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Abstract 
Systemic Lupus erythematosus (SLE) is a complex, systemic autoimmune disease that can 

affect multiple organs either simultaneously or sequentially. Despite growing understanding 

of the disease driving mechanisms, diagnosis is primarily clinical und treatment remains 

empiric and for a significant number of patients, is far from being optimal. Current 

classification criteria as well as the Systemic Lupus Erythematosus Disease Activity Index 

(SLEDAI) score do not predict disease prognosis and treatment responses. Moreover, the 

highly heterogeneous clinical presentation of the SLE coupled with the diversity of 

abnormalities that have been elucidated at cellular and molecular level have accounted for the 

modest results of several SLE clinical trials. Patients with SLE  are in need for early 

diagnosis and a molecular based patient stratification to guide targeted therapy.  

In our study, we stratified patients with SLE, according to their distinct, whole blood 

molecular fingerprints, irrespective of their clinical annotation. To this end, we analyzed the 

peripheral blood transcriptional profiles of 120 patients with moderate to severe SLE. By 

applying a co-expression network analysis, we identified groups of transcripts (modules) that 

present common patterns of expression and we examined the enrichment of each module in 

the transcriptome of each patient, separately. Next, using agglomerative hierarchical 

clustering, based on the enrichment of each gene module, we determined patients’ molecular 

endotypes. We identified a “Neutrophil” signature group, which almost exclusively 

comprised of patients with active Lupus Nephritis, whereas humoral and type I interferon 

responses were predominantly enriched in the “B cell” group. Macroautophagy disturbances, 

deregulation of pathways involved in toll-like receptor (TLR) and abberancies in 

mitochondrial function distinguished the “Autophagy” and “Metabolism” groups, 

respectively. Lastly, platelet activation and hemostasis pathways characterized the 

“Hemostasis” group. Next, using the patient endotype specific signatures as input and 

leveraging one of the largest drug signature databases to date, iLINCS, we constructed an in-

silico, signature-based drug prediction pipeline in order to propose compounds that are 

predicted to reverse the patients’ transcriptional disturbances most effectively, in a 

personalized manner. Bortezomib was predicted to counteract the transcriptional changes of 

the patients of the “Neutrophil” group most efficiently. The patients of the “B-cell” endotype 

might benefit most from a treatment with azathioprine and ixazomib, whereas fostamatinib 

might represent a putative therapeutic option for patients of the “Metabolism” group. 
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To identify novel therapeutic SLE agents that might target the endotype-specific 

transcriptional disturbances, we performed a personalized drug repurposing analysis. Taking 

a step forward, applying two independent - a transcriptome-reversal and a network-based - 

strategies, we proposed compounds that might remedy transcriptional disturbances of 

monocytes in SLE. Finally, applying a cross-species, time-series transcriptional analysis, we 

determined a unifying mouse-kidney specific gene signature, which could predict with high 

accuracy patients that will develop Lupus Nephritis.  
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Περίληψη  
Ο Συστηματικός Ερυθηματώδης Λύκος (ΣΕΛ) είναι ένα πολύπλοκο, αυτοάνοσο νόσημα, που 

μπορεί να προσβάλει πολλαπλά όργανα. Παρά τη σημαντική πρόοδο στην κατανόηση των 

μηχανισμών του νοσήματος, η διάγνωση είναι κλινική και η απόκριση στη θεραπεία 

παραμένει εμπειρική και για σημαντικό αριθμό ασθενών μη ικανοποιητική. Ενώ  τα ισχύοντα 

κριτήρια ταξινόμησης της νόσου και ο δείκτης SLEDAI, αδυνατούν να προβλέψουν την 

πρόγνωση ή την ανταπόκριση στη θεραπεία, υπογραμμίζοντας την επιτακτική ανάγκη για τη 

μοριακή ταξινόμηση των ασθενών με ΣΕΛ. Η εκσεσημασμένη  ετερογένεια των κλινικών 

εκδηλώσεων σε συνδυασμό με την ποικιλία διαταραχών που έχουν αναγνωριστεί σε 

κυτταρικό και μοριακό επίπεδο ευθύνονται για αρνητικά αποτελέσματα πολλών κλινικών 

μελετών στο ΣΕΛ. 

Στη μελέτη μας, ταξινομήσαμε τους ασθενείς με ΣΕΛ, σύμφωνα με τα διακριτά τους 

μοριακά αποτυπώματα στο περιφερικό αίμα, ανεξάρτητά από τις κλινικές τους εκδηλώσεις. 

Ειδικότερα, αναλύσαμε τις μεταγραφικές υπογραφές του περιφερικού αίματος 120 ασθενών 

με μέτριο ή σοβαρό ΣΕΛ. Εφαρμόζοντας ανάλυση δικτύων συνέκφρασης γονιδίων, 

προσδιορίσαμε ομάδες γονιδίων (module) που εμφανίζουν κοινά πρότυπα έκφρασης και 

εξετάσαμε το βαθμό έκφρασης της κάθε ομάδας γονιδίων στο μεταγραφώμα του κάθε 

ασθενούς. Στη συνέχεια, χρησιμοποιώντας ιεραρχική συσσωρευτική μέθοδο ταξινόμησης, 

προσδιορίσαμε μοριακούς ενδοτύπους ασθενών με βάση το βαθμό έκφρασης της κάθε 

ομάδας γονιδίων. Εντοπίσαμε τον ενδότυπο “Ουδετερόφιλο”, ο οποίος σχεδόν αποκλειστικά 

περιελάμβανε ασθενείς με ενεργό νεφρίτιδα Λύκου, ενώ υπογραφές χυμικής ανοσίας και 

ιντερφερόνης τύπου Ι προεξάρχουν στον ενδότυπο “Β κύτταρο”. Παρουσία γονιδιακών 

υπογραφών ενδεικτικών δυσλειτουργίας των μιτοχονδρίων αποτελεί διακριτό 

χαρακτηριστικό του ενδοτύπου “Μεταβολισμός”. Διαταραχές των μονοπατιών της 

μακροαυτοφαγίας και της σηματοδότησης μέσω τύπου Toll υποδοχέων ήταν ενδεικτικές του 

ενδότυπου “Αυτοφαγία”. Τέλος, υπογραφές ενεργοποίησης των αιμοπεταλίων και 

αιμόστασης χαρακτήριζαν τον ενδότυπο “Αιμόσταση”. Στη συνέχεια, χρησιμοποιώντας τη 

γονιδιακή υπογραφή κάθε ενδοτύπου ως βάση και εκμεταλλευόμενοι μια από τις 

μεγαλύτερες βάσεις γονιδιακών υπογραφών φαρμάκων (iLINCS), αναπτύξαμε έναν 

υπολογιστικό αλγόριθμο πρόβλεψης θεραπείας, με σκοπό να προτείνουμε θεραπείες που 

αντιστρέφουν εξατομικευμένα τις μεταγραφικές διαταραχές των ασθενών. Η βορτεζομίμπη 

ενδεχομένως αντιστρέφει πιο αποτελεσματικά τις μεταγραφικές διαταραχές των ασθενών του 

ενδότυπου “Ουδετερόφιλο”. Οι ασθενείς που ανήκουν στον ενδότυπο “Β κύτταρο” 
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ενδεχομένως ωφελούνται περισσότερο από θεραπεία με την αζαθειοπρίνη ή ιξαζομίμπη, ενώ 

η φοσταματινίμπη μπορεί να θεωρηθεί θεραπευτική επιλογή για τους ασθενείς του 

ενδοτύπου “Μεταβολισμός”.  

Προκειμένου να προτείνουμε νέες θεραπείες του ΣΕΛ, που ενδεχομένως στοχεύουν τις 

μεταγραφικές υπογραφές του κάθε ενδοτύπου, πραγματοποιήσαμε μία εξατομικευμένη 

μελέτη επαναστόχευσης φαρμάκων. Εφαρμόζοντας δύο ανεξάρτητες – μία αναστροφής 

μεταγραφικής υπογραφής και μία βασισμένη στο μοριακό δίκτυο- στρατηγικές 

επαναστόχευσης φαρμάκων, προτείναμε θεραπείες που ενδεχομένως αντιστρέφουν τις 

μεταγραφικές διαταραχές των μονοκυττάρων στο ΣΕΛ. 

Τέλος, εφαρμόζοντας μία συνδυασμένη μεταγραφική ανάλυση στο ποντικό και τον άνθρωπο, 

προσδιορίσαμε μία γονιδιακή υπογραφή ενδεικτική νεφρίτιδας Λύκου στο πειραματικό 

μοντέλο ποντικού για ΣΕΛ, η οποία προβλέπει με ακρίβεια την ανάπτυξη νεφρίτιδας Λύκου.  
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Introduction 

Diagnosis and management of SLE 

 

Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disease that can have 

devastating effects on various organs including the kidneys, the skin, the joints, and the 

central nervous system and is defined by the aberrant production of antinuclear antibodies 

(ANA) [1]. SLE is a global disease, with the annual incidence rate in Europe ranging from 1 

to 4.9 per 100,000 [2-4]. SLE predominantly affects women of childbearing age [2] and is 

among the leading causes of death in females of this age group [5]. Racial and ethnic 

disparities characterize prevalence, severity, and clinical course of SLE [2]. Patients with 

SLE of African and Hispanic ancestry are at higher risk for SLE associated renal involvement 

and suffer from significantly increased SLE related mortality compared with Caucasians [2].  

Clinical heterogeneity defines SLE. The major clinical features and their frequency are 

illustrated in Figure 1 [6]. SLE is a largely clinical diagnosis -supported by laboratory 

findings- after excluding alternative diagnoses. A diagnostic approach to patients with 

suspected SLE, incorporating a combination of the ACR-1997, SLICC-2012 and 

EULAR/ACR-2019 classification criteria, has previously been proposed by our group 

(Figure 2.) [6].  

The clinical spectrum of SLE encompasses several distinct endotypes. SLE with 

antiphospholipid syndrome constitutes an evolving SLE phenotype, which displays increased 

risk of neuropsychiatric SLE (NPSLE), thrombotic and obstetric complications [6, 7]. 

Although childhood-onset SLE (cSLE) is a rare disease, it has captured much attention due to 

its impact on the growth and development of the affected individuals [6]. Patients with cSLE 

more frequently suffer from severe disease and are more likely to experience high disease 

activity at presentation [6]. Albeit SLE is considered a mainly multisystem autoimmune 

disease, organ-dominant disease courses (musculoskeletal, dermatologic, haematologic, renal, 

neurological) can also occur, often complicating accurate diagnosis.  

SLE is typically a relapsing-remitting disease, whereas long quiescent and chronic active 

disease patterns account for 30% of SLE cases [6, 8]. Achieving remission is associated with 

reduced damage accrual in SLE [9]. The remission rates of SLE from large published series 

widely vary, while the highest prevalence of prolonged remission among Caucasian patients 

with SLE was observed in an italian cohort with 37% [6, 10]. Adverse prognostic factors 
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related to unremitting disease included the haematological manifestation and the 

glomerulonephritis [10]. 

Accurate assessment of the disease activity as well as clear definition of response criteria and 

disease states are fundamental, as they largely guide clinical practice in SLE. Several activity 

indices -validating global or organ specific disease activity- have been proposed, including 

the SLE Disease Activity Index (SLEDAI), the British Isles Lupus Activity Group (BILAG) 

index, the Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA)-

SLEDAI Physician Global Assessment (PGA) and the SLE Disease Activity Score (SLE-

DAS) [6, 11]. Notably, the current activity indices exhibit limitations affecting the success of 

SLE clinical trials. To this end, the investigators in the belimumab trials employed the SLE 

Responder Index (SRI), which comprises criteria from three different validated indices, the 

(SELENA)-SLEDAI, the PGA and the BILAG [6]. An important step towards a treat-to-

target strategy for SLE, was taken through the development of a consensus-based definition 

of remission (Table 1.) and lupus low- disease activity state (LLDAS) (Table 2.) [12-14].  

Disease activity should be differentiated from damage, which is consistently associated with 

poor clinical outcomes and negatively affects survival of SLE patients [6, 15]. The 

SLICC/ACR Damage Index (SDI) represents a widely used index to ascertain accumulation 

of organ damage in SLE, due to SLE itself, treatment complications or related comorbidities 

[6].  

Despite the advances in the understanding of the SLE pathogenesis over the past decades, 

management of lupus patients poses challenges (Figure 3.). Attainment of sustained low 

disease activity state or remission and prevention of flares are the major therapeutic goals for 

patients with SLE. The antimalarial hydroxychloroquine is the mainstay long treatment in 

SLE, unless contraindications exist. Glucocorticoids remain a cornerstone of SLE treatment, 

however cumulative glucocorticoid exposure may lead to organ damage in patients with SLE 

[16]. To this end, glucocorticoid dose should not exceed 7.5 mg/day (prednisone equivalent), 

during chronic maintenance treatment [6]. To enable a more rapid tapering of glucocorticoids 

and reduce flare rates, prompt initiation of immunomodulatory agents, such as azathioprine, 

methotrexate, mycophenolate, cyclosporine is recommended [6]. Cardinal disease 

manifestation, childbearing potential and cost play a crucial role in the selection of the most 

appropriate immunomodulatory agent for each patient. For instance, patients with 

predominantly mucocutaneous and musculoskeletal features might benefit more from a 

treatment with methotrexate, whereas azathioprine or cyclosporine might be more suitable in 

haematological disease or when pregnancy is expected [6]. Cyclophosphamide and rituximab 
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are reserved for the treatment of life-, organ-threatening, refractory disease. Belimumab is a 

human monoclonal antibody that inhibits the soluble B lymphocyte stimulator (BLyS) and is 

the first biological agent approved by the U.S. Food and Drug Administration (FDA) for 

treatment of adults with persistently active or flaring SLE who are receiving standard therapy 

[6]. Efficacy of anifrolumab - a human monoclonal antibody to the type I IFN receptor 

subunit 1- across multiple organ domains was suggested by a post-hoc analysis of phase 3 

TULIP-1 and TULIP-2 clinical trials, leading to the FDA approval for treatment of adult 

patients with moderate to severe, active, autoantibody-positive SLE. Interestingly, multitarget 

treatment represents an emerging therapeutic concept in SLE over the last decade. The 

AURA-LN phase 3 study has shown that the addition of the calcineurin inhibitor voclosporin 

to the standard of care induction therapy for Lupus Nephritis (LN) increased the rate of renal 

response, though more serious adverse events were observed [17]. Accordingly, the BLISS-

LN study demonstrated that in active LN the combination therapy of belimumab with 

standard therapy was superior -in terms of renal responses- to standard therapy alone [18]. 

 

 
 

Figure 1. Clinical features of SLE and their frequency. Adopted by Fanouriakis A, Tziolos 

N, Bertsias G, et al., 2021. 
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Figure 2. A diagnostic approach to patients with suspected SLE, incorporating a combination 

of the ACR-1997, SLICC-2012 and EULAR/ACR-2019 classification criteria. Adopted by 

Fanouriakis, et al., 2020. 

 

Definition of remission in SLE 

For defining remission in SLE, a validated index must be used  

• Suggested indices are: clinical SLEDAI=0; BILAG 2004 D or E only; clinical ECLAM=0  
These must be supplemented by the physician’s global assessment being below an appropriate 

threshold (eg, <0.5 on a 0–3 scale) 

A distinction will be made between remission off therapy and remission on therapy  

• Remission off therapy requires the patient to be on no other treatment for SLE than 

maintenance antimalarials  

Remission on therapy allows patients to be treated with maintenance antimalarials, stable, low-dose 

glucocorticoids (eg, prednisone ≤5 mg/day), maintenance immunosuppressives and/or stable 

(maintenance) biologics  

 

Table 1. Definitions of remission in SLE. ECLAM, European consensus lupus outcome 

measure. Adopted by van Vollenhoven R, Voskuyl A, Bertsias G, et al., 2017. 
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Definition of Lupus Low Disease Activity State 

1. SLEDAI-2K ≤4, with no activity in major organ systems (renal, CNS, cardiopulmonary, 

vasculitis, fever) and no haemolytic anaemia or gastrointestinal activity 

2. No new features of lupus disease activity 4.7 compared with the previous assessment 

3. SELENA-SLEDAI physician global assessment (PGA, scale 0–3) ≤1 

4. Current prednisolone (or equivalent) dose ≤7.5 mg daily 

Well tolerated standard maintenance doses of immunosuppressive drugs and approved biological 

agents, excluding investigational drugs 

 

Table 2. Lupus Low Disease Activity State definition. CNS, central nervous system; 

LLDAS, Lupus Low Disease Activity State; SLEDAI, Systemic Lupus Erythematosus 

Disease Activity Index. Adopted by Franklyn K, Lau CS, Navarra SV, et al., 2015. 

 

 
 

Figure 3. EULAR recommendations for the SLE treatment strategy and therapeutic goals. 

aPL, antiphospholipid antibody; AZA, azathioprine; BEL, belimumab; CNI, calcineurin 

inhibitors; CYC, pulse cyclophosphamide; EULAR, European League Against Rheumatism; 

GC, glucocorticoids; HCQ, hydroxychloroquine; MMF, mycophenolate mofetil; RTX, 

rituximab; SLEDAI, SLE Disease Activity Index. Adopted by Fanouriakis A, Tziolos N, 

Bertsias G, et al., 2021. 
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Aetiology and pathogenesis 

Genetics and transcriptomics 

 

The genetic contribution to the development of SLE is evident from the considerably high 

heritability (43.9%) among first degree relatives of patients with SLE [19]. Although several 

monogenic conditions - including single gene defects of complement component 1q (C1q) 

subcomponent A (C1QA), three-prime repair exonuclease 1 (TREX1), or deoxyribonuclease 

1-like 3 (DNASE1L3) - can lead to SLE-like disease [20], in most cases a diverse array of 

genetic variants influence susceptibility to the disease. 

Large genome-wide association studies (GWAS) have enabled the identification of risk 

alleles for SLE in or near genes linked to apoptotic mechanisms, DNA repair and clearance of 

cellular debris (TREX1, DNASE1, autophagy related 5 (ATG5)) [19]. SLE associated loci 

coding for proteins implicated with nucleic acid sensing machinery and type I interferon 

(IFN) signaling, such as interferon regulatory factor 5 (IRF5), signal transducer and activator 

of transcription 4 (STAT4), Toll-like receptor 7 (TLR7), and TLR9 have also emerged as 

putative disease genes [19]. Additionally, genetic variants within or near genes involved in B 

and T cell function, such as protein tyrosine phosphatase 22 (PTPN22), tumor necrosis factor 

superfamily member 4 (TNFSF4), protein phosphatase 2 catalytic subunit a (PPP2CA), B cell 

scaffold protein with ankyrin repeats 1 (BANK1), and cluster of differentiation 3ζ (CD3Z) 

loci might contribute to the T and B cell hyperactivity in SLE [19].  

Most SLE genetic variants localize to non-coding, regulatory genomic regions and could thus 

determine the epigenetic dysfunction in SLE, with potential impact on the gene expression. 

Transcriptome analysis of the peripheral blood mononuclear cells (PBMCs) from SLE 

patients showed aberrant expression of genes related to type I IFN signaling and 

granulopoiesis [21, 22]. Accordingly, Banchereau et al demonstrated an incremental 

enrichment of the neutrophilic gene expression signatures towards progression to active LN 

[23]. Taking a step forward, applying an unbiased clustering approach, the same group 

detected transcriptome modules associated with dysregulated natural killer (NK), T and B 

cell responses as well as a plasmablast signature indicative of active disease status [23]. In 

addition to gene expression signatures linked to adaptive and innate immunity, Panousis et al 

identified a whole blood “activity signature” enriched in immune cell metabolism, protein 

synthesis and proliferation pathways [24]. Notably, targeted transcriptional analysis of T cells 
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from the peripheral blood of SLE patients revealed gene signatures correlating with dsDNA 

antibodies production, low complement levels and nephritis, underscoring the essential role 

of T cells in the development of SLE [25]. 

To bridge the gap between non-coding GWAS discoveries and downstream affected genes, 

transcriptome-wide-association studies (TWAS) have received more attention over the last 

years. TWAS leverage predictive models of expression, through integrating GWAS findings 

and gene expression reference panels, in order to uncover gene-complex traits associations. 

To this end, Yin et al performed – for the first time – a TWAS for SLE, identifying 276 

candidate genes and demonstrating the genetically regulated transcriptional activity of 

ACAP1 in the context of SLE [26]. 

 

Epigenetics 

 

Epigenetic mechanisms of gene regulation including the DNA methylation, non-coding 

RNAs and the histone modifications, are thought to be closely related to the pathogenesis of 

SLE. Global DNA hypomethylation has been reported in T cells from patients with active 

SLE, resulting in heightened expression of autoimmune-related, methylation-sensitive genes, 

such as ITGAL, TNFSF7, CD40L IL6, IL10, IL13, CD6 and CD11A [27]. Additionally, 

Tsokos et al demonstrated that in SLE T cells, DNA methyltransferase 1 (DNMT1) and 

DNMT3a downregulation leads to hypomethylation of the PP2Acα promoter and subsequent 

enhanced binding of the transcriptional enhancer p-CREB, which is linked to overexpression 

of the SLE associated PP2Acα [28]. Accordingly, methylation intensity of the PP2Acα 

promoter displayed an inverse correlation with SLE activity [28]. Interestingly, genome-wide 

methylation studies in naïve CD4+ T cells from SLE patients revealed significant 

hypomethylation in several type I IFN-regulated gene loci, arguing for a potential 

pathogenetic implication of the aberrant DNA methylation in SLE [29, 30]. 

Abnormal histone modification patterns have been reported in splenocytes from MRL/lpr 

lupus-prone mice [31]. Moreover, global histone H3 and H4 hypoacetylation have been 

observed in CD4+ T cells from patients with active SLE [32]. Taking a step forward, Hedrich 

et al showed evidence that in SLE T cells enhanced expression of the transcription factor 

cAMP-responsive element modulator (CREM)α facilitates the recruitment of the histone 

deacetylase 1 (HDAC1) to the IL2 promoter, contributing -through histone H3K18 
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deacetylation- to the transcriptional repression of the IL2 gene, a hallmark of the human SLE 

T cells [33]. On the other hand, increased CREMa binding within the IL17A promoter results 

in decreased recruitment of the	 HDAC1 and DNMT3a at this site, which in turn might 

account for heightened expression of IL17 by CD4+ T cells in SLE [34]. Of note, 

administration of the HDAC inhibitor suberoylanilide hydroxamic acid has shown 

encouraging results in lupus-prone mice, underscoring the potential role of the epigenetic 

modifications as therapeutic targets in SLE [35]. 

Complete understanding of the non-coding RNA regulation in SLE still remains elusive. 

Lashine et al suggested that the downregulation of the miR-155 in PBMCs from SLE patients 

might associated with decreased IL2 production through augmented expression of the protein 

phosphatase 2A (PP2A) [36]. Additionally, the miR-146a, which functions as a negative 

regulator of type I IFN pathway in PBMCs from SLE patients, has been found to inversely 

correlate with disease activity [37]. Several studies indicated the potential impact of crosstalk 

between epigenetic modifications on the transcription regulation in SLE. For example, miR-

148a and miR-126, which are both overexpressed in SLE CD4+ T cells, might contribute to T 

cell autoreactivity via suppression of DNMT1 and subsequent DNA-hypomethylation [38]. 

 

Overview of the SLE pathogenesis 

 

Aberrant clearance of apoptotic material, deregulated nucleic acid sensing, abnormal 

lymphocyte activation, signal transduction and cytokine production, as well as impaired 

degradation of neutrophil extracellular traps (NETs) are key concepts around the 

pathogenesis of SLE, leading to loss of tolerance and tissue damage. Accordingly, multiple 

subsets of immune cells display defective phenotypes and functions in the context of SLE 

(Figure 4.). 
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Figure 4. Overview of the SLE pathogenesis. BAFF, B‐cell activating factor; BAFF‐R, 

BAFF receptor; CAMP, cathelicidin antimicrobial peptide; FcR, Fc receptor; MHC, major 

histocompatibility complex; TACI, transmembrane activator and cyclophilin ligand 

interactor; TLR, Toll‐like receptor. Adopted by Tsokos et al., 2021. 

 

T cells 

 

Loss of T cell tolerance is thought to play an indispensable role in the occurrence and the 

development of SLE. SLE human T cells are chronically activated and are characterized by 

aberrant signaling through the T-cell receptor (TCR) [19]. Specifically, in T cells from SLE 

patients, the expression levels of the CD3ζ chain are significantly downregulated and the 

TCR-CD3 complex frequently bears a substitution by the homologous Fc receptor common 

gamma subunit chain (FcRγ) [19]. Rather than the tyrosine-protein kinase ZAP-70, which 

pairs the CD3ζ chain, FcRγ recruits the tyrosine-protein kinase SYK, contributing to the 

hyperactivated phenotype of the T cells in SLE [19, 39]. Notably, alterations of the 

expression and composition of the lipid rafts have been described in SLE T cells, promoting 

the excessive T cell activation [19]. 

Immunometabolism has emerged as central mechanism for the regulation of T cell responses. 

Chronic activation of autoreactive T cells in SLE results in persistent mitochondrial 
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hyperpolarization [40]. Indicative of the oxidative stress, which characterizes SLE T cells, is 

the depletion of the major intracellular antioxidant glutathione in the plasma of SLE patients 

as well as the beneficial effect of the N-acetylcysteine on disease activity in a pilot SLE 

clinical trial [40]. 

Although SLE T cells display a hyperactive phenotype, decreased production of IL2 by T 

cells represents a hallmark of SLE [19]. Besides its central role in the development and 

function of immunosuppressive Treg cells, IL2 constrains IL17 production, which is 

abnormally elevated in serum from SLE patients [40]. Double-negative T cells (CD4−CD8−) 

were shown to produce increased amounts of IL17 in SLE [40]. Notably, double-negative T 

cells are expanded in SLE and infiltrate the kidneys of both patients and lupus-prone mice, 

amplifying local inflammation and tissue damage [40]. 

T cell-B cell interactions represent a crucial checkpoint in the process of secondary B cell 

maturation and the maintenance of tolerance. In SLE, T cell-B cell interactions are aberrant, 

often occurring in tertiary lymphoid organs and are more transient compared to healthy 

individuals [19, 40]. T follicular helper (Tfh) cells constitute a subset of effector T cells, 

essential for B-cell maturation and immunoglobulin production. Specifically, Tfh cells 

produce IL21 and provide the necessary receptor engagement in the germinal center, 

facilitating isotype switching and somatic hypermutation. Tfh cells are expanded in spleens of 

MRL/lpr mice [41], whereas circulating Tfh cell are increased in SLE patients and were 

correlated with plasmablasts as well as the anti-ds DNA autoantibodies titers [40, 42]. In 

addition, extrafollicular helper T cells (eTfh) represent an anatomically distinct CD4+T cell 

subpopulation that regulate plasma cell differentiation outside the follicle [44]. Remarkably, 

Liarski et al suggested that Tfh cells are evident within lymphoid aggregates in renal biopsies 

from patients with active LN [42, 43]. In this line, Yin et al showed evidence for abnormal 

renal accumulation of γδ2 T cells, an IL21-secreting subpopulation of γδ T cells, which might 

support the formation of extrafollicular germinal centers in SLE kidney [45]. 

Cytotoxic CD8+ T cells in SLE exhibit reduced cytolytic capacity, contributing to the 

increased risk of infections that defines the disease [46]. To this end, expansion of a 

dysfunctional CD38+CD8+ T cell subset, with features of reduced granzyme and perforin 

production was reported in peripheral blood from SLE patients [46]. Of note, emerging 

evidence suggests that in SLE, self-reactive CD8+ T cells tend to lose CD8 expression, 

turning into PD-1 expressing, double-negative T cells, which display impaired anti-viral 

responses in vitro [47]. In addition, in SLE patients, prolonged type I IFN exposure promotes 

CD8+ T cells apoptosis via metabolic rewiring [48]. 
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B cells 

 

Although SLE presents extraordinary heterogeneity, production of autoantibodies is nearly 

universal among patients with SLE. SLE is characterized by increased numbers of self-

reactive B cells, both in new emigrant and mature naïve B cell compartments, indicating 

profound defects in B cell tolerance. Specifically, pronounced naive B cell (CD19+CD27+) 

lymphopenia, expansion of transitional B cell (CD19+CD24hiCD38hi), switched memory B 

cell (CD19+CD27+IgD+), double-negative (CD19+CD27+IgD+) B cell and 

plasmablast/plasma cell (CD27hiCD38+CD19dimsIglowCD20+CD138+) populations are 

associated with active disease [19]. In addition, impaired regulatory capacity of the 

CD19+CD24hiCD38hi B cells, which suppress the differentiation of T helper 1 cells -partially 

via the secretion of IL10- have been described in SLE [49]. 

Several B cell intrinsic risk alleles are linked to loss of B cell tolerance, amplifying the loop 

of autoimmunity in SLE [50]. For example, in patients with SLE, risk alleles for BANK1, 

BLK, CSK, and FCGR2B might contribute to the increased B cell activation via hyper-

responsiveness to B cell receptor (BCR) engagement, whereas PTPN22 risk allele might lead 

to hypomethylation of proteins included in BCR signaling pathway, resulting in dampening 

of tolerance in immature B cells [50]. 

Unlikely dendritic cells, in B cells, specific antigen uptake is mediated through BCR, which 

after engagement, bound to antigen undergoes endocytosis and proceeds via intracellular 

routing to TLR7- and TLR9-containing late endosomes, resulting in TLR-induced B cell co-

stimulation [51]. In SLE, breach of B cell tolerance to autoantigens is at least partially 

regulated in a cell-intrinsic manner by TLRs [51]. To this end, B cell-specific TLR7 deletion 

prevents formation of autoantibodies against RNA-associated autoantigens and limits 

systemic autoimmunity in lupus-prone mice [52], whereas B cell-intrinsic TLR9 deletion 

restrained TLR7-mediated spontaneous autoimmunity in C57BL/6 mice [53]. In this line, 

selective B cell-inactivation of TLR signaling adaptor Myd88 ameliorates nephritis in 

MRL/lpr mice [19].  

Aberrant cytokine production is strongly implicated with loss of B cell tolerance in SLE. B-

cell activity factor (BAFF) is a critical survival factor for transitional and mature B cells and 

excess of BAFF rescues self-reactive B cells from peripheral deletion. Serum levels of BAFF 

are increased in patients with SLE and correlate with the presence of autoantibodies [54]. 



 

 26 

Moreover, BAFF overexpression in lupus prone mouse model leads to a striking acceleration 

of glomerular pathology [55]. Of note, B-cell depletion therapy in patients with SLE often 

results in elevated levels of BAFF, posing the concern that repopulating B cell subsets could 

exert an autoreactive phenotype [56]. To this end, targeted BAFF inhibition represented a 

reasonable therapeutic approach in SLE, leading to the approval of the anti-BAFF 

monoclonal antibody belimumab from the FDA for the therapy of patients with active SLE.  

 

Neutrophils 

 

Dysregulated functional properties of neutrophils have been reported in SLE. Impaired 

phagocytic capacity of SLE-derived neutrophils is well established, predisposing to infections 

[19]. Accordingly, Lupus Erythematosus (LE) Cell, a blood granulocyte that have engulfed 

opsonized apoptotic remnants, was the first neutrophil abnormality discovered in bone 

marrow of SLE patients. Moreover, diminished generation of reactive oxygen species (ROS) 

characterizes neutrophils from SLE patients and is associated with increased disease activity 

and organ damage [57]. Notably, reduced ROS production might affect the apoptopic 

pathway, promoting defective clearance of cell remnants and autoantigen exposure in SLE 

[40]. Although neutrophils in SLE exhibit decreased phagocytic activity, they display an 

activated phenotype and overexpress adhesion molecules [19].  

NETosis is a regulated form of neutrophil cell death that contributes to host defense against 

pathogens and involves extrusion of chromatin decorated with proinflammatory cytokines 

and antimicrobial proteins. Of note, this extruded material serves as source of citrullinated 

peptide and nucleic acid antigens, driving autoantibody production in SLE [40]. Enhanced 

NET formation does appear to occur in SLE in vivo [58]. SLE is characterized by elevated 

levels of low-density granulocytes –a pathologic neutrophil subset-, which exhibit increased 

capacity to form neutrophil extracellular traps (NETs) [40]. Netting neutrophils are major 

amplifiers of type I IFN production in SLE [58]. Specifically, Garcia-Romo et al showed 

evidence that NETs containing DNA as well as large amounts of antimicrobial peptides 

induce type I IFN production by plasmacytoid dendritic cells (pDCs) in a TLR9-dependent 

manner [58]. In turn, enhanced type I IFN stimulates NET formation in SLE, indicating the 

presence of a positive feedback loop [40]. 
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Dendritic cells 

 

Dendritic cells (DC) are professional phagocytes, implicated in clearance of apoptotic 

material and presentation of self-antigens, thus serving as critical link between innate and 

adaptive immune system. Patients with SLE present decreased number of circulating 

conventional DC, but expansion of the pDCs subpopulation [40]. Excessive accumulation of 

pDCs has been described in kidney biopsies from SLE patients and cutaneous lupus lesions, 

implying their contribution to local tissue damage [19]. pDCs have been proposed as a major 

source of type I IFN in SLE [59]. Specifically, immunocomplexes containing self-nucleic 

acids activate DCs, resulting in type I IFN secretion via TLR7 and TLR9 stimulation [40]. In 

addition to its cytotoxic effects on variety of cells, which might facilitate increased 

autoantigen exposure, type I IFN directly affects T cells, promoting their survival, activation, 

and proliferation [40]. Moreover, type I IFN sensing by B cells decreases threshold for BCR 

stimulation, modulates antigen presentation, survival, and cytokine production, and promotes 

alterations in B cell development process, including arrested development at the early stages 

and expansion of B cells at transitional stage [60].  

Conventional DCs are essential for antigen presentation, priming naïve T cells upon antigen 

uptake and maturation induced by appropriate maturation signals. To this end, RNA sensing 

by conventional DCs has been demonstrated to play a principal role in driving LN in 

conditional SLE mice overexpressing TLR7 [61]. Notably, DCs are major providers of 

BAFF, promoting survival and activation of autoreactive B cells in SLE.  

 

Monocytes/Macrophages 

 

Monocytes and macrophages represent an essential arm of innate immunity exhibiting 

versatile immunoregulatory, inflammatory and tissue repairing capabilities and thus playing 

an instrumental role in the development of SLE [62]. Macrophage depletion ameliorates 

nephritis mediated by pathogenic antibodies in lupus prone mice [63]. Along this line, renal 

macrophage infiltration represents a strong prognostic factor towards development of 

proliferative LN [40]. Aberrations in monocyte/macrophage-mediated CD40/CD40L co-

stimulation contribute to the polyclonal B cell hyperactivity, which defines SLE [62]. SLE 

patients demonstrated a significantly higher number of circulating CD40L-expressing 

macrophages compared to healthy individuals [62]. Taking a step forward, data from murine 
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studies showed that CD40L overexpression by B cells induces SLE like phenotype, while 

anti-CD40L treatment prevents activation of self-reactive B cells as well as generation of 

autoantibodies in lupus mouse models [62, 64]. Notably, elevated IFNa levels in serum of 

SLE patients induce differentiation of monocytes into DCs, promoting self-antigen 

presentation to autoreactive T and B cells [62].  

Monocyte-macrophage lineage cells from patients with active SLE consistently overexpress 

adhesion molecules, which are essential for cell migration [62]. Accordingly, increased 

monocyte recruitment into blood vessels might contribute to the accelerated atherosclerosis 

process, which defines SLE [40]. 

Impaired clearance of apoptotic material serves as an important trigger of autoimmunity in 

SLE. Non-inflammatory phagocytosis of apoptotic cells by monocyte-derived macrophages 

obtained from SLE patients is impaired, resulting in increased accumulation of nuclear 

autoantigens in the germinal centers of the lymph nodes [65]. In addition, defective 

reticuloendothelial system Fc-receptor function accounts for the prolonged circulation of the 

immune complexes in SLE [66]. In this line, Kavai et al demonstrated that decreased Fc 

receptor expression and function on macrophages associated with active disease and renal 

involvement in SLE [67]. 

Unbalanced macrophage polarization towards M1 phenotype has been implicated with the 

SLE pathogenesis [62]. Macrophages from patients display excessive production of 

proinflammatory cytokines, including interleukin (IL)1β, IL6, tumor necrosis factor alpha 

(TNFa), IFNγ and C-C motif chemokine ligand 2 (CCL2) [62]. Additionally, SLE monocytes 

secrete large amounts of BAFF, a crucial cytokine for the survival of autoreactive B cells 

[62]. Despite M1 predominance, enhanced production of IL10, which directs macrophage 

polarization to an immunosuppressive phenotype, has been reported in SLE. Monocytes are 

an important source of IL10 in the peripheral blood of SLE patients, while priming with IFNa 

unleashes the proinflammatory functions of IL10, including induction of antibody production 

[68, 69].  

 

Unmet medical needs in SLE – Aim of the study 

SLE is a disease of complex etiology, characterized by the failure of multiple regulatory 

mechanisms within the immune network. Despite the advances in understanding of 

pathogenesis of SLE, there are still important unmet medical needs in the management of 

SLE patients. Among others, the late diagnosis, the largely unpredictable disease course, the 
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lack of effective biomarkers, the increased morbidity and mortality, the damage accrual, the 

co-morbidities, the residual disease activity, the frequent flares, and the toxicity of the 

majority of the treatments remain substantial burdens for patients with SLE. The great 

challenges posed by the vastly diverse nature of SLE, and the paucity of informative outcome 

measures are reflected into the largely modest results of many SLE clinical trials. Over the 

last decades, only belimumab, anifrolumab and voclosporin demonstrated efficacy in 

randomized controlled clinical trials and received FDA approval for treatment of patients 

with SLE, underscoring the urgent need for novel therapeutic agents in the disease. 

It is important to note, that current classification criteria and disease activity assessment tools 

do not necessarily capture the entire range of pathophysiological processes underlying SLE. 

To this end, several high-throughput strategies have proposed SLE subtypes as distinct 

disease entities based on molecular portraits. For example, Toro-Domínguez et al developed 

the scoring system MyPROSLE (Molecular dYsregulated PROfiles of SLE patients), which 

enabled the stratification of SLE patients based on immune related gene-modules and 

successfully predicted different clinical outcomes [70]. Similarly, Banchereau et al employed 

a personalized transcriptional immunomonitoring approach, which facilitated the 

classification of the SLE patients based on the immune networks best correlating with disease 

activity in each patient [23]. 

Herein, we sought to establish a computational pipeline, which could facilitate the 

stratification of the SLE patients according to their whole blood transcriptional profiles, 

irrespective of their clinical annotation. Taking a step forward, we used our molecular 

taxonomy approach to optimize therapeutic decisions in a personalized medicine approach. 

Lastly, we proposed novel compounds that could counteract the transcriptional aberrations of 

SLE patients in a targeted manner.  
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Abstract 

Objectives: Monocytes -key regulators of the innate immune response- are actively involved 

in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel 

compounds that might serve as monocyte-directed targeted therapies in SLE.  

Methods: We performed mRNA sequencing in monocytes from 15 patients with active SLE 

and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus 

Erythematosus Disease Activity Index 2000 (SLEDAI-2K). Leveraging the drug repurposing 

platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing 

the SLE monocyte signature. We identified transcription factors and microRNAs that regulate 

the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, 

respectively. A gene regulatory network, integrating implicated transcription factors and 

microRNAs was constructed, and drugs targeting central components of the network were 

retrieved from the DGIDb database. 

Results: Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90, as 

well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted 

to efficiently counteract the aberrant monocyte gene signature in SLE. Based on our network-

based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent 

potential drug candidates in SLE.  

Conclusions: Application of two independent - a transcriptome-reversal and a network-based 

-drug repurposing strategies uncovered novel agents that might remedy transcriptional 

disturbances of monocytes in SLE.  

Introduction 
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Monocytes and macrophages constitute a major cellular compartment derived from 

hematopoietic myeloid precursors. Monocyte-macrophage lineage cells exhibit versatile 

immunoregulatory, inflammatory and tissue repairing capabilities and play an instrumental 

role in the development of systemic lupus erythematosus (SLE) [1]. Data from murine and 

human SLE studies demonstrated that the polyclonal B cell hyperreactivity, an 

immunological hallmark of SLE, might be at least partially attributable to aberrations in 

monocyte-mediated CD40/CD40L co-stimulation [1-5]. Abnormal activation of autoreactive 

T and B cells in SLE could also be caused by dysregulated cytokine production by 

monocytes. Monocytes in SLE display excess production of the B-lymphocyte stimulator 

(BLyS) which promotes the survival and proliferation of B cells [6]. Moreover, these cells are 

a major source of IL10 and IL6 in the peripheral blood of SLE patients, which in turn 

augments antibody production and induces plasma cell differentiation, respectively [6]. 

Besides their contribution to the aberrant activation of adaptive immune system, defects in 

non-inflammatory phagocytosis by macrophages are implicated in the impaired clearance of 

cellular debris, that serves as a crucial trigger for the production of autoantibodies in SLE [1, 

7, 8, 9, 10]. Notably, monocytes in SLE not only significantly contribute to the generation of 

the interferon (IFN) signature per se, but also give rise to plasmacytoid dendritic cells which 

are considered as the primary type I IFN producing cells in SLE [11,12].  

Several powerful computational tools have facilitated de novo drug development and drug 

repurposing processes in a cost-effective and time-saving manner. The library of integrated 

network-based cellular signatures (LINCS) L1000 dataset integrated over a million gene 

expression profiles of human cell lines before and after exposure to more than 20,000 

perturbagens. Taking a step forward, the LINCS L1000 Characteristic Direction Signatures 

Search engine (L1000CDS2) enabled the prioritization of thousands of small-molecule 

signatures, according to their ability to counteract disease specific transcriptional profiles 

[13]. We have previously employed an iLINCS-based drug repurposing pipeline [14, 15], 

suggesting the potential therapeutic relevance of compounds targeting the PI3K/mTOR 

pathway in SLE.  

Herein, we employed two independent drug repurposing approaches to identify novel 

compounds that might restore the molecular aberrancies of monocytes in SLE. Using the 

iLINCS, CLUE and L1000CDS2 platforms, we propose putative novel drugs potentially 

capable of reversing the monocyte-specific SLE gene signature. We also report FDA-

approved drugs and patented compounds that might disturb the gene regulatory network of 

SLE monocytes, suggesting they should be tested as monocyte-targeted therapies in SLE. 
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Materials and Methods 

Patients  

Monocytes were isolated (CD14+ cells through FACS technology, BD FACS ARIA IIu) from 

peripheral blood samples of 15 SLE patients fulfilling the 2019 EULAR/ACR classification 

criteria for SLE [16]. Patients were recruited from the Rheumatology Outpatient Department 

of the Attikon University Hospital and the University Hospital of Heraklion [16]. Ten age- 

and sex-matched healthy individuals were used as controls. Disease activity was evaluated 

using the modified Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-

2K); SLEDAI-2K ≥4 defined active disease [17, 18]. All participants provided informed 

consent and the study approval was obtained from the local institutional review boards. 

 

RNA sequencing and differential expression analysis 

RNA libraries were prepared using the Illumina TruSeq kit. Paired-end mRNA sequencing 

was performed on the Illumina HiSeq2000 platform. The reads were aligned to the human 

reference genome (GRCh38.p12) by STAR RNA-Seq aligner [19]. Differential expression 

analysis was conducted using the edgeR Bioconductor R package [20]. 

 

Drug repurposing analysis 

Using the iLINCS [21], CLUE [22] and L1000CDS2 [13] platforms, we identified 

compounds that reverse the SLE monocyte signature. The following libraries were used for 

search in the iLINCS platform: a) iLincs chemical pertubagen library (LINCSCP); b) 

Connectivity map signatures (CMAP); c) Drug matrix signatures (DM); d) Cancer 

therapeutics response signatures (CTRS); and e) Pharmacogenomics transcriptional 

signatures (PG). Through extensive Pubmed literature review, the top-ranked compounds 

derived from each platform, were re-evaluated based on their functional relation to SLE-

associated gene or protein targets. 

 

Network analysis  

The transcription factors and the microRNAs (miRNAs) that regulate the expression of the 

statistically significant, differentially expressed protein-coding genes were identified using 

the databases TRRUST and miRWalk, respectively. The drug-protein interactions were 

retrieved from the DGIdb database. Networks were constructed using the igraph package and 

their visualizations using the ggraph and qgraph packages in R [23, 24]. 
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Results 

The SLE monocyte gene signature can be utilized to predict potential drug repurposing  

To propose existing FDA-approved or investigational compounds that might serve as novel 

monocyte-targeted therapies in SLE, we sought to identify compounds with potency to 

reverse the monocyte gene expression profile. Differentially expressed genes (DEGs) 

(absolute Fold Change ≥ 1.5, P-value ≤ 0.01) of monocytes between SLE patients and healthy 

individuals defined the monocyte-specific signature (Supplementary Table 1). Using iLINCS, 

CLUE and L1000CDS2 platforms, the top 50 compounds that were predicted to counteract 

the SLE monocyte-specific gene signature most efficiently - according to their inhibitory 

scores - were identified (Supplementary Table 2-4).  

Our analysis indicated several p38 MAP kinase inhibitors, such as the “L-skepinone” [25], as 

a potential novel strategy of tuning monocytes in SLE. Additionally, the mTOR inhibitor 

“sirolimus” [26], as well as the calcineurin inhibitor “tacrolimus” [27], were recognized as 

potent modulators of the lupus monocyte gene signature. In line with studies underlying the 

crucial role of NF-κB in the survival and activation of monocytes [28], NF-κΒ pathway 

inhibitors, such as the compound “parthenolide” [29,30], were predicted to reverse the SLE 

monocyte gene signature, whereas agents targeting the SLE-related Pim-1/NFATc1/NLRP3 

signaling axis [31] might also represent promising therapeutic approaches. The sphingosine-1 

phosphate receptor modulator “fingolimod”, which has shown possible efficacy in 

neuropsychiatric lupus manifestations in the MRL/lpr lupus mouse model [32], might 

therapeutically interfere with the monocyte-mediated orchestration of immune responses in 

SLE.  

Finally, common compounds reversing the monocyte gene signature were identified by the 

three different platforms (Figure 1): the heat shock protein 90 inhibitors “geldanamycin” and 

“NVP-AUY922”, the Insulin-like growth factor 1 receptor (IGF-1R) inhibitor “BMS-

536924”, the BCR-ABL and Src family tyrosine kinase receptor inhibitor “dasatinib” and the 

Cyclin-Dependent Kinase 9 inhibitor “alvocidib”, suggesting they could be further tested as 

agents reversing the pathological molecular phenotype of monocytes in SLE. 

 

Gene interaction network analysis as a guide for drug repurposing 

Next, we sought to propose compounds that modulate the expression of multiple targets in 

the gene regulatory network of SLE monocytes. To this end, the transcription factors that 

regulate the transcriptional landscape of monocytes in SLE were retrieved from the TRRUST 



 

 60 

database (Supplementary Table 5). To reveal post-transcriptional regulators, the miRNAs that 

could regulate the gene expression profile of SLE monocytes were yielded using the 

miRWalk database (Supplementary Table 6). Thus, a comprehensive miRNA-gene 

interaction network - inferred using the monocyte gene signature, transcription factors and 

miRNAs - was constructed (Figure 2). Topological analysis of the constructed network 

uncovered a high degree of interconnectivity of genes encoding the proinflammatory 

mediators IL6 and IL1β. In line with studies underscoring the pivotal contribution of 

monocytes as IFN-producing cells in SLE, genes linked to type I IFN pathway, such as IRF7, 

IFIT3, as well as the transcription factor STAT1 emerged as hub nodes [33]. Top-ranked hub 

miRNAs included the miR-124-3p, which has been found significantly upregulated in 

peripheral blood mononuclear cells and serum from SLE patients [34], as well as several 

miRNAs, with still largely unknown function in the context of SLE, such as miR-24-3p, miR-

302c-3p and miR-302d-3p. 

To identify agents with potentially unrecognized efficacy in SLE, we next determined drugs 

targeting hub genes of the miRNA-gene interaction network. Using the DGIdb database, a 

detailed drug-gene interaction network was constructed (Figure 3A, Supplementary Table 7), 

revealing the anti-IL-12/IL-23 antibody “ustekinumab” and the epidermal growth factor 

receptor (EGFR) inhibitor “cetuximab”. Interestingly, the recombinant human TNF receptor 

Fc fusion protein “etanercept” as well as the chimeric monoclonal anti-TNFa antibody 

“infliximab” were identified as highly interconnected nodes. 

Considering the extensive alterations of transcriptional regulation in SLE monocytes, we 

additionally constructed the drug-transcription factor interaction network (Figure 3B). The 

proteasome inhibitor “bortezomib” was yielded as potential drug candidate, whereas several 

natural compounds and plant extracts, such as “resveratrol”, “quercetin” and “curcumin” 

might efficiently modulate the activity of the dysregulated transcription factors in SLE 

monocytes [35-39].  

 

Discussion 

Herein, we applied a transcriptome-reversal combined with a network-based drug 

repurposing approach to identify novel compounds which might represent putative 

therapeutic options in SLE, through targeting transcriptional disturbances of monocytes. 

Using high-throughput drug repurposing tools, we identified agents predictive of reversing 

the molecular aberrations of SLE monocytes. By employing a gene network-based analysis, 

we propose agents to target essential regulators of the monocyte transcriptional landscape. 
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Several in silico drug repurposing studies have deployed whole blood gene expression 

profiling to suggest tailored SLE treatment choices [14, 40]. In view of the central role of 

monocytes in several aspects of SLE pathogenesis [1], it is tempting to speculate that the 

targeted therapeutic manipulation of monocytes in SLE might improve clinical outcomes and 

minimize side effects. To this end, we performed a monocyte-specific drug repurposing 

analysis in the context of SLE. The inhibitor of the serine/threonine kinase Pim-1 “SGI-1776” 

was identified as a promising monocyte targeted therapy, corroborating experimental data 

which suggest that inhibition of the Pim-1/NFATc1/NLRP3 pathway ameliorates nephritis in 

lupus mouse models [31]. Despite the recently published phase 3 trial [42, 43], our findings 

indicate that the IL12/IL23 inhibitor ustekinumab may efficiently disrupt the molecular 

interaction network of monocytes and therefore some patients might indeed benefit from this 

drug.  

Previous in vitro and in vivo data support the notion that HSP90 might represent a potential 

drug target in SLE [44-46]. Interestingly, HSP90 facilitates the TLR7/9-mediated nucleic 

acid recognition in SLE, therefore promoting IFN-α production from plasmacytoid dendritic 

cells [44]. To this end, the potential therapeutic application of the HSP90 inhibitor, 

geldanamycin, revealed by our analysis could merit further clinical investigation. 

Complete understanding of miRNA regulation in SLE still remains elusive. Herein, we 

detected novel miRNAs, which might possess regulatory properties in the gene network of 

SLE monocytes. Given that each miRNA could concurrently influence multiple effectors of 

pathways, targeting the dysregulated miRNAs may also show promise for the future 

treatment of SLE. Accordingly, therapeutic modulation of the highly interconnected miR-

124-3p, which has been designated as predictor of remission in SLE [34], might shed new 

insights into SLE treatment.  

Our study has certain limitations, related to the function and topology of the cell subset and 

the methods used. Tissue macrophage compartment in steady state is mainly derived from 

embryonic precursors and actively contributes to maintenance of tissue homeostasis and 

resolution of inflammation [41]. Therefore, targeted pharmacological manipulation of tissue 

resident macrophage populations that might be driving pathology in SLE needs to be 

evaluated. In addition, our analysis is a computational approach and further experimental and 

clinical investigation is required to validate our findings. 

In summary, using two independent computational system biology approaches, we identified 

novel compounds that are predicted to restore the function of monocytes in SLE. The 
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therapeutic implications of our findings need to be further defined in animal models of SLE 

models and then tested in clinical trials.  

 

Figures 

 

 
Figure 1. Venn diagram demonstrating the common compounds identified by the three 

different drug repurposing platforms, iLINCS, CLUE and L1000CDS2. 
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Figure 2. Interaction network integrating the protein coding differentially expressed genes 

(DEGs) identified by the differential expression analysis of the monocytes from SLE patients 

versus healthy individuals, the transcription factors identified to regulate their expression and 

the miRNAs that are associated with them. Only nodes with degree >3 were depicted. Genes 

encoding the interleukins IL6, IL1b as well as genes implicated in the JAK/STAT pathway 

were among the most highly interconnected nodes.  
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Figure 3A. Interaction network combining the protein coding differentially expressed genes 

(DEGs), the transcription factors and the miRNAs as defined in Figure 2 and the drugs that 

are predicted to interact with the DEGs, according to the DGIdb database. Nodes with degree 

> 2 were included in the network on the right side of the graph. From the nodes included in 

the network on the right side of the graph, we selected the DEGs, transcription factors and 

miRNAs with degree > 10, as depicted in the network on the left side of the graph. Among 

others, the monoclonal antibodies targeting the IL12/IL23 as well as the TNF pathways were 

identified.  
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Figure 3B. Interaction network showing the transcription factors that regulate the expression 

of the monocyte gene signature in SLE and the compounds that interfere with their function. 

Only nodes with degree > 2 were demonstrated. The proteasome inhibitor bortezomib as well 

as several natural products emerged as potential drug candidates. 
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Discussion 
SLE is heterogenous, multisystem autoimmune disease with paroxysmal and largely 

nonlinear disease course. Although the prognosis and the survival of SLE patients have been 

dramatically improved over the last decades, management of SLE still remains far from 

optimal. To this end, integration of personalized medicine into clinical practice could advance 

research endeavors and yield remarkable progress in treatment of SLE patients. In this study, 

we employed a robust molecular taxonomy strategy in order to re-stratify patients with SLE 

based on their whole blood transcriptional fingerprints. Leveraging the molecular endotypes 

determined by the co-expression network analysis, we established an in-silico drug prediction 

pipeline to select compounds tailored to each group’s molecular portraits. To identify novel, 

potentially beneficial therapeutic agents, that could restore the whole blood molecular 

disturbances of SLE patients, we also applied a transcriptome-reversal drug repurposing 

strategy. Finally, considering the instrumental role of the monocytes in the development of 

SLE, we employed a combined transcriptome-reversal and network-based drug repurposing 

strategy in order to propose patented compounds, that might efficiently target multiple genes 

of the transcriptional landscape of the SLE monocytes. 

 

The heterogeneity of SLE confounds the diagnosis and the treatment of the disease. 

Specifically, the clinical and molecular diversity of the disease often accounts for the great 

variability in response to treatment, hindering effective drug development in SLE. Many 

transcriptional studies in the last few years have focused on the data-driven stratification of 

the SLE patients, to guide precision care and inform clinical trial design. For example, type I 

IFN [22], granulopoiesis-related [21], as well as CD8+ T cell exhaustion gene expression 

signatures [71] could define SLE endotypes according to disease susceptibility, activity, and 

severity, while machine learning-based approaches, leveraging gene expression data could 

predict SLE disease activity with 70% accuracy [72]. In the same context, a longitudinal 

analysis of a well-characterized paediatric cohort of patients with SLE identified the 

functionally annotated molecular endotypes: plasmablast, type I IFN response, 

neutrophil/myeloid cell, and lymphocyte [23]. Additionally, single-cell transcriptomic 

analyses of renal, skin biopsies, blood and urine from LN patients resolved differential 

cellular responses and provided novel insights into pathophysiological mechanism underlying 

SLE at tissue level [73-75]. 
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Herein, we re-stratified the SLE patients, using one of the largest, single-center RNA 

sequencing cohorts, including rich phenotyping data. Notably, our taxonomy strategy 

recapitulated the whole spectrum of pathophysiological features underlying SLE. For 

example, gene expression signatures indicative of neutrophil activation and degranulation 

defined the patient group 4, which included almost uniformly patients with active LN, 

corroborating experimental data suggesting that progression to active lupus nephritis is 

accompanied by an incremental enrichment of neutrophilic gene expression signatures [23]. 

Importantly, contrary to previous studies, the scope of our study was not limited in the 

molecular taxonomy in SLE, but rather included a signature-based drug prediction analysis. 

Specifically, exploiting the drug signature databases of iLINCS, we proposed endotype-

tailored therapeutic options from a pool of currently available drugs.  

 

With few notable exceptions, the novel insights into pathogenesis of SLE have failed to 

translate into new therapies. Given the substantial costs, the existing limitations in SLE trial 

design, the high attrition rates and the slow pace of drug discovery and development, re-

inventing approved or abandoned compounds by screening them for new indications has 

emerged as an attractive proposition. Herein, using two robust, high-throughput platforms 

(iLINCS and CLUE), we identified novel agents that could target the PI3K/Akt/mTORC1 

and the JAK/STAT pathways and might represent potential endotype-specific drug 

candidates. Since monocytes have been implicated as key players in the pathogenesis of SLE, 

we additionally applied two independent computational system biology approaches to 

propose agents that might reverse the transcriptional disturbances of SLE monocytes. In 

accordance with previous studies indicating that pharmacological dampening of the Pim-

1/NFATc1/NLRP3 pathway ameliorates nephritis in lupus mouse models, our analysis 

proposed the inhibitor of the serine/threonine kinase Pim-1 “SGI-1776” as a potential 

monocyte targeted therapy in SLE.  

 

Highly complex molecular stratification strategies do not undermine the importance of a 

unifying, core gene expression signature, that could assist diagnosis in SLE. To this end, 

Haynes et al. performed an integrated, multi-cohort meta-analysis of 7,471 samples from 40 

independent, publicly available whole transcriptome SLE datasets [76]. A 93-gene signature, 

consistent across diverse tissues and cell types, efficiently distinguished SLE from other 

autoimmune or inflammatory diseases and correlated significantly with disease activity [76]. 

Herein, applying a comparative cross-tissue, cross-species, time-series analyses, we 
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determined a LN specific gene signature, that might serve as a surrogate, non-invasive “liquid 

biopsy” marker of kidney disease in patients with SLE. 

 

Our study has several limitations. Firstly, the observational nature of our analysis, does not 

allow the detection of predictors of flare. The majority of the patients included in our study 

were receiving immunosuppressive agents, suggesting that treatment-induced transcriptional 

alterations might have an impact on our results. Additionally, our study is a computational 

approach, and further in vitro and in vivo studies are required to confirm our findings. In view 

of the encouraging results of the phase III clinical trials BLISS-LN [18] and AURORA 1 

[17], treatment landscape in LN is changing, with combination treatment regimens 

challenging the sequential concept. Therefore, computational methods enabling systematic 

in-silico screening of combinatorial treatments in SLE merit further investigation.  

 

In conclusion, our personalized molecular taxonomy strategy classified SLE patients into five 

molecular endotypes, based on their whole blood transcriptional disturbances. The stratified 

transcriptomes predicted patient endotype specific drug candidates, targeting the dysregulated 

gene expression profiles of the SLE patients. To propose novel, potentially beneficial agents, 

we designed an in-silico, signature-based drug repurposing pipeline. Considering the 

indispensable role of monocytes in the pathogenesis of SLE, we next employed two 

independent drug repurposing approaches, to identify novel compounds that might restore the 

transcriptional disturbances of these cells in SLE. Lastly, using a time-series, mouse kidney-

specific transcriptome analysis, we constructed a clinical-transcriptome predictive model, that 

predicted patients that will develop LN.  
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