
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Wind Energy Prediction Using Deep Learning
Architectures

Georgios K. Floros

Supervisor: Ioannis Emiris, Professor

ATHENS

APRIL 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πρόβλεψη Αιολικής Ενέργειας με τη Χρήση
Αρχιτεκτονικών Βαθιάς Μάθησης

Γεώργιος K. Φλώρος

Επιβλέπων: Ιωάννης Εμίρης, Καθηγητής

ΑΘΗΝΑ

ΑΠΡΙΛΙΟΣ 2023

BSc THESIS

Wind Energy Prediction Using Deep Learning Architectures

Georgios K. Floros
S.N.: 1115201700178

SUPERVISOR: Ioannis Emiris, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Πρόβλεψη Αιολικής Ενέργειας με τη Χρήση Αρχιτεκτονικών Βαθιάς Μάθησης

Γεώργιος K. Φλώρος
Α.Μ.: 1115201700178

ΕΠΙΒΛΕΠΩΝ: Ιωάννης Εμίρης, Καθηγητής

ABSTRACT

This thesis investigates the utilization of various deep learning architectures for energy
prediction, utilizing Weather Research Forecasting (WRF) data and actual measurements
from two wind farms. The preprocessing pipeline is thoroughly outlined, followed by exper-
imentation with different feature extraction techniques such as CNNs, Mean Vector, and
Central Vector, along with LSTM, Attention, and Transformer Blocks as temporal models.
Attention-based models are emphasized as a notable contribution. The results show that
efficient preprocessing is crucial for optimal performance and that attention-based mod-
els perform comparably or even better than LSTMs as temporal models in certain cases.
Furthermore the study raises questions about the essentiality of CNNs feature extractor in
some cases. It also suggests that transfer learning between nearby parks is a promising
approach to address limited data, and can also be used for new parks where data are
not available. Finally, the study also highlights certain limitations we faced and proposes
avenues for future work.

SUBJECT AREA: Deep Learning

KEYWORDS: Machine Learning, Wind Energy Prediction, Neural Network, Attention,
Transformer Encoder, WRF

ΠΕΡΙΛΗΨΗ

Η παρούσα πτυχιακή εργασία διερευνά τη χρήση διαφόρων αρχιτεκτονικών βαθιάς μά-
θησης για πρόβλεψη ενέργειας, χρησιμοποιώντας δεδομένα πρόβλεψης καιρού (WRF)
και πραγματικές μετρήσεις από δύο αιολικά πάρκα. Η μέθοδος προ-επεξεργασίας περι-
γράφεται λεπτομερώς, ενώ ακολουθούν πειράματα με διαφορετικές τεχνικές εξαγωγής χα-
ρακτηριστικών όπως συνελικτικά νευρωνικά δίκτυα (CNN), μέσο διάνυσμα (mean vector)
και κεντρικό διάνυσμα (central vector), μαζί με χρονικά μοντέλα όπως τα νευρωνικά δί-
κτυα μακράς βραχείας μνήμης (LSTM), το μηχανισμό προσοχής (Attention mechanism)
και τα μπλοκ μετασχηματιστή (Transformer blocks). Τα αποτελέσματα δείχνουν ότι η απο-
τελεσματική προ-επεξεργασία είναι ζωτικής σημασίας για τη βέλτιστη απόδοση και ότι οι
μέθοδοι που βασίζονται στον μηχανισμό προσοχής αποδίδουν συγκρίσιμα ή ακόμα κα-
λύτερα από τα LSTM ως χρονικά μοντέλα σε ορισμένες περιπτώσεις. Επιπλέον, η με-
λέτη εγείρει ερωτήματα σχετικά με την ουσιαστικότητα του CNN ως εξαγωγέα χαρακτη-
ριστικών σε μερικές περιπτώσεις. Υποδηλώνει επίσης ότι η μεταφορά μάθησης (transfer
learning) μεταξύ κοντινών πάρκων είναι πολλά υποσχόμενη προσέγγιση για την αντιμε-
τώπιση περιορισμένων δεδομένων και μπορεί επίσης να χρησιμοποιηθεί για νέα πάρκα
όπου υπάρχουν ανεπαρκή δεδομένα. Τέλος, η μελέτη επισημαίνει ορισμένα προβλήματα
που αντιμετωπίσαμε και προτείνει μελλοντικές κατευθύνσεις.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βαθιά Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μηχανική Μάθηση, Πρόβλεψη Αιολικής Ενέργειας, Νευρωνικά
Δίκτυα, Μηχανισμός Προσοχής, Κωδικοποιητής Μετασχηματιστή

Dedicated to my family and the people that supported me the most.

ACKNOWLEDGEMENTS

I would like to thank Professor Ioannis Emiris for supervising my thesis and his invaluable
guidance and support throughout this research. I also want to thank the PhD candidate
Konstantinos Tertikas for his valuable and constant assistance in this project. His contri-
bution was essential for the completion of this study. Finally, I would also like to thank
Dimitris Katsiros for providing me a first version of the code of the fundamental paper and
for discussing with me certain aspects of the project.

CONTENTS

1. INTRODUCTION 14

2. BACKGROUND & RELATED WORK 15

2.1 Wind Energy . 15
2.1.1 Wind Turbines . 15

2.2 Supervisory Control & Data Acquisition . 17

2.3 WRF . 18

2.4 Neural Network . 18
2.4.1 Architecture . 18
2.4.2 Convolutional Neural Networks . 19

2.4.2.1 Convolutional layer . 20
2.4.2.2 Pooling Layer . 20

2.4.3 Long Short Term Memory Networks . 20
2.4.4 Transformers - Self-Attention . 22

2.4.4.1 Attention . 22
2.4.4.2 Self-Attention . 23
2.4.4.3 Multi-head Attention . 23
2.4.4.4 Positional Encodings . 24

2.5 Wind Energy and Speed Prediction . 25
2.5.1 Traditional Methods . 25
2.5.2 Neural Network Methods . 25

3. Method 26

3.1 Data Preprocessing . 26
3.1.1 Target Data . 26
3.1.2 WRF Input Data . 28
3.1.3 Normalization - Standardization . 30

3.2 Models and components . 30
3.2.1 Feature Extractors . 31

3.2.1.1 Convolutional Neural Network . 31
3.2.1.2 Mean Vector . 31
3.2.1.3 Central Vector . 31

3.2.2 Temporal Model . 32
3.2.2.1 LSTM . 32
3.2.2.2 Self-Attention . 32
3.2.2.3 Transformer Block . 33

3.2.3 Extra Components . 33
3.2.3.1 Positional Encodings . 33
3.2.3.2 Output Layer . 33

3.3 Training & Evaluation . 33

4. Results & discussion 35

4.1 New / Old Data Comparison . 35

4.2 Default Model Finetuning . 35

4.3 Feature Extractors . 36

4.4 Temporal Model . 36

4.5 Multiple Parks - All in One Model . 38

4.6 Visualization . 38

5. Conclusions & Future Work 40

ABBREVIATIONS - ACRONYMS 42

APPENDICES 42

A. FIRST APPENDIX 43

A.1 Additional Experiments . 43

A.2 Metric Calculation . 43

A.3 Libraries Used . 44

REFERENCES 46

LIST OF FIGURES

2.1 Capacity per year in Greece [1] . 15
2.2 Distribution of wind power map [1] . 16
2.3 Two types of wind turbines unfolded [2] . 17
2.4 Turbine’s produced energy [3] . 17
2.5 Neural network [4] . 19
2.6 Convolutional neural network for classification [5] 19
2.7 Convolutional layer [6] . 20
2.8 Max pooling Layer . 20
2.9 Simple RNN architecture [7] . 21
2.10 LSTM [8] . 21
2.11 LSTM unfolded [7] . 21
2.12 Bi-directional LSTM architecture [9] . 22
2.13 Encoder - Decoder architecture [10] . 22
2.14 Multi-head Attention [11] . 24

3.1 Power - Wind plot - 30 minutes window . 27
3.2 Power - Wind plot - 30 minutes window with lines 27
3.3 Power - Wind speed plot outliers . 28
3.4 Power - Wind speed plot 1-hour interval . 28
3.5 Availability transformation plot for a portion of data 29
3.6 Park A WRF grid . 29
3.7 Architecture Overview . 30

4.1 Ground truth - Prediction lines park A . 39
4.2 Ground truth - Prediction lines old model park A 39

LIST OF TABLES

4.1 Comparison of data preprocessing park A 35
4.2 Comparison of data preprocessing park B 35
4.3 Fine-tuning activation function, park A . 35
4.4 Fine-tuning activation function, park B . 36
4.5 Comparison of feature extractors park A . 36
4.6 Comparison of feature extractors park B . 36
4.7 Comparison of temporal models park A . 37
4.8 Comparison of temporal models park Β . 37
4.9 All-in-one model . 38

A.1 Extra experiments, park A . 43
A.2 Extra experiments all-in-one model . 43

PREFACE

This thesis was developed as a part of my undergraduate studies in the Department of In-
formatics and Telecommunications at the National and Kapodistrian University of Athens,
Greece, under the guidance and supervision of Professor Emiris.

Wind Energy Prediction Using Deep Learning Architectures

1. INTRODUCTION

Wind energy is one of the fastest growing energy sources in the world. The demand is
increasing year by year. Accurate wind energy prediction is crucial for the effective oper-
ation of wind farms. It enables optimal energy generation, reduces costs because it helps
balance supply and demand, and improves the reliability of energy supply. Wind energy
forecasting has been a critical concern since the early days of wind power generation,
where it relied primarily on simple wind speed measurements. However, later on, more
sophisticated models have been developed that take into account multiple environmental
parameters, such as temperature, pressure, and wind speed, to produce accurate and
reliable forecasts. In particular, persistence , numerical weather prediction and statistical
models are some of the commonly used for that task. Recently, thanks to the advance-
ments of technology, neural networks, including deep learning techniques, are used to
perform such tasks due to their ability to handle large amounts of data and model com-
plex relationships between input and output variables

In this study, we worked on wind energy production forecasting using deep learning archi-
tectures as a predictive model. Our task is hour-ahead wind energy forecasting provided
time-series of 6 hourly steps. Our starting point is based on the method of a previous study
[12] that helped us build on and test our methods. Our input data consisted of Weather
Research Forecasting (WRF) meteorological predictions and our target data consisted
of wind farm real energy values. We trained separate models for each park’s data, with
the aim of capturing the unique patterns and characteristics of wind energy production at
each location. However, we also evaluated the performance of a single predictive model
for both parks so we developed a generalized model.

Our study is divided into four sections. In section one, through a literature review, we
provide an overview of wind energy forecasting and the neural network models utilized,
as well as the source of our input data. In section two, we present extensively our ap-
proach. We describe the method we used for preprocessing our data, the problems we
faced and the solutions we came up with. We address the models we used and the net-
works’ architecture. This study uses a plethora of components, each designed to address
specific aspects of the wind energy production forecasting problem. In particular, we cat-
egorize them into two distinct categories based on their functionality. Feature extractor
(CNN, MLP) models, used to extract spatial information on input data features and tem-
poral models (LSTM,Attention-based) used to capture temporal dependencies in the data.
Although attention-based models are a relatively novel type of neural network architecture
and have shown promise in other domains, their application to wind energy production
forecasting is still not widely explored therefore our study contributes in this direction. In
section three, we present the experimental results and provide a detailed analysis and
interpretation of the findings. In section four, we draw conclusions based on our results.

G Floros 14

Wind Energy Prediction Using Deep Learning Architectures

2. BACKGROUND & RELATED WORK

This chapter provides a comprehensive overview of the previous studies and research
conducted on the methods we will be using in this study and the topics related to it.

2.1 Wind Energy

The use of wind power, a renewable energy source generated by the wind, is anticipated
to rise sharply in the future decades. Wind energy is a local resource that can help reduce
dependence on fossil fuels [13].

Greece is a country with a very large number of islands so powerful winds occur in is-
land and coastal regions. This is especially beneficial for the growth of wind energy in the
nation. At the end of June 2022, Greece had 4,534 Megawatts of total wind power, ac-
cording to statistics released by the Hellenic Wind Energy Scientific Association (HWEA)
[1]. Figure 2.1 shows the statistical analysis broken down by year in more depth.

Figure 2.1: Capacity per year in Greece [1]

Also, Figure 2.2 shows the geographical distribution of wind power in Greece by Region.
We can see from the map that Central Greece remains at the top of the wind installations
since it hosts 1861 MW (41%) followed by the Peloponnese with 639 MW (14%) and
Eastern Macedonia - Thrace with 534 MW (12%).

2.1.1 Wind Turbines

A wind turbine is a device that converts wind’s kinetic energy into electricity. A group of
wind turbines is called a wind farm. Turbines in a wind farm supply the electrical grid
with energy. Onshore or offshore areas can host wind farms. The wind blows the turbine
blades, which are attached to a rotor. The rotor then spins a generator to create electricity.
There are two types of wind turbines: horizontal axis wind turbines (HAWTs) and vertical
axis wind turbines (VAWTs) (Figure 2.3).

HAWTs are the most common type of wind turbines. They usually have two or three long,
thin blades that look like airplane propellers. The blades are positioned so that they face

G Floros 15

Wind Energy Prediction Using Deep Learning Architectures

Figure 2.2: Distribution of wind power map [1]

directly into the wind. They have a high tower base that allows access to stronger wind
resulting in increased power output and high efficiency, since the blades always move
perpendicular to the wind, receiving power throughout the rotation. However, the cost of
their construction, transportation and maintenance is quite high and requires a complex
system of components with an additional mechanism to control the deflection of the wings
in the direction of the wind. Also, their volume sometimes disturbs the aesthetics of the
natural landscape [14].

VAWTs have smaller, wider curved blades that resemble the beaters used in an electric
mixer [15]. Unlike HAWTs they can generate electricity in any wind direction. Also their
construction, transportation andmaintenance costs are much lower because the construc-
tion of the support tower is not demanding. This is because the generator, gearbox and
other components are placed on the ground and no deflection mechanisms are needed
(Figure 2.3) VAWTs are particularly suitable for areas with extreme weather conditions and
as their wings move at relatively low speeds and so they do not pose a great accident risk
to birds and humans. But compared to HAWTs they are less efficient due to the additional
resistance created with the rotation of their blades [2].

Extensive research exists related to the improvement of the generated power of wind tur-
bines, their mode of operation with emphasis on the wind power generator and the control
of maximum power point tracking. A comprehensive review and comparison of the four
most popular Maximum power point tracking (MPPT) control methods as well as improve-
ments for each method was presented [16]. In addition, technologically advanced wind
energy conversion generators, such as brushless dual-feed induction generator, mod-
ern permanent magnet stator generators, magnet generators, etc were presented. Also,
three techniques for evaluating the performance of wind turbines (Experimental - Analyt-
ical - Computational) were analysed [17]. These methodologies aim for the wind turbine
to be designed for optimal energy production with less cost [13].

A wind turbine’s produced energy is strongly associated with wind speed.The produced
energy increases as the wind speed increases. The design and operation of a turbine
requires a certain wind speed range. The limits of this range are the cut-in speed and

G Floros 16

Wind Energy Prediction Using Deep Learning Architectures

Figure 2.3: Two types of wind turbines unfolded [2]

the cut-out speed. In particular, as Figure 2.4 shows when wind speed is too low the
wings of the turbine do not move and so power is not produced. Cut-in speed is when the

Figure 2.4: Turbine’s produced energy [3]

turbine starts spinning for the first time and generates power. When the speed of the wind
increases, the power gradually exceeds the cut-in speed and reaches the maximum limit
the turbine design can support. To avoid the risk of damage on the rotor the cut-out speed
is activated which stops the operation with the help of suitable auditors [3].

2.2 Supervisory Control & Data Acquisition

Supervisory control and data acquisition (SCADA) is an industrial process control system
architecture. The main objectives of SCADA are the collection of real-time data from
remote locations for the control of equipment and conditions, and the improvement of
industrial automation. The architecture consists of :

• Sensors and actuators which detect device features and also work as switches.

G Floros 17

Wind Energy Prediction Using Deep Learning Architectures

• Field controllers which are directly connected to sensors or actuators. The controlers
can be remote terminal units (RTUs) or logic controllers (PLCs),

• SCADA supervisory computers that collect data and issue commands on field con-
trollers,

• HMI software suitable for presenting, processing and modification of data.

• Communication infrastructure for the communication of all system’s elements

SCADA systems have been adopted bymany businesses and organizations tomake data-
driven decisions about their industrial processes. Specifically they monitor and control
infrastructure processes (e.g. water distribution, transport and distribution of solar energy
- wind farms etc.) [18].

2.3 WRF

The Weather Research and Forecasting (WRF) model is a highly flexible and widely used
numerical weather reflection system created through a collaborative effort between the Na-
tional Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric
Administration (NOAA), and several universities and government bodies. Its development
began in the late 1990s as a successor to the MM5 (fifth-generation Mesoscale Model)
[19]. The WRF model was officially launched in 2002 and has been continuously updated
and improved since then. It has flexible, open source code adaptable to all computing
systems [20]. It is used by researchers, meteorologists and other scientists worldwide to
study weather and climate, as well as to create short- and long-term climate projections.
Also, the WRF model can be used to predict the production of renewable energy systems,
such as wind and solar energy, with the main purpose of optimizing these systems and in-
tegrating them into electricity distribution networks. Research reports that WRF provides
confidence in the accuracy with which it can be used to predict the performance of oper-
ational wind farms [21].

2.4 Neural Network

Artificial intelligence has taken center stage in computer science thanks to advancements
in technology and the creation of fast, powerful computers. Neural networks are a key tool
in this field. A neural network leverages machine learning (ML) algorithms to simulate the
functions of the human brain. Neural networks process large amounts of data and solve
complex problems. Their structure is based on neuron connections of various levels and
therefore mimics signaling processes of biological neurons [22].

2.4.1 Architecture

As shown in the Figure 2.5, a neural network consists of layers of nodes distributed in an
input layer, one or multiple hidden layers, and an output layer. Neurons that connect to
one another are called nodes. The output layer provides the information after the hidden
layers have processed the data that was input by the neurons.

G Floros 18

Wind Energy Prediction Using Deep Learning Architectures

Figure 2.5: Neural network [4]

A typical neural network includes a fully connected layer of neurons, which means that
every neuron’s output serves as an input for every neuron in the next layer. The number
of layers in a neural network varies and describes the depth of the network [23]. The
architecture of neural networks is differentiated by various factors such as their depth, the
number of their hidden layers and the input-output capabilities of each node [22]. The
depth, number of hidden layers, and input-output capabilities of each node are just a few
of the characteristics that distinguish neural network architecture [22].

2.4.2 Convolutional Neural Networks

Convolutional neural networks are mainly concerned with problems of advanced applica-
tions such as face recognition, natural language processing (NLP), optical character re-
cognition (OCR) and image classification. A typical convolutional neural network (CNN)
is made up of a variety of layers, each of which is in charge of a specific task within the
network. Convolutional, pooling, and fully connected layers are the most frequent types
of layers used to build CNNs [23].

A simple architecture of a CNN image recognition network is described in the Figure 2.6.

Figure 2.6: Convolutional neural network for classification [5]

G Floros 19

Wind Energy Prediction Using Deep Learning Architectures

2.4.2.1 Convolutional layer

The convolutional layer is the most important layer of a CNN, because it is responsible for
feature detection. It accepts, as inputs, images or feature maps and applies different fixed
size filters along these inputs. It does so by calculating the inner product of the weights
of the filters with the corresponding area of the input. These filters can identify visual
features in an image, such as oriented edges and corners, and when combined with an
image, produce a feature map. By successively applying new filters to the existing feature
maps, the network is able to detect higher order features and ”know” the input better [23].

The convolution operation applies successive transformations of the input with the help
of a very small, local function called a ”kernel”. The “kernel” slides into each position and
computes a new feature as a weighted sum of the input it is applied to (Figure 2.7).

Figure 2.7: Convolutional layer [6]

2.4.2.2 Pooling Layer

The pooling layer, which usually follows a set of successive convolutional layers, is in
charge of downsampling the feature maps. Pooling layers produce as an output the result
of a function on a neighboring region of the feature map. The max function and the aver-
age function are frequently used functions on these nearby adjacent map regions. Each
function defines a different type of pooling layer, a max-pooling layer (Figure 2.8) and an
average pooling layer respectively [23].

Figure 2.8: Max pooling Layer

2.4.3 Long Short Term Memory Networks

A special type of recurrent neural network (RNN), long short-termmemory networks (LSTM)
are capable of learning ”long-term dependencies,” a problem that simple RNNs (Figure
2.9) could not handle. They fall under the category of recurrent neural networks, which

G Floros 20

Wind Energy Prediction Using Deep Learning Architectures

Figure 2.9: Simple RNN architecture [7]

includes networks that work with sequences of data and whose length of inputs and out-
puts can be variable. They were initially introduced in 1997 [24], improved, and are now
often utilized in a range of difficult issues. Long-term memory systems are intended to
retain knowledge over time, and due to the way they are built, they can be trained to do
so considerably easier [8].
In the Figure 2.10 we see that the recurrent unit A of an LSTM network has a different
structure than a typical RNN.

Figure 2.10: LSTM [8]

More specifically, in the Figure 2.11 the horizontal line that runs through the top of the

Figure 2.11: LSTM unfolded [7]

diagram and the entire chain is called the cell state, and easily conveys information with
small linear interactions. The σ and tanh layers with the help of a series of gates have the
ability to remove or add information to the state of the cell. For example, at the decision

G Floros 21

Wind Energy Prediction Using Deep Learning Architectures

level whether to ’keep’ or ’throw’ information, the cell state will be taken by the forget
gate(ft). Accordingly, the decision regarding which new information should be stored in
the cell state will be taken by the input gate(it) in cooperation with the tanh layer. Next is
the update of the state of the cell(ct). The decision about which data will be sent to the
output is made by the output gate(ot) with the help of the tanh layer [8].

The LSTM architecture described above has a number of variations. An important ex-
tension is the bi-directional LSTM (Figure 2.12), which trains two LSTMs simultaneously,

Figure 2.12: Bi-directional LSTM architecture [9]

one in positive and one in negative time direction, merging the results for each time step.
Another important architecture based on LSTMs is the encoder - decoder architecture (Fig-
ure 2.13) [25]. This architecture uses a multi-layered short-term memory LSTM network

Figure 2.13: Encoder - Decoder architecture [10]

to map the input sequence to a fixed-dimensional vector and then another deep LSTM to
decode the target sequence from the vector. This architecture therefore creates a type of
Seq2Seq model, a model that takes a sequence of items (words, letters, time series, etc)
and outputs another sequence of items. The encoder and decoder are trained together to
maximize the conditional probability of a target sequence given a source sequence. This
architecture is often used in problems that have to do with Machine translation, speech
recognition, video captioning, text summarization and a lot more.

2.4.4 Transformers - Self-Attention

2.4.4.1 Attention

Even though the attention mechanism is now used in various problems like image cap-
tioning and others it was initially designed for Neural Machine Translation tasks using

G Floros 22

Wind Energy Prediction Using Deep Learning Architectures

Seq2Seq Models to permit the decoder to utilize the most relevant parts of the input se-
quence in a flexible manner in recurrent neural network.

The attention mechanism is introduced [26] and defined as the calculation of a context
vector. In order to do so, a weighted average is computed from the encoder’s hidden
states at each step of the decoder. Each state’s contribution to this average is determined
by an alignment score. Each state of the encoder is specified as a key and value vector,
with the previous (last) hidden state of the decoder typically being represented as a query
vector.

The result is a weighted average of the value vectors, where the weights are set by the
function that compares the query and key vector compatibility [27]. Keys and values can
be represented by different sets of vectors. The equations described are shown below:
For an input sequenceX = (x1, x2, ..., xn) of length n The context vector c is computed as:

c =
n∑

j=1

ajvj (2.1)

The weight aj is computed by:

aj =
exp(eqj ,kj)∑n
i=1 exp(eqi,ki)

(2.2)

e(q, k) is the alignment score function , researchers have proposed dot product attention
[28] while a more recent work [11] proposed it scaled by 1/

√
dk , where dk is the dimension

of key vector in order to counteract really small gradients.

e(q, k) =
(q)⊺k√

dk
(2.3)

2.4.4.2 Self-Attention

The method by which we apply the attention mechanism to each position of the same
sequence is known as the self-attention mechanism [11]. For each step of the sequence,
we generate three vectors (query, key, and value) and use the xi query, key and value
vectors to implement the attention mechanism.

This results in the transformation of an input sequence of n time steps X into a sequence
of n time steps Y , where each step yi includes the information of xi along with how xi is
related to the other positions ofX. By accumulating the values of the query, key, and value
vectors in the tables Q, K, it is possible to calculate the aforementioned relationships for
the full sequence in parallel.

Attention(Q,K, V) = Softmax(QK⊺
√
dk

)V (2.4)

2.4.4.3 Multi-head Attention

The idea behind Multi-head Attention is allowing the model to receive information from
different representation spaces at different positions [11]. Instead of applying the attention
mechanism with dmodel sized keys, values and queries it was proposed that we project the

G Floros 23

Wind Energy Prediction Using Deep Learning Architectures

keys, values, and queries h times with various linear projections of size dk, dk, and dv
[11]. In each of these projections, we apply the attention mechanism, which considers
dv - output values. The result is obtained after concatenating the h linear projections
and projecting them one final time (Figure 2.14). The idea behind Multi-head Attention is

Figure 2.14: Multi-head Attention [11]

allowing the model to receive information from different representation spaces at different
positions.

MultiHead(Q,K, V) = Concat(head1,, headh)WO (2.5)

where
headi = Attention(QWQ

i , KWK
i , V W V

i) (2.6)

For each of the projection matrices, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv

and WO ∈ Rhdv×dmodel . It is further mentioned in the paper that due to the reduced dimen-
sion of each head the computational cost is similar to that of single-head attention.

Another attention-based architecture introduced [11] is the transformer encoder, or trans-
former block. Essentially, a transformer block consists of self-attention mechanism fol-
lowed by a multilayer perceptron (MLP).

2.4.4.4 Positional Encodings

Attention mechanism lacks positional information and therefore treats each element of the
data sequence as independent of the other. Therefore, position information needs to be
added to the model solely to preserve information about the order of time steps. Positional
encoding is the means by which knowledge of the order of the data in a sequence is main-
tained. Positional encodings can be both fixed and learned, they are usually aggregated
and added to the input data values.In the case of fixed positional encodings, the following
Trigonometric Sine and Cosine functions were proposed [11].

PE(pos, 2i) = sin(pos/n2i/dmodel) (2.7)

G Floros 24

Wind Energy Prediction Using Deep Learning Architectures

PE(pos, 2i+ 1) = cos(pos/n2i/dmodel) (2.8)

where pos defines the position in the input sequence, i is the dimension and n refers to a
user defined variable(recommended value is 10.000).

Learned positional encodings originally proposed in convolutional seq2seq [29] learn a
mapping function through the training process.

2.5 Wind Energy and Speed Prediction

Wind energy forecasting is closely related to wind speed forecasting. Therefore, various
methods included in this section refer to wind forecasting. Wind energy forecasting can be
distinguished into short (up to 6 hrs), medium (up to a day), long (up to a week), and very-
long term forecasts. Several techniques have been developed for wind energy prediction,
ranging from traditional statistical methods to advanced artificial intelligence techniques
such as neural networks.

2.5.1 Traditional Methods

One of the traditional methods used for wind speed prediction is the persistence method,
where the future wind speed is assumed to be equal to the current wind speed. However,
this method is not accurate as wind speed can vary significantly over time. Another tra-
ditional method is the autoregressive integrated moving average (ARIMA) model, which
is a statistical method used for time-series forecasting. A study was conducted in US to
examine the use of those statistical time-series models in order to predict short-term wind
power output up to six hours in advance [30]. In Egypt, a similar study was conducted
comparing the two methods for short-term predictions [31]. For Day-ahead prediction,
f-ARIMA model, an variation of ARIMA was able to improve significally the accuracy of
wind speed forecasting significally compared to the persistence method [32]. Machine
learning algorithms such as SVM were also used for short term prediction wind prediction
with good results [33].

2.5.2 Neural Network Methods

One of themost commonly used neural networkmodels is themultilayer perceptron (MLP).
Experiments using several MLP based neural networks for 1-h-ahead forecast of wind
speed were conducted using data observations in North Dakota (US) [34], and concluded
that combining forecasts from different artificial neural network (ANN) models is needed to
overcome the inconsistency issue in model selection. In Greece, 24-hours ahead hourly
wind speed predictions using an MLP was made in Tilos using wind speed and pressure
historical data [35]. A CNN-LSTM architecture for day ahead wind speed forecasting re-
lying on WRF predictions produced some interesting results [12].

G Floros 25

Wind Energy Prediction Using Deep Learning Architectures

3. METHOD

In this chapter we present our method. We adapted the method suggested by [12] by
adding new models and using a different approach on data preprocessing. We have
structured this section in 3 subsections 3.1, 3.2, 3.3. In the first subsection we present
the method we used for preprocessing our data, in the second we discuss the models we
adopted to achieve our goal and in the third we describe the training and evaluation of our
models.

3.1 Data Preprocessing

We present our input and target data and the methods we use to prepare them for the
experiments. We work with data for two different parks. At first we discuss the target data
preprocessing in 3.1.1. Secondly we describe the input data preprocessing in 3.1.2 and
lastly we present the data normalization techniques we apply in 3.1.3.

3.1.1 Target Data

The target data used in this study was produced from a SCADA system and consists of
real energy measurements from two different wind energy farms located in central Greece.
Park A consists of 16 wind turbines with a total of 12,000 kW maximum capacity while
park B consists of 17 wind turbines with a total of 10,200 kW maximum capacity. This
target data have weaknesses regarding the turbines availability and wind speed when
it was generated. More specifically over a period of time, turbines may not perform at
one hundred percent due to maintenance or economy reasons. As a result, it is possible
some of our energy values are inaccurate (considered as noise), so we need to identify
and eliminate them. Moreover, we need to exclude energy measurements for wind speeds
when turbines do not work.

First, we are provided with real wind speed measurements for 10 minute time intervals and
energy measurements for every 15 minute intervals and we adjust them to 30-minute time
intervals. To do this adaptation we calculate the sum of two near 15-minute points energy
measurements and the average wind speed of the corresponding points. Through this
adjustment we have the same time scale and a good number of data points for filtering.
Using these adjusted values we plot the energy - wind speed diagram (Figure 3.1). The
points on the diagram form a dense curve.

Second, by using the diagram we filter the noise. We consider the points outside of the
curve as outliers and possible low availability points. In order to aggregate them we draw
the line segments of Figure 3.2. These segments correspond to the following functions:

f1(x) =

{
700 · (x− 7.5) if 7.5 ≤ x ≤ 12.5

57.14 · x+ 2, 785.75 if 12.5 ≤ x ≤ 30
(3.1)

f2(x) = 635.14 · x− 970.28 if 2 ≤ x ≤ 9.4 (3.2)

We remove from our data set the data points outside these line segments. We also remove
data points that did not fulfill the following criteria:

G Floros 26

Wind Energy Prediction Using Deep Learning Architectures

Figure 3.1: Power - Wind plot - 30 minutes window

Figure 3.2: Power - Wind plot - 30 minutes window with lines

• Minimum energy value of 200kW. The reason we do this is that when the park is
closed it is possible for the wind turbine blade to be slightly displaced by the wind.
In these cases we have very low energy values that we want to rule out.

• Wind speed values less than 5 m/s and more than 25 m/s, The reason for this is that
these values are turbines’ cut-in and cut off speeds.

The outliers removed are displayed in Figure 3.3.

Thirdly , we adjust the energy and wind speed values from 30-minute time intervals to
1-hour using the same formula as we did earlier. Further elimination of the data is also
done in this phase. In particular if any sub-value of energy of this hour is missing (it has
been removed in the previous step) then the entire time period of one hour is removed
from the data set as it is considered a point of low availability.

Finally, due to the specifications of the park, we limit the maximum price of energy to
12,000 kWh for park A and 10,200 kWh for park B. We set all exceeded values to this
value. The final energy-wind speed plot is presented in Figure 3.4

The most recent energy data were provided with the percentage of turbines availability. If

G Floros 27

Wind Energy Prediction Using Deep Learning Architectures

Figure 3.3: Power - Wind speed plot outliers

Figure 3.4: Power - Wind speed plot 1-hour interval

availability was not 100 percent then we transform them using the formula before starting
the filtering process:

f(x) =
x

availability · 100 (3.3)

The variation in energy values before and after the transformation is depicted in Figure
3.5.

3.1.2 WRF Input Data

The input data used in this study consisted of 18 WRF predicted features : X and Y com-
ponents of wind, temperature, and pressure, all at 10,80,100,120 meters height, surface
pressure, snow water equivalent and daily total snow and ice.

It was extracted from parameterizedWRFmodels executed on a rectangular region cover-
ing a large fraction of mainland Greece, provided by the work of [36]. The model produces
a WRF grid that records weather patterns, such as temperature or wind patterns that may
be influenced by the environment. In particular, we get forecasts at every location of the

G Floros 28

Wind Energy Prediction Using Deep Learning Architectures

Figure 3.5: Availability transformation plot for a portion of data

grid with a 1 km resolution. Using the specified coordinates (longitude and latitude) of the
wind parks we obtain the grid for the area of interest from the initial WRF (Figure 3.6). For

Figure 3.6: Park A WRF grid

each point of this grid the 18 WRF predicted features were generated for an hour interval.

In the preprocessing phase the input data was matched with the target data using time
criteria. In particular, for each target label corresponding to a timestamp of t hours we
saved the WRF predictions for the t, t− 1, ..., t− 5 hours.

As a result, each input element forms the following vector shape:

timesteps× park_grid_height× parks_grid_width×wrf_features (3.4)

For our parks of interest, park A has a 7 × 8 grid, while park B has a 6 × 8 grid. As
mentioned above, the input data was generated for 6 time steps and a total of 18 features
for each grid point.

G Floros 29

Wind Energy Prediction Using Deep Learning Architectures

3.1.3 Normalization - Standardization

After aggregating our data, we normalize them in [0, 1] with the following techniques. We
use feature-wise normalization by applying ”max - min”(3.5)

X =
X −minXtrain

maxXtrain −minXtrain

(3.5)

or ”z-score”(3.6) normalization

X =
X − µ(Xtrain)

σ(Xtrain)
(3.6)

where µ describes the mean value and σ the standard deviation, depending on the exper-
iment. We always normalize our input data, however depending on the experiment, our
target data may not be normalized.

3.2 Models and components

For the implementation of the neural networks we used python’s programming language
keras library. Our architecture overview consists of a feature extractor component with a
purpose of identifying geographical trends and a temporal model whose goal is to capture
temporal patterns. An architecture overview is displayed in Figure 3.7. The models output
is described as:

y = h ◦ g ◦ f(x) (3.7)

Where f represents the feature extractor, g represents the temporal model and h is the
output MLP. This section is structured in 3 subsections. In the first we describe the feature
extractor methods (3.2.1), in the second we discuss the temporal models (3.2.2) and in
third we describe some extra components we used (3.2.3).

Figure 3.7: Architecture Overview

G Floros 30

Wind Energy Prediction Using Deep Learning Architectures

3.2.1 Feature Extractors

To extract meaningful spatial information we use several methods. We use aConvolutional
neural network (3.2.1.1), the mean vector (3.2.1.2), and the central vector (3.2.1.3). We
analyse them below.

3.2.1.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is defined as

f : RH×W×D 7−→ RD′ (3.8)

where H and W represent the WRF grid’s height and width and D represents the input
features dimension. H and W are set to 7 and 8 for park A and 6 and 8 for park B.D
represents the input features number that is equal to 18 andD′ represents output features
dimension that is equal to 64.

We use an architecture that includes convolutional, pooling layers and dropout layers.
Specifically, each CNN building block includes a convolutional 2D layer with 16 or 32 filters
of 3 × 3 kernel size followed by a Leaky ReLU activation function and a max pooling layer
of size 2 × 2 to reduce the grid’s dimensions. Finally, dropout layers are used between
blocks to prevent overfitting. Convolutional layers were applied seperately on each time
step. The choice behind using small convolutional filters and a small pooling window is
an attempt to reduce information loss. By using Leaky ReLU instead of ReLU we avoid
the dying ReLU problem(cite).

3.2.1.2 Mean Vector

Another approach we deploy is to utilize the mean 18 WRF features of all the points of the
WRF grid instead of using all the feature vectors in the grid.

−→v =
1

H ·W

H∑
i

W∑
j

vi,j (3.9)

H and W represent height and width. This results in an output shape of 18 features for
each of our 6 time steps.

3.2.1.3 Central Vector

Similarly with the mean vector method, we keep the central 18 WRF features of all the
points of theWRF grid for each time step. To determine the central WRF point we compute
the turbines’ mean coordinate and choose the WRF point with the smallest manhattan
distance(L1 norm) to it. That is our central point.

G Floros 31

Wind Energy Prediction Using Deep Learning Architectures

−→yi = (lati, longi)

−→µ = (
1

N

N∑
k=0

latk,
1

N

N∑
k=0

longk)

L1(−→yi ,−→µ) =
2∑

j=0

|yij − µj|

c(−→yi ,−→µ) = argmin
i

L1(yi,−→µ)

(3.10)

Where N represents the number of wind turbines, µ represents their mean coordinates, yi
represents the coordinates of each WRF points and c represents the index of the central
vector. We keep the features of point (3, 3) for park A, and point (2, 4) for park B. This
results in an output shape of 18 features for each of our 6 time steps.

All the above methods have been used in the different experiments of the study. In the
case of mean and central vector method a Multi-layer perceptron (MLP) with one hidden
layer and output size 64 with a ReLU activation function follows. The MLP is described as
followed

f : RD 7−→ RD′ (3.11)
where D represents the input’s number of features and D′ the output features number.
The purpose of using MLP is to feed our temporal model with extra features. The MLP in
our method receives 18 input features and outputs 64.

3.2.2 Temporal Model

After extracting the output from our feature extractor component, we feed it to our tem-
poral model component. We employ the LSTM (3.2.2.1), Self-Attention (3.2.2.2), and
Transformer block (3.2.2.3) architectures that are analysed below.

3.2.2.1 LSTM

Our LSTM is defined as:
g : RT×D 7−→ RD′ (3.12)

where T represents the number of time steps, D the number of input features and D′ the
number of output features. In our method we input 64 features, we use an LSTM with a
hidden size of 256 nodes followed by a dropout layer of 0.2 dropout rate. That results in
an output shape of 256 features. We also experiment with bi-directional LSTMs of 256
hidden size nodes. In that case our output features are 512 since the two direction LSTM
outputs are concatenated.

3.2.2.2 Self-Attention

To compute attention, we use keras’ MultiHeadAttention based on the paper [11]. In our
method we use as key and value dimension the value 64 the same as the features input
dimension. Our model is defined as:

g : RT×D 7−→ RT×D′ (3.13)

G Floros 32

Wind Energy Prediction Using Deep Learning Architectures

where T represents the number of time steps, D the number of input features and D′ the
number of output features. The model’s output is computed and added back on the input.
We flatten the output and end up with 384 final features.

3.2.2.3 Transformer Block

A transformer block method is an extension of self-attention, as we add on it an MLP. For
the needs of our study, we choose an MLP with one hidden layer and output size 64 with
a ReLU activation function. Transformer blocks have the same input and output shape.
As in the case of attention, here also, we flatten the output and end up with 384 output
features as a final shape.

3.2.3 Extra Components

Some additional components featured in our experiments are described below.

3.2.3.1 Positional Encodings

To receive positional information for the attention and transformer block models, we also
experiment with learnable and fixed positional encodings used in other works [37, 11] .
We receive input information from feature extractor models and we add the computed
positional information of the same shape to it. We then forward the output on attention
or transformer block. Positional encodings are incorporated into the input data using the
following formula:

w = PE(t) + x,

t ∈ Z
PE : R → RD

w : RN×D → RN×D

(3.14)

where x denotes the input data and w represents the final input data after the addition of
positional encodings.

3.2.3.2 Output Layer

The output layer, is a fully connected layer (an MLP) followed by an activation function that
outputs one value. It is implemented after our Temporal Model and generates the model’s
projected energy value. We conduct tests with a ReLU activation function, that outputs
values on [0,+∞), and Sigmoid activation function, that outputs values on [0, 1]. We also
conduct some experiments without using any activation function, that outputs values on
[−∞,+∞].

3.3 Training & Evaluation

In this subsection we describe the configuration we use to train and evaluate the architec-
tures we presented in 3.2.

G Floros 33

Wind Energy Prediction Using Deep Learning Architectures

Regarding the loss function, we use mean absolute error (MAE) which is the L1 norm and
we add the loss over training batches . MAE is given by

MAE =
1

nsamples

nsamples∑
i=1

|(yi − yp)| (3.15)

Where yi is the actual energy value and yp is the predicted value.
In some experiments we use sigmoid activation function that outputs values in [0,1]. There-
fore, we slighty modify mae to normalise yi, so that it is in the same range as yp

MAEcustom =

nsamples∑
i=1

|(yi −minymaxy − yp)| (3.16)

We also use Adam as our optimiser, with learning rate 0.001 and batch size is set to 48. In
regard to the validation and test sets we use during training, they are a part of the data set
that consist of data equally distributed through seasonality. That is because we want our
network to predict accurate values for all seasons without biases. On both parks we select
data from the same exact months for validation and test set. We have no overlaps. All
models are trained for 100 epochs and the model with the lowest validation loss is saved
and evaluated. The metric used to evaluate the test set is Mean normalized absolute
error(ΜΝΑΕ)

MNAE =
1

nsamples

nsamples∑
i=1

|yi − yp|
c

(3.17)

Where yi is the actual energy value and yp is the predicted value and c is a constant value.
It is set to 12.000 in our experiments.

G Floros 34

Wind Energy Prediction Using Deep Learning Architectures

4. RESULTS & DISCUSSION

In this chapter we present the results we obtained from the experiments and discuss them.

4.1 New / Old Data Comparison

First, we present the results we achieved for applying our method of preprocessing. We
compare them with the previous method of preprocessing. We are using minmax normal-
ization and the CNN + LSTM model as described in section 3.2. The models are tested
over the same test set and we are also maintaining the same validation set.

Table 4.1: Comparison of data preprocessing park A

Data MNAE
Old preprocessing 14.1656 ± 0.3885

Ours 12.3939 ± 0.2880

Table 4.2: Comparison of data preprocessing park B

Data MNAE
Old preprocessing 13.3116 ± 0.4404

Ours 13.0028 ± 0.6116

We noticed significant changes of the metrics we acquired with the old data compared to
the new in both parks. In particular, the metric improved on both parks, especially in park
A (12.3939 compared to 14.1656) , but also in park B (13.0028 compared to 13.3116).

These results highlight the importance of data preprocessing as a critical step in the de-
velopment of accurate and reliable neural network models. They also show the poten-
tial benefits that can be achieved by implementing appropriate preprocessing techniques.
Our suggested preprocessing method removed irrelevant or erroneous information from
the dataset and ensured that the neural network is not fed with any biases.

4.2 Default Model Finetuning

In this section we will present the results we obtained from fine-tuning our default model.
Those results helped us choose the configuration we used on the next experiments. We
tried out bi-directional LSTM, different output functions and normalization techniques.

Table 4.3: Fine-tuning activation function, park A

Normalization Output Activation function MNAE
Min-max ReLU 12.3939 ± 0.2880
z-score Sigmoid 11.7516 ± 0.3657
Min-max - 12.2239 ± 0.2290

Based on those experiments we selected the normalization technique and output activa-
tion function we used for the next experiments. Z-score normalization and and sigmoid
output activation function outperformed the rest. While the differences are not significant,
it seems like that configuration fits the distribution of our data better.

G Floros 35

Wind Energy Prediction Using Deep Learning Architectures

Table 4.4: Fine-tuning activation function, park B

Normalization Output Activation function MNAE
Min-max ReLU 13.0028 ± 0.6116
z-score Sigmoid 12.6021 ± 0.4108

4.3 Feature Extractors

In this section we will present the results we achieved from experimenting with different
feature extractor methods that we described in subsection 3.2.1. We are using LSTM as
our temporal model.

Table 4.5: Comparison of feature extractors park A

Feature extractor MNAE
CNN 11.7516 ± 0.3657

Mean vector 12.1674 ± 0.2057
 Central vector 12.0207 ± 0.2573

Table 4.6: Comparison of feature extractors park B

Feature extractor MNAE
CNN 12.6021 ± 0.4108

Mean vector 12.4049 ± 0.3539
Central vector 12.1578 ± 0.0937

The results we obtained are interesting. For park A, the central vector method performed
a bit better than mean vector method (12.0207 compared to 12.1674). Compared to the
other methods, CNN gives us the best metric (11.7516). Despite that, the results of CNN
do not have big differences with the other methods. An explanation is the fact that the
input WRF values are close from one point of the grid to another and the spatial pat-
terns the CNN is designed to capture are not that significant. For park B, central vector
outperformed the other methods (12.1578). CNN in that case did not help our model as
expected. A possible explanation is, the geographical distance between some points of
the grid and the location of the turbines created instability. This instability could be due to
the fact that the CNN may have difficulty capturing the spatial relationships between these
distant points, leading to poor performance.

The results of the experiments raise questions about the essentiality of CNNs for our
problem. As our experiments showed that a simpler model achieved similar or even bet-
ter performance. To further improve the performance models that use CNN, it is worth
considering the possibility of modifying the dimensions of the WRF grid.

4.4 Temporal Model

In this section we will present the results we obtained from experimenting with the differ-
ent temporal models described in subsection 3.2.2. We are using CNN as our feature
extractor and Sigmoid output activation with z-score normalization and custom mae as a
loss function.

G Floros 36

Wind Energy Prediction Using Deep Learning Architectures

Table 4.7: Comparison of temporal models park A

Temporal model Pos. encodings MNAE
LSTM - 11.7516 ± 0.3657

Bi-LSTM - 12.4621 ± 0.5107
Αttention - 12.2100 ± 0.5640
Attention Learnable 11.9796 ± 0.3330
Attention Fixed 12.0599 ± 0.3525

Transformer Block - 12.2671 ± 0.4067
Transformer Block Learnable 11.8685 ± 0.2706
Transformer Block Fixed 11.6368 ± 0.2032

2 Transformer Blocks - 11.9848 ± 0.2606
2 Transformer Blocks Learnable 11.9009 ± 0.1874
2 Transformer Blocks Fixed 12.0535 ± 0.3532

Table 4.8: Comparison of temporal models park Β

Temporal model Pos. encodings MNAE
LSTM - 12.6021 ± 0.4108

Bi-LSTM - 12.4230 ± 0.3290
Attention - 13.0851 ± 0.3866
Attention Learnable 13.0798 ± 0.4014
Attention Fixed 12.8692 ± 0.2602

Transformer Block - 12.9023 ± 0.6318
Transformer Block Learnable 12.5219 ± 0.4044
Transformer Block Fixed 12.9150 ± 0.5425

2 Transformer Blocks - 13.1800 ± 0.6846
2 Transformer Blocks Learnable 12.6517 ± 0.3731
2 Transformer Blocks Fixed 12.7696 ± 0.4674

For park A, we observe that metrics are close in all cases. The best performance was
achieved using a Transformer block with fixed positional encodings as it outperforms
the LSTM (11.6368 compared to 11.7516). We observe that two stacked transformer
blocks compared to one slightly improve the metrics (11.9848 compared to 12.2671). Po-
sitional encodings tend to improve results in both attention and transformer block com-
ponents. In particular, learnable positional encodings help attention (11.9796 compared to
12.2100) and fixed positional encodings help single transformer block significantly (11.638
compared to 12.2671). However, major improvement is not observed when combining
them with two stacked transformer blocks. Learnable slightly help the models (11.9009
compared to 11.9848) while fixed produce slightly worse results (12.0535 compared to
11.9009).

We obtain similar results for park B. Fixed positional encodings improve attention model
(12.8692 compared to 13.0851) and learnable positional encodings improve Transformer
Block significantly (12.5219 compared to 12.9023). Two Stacked transformer blocks in
this case do not improve the model as they produce a worse results compared to a single
transformer block (13.1800 compared to 12.9023). In that case, using fixed positional
encodings helps the model (12.7696 compared to 13.1800) and learnable positional en-
codings also seem to help (12.6517 compared to 13.1800). The best metric though is
obtained by a bidirectional LSTM (12.4230). Combining information from both time direc-
tions proved useful for park B, long term dependencies captured by bi-LSTM helped the

G Floros 37

Wind Energy Prediction Using Deep Learning Architectures

model improve the performance, differences are not significant though.

Overall, LSTM architectures and attention-based architectures showed comparable per-
formance when used to process and analyze our time-series data. That suggests that
both architectures can be considered as viable options as temporal models in our task.
As for positional encodings, our models improved considerably with their addition in most
of the cases. That is somewhat expected since they offer valuable positional information.
Comparing learnable and fixed positional encodings, we do not observe major differences
between them. Learnable position encodings thought improved themodel in all cases they
were used.

4.5 Multiple Parks - All in One Model

In this section we share the findings from combining the data from twomodels and creating
an all-in-one model. Parks A and B are 6km distance apart, and meteorological WRF
predictions should be similar we combine park data and create an all-in-one model. We
monitor the metrics over both test sets and the best model when both validation losses
decrease. We use the CNN + LSTMmodel, sigmoid output activation function with z-score
normalization and custom mae.

Table 4.9: All-in-one model

MNAE park A MNAE park B
Single, A 11.7516 ± 0.3657 -
Single, B - 12.6021 ± 0.4108
All-in-one 11.9604 ± 0.3097 11.9030 ± 0.3462

The findings of this experiment are really promising. The metric of park A gets a bit worse
(11.9604 compared to 11.7516). This has to do with the fact we have different max values
on park A and park B. In particular, park A values are capped on 12 kWh and park B values
are capped on 10.2 kWh. As a result the all-in-one model misses some high values for
park A.

However, park B benefits a lot (11.9030 compared to 12.6021) from this merge. That leads
us to think that the concept of merging the park train data might work if we encode the
information of which park data come from for our model.

This experiment provides us with some interesting insights. It shows that transfer learning
between two nearby parks is a viable option. By leveraging data from two different parks,
we were able to achieve partial improvement in our forecasting accuracy. Moreover, we
understand that this transfer learning approach can also be used to make predictions
about a new park that has limited data available by using existing data from a nearby park
with similar weather patterns.

4.6 Visualization

In this section we are presenting two visual representations of test set predictions.

In Figure 4.1 we have included a visual representation of park A best model’s (CNN +
transformer block + fixed pos.encodings) predicted values compared to the actual ground
truths. We have also included in Figure 4.2 a visual representation of the predictions of the

G Floros 38

Wind Energy Prediction Using Deep Learning Architectures

Figure 4.1: Ground truth - Prediction lines park A

Figure 4.2: Ground truth - Prediction lines old model park A

model trained with old preprocessing data (Table 4.1). As previously mentioned, the visual
predictions of the old data model a certain degree of noise, which is also supported by the
evaluation metric. In addition, it can be observed that the low and high energy prices
are not modeled as accurately as they are with our best model. As we have already
mentioned and the metric suggest, the predictions we acquire in the second case are
are noisier. Furthermore, we can observe that especially low energy prices but also high
energy prices are modeled better with our best model.

G Floros 39

Wind Energy Prediction Using Deep Learning Architectures

5. CONCLUSIONS & FUTURE WORK

The primary objective of this thesis was to investigate the effectiveness of various deep
learning architectures for energy prediction using WRF data and actual measurements
from two wind farms.

The first part of our project involved developing a data preprocessing method based on
our foundation paper [12]. The testing was performed in comparison with this paper. The
results showed that our proposed method exhibited better performance on the same exact
test set. These findings indicate the crucial role of efficient preprocessing in such tasks as
it made a great impact on the performance of our models. Overall we consider it as one
of the most important aspects in such tasks.

In the second part we implemented the model architecture. Our model architecture con-
sisted of a feature extractor and a temporal model. In particular, as feature extractors
we implemented the CNN, mean vector and central vector approaches. Our results were
similar in all cases as in the first park CNN performed to some extent better while in the
second park the central vector approach outperformed the rest. That raises questions
about the essentiality of CNNs for our problem as our experiments showed that a simpler
approach achieved similar or even better performance. For temporal models, we com-
pared LSTM, attention, and transformer blocks with the addition of positional encoding.
Our results showed that attention-based perform comparably and even better than LSTM
architectures as temporal models. In addition while no clear preference emerged between
learnable and fixed positional encodings, their addition to attention-based models was es-
sential.

Finally, we built an all-in-one model using data from both wind farms, which showed that
transfer learning between nearby parks is a promising approach. By leveraging data from
multiple sources, we achieved partial improvement in forecasting accuracy. That also
demonstrated the viability of using transfer learning to make predictions for a new park
with limited data by utilizing existing data from a nearby park with similar weather patterns.

As a whole, it was a really interesting project since we had the freedom to experiment with
a variety of aspects of the problem at hand. We gained valuable insights into the role of
efficient preprocessing and the behavior of several deep learning architectures for feature
extraction and temporal modeling. Certain limitations this study faced is the lack of data,
the data provided were valuable but a larger dataset would have provided more robust and
reliable results. In addition, is worth noting that the data provided were noisy and required
denoising. While our method addressed this issue, it remains a challenge that requires
further exploration. In addition, although the WRF provided valuable meteorological fea-
tures for our input data, it is a forecasting model that contains inherent errors. To address
this, one potential improvement could be to incorporate actual meteorological data in order
to model the WRF’s historical prediction errors. By doing so, we could potentially improve
the accuracy of our model by accounting for the discrepancies between the predicted and
actual meteorological values. Additional improvements to our model could involve lever-
aging aerial images of the wind farm to further encode the park’s location and geography.
This extra signal can provide valuable information about nearby terrain features, such as
hills or valleys, that can affect meteorological patterns and improve the model’s ability to
make accurate predictions. Another interesting approach could be the use of unsuper-
vised pre-training tasks (self-supervised learning) [38]. By training the model on WRF
data from several areas in Greece for a pre-training task, the model can learn common
patterns and features in the data that are relevant to wind energy prediction. This can

G Floros 40

Wind Energy Prediction Using Deep Learning Architectures

provide a strong foundation for the model to make accurate predictions for individual wind
parks. After pre-training, the model can be fine-tuned using the specific data from each
wind park. Fine-tuning in this way allows the model to adjust to the unique characteristics
of each park, and produce better results than if the model were trained from scratch.

Regarding model architectures, our study used a sigmoid output activation function. How-
ever, with deep networks that involve multiple transformer blocks, issues such as the van-
ishing gradients problem [39] may arise. While our experiments did not observe this issue,
it is possible that it could occur if we deepen the network with multiple transformer blocks.
In such cases, it may be worth considering the use of no activation function. To sum up, we
believe that our findings related to the importance of preprocessing, the effectiveness of
attention-based models, and the potential for transfer learning between neighboring parks
provide valuable insights for those interested in conducting research in this field.

G Floros 41

Wind Energy Prediction Using Deep Learning Architectures

ABBREVIATIONS - ACRONYMS

WRF Weather Research Forecasting

CNN Convolutional Neural Network

LSTM Long-Short Term Memory

MLP Multi-Layer Perceptron

HAWT Horizontal Axis Wind Turbine

VAWT Vertical Axis Wind Turbine

SCADA Supervisory Control and Data Acquisition

ML Machine Learning

RNN Recurrent Neural Network

Seq2Seq Sequence to sequence

ARIMA Auto-Regressive Integrated Moving Average

SVM Support Vector Machine

ReLU Rectified Linear Unit

MAE Mean Absolute Error

MNAE Mean Normalized Absolute Error

ΕΚΠΑ Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

G Floros 42

Wind Energy Prediction Using Deep Learning Architectures

APPENDIX A. FIRST APPENDIX

A.1 Additional Experiments

The section of the appendix presents additional experiments and results that were con-
ducted but not included in the main body of the study. Those experiments were conducted
using CNN as our feature extractor and Min-Max normalization

Table A.1: Extra experiments, park A

Temporal Activation Augmentation MNAE
Bi-LSTM ReLU - 12.24 ± 0.38
Bi-LSTM - - 11.90 ± 0.27
LSTM ReLU horizontal flip 12.42 ± 0.56

In one of the experiments we employed a data augmentation technique called horizontal
flip to provide the model with more diverse and informative representations of the same
data. This technique involves flipping the grid horizontally, which enables the model to
recognize patterns regardless of their orientation. Our goal was to enable the model to
learn new representations and improve its robustness, allowing it to better generalize to
unseen data and ultimately enhancing its overall performance.

We also present some extra all-in-one model experiments.

Table A.2: Extra experiments all-in-one model

Feat.Extractor Temporal Activation MNAE,A MNAE,B Normal.
CNN LSTM ReLU 12.53 ± 0.62 12.43 ± 0.62 min-max

Mean vector LSTM ReLU 12.02 ± 0.28 12.58 ± 0.29 min-max
CNN Tr.Block Sigmoid 11.92 ± 0.34 12.05 ± 0.30 z-score

The results obtained from the experiments presented in this appendix exhibit a certain
degree of resemblance, to the ones we have highlighted in the main body of our study as
they share similar patterns.

A.2 Metric Calculation

For our metric calculation we used MNAE:

MNAE =
1

nsamples

nsamples∑
i=1

|yi − yp|
c

(A.1)

The constant value c is set at 12.000, which is the maximum value recorded for park A.
Typically, energy providers set c as the maximum possible value measured for a given
park. However, in our study, we used the same c value for both parks A and B to demon-
strate the relative differences between the models and to train an all-in-one model. It is
worth noting that the metrics can be easily transformed to per-park basis since the max-
imum value recorded for park B is 10.200.

G Floros 43

Wind Energy Prediction Using Deep Learning Architectures

A.3 Libraries Used

We implemented the models using Python programming language, with the Keras library
for MLP, CNN, LSTM, and Attention and learnable positional encodings. For fixed posi-
tional encodings, we were inspired by [40], and implemented them using TensorFlow and
NumPy libraries. Transformer blocks were inspired by the work of [41].

G Floros 44

Wind Energy Prediction Using Deep Learning Architectures

BIBLIOGRAPHY

[1] H. W. E. Company, “Wind energy statistics in greece for the 1st half of 2022,” Aug. 10 2022. [Online].
Available: https://eletaen.gr/d-t-statistiki-eletaen-first-semester-2022/

[2] I. Dincer and H. Ishaq, “Chapter 4 - wind energy-based hydrogen production,” in Renewable Hydrogen
Production. Elsevier, 2022, pp. 123–157. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780323851763000159

[3] S. Cole, “Wind turbine power curve.” [Online]. Available: https://theroundup.org/
wind-turbine-power-curve/

[4] C. Olah, “Neural networks, manifolds, and topology,” Apr. 6 2014. [Online]. Available: https:
//colah.github.io/posts/2014-03-NN-Manifolds-Topology/

[5] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” 2015.

[6] C. Olah, “Understanding convolutions,” Jul. 13 2014. [Online]. Available: https://colah.github.io/posts/
2014-07-Understanding-Convolutions/

[7] DataCamp, “Recurrent neural network tutorial (rnn).” [Online]. Available: https://www.datacamp.com/
tutorial/tutorial-for-recurrent-neural-network

[8] C. Olah, “Understanding lstm networks,” Aug. 27 2015. [Online]. Available: https://colah.github.io/
posts/2015-08-Understanding-LSTMs/

[9] “Differences between bidirectional and unidirectional lstm.” [Online]. Available: https://www.baeldung.
com/cs/bidirectional-vs-unidirectional-lstm

[10] S. Kostadinov, “Understanding encoder-decoder sequence to sequence
model,” Feb. 5 2019. [Online]. Available: https://towardsdatascience.com/
understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346

[11] A. Vaswani et al., “Attention is all you need,” 2017. [Online]. Available: https://doi.org/10.48550/arXiv.
1706.03762

[12] E. Christoforou, I. Z. Emiris, A. Florakis, D. Rizou, and S.Zaharia, “Spatio-temporal deep learning
for day-ahead wind speed forecasting relying on wrf predictions,” Energy Systems, pp. 1–21, Sep. 15
2021. [Online]. Available: https://doi.org/10.1007/s12667-021-00480-6

[13] G. J. Herbert et al., “A review of wind energy technologies,” Renewable and sustainable energy Re-
views, vol. 11, no. 6, pp. 1117–1145, 2007.

[14] K. Wind, “202 types of wind turbines, their advantages & disadvantages.” [Online]. Available:
https://kohilowind.com/kohilo-university/202-types-of-wind-turbines-their-advantages-disadvantages/

[15] N. G. Society, “Wind energy,” Oct. 9 2012. [Online]. Available: https://education.nationalgeographic.
org/resource/wind-energy/

[16] M. Cheng and Y. Zhu, “The state of the art of wind energy conversion systems and technologies: A
review,” 2014.

[17] V. Sharma, S. Sharma, and G. Sharma, “Recent development in the field of wind turbine,”
Materials Today: Proceedings, vol. 64, pp. 1512–1520, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2214785322037798

[18] P. Loshin, “Scada(supervisory control and data acquisition),” 2016. [Online]. Available: https:
//www.techtarget.com/whatis/definition/SCADA-supervisory-control-and-data-acquisition

[19] J. Powers et al., “The weather research and forecasting model: Overview, system efforts, and future
directions,” Bull. Am. Meteorol. Soc., vol. 98, no. 8, pp. 1717–1737, Aug 2017, doi: 10.1175/BAMS-D-
15-00308.1.

[20] W. Skamarock et al., “A description of the advanced research wrf model version 4.3,” 2021,
doi:10.5065/1dfh-6p97.

G Floros 45

https://eletaen.gr/d-t-statistiki-eletaen-first-semester-2022/
https://www.sciencedirect.com/science/article/pii/B9780323851763000159
https://www.sciencedirect.com/science/article/pii/B9780323851763000159
https://theroundup.org/wind-turbine-power-curve/
https://theroundup.org/wind-turbine-power-curve/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network
https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm
https://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1007/s12667-021-00480-6
https://kohilowind.com/kohilo-university/202-types-of-wind-turbines-their-advantages-disadvantages/
https://education.nationalgeographic.org/resource/wind-energy/
https://education.nationalgeographic.org/resource/wind-energy/
https://www.sciencedirect.com/science/article/pii/S2214785322037798
https://www.sciencedirect.com/science/article/pii/S2214785322037798
https://www.techtarget.com/whatis/definition/SCADA-supervisory-control-and-data-acquisition
https://www.techtarget.com/whatis/definition/SCADA-supervisory-control-and-data-acquisition

Wind Energy Prediction Using Deep Learning Architectures

[21] G. Cuevas-Figueroa, P. K. Stansby, and T. Stallard, “Accuracy of wrf for prediction of operational wind
farm data and assessment of influence of upwind farms on power production,” Renewable Energy,
vol. 94, pp. 111–124, May 2016.

[22] H. Ashtari, “What is a neural network?definition,working,types and applications,” Aug. 3 2022. [Online].
Available: https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-a-neural-network/

[23] K. Tertikas, “Implementation of dense sift as a convolutional neural network,” 2017.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory (lstm),” 1997.

[25] K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” CoRR, vol. abs/1406.1078, 2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[26] D. Bahdanau et al., “Neural machine translation by jointly learning to align and translate,” 2014.
[Online]. Available: https://doi.org/10.48550/arXiv.1409.0473

[27] A. Ambartsoumian and F. Popowich, “Self-attention: A better building block for sentiment analysis
neural network classifiers,” in Proceedings of the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis, Οct. 2018, pp. 130–139. [Online]. Available:
https://aclanthology.org/W18-6219

[28] M. Luong et al., “Effective approaches to attention-based neural machine translation,” 2015. [Online].
Available: https://doi.org/10.48550/arXiv.1508.04025

[29] J. Gehring et al., “Convolutional sequence to sequence learning,” 2017. [Online]. Available:
https://doi.org/10.48550/arXiv.1705.03122

[30] M. Milligan and S. Watson, “Statistical wind power forecasting models: Results for us wind farms,”
Journal of solar energy engineering, vol. 125(1), pp. 172–179, 2003.

[31] A. Abdelaziz, “Short term wind power forecasting using autoregressive integrated moving average
modeling,” Electric Power Systems Research, vol. 92, pp. 69–77, 2012.

[32] R. G. Kavasseri and K. Seetharaman, “Day-ahead wind speed forecasting using f-arima models,” Re-
newable Energy, vol. 32(15), pp. 2555–2567, 2007.

[33] M. A. Mohandes, T. O. Halawani, and S. Rehman, “Support vector machines for wind speed prediction,”
Renewable Energy, vol. 34(2), pp. 392–397, 2009.

[34] G. Li and J. Shi, “On comparing three artificial neural networks for wind speed forecasting,” Applied
Energy, vol. 87, pp. 2313–2320, Jul. 2010.

[35] K.Moustris et al., “24-h ahead wind speed prediction for the optimum operation of hybrid power stations
with the use of artificial neural networks,” in Perspectives on Atmospheric Sciences, 2017, pp. 409–414.

[36] Research team of A. Anastasiou and I. Z. Emiris, “Wrf model parameterization and adaptation for the
mainland of greece, with final feature extraction.”

[37] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers for language understanding,” In
Proceedings of the 2019Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1 (Long and short papers), pp. 4171–4186, 2019.

[38] D. Erhan et al., “Why does unsupervised pre-training help deep learning?” Journal of
Machine Learning Research, vol. 11, no. 19, pp. 625–660, 2010. [Online]. Available: http:
//jmlr.org/papers/v11/erhan10a.html

[39] C.-F. Wang, “The vanishing gradient problem,” 2019. [Online]. Available: https://towardsdatascience.
com/the-vanishing-gradient-problem-69bf08b15484

[40] Tensorflow. [Online]. Available: https://www.tensorflow.org/text/tutorials/transformer

[41] A. Nandan. [Online]. Available: https://keras.io/examples/nlp/text_classification_with_transformer/

G Floros 46

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-a-neural-network/
http://arxiv.org/abs/1406.1078
https://doi.org/10.48550/arXiv.1409.0473
https://aclanthology.org/W18-6219
https://doi.org/10.48550/arXiv.1508.04025
https://doi.org/10.48550/arXiv.1705.03122
http://jmlr.org/papers/v11/erhan10a.html
http://jmlr.org/papers/v11/erhan10a.html
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://www.tensorflow.org/text/tutorials/transformer
https://keras.io/examples/nlp/text_classification_with_transformer/

	CONTENTS
	INTRODUCTION
	BACKGROUND & RELATED WORK
	Wind Energy
	Wind Turbines

	Supervisory Control & Data Acquisition
	WRF
	Neural Network
	Architecture
	Convolutional Neural Networks
	Convolutional layer
	Pooling Layer

	Long Short Term Memory Networks
	Transformers - Self-Attention
	Attention
	Self-Attention
	Multi-head Attention
	Positional Encodings

	Wind Energy and Speed Prediction
	Traditional Methods
	Neural Network Methods

	Method
	Data Preprocessing
	Target Data
	WRF Input Data
	Normalization - Standardization

	Models and components
	Feature Extractors
	Convolutional Neural Network
	Mean Vector
	Central Vector

	Temporal Model
	LSTM
	Self-Attention
	Transformer Block

	Extra Components
	Positional Encodings
	Output Layer

	Training & Evaluation

	Results & discussion
	New / Old Data Comparison
	Default Model Finetuning
	Feature Extractors
	Temporal Model
	Multiple Parks - All in One Model
	Visualization

	Conclusions & Future Work
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	FIRST APPENDIX
	Additional Experiments
	Metric Calculation
	Libraries Used

	REFERENCES

