommand

command to Warehouse-Service, via the warehouse_topic.

4. The Warehouse-Service replies with an OrderItemsOutOfStockEvent event

via the create_order_reply_topic.

5. The Create Order Orchestrator sends a RejectOrderCommand command to

Order-Service, via the order_topic.

6.2.3 Scenario 2 – Order creation fails at payment

Following the orchestrator's successful capture of a "Create Order Event", the event

process will be handled by the relevant microservices. The Order-Service initiates the

ordering procedure. Second, when a consumer has put in an order, the Warehouse-

Service pulls the required inventory. Next, the payment will be handled by the Payment-

Service. At this point, we will experience an error because the user will not have the

needed amount of money to pay the order. Hence, the order must be rejected.

Distributing transactions using the SAGA pattern

P. Ioannidis 58

Nevertheless, we also have to revert the actions made in Warehouse-Service for the

corresponding order.

The Payment-Service will emit an event informing the orchestrator that the user does

not have the credit to pay for the order. Then the orchestrator will initiate the procedure

for rejecting the order, sending a “Reject Order” command to Warehouse-Service and

Order-Service, Figure 6-3.

Figure 6-3 Compensatory workflow when an error occurs at the Payment-Service

This flow contains a few more steps in addition to the previous one:

1. Order-Service receives a request for a new order.

2. Order-Service creates an Order and a Create Order Orchestrator.

3. The Create Order Orchestrator sends a ReserveOrderItemsCommand

command to Warehouse-Service, via the warehouse_topic.

4. Warehouse-Service replies with an OrderItemsReservedEvent event to

Create Order Orchestrator, via the create_order_reply_topic.

5. The Create Order Orchestrator sends a PayOrderCommand to Payment-

Service, via the payment_topic.

6. Payment-Service replies with a PaymentRejectedEvent event, via the

create_order_reply_topic.

7. The Create Order Orchestrator sends a RejectOrderCommand command to

Warehouse-Service, via the warehouse_topic.

8. The Create Order Orchestrator sends a RejectOrderCommand command to

Order-Service, via the order_topic.

Distributing transactions using the SAGA pattern

P. Ioannidis 59

6.2.4 Scenario 3 – Cancelling order

The difference between this scenario and scenarios 2, and 3 is that the cancellation of

the order is performed by the user. This action is not part of the automated workflow

that the SAGA provides. The order can be canceled when the state is

“WAREHOUSE_APPROVED” or “PAYMENT_APPROVED”.

The compensating transactions that should be emitted depend on the current state of

the order. If the current state is “WAREHOUSE_APPROVED” then the orchestrator

sends only a “Cancel Order” command to Order-Service, Figure 6-4.

Figure 6-4 Order cancellation workflow at “WAREHOUSE_APPROVED” state

The flow for this scenario is the following:

1. Order-Service receives a request to cancel an order.

2. Order-Service creates a Cancel Order Orchestrator.

3. The Create Order Orchestrator sends a CancelOrderCommand command to

Warehouse-Service, via the warehouse_topic.

4. The Create Order Orchestrator sends a CancelOrderCommand command to

Order-Service, via the order_topic.

If the current state is “PAYMENT_APPROVED” the orchestrator sends the “Cancel

Order“ command both to Warehouse-Service and Order-Service, Figure 6-5.

Distributing transactions using the SAGA pattern

P. Ioannidis 60

Figure 6-5 Order cancellation workflow at “PAYMENT_APPROVED” state

The flow for this scenario is the following:

1. Order-Service receives a request to cancel an order.

2. Order-Service creates a Cancel Order Orchestrator.

3. The Create Order Orchestrator sends a CancelOrderCommand command

to Warehouse-Service, via the warehouse_topic.

4. The Create Order Orchestrator sends a CancelOrderCommand command to

Payment-Service, via the payment_topic.

5. The Create Order Orchestrator sends a CancelOrderCommand command to

Order-Service, via the order_topic.

6.3 Experimental Results

We ran the experiment scenarios we extensively described in the previous section using

various parameters. As we mentioned earlier, the scenarios will be applied to two

systems composed by:

1. Choreographed microservices using RESTful communication based on the SAC

pattern.

2. Orchestrated microservices using the piSaga event-driven communication based

on the AOE pattern.

It is worth mentioning that during the execution of all of the experiments with the piSaga

library, we did not face any errors related to the lack of isolation. This means that the

piSaga successfully handles the isolation at the application level of each microservice.

Distributing transactions using the SAGA pattern

P. Ioannidis 61

6.3.1 Scenario 1 – Throughput

As throughput, we define the number of requests processed in 30 seconds. We

consider only the requests in the “APPROVED” state as completed. We evaluated the

performance of various configurations in terms of throughput by running the scenario

with 1, 10, and 25 virtual users. We achieved this by configuring the virtual users in

jMeter to stream requests for 30 seconds. Then we counted how many SAGA flows had

been successfully completed. The experiment was repeated five times to ensure the

consistency and accuracy of the results.

6.3.1.1 1 virtual user

The results for having a single virtual user are presented in Table 6-1. The baseline

configuration is “OpenFeign without cache”, with an average throughput of 8222.2

requests per 30 seconds.

When comparing the baseline configuration with the “piSaga without cache”

configuration, we can see that the latter performs slightly better, with an average

throughput of 8331.6 requests per 30 seconds. This represents an improvement of

1.33%. The “OpenFeign with cache” configuration also improves over the baseline, with

an average throughput of 8407 requests per 30 seconds, representing an improvement

of 2.5%. However, the best performance is achieved by the “piSaga with cache”

configuration, which reaches an average throughput of 8516.6 requests per 30 seconds.

This represents an improvement of 3.58% over the baseline configuration.

It is clear that the configuration of “piSaga with cache” provides the highest throughput

among all the configurations we tested. The difference in throughput between the best

option and the other configurations is 3.58%, 2.22%, and 1.30%, respectively.

Table 6-1 Successful-request/30sec for 1 virtual user

 No Cache Cache

 # OpenFeign piSAGA OpenFeign piSAGA

1 8199 8372 8343 8545

2 8199 8285 8430 8574

3 8170 8343 8430 8401

4 8314 8343 8401 8545

5 8229 8315 8431 8518

avg 8222.2 8331.6 8407 8516.6

Distributing transactions using the SAGA pattern

P. Ioannidis 62

Figure 6-6 Graphical representation of throughput for 1 virtual user

6.3.1.2 10 virtual users

The results for having 10 virtual users are presented in Table 6-2. The first configuration

we evaluated used the “OpenFeign without cache”, resulting in an average throughput

of 9480.5 requests per 30 seconds.

This configuration serves as the baseline for comparison with the other configurations.

Additionally, using “piSaga without cache” resulted in an average throughput of 9588

requests per 30 seconds, showing an improvement of 1.13% compared to the baseline.

Using “OpenFeign with cache” resulted in an average throughput of 9671.5 requests per

30 seconds, showing an improvement of 2.01% compared to the baseline. Last, it was

found that using “piSaga with cache” resulted in the highest average throughput at

9837.5 requests per 30 seconds. This configuration showed a significant improvement

of 3.77% compared to the baseline

Based on the results, it is clear that the combination of piSaga with a cache resulted in

the highest throughput of 9837.5 requests per 30 seconds. It is important to note that

the percentage differences between the best option and the others are 3.77%, 2.60%,

and 1.72%, respectively.

Table 6-2 Successful-request/30sec for 10 virtual user

 No Cache Cache

 # OpenFeign piSAGA OpenFeign piSAGA

1 9518 9719 9778 9787

2 9387 9486 9652 9817

3 9463 9562 9695 9795

4 9644 9677 9745 9912

5 9428 9627 9594 9826

avg 9480.5 9588 9671.5 9837.5

7900

8000

8100

8200

8300

8400

8500

8600

8700

1 2 3 4 5 avg

Throughput: 30 sec - 1 virtual user

No Cache OpenFeign No Cache piSAGA Cache OpenFeign Cache piSAGA

Distributing transactions using the SAGA pattern

P. Ioannidis 63

Figure 6-7 Graphical representation of throughput for 10 virtual users

6.3.1.3 25 virtual users

The results for having 25 virtual users are presented in Table 6-3. The implementation

with “OpenFeign without cache” resulted in an average throughput of 9993.4 requests

per 30 seconds and served as the baseline for comparison.

It can be observed that the implementation with “piSaga without cache”, which resulted

in an average throughput of 10151.2 requests per 30 seconds, has a 1.58% higher

throughput compared to the baseline. Next, implementing “OpenFeign with cache”

resulted in an average throughput of 10251.2 requests per 30 seconds and a 2.58%

higher throughput than the baseline. Lastly, the implementation with “piSaga with

cache” resulted in an average throughput of 10403.6 requests per 30 seconds and a

4.10% higher throughput than the baseline.

It can be concluded that the configuration with cache and piSaga is the best option,

providing the highest throughput. The difference in throughput between the best option

and the other configurations is relatively small, with the most significant difference being

4.06% between the best option and the others are 4.10%, 2.49%, and 1.49%,

respectively.

Table 6-3 Successful-request/30sec for 25 virtual user

 No Cache Cache

 # OpenFeign piSAGA OpenFeign piSAGA

1 9915 10150 10034 10256

2 9892 10284 10372 10601

3 10099 10174 10131 10240

4 10052 10054 10405 10495

5 10009 10094 10314 10426

avg 9993.4 10151.2 10251.2 10403.6

9100

9200

9300

9400

9500

9600

9700

9800

9900

10000

1 2 3 4 5 avg

Throughput: 30sec - 10 virtual users

No Cache OpenFeign No Cache piSAGA Cache OpenFeign Cache piSAGA

Distributing transactions using the SAGA pattern

P. Ioannidis 64

Figure 6-8 Graphical representation of throughput for 25 virtual users

6.3.1.4 Experiment outcome

Based on the experimental results, it can be concluded that the combination of piSaga

with a cache consistently results in the highest throughput across all configurations and

virtual user scenarios. The improvement in throughput ranges from 1.13% to 4.10%

compared to the baseline configuration of “OpenFeign without cache”. Additionally, the

difference in throughput between the best option and the other configurations is

relatively small. The most significant difference is 4.06% between the best option and

the implementation with “OpenFeign without cache”.

It is also worth noting that using cache alone, whether with OpenFeign or piSaga,

results in a slight improvement in throughput compared to the baseline configuration.

This suggests that using a cache is an essential factor in optimizing performance.

In summary, the best option for improving performance and increasing throughput is to

use the configuration of piSaga with a cache. This configuration consistently results in

the highest throughput across all scenarios and significantly improves performance

compared to the baseline configuration.

6.3.2 Scenario 2 – Required time to complete requests

In this scenario, we investigate how long it takes to complete 10000 requests when

there is an error either in the Warehouse-Service or the Payment-Service. Hence, using

jMeter, we configured the 1 virtual user to stream 10000 requests.

6.3.2.1 Experiment 1

In this experiment, 20% of the incoming requests will fail in the Warehouse-Service;

hence compensation transactions will be made to revert the corresponding order to a

valid state. We measure how long it takes to either approve or reject an order.

9400

9600

9800

10000

10200

10400

10600

10800

1 2 3 4 5 avg

Throughput: 30sec - 25 virtual users

No Cache OpenFeign No Cache piSAGA Cache OpenFeign Cache piSAGA

Distributing transactions using the SAGA pattern

P. Ioannidis 65

Table 6-4 Required time, in seconds, to complete 10000 requests

Error Rate No Cache Cache

WS PS OpenFeign piSAGA OpenFeign piSAGA

20% 0% 39 36 35 33

The results in Table 6-4 show that “piSaga with cache” performed the best, taking only

33 seconds to complete 1000 requests. This is a significant improvement over the other

configurations, with “OpenFeign with cache” coming in second place at 35 seconds,

“piSaga without cache” taking 36 seconds, and “OpenFeign without cache” taking the

longest at 39 seconds.

It is clear from these results that the use of a cache can significantly improve the

performance of the system, with the “piSaga with cache” configuration reducing the

required time by 9.38% compared to “piSaga without cache”, and by 18.75% compared

to “OpenFeign without cache”. Additionally, using “piSaga with cache” outperforms

“OpenFeign with cache”, reducing the required time by 6.25%.

Figure 6-9 Cache-piSaga needs 33 seconds to complete 10000 requests

6.3.2.2 Experiment 2

In this experiment, 40% of the incoming requests will fail in the Warehouse-Service.

Next, 20% - out of the 60% of the requests that the Warehouse-Service approved - will

fail in the Payment-Service. Therefore, a compensation transaction will be made in

order to revert the corresponding order to a valid state. We measure how long it takes to

either approve or reject an order.

29 30 31 32 33 34 35 36 37 38 39 40

OpenFeign

piSAGA

OpenFeign

piSAGA

N
o

 C
ac

h
e

C
ac

h
e

Error rate: WS=20% - PS=0%

Distributing transactions using the SAGA pattern

P. Ioannidis 66

Table 6-5 Required time, in seconds, to complete 10000 requests

Error Rate No Cache Cache

WS PS OpenFeign piSAGA OpenFeign piSAGA

40% 20% 34 30 31 28

The results in Table 6-5 show that the best performance was achieved by the “piSaga

with cache” approach, which took only 28 seconds to complete the task. This is a

significant improvement when compared to the other approaches. The “piSaga withour

cache” approach was the second-best option, taking 30 seconds, followed by the

“OpenFeign with cache” and “OpenFeign without cache” with 31 and 34 seconds,

respectively.

Comparing the best option to the other approaches, we can see that it had a 6.90%

improvement over the “piSaga without cache”, an 10.34% improvement over the

“OpenFeign with cache”, and a 20.69% improvement over the “OpenFeign without

cacahe”.

Figure 6-10 Cache-piSaga needs 28 seconds to complete 10000 requests

6.3.2.3 Experiment 3

In this experiment, 60% of the incoming requests will fail in the Warehouse-Service.

Next, 40% - out of the 40% of the requests that the Warehouse-Service approved - will

fail in the Payment-Service. Therefore, a compensation transaction will be made in

order to revert the corresponding order to a valid state. We measure how long it takes to

either approve or reject an order.

0 5 10 15 20 25 30 35 40

OpenFeign

piSAGA

OpenFeign

piSAGA

N
o

 C
ac

h
e

C
ac

h
e

Error rate: WS=40% - PS=20%

Distributing transactions using the SAGA pattern

P. Ioannidis 67

Table 6-6 Required time, in seconds, to complete 10000 requests

Error Rate No Cache Cache

WS PS OpenFeign piSAGA OpenFeign piSAGA

60% 40% 32 30 28 26

Table 6-6 shows that “piSaga with cache” performs better than the other approaches,

needing only 26 seconds. This is a 7.96% improvement over the second-best option,

which is “OpenFeign with cache”, with 28 seconds. The no-cache options, piSaga, and

OpenFeign, have average completion times of 30 and 32 seconds, respectively. These

results suggest that incorporating a cache system, specifically using piSaga, can

significantly improve the efficiency and speed of the system in high error rate scenarios.

Additionally, the percentage difference between the best option and the no-cache

options in this scenario is 15.38% and 26.92% for piSaga and OpenFeign, respectively.

Figure 6-11 Cache-piSaga needs 26 seconds to complete 1000 requests

6.3.2.4 Experiment outcome

In summary, the experimental results show that incorporating a cache system can

significantly improve the performance of the system. The best configuration was found

to be “piSaga with cache”, which had the fastest completion time in all runs. This

configuration outperformed the other approaches, reducing the required time by at least

6.90% compared to the no-cache options and by 6.25% compared to OpenFeign. The

results also suggest that piSaga is more effective than OpenFeign in high error rate

scenarios.

0 5 10 15 20 25 30 35

OpenFeign

piSAGA

OpenFeign

piSAGA

N
o

 C
ac

h
e

C
ac

h
e

Error rate: WS=60% - PS=40%

Distributing transactions using the SAGA pattern

P. Ioannidis 68

6.3.3 Scenario 3 – Processing time for order cancellation

Our goal for this performance test is to investigate how piSaga performs under heavy

load of request using stress testing [34]. To accomplish this, we run two experiments on

that scenario. In the first one, we configured 10 virtual users on jMeter to stream 10000

requests, and in the second 50 virtual users to stream 100000 requests. We compared

only the implementations with ConcurrentHashMap cache, both using OpenFeign and

piSaga, since they are the ones that perform the best.

We measured the “Processing time” and the “Total time”. As “Processing time”, we

define the time between the last sent request and the last processed order, whereas the

“Total time” is the time between the first sent request and the final processed order.

6.3.3.1 Experiment 1

Table 6-7 presents the results of the performance execution when 10 virtual users

initiated 1000 requests, resulting in a total of 10000 requests. The results show that

piSAGA performs better than OpenFeign, with a processing time of 34 seconds

compared to 38 seconds for OpenFeign. Additionally, the total time for piSAGA is 38

seconds, while it is 42 seconds for OpenFeign. This results in a percentage difference

of 11.76% in processing time and 10.53% in total time in favor of piSAGA.

Table 6-7 Processing and total time, in seconds, for 10 virtual uses and 10000 in total

 Processing time Total Time

OpenFeign 38 42

piSAGA 34 38

Figure 6-12 piSaga needs 38 seconds to complete 10000 cancellation requests

38 34

42
38

O P E N F E I G N P I S A G A

10 virtual users - 1000
requests/virtual user

Processing time Total Time

Distributing transactions using the SAGA pattern

P. Ioannidis 69

6.3.3.2 Experiment 2

In Figure 6-8 we present the results of the performance execution when 50 virtual users

initiated 2000 requests. So, the total number of requests is 100000. This experiment

shows that processing time and total time are shorter when using piSAGA than

OpenFeign. Specifically, the processing time for piSAGA is 599 seconds, while for

OpenFeign, it is 608 seconds, representing a 1.5% difference. Similarly, the total time

for piSAGA is 613 seconds, while for OpenFeign, it is 625 seconds, representing a

1.96% difference.

Table 6-8 Processing and total time, in seconds, for 50 virtual uses and 100000 in total

 Processing time Total Time

OpenFeign 608 625

piSAGA 599 613

Figure 6-13 piSaga needs 613 seconds to complete 100000 cancellation requests

6.3.3.3 Experiment outcome

In conclusion, based on the results of both experiments on this scenario, it can be seen

that piSAGA performs better than OpenFeign in terms of processing time and total time.

This suggests that piSAGA may be a better option for systems that require low latency

and fast processing times. It is important to note that these results are obtained from a

specific set of conditions. The performance may vary depending on factors such as

network conditions and the specific implementation of the tested system. Additionally,

we can see that piSaga outperforms OpenFeign by at least 1.5% and 1.96% in

processing and total time, respectively, in both experiments. These results demonstrate

that using piSaga with a cache is an efficient and effective approach for improving

system performance.

608 599

625 613

O P E N F E I G N P I S A G A

50 virtual users - 2000
requests/virtual user

Processing time Total Time

Distributing transactions using the SAGA pattern

P. Ioannidis 70

7. CONCLUSION

In conclusion, the SAGA pattern is a powerful approach to implementing distributed

transactions in distributed systems. It provides robust assurances of atomicity,

consistency, and managing isolation on the application level while permitting the

execution of long-running transactions that may span several systems or locations.

Another significant feature of the SAGA pattern is its ability to handle failures and errors

gracefully. In the event of a failure or error, the SAGA pattern permits the execution of

compensating transactions that can undo the results of prior operations and restore the

system to a consistent state. This is particularly crucial in distributed systems, where

failures and errors are more frequent due to the complexity and diversity of the involved

systems.

Despite these advantages, it is essential to carefully analyze the SAGA pattern's trade-

offs. Specifically, the high amount of coordination and communication needed by the

SAGA pattern may have a negative impact on performance, especially in systems with

high concurrency. In addition, implementing the SAGA pattern may be more complex

than other approaches to distributed transactions, which may raise the risk of errors and

the amount of time necessary to design and maintain the system.

Regarding the piSaga library, we can see that the “piSaga with cache” approach

performs better than all the other approaches. Based on the extended experiments,

simulating three scenarios with several configurations, we can see that it provides better

throughput and needs less time to successfully serve the same number of requests

(reaching a final state). Ultimately, cache can significantly improve the performance of

the system piSaga is a good option for developing practical microservices that support

distributed transactions.

Overall, the SAGA pattern is a valuable tool for developers who wish to create scalable

and reliable distributed systems since it offers a variety of advantages that may

significantly boost the performance and reliability of these systems. However, it is

essential to carefully consider the trade-offs associated with it and select the best

suitable technique for a specific use case.

Distributing transactions using the SAGA pattern

P. Ioannidis 71

8. ABBREVIATIONS - ACRONYMS

2PC Two-Phase Commit

2PC* Two-Phase Commit with Recovery

ACD Atomicity Consistency Durability

ACID Atomicity Consistency Isolation Durability

CAP Consistency Availability Partition-Tolerance

CA Consistency Availability

CP Consistency Partition-Tolerance

AP Availability Partition-Tolerance

IPC Inter-process Communication

RESTful Representational state transfer

TCC Try, Commit and Cancel

GRIT Generalized Recursive Idealized Transactions

μService Microservice

Distributing transactions using the SAGA pattern

P. Ioannidis 72

REFERENCES

[1] Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services", ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51–59.

[2] “Cap theorem,” Wikipedia, 29-Jul-2022. [Online]. Available:

https://en.wikipedia.org/wiki/CAP_theorem

[3] IBM Cloud Education, “What is the CAP Theorem?” IBM. [Online]. Available:

https://www.ibm.com/cloud/learn/cap-theorem

[4] Kleppmann, M., 2017. Designing Data-Intensive Applications. O'Reilly Media, Inc.
[5] ACID - Wikipedia. Available at: https://en.wikipedia.org/wiki/ACID
[6] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (January 2009), 40–44.

https://doi.org/10.1145/1435417.1435432

[7] S. Newman, Building microservices: Designing fine-grained systems. Sebastopol, CA: O'Reilly, 2021.

[8] C. Richardson, Microservice patterns meap. Shelter Island, NY: Manning, 2017.

[9] Frank, Lars, and Torben U. Zahle. "Semantic ACID properties in multidatabases using remote

procedure calls and update propagations." Software: Practice and Experience 28.1 (1998): 77-98.

[10] M. Richards and N. Ford, Fundamentals of Software Architecture: An Engineering Approach. O'Reilly,

2020.

[11] “Microservices,” martinfowler.com. [Online]. Available:

https://martinfowler.com/articles/microservices.html.

[12] B. Christudas, Practical microservices architectural patterns. Apress, 2019.

[13] “2 ways to implement atomic database transactions in a microservice-based solution,” Apriorit, 28-Jul-

2022. [Online]. Available: https://www.apriorit.com/dev-blog/777-web-atomic-transactions-in-

microservices

[14] K. Xiang, “Patterns for distributed transactions within a microservices architecture,” Red Hat

Developer, 23-Sep-2022. [Online]. Available: https://developers.redhat.com/blog/2018/10/01/patterns-

for-distributed-transactions-within-a-microservices-architecture

[15] “Solving distributed transaction management problem in microservices architecture using Saga,” IBM

developer. [Online]. Available: https://developer.ibm.com/articles/use-saga-to-solve-distributed-

transaction-management-problems-in-a-microservices-architecture

[16] C. R. of Eventuate, “Building microservices: Inter-process Communication,” NGINX, 24-Oct-2019.

[Online]. Available: https://www.nginx.com/blog/building-microservices-inter-process-communication

[17] Garcia-Molina, Hector, and Kenneth Salem. "Sagas." ACM Sigmod Record 16.3 (1987): 249-259.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of reusable object-

oriented software. 1995.

[19] “Two-phase Commit Protocol - Wikipedia.” Two-phase Commit Protocol - Wikipedia,

https://en.wikipedia.org/wiki/Two-phase_commit_protocol

[20] Fan, P., Liu, J., Yin, W. et al. 2PC*: a distributed transaction concurrency control protocol of multi-

microservice based on cloud computing platform. J Cloud Comp 9, 40 (2020).

https://doi.org/10.1186/s13677-020-00183-w

[21] Community, Alibaba Cloud. “An In-Depth Analysis of Distributed Transaction Solutions.” Alibaba

Cloud Community, www.alibabacloud.com/blog/an-in-depth-analysis-of-distributed-transaction-

solutions_597232

[22] G. Zhang, K. Ren, J. -S. Ahn and S. Ben-Romdhane, "GRIT: Consistent Distributed Transactions

Across Polyglot Microservices with Multiple Databases," 2019 IEEE 35th International Conference on

Data Engineering (ICDE), 2019, pp. 2024-2027, doi: 10.1109/ICDE.2019.00230.

[23] “Spring Boot.” Spring Boot, www.spring.io/projects/spring-boot

[24] “Apache Kafka.” Apache Kafka, www.kafka.apache.org

[25] Vogels - https://www.allthingsdistributed.com/, Dr Werner. “Eventually Consistent - Revisited.”

Eventually Consistent - Revisited | All Things Distributed, 23 Dec. 2008,

www.allthingsdistributed.com/2008/12/eventually_consistent.html

[26] “Apache JMeter.” Apache JMeter, www.jmeter.apache.org

https://en.wikipedia.org/wiki/CAP_theorem
https://www.ibm.com/cloud/learn/cap-theorem
https://en.wikipedia.org/wiki/ACID
https://doi.org/10.1145/1435417.1435432
https://martinfowler.com/articles/microservices.html
https://www.apriorit.com/dev-blog/777-web-atomic-transactions-in-microservices
https://www.apriorit.com/dev-blog/777-web-atomic-transactions-in-microservices
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture
https://developers.redhat.com/blog/2018/10/01/patterns-for-distributed-transactions-within-a-microservices-architecture
https://developer.ibm.com/articles/use-saga-to-solve-distributed-transaction-management-problems-in-a-microservices-architecture
https://developer.ibm.com/articles/use-saga-to-solve-distributed-transaction-management-problems-in-a-microservices-architecture
https://www.nginx.com/blog/building-microservices-inter-process-communication
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://doi.org/10.1186/s13677-020-00183-w
http://www.alibabacloud.com/blog/an-in-depth-analysis-of-distributed-transaction-solutions_597232
http://www.alibabacloud.com/blog/an-in-depth-analysis-of-distributed-transaction-solutions_597232
http://www.spring.io/projects/spring-boot
http://www.kafka.apache.org/
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.jmeter.apache.org/

Distributing transactions using the SAGA pattern

P. Ioannidis 73

[27] “Spring Cloud OpenFeign.” Spring Cloud OpenFeign, www.docs.spring.io/spring-cloud-

openfeign/docs/current/reference/html

[28] Štefanko, Martin, et al. “The Saga Pattern in a Reactive Microservices Environment.” Proceedings of

the 14th International Conference on Software Technologies, SCITEPRESS - Science and

Technology Publications, 2019. Crossref, https://doi.org/10.5220/0007918704830490.

[29] Dürr, Karolin & Lichtenthaeler, Robin & Wirtz, Guido. (2021). An Evaluation of Saga Pattern

Implementation Technologies.

[30] Ibsen, Claus, and Jonathan Anstey. Camel in Action. 2010.

[31] “Saga.” Apache Camel, www.camel.apache.org

[32] “Sagas - Axon Reference Guide.” Sagas - Axon Reference Guide, www.docs.axoniq.io/reference-

guide/axon-framework/sagas

[33] “Eclipse MicroProfile LRA.” Eclipse MicroProfile LRA, 19 May 2020,

www.download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html

[34] Cloud, Alibaba. “Introduction to Stress Testing.” Medium, 29 Dec. 2017, www.alibaba-

cloud.medium.com/introduction-to-stress-testing-a80d115b3715

http://www.docs.spring.io/spring-cloud-openfeign/docs/current/reference/html
http://www.docs.spring.io/spring-cloud-openfeign/docs/current/reference/html
https://doi.org/10.5220/0007918704830490
http://www.camel.apache.org/
http://www.docs.axoniq.io/reference-guide/axon-framework/sagas
http://www.docs.axoniq.io/reference-guide/axon-framework/sagas
http://www.download.eclipse.org/microprofile/microprofile-lra-1.0-M1/microprofile-lra-spec.html
http://www.alibaba-cloud.medium.com/introduction-to-stress-testing-a80d115b3715
http://www.alibaba-cloud.medium.com/introduction-to-stress-testing-a80d115b3715

