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Abstract

The current doctoral thesis focuses on Convolutional Neural Networks (CNNs) for
computer vision applications and particularly on the deployment of the inference pro-
cess of CNNs to embedded accelerators suitable for edge computing. The objective of
the thesis is to address several challenges regarding the optimization techniques of CNNs
towards their edge deployment as well as challenges in the field of CNN accelerator archi-
tectures design techniques. In this direction, the thesis focuses on different deep learning
applications, including on-board payload data processing as well as solar irradiance fore-
casting, and makes distinct contributions to four different challenges in the fields of CNN
optimization and CNN accelerators design.

First, the thesis contributes to the existing literature regarding image processing tech-
niques and deep learning-based image regression for solar irradiance estimation and fore-
casting. It proposes an image processing method which is based on accurate sun localiza-
tion in sky images and which utilizes the solar angles and the mapping functions of the lens
of the sky imager camera. When the proposed method is applied to the sky images before
these are processed by the image regression CNNs, the results from the extensive study
that the thesis conducts, show that the method can improve the accuracy of the irradiance
values that the CNNs produce in all cases by introducing only minimal computational
overhead.

Next, the thesis focuses on the task of deep learning-based semantic segmentation in
order to enable cloud detection from satellite imagery in on-board payload data process-
ing applications. In particular, the thesis proposes a lightweight CNN model architecture,
based on the U-Net architecture, which aims at providing an improved trade-off between
model size and binary semantic segmentation performance. The proposed model utilizes
several CNN techniques in order to reduce the number of parameters and operations re-
quired for the inference but at the same time maintain satisfying performance. The thesis
conducts a study among CNN models for cloud detection, which are evaluated on the
same test dataset as the proposed model, and thus showcases the advantages of the pro-
posed model.

Then, the thesis targets the efficient porting of the inference process of image process-
ing CNNs to edge-oriented embedded accelerator devices. The thesis opts for CNN accel-
eration based on Field-Programmable Gate Arrays (FPGAs) and contributes the adopted
development flow which utilizes the Xilinx Vitis AI framework. Apart from exploring
the capabilities of Vitis AI, including its advanced quantization solutions, the thesis also
showcases an acceleration approach for accelerating different processes of a single com-
puter vision task by taking advantage of the heterogeneous resources of the FPGA. The
execution time and throughput results of the CNNmodels, for the tasks of binary semantic
segmentation for cloud detection as well as image regression for irradiance estimation, on
the FPGA, showcase the real-time processing capabilities of the accelerator.

Finally, the thesis contributes the design details of a bi-directional interfacing system
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for high-throughput and fault-tolerant image transfers between deep learning embedded
accelerators, in the context of on-board payload data processing architectures. The inter-
facing system is developed for interfacing an FPGA with the Intel Movidius Myriad 2
and the extensive testing campaign based on both commercial as well as prototype hard-
ware platforms, shows that it can achieve a bit-rate of up to 2.4 Gbps duplex image data
transfers.
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Περίληψη

Hπαρούσα διδακτορική διατριβή έχει ως βασικό αντικείμενο μελέτης τα Συνελικτικά
Νευρωνικά Δίκτυα (Convolutional Neural Networks - CNNs) για εφαρμογές υπολογιστι-
κής όρασης (computer vision) και συγκεκριμένα εστιάζει στην εκτέλεση της διαδικασίας
της εξαγωγής συμπερασμάτων των CNNs (CNN inference) σε ενσωματωμένους επιτα-
χυντές κατάλληλους για εφαρμογές της υπολογιστικής των παρυφών (edge computing).
Ο σκοπός της διατριβής είναι να αντιμετωπίσει τις τρέχουσες προκλήσεις σχετικά με τη
βελτιστοποίηση των CNNs προκειμένου αυτά να υλοποιηθούν σε edge computing πλατ-
φόρμες, καθώς και τις προκλήσεις στο πεδίο των τεχνικών σχεδίασης αρχιτεκτονικών
επιταχυντών για CNNs. Προς αυτή την κατεύθυνση, η παρούσα διατριβή επικεντρώνεται
σε διαφορετικές εφαρμογές βαθιάς μάθησης (deep learning), συμπεριλαμβανομένης της
επεξεργασίας εικόνων σε δορυφόρους και της πρόβλεψης ηλιακής ακτινοβολίας από εικό-
νες. Στις παραπάνω εφαρμογές, η διατριβή συμβάλλει σε τέσσερα διακριτά προβλήματα
στα πεδία της βελτιστοποίησης CNNs και της σχεδίασης επιταχυντών CNNs.

Αρχικά, η διατριβή συνεισφέρει στην υπάρχουσα βιβλιογραφία σχετικά με τεχνικές
επεξεργασίας εικόνας, βασισμένες στα CNNs, για την εκτίμηση και πρόβλεψη ηλιακής
ακτινοβολίας. Στα πλαίσια της διατριβής, προτείνεται μια μέθοδος επεξεργασίας εικόνας
η οποία βασίζεται στον ακριβή εντοπισμό του Ήλιου σε εικόνες του ουρανού, χρησιμο-
ποιώντας τις συντεταγμένες του Ήλιου και τις εξισώσεις του fisheye φακού της κάμερας
λήψης εικόνων του ουρανού. Όταν η προτεινόμενη μέθοδος εφαρμόζεται σε φωτογρα-
φίες του ουρανού πριν από την επεξεργασία τους από τα CNNs, τα αποτελέσματα από
την εκτεταμένη μελέτη που διενεργεί η διατριβή, δείχνουν πως μπορεί να βελτιώσει την
ακρίβεια των τιμών ακτινοβολίας που παράγουν τα CNNs σε όλες τις περιπτώσεις και με
μικρή μόνο αύξηση στο πλήθος των υπολογισμών των CNNs.

Στη συνέχεια, η διδακτορική διατριβή επικεντρώνεται στην κατάτμηση εικόνων βα-
σισμένη στη βαθιά μάθηση, με στόχο τον εντοπισμό σύννεφων από δορυφορικές εικόνες
σε εφαρμογές επεξεργασίας δεδομένων σε δορυφόρους. Πιο συγκεκριμένα, στα πλαίσια
της διατριβής προτείνεται μια αρχιτεκτονική μοντέλου CNN περιορισμένων υπολογιστι-
κών απαιτήσεων, βασισμένη στην αρχιτεκτονική U-Net, η οποία στοχεύει σε μια βελτιω-
μένη αναλογία ανάμεσα στο μέγεθος του μοντέλου και στις επιδόσεις του στη δυαδική κα-
τάτμηση της εικόνας. Το προτεινόμενο μοντέλο εκμεταλλεύεται πλήθος τεχνικών CNNs
προκειμένου να μειώσει το πλήθος των παραμέτρων και πράξεων που απαιτείται για την
εκτέλεση του μοντέλου, αλλά ταυτόχρονα να πετυχαίνει ικανοποιητική ακρίβεια αποτε-
λεσμάτων. Η διατριβή διενεργεί μια μελέτη ανάμεσα σε CNN μοντέλα της βιβλιογραφίας
για εντοπισμό σύννεφων που έχουν αξιολογηθεί στα ίδια δεδομένα με το προτεινόμενο
μοντέλο, και έτσι αναδεικνύει τα προτερήματά του.

Επιπλέον, η διδακτορική διατριβή στοχεύει στην αποδοτική υλοποίηση του inference
τωνCNNs επεξεργασίας εικόνας σε ενσωματωμένους επιταχυντές κατάλληλους για εφαρ-
μογές edge computing. Για τον σκοπό αυτό, η διατριβή επιλέγει τα Field-Programmable
Gate Arrays (FPGAs) για την επιτάχυνση των CNNs και συνεισφέρει τις λεπτομέρειες
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της μεθοδολογίας ανάπτυξης που υιοθετήθηκε και η οποία βασίζεται στο εργαλείο Xilinx
Vitis AI. Πέρα από τη μελέτη των δυνατοτήτων του Vitis AI, όπως των προχωρημένων
τεχνικών κβάντισης των μοντέλων, η διατριβή παρουσιάζει επιπλέον και μια προσέγγιση
επιτάχυνσης για την επιτάχυνση των επιμέρους διεργασιών μιας ολοκληρωμένης εργα-
σίας μηχανικής όρασης η οποία εκμεταλλεύεται τους ετερογενείς πόρους του FPGA. Τα
αποτελέσματα χρόνων εκτέλεσης και διεκπεραιωτικότητας (throughput) των CNNs τόσο
για τη δυαδική κατάτμηση εικόνων για εντοπισμό σύννεφων όσο και για την εκτίμηση
ηλιακής ακτινοβολίας από εικόνες, στο FPGA, αναδεικνύουν τις δυνατότητες επεξεργα-
σίας σε πραγματικό χρόνο του επιταχυντή.

Τέλος, η διδακτορική διατριβή συνεισφέρει τη σχεδίαση ενός συστήματος διεπαφής,
υψηλών επιδόσεων και με ανοχή στα σφάλματα, για την αμφίδρομη μεταφορά εικόνων
ανάμεσα σε ενσωματωμένους επιταχυντές βαθιάς μάθησης, στα πλαίσια υπολογιστικών
αρχιτεκτονικών για επεξεργασία δεδομένων σε δορυφόρους. Το σύστημα διεπαφής ανα-
πτύχθηκε για την επικοινωνία ανάμεσα σε ένα FPGA και τον επιταχυντή Intel Movidius
Myriad 2 και η εκτεταμένη διαδικασία επαλήθευσης του συστήματος, τόσο σε εμπορικά
διαθέσιμες όσο και σε πρωτότυπες πλατφόρμες, έδειξε πως αυτό μπορεί να επιτύχει μέχρι
και 2.4 Gbps αμφίδρομους ρυθμούς μετάδοσης δεδομένων εικόνων.
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Chapter 1

Introduction

Machine learning is currently being a transformative technology in many scientific fields.
A large variety of machine learning model types, such as Artificial Neural Networks
(ANNs), Support VectorMachines (SVMs) and decision trees, serve the needs of countless
applications including natural language processing, recommender systems and computer
vision among others. In particular, Convolutional Neural Networks (CNNs) which utilize
multiple processing layers, also called Deep Convolutional Neural Networks (DCNNs),
are part of the broader family of deep learning methods and are currently being extensively
employed for many advanced computer vision applications.

The reason behind this wide adoption of CNNs for computer vision applications is
that they have been shown to excel in particular tasks with some the most significant
ones being classification, regression, semantic segmentation and object detection among
others. In classification problems, it is assumed that there is one major object in the image.
A CNNmodel processes the pixel values of the image and produces as many values as the
discrete number of classes that the imagemay belong to, which represent the probability of
the image to belong to that class. Regression problems, in the context of computer vision,
usually require a CNNmodel to produce a single numerical value with a continuous range
after processing an image. Semantic segmentation problems require from a CNN model
to divide an image into distinct regions which belong to different semantic classes by
producing a segmentation mask with a pixel-level prediction on a predefined set of pixel
semantic classes. Finally, the more complex object detection problem arises when there
are multiple objects of interest in an image and then the requirement from a CNN model
is to produce both the positions of the objects, in the forms of bounding boxes, as well as
the classes of the boxes contents.
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1.1 Convolutional Neural Networks Fundamentals and Ad-
vancements

While the potential of CNNs on computer vision tasks was beginning to become apparent
with the introduction of LeNet-5 [1] for handwritten digits recognition, at that time, there
was also a lack of capable enough hardware to handle their processing requirements. The
popularity of CNNs really began to explode with the introduction of AlexNet [2] where a
CNN was shown to achieve significantly improved performance on the well-known Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012. The key character-
istic behind the high recognition performance of AlexNet was its deep model architecture
which is illustrated in Fig. 1.1. The AlexNet architecture features some of the fundamen-
tal layers and components used by state-of-the-art CNNs up to this day. These are the
convolutional layers, the activation functions, the pooling layers and the fully-connected
layers. Regarding the convolutional layers, each one consists of several convolution ker-
nels, with trainable weights, which are applied to each of the input featuremaps of the layer
with a two-dimensional convolution operation. This way, the convolutional layers can be
trained to extract visual features from the input feature maps or images, such as edges and
corners. Most commonly, an element-wise nonlinear activation function is applied to the
output feature maps of a convolutional layer which in the case of AlexNet is the Rectified
Linear Unit (ReLU) activation function. In a CNN architecture, the output feature maps
are forwarded to subsequent convolutional layers which are used to extract more high-
level features. Convolutional layers are usually followed by pooling layers which perform
spatial subsampling of the feature maps. Max pooling and average pooling are the two
most common types of pooling encountered in CNNs. After several consecutive convolu-
tional and pooling layers, before the final output of a CNN, one or more fully-connected
layers follow. They are responsible for reducing the two-dimensional feature maps into
one-dimensional feature vectors which can either be forwarded for further processing or
can be considered as the output of the network. The operation that a fully-connected layer
performs is essentially a matrix multiplication.

The deep CNN model architecture of AlexNet was essential for its high recognition
performance. However, the most significant contribution of the authors of the AlexNet pa-
per was the fact that theymade feasible the computationally demanding process of training
such a deep CNN on a very large image dataset, which traditional CPUs were not possi-
ble to handle at the time. CNN training is a supervised learning process where a labeled
image dataset is used. First, a forward pass is performed to process the image samples
and produce the CNN model results. The results are compared to the original label of
the samples and the error is quantified with the loss function. Then, the back-propagation
step is performed where the gradient of the model’s weights with regards to the loss func-
tion is calculated. Finally, the optimization algorithm, e.g. the stochastic gradient descent
algorithm, updates the weights using the weight gradients. All the above process is per-
formed in an iterative way for several batches of the original dataset. In order to address
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Figure 1.1: The AlexNet model architecture with the number of feature maps and their
dimensions indicated at the output of each layer.

the training challenge, the authors of AlexNet accelerated the computations of the model
on a Graphics Processing Unit (GPU) using the Compute Unified Device Architecture
(CUDA) framework. This approach made AlexNet one of the most influential works in
CNNs and up to this day, accelerating the training process of CNNs on GPUs is considered
standard practice.

The advancements of deep learning acceleration frameworks for commodity GPUs
as well as the increasing availability of publicly accessible and high-quality datasets for
several different applications, have significantly boosted the development of deep learning
models by the research community. Particular focus is placed on increasing the perfor-
mance on CNNs on different tasks by increasing their representational capacity. This is
achieved by including larger numbers of consecutive and more sophisticated layers in the
CNNmodel architectures, thus making them evenmore computationally demanding. This
trend of the growing computational demands of CNNs is showcased below where we cal-
culate, using the PyTorch framework, the number of operations and parameters required
for some of the most influential models over the years. The pioneering AlexNet model
requires 0.71 GOPs to perform inference and includes 61 million parameters and by fol-
lowing a similar approach with an ever deeper model architecture, the VGG11 [3] model
requires 7.62 GOPs and includes 133 million parameters. The ResNet-50 [4] model archi-
tecture which utilizes the concept of residual connections requires 4.09 GOPs and includes
26 million parameters while the InceptionV3 model [5] that consists of sophisticated In-
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ception modules [6] requires 5.71 GOPs and includes 27 million parameters.

However, the emergence of the edge computing paradigm requires novel approaches
in the fields of CNN model architectures design and CNN acceleration. The advances in
sensors technology and the developments in the field of the Internet of Things (IoT) has
led to a significant increase in the amounts of data generated from devices at the edge of
the network. The edge computing paradigm addresses the challenge of transmitting all
these data to the cloud by processing them as close to the data sources as possible. This
way, data transfers over the communication network which can hinder real-time response
and can raise security issues are minimized. Following this paradigm, it is now possible
to deploy the inference process of image processing CNNs to the edge of the network,
close to the camera sensors, and thus enable computer vision applications which require
real-time decision making based on deep learning.

1.2 Convolutional Neural Networks Acceleration for Edge
Computing

The concept of deploying the CNN inference to the edge has opened up an entire research
area regarding the hardware acceleration as well as the efficient optimization of CNNs.
The following paragraphs introduce three key aspects for the hardware acceleration and
optimization of CNNs towards their employment for edge computing applications that the
current thesis focuses on.

The first aspect of CNN acceleration on the edge is the employment of specialized
hardware accelerators. The powerful general purpose GPUs traditionally used for CNN
training are not a suitable platform due to the spatial and power consumption constraints
of embedded systems. On the other hand, embedded Central Processing Units (CPUs)
lack the computational capabilities to handle the demanding CNN processing. Conse-
quently, the research interest is focused on power-efficient embedded accelerators. Sev-
eral different types of such accelerators exist, based on different technologies such as
Application-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FP-
GAs), GPUs, CPUs and which are integrated on System-on-Chips (SoCs) or System-on-
Modules (SoMs). Each type of edge-oriented hardware accelerator offers different trade-
offs between development flexibility, processing capabilities, interfacing options, power
consumption and spatial footprint. A few notable examples of such deep learning ac-
celerators targeting edge applications include, first, the Intel Movidius Vision Processing
Units (VPUs) [7], namely the Myriad 2 and its successor the Myriad X. The Myriad 2 is a
SoC designed for ultra low-power operation and its architecture is based on twelve Very
Long Instruction Word (VLIW) 128-bit vector processors and two LEON 32-bit Reduced
Instruction Set Computer (RISC) processors combined with a wide range of interfacing
capabilities for integration with camera sensors. Another deep learning accelerator for
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edge applications, in the form of an ASIC, is the Edge Tensor Processing Unit (TPU)
from Google. The Edge TPU consists of a two-dimensional array of processing elements
with each one of them having several processing cores and dedicated memory. Addi-
tionally, the Jetson Nano [8] is a low-power embedded computing board from NVIDIA,
designed for accelerating deep learning applications. It integrates an ARM-based CPU
and a 128-core NVIDIA Maxwell architecture GPU which serves as the main accelerator
of the system. Finally, the Xilinx Ultrascale+ SoC FPGAs [9] combined with the Xilinx
Vitis AI framework provide FPGA-based CNN acceleration on the edge. The ARM-based
processor of the FPGA is integrated with the configurable logic on which the Deep Learn-
ing Processor Unit (DPU) is implemented.

The second aspect of CNN acceleration on the edge is the development of CNNmodel
architectures matching the limited computational capabilities of the embedded hardware
accelerators for deep learning applications on the edge. CNN models which target execu-
tion on the cloud, aim at achieving optimal performance with increased model architecture
dimensions resulting in a significant increment in the number of parameters and operations
required for the inference. In contrast, the CNN model architectures which are tailored to
edge computing applications usually aim at reduced model parameters and number of op-
erations in order to achieve real-time results while maintaining satisfactory performance
on the corresponding task. A notable example of such lightweight CNNs are MobileNets
[10] targeting mobile and embedded vision systems. In particular, MobileNetV2 [11] uti-
lizes depthwise separable convolutions, linear bottlenecks and inverted residuals in order
to minimize the computational cost and memory footprint of the model while making only
small sacrifices in accuracy. SqueezeNet [12] is another notable CNN model architecture
designed with embedded systems deployment in mind. It implements several architectural
design strategies along with its Fire module consisting of squeeze and expand convolu-
tional layers. Finally, ShuffleNet [13] is designed for mobile devices with very limited
computing power. Its units take advantage of the pointwise group convolution with the
channel shuffle operation for efficiency in computations.

The final aspect of CNN acceleration on the edge is the employment of optimization
methods on an already defined CNN model architecture in order to reduce its compu-
tational complexity without significantly sacrificing its performance. One of the most
notable optimization approaches is data quantization. The approach of data quantization
reduces the precision of the data type used to represent the weights and activations of the
model. By reducing the bit-width of the weights and activations, the memory require-
ments can be reduced and the hardware for the computations can be simplified resulting
in faster inference speed and lower power consumption. Quantization of 32-bit floating-
point weights to 8-bit integer ones with small accuracy losses is quite common while bina-
rization is the most extreme form of quantization. An additional optimization approach is
network pruning in order to reduce the number of memory accesses and operations. With
weight pruning, weights which are identified to contribute very little to the final result are
eliminated from the model. Alternatively, even larger scale pruning can be employed for
entire filters or layers.
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1.3 Thesis Contributions and Organization

The current doctoral thesis covers all three of the aspects described in the previous subsec-
tion. In particular, it focuses on several challenges regarding the optimization of CNNs
towards their edge deployment as well as challenges in the field of CNN accelerator ar-
chitectures design. The first challenge is to develop image pre-processing methods which
can improve the accuracy of the CNNs results by introducing minimal computational and
resources overhead. The second challenge is to design lightweight CNN model architec-
tures in order to match the limited computational capabilities and resources of edge and
on-board accelerators. The third challenge is to efficiently take advantage of the resources
of CNN hardware accelerators in order to result in real-time processing capabilities for the
target, deep learning-based, computer vision tasks. The fourth challenge is to design inter-
faces for embedded CNN accelerators in order to support high-throughput data transfers.

Based on the aforementioned challenges, the current thesis makes the following dis-
tinct contributions to each one of them:

1. The thesis proposes a novel image processing method, based on the accurate sun
localization in the image, to improve the performance of image regression CNN
models for the application of irradiance estimation and forecasting. It conducts a
study on four different deep learning models which showcases the effectiveness of
the proposed method that improves the accuracy of the irradiance values that the
CNNmodels produce in all cases and by up to 13.75% for the MobileNetV2 model.

2. The thesis studies and designs a novel CNN model architecture to provide an im-
proved trade-off between CNNmodel size and performance on the task of on-board
semantic segmentation for cloud detection. The proposed model architecture is a
lightweight variant of the U-Net model and its significance lies in the fact that it
achieves competitive performance with reduced model size and number of opera-
tions when compared to the state-of-the-art.

3. The thesis studies the porting process of CNN models to an edge-oriented FPGA,
using the Xilinx Vitis AI framework, to result in efficient acceleration of the CNNs
in edge and on-board payload data processing applications. During the porting pro-
cess, several data quantization solutions are explored and a distinct acceleration ap-
proach is showcased for accelerating different processes of a single task on the het-
erogeneous resources of the FPGA. The resulting accelerator showcases real-time
processing rates for the applications of image regression for irradiance estimation
and semantic segmentation for on-board cloud detection.

4. The thesis designs and develops, inVHSICHardwareDescription Language (VHDL),
an interfacing system for image transfers between an FPGA and the Intel Myriad
2 VPU, to enable the next generation of on-board payload data processing archi-
tectures. The interfacing system is designed to be high-throughput and is shown to
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achieve up to 2.4 Gbps duplex bit-rate on the extensive test campaign performed.
The interfacing system also implements a fault-tolerance mechanism in order to
support the fault mitigation strategy of the entire processing system.

The current thesis is organized in seven chapters. Apart from the current introduc-
tory chapter, Chapter 2 presents and discusses related works from the literature for the four
distinct challenges that the thesis makes contributions on. In Chapter 3, the thesis elabo-
rates on the proposed image processing method for the application of irradiance estimation
and forecasting. The chapter presents results from the evaluation of the proposed method
on four popular CNN models and showcases its effectiveness. Chapter 4 introduces the
proposed lightweight CNNmodel for binary semantic segmentation for cloud detection in
satellite imagery. The proposed CNNmodel is evaluated on a well-known test dataset and
the achieved results are compared to the state-of-the-art, highlighting the corresponding
improvements. In Chapter 5 the development methodology for porting CNN models to
an FPGA, based on the Xilinx Vitis AI framework, as well as the acceleration approach is
introduced. The evaluation results regarding both the quantization as well as the acceler-
ation of models are presented and discussed. Chapter 6 provides an in-depth explanation
of the design details of the high-throughput and fault-tolerant interfacing system between
the FPGA and the Myriad 2 VPU. Moreover, the steps and corresponding results of the
testing campaign are presented in detail. Finally, Chapter 7 sums up the current doctoral
thesis and outlines potential directions for future research.
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Chapter 2

Related Work

The current thesis addresses different challenges regarding CNN models optimization
techniques and CNN accelerators design techniques towards deploying CNNs to different
edge computing applications. The following subsections present related results in the lit-
erature organized based on the according deep learning challenges and applications that
each chapter of the thesis focuses on. In particular, Section 2.1 discusses the related results
in the literature regarding image processing methods and image regression deep learn-
ing models which target the application of irradiance estimation and forecasting. Then,
Section 2.2 presents related works in the field of lightweight models for semantic seg-
mentation of images in the context of cloud detection and towards the implementation of
the models in SoC accelerators for on-board payload data processing systems. In Section
2.3, notable related works from the literature, with respect to end-to-end deep learning
frameworks for CNN accelerator architectures targeting FPGAs are highlighted. Finally,
Section 2.4 presents the current state-of-the-art in heterogeneous and mixed-criticality on-
board payload data processing architectures, which target deep learning-based computer
vision applications on-board, and how fault-tolerance at several levels of the architecture
is implemented.

2.1 Image Processing& ImageRegression for Irradiance Fore-
casting

Image processing methods towards irradiance forecasting can be applied on satellite im-
agery [14, 15, 16]. However, images obtained from fisheye lens (180◦ field of view) Sky
Imagers (SIs) local to the Photovoltaic (PV) parks can provide increased spatial and tem-
poral resolution. This fact can favor the precise irradiance forecasting for specific areas
such as PV parks and for very short-term forecast horizons of up to 15 minutes.
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Several works in the literature propose image processing methods to extract informa-
tion regarding cloud coverage from sky images for irradiance forecasting [17, 18, 19, 20].
The authors of [17] used ground-based sky images statistical features such as the Red Blue
Ratio (RBR) and Red Blue Difference (RBD) for cloud cover calculation. The authors also
performed cloud cover forecasting using machine learning approaches such as Support
Vector Regression (SVR) and Artificial Neural Network (ANNs). In [18] the authors in-
troduced the Hybrid Thresholding Algorithm (HYTA) for cloud detection, which utilizes
Normalized Red Blue Ratio (NRBR) image metrics and adaptive thresholding methods.
The authors in [19] proposed a method for forecasting irradiance using the cloud cover in-
dex. They used the RBR to calculate the cloud cover index, a Long Short-Term Memory
(LSTM)model for forecasting the future cloud cover index and a numerical solar radiation
model for calculating future irradiance. The work of [20] used image processing methods
to identify the cloud coverage and combined it with the clear sky index and LSTMmodels
to perform irradiance forecasting. The current thesis differentiates to the above results, as
it proposes an image processing method that precedes the corresponding CNN processing
and provides information to CNNs regarding the position of the sun in the image instead
of the cloud coverage features.

Regarding sun localization in sky images, different image processing approaches are
reported in the literature [21, 22, 23]. In [21] the authors introduced a sun localization
algorithm based on pixel values and a masking algorithm for background removal based
on edge detection. Numerical NRBR values were generated from the processed sky im-
ages and these values were fed to a Multilayer Perceptron (MLP) network for irradiance
forecasting. The work of [22] implemented and compared three different approaches for
the identification of the sun position in sky images targeting nowcasting applications. The
machine learning-based approach was shown to overcome the ones that are based on so-
lar coordinates calculation and traditional image processing. The sun tracking algorithm
introduced in [23] used image pixel values to identify the position of the sun when it is
visible and an interpolation method when it is not. While the aforementioned works per-
formed sun localization based on pixel values, the method which is proposed in the current
thesis utilizes the solar angles and the mapping function of the fisheye lens to accurately
calculate the position of the sun in the image regardless of any sky image effects such as
clouds, high-intensity glares and background objects.

The reported results that are the most closely related to the current work are the ones
which perform sky image regression using deep learning to produce irradiance values
[24, 25, 26, 27, 28]. The work in [24] provided an in-depth comparison of deep learning
model types for short-term irradiance forecasting from sky images. The four model types,
namely CNN, CNN plus LSTM, 3D-CNN and Convolutional LSTM (ConvLSTM) were
all shown to achieve around 20% forecast skill on the 10 minutes ahead prediction. The
authors in [25] used the ResNet CNNmodel for performing irradiance regression and fore-
casting tasks. For forecasting, by stacking different RGB channels of past images on the
input of the model they could achieve up to 18% forecast skill for the 10 minutes horizon.
In [26] the authors proposed replacing costly irradiance measurement instruments, e.g.,
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pyranometers with a CNN-based image regression model to produce irradiance values.
They particularly focused on cloudy days that have the most sudden irradiance deviations
and thus show the feasibility of their approach. The work in [27] investigated the per-
formance of CNN and LSTM models on image regression for irradiance mapping. Apart
from the deterministic methods it also applied probabilistic ones to statistically evaluate
the performance of the models. The authors of [28] performed irradiance nowcasting
from sky images by enhancing a traditional CNN with attention modules to improve its
performance. It is worth noting that, all of the above works utilized datasets with a rela-
tively limited number of samples of up to a few tenths of thousands. In contrast, the work
performed in the current thesis utilizes the entire Folsom, CA open-source dataset which
contains three consecutive years of data with more than 700,000 image samples. This
allows to extract the evaluation results of the CNN models from an extensive test dataset
of one whole year that includes indicative samples of all sky image effects. By examin-
ing the performance on individual months we quantify how the distributions of sky image
phenomena affect the irradiance forecasting problem.

2.2 Semantic Segmentation for On-Board Cloud Detection

Several works in the literature focus on lightweight CNNmodels for on-board payload data
processing tasks [29, 30, 31]. The authors of [29] proposed a series of increasingly smaller
semantic segmentation models, based on the original U-Net model, for cloud extraction
in RGB remote sensing images. The sizes of their models varied from 51K parameters to
only 273 and offered attractive trade-offs regarding semantic segmentation performance
and memory footprint. The most compact of the models was implemented on an Intel
Altera SoC FPGA used in space missions. In the work of [30], the Refined U-Net Lite
is proposed which aims at identifying edge-precise cloud regions from satellite imagery
with reduced number of parameters. The Refined U-Net model achieves improved perfor-
mance metrics compared to the the original U-Net with but with a higher execution time.
The authors provide the Refined U-Net as an open-source implementation. Similarly, the
authors of [31] introduce a lightweight U-Net for cloud detection of visible and thermal in-
frared remote sensing images. The proposed model achieved higher performance metrics
than the original U-Net with a lower execution time for the inference of a single image on
a CPU. The current thesis differs from the aforementioned works as it proposes a U-Net
variant with limited computational cost and memory footprint which combines a large va-
riety of CNN techniques such as depthwise separable convolutions, dilated convolutions
and residual blocks in order to result in competitive semantic segmentation performance.
Additionally, in the current thesis, the proposed U-Net variant model is ported and accel-
erated on an edge-oriented FPGA suitable for space applications.
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2.3 Deep Learning Accelerator Frameworks for FPGAs

The literature contains several reports of frameworks for generating FPGA-based accel-
erators for CNNs. These frameworks accept a high-level CNN model description and
generate a hardware architecture on the target FPGA for performing the computations of
the model. The frameworks vary in terms of their key characteristics which include the
interfacing with other high-level frameworks for accepting model descriptions, the gen-
erated hardware architectures, the supported CNN operations and the achieved latency
among others.

One of the most important key characteristics of the frameworks for deploying CNNs
to FPGAs, is the type of underlying hardware architecture that they generate. The types
of architectures can be divided in two main categories, streaming architectures and sin-
gle computation engine architectures. In streaming architectures, each layer of the CNN
model is mapped to a distinct hardware block. The hardware blocks which are respon-
sible for consecutive layers are highly pipelined in order to allow concurrent execution
of the operations of multiple layers when possible. A notable example of a streaming ar-
chitecture framework is the end-to-end fpgaConvNet [32, 33] framework. FpgaConvNet
accepts as inputs trained CNN model descriptions from well-known frameworks, such as
Caffe, together with the specifications of the target FPGA and utilizes Vivado HLS in or-
der to generate a streaming architecture. The streaming architecture can be optimized for
either latency-sensitive or throughput-sensitive applications and can also be re-configured
during runtime in order to execute different subgraphs of a single CNN. Another notable
end-to-end framework is the FINN framework [34, 35, 36]. Similarly to fpgaConvNet, it
accepts model descriptions from PyTorch and Brevitas and generates High-Level Synthe-
sis (HLS) blocks for individual layers of a CNN and then stitches them together to form the
streaming hardware architecture. A key difference from other frameworks is that FINN
particularly focuses on heavily quantized (up to 4-bit representations) and even binarized
CNNs for which the computational blocks for operations such as convolution and pooling
significantly differ from the conventional ones. In contrast to the above two frameworks,
the current thesis opts for the use of the Xilinx Vitis AI framework which is based on a
single computation engine hardware architecture. This approach results in flexibility ad-
vantages since an FPGA has to be programmed only once but can execute a wide variety
of CNNs by utilizing executable instructions.

An alternative approach that many other frameworks follow is the generation of single
computation engine hardware architectures. In this design approach, a unified architec-
tural template can be configured based on the resources utilization requirements or the
support of specific CNN operations and generate a single processing architecture which
can support the operations of a variety of CNNs by means of executable instructions. An
example of such a framework is Angel-Eye [37]. The single computation engine of Angel-
Eye is based on an array of processing elements and an on-chip buffer which are controlled
by a controller module responsible for decoding instructions received from the CPU of the
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SoC FPGA which Angel-Eye targets. Angel-Eye can receive high-level model descrip-
tions from the Caffe framework which then quantizes automatically in a dynamic way for
the execution of each layer but for a pre-defined wordlength for the entire CNN model.
DNNWeaver [38] follows an approach very similar to Angel-Eye where the computational
engine is comprised by an array of processing units each one containing a datapath of more
low-level processing elements. A key difference from Angel-Eye, is that DNNWeaver
can be optimized based on the target CNNmodel description, provided by Caffe, and then
only constrained by the FPGA resources utilization target. In terms of arithmetic preci-
sion, DNNWeaver supports both floating-point and fixed-point with dynamic number of
fractional part bits as described by dedicated parts of the executable instructions. The Vitis
AI single computation engine framework that the current thesis opts for, differs from the
above frameworks by allowing the developer to provide model descriptions from a wider
variety of more up-to-date frameworks such as TensorFlow 2.0 and PyTorch. Regarding
the arithmetic precision, Vitis AI supports 8-bit fixed-point representations of weights and
activations only, with automatically determined integer and fractional parts number of bits
per layer. Additionally, it offers several different quantization solutions, each one tailored
to the corresponding high-level framework for which the model description is provided, in
order to reduce the effects of the quantization to the accuracy of the CNN model as much
as possible.

2.4 Heterogeneous and Fault-Tolerant On-Board PayloadData
Processing Architectures

Regarding heterogeneous on-board payload data processing architectures, the literature
includes a number of related works [39, 40, 41]. The authors in [39] propose an avionics
architecture which combines the Commercial Off-The-Shelf (COTS) SoC Myriad 2 for
accelerating digital signal processing and a space-grade FPGA to ensure high dependabil-
ity. Additionally to the architecture, the authors proposed a methodology and framework
for the Myriad 2 SoC in order to enable advanced parallel programming which takes ad-
vantage of the underlying SoC hardware. The evaluation is performed on the task of
accelerating pose tracking on the Myriad 2. In [40] introduce an on-board computing
architecture with the Microsemi Smart Fusion 2 SoC FPGA serving as the primary con-
trol node of the system. The SoC FPGA is integrated with a GPU-based accelerator, the
Nvidia Tegra X2/X2i, for computationally demanding tasks. The authors also address
thermal concerns and explore radiation mitigation techniques including error correction
code (ECC) memory, software mitigation techniques and material shielding. The work of
[41] presents a heterogeneous computer solution called SpaceCloud iX5100. The solution
includes an AMD accelerated processing unit (APU) SoC based on a GPU + CPU combi-
nation, paired with a Microsemi SmartFusion2 SoC FPGA for interfacing with on-board
instruments. The authors also outline the possibility of including additional accelerators
such as the Myriad 2 VPU. In contrast to the aforementioned works, the current thesis
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focuses on the design of a high-throughput interface between an FPGA and the Myriad 2
VPU in the context of an on-board architecture which features the GR716 microcontroller,
a Xilinx Kintex Ultrascale FPGA and three distinct Myriad 2 VPUs for image processing
and deep learning tasks.

When it comes to the fault-tolerance aspect of the heterogeneous on-board payload
data processing architectures, related works in the literature combine fault-mitigation tech-
niques at different levels of these architectures [42, 43, 44]. In [42], the High-Performance
Compute Board (HPCB) prototype platform is introducedwhich implements fault-tolerance
at platform-level. The platform includes threeMyriad 2 VPU accelerators which can oper-
ate in triple-modular redundancy mode. Moreover, a fault-tolerant supervisor, the GR716
microcontroller, is included which can perform voting on the processing results of the
three Myriad 2 VPUs and monitor their status over a heartbeat signal. In [43], the au-
thors addressed the challenges associated with mixed criticality applications executed on
the Xilinx Zynq Ultrascale+ MPSoC. To do so they proposed an approach based on three
distinct design pillars which include secure and non-secure chip partitions isolation, se-
cure data exchange between partitions and an external supervisor, the rad-hard PolarFire
FPGA, for recovery from critical faults. The authors of [44] introduce system-level hard-
ening techniques which are explored in the context of the development of the Leopard
data processing unit. The techniques include redundancy in the processing nodes, storage
of critical software images in triple modular redundant memories, over-current protec-
tions and more. While the aforementioned works explore system-level fault-tolerance,
the current thesis designs and implements in hardware, a fault-tolerance technique, based
on CRC, for protecting payload data transfers between an FPGA and the Myriad 2 VPU
which serves as the deep learning and image processing accelerator of the on-board com-
puting system.

22



Chapter 3

Image Regression for Irradiance
Estimation and Forecasting

The current chapter focuses on the computer vision application of solar irradiance esti-
mation and forecasting, based on deep learning and CNNs. In the context of the thesis,
deep learning image regression CNNs are utilized for irradiance estimation and forecast-
ing on the edge and particularly as close to the camera sensor as possible by means of
an embedded CNN accelerator. This edge computing application imposes limits on both
the memory footprint and computational cost of the image regression CNNs as well as the
power consumption of the embedded processing device. Still, it requires the high accuracy
of the irradiance values produced. In order to address the above challenges, the current
thesis proposes an image processing method tailored specifically to deep learning-based
image regression for irradiance estimation and forecasting. The proposed method is based
on sun localization in the image and when it is applied to the images before these are being
processed by the CNNs, the results show that it can consistently improve the accuracy of
the irradiance values that the CNNs produce by introducing only minimal computational
overhead to the CNN models.

The remainder of this chapter is structured as follows. First, Section 3.1 provides the
necessary background about deep learning-based image regression for irradiance estima-
tion and forecasting for Photovoltaic (PV) applications. Then, in Section 3.2 the proposed
methodology is described in detail, including both the image dataset analysis as well as
the proposed image processing method. Finally, Section 3.3 presents and discusses the
results from the extensive evaluation of the proposed image processing method when it is
applied on several different image regression CNN models for both irradiance estimation
and forecasting.
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3.1 Background

The ongoing transition from traditional coal and fossil fuels to renewable energy sources,
has led to solar Photovoltaic (PV) parks having an increased share in the energy produc-
tion mix of many countries. In order to serve the needs of this energy transition, the PV
production plants have to be integrated in the utility electrical grids or even in mini-grid
and off-grid systems such as in autonomous islands. Moreover, the development of tech-
nologies in the fields of Artificial Intelligence (AI), computer vision and edge computing,
combined with the smart grid concept [45] promotes on-site data intelligence in PV parks.
In this direction, AI-enabled smart PV parks can contribute towards adapting the PV power
production to the dynamic requirements of the grid [46].

Currently, the attempts to efficiently and reliably integrate PV production into the en-
ergymix come up against the challenge of controlling its high intermittency and variability
[47]. A source of this variability is the short-term meteorological effects and especially
the dynamic changes of the cloud coverage over the PV facilities. The cloud features such
as their thickness, their distribution in the sky and their position with regards to the sun,
affect significantly the incoming solar irradiance, which is the most important factor for
the PV power generation. The ability to forecast the short-term irradiance locally for the
PV facility plays a key role in controlling the intermittence of the PV generated electricity
[48]. However, the forecasting methods that are based solely on historical irradiance data
cannot reliably model the short-term effects of cloud flows. On the other hand, the im-
age analysis techniques and the computer vision-based methods can provide information
about the state of the clouds in the sky with a high spatial resolution when the images are
extracted from Sky Imagers (SIs) located closely to the PV panels [49]. Furthermore, the
continuous advances in the field of machine learning and particularly deep learning and
CNNs have led the modern computer vision tasks and applications to employ these deep
learning and CNN techniques. The combination of the CNN-based sky image processing
with the irradiance data of high temporal frequency (at least 1 minute) constitutes a very
promising direction towards short-term (up to 15 minutes) forecasting, also called now-
casting, of irradiance [50]. The current availability of high quality and publicly accessible
image datasets [51, 52, 53] is also in favor of the image-based deep learning approaches
for irradiance forecasting. Finally, deep learning-based image processing is following the
trend to move from the cloud servers towards the edge devices in order to enable smart
applications and the Internet of Things (IoT) [54]. Edge devices can have resources and
energy constraints and this has led to the development of lightweight CNN models such
as MobileNetV2 [11] and SqueezeNet [12].

Regarding the formulation of the image regression for irradiance estimation problem
it can be described as follows. Given a dataset that consists of pairs of a sky imageXt and
a corresponding irradiance measurement It at time t, an image regression CNNmodel can
be trained to produce a single value that represents an estimation of the irradiance Ît when
provided with the sky image Xt. With the above formulation, the image regression for
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irradiance estimation can be expanded to image regression for irradiance forecasting in
two ways. First, assuming an external module that can predict the future sky image X̂t+H
after time H in a sequence [55, 56, 57], the image regression CNN model can then pro-
duce the corresponding estimation of the irradiance Ît+H from this image. This approach
is illustrated in Fig. 3.1 Alternatively, an image regression CNN model can be trained on
sequences of images where the corresponding irradiance values have been shifted back-
wards in time by H. This way, when the model is provided with a sky image Xt at time
t it will produce the irradiance forecast Ît+H. This alternative approach is shown in Fig.
3.2.

Figure 3.1: Irradiance forecasting using an image regression CNNwith an external module
for future sky image prediction.

Figure 3.2: Irradiance forecasting using an image regression CNN with irradiance values
shifted backwards in time byH.

The objective of the tasks described above is to minimize the error between the actual
It values and the Ît values produced by a CNN model after processing an image. For
the evaluation of such models it is common to use the error metrics of Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE). In order to be able to compare the
performance of a model on different subsets that can have largely different distributions
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of irradiance values (e.g., a cloudy winter month vs. a clear sky summer one), we put
emphasis on the Normalized Root Mean Square Error (nRMSE) which we calculate using
the mean irradiance value, Ī of the set as

nRMSE =
RMSE

Ī
. (3.1)

Regarding forecasting, the Persistence Model (PM) serves as a reference forecasting
model in order to benchmark other CNN models against it. It assumes that the predicted
future irradiance value Ît+H remains unchanged from the current irradiance value It into
the forecast horizonH and can be expressed as

Ît+H = It. (3.2)

In order to measure the improvement of any model against the persistence model, the
Forecast Skill (FS) metric is introduced. It is common for the solar irradiance forecast-
ing application to use the root mean square error of the persistence model, denoted as
RMSEP , and of the benchmarked model, RMSEM , for the FS calculation as

FS = 1− RMSEM

RMSEP

. (3.3)

3.2 Methodology

In the current section, the proposed methodology for the deep learning application of im-
age regression for solar irradiance estimation and short-term forecasting is explained in
detail. First, in Subsection 3.2.1 the dataset used for this application is described and an-
alyzed, contributing the findings on which are the sky image features which can affect
the performance of image regression CNN models. Then, Subsection 3.2.2 introduces
the SunMask generation image processing method that the current thesis proposes. The
proposed method aims at improving the accuracy of the irradiance results that the image
regression CNNs produce, when it is applied to images before the corresponding CNN
processing.

3.2.1 Folsom, CA Dataset Description & Analysis

For the development and evaluation of the proposed image processing method and CNN
models, the current thesis utilizes the Folsom, CA dataset introduced in the work of [58]
and publicly available in [52]. The dataset contains high-resolution 1536 × 1536 sky
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images of three consecutive years, 2014, 2015 and 2016 taken at the Folsom, CA, USA
site (38.642◦, −121.148◦). The images come with corresponding Global Horizontal Ir-
radiance, Direct Normal Irradiance and Diffuse Horizontal Irradiance (GHI, DNI, DHI)
measurements and have a high temporal resolution of 1 minute, making the dataset suit-
able for very short-term irradiance forecasting. The GHI describes the total irradiance
from the sun on a horizontal surface including both the DNI and DHI terms and thus we
focus on GHI for irradiance forecasting. So, the term irradiance will refer to the GHI for
the remaining sections of this thesis. The first step towards adjusting the dataset to our
application is to perform data cleaning. In particular, several images are missing corre-
sponding irradiance measurements and vice versa. For this purpose, the first step taken
is the rounding of the images timestamps to the closest integer minute value. Then, we
match the images to the irradiance timestamps and formulate pairs that include both an
image and a valid irradiance measurement. During the latter step we also remove all the
samples that correspond to very low solar elevation values during the night. At this point
we can perform the dataset analysis.

Figure 3.3: Daily GHI plots for the days (a) 7/6/2014 (b) 3/11/2014 and (c) 24/12/2014.

In order to distinguish the image features that affect the irradiance measurements, we
first perform a daily analysis. A single day demonstrates the lowest degree of periodicity
in sky image events, that is, the daily change of the sun’s elevation angle. To perform the
analysis, we transform the original dataset timestamps from the UTC+0 timezone to the
Los Angeles timezone (UTC-7, UTC-8) that corresponds to the location of the sky imager
in order to correctly identify the day and night periods. Fig. 3.3 presents daily GHI plots
for three indicative days while in Fig. 3.4, Fig. 3.5 and Fig. 3.6 we show the sky images
which correspond to the markers of each daily GHI plot. From the first day that includes
only clear sky images, we observe that the position of the sun in the image and its distance
from the image center is the feature that is directly correlated with the GHI measurement.
The second day which features both clear sky and complex cloud effects in the images,
indicates that when clouds obstruct the sun there can be fluctuations and sudden drops in
the measured irradiance. Moreover, due to the larger distance of the sun from the center of
the image during noon (lower elevation angle) the peak irradiance measurement is lower
when compared to the first day. Finally, in the third day that is characterized by images
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Figure 3.4: The sky images that correspond to the markers on the daily irradiance plot,
from left to right and top to bottom, for the day 7/6/2014.
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Figure 3.5: The sky images that correspond to the markers on the daily irradiance plot,
from left to right and top to bottom, for the day 3/11/2014.
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Figure 3.6: The sky images that correspond to the markers on the daily irradiance plot,
from left to right and top to bottom, for the day 24/12/2014.
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with only overcast sky, the measured GHI maintains consistent and very low values.

Figure 3.7: Daily GHI plot calendars of June 2014.

Based on the observations of the daily analysis, we expect that in the cases with
complex cloud effects and overcast sky, the CNN models that perform image regression
will produce a less accurate irradiance value, which will result in a larger nRMSE. The
reason for this, is the lack of information regarding the position of the sun in the image
which is the main image feature that the CNNs can model in order to produce an irradiance
value. We note here that, clear days consistently occur in summer months while days with
complex cloud effects occur during the rest of the year. We highlight this in Fig. 3.7
and Fig. 3.8 where we show all the daily GHI plots for June and March correspondingly,
2014 arranged in a calendar. Thus, we can quantify the effects of cloud phenomena on the
performance of CNN models by evaluating them on different months that have different
distributions of cloudy vs. clear sky days.

3.2.2 The SunMask Generation Image Processing Method

The current thesis proposes an image processing method to support the CNNs in providing
more accurate irradiance estimations from sky images. The method is based on sun local-
ization in the image. The intuition behind it is that the CNNs can model the position of
the sun in the image and the cloud effects in the sun disk area in order to produce an irra-
diance value. The proposed method consists of locating the sun’s center in the image and
generating the SunMask, a circular mask around the center of the sun which we append
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Figure 3.8: Daily GHI plot calendars of March 2014.

as an additional 4th channel to the original 3-channel RGB image. This method provides
information to the CNN models about the position of the sun’s center in the image that is
particularly useful in images where the sun is covered by clouds. The steps of our image
processing method are summarized in Fig. 3.9 and are explained in detail in the following
paragraphs.

Figure 3.9: Summary of the steps of the SunMask generation image processing method.

The first step of the method, is to calculate the center of the sun disk in the image.
Approaches that are based on the RGBvalues of the image often fail to identify the position
of the sun when it is hidden by clouds. Furthermore, high intensity background objects
and glare effects can also be erroneously identified as the sun. Due to the above, we opt
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Figure 3.10: Overview of the sun localization approach on a sky image produced by fish-
eye lens.

for an approach based on the solar azimuth and zenith angles, ϕs and θs. The summary
of our approach for sun localization is illustrated in Fig. 3.10. Given the timestamp of an
image and the latitude, longitude coordinates we calculate ϕs and θs using pvlib-python
[59]. Because of the fisheye distortion of the lens of the camera, simply projecting the
solar coordinates on a flat surface does not result in accurate identification of the sun’s
center in the image. To address this, we use the mapping function of the lens to calculate
the distance of the sun from the center of the image R, as a function of the focal length of
the lens f , and the angle from the optical axis Φ. The mapping functions vary based on
the type of projection (stereographic, equidistant, etc.) of the lens and this information, as
well as the focal length, is not available for the camera of the Folsom, CA dataset used.
Through trial and error, we identify that the stereographic projection with a focal length
of f = 0.48 provides the most accurate results. Thus, we use the mapping function of the
stereographic projection

R = 2f tan
Φ

2
(3.4)

where we replace Φ with the solar zenith angle θs. After calculating the distance of the
sun from the center of the image, we calculate the cartesian coordinates xc, yc using the
solar azimuth angle ϕs with

xc = R sin(ϕs), (3.5)

yc = R cos(ϕs). (3.6)

In our case, we adjust ϕs with an angular correction of 165◦ to compensate for the ori-
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entation of the camera. Finally, we transform the cartesian coordinates xc, yc to pixel
coordinates xp, yp in the image by multiplying them with the image radius which is half
the width of the image.

After calculating the position of the sun’s center in the image, the last step is to gener-
ate the SunMask and append it as a 4th channel to the RGB image. The SunMask consists
of a mask around the center of the sun with the pixel value 255 while the rest of the pixels
have the value 0. In Fig. 3.11 we showcase the results of the proposed image processing
method for indicative images where we color the SunMask with orange. We observe that
the proposed sun localization method can accurately identify the position of the sun in all
the images which vary in terms of solar azimuth angle, zenith angle and cloud coverage
of the sun.

Figure 3.11: The SunMask, in orange color for visualization purposes, for a few selected
image samples.

Based on the above, we apply the two steps of our image processing method to the
entire Folsom, CA dataset and we provide 4-channel images during training and testing
of image regression CNN models for irradiance estimation. When the image regression
CNNs are configured to perform irradiance forecasting standalone, by being trained on
backwards shifted GHI data, we perform one additional image processing step. Instead
of providing only one 4-channel image (RGB & SunMask), denoted as Xt, we stack two
additional 4-channel images, Xt−H and Xt−2H which correspond to 2 steps backwards in
the forecast horizon H. As a result, the CNNs now operate on an input of 12 channels in
total. For example, if the image regression CNN is trained to perform forecasting 5 min-
utes ahead, we provide as input the imagesXt,Xt−5 andXt−10 and their corresponding
SunMasks. This way, the CNN model has additional information regarding the past state
of the sky.

3.3 Evaluation & Results

In the current section, the thesis presents the evaluation results of the studied CNN mod-
els and the proposed SunMask generation image processing method on the task of im-
age regression for irradiance estimation and forecasting. We study the performance of
the VGG11 [3] and ResNet-50 [4] models for which similar comparative studies have
been conducted on various applications [60, 25]. We also study the performance of two
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CNNmodels which target edge devices with limited resources, the MobileNetV2 [11] and
SqueezeNet [12] models. With this selection of models we cover a wide range of model
sizes and number of operations as shown in Table 3.1. The models and all training and
evaluation processes are implemented in Python using PyTorch on a Linux workstation
with the Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz and the NVIDIA GeForce RTX
3080 GPU.

Table 3.1: Model size and number of operations for the four models of the study.

Model # Parameters # OPs (Mult-Adds)

VGG11 128.77 Mil. 2.57G
ResNet-50 23.51 Mil. 1.33G

MobileNetV2 2.23 Mil. 0.10G
SqueezeNet 0.74 Mil. 0.23G

First, we train the four models of the study to perform irradiance estimation from
sky images. The training dataset includes the years 2015 and 2016 (522320 samples)
while the test dataset is the entire 2014 (240944 samples). During training, we use the
Mean Square Error (MSE) loss function which is suitable for image regression tasks. The
hyperparameters are tuned based on the RMSE result of the trained models on the entire
test dataset. The tuning is performed for the ResNet-50model and the hyperparameters are
kept the same for all the training procedures in the work in order to keep the experimental
environment consistent. All the models are trained for 10 epochs which were identified
to be enough since all models showcased overfitting after only a few epochs. This can
be attributed to the high number of training steps during each epoch due to the large size
of the training dataset. Regarding the batch size and the image size these were limited
to 16 and 128 × 128 correspondingly due to GPU memory limitations and training time
required. Regarding the learning rate, it is initialized to 10−3 and it is automatically tuned
by a scheduler that reduces the learning rate by a factor of 0.75 if the validation loss has
plateaued for 5 epochs.

The training dataset is split to the training subset and validation subset for the eval-
uation of the models during training. Instead of a random split, we select all the samples
of one random day of each consecutive month of the training dataset and add them to the
validation subset until we reach the desired training-validation split ratio, e.g., 80-20%.
This way, the validation subset includes indicative samples of the entire dataset in terms
of the yearly periodical phenomena in sky images. Furthermore, we avoid including in
the validation subset samples that are only 1 minute apart from almost identical ones in
the training subset. We evaluate the performance of the models after every training epoch
and select the saved model with the minimum validation loss to avoid overfit.

Table 3.2, presents the performance evaluation results of the four different models
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on the original dataset as well as on the dataset with the images enhanced with the Sun-
Mask channel. The ResNet-50 model appears to result in the lowest error metrics with an
RMSE of 64.83W/m2. When the proposed SunMask generation method in introduced,
we observe that it consistently improves the performance of all models. TheMobileNetV2
model is favored most by our SunMask generation method that decreases its RMSE from
75.95W/m2 to 65.51W/m2, a 13.75% improvement. When it comes to the number of
operations overhead that the additional SunMask channel introduces to the CNNs it is
evaluated and determined to be only minimal. In particular, when compared to the num-
ber of operations of Table 3.1, there is a 0.4% increase for the VGG11 model, a 1.5%
increase for the ResNet-50 model, a 1.2% increase for the MobileNetV2 model and a
7.1% increase for the SqueezeNet model.

Table 3.2: Evaluation and comparison of the four models of the study. SM indicates that
the models are trained and evaluated with 4-channel images which include the SunMask.

Model RMSE (W/m2) nRMSE (%) MAE (W/m2)

VGG11 65.25 15.88 38.31
VGG11SM 59.03 14.36 32.93

ResNet-50 64.83 15.77 37.23
ResNet-50SM 60.31 14.67 36.02

MobileNetV2 75.95 18.48 47.74
MobileNetV2SM 65.51 15.94 39.53

SqueezeNet 70.18 17.08 44.65
SqueezeNetSM 62.93 15.31 38.56
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Figure 3.12: Monthly MAE barchart for MobileNetV2, with and without the SunMask.
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Figure 3.13: Monthly RMSE barchart for MobileNetV2, with and without the SunMask.
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Figure 3.14: Monthly nRMSE barchart for MobileNetV2, with and without the SunMask.
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In order to quantify the effect that the SunMask generation method has on differ-
ent distributions of sky image phenomena, we evaluate the MobileNetV2 model, which
shows the largest improvement with the SunMask, on individual months and we present
the MAE, RMSE and nRMSE results in Fig. 3.12, Fig. 3.13 and Fig. 3.14 respectively.
We note here, that in order to directly compare the performance of the models across dif-
ferent months we focus on the nRMSE metric. The reason for this is that, the distribution
of the sky image features and irradiance values is different for each month. Thus, a month
with a smaller RMSE can correspond to a larger nRMSE and vice versa and this is appar-
ent in many months such as February, May and December. The nRMSE plot indicates,
that in general, the model tends to perform better in months when there are less complex
effects of clouds obstructing the sun in the image such as June and August. Furthermore,
the improvement in the performance due to the SunMask is larger in months with complex
sky image phenomena. In particular, MobileNetV2 shows the largest nRMSE improve-
ment with the SunMask in the months February (4.1%), May (3.9%), March (3.7%), April
(3.7%) and January (3.6%). The current work focuses on the dataset generated at the lo-
cation of Folsom, CA, USA (38.642◦,−121.148◦). However, it would be worth exploring
the performance of image regression CNNs for irradiance estimation and of the proposed
SunMask generation method on more geographic areas. These geographic areas could in-
clude regions with significantly different sky image features distributions such as higher
latitude regions where the sun is close to the horizon. Of course, this would require an
extensive, publicly available and high-quality dataset for the particular area. The avail-
ability of such extensive, annotated and public datasets is currently an open issue in the
field of deep learning-based irradiance forecasting and machine learning in general.

Following the results for irradiance estimation, we select the ResNet-50 model which
was the one with the best performance, to perform standalone irradiance forecasting. For
this purpose, we shift the irradiance values of the dataset backwards in time by the fore-
cast horizonH as explained in Section 3.1. We formulate the dataset in this way for three
different forecast horizons, 5, 10 and 15 minutes ahead. We train the ResNet-50 model
similarly to before, with the simple RGB input and the 12-channel stacked SunMask im-
ages described in Section 3.2.2. The results of the ResNet-50 model on image regression
for irradiance forecasting and the persistence model are shown in Table 3.3. We observe
that the ResNet-50 model achieves a forecast skill which is incremental with regards to
the forecast horizon, having slightly worse forecasting performance than the persistence
model for the 5 minutes ahead forecasting. When ResNet-50 is trained to operate on the
stacked SunMask images that we have proposed, the results show that it achieves consis-
tently improved forecast skill for all forecast horizons. With this method the ResNet-50
model can now surpass the persistence model even in the very short-term forecast horizon
of 5 minutes, adding 8.79% to its forecast skill.
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Table 3.3: Standalone irradiance forecasting results for the ResNet-50 model on 5, 10 and
15 minute horizons. SSM indicates that the input is 3 stacked images of 4 channels each
(RGB & SunMask).

Horizon Model RMSE
(W/m2)

nRMSE (%) FS (%)

Persistence 72.64 17.32 -
5-min Resnet-50 73.18 17.44 -0.75

Resnet-50SSM 66.79 15.93 8.04
Persistence 86.77 20.26 -

10-min Resnet-50 78.06 18.23 10.04
Resnet-50SSM 73.06 17.06 15.80
Persistence 94.52 21.67 -

15-min Resnet-50 80.87 18.54 14.44
Resnet-50SSM 75.78 17.37 19.83
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Chapter 4

Semantic Segmentation for Cloud
Detection

The current chapter focuses on the application of deep learning-based semantic segmenta-
tion for on-board cloud detection in satellite images. Particular focus is placed on binary
semantic segmentation of images generated from on-board sensors with multiple spectral
bands. This kind of application is limited by the power budget of the satellite. Thus, accel-
erators of limited processing capabilities are employed which in turn impose constraints
in the memory footprint and computational cost of the image segmentation CNN mod-
els. At the same time, it is important for the CNNs to maintain satisfactory performance
on the task of cloud detection as images with significant cloud cover could be discarded.
Aiming at contributing a CNN model with an attractive trade-off between computational
requirements and semantic segmentation performance, the current thesis proposes a novel,
lightweight variant of the U-Net semantic segmentation model architecture. The design
and development of the proposedmodel architecture employs several state-of-the-art CNN
techniques and the results show that the proposed model can achieve a competitive trade-
off between performance and model size when compared to other state-of-the-art models
from the literature on the same task and test dataset.

The remainder of this chapter is structured as follows. First, Section 4.1 provides the
background about the application of interest. Then, Section 4.2 elaborates on the proposed
methodology including both the satellite imagery dataset used as well as the details of
the proposed CNN model architecture design. Finally, in Section 4.3 the results from the
evaluation of the proposed CNNmodel architecture are presented and a comparative study
with other lightweight U-Net variants from the literature is conducted.
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4.1 Background

The ongoing advancements of small form factor satellites have raised the interest in Earth
Observation (EO) applications. The corresponding on-board payload data processing and
particularly, image processing tasks show increased computational demands due to the
larger volumes of data generated by the advanced sensors and also, due to the complex-
ity of AI and machine learning algorithms. Among these, the semantic segmentation of
satellite imagery is considered as a classic computer vision task with most solutions based
on CNNs. In particular, cloud related features extracted with CNNs from satellite images
can provide useful information regarding climate, weather and natural disasters [61]. Fur-
thermore, images with increased cloud coverage carry little information about the earth’s
surface and thus can be discarded in order to save on valuable on-board resources such as
storage space, power and downlink bandwidth.

Due to the computationally demanding nature of the CNN models, the designers of
on-board systems focus on more powerful processing platforms than the space-oriented
general-purpose CPUs. Moreover, in order tomatch both the wide variety and resource de-
manding nature of deep learning-based computer vision tasks, they include heterogeneous
SoC embedded architectures as accelerators complementary to general-purpose CPUs.
Such SoC accelerators include VPUs, TPUs and SoC FPGAs. These SoCs offer attrac-
tive processing capabilities and development flexibility at reduced Size, Weight, Power
and Cost (SWaP-C) [62] compared to the CPUs and GPUs available for terrestrial applica-
tions. Given though the limited and heterogeneous resources of these SoCs, the developers
need to focus on compact CNN models for semantic segmentation and the utilization of
diverse techniques for efficiently mapping the models onto the resources of the SoC.

4.2 Methodology

In this section, the proposed methodology for the design of the lightweight semantic seg-
mentation CNN model architecture is presented. First, in Subsection 4.2.1, the dataset
used for the development and evaluation of the model is explained in detail. Then, in
Subsection 4.2.2 the proposed lightweight CNN model architecture is introduced and the
CNN techniques employed for its development are analyzed.

4.2.1 95-Cloud Dataset Description

For the training and the evaluation of models on the task of semantic segmentation, we use
the 95-Cloud dataset [63] which is an extension to the 38-Cloud dataset [64] and is intro-
duced in [65]. 95-Cloud is an extensive and open source dataset for the task of detection
of clouds, which is an important step in many remote sensing applications. Its purpose
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is to help researchers to evaluate their deep learning-based cloud segmentation models.
The dataset comes from data generated by the Landsat 8 satellite which is equipped with
two sensors, the Operational Land Imager (OLI), capable of capturing data in nine spec-
tral bands and the Thermal Infrared Sensor (TIRS), capturing data in two spectral bands.
95-Cloud includes only four spectral bands, corresponding to the Red, Green, Blue and
Near-Infrared.

The dataset contains 95 scenes and theirmanually extracted pixel-level Ground Truths
(GTs) where each scene has a size ∼80 Mpixels. Four selected sample scenes from the 95-
Cloud dataset including the natural color images generated from false color images for
visualization purposes, and the pixel-level ground truth masks, are shown in Fig. 4.1.
Due to the large spatial size of the scenes, each one is divided to non-overlapping patches
of size 384× 384 and corresponding GTs. As a result, the well-defined 95-Cloud training
set consists of 75 scenes which correspond to 34,701 patches while the test set of 20 scenes
includes 9,201 patches.

4.2.2 Semantic Segmentation Model: LD-UNet

CNNs used for semantic segmentation often adopt an encoder-decoder model architecture
In these models, the encoder extracts features from the input images while downsampling
them. Then, the decoder performs upsampling of the extracted features to generate the seg-
mentation masks with the same dimensions as the original image. The U-Net [66] is one
of the most well-known CNNs used for semantic segmentation that adopts the encoder-
decoder model.

The current thesis starts with the baseline U-Net model and sets the following two
objectives. First, to meet the limited processing capabilities, memory resources and power
budget of an on-board processor. Second, to result in state-of-the-art CNN performance
metrics on semantic segmentation benchmarks. Aiming at an effective contribution to
both the aforementioned objectives, this work proposes the Lightweight Dilation UNet
(LD-UNet) model illustrated in Fig. 4.2. LD-UNet is a significantly downsized version
of the baseline U-Net, which targets the reduced computational cost and memory footprint
of the model while it maintains competitive performance on the 95-Cloud test dataset.

The main features of the LD-UNet model are as follows. First, we remove all skip
connections between the encoder and the decoder of the original U-Net. The skip connec-
tions increase the number of input channels to the convolutional layers of the decoder and
thus, introduce both a computational overhead as well as amemory overhead for temporar-
ily storing the encoder output feature maps until it is time to perform the corresponding
decoder operations. Additionally, the skip connections contribute only little to the perfor-
mance of the model due to the limited representational capabilities required for the binary
semantic segmentation problem. Second, we reduce the downsampling and upsampling
stages in the encoder and the decoder of the original U-Net respectively. While U-Net
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Figure 4.1: Three sample scenes from the 95-Cloud dataset with (a), (c), (e) the natural
false color images and (b), (d), (f) the corresponding pixel-level ground truths.
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included four upsampling and downsampling stages we reduce these to only two in LD-
UNet, effectively reducing the number of convolutional layers which results in smaller
model size as well as less number of operations required. Finally, for each stage, the orig-
inal U-Net included a block with two consecutive convolutional layers. The current thesis
proposes the design of the custom Dilation Residual Block that replaces the standard con-
volution blocks in U-Net. The custom Dilation Residual Block is shown in Fig. 4.3. It
employs a number of techniques for reducing the number of operations required and but
at the same time increasing its representational ability, which are explained in detail in the
following paragraph.

3 8 16

32 16

8 1

Dilation Residual Block

Strided Convolution

Bilinear Upsampling

Sigmoid Convolution

Figure 4.2: The LD-UNet model. The numbers below each layer indicate the number of
output feature maps.

TheDilationResidual Block consists of two layers which perform depthwise-separable
convolutions. Depthwise-separable convolutions require significantly less operations for
processing the same number of input and output feature maps when compared to the stan-
dard 2D convolutions. The first depthwise-separable convolution involves a dilated depth-
wise convolution with a 3×3 kernel, a dilation rate of two and a stride of one. The dilated
convolution is employed in order to increase the receptive field of the convolution by ef-
fectively increasing the size of the region of the input feature map which produce a single
point of the output feature map. The second depthwise-separable convolution involves a
depthwise convolution with a 1×1 kernel in order to produce feature maps which have the
same dimensions as the ones produced by the first depthwise-separable convolution layer.
This way the second depthwise-separable convolution serves as the identity shortcut of the
Dilation Residual Block. Finally, the output of both depthwise-separable convolutional
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Figure 4.3: The custom Dilation Residual Block with the two Depthwise-Separable Con-
volutions (DSCs).

layers is added and followed by a ReLU activation layer. Further to the Dilation Residual
Block, we replace the max pooling operations of the original U-Net encoder with strided
convolutions. This technique introduces learnable parameters in the downsampling pro-
cess of the encoder. Regarding the decoder, the transpose convolution operation is re-
placed by a bilinear upsampling layer followed by our custom block. The final layer of
the LD-UNet model architecture is a standard 2D convolution with the sigmoid activation
function.

4.3 Evaluation & Results

The LD-UNet model is trained and evaluated for the task of binary semantic segmentation
on the 95-Cloud dataset which contains 95 scenes. Due to the large spatial size of each
scene, the 95-Cloud dataset is divided to non-overlapping patches of size 384× 384 pix-
els. The training set consists of 34,701 patches extracted from 75 scenes and the test set
consists of 9,201 patches extracted from 20 scenes.

For the LD-UNet, only the three of the spectral bands provided, namely the RGB ones
are used. The input patches are resized from 384 × 384 down to 128 × 128, a decision
that significantly reduces the number of operations by a factor of up to ∼9 per convolution
operation, with little effect on the performance of the model. Due to the orientation of
the 95-Cloud scenes, a large number of patches extracted contain mostly or only zero-
valued (black) pixels. In order to maintain the balance of the training dataset, all patches
with more than 80% zero-valued pixels are eliminated. All patches are pre-processed by
normalizing their pixel values in the [0− 1] range.
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The 80% of the training dataset is utilized as the training set for the LD-UNet model
and the remaining 20% is utilized as the validation set for evaluating its performance
during training. The split between the training and the validation set is performed in a
random way. For the loss function, the Dice loss function is utilized which is suitable for
performing image segmentation tasks on unbalanced datasets such as 95-Cloud. LD-UNet
is trained with a batch size of 24 for 200 epochs with an adjustable learning rate. After
training, the model which corresponds to the epoch with the minimum loss value on the
validation set is selected in order to avoid overfit.

To perform inference on the unknown test scenes, we resize each 384×384 input test
patch to 128 × 128 and feed it to the network. During inference only, the output of the
network is binarized to 0s and 1s using the threshold value 12/255 as in [67]. The output
segmentation mask of each patch of 128×128 pixels is then upsampled to 384×384 using
bilinear upsampling. All the output patches corresponding to a single ground-truth test
scene are stitched together to generate the segmented test scene on which the performance
metrics are calculated.

In order to extract the performance metrics of LD-UNet on the test set, first the confu-
sion matrix of the model is formulated. To do this, first, the number of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) values that the model
produces, compared to the ground truth values, are calculated on the entire test set. Then,
these numbers are normalized to a percentage based on the total number of values in the
test set and the result is illustrated in the normalized confusion matrix of Fig. 4.4. The
confusion matrix validates that the LD-UNet model can achieve satisfactory performance
with very little FPs and FNs. The imbalance between the TPs and TNs can be attributed to
the unbalanced nature of the dataset where there are many more non-cloudy (zero-valued)
pixels that cloudy (one-valued) ones.

Based on the values of the confusion matrix, the performance metrics of LD-UNet
on the test set of 95-Cloud can be calculated. The performance metrics considered in the
current thesis for the evaluation of the model are the Accuracy, the Intersection over Union
(IoU), the Recall and the Precision metrics. They are defined as

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

IoU =
TP

TP + FN + FP
, (4.2)

Recall =
TP

TP + FN
(4.3)

Precision =
TP

TP + FP
(4.4)

After the metrics calculation, the performance results of LD-UNet along with the results
of other state-of-the-art models from the literature when evaluated on the 95-Cloud test
set are shown in Table 4.1.
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Figure 4.4: The normalized confusion matrix of the model on the entire test dataset.

Table 4.1: Model Performance Comparison on 95-Cloud Test Dataset

Model Params. Acc. IoU Rec. Prec.

LD-UNet 5652 94.57 84.47 92.42 90.75
C-UNet++[29] 9129 94.85 83.89 88.48 94.18
C-FCN[29] 1438 93.91 81.47 88.39 91.23
Cloud-Net+[65] 32.9M 97.23 91.57 94.28 96.94

47



We observe that with only 5652 parameters and operating on downsized 128 × 128
patches with three spectral bands (RGB) , LD-UNet maintains competitive performance
against the larger C-UNet++ which is introduced in [29] and operates on four spectral
bands of 384 × 384 patches. LD-UNet outperforms the smaller C-FCN, also of [29], in
almost all presented performance metrics achieving similar precision. Finally, the Cloud-
Net+ model [65] performs better than LD-UNet and supports multiclass segmentation but
at the cost of having 4 orders of magnitude more parameters.
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Chapter 5

Porting CNN Models to the
Programmable Engine of an FPGA

The current chapter of the doctoral thesis focuses on the efficient deployment of CNN
models on an edge-oriented FPGA. Several edge computing applications nowadays rely
on CNN models being executed on accelerator devices which are embedded, or in very
close proximity, to the camera sensors. The deep learning-based image regression for ir-
radiance estimation and forecasting for edge computing Photovoltaic (PV) applications as
well as the semantic segmentation of satellite images for on-board cloud detection pre-
sented in the two previous chapter of the thesis are two such applications. Both of these
applications require quick and end-to-end deployment for rapid prototyping and evalua-
tion of a wide variety of CNN models regarding their performance and execution times
on the edge device. In order to address this challenge, the current thesis adopts a de-
velopment flow which utilizes the state-of-the-art Xilinx Vitis AI framework in order to
result in efficient FPGA-based CNN accelerators for edge applications. The capabilities
of the framework are extensively explored and an acceleration approach is showcased
for accelerating distinct processes of a single task on the heterogeneous resources of the
FPGA. The results validate the adopted development flow and the acceleration approach
by showcasing real-time processing rates for the deep learning applications of the previous
two chapters of the thesis.

The remainder of this chapter is structured as follows. First, Section 5.1 provides
the necessary background about unified frameworks for porting CNNs to FPGAs. Then,
Section 5.2 elaborates on the proposed methodology by analyzing both the development
flow based on the Vitis AI framework as well as the proposed acceleration approach. Fi-
nally, Section 5.3 presents the evaluation of CNNmodels on the edge FPGA, based on the
development flow and the acceleration approach.
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5.1 Background

FPGAs are steadily rising as a promising hardware platform for the acceleration of CNNs.
When compared to other platforms, FPGAs constitute an attractive alternative which of-
fers reduced power consumption to power-hungry but very powerful GPUs and increased
reconfiguration capabilities to fixed-function but power-efficient ASICs. The reconfig-
urable nature of FPGAs allows for the generation of different CNN hardware accelerator
architectures that can meet a variety of system-level requirements including those of em-
bedded systems for edge computing applications. Despite the potential advantages that
FPGAs can offer in terms of latency, power consumption and spatial footprint, one aspect
that they usually lack in is the ease of programmability. Frameworks such as PyTorch and
TensorFlow provide high-level Application Programming Interfaces (APIs) to the devel-
opers for efficiently accelerating CNNs on CPUs and GPUs. Even for specialized ASICs
and SoCs, frameworks such as TensorFlow Lite and Intel OpenVINO help to increase the
productivity of developers for deploying CNNs to edge and mobile devices. On the other
hand, deploying a CNN on an FPGA can become a strenuous task depending on the design
requirements which many times dictate the development flow and level of abstraction that
can be utilized for the FPGA design.

The FPGA development flow where a Register-Transfer Level (RTL) design is de-
scribed with a Hardware Description Language (HDL) language, such as VHDL, is cur-
rently considered the most low-level approach for describing a CNN accelerator on an
FPGA. The RTL development flow requires extensive hardware expertise as all the el-
ements of the hardware architecture of the CNN model such as the mapping of com-
putations to processing elements as well as the corresponding buffering techniques and
memory access patterns, need to be optimized by the designer by hand. This high opti-
mization flexibility in the RTL development flow can potentially satisfy the constraints
and requirements of different platforms such as resources utilization or latency, but intro-
duces increased development effort. An alternative to the RTL development flow is the
High-Level Synthesis (HLS) approach for generating CNN accelerators on FPGAs. HLS
tools, such as Xilinx Vitis HLS, provide to the developer a higher level of abstraction by
allowing C/C++-based development which however still requires expertise in hardware
concepts. Important high-level design decisions need to be made such as a opting for
a streaming architecture vs. a single computation engine architecture. Furthermore, in
order to exploit the parallelization capabilities of the FPGA’s fabric, more low-level op-
timizations need to be made to the C/C++ description such as loop pipelining, flattening,
partial-unrolling, etc.

The increased interest in efficiently and quickly deploying CNN models to FPGAs
has led to automated frameworks which aim at providing even more hardware abstrac-
tion. These CNN-to-FPGA automated frameworks can provide interfaces for model de-
scriptions with popular frameworks for CNN development such as TensorFlow and Caffe
and can generate FPGA designs for different hardware architectures (streaming vs. single
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computation engine architecture) based on different technologies such as generic RTL or
vendor-specific HLS.

5.2 Methodology

For the application of deep learning-based image regression for irradiance estimation and
forecasting, presented in Chapter 3, the thesis aims to support the concept of an edge-
enabled smart PV park that can fulfill the real-time requirements of the PV control. Cor-
respondingly, for the application of semantic segmentation for on-board cloud detection
from satellite imagery, presented in Chapter 4, the thesis aims to showcase real-time pro-
cessing rates in order to support the high volume of payload data generated by on-board
sensors with devices that meet the limited power budget of satellites. Based on the afore-
mentioned objectives, the CNN models studied and developed for both applications, are
deployed to the edge-oriented Xilinx Zynq UltraScale+ MPSoC FPGA. This SoC fam-
ily of FPGAs features heterogeneous resources including both an ARM-based Processing
Subsystem (PS) and the configurable fabric, known as the Programmable Logic (PL).
For porting the models to the FPGA, we utilize the Xilinx Vitis AI framework [68]. The
framework provides an end-to-end set of tools that allows the developer to port and exe-
cute CNN models from popular frameworks such as PyTorch and Tensorflow, to Xilinx
FPGAs. The development workflow that the current thesis follows for implementing &
accelerating the CNN models on the FPGA is summarized in Fig. 5.1 and is described in
the following paragraphs.

On the host PC side, the tools include the Vitis AI Quantizer. Using the Quantizer,
first, we develop the Python application for quantizing our 32-bit floating-point CNN
model descriptions to the corresponding 8-bit fixed-point ones, as required by the frame-
work. The conversion of the 32-bit floating-point weights and intermediate results of the
model, to 8-bit fixed-point representations reduces the computational complexity of the
model and results in less required memory bandwidth, lower latency and increased power
efficiency. However, the quantization process can potentially result in prediction accu-
racy loses. To address this issue, Vitis AI offers several quantization related solutions.
The Post Training Quantization (PTQ) that implements the cross layer equalization algo-
rithm [69] and the Fast Finetuning (FF) that implements the AdaQuant algorithm [70] are
the two quantization solutions which do not perform back-propagation and thus do not
require a labeled dataset. They rely on several iterations of inference on a set of unlabeled
images in order to capture the statistics of the results and calibrate the activations, finetune
the weights and improve the accuracy of the quantized model overall. Additionally to the
above quantization solutions, Quantization Aware Training (QAT) is used to further im-
prove the accuracy of a quantized model after the original floating-point model training.
QAT is a computationally demanding process as it operates on the entire original training
dataset and performs back-propagation on the quantized model, thus it is employed only
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Figure 5.1: The proposed Vitis AI development flow.
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for a few epochs on a pre-trained model. The current thesis, combines the PTQ, FF and
QAT solutions in order to explore their capabilities and reduce the effect of quantization
to the performance of the studied models as much as possible. After quantization, the
models are compiled with the Vitis AI Compiler in order to produce the graph description
and instructions which are going to be executed on the target FPGA during runtime.

On the target FPGA side, the framework provides the Deep Learning Processor Unit
(DPU) IPCore. TheDPU is a programmable computation enginewhich is implemented on
the PL resources of the target FPGA. Its architecture and the set of instruction it supports is
highly optimized for accelerating awide range of operations thatmost of the popular CNNs
require. In the context of the current thesis, the DPU is configured in an optimized way
in order to result in improved resources utilization and increased processing throughput.
In particular, the DPU is configured in order to utilize UltraRAMs, an alternative kind
of on-chip memory resources, when compared to the classic block RAMs, that the Zynq
UltraScale+ devices include. By enabling the utilization of UltraRAMs, the DPU design
can now be implemented with reduced block RAMs, allowing the placement and routing
of two processing cores of the DPU on the same design. The two processing cores of
the DPU can be combined with multi-threading in order to result in increased processing
throughput of CNN applications. Finally, the DPU is integrated in the FPGA design which
also includes the ARM-based PS. After FPGA programming, we develop the runtime
application that is being executed on the PS of the FPGA and controls the DPU during
runtime. The development of the runtime application is based on the APIs that the Vitis
AI Runtime library exposes to the developer that are available in both C++ and Python.

Further to CNN processing with Vitis AI, the current thesis aims to showcase the
distinctive approach of taking advantage of the heterogeneous resources of the MPSoC
FPGA to accelerate different processes of an entire computer vision application. This
acceleration approach is employed for the application of binary semantic segmentation for
cloud detection in satellite images and for the LD-UNet CNN model that was introduced
in Chapter 4. In particular, an HLS kernel, taken from the Vitis Vision Library [71], for
the pre-processing of images, is combined with the DPU for the CNN inference on the
PL side. On the PS side, an optimized version of the CPU C++ code for performing post-
processing is proposed. The HLS kernel implemented on the PL performs resizing of the
input image to the dimensions that the CNN accepts as input. Furthermore, it performs
scaling of the original image data to the fixed-point representation that the DPU accepts at
its input layer. When pre-processing is complete, the control returns back to the PS and the
images are ready to be processed by the DPU. The DPU implementation is configured for
including two distinct homogeneous cores. By also including support for multithreading
in the target C++ application, Vitis AI allows for a batch of images to be processed by two
threads that access the two distinct DPU cores for increased throughput. Finally, when the
CNN processing is complete, the post-processing follows. The final activation function
of the LD-UNet model, proposed for semantic segmentation in the current thesis, is the
sigmoid activation function that is not supported by the DPU. Following the sigmoid, a
pixel-wise thresholding operation is performed to create the binary segmentation mask.
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In order to accelerate the above two operations, we fuse them to a single C++ operation of
accessing a Lookup Table (LUT) based on the DPU output value. These DPU outputs are
limited to only 256 possible values due to their 8-bit fixed-point representation and thus
the sigmoid and thresholding exact result can be automatically pre-calculated and stored in
a LUT during the initialization of the application. This way, during runtime the sigmoid
and thresholding operations requires only accessing the LUT instead of calculating the
corresponding value. The entire FPGA processing architecture that is produced as a result
of the integration of the 2-core DPU with the pre-processing HLS kernel is shown in Fig.
5.2.

Figure 5.2: The FPGA processing architecture

5.3 Evaluation & Results

The current section of the thesis, presents the results regarding the porting process of
CNNs to the edge-oriented Xilinx MPSoC FPGA. The porting process is based on the
adopted development flow which is described in the previous section and it is performed
for two different edge computing applications based on CNNs. The first application is the
deep learning-based image regression for irradiance estimation and forecasting for edge
computing photovoltaic applications presented in Chapter 3. The second application is
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the semantic segmentation of satellite images for on-board cloud detection presented in
Chapter 4. The steps of the porting process for each of the above two applications are
described in Subsection 5.3.1 and Subsection 5.3.2 respectively.

5.3.1 Image Regression CNN Models Porting Process

The first step towards deploying the four different image regression CNN models for irra-
diance estimation, studied in Chapter 3, to the FPGA, is to perform quantization. The
Python quantization application that we develop utilizes several different quantization
functionalities of the Xilinx Vitis AI 2.0 Quantizer. The results of the quantization process
for the four different models of the study are presented in Table 5.1. First, we perform Post
Training Quantization using a batch of unlabeled images. We observe that the PTQ has a
very significant effect of 111.23W/m2 increased RMSE on the performance of the orig-
inal floating-point VGG11 of Table 3.2. After performing and additional Fast Finetuning
step using 1000 unlabeled images, we reduce the effect to 4.26W/m2. For the ResNet-50
model, PTQ results in a slight increase in RMSE of 3.52W/m2 which is reduced down to
2.18W/m2 with FF. The MobileNetV2 suffers a loss in performance which cannot be cor-
rected even after FF, resulting in a loss of 12.47W/m2. Finally, the quantized SqueezeNet
model has a large performance degradation from its original floating-point model, an in-
crease in RMSE of 19.76W/m2. With FF the increase in RMSE becomes 6.84W/m2. The
SqueezeNet model architecture allows us to perform an additional Quantization Aware
Training step instead of FF. We train the SqueezeNet model for 1 additional epoch using
the QAT capabilities of the Vitis AI Quantizer. After the QAT step, the performance of
SqueezeNet is restored to similar one as the original floating-point model suffering only
an 2.09W/m2 RMSE increase.

After quantization of the CNNmodels, we implement the FPGA processing architec-
ture on the Xilinx ZCU104 FPGA board using the Xilinx Vitis and Vivado 2021.2 tools.
The 2-core DPU IP is operating at 300 MHz and the entire design consumes 15.585 W
based on the power analysis tool of Vivado. In Table 5.2, we present the resources uti-
lization of the PL of the FPGA. We observe that the 2-core DPU IP consumes a very
significant amount of resources, especially regarding the DSPs that are responsible for
performing most computations. It is worth noting that for applications where processing
throughput is not critical, the developer can configure the DPU with a single processing
core to reduce the resources utilization by about half for most resources.

In order to showcase the real-time capabilities of the edge FPGA on the image re-
gression task, we benchmark the 4 different CNNs on the DPU IP Core. We evaluate their
throughput in terms of Frames per Second (FPS) on both cores of the DPU by using mul-
tithreading and we present the results in Fig. 5.3. The results show that the ResNet-50
model with the highest number of parameters and operations has the lowest throughput
of 158 FPS on a single core of the DPU. SqueezeNet has the highest throughput of 1028
FPS even though its original floating-point model requires more operations but with lower
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Table 5.1: Performance metrics for the 4 quantized models with combinations of PTQ, FF
and QAT.

Model Quantization
Method

RMSE
(W/m2)

nRMSE (%) MAE (W/m2)

Floating-Point 65.25 15.88 38.31
VGG11 PTQ 176.48 42.94 111.71

PTQ & FF 69.51 16.91 41.04

Floating-Point 64.83 15.77 37.23
ResNet-50 PTQ 68.37 16.63 40.39

PTQ & FF 67.01 16.30 39.18

Floating-Point 75.95 18.48 47.74
MobileNetV2 PTQ 88.42 21.51 59.91

PTQ & FF 88.78 21.60 60.67

Floating-Point 70.18 17.08 44.65
SqueezeNet PTQ 89.94 21.89 63.24

PTQ & FF 77.02 18.74 50.30
PTQ & QAT 72.27 17.58 45.84

Table 5.2: FPGA resources utilization for the implemented design on the ZCU104 board.

Resource 2-Core DPU IP 1-Core DPU IP

LUTs 108K (47%) 50K (22%)
FFs 204K (44%) 98K (21%)
DSPs 1394 (81%) 690 (40%)

RAMBs 203 (65%) 145 (46%)
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number of parameters than MobileNetV2. When utilizing the 2 cores of the DPU all the
models can achieve a little less than ×2 throughput. For the ResNet-50, MobileNetV2
and SqueezeNet models, the achieved throughput rates can be considered to satisfy the
real-time requirements, e.g., for a sky imager providing a video at 60 FPS, leaving space
for additional algorithms to complete more PV related processes.
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Figure 5.3: Throughput results for the four studied models, on 1 and 2 processing cores
of the DPU.

5.3.2 Binary Semantic Segmentation CNN Model Porting Process

In order for the binary semantic segmentation LD-UNet model to be implemented on the
FPGA it is quantized from 32-bits to 8-bits with fixed point arithmetic. The quantization
is performed with the Vitis AI quantizer using, first, the PTQ solution with a calibration
batch of the training dataset. The performance results of the quantized LD-UNet, with
PTQ, are shown in Table 5.3. We observe that the quantization is being detrimental to
the performance of the model. For this, we utilize the Vitis AI quantizer to perform an
additional post-training Fast Finetuning step where the parameters of the quantized model
are being adjusted to further reduce the loss function value. For this Fast Finetuning step,
we provide 2000 patches that correspond to ∼9% of the training dataset. FromTable 5.3 we
observe that after Fast Finetuning, the quantizedmodel can once again achieve satisfactory
performance results with little degradation compared to the corresponding floating point
one.
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Table 5.3: Performance of Quantized LD-UNet

Model Acc. IoU Rec. Prec.

LD-UNet Floating-Point 94.57 84.47 92.42 90.75
LD-UNet PTQ 74.60 21.41 21.67 94.75

LD-UNet PTQ & FF 91.92 78.34 91.54 84.46

The processing architecture for the application of semantic segmentation is imple-
mented on the Xilinx ZCU104 FPGA board using the Xilinx Vitis and Vivado 2021.1 and
Vitis AI 2.0. The DPU IP with 2 processing cores and the pre-processing accelerator op-
erate at 300MHz and the Vivado power analysis reports a total on-chip power of 14.111
W for the entire design. The resources utilization of the FPGA is shown in Table 5.4.
We observe that the DPU IP is a very resource-hungry design whereas the pre-processing
accelerator adds only little overhead to the resources utilization. The total utilization also
includes auxiliary components such as interconnections, clock managers, etc.

Table 5.4: Resources Utilization for Implemented Design on ZCU104

Component LUTs FFs DSPs RAMBs

2-Core DPU IP 97K (42%) 195K (42%) 1380 (80%) 169 (54%)
Pre-Proc. Acc. 8.7K (4%) 11K (2%) 26 (1%) 9.5 (3%)

Total 114K (49%) 220K (48%) 1406 (81%) 212 (68%)

The execution time results for the acceleration of the pre-processing, the post-processing
and the entire application, including the LD-UNet execution on the DPU, for a single in-
put image patch, is shown in Fig. 5.4. We observe that the baseline pre-processing that
includes resizing and scaling the input data in software on the ARM PS of the FPGA
achieves a speedup of 1.94 when executed on a dedicated hardware HLS kernel in the
PL. Furthermore, the baseline post-processing implementation of calculating the sigmoid
activation function and performing thresholding on the output can be sped-up by a factor
of 14.52 with our optimized LUT-based implementation. With the above optimizations
the total speedup for the entire application is 1.64. Finally, when benchmarking the CNN
inference on the DPU, standalone, utilizing multithreading, a throughput of 632 FPS can
be achieved with 2 threads, an improvement of 85% when compared to the 342 FPS of a
single thread.
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Figure 5.4: Execution time for the baseline and accelerated implementations of pre-
processing, post-processing and the entire application on the FPGA.
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Chapter 6

High Throughput & Fault-Tolerant
FPGA–VPU Interfacing

The current chapter focuses on design and development of the interfacing system between
an FPGA and the Intel Movidius Myriad 2 VPU. The interfacing system targets data frame
transfers between the two devices in computing architectures which are utilized in on-
board payload data processing applications and particularly in the context of the European
Space Agency (ESA) activity ”FPGA Accelerated DSP Payload Data Processor Board”.
Consequently, it needs to be designed with high-throughput capabilities in order to support
high bit-rate sensors and with a fault-tolerance mechanism in order to support the entire
computing system mitigate the effects of space radiation on its components. The remain-
der of this chapter is structured as follows. First, in Section 6.1 the background regarding
heterogeneous computing architectures in space is discussed. Then, in Section 6.2 the
design of the Myriad 2 Interface (M2 IF) module, designed and developed on the FPGA
side, is presented in detail, focusing on its high-throughput and fault-tolerance character-
istics. Finally, Section 6.3 presents the results from the extensive testing campaign of the
interfacing system in several experimental hardware setups.

6.1 Background

The NewSpace era relies on novel technological approaches in space applications. The
advances in small form factor satellites, such as SmallSats and CubeSats, broaden the
scope of the EO missions and attract new areas of research for payload processing in
space. Furthermore, there is a rapidly growing interest in the use of artificial intelligence
in space. In particular, deep learning and CNNs are already being deployed as a solution
for many on-board computer vision tasks including data reduction, remote sensing data
processing, vision-based navigation and more [72].
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With these technological advances come corresponding challenges such as the in-
creased remote sensing data generated by satellite instruments and the computational de-
mands of modern image processing and artificial intelligence algorithms. As a result, the
space-qualified general-purpose processors, such as the radiation-hardened LEON CPUs,
fail to keep up with the processing requirements of future missions. Moreover, constraints
in the power budget and the dependability requirements of each spacemission, drive the re-
search community and the industry to revisit the computing architectures for space avion-
ics. In order to address the above challenges, the interest is focused on heterogeneous and
mixed-criticality computing architectures. In these architectures, rad-hard components are
complemented by Commercial Off-The-Shelf (COTS) accelerators for payload data pro-
cessing and especially image processing and deep learning tasks which are not mission-
critical [62]. Specialized COTS SoC accelerators, such as VPUs and SoC FPGAs, offer
attractive trade-offs between SWaP-C, processing performance and development flexibil-
ity [73, 74].

In the ESA activity “FPGA Accelerated DSP Payload Data Processor Board” (ES-
TEC contract 4000126129/18/NL/AF) such a heterogeneous computing system is de-
signed and a prototype high-performance platform is developed, the High-Performance
Compute Board (HPCB). The HPCB platform aims to support the next generation of deep
learning-based image processing on-board by handling payload data from multiple high
bit-rate instruments simultaneously and at the same time apply system-level fault mitiga-
tion techniques when they are required. In order to be modular, the HPCB platform con-
sists of a carrier board and three mezzanine extension cards for parallel processing and
Triple Modular Redundancy (TMR) configurations. The prototype GR-VPX-XCKU060
carrier board and GR-HPCB-FMC-M2 mezzanine card are shown in Fig. 6.1 and Fig.
6.2 respectively. The carrier board, includes the GR716 [75] radiation-tolerant micro-
controller with the role to supervise the operation of the entire platform. Furthermore, it
includes the Xilinx Kintex Ultrascale XCKU060 [76] which serves as the flow manager
of the system by receiving data from multiple on-board sensors, perform any required
transcoding and forward data to the specialized COTS accelerators, the working memory
and the mass-memory of the system. Finally, the carrier board can facilitate three mez-
zanine cards with COTS accelerators which can operate in redundant modes. Each card,
includes the Myriad 2 VPU for accelerating image processing and deep learning tasks
on-board. The entire computing architecture is illustrated in Fig. 6.3.

6.2 Design

In the current section, the design of the interfacing system between the FPGA and the
Myriad 2 VPU is introduced. First, 6.2.1 describes the details of the digital design of the
M2 IF module on the FPGA. Then, 6.2.2 elaborates on the design of the fault-tolerance
mechanism of the interfacing system.
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Figure 6.1: The GR-VPX-XCKU060 carrier board of the HPCB prototype system.

Figure 6.2: The GR-HPCB-FMC-M2 mezzanine card of the HPCB prototype system.
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Figure 6.3: The block diagram of the HPCB platform computing architecture.
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6.2.1 Design of the Interfacing System

The M2 IF module on the FPGA side, handles the communication with Myriad 2 over
the CIF and LCD interfaces. The CIF interface is utilized for transmitting images, or
even generic data in the form of frames, from the FPGA to the Myriad 2. Similarly, the
FPGA receives frames from the Myriad 2 via the LCD interface. The block diagram of
the internal architecture of the M2 IF module is shown in Fig. 6.4.

Figure 6.4: Block diagram of M2 IF module in the FPGA.

Regarding clocking and resets, the M2 IF operates on a system clock which is used
for the Control and Status registers, as well as the native FIFO interfaces of the internal
buffers. An asynchronous reset is forwarded from the top-level entity to all the inter-
nal components of the M2 IF module. Regarding the CIF interface clocking, all com-
ponents on the CIF clock domain operate on the CIF_pclk_in clock signal. For source-
synchronous operation of the CIF interface, which is the default mode of operation, the
CIF_pclk_in should be provided by a Mixed-Mode Clock Manager (MMCM), external to
the M2 IF, configured for the desired operating frequency. Then the CIF_pclk_in clock is
forwarded to Myriad 2, by means of an Output Double Data Rate (ODDR) register, at the
CIF_pclk_out signal. Alternatively, if Myriad 2 provides the clock of the CIF interface,
the external MMCM handling it can feed it to the M2 IF again via the same CIF_pclk_in
signal. The LCD interface clocking is based on the LCD_pclk_in signal which is used
by the all components on the LCD clock domain. For source synchronous operation of
the LCD interface, which is the default mode of operation, the LCD_pclk_in should be
provided by an MMCM, external to the M2 IF, which performs clock recovery from the
LCD clock provided by the Myriad 2. If source synchronous operation is not opted, the
LCD_pclk_in should be provided by an MMCM that generates a clock of the desired op-
erating frequency. All other CIF and LCD signals, both for synchronization and data, are
appropriately assigned to/from registers inside the VHDL design in order to be able to
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pack these registers into I/O Blocks (IOBs) of the FPGA. The IOB packing is performed
by a simple constraint for each of these signals. Any Clock Domain Crossing (CDC) logic
is implemented by independent clock FIFOs.

Regarding the buffers of theM2 IF, the CIF and LCDCross Clock Buffers and the CIF
and LCD Pixel FIFOs are VHDL implementations for generic RAM blocks and FIFOs.
The CIF and LCD Cross Clock Buffers have a word width of 32 bits which can contain
several pixels, while their depth is configurable and is indicated at compile time by the
corresponding VHDL constant. Along with their native FIFO interface, they also expose
programmable full and empty signals with corresponding thresholds configured by VHDL
constants. They include logic for crossing from the FPGA engine clock domain to/from the
CIF and LCD clock domains respectively. For injection of a frame into the M2 IF module,
write operations can be performed to the CIF Image Buffer through its native interfacewith
flow control based on the full and empty signals. In the case of data reception from theM2
IF, read operations can be performed to the LCDCross Clock Buffer via its native interface
with the availability of the result data inside the LCD Cross Clock Buffer indicated by the
empty signal. The CIF and LCDPixel FIFOs have a wordwidth of 24 bits, equal to the CIF
and LCD parallel interfaces width, and a configurable, at compile time, depth by means of
a corresponding VHDL constant. The CIF Pixel FIFO, operates on the CIF clock domain
and holds one CIF pixel per 24-bit word while the LCD Pixel FIFO operates on the LCD
clock domain and holds one LCD pixel per 24-bit word.

When it comes to runtime programmability and status reporting, the M2 IF module
includes two sets of registers for interfacing with the rest of the FPGA engine. The Control
Registers are written from control modules external to theM2 IFwhile the Status Registers
are written from the M2 IF side. The Control Registers, contain information regarding the
CIF and LCD interfaces timing parameters and the CIF and LCD pixels bit-depth. The
Status Registers, contain information regarding the number of frame transmissions and
receptions over the CIF and LCD interfaces and also report any errors such as overflows,
underruns and CRC mismatches.

The M2 IF also includes the CIF and LCD FSMs which operate on the CIF and LCD
clock domain and control the read and write operations between the corresponding Cross
Clock Image Buffers and Pixel FIFOs. The CIF FSM is configured during runtime with
regards to the width, height and pixel bit-depth of the CIF frame to be transmitted based on
the values of the corresponding Control Registers. When the CIF FSM begins operation, it
reads one 32-bit word from the CIF Image Buffer per clock cycle which can contain several
distinct pixels as indicated by the corresponding Control Register. These distinct pixels
from each word are then written, one by one, to the CIF Pixel FIFO. The above read and
write operations are fully pipelined in order to sustain the maximum bit-rate supported by
the width and operating frequencies of the interfaces. The LCD FSM is configured during
runtime with regards to the specifications of the LCD frame to be received, in an identical
way to the CIF FSM. During consecutive clock cycles, the LCD FSM reads 24-bit words
where each contains a pixel of the indicated bit-depth. These pixels are concatenated into
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one 32-bit word which is forwarded to the LCD Image Buffer in a pipelined manner as
with the CIF interface.

Finally, M2 IF includes the CIF Tx and LCDRx components. The CIF Tx component
performs transmission of images to the Myriad 2 over the CIF interface. The CIF Tx
implements the CIF interface synchronization protocol by controlling both the timing of
the HSync and VSync synchronization pulses as well as the read operations from the CIF
FIFO. The number of clock periods for which the synchronization pulses are active is
indicated by the CIF timing parameters provided from the Control Registers of M2 IF.
Similarly to above, the LCD Rx component handles the reception of frames from Myriad
2 over LCD. For this, it implements the LCD interface synchronization protocol with the
HSync and VSync synchronization pulses timed based on the LCD timing parameters
provided from the Control Registers of M2 IF.

6.2.2 Design of the Fault-Tolerance Mechanism

The interfacing system between the FPGA and the Myriad 2 VPU, based on the CIF and
LCD interfaces in the form of image frame transfers, is designed to be fault-tolerant. In
particular, payload data frames exchanged between both sides are protected by a 16-bit
CRC field. The CRC values are appended to the end of each frame by means of a frame
footer. The footer has the form of an entire CIF or LCD frame row with the first pixels
containing the 16-bit CRC, while the rest of the pixels are zero-padded. The CRC al-
gorithm used for both CIF and LCD is CRC-16-CCITT, where the polynomial is 0x1021
(x16+x12+x5+1)with an initial value of 0x0. On the FPGA side, the modules which are
responsible for handling the CRC values of the CIF and LCD frames are depicted in Fig.
6.5 and Fig. 6.6 correspondingly and are explained in detail in the following paragraphs.

Themodule that is responsible for formulating and appending the CRC on CIF frames
transmitted to the VPU is shown in Fig. 6.5. While a CIF frame transmission is active, the
CIF CRC module reads one pixel value at each clock cycle from the CIF Pixel FIFO and
forwards it to the CIF transmitter. The CIF transmitter supports frames with bit-depth of
8, 16 and 24 bits. For this, the CIF CRC contains three instances of a CRC16 calculator,
which operate in parallel and calculate on-the-fly the CRC values of frames with 8, 16 and
24-bit depth. The CRC16 calculators are controlled by the counter-based Frame Footer
FSM. When the active portion of the frame has been forwarded, the CRC16 calculation is
complete. Then, the Frame Footer FSM selects the output of the CRC16 calculators based
on the corresponding bit-depth and forwards the additional footer row that contains the
CRC16 value in the first pixels. When the entire CIF frame is received on the VPU side,
the VPU calculates the corresponding CRC16 value and compares it with the received
one.

The transmission of the LCD frames from the VPU to the FPGA follows the same
principles as that of the CIF frames. When an LCD frame of payload data has been for-
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Figure 6.5: The CIF CRC FPGA module.

Figure 6.6: The LCD CRC FPGA module.
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mulated in the VPU, the VPU calculates the CRC16 value, includes it to the footer of the
frame and starts the frame transmission over LCD. The module that handles the CRC cal-
culation and comparison on the FPGA side is shown in Fig. 6.6. The LCD receiver feeds
the LCD CRC module with one pixel value at each clock cycle. Three distinct CRC16
modules operate in parallel on different bit-widths of the incoming pixel in order to sup-
port all the three different pixel bit-depths. When the active portion of the LCD frame
has been received, the CRC16 value is calculated and the Frame Footer FSM handles
the reception of the additional footer row. It extracts the received CRC value from the
correct position of the footer and performs the comparison with the calculated one. The
comparison result is reported to the corresponding status registers of the FPGA.

The above fault-tolerance mechanism of the interfacing system can contribute to the
fault mitigation strategies of the entire HPCB computing system in several ways. First,
when performing critical data transfers, such as boot images and other configuration data,
from the FPGA to the Myriad 2 VPU over CIF, these CIF data frames are protected by
the CRC footer. If such a critical CIF frame results to a CRC mismatch when received by
the Myriad 2, it can be dropped in order to avoid to misconfiguration of the VPU. Second,
when the three Myriad 2 VPU accelerators of the HPCB architecture operate in a triple
modular redundancy mode, then the processed frames received from the Myriad 2 over
LCD are protected by the CRC footer. If a CRC mismatch occurs this is reported to the
voter of the entire FPGA system. In this way, the HPCB system can perform triple voting
to identify the correct results andmoreover, identify VPUswhich consistently malfunction
in order to take additional measures such as rebooting them.

6.3 Evaluation and Results

The current section presents the details of the testing campaign and corresponding results
of the high-throughput and fault-tolerant interfacing system presented in the previous sec-
tion.

First, we evaluate the resource utilization of the M2 IF module in the FPGA. For this
theM2 IFmodule, is implemented on the commercially available Xilinx Zynq-7010 FPGA
and the resource utilization results are reported in Table 6.1. In the table, the resource
utilization for the entire M2 IF module without the CIF and LCD CRC components which
are responsible for the fault-tolerance mechanism of the interfacing system are presented,
alongwith the resource utilization for the CIF and LCDCRC components only. The results
show, that the FPGA modules which are responsible for the fault-tolerance mechanism
are very efficient in terms of resources and introduce only a minimal resource overhead
compared to the entire M2 IF module.

Following the results on the resource utilization of theM2 IFmodule, the testing cam-
paign and corresponding results are explained in detail. During the testing campaign, the
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Table 6.1: Resources utilization for the M2 IF module on Zynq-7010

Component LUTs FFs DSPs RAMBs

M2 IF w/o CRC 2977 (17%) 1232 (4%) 2 (3%) 10 (17%)
CIF CRC + LCD CRC 347 (2%) 305 (1%) 2 (3%) 0 (0%)

system is evaluated on a number of different experimental hardware setups, starting from
simple setups with commercially available components to increasingly complex setups
which also include prototype hardware. The motivation behind this campaign is, first, to
enable testing of the M2 IF VHDL module on commercial hardware before the manufac-
turing of prototype hardware is complete. This allows for standalone and modular testing
before the integration of the M2 IF module and the interfacing system to the entire pro-
totype HPCB computing system. Second, this evaluation campaign enables early testing
of the prototype hardware as it becomes available in order to identify potential issues and
drive revisions of PCB designs early in the production phase. Based on the above, the
experimental hardware setups used in the current evaluation campaign are the following:

• Setup A: The Myriad 2 Eyes-of-Things (EoT) evaluation board combined with a
commercial FPGA board, both of which were operated locally.

• Setup B: The prototypeGR-HPCB-FMC-M2mezzanine card combinedwith a com-
mercial FPGA board, both of which were operated locally.

• Setup C: The prototype GR-HPCB-FMC-M2 mezzanine card combined with the
prototype GR-VPX-XCKU060 carrier board, accessed and operated remotely.

Regarding the experimental hardware setup A, it includes the commercial Xilinx
VC707 FPGA development board. In this setup, the Myriad 2 EoT board is connected
to the VC707, via the XM105 FMC debug card, with jumper wires. The setup is de-
picted in Fig. 6.7. A Linux workstation is connected to and controls both the VC707 and
the EoT boards. On the FPGA side, the entire M2 IF module is implemented along with a
testbed VHDL design which includes auxiliary components such as clock generators, user
LEDS, etc. On the Myriad 2 side, an application based on the CIF and LCD controllers
is developed which supports simple generation, transmission, reception and checking of
frames. With this setup, first, simple standalone CIF frame transmissions and LCD frame
receptions are tested. Then, in order to create a complete testbed for simultaneous testing
of both interfaces, a loopback application is enabled in the Myriad 2 and a correspond-
ing loopback design is introduced in the FPGA. In this loopback scenario, test frames of
various patterns are generated in Myriad 2 and are transmitted to the FPGA over LCD,
one-by-one. After LCD frame reception on the FPGA side, the received frame is read
from the M2 IF module and is re-written to it for transmission over CIF to the Myriad
2. After the CIF transmission, Myriad 2 performs pixel-by-pixel checking of the frame
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Figure 6.7: The experimental hardware setup A with the EoT and VC707 boards.
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for errors. This setup, validates the correct functionality of the M2 IF VHDL module for
both the CIF and LCD interfaces without any of the target prototype being available at
the time. The maximum achieved operating frequency is 40 MHz for the transmission of
1024×1024 frames with 4-bit pixels without any errors. The above results are constrained,
first, by the availability of only a limited number of pins for the CIF and LCD interfaces
on the EoT board. Second, a number of electrical issues are identified in this setup. In
particular, all of them have to do with cross-talk effects between the signals of the same
interface or even between the two different interfaces.

Figure 6.8: The experimental hardware setup B with the GR-HPCB-FMC-M2 mezzanine
card and the VC707 board.

Following the evaluation of the interfacing system on the experimental hardware
setup A, the evaluation on setup B is performed. In setup B, the prototype GR-HPCB-
FMC-M2 mezzanine card is connected to the FMC interface of the commercial VC707
development board as shown in Fig. 6.8. Similarly to setup A, the loopback application
and loopback design is implemented on the Myriad 2 and FPGA side respectively. With
the experimental hardware setup B, the maximum operating frequency that is achieved is
50MHz for transmission and reception of frames up to 2048×2048 pixels with a bit-depth
of 16 pixels. The cross-talk effects which were identified in setup A, were reduced with
the use of the FMC interface instead of the jumper wires. However, an issue regarding the
presence of several devices (FPGA and Myriad 2) in the same JTAG chain was identified.
Moreover, another issue regarding a clock signal from the Myriad 2 being forwarded to
a non-clock capable pin of the FPGA resulted in limitations in the maximum operating
frequency on this setup. The identification of these issues very early in the testing phase
contributed to the following prototype revisions of the GR-HPCB-FMC-M2 mezzanine
card to include corrections to address them.

The final experimental hardware setup consists of the entire HPCB prototype plat-
form and is shown in Fig. 6.9. In this setup, the loopback application is once again used
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Figure 6.9: The evaluation setup with the GR-HPCB-FMC-M2mezzanine card combined
with the GR-VPX-XCKU060 carrier board.
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to evaluate the maximum performance of the interfacing system standalone on the final
prototype hardware and to validate the correct functionality of the fault-tolerance mech-
anism. For the CIF interface, error-free transmission of frames of 2048x2048 pixels of
16-bits each at 150 MHz is achieved which is the maximum frequency of the Myriad 2
CIF interface according to the specification. For the LCD interface, error-free transmis-
sion of frames with an ascending scale data pattern of 2048x2048 pixels of 16-bits each,
at 150 MHz is achieved which is the maximum frequency of the Myriad 2 LCD interface
according to the specification. For the same LCD frames with a checkerboard pattern
error-free LCD transmission at 100 MHz is achieved, showing that the frame pattern can
impact the maximum achieved frequency of the interface due to cross-talk issues even in
the most advanced hardware setup of the campaign.
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Chapter 7

Conclusions & Future Work

The current doctoral thesis focused on CNNs for computer vision applications in the con-
text of their acceleration and deployment on edge devices. The thesis made distinct con-
tributions in four different challenges regarding techniques for the efficient optimization
of CNN models performance as well as techniques for CNN hardware accelerator archi-
tectures design.

First, the thesis proposed the SunMask generation image processing method, in order
to improve the accuracy of image regression CNNs on the tasks of irradiance estimation
and forecasting. The proposed image processing method utilized the solar coordinates in
the sky as well as the mapping function of the lens of the fisheye camera and resulted in
accurate identification of the position of the sun in the image in all cases. When the pro-
posed image processingmethodwas applied to the sky images before these were processed
by the image regression CNNs, it was shown to improve the accuracy of the irradiance
results produced by the CNNs. An extensive study on the irradiance estimation task, on
four popular CNN models with various model sizes, as well as on the forecasting task, for
three different forecast horizons, showed that the proposed SunMask generation method
can consistently improve the accuracy of the irradiance results in all cases.

Furthermore, for the task of binary semantic segmentation for on-board cloud detec-
tion using satellite images, the thesis proposed a novel CNN model. The proposed model,
called LD-UNet, was a lightweight variant of the, well-known for semantic segmentation,
U-Net model which combined several CNN techniques such as depthwise separable con-
volutions, dilated convolutions and residual blocks in order to result in limited computa-
tional cost and memory footprint without significantly sacrificing semantic segmentation
performance. The results of LD-UNet on a well-defined test dataset showcased that it can
provide a competitive trade-off between CNN model size and semantic segmentation per-
formance when compared to lightweight state-of-the-art models in the literature evaluated
on the same test dataset.

Additionally, the thesis focused on porting the CNN models of the aforementioned

74



irradiance estimation and cloud detection applications, to the programmable engine of the
XilinxMPSoC FPGA, towards enabling their deployment in edge computing applications.
The porting process and development flow was based on the Vitis AI framework and
explored the capabilities of several quantization solutions in order to minimize the effects
of quantization to the models as much as possible. Moreover, an acceleration approach
was showcased for accelerating different processes of a single computer vision task by
utilizing heterogeneous resources of the SoC FPGA. The acceleration of the CNN models
on the edge-oriented FPGA resulted in real-time processing rates for the applications of
CNN-based irradiance estimation from sky images as well as cloud detection from satellite
imagery.

Finally, an interfacing system between an FPGA and a deep learning and image pro-
cessing accelerator, the Myriad 2 VPU, was designed and developed. The interfacing
system was developed in the context of a prototype on-board payload data processing ar-
chitecture and platform, and took into account the high-throughput requirements of the
system for the bi-directional data transfers between the FPGA and the Myriad 2. The in-
terfacing system also implemented a fault-tolerance mechanism in order to support the
system-level fault mitigation strategy of the entire HPCB platform. The extensive test-
ing campaign performed during the thesis verified the interfacing system in commercial
as well as prototype hardware platforms and helped identify issues in the prototype hard-
ware early in the development and production phase.

The research conducted in the context of the thesis highlights the following directions
for future work:

1. Regarding image processing and deep learning-based irradiance forecasting, more
advanced deep learning models such as ConvLSTMs, which can process tempo-
ral sequences of images, could be studied and employed for improved irradiance
forecasting accuracy.

2. Regarding CNNs for semantic segmentation of satellite imagery, the resources re-
quirements of more complex CNNs specialized for hyperspectral images and for
multiclass semantic segmentation should be studied and optimized towards their
effcient deployment on on-board accelerators.

3. Regarding the acceleration approach of accelerating different processes on the het-
erogeneous resources of the SoC FPGA, even more techniques could be employed
for accelerating additional processes of a computer vision task such as employing
additional hardware kernels on the PL of the FPGA or using SIMD optimizations
for processes executed on the ARM-based PS of the FPGA.

4. Regarding the high-throughput and fault-tolerant interface for the CNN accelerator,
the data transfer times should be further evaluated in combination with extensive
image processing benchmarks on the Myriad 2, in order to minimize the data trans-
fers overhead.
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List of Abbreviations

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

ASIC Application-Specific Integrated Circuit.

CDC Clock Domain Crossing.

CIF Camera Interface.

CNN Convolutional Neural Network.

COTS Commercial Off-The-Shelf.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

CUDA Compute Unified Device Architecture.

DCNN Deep Convolutional Neural Network.

DHI Diffuse Horizontal Irradiance.

DNI Direct Normal Irradiance.

DPU Deep Learning Processor Unit.

DSP Digital Signal Processing.

EO Earth Observation.

EoT Eyes-of-Things.

ESA European Space Agency.
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FF Fast Finetuning.

FN False Negative.

FP False Positive.

FPGA Field-Programmable Gate Array.

FPS Frames per Second.

FS Forecast Skill.

FSM Finite State Machine.

GHI Global Horizontal Irradiance.

GPU Graphics Processing Unit.

GT Ground Truth.

HDL Hardware Description Language.

HLS High-Level Synthesis.

HPCB High-Performance Compute Board.

ILSVRC ImageNet Large Scale Visual Recognition Challenge.

IoT Internet of Things.

IoU Intersection over Union.

LCD Liquid Crystal Display.

LD-UNet Lightweight Dilation UNet.

LSTM Long Short-Term Memory.

LUT Lookup Table.

M2 IF Myriad 2 Interface.

MAE Mean Absolute Error.

MLP Multilayer Perceptron.

MMCM Mixed-Mode Clock Manager.

MSE Mean Square Error.
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nRMSE Normalized Root Mean Square Error.

ODDR Output Double Data Rate.

OLI Operational Land Imager.

PL Programmable Logic.

PM Persistence Model.

PS Processing Subsystem.

PTQ Post Training Quantization.

PV Photovoltaic.

QAT Quantization Aware Training.

ReLU Rectified Linear Unit.

RISC Reduced Instruction Set Computer.

RMSE Root Mean Square Error.

RTL Register-Transfer Level.

SI Sky Imager.

SIMD Single Instruction, Multiple Data.

SoC System-on-Chip.

SoM System-on-Module.

SVM Support Vector Machine.

SWaP-C Size, Weight, Power and Cost.

TIRS Thermal Infrared Sensor.

TMR Triple Modular Redundancy.

TN True Negative.

TP True Positive.

TPU Tensor Processing Unit.

VHDL VHSIC Hardware Description Language.

VLIW Very Long Instruction Word.

VPU Vision Processing Unit.
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