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Περίληψη

Τα οφέλη της ελάχιστα επεμβατικής χειρουργικής είναι αποδεδειγμένα για τους ασθενείς

(π.χ. μικρότερος χρόνος αποκατάστασης και πιθανότητα μόλυνσης). Ωστόσο, απαιτείται εξ-
ειδικευμένη εκπαίδευση για να διασφαλιστεί ότι οι επεμβάσεις αυτές εκτελούνται με ακρίβεια

και ασφάλεια. 'Ετσι, έχουν αναπτυχθεί πλατφόρμες λαπαροσκοπικής εκπαίδευσης και προ-

σομοιωτές εικονικής πραγματικότητας. Οι αλγόριθμοι μηχανικής μάθησης μπορούν να αναλύ-

σουν μεγάλα σύνολα δεδομένων για να αποκαλύψουν προηγουμένως μη αναγνωρισμένα μοτί-
βα και να διευρύνουν την κατανόηση της τεχνικής δεξιότητας.

Στόχος της διπλωματικής εργασίας είναι η εφαρμογή αλγορίθμων μηχανικής μάθησης για

την ταξινόμηση εκπαιδευομένων που βρίσκονται στην αρχή/τελός της εκπαίδευσής τους σε

λαπαροσκοπικό προσομοιωτή εικονικής πραγματικότητας (Lap Mentor). Συγκεκριμένα, το
σύνολο δεδομένων περιλάμβανε μετρικές απόδοσης για 6 εκπαιδευτικές συνεδρίες (trials) σε
3 λαπαροσκοπικές ασκήσεις, οι οποίες εκτελέστηκαν από 23 φοιτητές ιατρικής (138 συνε-

δρίες ανά άσκηση). Οι τρεις ασκήσεις που επιλέχθηκαν από τον προσομοιωτή είναι: Clipping
and Grasping ('Ασκηση 5), Two-Handed Maneuvers ('Ασκηση 6) και Cutting ('Ασκηση 7). Για

κάθε άσκηση, οι 3 πρώτες/τελευταίες συνεδρίες αντιστοιχούν στην αρχή/τέλος της εξάσκησης

δεξιοτήτων (Start/End of Training), αντίστοιχα. Οι αλγόριθμοι που εφαρμόστηκαν για την

αναγνώριση δεξιοτήτων (Start vs. End of Training) είναι: K-Nearest Neighbors, Logistic Re-
gression, Naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Random
Forest και Support Vector Machines. Επιπλέον, για κάθε αλγόριθμο διερευνήθηκε η εφαρμογή

δύο τεχνικών dimensionality reduction: Principal Component Analysis (PCA) και Fisher’s score.
Η ανάλυση βασίστηκε σε δύο ξεχωριστά πειραματικά σχήματα: trial-based (η εκπαίδευση των
αλγορίθμων έγινε σε επίπεδο συνεδρίας) και subject-based (η εκπαίδευση των αλγορίθμων

έγινε σε επίπεδο εκπαιδευομένου).

Η ανάλυση έδειξε ότι το υψηλότερο ποσοστό ακρίβειας επιτεύχθηκε με τη χρήση Support
Vector Machine (SVM) με γραμμικό kernel, με ποσοστό ακρίβειας: 97,08% για την άσκηση 5,
97,29% για την άσκηση 6 και 76,43% για την άσκηση 7, με χρήση του PCA. Επιπλέον, η μελέτη
προσδιορίζει, μέσω του Fisher’s score, τα έξι καλύτερα χαρακτηριστικά (μετρικές απόδοσης)
για κάθε άσκηση και τις διαφορές στα ποσοστά ακρίβειας μεταξύ των δύο πειραματικών σχη-

μάτων (διαφορά από 1 έως 3%). Συμπερασματικά, η χρήση αλγορίθμων μηχανικής μάθησης

μπορεί να συνεισφέρει σημαντικά στην αντικειμενική αξιολόγηση χειρουργικών δεξιοτήτων

σε προσομοιωτές εικονικής πραγματικότητας.
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Abstract

The benefits of minimally invasive surgery (MIS) are well-established for patients (e.g. shorter
recovery time and less chance of infection). However, specialised training is required to ensure
that these procedures are performed accurately and safely. Thus, laparoscopic training platforms
and virtual reality simulators have been developed. Machine learning algorithms can analyse large
datasets to reveal previously unrecognised patterns and expand understanding of technical skill.

The objective of this thesis is to apply machine learning algorithms to classify trainees at the be-
ginning/end of their training in a virtual reality laparoscopic simulator (Lap Mentor). Specifically,
the dataset included performance metrics for 6 training sessions (trials) in 3 laparoscopic tasks
performed by 23 medical students (138 sessions per task). The three tasks selected are Clipping
and Grasping (Task 5), Two-Handed Maneuvers (Task 6), and Cutting (Task 7). For each task,
the first/last 3 sessions correspond to the start/end of skill practice (Start/End of Training), re-
spectively. The algorithms applied for skill assessment (Start vs. End of Training) are K-Nearest
Neighbors, Logistic Regression, Naive Bayes, Linear Discriminant Analysis, Quadratic Discrim-
inant Analysis, Random Forest and Support Vector Machines. In addition, for each algorithm,
the application of two dimensionality reduction techniques were investigated: Principal Compo-
nent Analysis (PCA) and Fisher’s score. The analysis was based on two separate experimental
schemes: trial-based (algorithm training was performed at the session level) and subject-based
(algorithm training was performed at the trainee level).

The analysis indicates that the the highest accuracy rate was achieved using Support Vector Ma-
chine (SVM) with linear kernel, with an accuracy rate of 97.08% for task 5, 97.29% for task 6 and
76.43% for task 7, using PCA. In addition, the study identifies, through Fisher’s score, the six best
features (performance metrics) for each task and the differences in accuracy rates between the two
experimental schemes (difference from 1 to 3%). In conclusion, the use of machine learning algo-
rithms can make a significant contribution to the objective evaluation of surgical skills in virtual
reality simulators.
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Chapter 1

Introduction

1.1 Machine learning (ML)
The field of machine learning involves creating computer algorithms that can imitate human intel-
ligence. It is an interdisciplinary field that incorporates concepts from various domains, including
artificial intelligence, probability and statistics, computer science, information theory, psychology,
control theory, and philosophy. Machine learning has been successfully employed in diverse areas,
such as pattern recognition, computer vision, spacecraft engineering, finance, entertainment, ecol-
ogy, computational biology, and biomedical and medical applications. The key characteristic of
these algorithms is their capacity to learn from input data, either with or without a teacher, about
the surrounding environment. [10]

Machine learning has a long history, dating back to the seventeenth century when Pascal and
Leibniz developed machines that could perform basic arithmetic operations. In the modern era,
the term “machine learning” was coined by Arthur Samuel of IBM in 1956, who showed that
computers could be programmed to learn to play checkers. One of the earliest neural network
architectures, the perceptron, was developed by Rosenblatt in 1958. However, enthusiasm for
the perceptron was dampened by Minsky’s observation that it could only solve linearly separable
problems, not nonlinear ones.

A major breakthrough occurred in 1975 when Werbos developed the multilayer perceptron (MLP).
Decision trees were introduced by Quinlan in 1986, followed by support vector machines by Cortes
and Vapnik. Ensemble machine learning algorithms such as Adaboost and random forests were
subsequently proposed. Recently, deep learning has emerged as a powerful technique for learning
good representations of data, enabling more effective classification and prediction. [10]

6



1.1.1 Machine learning - AI - Deep learning
Machine learning, AI, and deep learning are three related concepts that are frequently mentioned in
the tech industry. Although the terms are often used interchangeably, they represent distinct fields
of study and practice. AI, or artificial intelligence, is a broad field that encompasses the devel-
opment of intelligent machines that can simulate human thinking and decision-making processes.
Machine learning is a subfield of AI that focuses on teaching machines to learn and improve their
performance over time without being explicitly programmed to do so. Deep learning is a subset of
machine learning that uses neural networks with many layers to learn from complex data.

Machine learning algorithms use statistical models to analyze and learn from data. They allow
machines to identify patterns, make predictions, and take actions based on the knowledge acquired
through that learning. This process is often referred to as “learning from experience.”

Deep learning algorithms, on the other hand, use neural networks with many layers to learn from
complex data. They are designed to recognize patterns in data that are too complex for traditional
machine learning algorithms to handle. As a result, deep learning has been highly effective in areas
such as computer vision, natural language processing, and speech recognition.

Overall, deep learning is a subset of machine learning, and machine learning is a subset of AI (Fig.
1.1). Without machine learning, AI would not be possible, and without deep learning, many of the
complex tasks that we associate with AI would not be possible. As the field of AI continues to
evolve, it is likely that deep learning and machine learning will play increasingly important roles
in the development of intelligent machines.

Figure 1.1: The relationship between AI, ML and Deep Learning.
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1.1.2 ML algorithms
In order to construct an ML program, one might take a variety of ways. ML methods are typically
divided into three broad categories:

1. Supervised learning: a “teacher” provides the computer with sample inputs and the desired
outputs in order to teach it a general rule for mapping inputs to outputs. Supervised learning
can be used for both classification and regression problems.

2. Unsupervised learning: the learning system is not given any labels or guidance. Instead, it
is left to its own devices to identify structure in the data. The goal of unsupervised learning
may be to find hidden patterns in the data for their own sake or to aid in feature learning.

3. Reinforcement learning: the computer program interacts with a dynamic environment, such
as driving a vehicle or playing a game against an opponent. The software receives feedback
that can be thought of as incentives as it navigates through the problem space and seeks to
maximize those rewards. [5]

Figure 1.2 depicts a range of algorithms that fall within the category of supervised learning algo-
rithms.

Figure 1.2: Some supervised learning algorithms.
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This paper utilized various supervised learning algorithms to categorize data into two distinct
groups. These algorithms are as follows:

1. K-Nearest Neighbors.
The K nearest neighbors (kNN) algorithm is a straightforward approach that retains all avail-
able cases and categorizes new cases based on a similarity metric, such as distance functions.
The classification of a case is based on the majority vote of its neighbors, and the case is al-
located to the class that is most common among its K nearest neighbors as measured by a
distance function (see Fig. 1.3). When K = 1, the case is directly assigned to the class of its
nearest neighbor. [11]

Figure 1.3: K-Nearest Neighbors algorithm.

Two distance measures (Eq. 1.1-1.2) can be utilized for continuous variables:

(a) Euclidean:

√√
k∑

i=1

(xi − yi)2 (1.1)

(b) Minkowski:

 k∑
i=1

(|xi − yi|)q

1/q (1.2)

When dealing with categorical variables, the appropriate distance measure to use is the Ham-
ming distance (Eq. 1.3).

DH =

k∑
i=1

|xi − yi| (1.3)
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where:

x = y⇒ D = 0

or

x , y⇒ D = 1

2. Linear Discriminant Analysis.
The objective of the Linear Discriminant Analysis (LDA) classification algorithm is to iden-
tify linear discriminant functions that can effectively differentiate between two or more
classes based on their characteristics. These functions are created by combining predictors
to create a new latent variable for each function.

The LDA classifier calculates the discriminant function for each class under the assumption
that the covariance matrices of the features for both classes are the same (i.e., Σ1 = Σ2). As
a consequence, the discriminant functions become simpler and can be expressed as:

gi(x) = −
1
2

(x − µi)tΣ−1(x − µi) + log P(ωi)⇒ gi(x) = wi
tx + wi0 (1.4)

where x is a feature vector, P(ωi) is the prior probability, µi is the mean vector and wi and
wi0 are constants that depend on the mean vectors and the prior probabilities of the classes.[3]

3. Quadratic Discriminant Analysis.
The Quadratic Discriminant Analysis (QDA) algorithm is closely related to linear discrimi-
nant analysis, but unlike LDA, it does not assume that the covariance matrix of each class is
identical. As a consequence, the discriminant functions are expressed as: [3]

gi(x) = −
1
2

log |Σi| −
1
2

(x − µi)tΣi
−1(x − µi) + log P(ωi) (1.5)

4. Naive Bayes.
The Naive Bayes Classifier (NB) is a probabilistic classification algorithm that uses Bayes’
theorem to predict the class of an observation based on its features. It is called ”naive”
because it assumes that the features are conditionally independent given the class, which
means that the presence or absence of one feature does not affect the probability of any other
feature.

The Naive Bayes Classifier works by calculating the posterior probability of each class given
the observation and its features, and then choosing the class with the highest probability (see
Fig. 1.4). Bayes’ theorem states that:
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P(y|x) = P(x|y) · P(y)/P(x) (1.6)

where P(x|y) is the conditional probability of x given y, P(y) is the prior probability of y, and
P(x) is the marginal probability of x. [3]

The Naive Bayes Classifier can be represented mathematically as follows:

(a) Calculate the prior probability of each class:

P(y) = N(y)/N (1.7)

where N(y) is the number of observations in class y, and N is the total number of
observations.

(b) For each feature j and each class y, calculate the likelihood:

P(x j|y) = N(x j, y)/N(y) (1.8)

where N(x j,y) is the number of observations in class y that have feature j.

(c) For a new observation x, calculate the posterior probability of each class.

(d) Choose the class with the highest posterior probability.

Figure 1.4: Gaussian Naive Bayes algorithm.

5. Logistic Regression.
The Logistic Regression algorithm models the probability of a binary outcome based on one
or more predictor variables. It assumes that the relationship between the predictor variables
and the probability of the binary outcome can be modeled using a logistic function. In other
words, logistic regression predicts the probability of an event occurring given the values of
one or more independent variables.
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To estimate the coefficients for the logistic regression model, maximum likelihood estimation
is used. This involves finding the values of the coefficients that maximize the likelihood
of observing the given data. The log-likelihood function is represented by the following
equation:

l(β) =
n∑

i=1

yiβxi − log(1 + eβxi) (1.9)

where xi represents the feature vector for the ith sample.

Once the coefficients of the logistic regression model have been estimated, they can be used
to predict the probability of the binary outcome for new observations. Specifically, the lo-
gistic regression classifier predicts the probability of the dependent variable (y) being equal
to 1 for new observations using the following equation:

p(y = 1|x) =
1

1 + e−z (1.10)

where z is the linear combination of the independent variables (x) and their estimated coef-
ficients:

z = β0 + β1x1 + β2x2 + ... + βn ∗ xn (1.11)

The logistic regression classifier then classifies the new observations based on a threshold
probability, which is typically set to 0.5. If the predicted probability of the dependent vari-
able (y) being equal to 1 is greater than the threshold probability, the observation is classified
as belonging to class 1. Otherwise, the observation is classified as belonging to class 0.

6. Random Forest Classifier.
The Random Forest Classifier is an ensemble learning method that employs multiple deci-
sion trees to classify observations into two or more classes. Each decision tree is constructed
using a random subset of the available features, and the final prediction is generated by com-
bining the outcomes of all the individual trees. Decision trees serve as the building blocks
of the random forest algorithm, which uses a tree-like model of decisions and their possible
outcomes to classify observations. The tree consists of nodes that represent decisions based
on the values of one of the input features, as well as leaves that represent the final decision
or classification of the observation. [5]

The decision tree algorithm used to build each individual tree can be represented as follows:

(a) Let X be a matrix of n observations and p features, where each observation has a label
y.

(b) Starting at the root node, select the best feature j and threshold t j to split the data into
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two subsets S1 and S2, based on some criterion.

(c) Recursively apply the splitting process to each of the resulting subsets S1 and S2, until
a stopping criterion is met.

(d) Assign the label y to each leaf node based on the majority class of the observations in
that node.

The Random Forest algorithm creates an ensemble of decision trees, where each tree is
trained on a random subset of the training data and a random subset of the available features.
To classify a new observation, the algorithm obtains the predictions of all the individual
trees and combines them to obtain the final prediction. Majority voting is the most common
method used to combine the results of the individual trees, where the class that receives the
most votes is chosen as the final prediction. Figure 1.5 provides a visual representation of
this method.

The Random Forest Classifier can be mathematically represented as follows:

(a) Let X be a matrix of n observations and p features, where each observation has a label
y.

(b) Let T be the number of decision trees to include in the forest, and let m be the number
of features to consider at each split.

(c) For each t = 1,2,...,T, randomly select a subset of the observations and features to create
a training set Xt.

(d) Train a decision tree model ft on the training set Xt, using a stopping criterion.

(e) To classify a new observation x, obtain the predictions of all the individual trees ft and
combine them using majority voting to obtain the final prediction.

Figure 1.5: Random Forest algorithm.
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7. Support Vector Machine.
Support Vector Machine (SVM) is a powerful and widely used classification algorithm that
works by finding the hyperplane that separates the data into two classes in the highest-
dimensional space. The algorithm tries to maximize the margin between the classes, which
is the distance between the hyperplane and the closest data points from each class. The de-
cision boundary of the SVM is determined by a subset of the training data, called support
vectors, that lie closest to the hyperplane.

To classify new data, the SVM projects it into the same high-dimensional space as the train-
ing data and assigns it to the class on the side of the hyperplane where it falls.

The SVM can be used for both linearly separable and non-linearly separable data by using
different types of kernel functions to map the data into a higher-dimensional space where it
can be linearly separable (see Fig. 1.6). There are four different kernels that can be used
within the SVM algorithm:

(a) Linear kernel

⟨x, x′⟩ (1.12)

(b) Polynomial kernel

(γ⟨x, x′⟩ + r)d (1.13)

(c) RBF kernel

exp(−γ||x − x′||2) (1.14)

(d) Sigmoid kernel

tanh(γ⟨x, x′⟩ + r) (1.15)

The SVM classifier can be mathematically represented as follows:

(a) Let X be a matrix of n observations and p features, where each observation has a label
y.

(b) The SVM finds the hyperplane that maximizes the margin between the classes by solv-
ing the following optimization problem:

minw,b
1
2
||w||2 (1.16)
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subject to

yi[(w · xi) + b] ≥ 1 (1.17)

where yi is the label of the ith observation, xi is the vector of its p features, w is the
vector of weights, b is the bias term, λ is the regularization parameter, and ||w||2 is the
squared L2 norm of the weight vector.

(c) The solution to this optimization problem is a hyperplane defined by the vector w and
the scalar b that separates the data into two classes. To classify a new observation x,
the SVM computes the sign of the function

w · x + b (1.18)

and assigns it to the positive class if the result is greater than or equal to zero, and to
the negative class otherwise. [13]

Figure 1.6: Support Vector Machine algorithm.

1.1.3 Dimensionality reduction
Large datasets often contain numerous irrelevant features, making it challenging to analyze and
visualize data to identify patterns, and train machine learning models. This problem, known
as the “Curse of Dimensionality”, is typically addressed using dimensionality reduction tech-
niques. These techniques involve transforming high-dimensional data into a lower-dimensional
space while retaining meaningful properties. Dimensionality reduction is used to simplify models,
reduce training times, and encode symmetries present in the input space.
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Principal Component Analysis (PCA) is a common method for reducing the dimensions of large
datasets. This involves transforming the data into a new coordinate system with fewer dimensions
that can describe the variation in the original data. Specifically, PCA identifies the axis with the
highest variance in the training set and finds a second axis orthogonal to it with the highest re-
maining variance. For higher-dimensional datasets, PCA can find additional axes, one for each
dimension. The steps to find these axes are:

1. Compute the covariance matrix.

The covariance matrix is a symmetric p x p matrix (where p is the number of dimensions),
whose entries represent the covariances between all possible pairs of the initial variables.
As a variable’s covariance with itself is its variance (Cov(a,a) = Var(a)), the diagonal of the
matrix (top left to bottom right) actually represents the variances of the initial variables.

cov(X,Y) =
1
n

n∑
i=1

(x − x)(y − y) (1.19)

where:
x, y - members of X and Y variables,
x, y - mean of X and Y variables,
n - number of members.

2. Compute Eigenvectors and corresponding Eigenvalues.

Eigenvalues (λ):

det(λI −C) = 0 (1.20)

Eigenvectors (X) for each λ:

(λI −C)X = 0 (1.21)

3. Rank eigenvectors from highest to lowest and choose the first k you need.
Eigenvectors of the Covariance matrix indicate the directions of the axes with the highest
amount of variance, also known as Principal Components. Eigenvalues are the coefficients
that are associated with the eigenvectors and represent the amount of variance carried in each
Principal Component. To obtain the Principal Components in order of significance, you need
to rank the eigenvectors based on their corresponding eigenvalues, from highest to lowest.

Feature selection is another approach to reducing the number of features in a dataset. This involves
selecting a subset of relevant features for use in model construction. Fisher’s score is a supervised
feature selection method that returns the ranks of variables based on the Fisher criterion (Eq. 1.22),
allowing the variables to be selected in descending order of relevance.
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F =

∑k
j=1 p j(µ j − µ)2∑k

j=1 p jσ j
2

(1.22)

where:
µ j - mean of the data points belonging to class j for particular feature,
σ j - standard deviation of the data points belonging to class j for particular feature,
p j - the fraction of data points belonging to class j,
µ - the global mean of the data on the feature.

1.2 Minimally invasive surgery
Minimally invasive surgery (MIS), also known as minimal access or endoscopic surgery, has gained
wide acceptance over the past three decades as a viable alternative to traditional surgery for various
medical procedures. Today, laparoscopy, which involves inserting a small endoscope into the
patient’s abdominal cavity, is one of the most common types of minimally invasive surgery. During
the procedure, the surgeon uses specialized instruments and views the patient’s abdomen on a
display monitor, allowing for precise manipulation of the instruments. After the procedure, any
remaining carbon dioxide is expelled from the abdomen and the small incisions are closed with a
minimal number of stitches.

MIS offers a number of benefits for patients, including reduced risk of blood loss and post-operative
bleeding, less need for pain relief medication, decreased exposure of internal organs to external
contaminants, and smaller scars that reduce the likelihood of post-operative infections.

In addition to the advantages for patients, healthcare providers also benefit from improved patient
care and reduced medical risks, which can lead to greater efficiency in healthcare delivery. Shorter
rehabilitation times mean that more surgeries can be performed each year, which ultimately trans-
lates to higher revenues and the potential for greater investments in the healthcare system. While
patient safety remains the primary concern, the financial benefits of MIS can also contribute to
long-term improvements in healthcare. [7]

1.2.1 Laparoscopy training
Laparoscopic surgery, as mentioned before, is a minimally invasive procedure that involves insert-
ing a rigid endoscope into the patient’s abdomen through a small incision. Surgeons must rely on a
2D view of the operating area displayed on a monitor positioned in front of them, which can make
it challenging to operate without direct visual feedback. The limited depth perception, combined
with the use of long-shaped instruments inserted through trocars, increases the difficulty of the
operation. Surgeons must rely on other cues, such as touch and the interpretation of lights and
shadows, to enhance their sense of depth and manipulate the instruments with greater precision.
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The long shape of laparoscopic instruments also presents several challenges, including amplify-
ing tremors and reducing the degrees of freedom of movement. Poor ergonomic design of the
instruments’ handles can make them difficult to manipulate, and the abdominal wall can act as a
fulcrum that creates opposing instrument movements with hand movements. These factors require
surgeons to adapt to new techniques and perform actions in a different way than with traditional
laparotomy.

The traditional methods of surgical skill acquisition may not be sufficient to develop the specialized
skills required for MIS. However, with specialized training and practice, surgeons can overcome
these challenges and perform laparoscopic surgeries with precision and safety. [7]

Box trainers

As new surgical techniques were introduced, the medical community sought out alternative meth-
ods for surgeons to gain the necessary skills outside of the operating room to ensure safe and
effective implementation of these techniques. One such method was the development of laparo-
scopic training platforms, or “box-trainers” (Fig. 1.7), which feature a simple design with holes
for trocar insertion to simulate an insufflated abdominal cavity. Surgeons can use real laparoscopic
instruments and a camera that simulates an endoscope to practice their skills, manipulating objects
such as pegs and inanimate models of human organs. [7]

Figure 1.7: Box trainer.

To systematize the training and evaluation of both cognitive and psychomotor skills necessary for
performing minimally invasive surgery (MIS), the Fundamentals of Laparoscopic Surgery (FLS)
program was developed using the McGill Inanimate System for Training and Evaluation of La-
paroscopic Skills (MISTELS) commercial training system. The FLS program includes a cognitive
and manual (psychomotor) component, as well as task-specific metrics for subjective performance
assessment and evaluation.

These first-generation box-trainers have since evolved into more sophisticated training platforms
known as Physical Reality (PR) surgical simulators (Fig. 1.8), which require trainees to stand up
and operate within the confines of simulated anatomical structures such as the pelvis and upper
abdomen. [7]
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Figure 1.8: Physical Reality (PR) surgical simulator.

Virtual reality simulator

The need for an automated and assessable laparoscopic training and assessment curricula led to
the development of computer-based laparoscopic simulations. With the advancement of computer
science and technology, virtual reality (VR) has become an ideal solution for laparoscopic training.
The first commercially available VR laparoscopic simulator was MIST-VR (Fig. 1.9), introduced
in 1997, which provided a realistic and assessable VR environment for laparoscopic cholecystec-
tomy training. [2, 15]

Figure 1.9: MIST-VR. [15]

Today, high-end VR laparoscopic simulators (see Fig. 1.10) combine cognitive and motor skills
training into an integrated VR learning experience, providing a unique training opportunity in
a highly realistic, purely virtual environment. In VR trainers, surgeons are individually guided
through a series of training scenarios of progressive difficulty and complexity. VR trainers allow
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for smooth skill development and transition of skills from training to clinical practice, as a large set
of basic procedures can be performed, including endoscope navigation, cutting and suturing, nee-
dle driving, diathermy, and other essential exercises. Furthermore, VR trainers provide automated
objective assessment of trainees’ performance based on specific metrics, such as the task comple-
tion time, the number of errors committed, and the instruments’ path length, to help improve their
individual psychomotor and cognitive skills required for performing a real laparoscopic surgery.
High-end VR trainers are also equipped with mechanical feedback devices, which provide real-
time haptic feedback during training, enhancing the overall sense of simulation realism. [7]

Figure 1.10: Commercially available laparoscopic VR trainers: (a) LapVR (CAE), (b) LapMentor
(Simbionix), (c) LapSim (Surgical Science).

1.3 Assessment

1.3.1 Traditional assessment
Surgical residency programs place great emphasis on learning the art of surgery, making it im-
portant to have a formal system in place to assess the technical skills of every student and track
their progress. There are three main features that can be used to assess technical skills: time, path
length and errors. It is crucial for any method used to assess technical skills to be reliable and valid.
Currently, preceptor ratings heavily influence the assessment of trainees’ technical skills, with a
single global rating being the norm. However, this rating is often unreliable and not sufficient for
formative feedback or promotion decisions.

To address these issues, the Objective Structured Assessment of Technical Skill (OSATS) was de-
veloped in 1997. This assessment method involves observing surgical residents performing various
structured operative tasks and rating them on the scale in Figure 1.11.
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Figure 1.11: OSATS checklist.

Testing specific operative skills in surgical trainees, the OSATS has been found to be a reliable and
valid method. [9]

With the development of the field of surgery, it became necessary to create an appropriate tool
for assessing minimally invasive surgery. As a solution, the Global Operative Assessment of La-
paroscopic Skills (GOALS) was developed as a global assessment tool (Fig. 1.12). It has been
found to be feasible, reliable, and valid for evaluating the technical skills of residents in minimally
invasive surgery, providing them with valuable feedback. Furthermore, it can be used to measure
the effectiveness of simulator training in improving surgical performance. [14]
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Figure 1.12: GOALS checklist.

1.3.2 AI assessment
The standard method of evaluating surgical proficiency involves skilled assessors observing a
surgery or training exercise and evaluating the trainee’s performance using global or procedure-
specific checklists. However, this method is costly, subjective, and time-consuming, which can
delay feedback for trainees and impede their learning. [6]

Virtual reality simulators provide opportunities for formative and summative assessments by gen-
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erating multiple performance metrics. [8]

In 2011, Loukas and Georgiou [8] tested an alternative approach using multivariate autoregres-
sive models (MAR) trained with a variational Bayesian algorithm against the already used hidden
Markov models. The results showed that the MAR approach outperformed the traditional ap-
proach.

Robotic surgery technology has created opportunities for automated objective skill assessment and
prompt feedback. The da Vinci surgical device records motion and video data, enabling the devel-
opment of computational models to analyze surgical skills. New features to quantify surgical flow
were introduced in 2017, which can evaluate a surgeon’s skills and provide feedback to trainees by
comparing their surgical skills with other surgeons’ using a comprehensive dataset. [4]

In 2019, the Myo armband was introduced (presented in Fig. 1.13), which enables intraoperative
assessment of hand and forearm motion parameters. It contains an inertial measurement unit and
eight electromyographic sensors, which in combination with machine learning can distinguish skill
level and recognize the phases of a laparoscopic suturing and knot-tying task. [6]

Figure 1.13: Myo armband.

In the same year, a machine learning algorithm was used to accurately classify participants by level
of expertise in a virtual reality surgical procedure. [17]

To enable researchers from computer science, medicine, and education to develop a shared un-
derstanding of the emerging field of machine learning-assisted surgical education, a standardized
reporting approach was developed in 2019. The Machine Learning to Assess Surgical Expertise
(MLASE) checklist provides clear subsections and a total score for authors and reviewers to eval-
uate the overall quality and specific weaknesses of a manuscript. The MLASE checklist can be
observed in Figure 1.14. [16]
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Figure 1.14: MLASE checklist.

1.4 Aim of this study
The objective of this thesis is to leverage the data gathered from laparoscopy training in a virtual
reality simulator utilized by medical students, with the aim of creating diverse scripts through the
implementation of machine learning algorithms. This approach will facilitate the classification of
students into two distinct categories depending on whether they start or finish their training, namely
“Start of training” (ST) and “End of Training” (ET).

By utilizing this cutting-edge technology, medical students can receive comprehensive feedback
on their training progress, and educators can tailor their instructional techniques to meet individual
student needs, ultimately improving the overall quality of medical education.
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Chapter 2

Methodology

2.1 Study participants
The input data, provided from Surgical Simulation Center of the University of Athens Medical
School (AKISA), located in the Attikon General Hospital, was collected from simulation tasks
performed by the 23 medical students. These trials were designed to test their skills and knowledge
in various medical tasks, and the records contained the features and feature values from each of
these trials.

2.2 Study design
The VR simulator utilized in this study was the Lap Mentor from Simbionix. This advanced
platform offers an extensive library of modules that offer structured training programs with varying
levels of difficulty for basic laparoscopic tasks and skills, as well as complete procedure training
for general, gynecological, urologic, bariatric, colorectal, and thoracic surgery. With 19 training
modules and over 80 different tasks and cases, the Lap Mentor provides a comprehensive and
versatile learning experience for surgeons and surgical trainees.

The Basic Laparoscopic Skills for Undergraduate Students module is a comprehensive training
program that consists of nine tasks (presented in Table 2.1), each focused on a different laparo-
scopic skill. [1]

Task 1 Camera manipulation - 0 degrees Task 6 Two-handed maneuvres
Task 2 Camera manipulation - 30 degrees Task 7 Cutting
Task 3 Eye-hand coordination Task 8 Electrocautery
Task 4 Clip applying Task 9 Translocation of objects
Task 5 Clipping and grasping

Table 2.1: Basic Laparoscopic Skills for Undergraduate Students
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Based on the educational curriculum developed in the AKISA Surgical Simulation Center, a stu-
dent must successfully complete Task 1 before moving on to Task 2 and so on. If the student fails
to complete a task, they must start the module from the beginning. This process continues until the
student has completed all nine tasks and achieved at least three Passes on each one. This criteria
is crucial in ensuring that the students have a solid understanding of the basic laparoscopic skills
and are ready to move on to more challenging modules. Upon successfully completing the Basic
Laparoscopic Skills module, the students can then move on to more advanced modules to perfect
their skills and gain further expertise in laparoscopic surgery.

For the purpose of our analysis, we selected three specific tasks that were deemed most relevant
and representative of the students’ abilities. These tasks are:

• Task 5, Clipping and Grasping

– Safely grasp and clip leaking ducts within the specified segments. Red segments will
appear on the ducts at the beginning of the task. The segment will turn green only when
grasped properly. Grasp the leaking duct and use the clipper to place a clip within the
green segment only to stop leakage. Complete the task before the pool overflows. A
screenshot of the task is shown in Figure 2.1.

– Main goals:

1. Basic principles of safe clipping.

2. Clip applier manipulation.

3. Tissue handling skills.

4. Bimanual skills.

5. Laparoscopic orientation.

6. Eye-hand coordination.

Figure 2.1: Screenshot from task 5.
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• Task 6: Two Handed Maneuvers

– Use two graspers. Locate the jelly mass and with one of the graspers move part of the
jelly aside to expose a ball. Notice the colot change when the balls are exposed. While
holding the jelly aside, use the other tool to grasp the green ball and place it in the
Endobag. Make sure to release the balls above the Endobag. A screenshot of the task
is shown in Figure 2.2.

– Main goals:

1. Advanced bimanual skills.

2. Laparoscopic instrument manipulation.

3. Eye-handed coordination.

4. Tissue handling skills.

Figure 2.2: Screenshot from task 6.

• Task 7: Cutting

– Safe cutting and separate a circular form. Use one tool to retract the form exposing a
safe cutting area. Cut accurately with scissors. A screenshot of the task is shown in
Figure 2.3.

– Main goals:

1. Applying traction and cutting accurately using scissors.

2. Bimanual skills.

3. Eye-handed coordination.
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Figure 2.3: Screenshot from task 7.

Table 2.2 shows the thresholds (defined by the educators-experts) required to achieve a Pass in
tasks 5, 6 and 7.

Task 5
Feature Value

Total number of movements (n) ≤ 70
Number of clipped ducts ≥ 9

Number of lost clips <1
Task 6

Feature Value
Total number of movements ≤ 50

Number of lost balls which miss the basket <1
Task 7

Feature Value
Total Number of cutting maneuvers ≤ 20

Table 2.2: Thresholds to achieve a Pass.

2.3 Class definition
Before embarking on script writing, the dataset had to be compiled. Our selection criteria were the
first three attempts - categorized as “Start of Training” (ST) - and last three attempts - categorized
as “End of Training” (ET) - for each task by each student. This resulted in a dataset consisting of
138 rows or samples (23 x 6) for each task.

In instances where a student prematurely discontinued a trial, the simulator did not record any
feature values. In such cases, we opted for the subsequent attempt.
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2.4 Experimental schemes
As mentioned earlier, when dealing with machine learning scripts, it is necessary to divide the
initial dataset into a training set to train the algorithm and a testing set for the algorithm to make
predictions. This study utilized two experimental schemes to split the dataset:

1. The first approach, called the “Trial-based” split, utilized the ShuffleSplit function from the
sklearn.model-selection library. The data was shuffled and divided into 20 different training
and testing sets.

2. The second approach, known as the “Subject-based” split, used the GroupShuffleSplit func-
tion from the same library. In this case, the data was shuffled based on the subject number,
resulting in training sets that excluded trials from a specific subject. For instance, one train-
ing set was created from trials of subjects 1 to 13, while the testing set consisted of trials
from subjects 14 to 23. [12]

To accommodate each scenario, a separate script was written.

2.5 Dimensionality reduction
Two methods were employed to enhance efficiency by reducing the number of available features
for each task.

• The first approach was to apply Principal Component Analysis (PCA) for dimensionality
reduction. It transforms the data into a new coordinate system in a linear manner, resulting
in fewer dimensions while preserving 95% of the variance.

• The second method employed was Fisher’s score for feature selection. This process cal-
culates the Fisher’s score for each feature, and the features are ranked in descending order
based on their score. The best six features are then selected.

To accommodate each scenario, a separate script was written.

2.6 Scripts outline
All scripts involving machine learning algorithms follow a standard structure. The initial step
involves examining the data for any issues, such as missing or NaN values. Then, the data is
divided into training and testing sets. Subsequently, feature extraction or selection is performed,
followed by training the selected algorithm and making predictions. This same sequence was
applied in writing the scripts for this paper and is presented in Figure 2.4.
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Figure 2.4: Flowchart of scripts.

Firstly, any blank columns (features) were removed from the dataset and any missing values were
addressed. To ensure accurate predictions, the data was then divided into separate training and
testing sets, with dimensionality reduction performed to improve the algorithms’ efficiency. Once
these steps were completed, various machine learning algorithms were trained using the prepared
data. Finally, these algorithms made their predictions.

2.7 Performance measures
To evaluate the performance of each machine learning algorithm, the models were trained and
tested 20 times using the different train-test sets created by the shuffle split. The final evaluation
was based on the average results of various metrics, including:
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• A confusion matrix: a tabular visualization of the model predictions versus the ground-truth
labels (Fig. 2.5).

Figure 2.5: Example confusion matrix.

It is important to note that:

– True Positive: the algorithm predicted yes and it is true.

– True Negative: the algorithm predicted no and it is true.

– False Positive: the algorithm predicted yes and it is false.

– False Negative: the algorithm predicted no and it is false.

– The sum of each row represents 100% of the elements in a particular class.

– The sum of all elements represents all data.

Specifically in this study:

– Positive corresponds to “Start of Training” and

– Negative corresponds to “End of Training”.

• Accuracy =
True positive + True negative

True positive + False positive + True negative + False negative
· 100%
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• Precision =
True positive

True positive + False positive
· 100%

• Specificity =
True negative

True negative + False positive
· 100%

• Sensitivity =
True positive

True positive + False negative
· 100%

• F1 − Score =
2 · Precision · Sensitivity
Precision + Sensitivity

· 100%

These metrics helped to assess the performance of each algorithm in the prediction task, and al-
lowed for a comparison between the different algorithms.
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Chapter 3

Results

The results of the scripts were divided based on the task and the method of data splitting, and are
presented as follows:

• Results for each task and each method of data splitting are presented in tables, including the
evaluation metrics mentioned previously.

• Only the confusion matrix of the algorithm with the highest accuracy is presented in the
main text, while the confusion matrices of the other algorithms could be found in the Ap-
pendix: Confusion matrices. When looking at the confusion matrices:

– 0 denotes “Start of Training” and 1 denotes “End of Training”,

– they are obtained by combining the confusion matrices from the 20 individual runs and
each number represents a percentage after normalizing the results (ex. 94% TP: 94%
of the samples were categorized as “Start of Training” and they were actually at the
“Start of Training”).

• MatLab (The MathWorks, Inc., R2022b) was used to perform statistical comparison of the
accuracy results for each algorithm across all 20 runs. A script was written, which consisted
of two parts.

– Firstly, an Anova1 test was performed using the Matlab command [p,t,stats]= anova1(y,
groups). This test aimed to determine whether the samples in y were drawn from pop-
ulations with the same mean, or whether the population means were not all the same.
The graph produced by this command (in Statistical comparison figure (a) on all cases)
is a boxplot where on each box, the central mark indicates the median, and the bot-
tom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the “+” marker symbol.

– Secondly, a multiple comparison test was conducted using the information contained
in the stats structure, by executing the Matlab command [c,m,h,gnames] = multcom-
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pare(stats). The output of this test is an interactive graph that indicated which pairs
were different (in Statistical comparison figure (b) on all cases). In more detail, each
group mean is represented by a symbol, and the interval is represented by a line extend-
ing out from the symbol. Two group means are significantly different if their intervals
are disjoint; they are not significantly different if their intervals overlap. If you use
your mouse to select any group, then the graph will highlight all other groups that are
significantly different, if any.

This organization of results allows for a clear comparison between the different algorithms and the
different methods of data splitting, making it easier to understand the findings and draw conclusions
from the analysis.

3.1 Two class classification (Dim. Reduction: PCA)

3.1.1 Task 5
Trial based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 25 original features (95% vari-
ance threshold).

• Table 3.1 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 94.14 94.10 95.11
LDA 92.14 91.48 85.87
QDA 93.86 93.99 97.55

Logistic regression 95.71 95.63 95.21
Naive Bayes 95.14 94.95 92.87

Random forest 92.00 92.05 94.18
SVM Linear 96.14 96.16 94.31
SVM RBF 96.00 96.05 95.78

Sensitivity (Recall) (%) Precision (%)
KNN 95.06 93.16
LDA 85.76 98.01
QDA 97.67 90.57

Logistic regression 95.35 95.91
Naive Bayes 93.02 96.97

Random forest 94.19 90.00
SVM Linear 98.26 94.15
SVM RBF 96.59 95.51

Table 3.1: Algorithms’ performance for Task 5 (trial-based scheme) using PCA.
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• Figure 3.1 shows the confusion matrix for SVM Linear.

Figure 3.1: Confusion matrix (100%) for SVM Linear (Task 5; trial-based; PCA).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.2, which reveals that:

• LDA has a different mean from SVM (linear and RBF),

• RF has a different mean from SVM (linear and RBF) and LG.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.2: Statistical comparison (Task 5; trial-based; PCA).
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Subject based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 25 original features (95% vari-
ance threshold).

• Table 3.2 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 95.14 95.15 95.28
LDA 89.17 87.96 79.17
QDA 94.31 94.51 98.06

Logistic regression 94.44 94.38 93.33
Naive Bayes 93.19 93.05 91.11

Random forest 93.06 93.00 92.22
SVM Linear 97.08 97.04 95.56
SVM RBF 94.72 94.54 91.39

Sensitivity (Recall) (%) Precision (%)
KNN 95.28 95.01
LDA 79.17 98.96
QDA 98.06 91.21

Logistic regression 93.33 95.45
Naive Bayes 91.11 95.07

Random forest 92.22 93.79
SVM Linear 98.57 95.56
SVM RBF 97.92 91.39

Table 3.2: Algorithms’ performance for Task 5 (subject-based scheme) using PCA.
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• Figure 3.3 shows the confusion matrix for SVM Linear.

Figure 3.3: Confusion matrix (100%) for SVM Linear (Task 5; subject-based; PCA).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.4, which reveals that:

• LDA has a different mean from all other algorithms,

• GNB has a different mean from LDA and SVM Linear,

• RF has a different mean from LDA and SVM Linear.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.4: Statistical comparison (Task 5; subject-based; PCA).
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3.1.2 Task 6
Trial based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 17 original features (95% vari-
ance threshold).

• Table 3.3 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 95.71 95.77 93.78
LDA 93.00 93.13 91.71
QDA 94.43 94.66 95.59

Logistic regression 95.86 95.93 94.39
Naive Bayes 91.29 91.59 91.78

Random forest 94.71 94.95 95.91
SVM Linear 97.29 97.34 96.49
SVM RBF 96.29 96.20 94.47

Sensitivity (Recall) (%) Precision (%)
KNN 93.66 97.98
LDA 91.46 94.86
QDA 95.32 94.02

Logistic regression 94.21 97.71
Naive Bayes 91.46 91.71

Random forest 95.87 94.05
SVM Linear 98.30 96.39
SVM RBF 98.21 94.27

Table 3.3: Algorithms’ performance for Task 6 (trial-based scheme) using PCA.
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• Figure 3.5 shows the confusion matrix for SVM Linear.

Figure 3.5: Confusion matrix (100%) for SVM Linear (Task 6; trial-based; PCA).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.6, which reveals that:

• GNB has a different mean from KNN, LG, RF, SVM Linear and SVM RBF,

• LDA has a different mean from SVM Linear.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.6: Statistical comparison (Task 6; trial-based; PCA).
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Subject based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 17 original features (95% vari-
ance threshold).

• Table 3.4 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 92.64 92.73 93.89
LDA 94.58 94.40 91.39
QDA 95.14 95.15 95.28

Logistic regression 95.42 95.33 93.61
Naive Bayes 92.50 92.50 92.50

Random forest 95.56 95.54 95.28
SVM Linear 96.94 96.88 95.00
SVM RBF 95.00 94.93 93.61

Sensitivity (Recall) (%) Precision (%)
KNN 93.89 91.60
LDA 91.39 97.63
QDA 95.28 95.01

Logistic regression 93.61 97.12
Naive Bayes 92.50 92.50

Random forest 95.28 95.81
SVM Linear 98.84 95.00
SVM RBF 96.29 93.61

Table 3.4: Algorithms’ performance for Task 6 (subject-based scheme) using PCA.
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• Figure 3.7 shows the confusion matrix for SVM Linear.

Figure 3.7: Confusion matrix (100%) for SVM (Task 6; subject-based; PCA).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.8, which reveals that KNN has
a different mean from GNB.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.8: Statistical comparison (Task 6; subject-based; PCA).
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3.1.3 Task 7
Trial based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 15 original features (95% vari-
ance threshold).

• Table 3.5 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 73.71 71.95 66.86
LDA 74.43 71.36 64.05
QDA 73.43 72.29 81.81

Logistic regression 68.57 74.08 72.26
Naive Bayes 74.71 70.35 60.36

Random forest 72.14 70.32 66.95
SVM Linear 76.43 74.10 69.26
SVM RBF 74.14 71.13 65.81

Sensitivity (Recall) (%) Precision (%)
KNN 66.67 78.15
LDA 62.99 82.29
QDA 81.07 65.23

Logistic regression 71.47 76.90
Naive Bayes 60.87 83.33

Random forest 65.25 76.24
SVM Linear 80.27 68.80
SVM RBF 79.08 64.64

Table 3.5: Algorithms’ performance for Task 7 (trial-based scheme) using PCA.
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• Figure 3.9 shows the confusion matrix for SVM Linear.

Figure 3.9: Confusion matrix (100%) for SVM Linear (Task 7; trial-based; PCA).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.10, which reveals that the
means of groups QDA and SVM Linear are significantly different.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.10: Statistical comparison (Task 7; trial-based; PCA).
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Subject based: Results

• PCA: Dimensionality was reduced to 6 - 7 components from 15 original features (95% vari-
ance threshold).

• Table 3.6 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 67.92 65.47 60.83
LDA 75.69 72.35 63.61
QDA 73.33 69.03 81.11

Logistic regression 63.61 72.92 68.06
Naive Bayes 74.72 69.52 60.83

Random forest 73.61 70.40 62.78
SVM Linear 73.33 72.41 70.00
SVM RBF 73.47 71.70 67.22

Sensitivity (Recall) (%) Precision (%)
KNN 60.83 70.87
LDA 63.61 83.88
QDA 81.11 60.08

Logistic regression 68.06 78.53
Naive Bayes 60.83 81.11

Random forest 62.78 80.14
SVM Linear 75.00 70.00
SVM RBF 76.83 67.22

Table 3.6: Algorithms’ performance for Task 7 (subject-based scheme) using PCA.
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• Figure 3.11 shows the confusion matrix for LDA.

Figure 3.11: Confusion matrix (100%) for LDA (Task 7; subject-based; PCA).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.12, which reveals that:

• KNN has a different mean from LDA and LG,

• QDA has a different mean from LDA, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.12: Statistical comparison (Task 7; subject-based; PCA).
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3.2 Two class classification (Dim. Reduction: Fisher’s Score)

3.2.1 Task 5
Trial based: Results

• Table 3.7 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Average speed of right instrument movement (cm/sec) 90.00

Number of movements of left instrument 70.00
Economy of movement -grasper (%) 65.00

Ideal path length of clipper (cm) 65.00
Number of movements of right instrument 65.00

Relevant path length - clipper(cm) 50.00

Table 3.7: Best 6 features (Task 5; trial-based; Fisher’s score).

• Table 3.8 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 93.29 93.08 93.42
LDA 92.57 91.98 88.20
QDA 86.86 86.71 89.62

Logistic regression 94.00 93.91 95.96
Naive Bayes 93.86 93.57 92.73

Random forest 94.00 93.77 93.54
SVM Linear 94.43 94.29 95.46
SVM RBF 93.43 93.01 90.77

Sensitivity (Recall) (%) Precision (%)
KNN 92.67 93.49
LDA 96.13 88.17
QDA 84.75 88.76

Logistic regression 92.05 95.86
Naive Bayes 94.56 92.60

Random forest 94.05 93.49
SVM Linear 93.33 95.27
SVM RBF 95.63 90.53

Table 3.8: Algorithms’ performance for Task 5 (trial-based scheme) using Fisher’s score.
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• Figure 3.13 shows the confusion matrix for SVM Linear.

Figure 3.13: Confusion matrix (100%) for SVM Linear (Task 5; trial-based; Fisher’s score).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.14, which reveals that QDA
has a different mean from KNN, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.14: Statistical comparison (Task 5; trial-based; Fisher’s score).
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Subject based: Results

• Table 3.9 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Number of movements of left instrument 90.00

Ideal path length of clipper (cm) 65.00
Relevant path length - clipper(cm) 65.00

Average speed of right instrument movement (cm/sec) 55.00
Number of clipped ducts 50.00

**Economy of movement -grasper (%) 45.00
**Ideal path length of grasper (cm) 45.00

**NB this feature appeared in the top-6 list < 50% of the experimental runs performed.

Table 3.9: Best 6 features (Task 5; subject-based; Fisher’s score).

• Table 3.10 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 90.69 90.78 91.67
LDA 91.39 91.04 87.50
QDA 83.19 85.04 95.56

Logistic regression 93.61 93.73 95.56
Naive Bayes 91.94 91.85 90.83

Random forest 92.64 92.57 91.67
SVM Linear 92.78 92.90 94.44
SVM RBF 92.78 92.59 90.28

Sensitivity (Recall) (%) Precision (%)
KNN 89.92 91.67
LDA 94.88 87.50
QDA 76.61 95.56

Logistic regression 91.98 95.56
Naive Bayes 92.90 90.83

Random forest 93.48 91.67
SVM Linear 91.40 94.44
SVM RBF 95.03 90.28

Table 3.10: Algorithms’ performance for Task 5 (subject-based scheme) using Fisher’s score.
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• Figure 3.15 shows the confusion matrix for Logistic regression.

Figure 3.15: Confusion matrix (100%) for Logistic regression (Task 5; subject-based; Fisher’s
score).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.16, which reveals that QDA
has a different mean from KNN, LDA, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.16: Statistical comparison (Task 5; subject-based; Fisher’s score).
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3.2.2 Task 6
Trial based: Results

• Table 3.11 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Number of exposed green balls that are collected 100.00

Average speed of right instrument movement (cm/sec) 95.00
Number of lost balls which miss the basket 90.00

Economy of movement - left instrument (%) 70.00
Number of movements of right instrument 65.00
Ideal path length of left instrument (cm) 50.00

Table 3.11: Best 6 features (Task 6; trial-based; Fisher’s score).

• Table 3.12 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 93.57 93.71 91.55
LDA 94.00 94.12 91.80
QDA 81.14 80.59 74.03

Logistic regression 95.57 95.72 94.90
Naive Bayes 91.71 91.92 90.14

Random forest 95.29 95.46 94.93
SVM Linear 95.86 95.99 94.79
SVM RBF 95.57 95.68 93.75

Sensitivity (Recall) (%) Precision (%)
KNN 95.99 91.53
LDA 96.55 91.80
QDA 87.26 74.86

Logistic regression 96.66 94.81
Naive Bayes 93.75 90.16

Random forest 96.12 94.81
SVM Linear 97.20 94.81
SVM RBF 97.72 93.72

Table 3.12: Algorithms’ performance for Task 6 (trial-based scheme) using Fisher’s score.
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• Figure 3.17 shows the confusion matrix for SVM Linear.

Figure 3.17: Confusion matrix (100%) for SVM Linear (Task 6; trial-based; Fisher’s score).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.18, which reveals that QDA
has a different mean from KNN, LDA, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.18: Statistical comparison (Task 6; trial-based; Fisher’s score).
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Subject based: Results

• Table 3.13 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Number of lost balls which miss the basket 95.00

Number of exposed green balls that are collected 90.00
Economy of movement - left instrument (%) 85.00

Average speed of right instrument movement (cm/sec) 80.00
Number of movements of right instrument 70.00
Ideal path length of left instrument (cm) 55.00

Table 3.13: Best 6 features (Task 6; subject-based; Fisher’s score).

• Table 3.14 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 93.89 93.97 95.28
LDA 92.78 92.76 92.50
QDA 82.22 81.82 80.00

Logistic regression 95.14 95.19 96.11
Naive Bayes 91.81 91.95 93.61

Random forest 94.44 94.54 96.11
SVM Linear 94.58 94.68 96.39
SVM RBF 95.28 95.29 95.56

Sensitivity (Recall) (%) Precision (%)
KNN 92.70 95.28
LDA 93.02 92.50
QDA 83.72 80.00

Logistic regression 94.28 96.11
Naive Bayes 90.35 93.61

Random forest 93.01 96.11
SVM Linear 93.03 96.39
SVM RBF 95.03 95.56

Table 3.14: Algorithms’ performance for Task 6 (subject-based scheme) using Fisher’s score.
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• Figure 3.19 shows the confusion matrix for SVM RBF.

Figure 3.19: Confusion matrix (100%) for SVM RBF (Task 6; subject-based; Fisher’s score).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.20, which reveals that QDA
has a different mean from KNN, LDA, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.20: Statistical comparison (Task 6; subject-based; Fisher’s score).
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3.2.3 Task 7
Trial based: Results

• Table 3.15 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Average speed of left instrument movement (cm/sec) 100.00

Average speed of right instrument movement (cm/sec) 85.00
Number of cutting maneuvers performed without causing injury 80.00

Safe retraction - overstretch (%) 75.00
Accuracy rate - cuts without injury (%) 60.00

Total time 50.00

Table 3.15: Best 6 features (Task 7; trial-based; Fisher’s score).

• Table 3.16 presents the algorithms’ performance.

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 63.43 63.22 64.01
LDA 71.14 67.21 59.57
QDA 61.57 68.90 86.11

Logistic regression 71.86 69.55 64.95
Naive Bayes 59.43 65.70 78.90

Random forest 69.29 66.77 62.54
SVM Linear 71.86 68.58 61.90
SVM RBF 65.86 62.36 58.05

Sensitivity (Recall) (%) Precision (%)
KNN 62.86 63.58
LDA 76.67 59.83
QDA 57.42 86.13

Logistic regression 74.75 65.03
Naive Bayes 56.43 78.61

Random forest 71.76 62.43
SVM Linear 76.51 62.14
SVM RBF 68.51 57.23

Table 3.16: Algorithms’ performance for Task 7 (trial-based scheme) using Fisher’s score.
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• Figure 3.21 shows the confusion matrix for Logistic regression.

Figure 3.21: Confusion matrix (100%) for Logistic regression (Task 7; trial-based; Fisher’s score).

Trial based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.22, which reveals that:

• GNB has a different mean from LDA, LG, RF and SVM Linear,

• QDA has a different mean from LDA, LG and SVM Linear.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.22: Statistical comparison (Task 7; trial-based; Fisher’s score).
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Subject based: Results

• Table 3.17 presents the best 6 features. The % denotes how many times each feature was
within the top 6 features (selected by Fisher’s score) across the 20 classification runs per-
formed.

Feature %
Accuracy rate - cuts without injury (%) 90.00

Average speed of left instrument movement (cm/sec) 85.00
Average speed of right instrument movement (cm/sec) 75.00

Safe retraction - overstretch (%) 70.00
Number of cutting maneuvers performed without causing injury 65.00

Number of movements of left instrument 50.00

Table 3.17: Best 6 features (Task 7; subject-based; Fisher’s score).

• Table 3.18 presents the algorithms’ performance

Algorithms Accuracy (%) F1 (%) Specificity (%)
KNN 63.33 62.07 60.00
LDA 70.83 67.08 59.44
QDA 52.92 67.31 96.94

Logistic regression 72.08 69.87 64.72
Naive Bayes 55.00 66.80 90.56

Random forest 68.47 66.76 63.33
SVM Linear 71.94 69.21 63.06
SVM RBF 67.92 63.39 55.56

Sensitivity (Recall) (%) Precision (%)
KNN 64.29 60.00
LDA 76.98 59.44
QDA 51.55 96.94

Logistic regression 75.90 64.72
Naive Bayes 52.92 90.56

Random forest 70.59 63.33
SVM Linear 76.69 63.06
SVM RBF 73.80 55.56

Table 3.18: Algorithms’ performance for Task 7 (subject-based scheme) using Fisher’s score.
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• Figure 3.23 shows the confusion matrix for SVM Linear.

Figure 3.23: Confusion matrix (100%) for SVM Linear (Task 7; subject-based; Fisher’s score).

Subject based: Statistical comparison

The findings of the statistical comparison are presented in Figure 3.24, which reveals that:

• KNN has a different mean from GNB, QDA, LG and SVM Linear,

• GNB has a different mean from KNN, LDA, LG, RF, SVM Linear and SVM RBF,

• QDA has a different mean from KNN, LDA, GNB, LG, RF, SVM Linear and SVM RBF.

(a) Anova boxplot. (b) Multiple comparison graph.

Figure 3.24: Statistical comparison (Task 7; subject-based; Fisher’s score).
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Chapter 4

Discussion

Upon analyzing all the collected results, several conclusions can be drawn.

Firstly, it is evident that the accuracy percentages of Task 7 is lower than that of the other tasks,
regardless of whether the data was split by trial or by subject and whether PCA or Fisher’s score
was used (Table 4.1 shows these differences). This can be attributed to the fact that by the time
Task 7 is reached, the student has already gained experience with the different tasks in the module.
Therefore, there is little variation in the feature values between the first and last attempts, resulting
in reduced accuracy. Additionally, since the Pass threshold for Task 7 is only one feature (i.e., the
total number of cutting maneuvers), the feature is affected by the presence of other features, further
reducing the accuracy.

Task 5 Task 6 Task 7
Accuracy Accuracy Accuracy

Trial based (PCA) 96.14 97.29 76.43
Subject based (PCA) 97.08 96.94 73.33

Trial based (Fisher’s score) 94.43 95.86 71.86
Subject based (Fisher’s score) 92.78 94.58 71.94

Table 4.1: Example of accuracy percentages for Task 5, 6 and 7 for the SVM Linear algorithm.

Furthermore, the accuracy percentage for subject-based scripts, in most cases, was slightly lower
than that of trial-based scripts (see Table 4.2). Although the difference was not significant, it was
noticeable, as the algorithm had not been exposed to a specific student’s trials during the training
phase. As a result, the algorithm was presented with entirely new data during the prediction task,
potentially impacting the accuracy percentage.
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Accuracy
Trial based (PCA) 92.14

Subject based (PCA) 89.17
Trial based (Fisher’s score) 92.57

Subject based (Fisher’s score) 91.39

Table 4.2: Example of accuracy percentages for Task 5 for the LDA algorithm.

Table 4.3 was created by consolidating all the available data, and it showcases the most effective
algorithms for each task, as determined by their accuracy percentages.

Task 5
PCA Fisher’s score

Accuracy (%) Algorithm Accuracy (%) Algorithm
Trial based 96.14 SVM Linear 94.43 SVM Linear

Subject based 97.08 SVM Linear 93.61 Logistic regression
Task 6

PCA Fisher’s score
Accuracy (%) Algorithm Accuracy (%) Algorithm

Trial based 97.29 SVM Linear 95.86 SVM Linear
Subject based 96.94 SVM Linear 95.28 SVM RBF

Task 7
PCA Fisher’s score

Accuracy (%) Algorithm Accuracy (%) Algorithm
Trial based 76.43 SVM Linear 71.86 SVM Linear, Logistic regression

Subject based 75.69 LDA 72.08 Logistic regression

Table 4.3: Most effective algorithms for each task.

It is evident that the Support Vector Machine with a linear kernel outperformed the other algo-
rithms, achieving the highest overall accuracy percentage.

Regarding the features of each task, the analysis revealed that there was a unanimous agreement
on the top six features for Task 6. However, for Tasks 5 and 7, there was no clear consensus on the
sixth best feature. Table 4.4 presents the best six features for each task.
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Task 5
Feature %

Average speed of right instrument movement (cm/sec) 72.50
Number of movements of left instrument 80.00

Ideal path length of clipper (cm) 65.00
Relevant path length - clipper(cm) 57.50

Economy of movement -grasper (%) 55.00
*Number of movements of right instrument 65.00

*Number of clipped ducts 50.00
Task 6

Feature %
Number of exposed green balls that are collected 95.00

Average speed of right instrument movement (cm/sec) 87.50
Number of lost balls which miss the basket 92.50

Economy of movement - left instrument (%) 77.50
Number of movements of right instrument 67.50
Ideal path length of left instrument (cm) 52.50

Task 7
Feature %

Average speed of left instrument movement (cm/sec) 92.50
Average speed of right instrument movement (cm/sec) 87.50

Number of cutting maneuvers performed without causing injury 72.50
Safe retraction - overstretch (%) 72.50

Accuracy rate - cuts without injury (%) 75.00
*Total time 50.00

*Number of movements of left instrument 50.00
*Appeared only in trial or subject based script.

Table 4.4: The six best features for each task.
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Chapter 5

Conclusion

In summary, this thesis highlights the potential benefits of using virtual reality simulators and
machine learning algorithms to evaluate and enhance laparoscopy training for medical students.
By utilizing the Lap Mentor VR simulator, students can receive customized feedback on their
progress, while educators can adjust their teaching to cater to the specific needs of each student.
The study concentrated on three particular tasks and used the collected data to create scripts that
classify students into “Start of training” and “End of training” categories.

Although the accuracy of the algorithms varied depending on the task and the method of data split-
ting used, Task 7 had lower accuracy percentages than the other tasks, mainly due to the reduced
variation in feature values between the first and last attempts. Additionally, subject-based scripts
had a slightly lower accuracy percentage than trial-based scripts, indicating that the algorithm’s
familiarity with a particular student’s trials during the training phase could positively affect the
accuracy percentage during the prediction task.

Moreover, the results reveal that the Support Vector Machine with a linear kernel outperformed
the other algorithms in terms of overall accuracy percentage. On the other hand, the Quadratic
Discriminant Analysis algorithm achieved the highest specificity percentage, while the Support
Vector Machine with a linear kernel algorithm had the best sensitivity percentage.

Furthermore, the analysis of the features for each task indicated a unanimous agreement on the top
six features (performance metrics) for Task 6, while Tasks 5 and 7 had no clear consensus on the
sixth best feature.

By adopting this technology, educators can deliver personalized feedback to students based on their
specific needs, thereby improving the overall quality of medical education. This approach could
also be applied to other medical fields, leading to a more comprehensive and efficient training
process for healthcare professionals.

Although this study provides valuable insights, there is still room for further research and im-
provement. Future studies could concentrate on expanding the sample size and incorporating more
diverse tasks to achieve a more comprehensive analysis of laparoscopy training.
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In conclusion, this thesis highlights the potential for innovative technologies and machine learning
algorithms to revolutionize medical education and enhance the training of healthcare professionals.
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Acronyms-Abbreviations

AI: Artificial intelligence

ET: End of Training

FLS: Fundamentals of Laparoscopic Surgery

GOALS: Global Operative Assessment of Laparoscopic Skills

kNN: k-Nearest Neighbors

LDA: Linear Discriminant Analysis

MIS: Minimally invasive surgery

MISTELS: McGill Inanimate System for Training and Evaluation of Laparoscopic Skills

ML: Machine learning

MLASE: Machine Learning to Assess Surgical Expertise

MLP: Multilayer perceptron

NB: Naive Bayes Classifier

OSATS: Objective Structured Assessment of Technical Skill

PCA: Principal Component Analysis

PR: Physical Reality

QDA: Quadratic Discriminant Analysis

ST: Start of training

SVM: Support Vector Machine

VR: Virtual reality
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Appendix

5.1 Confusion matrices

5.1.1 Two class classification (Dim. Reduction: PCA)
Task 5: Trial based

• KNN

Figure 5.1: Confusion matrix (100%) for KNN (Task 5; trial-based; PCA).
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• LDA

Figure 5.2: Confusion matrix (100%) for LDA (Task 5; trial-based; PCA).

• QDA

Figure 5.3: Confusion matrix (100%) for QDA (Task 5; trial-based; PCA).
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• Logistic regression

Figure 5.4: Confusion matrix (100%) for Logistic regression (Task 5; trial-based; PCA).

• Naive Bayes

Figure 5.5: Confusion matrix (100%) for Naı̈ve Bayes (Task 5; trial-based; PCA).
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• Random forest

Figure 5.6: Confusion matrix (100%) for Random forest (Task 5; trial-based; PCA).

• SVM RBF

Figure 5.7: Confusion matrix (100%) for SVM RBF (Task 5; trial-based; PCA).
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Task 5: Subject based

• KNN

Figure 5.8: Confusion matrix (100%) for KNN (Task 5; subject-based; PCA).

• LDA

Figure 5.9: Confusion matrix (100%) for LDA (Task 5; subject-based; PCA).
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• QDA

Figure 5.10: Confusion matrix (100%) for QDA (Task 5; subject-based; PCA).

• Logistic regression

Figure 5.11: Confusion matrix (100%) for Logistic regression (Task 5; subject-based; PCA).
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• Naive Bayes

Figure 5.12: Confusion matrix (100%) for Naı̈ve Bayes (Task 5; subject-based; PCA).

• Random forest

Figure 5.13: Confusion matrix (100%) for Random forest (Task 5; subject-based; PCA).
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• SVM RBF

Figure 5.14: Confusion matrix (100%) for SVM RBF (Task 5; subject-based; PCA).

Task 6: Trial based

• KNN

Figure 5.15: Confusion matrix (100%) for KNN (Task 6; trial-based; PCA).
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• LDA

Figure 5.16: Confusion matrix (100%) for LDA (Task 6; trial-based; PCA).

• QDA

Figure 5.17: Confusion matrix (100%) for QDA (Task 6; trial-based; PCA).
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• Logistic regression

Figure 5.18: Confusion matrix (100%) for Logistic regression (Task 6; trial-based; PCA).

• Naive Bayes

Figure 5.19: Confusion matrix (100%) for Naı̈ve Bayes (Task 6; trial-based; PCA).
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• Random forest

Figure 5.20: Confusion matrix (100%) for Random forest (Task 6; trial-based; PCA).

• SVM RBF

Figure 5.21: Confusion matrix (100%) for SVM RBF (Task 6; trial-based; PCA).
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Task 6: Subject based

• KNN

Figure 5.22: Confusion matrix (100%) for KNN (Task 6; subject-based; PCA).

• LDA

Figure 5.23: Confusion matrix (100%) for LDA (Task 6; subject-based; PCA).
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• QDA

Figure 5.24: Confusion matrix (100%) for QDA (Task 6; subject-based; PCA).

• Logistic regression

Figure 5.25: Confusion matrix (100%) for Logistic regression (Task 6; subject-based; PCA).

78



• Naive Bayes

Figure 5.26: Confusion matrix (100%) for Naı̈ve Bayes (Task 6; subject-based; PCA).

• Random forest

Figure 5.27: Confusion matrix (100%) for Random forest (Task 6; subject-based; PCA).
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• SVM RBF

Figure 5.28: Confusion matrix (100%) for SVM RBF (Task 6; subject-based; PCA).

Task 7: Trial based

• KNN

Figure 5.29: Confusion matrix (100%) for KNN (Task 7; trial-based; PCA).
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• LDA

Figure 5.30: Confusion matrix (100%) for LDA (Task 7; trial-based; PCA).

• QDA

Figure 5.31: Confusion matrix (100%) for QDA (Task 7; trial-based; PCA).
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• Logistic regression

Figure 5.32: Confusion matrix (100%) for Logistic regression (Task 7; trial-based; PCA).

• Naive Bayes

Figure 5.33: Confusion matrix (100%) for Naı̈ve Bayes (Task 7; trial-based; PCA).
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• Random forest

Figure 5.34: Confusion matrix (100%) for Random forest (Task 7; trial-based; PCA).

• SVM RBF

Figure 5.35: Confusion matrix (100%) for SVM RBF (Task 7; trial-based; PCA).

83



Task 7: Subject based

• KNN

Figure 5.36: Confusion matrix (100%) for KNN (Task 7; subject-based; PCA).

• QDA

Figure 5.37: Confusion matrix (100%) for QDA (Task 7; subject-based; PCA).
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• Logistic regression

Figure 5.38: Confusion matrix (100%) for Logistic regression (Task 7; subject-based; PCA).

• Naive Bayes

Figure 5.39: Confusion matrix (100%) for Naı̈ve Bayes (Task 7; subject-based; PCA).
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• Random forest

Figure 5.40: Confusion matrix (100%) for Random forest (Task 7; subject-based; PCA).

• SVM Linear

Figure 5.41: Confusion matrix (100%) for SVM Linear (Task 7; subject-based; PCA).
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• SVM RBF

Figure 5.42: Confusion matrix (100%) for SVM RBF (Task 7; subject-based; PCA).

5.1.2 Two class classification (Dim. Reduction: Fisher’s Score)
Task 5: Trial based

• KNN

Figure 5.43: Confusion matrix (100%) for KNN (Task 5; trial-based; Fisher’s score).
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• LDA

Figure 5.44: Confusion matrix (100%) for LDA (Task 5; trial-based; Fisher’s score).

• QDA

Figure 5.45: Confusion matrix (100%) for QDA (Task 5; trial-based; Fisher’s score).
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• Logistic regression

Figure 5.46: Confusion matrix (100%) for Logistic regression (Task 5; trial-based; Fisher’s score).

• Random forest

Figure 5.47: Confusion matrix (100%) for Random forest (Task 5; trial-based; Fisher’s score).
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• Naive Bayes

Figure 5.48: Confusion matrix (100%) for Naive Bayes (Task 5; trial-based; Fisher’s score).

• SVM RBF

Figure 5.49: Confusion matrix (100%) for SVM RBF (Task 5; trial-based; Fisher’s score).
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Task 5: Subject based

• KNN

Figure 5.50: Confusion matrix (100%) for KNN (Task 5; subject-based; Fisher’s score).

• LDA

Figure 5.51: Confusion matrix (100%) for LDA (Task 5; subject-based; Fisher’s score).
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• QDA

Figure 5.52: Confusion matrix (100%) for QDA (Task 5; subject-based; Fisher’s score).

• Naive Bayes

Figure 5.53: Confusion matrix (100%) for Naı̈ve Bayes (Task 5; subject-based; Fisher’s score).
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• Random forest

Figure 5.54: Confusion matrix (100%) for Random forest (Task 5; subject-based; Fisher’s score).

• SVM Linear

Figure 5.55: Confusion matrix (100%) for SVM Linear (Task 5; subject-based; Fisher’s score).
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• SVM RBF

Figure 5.56: Confusion matrix (100%) for SVM RBF (Task 5; subject-based; Fisher’s score).

Task 6: Trial based

• KNN

Figure 5.57: Confusion matrix (100%) for KNN (Task 6; trial-based; Fisher’s score).
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• LDA

Figure 5.58: Confusion matrix (100%) for LDA (Task 6; trial-based; Fisher’s score).

• QDA

Figure 5.59: Confusion matrix (100%) for QDA (Task 6; trial-based; Fisher’s score).
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• Logistic regression

Figure 5.60: Confusion matrix (100%) for Logistic regression (Task 6; trial-based; Fisher’s score).

• Naive Bayes

Figure 5.61: Confusion matrix (100%) for Naı̈ve Bayes (Task 6; trial-based; Fisher’s score).
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• Random forest

Figure 5.62: Confusion matrix (100%) for Random forest (Task 6; trial-based; Fisher’s score).

• SVM RBF

Figure 5.63: Confusion matrix (100%) for SVM RBF (Task 6; trial-based; Fisher’s score).
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Task 6: Subject based

• KNN

Figure 5.64: Confusion matrix (100%) for KNN (Task 6; subject-based; Fisher’s score).

• LDA

Figure 5.65: Confusion matrix (100%) for LDA (Task 6; subject-based; Fisher’s score).
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• QDA

Figure 5.66: Confusion matrix (100%) for QDA (Task 6; subject-based; Fisher’s score).

• Naive Bayes

Figure 5.67: Confusion matrix (100%) for Naı̈ve Bayes (Task 6; subject-based; Fisher’s score).
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• Random forest

Figure 5.68: Confusion matrix (100%) for Random forest (Task 6; subject-based; Fisher’s score).

• SVM Linear

Figure 5.69: Confusion matrix (100%) for SVM Linear (Task 6; subject-based; Fisher’s score).
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• Logistic regression

Figure 5.70: Confusion matrix (100%) for Logistic regression (Task 6; subject-based; Fisher’s
score).

Task 7: Trial based

• KNN

Figure 5.71: Confusion matrix (100%) for KNN (Task 7; trial-based; Fisher’s score).
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• LDA

Figure 5.72: Confusion matrix (100%) for LDA (Task 7; trial-based; Fisher’s score).

• QDA

Figure 5.73: Confusion matrix (100%) for QDA (Task 7; trial-based; Fisher’s score).
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• Naive Bayes

Figure 5.74: Confusion matrix (100%) for Naı̈ve Bayes (Task 7; trial-based; Fisher’s score).

• Random forest

Figure 5.75: Confusion matrix (100%) for Random forest (Task 7; trial-based; Fisher’s score).
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• SVM Linear

Figure 5.76: Confusion matrix (100%) for SVM Linear (Task 7; trial-based; Fisher’s score).

• SVM RBF

Figure 5.77: Confusion matrix (100%) for SVM RBF (Task 7; trial-based; Fisher’s score).
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Task 7: Subject based

• KNN

Figure 5.78: Confusion matrix (100%) for KNN (Task 7; subject-based; Fisher’s score).

• LDA

Figure 5.79: Confusion matrix (100%) for LDA (Task 7; subject-based; Fisher’s score).
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• QDA

Figure 5.80: Confusion matrix (100%) for QDA (Task 7; subject-based; Fisher’s score).

• Naive Bayes

Figure 5.81: Confusion matrix (100%) for Naı̈ve Bayes (Task 7; subject-based; Fisher’s score).
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• Random forest

Figure 5.82: Confusion matrix (100%) for Random forest (Task 7; subject-based; Fisher’s score).

• Logistic regression

Figure 5.83: Confusion matrix (100%) for Logistic regression (Task 7; subject-based; Fisher’s
score).
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• SVM RBF

Figure 5.84: Confusion matrix (100%) for SVM RBF (Task 7; subject-based; Fisher’s score).
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