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HITMMOKPATEIOX OPKOX

<~ O OPkos ToY INfTOKPATOYS

=G MNYM| ATTOANNNA [HTPON KA ASKAHMON
KA YTEIAN, KAl NANAKEIAN KAl ©E0YS NAN
LG TAS TE KAL MTASAS, ISTOPAS NolEYMENOS B
TEAEA NOIHSEIN KATA AYNAMIN KA| KPISIN EMHN
OPXON TONAE KA| TYITPADGHN THNAE HIHSASO
Al MENTON AIAATANTA ME THN. TEXNHN TAYTH
N [SA TENETHSIN EMolS] KAI RBIOY KoINNSASBA] k
Al XPENN XPHIZONTI METAAOSIN MNolHSASBA| K
Al TENOS To BEE NYTEQY AAEAD OIS 1SON EMIKPIN
ERIN APPES] KAl AIAATEIN THN TEXNHN TAYTHN
HN XPHIZ gl MANGANEIN, ANEY Miseoy kAl EY
MrPAPHS MAPATTEAIHS TE KAl AKPOHSIOS KA THS
AOIMHS AMTASHS MABHSI0S METAAOSIN [TOIHSAS
oAl YIoI¢l TE EMOISI KAl TolSI TOY EME AIAATAN
Tos, KAl MASHTALSI SYITEFPAMMENOISI TE KAl NP
KISMENOIS NoMA, IHTPIKN, AAAN, AE OYAENI®
AlAITHMASI TE XPHSOMA| EN' NPEAEIH, kAMNO
NTAN KATA AYNAMIN KAl KPISIN EMHN. EN| AHAH
SEI AE KAl AAIKIH, EIPEEINmm OY AN AE OYAE
PAPMAKON OYAEN] AITHEE]S 8ANASIMON OYARY
SHIMHSOMA| FYMBOYAIHN TOIHNAE oMolNs AE oy
AE M'YNAIKI NME$SON $OOPJION ANSN @Al NNS A
E KA| 0$InS AIATHPHSA BION ToN EMON KAl TEXN -
HN THN EMHN. zaa OY TEMEN AE OYAE MHN Al@
INNTAS, BkXNPHSA AE EPFATHSIN ANAPASI TP
HEl0oS THSAE .m@ ES OIKIAS AE OKOSAS AN ESIN
ESEAEYSOMA| EMN NOEAEIR KAMNONTALN, EKT
0 ENN [MASHS AAIKIHS EKOYSIHS KAl ®0PIHS, T
H$ TE AAAHS KAl ADPOAISINN EPFNN EMI TE Y
NAIKEINN SNMATNN kAl ANAPANN EAEYSEP
NN TE kA| AoYANNmm A A AN EN 8EPANMEIH,
H |AN, H AKOYS, H KAl ANRY ©EPAMHTHS KATA B
ION ANePNANNN A MH XPH NOTE EKAAANEESSA]
EXN, SITHSOMAL APPHTA HFEYMENOS EINA| TA TO
IAYTA e OPKON MEN OYN Mo| TONAE EMTEAE
A NOIEONTL KAl MH FYIXEONTI, EIH EMAYPASS.
Al KA| BIOY kAl TEXNHS AOEAZOMENN,TAPA T
ASIN ANSPNTIO|$ £ TON AIEl XPONON [TAPARA|
NONTI AE KAl ENOPKOYNTI, TANANTIA TOYTENN,

5




EYXAPIXTIEX

Evyopiot® Beppd v Tpuedn Kou TNV ERNTOUEAN EMTPOTY| Yo TN ompidn Kot v

K000 YNGN TOVG LE EMOUKOSOUNTIKA GYOALCL.

Emiong evyoplotd tovg @ilovg kol cuvadEAPOLS TOL gpyactnpiov Tov K. Mmoduna oto
IBEAA: Tldvo Bepyivn, Ztavpo Aodua, [dpyo Zévin, Anunqtpn NikoAdkr, Avactocio
®ila, Niko Molocofa, Atovoon Nikordmovio kot Adpa Mavwrdikov yio 10 eaipetikod
KMo cuVEPYAGIOg TOV LoV EVERVELGOV OO TV TPOTN UEPOA TNG YVOPLUING HOG £MG Kot TNV

OAOKANPMOGT OVTNG TNG SIOOKTOPIKNG SLATPPNG.

Ba NBela Vo EVYOPICTNC® TOVG PIAOVG, TNV OKOYEVELL LoV Kot 1O10{TEPA TN UNTEPO OV Yol

™ oTHPIEN KO TNV KOTOVONOT).

Oépua evyopiotd tovg Kadnyntég k. Bactlorovio, k. Mreptoio kat K. Davovptdkn yio tnv

TOAOTIUN GUUPOANY TOVG GTN GYEdIOGT KOt TNV EKTOVNON ALTHG TS SO0KTOPIKNG daTtpiPmg.

[Switepa guyapiot® tov Kabnynt kot pévropa pov k. Mrovuma yio tnv KobopioTiky Tov

GLUPOAN GTNV 10TPIKT LOV TOPETQL.



Table of Contents

F-N 1 ] 5 2 Tt RN 11, Deleted:
TLEPTAMIWI ettt a s e b e s s b e s a s s s e s s e R e s bR e R R e R e s R e R e e bR e R e e n s 13 Deleted: (
L0011 D05 ) P 15 - Deleted: !
Diagnosis and management Of SLE ...ttt 15 - Deleted: :
Aetiology and PAtNOZENESIS.............cccvivucciiiiiiiiiiisicii s 20, - Deleted: -
Genetics and tranSCIIPLOMIICS. ...ouiuiuiiuiiiiiiiiri it 20, - Deleted: :
EPIZENELICS ...viiiiiiiiiiiiiti b 21, - Deleted: :
Overview of the SLE pathOgenesis ........cccuviviiiiiniiiiiiiiii s 22, Deleted: :

B TS | SRRt & ) “| Deleted: :

) ST U SRRt Zj' ) “| Deleted: :
NEULTOPNILS .t 26, Deleted: :
DendritiC CELIS......uiiiiiiiiiiiiiiic 27, . Deleted: :

1.2.3.5 Monocytes/MacropRages .........cccviiiiiiiiiiiiiiii e 27, . Deleted: :

Unmet medical needs in SLE — Aim Of the STUAY ..........c.coocevueiiiiiciiiiiiiiiiiiiciisicii i 28, . Deleted:

Molecular Taxonomy of Systemic Lupus Erythematosus Through Data-driven Patient Stratification:

Molecular Endotypes and Cluster-tailored DIugs.........cocuveeninneenieninneeninnneesnnesnssssssesessssssssssssnnns 30, Deleted: :

Cross-species transcriptome analysis for early detection and specific therapeutic targeting of human

TUPUS NEPRTILES ceeeeereeieieeeee s a e ae 37, ( Deleted: :

Restoration of Aberrant Gene Expression of Monocytes in Systemic Lupus Erythematosus via a

Combined Transcriptome-Reversal and Network-Based Drug Repurposing Strategy...........cccceeeunneennanee 47,  { Deleted:

J D3 T ) L (1) 1 TR 73, [ Deleted: ¢

BEE (B ElBEeEeelm (e B

R I EIICES ceeuuuerenrirennirieeireeeietenereneeereneierenseressessassessnssersssesessssssnsssssssessnssssasssssnssessnssssasssessnsssennssssnssssansesannans 76, Deleted:

10



Abstract

Systemic Lupus erythematosus (SLE) is a complex, systemic autoimmune disease that can
affect multiple organs either simultaneously or sequentially. Despite growing understanding
of the disease driving mechanisms, diagnosis is primarily clinical und treatment remains
empiric and for a significant number of patients, is far from being optimal. Current
classification criteria as well as the Systemic Lupus Erythematosus Disease Activity Index
(SLEDAI) score do not predict disease prognosis and treatment responses. Moreover, the
highly heterogeneous clinical presentation of the SLE coupled with the diversity of
abnormalities that have been elucidated at cellular and molecular level have accounted for the
modest results of several SLE clinical trials. Patients with SLE are in need for early
diagnosis and a molecular based patient stratification to guide targeted therapy.

In our study, we stratified patients with SLE, according to their distinct, whole blood
molecular fingerprints, irrespective of their clinical annotation. To this end, we analyzed the
peripheral blood transcriptional profiles of 120 patients with moderate to severe SLE. By
applying a co-expression network analysis, we identified groups of transcripts (modules) that
present common patterns of expression and we examined the enrichment of each module in
the transcriptome of each patient, separately. Next, using agglomerative hierarchical
clustering, based on the enrichment of each gene module, we determined patients” molecular
endotypes. We identified a “Neutrophil” signature group, which almost exclusively
comprised of patients with active Lupus Nephritis, whereas humoral and type I interferon
responses were predominantly enriched in the “B cell” group. Macroautophagy disturbances,
deregulation of pathways involved in toll-like receptor (TLR) and abberancies in
mitochondrial function distinguished the “Autophagy” and “Metabolism” groups,
respectively. Lastly, platelet activation and hemostasis pathways characterized the
“Hemostasis” group. Next, using the patient endotype specific signatures as input and
leveraging one of the largest drug signature databases to date, iLINCS, we constructed an in-
silico, signature-based drug prediction pipeline in order to propose compounds that are
predicted to reverse the patients’ transcriptional disturbances most effectively, in a
personalized manner. Bortezomib was predicted to counteract the transcriptional changes of
the patients of the “Neutrophil” group most efficiently. The patients of the “B-cell” endotype
might benefit most from a treatment with azathioprine and ixazomib, whereas fostamatinib

might represent a putative therapeutic option for patients of the “Metabolism” group.
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To identify novel therapeutic SLE agents that might target the endotype-specific
transcriptional disturbances, we performed a personalized drug repurposing analysis. Taking
a step forward, applying two independent - a transcriptome-reversal and a network-based -
strategies, we proposed compounds that might remedy transcriptional disturbances of
monocytes in SLE. Finally, applying a cross-species, time-series transcriptional analysis, we
determined a unifying mouse-kidney specific gene signature, which could predict with high

accuracy patients that will develop Lupus Nephritis.
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[TepiAnym

O Zvompatikog Epvnpatdong Avkog (XEA) elvar évo ToAOTA0KO, 0VTOGVOGO VOCTLLOL, TOV
umopei vo TpooPaiel moAlamdd opyova. [lapd ) onuovtikny pdodo oty Kotavonon Tmv
LUNYOVICU®MY TOV VOONUOTOG, 1 Oldyvoon eivol kKAvik) kot 1 amokplon otn Oepameio
TOPOUEVEL EUTEIPIKT KOL Y10 CNUOVTIKO aplBpd aclevav un ikavoromrtikn. Evad ta ioydovia
Kpurpo. Ta&vopnong g vooov kot o dgiktng SLEDAIL advvatodv va mpoPAréyovy v
TPOYVOGCT 1 TNV avtanokplon ot Oepaneio, vroypopupiloviag TV ETITOKTIKY AVAYKT Yio TN
poplakn tagvounon tov acbevov pe ZEA. H ekoeonuocpévn  €1epoyévela TV KAIVIKOV
eEKONADOEDY o€ GLVOLAGUO HE TNV TOKIAID SlOTOPAYDV TOV EXOLV OVOYVOPIOTEL CE
KUTTOPIKO KOl HOPLoko eminedo gvBivovtal ylo apvnTiKd OTOTEAEGUATO TOAAGDY KAVIKQOV
peietdv oto LEA.

X perém pog, tagwvouncape toug ocbevelg pe XEA, oopoovoa pe To S10KpLTéd TOVG
LLOPLOK( OTTOTUTIMUOTE GTO TEPLPEPIKO O, OVEEAPTNTA OO TIG KAWVIKES TOVG EKONADCELS.
Ewdwkotepa, avaAldoape TIC PHETOYPOPIKES VITOYPOUPES TOV TEPLPEPIKOD aipatog 120 acBevav
pue pétpio N ocoPapd ZEA. Eeoapuodlovtog avdivon OSKTO®V GUVEKQPACNS YOVIdimv,
npocdopicape opddeg yovidiov (module) mov eppaviCovv kKowvd mpdtuma EKPPOCNG Kot
eetdoape 10 Pabud Ekepaong g kabe opadog yovidimv OTO HETOYPOOOUO TOL KAOE
acBevong. XTn GLVEXELN, YPNOUYOTOIDVTOS LEPAPYIKT CLGCOPELTIKN HEBodo Tagvounong,
TPoodopicape HoplokoDs evooTOmovg acBevav pe PBdon to Pabud ékepaocng g ke
onadag yovidiov. Evtonicape tov evddtumo “Ovdetepdpirlo”, 0 omoiog 6yedov omoKAEIGTIKA
nepleddpPove acbeveig pe evepyd veppitida Adkov, evd LIOYPAPEG YLUIKNG OVOGTIOG Kot
wtepeepovng tomov I mpoedpyovv otov evodtvmo “B wittapo”. IMapovoia yovidiokdv
VIOYPOPAV  EVOEIKTIK®OV  OvoAgrtovpyiog Tov  putoyovopiov — amotehel  dwokprtd
YOPOKTNPIOTIKO TOL  €vdoTOTOL  “MetafoAlopdc”. Awtopayés TV HOVOTATIOV  TNG
LLOKPOOLTOPAYI0G Kot TNG oNratoddTons pésm tomov Toll vrodoyéwv NTav eVOEIKTIKEG TOV
evootumov  “Avtopayia”. TéELog, VTOYpaQES evepyomoinong TOV  OUUOTETOAIOV Kol
apdotaons yopakpilov Tov evootumo “Ayoctoon”. XTn GUVEXELD, YPNOULOTOIMVTAS TN
YOVIOLOKT] vmoypaen kABe evooTOMOL ®G PAon Kol EKUETOAAELOUEVOL IO OO  TIG
peyoAvtepeg PAcelg yovidlak®v vmoypapmv  @appakov  (ILINCS), avontoope Evav
VIOAOYIOTIKO aAyOpOpo mpoPreyng Bepamneiog, pe okomd va mpoteivovpe Oepoameieg mov
AVTIGTPEPOLV EEATOUIKEVIEVO TIG HETOYPAPIKES dlatapayés Tov acbevav. H Boptelopipnn
EVOEYOUEVIS OVTIGTPEPEL TTLO OMOTEAEGLLOTIKA TG LETAYPOPIKEG SLOTAPAYES TV 0GOEVDOV TOV

evootumov  “Ovdetepogiro”. Ot acbeveig mov avikovv otov evodtumo “B kdttopo”
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EVOEYOUEVOS PELOVVTAL TTEPIGGHTEPO amd Bepameia pe v alabetompivn 1 Ealopipmn, evad
N eootopoTvipnn pmopel va Beswpnbel Oepamevtiky] emAoyn v tovg aocBevelg Tov
evootvmov “MetafolMopog”.

[Tpokeévov va mpoteivovpe véeg Bepameieg tov LEA, mov evoeyouévag GToyebovy Tig
LETAYPOPIKEG VLIOYPAPEG TOV KAOE €VOOTVTOVL, TPOYUATOTOMCOUE Mio, ESUTOHKEVUEVT
peAétn emavactoyevong eapudkmv. Eeappoloviag dvo aveEdptmreg — pio avaoTtpoeng
LETAYPOPIKNG VTOYPOENS Kot  pioe  Poaciopévy o1o  poplakd  SiKTLO-  GTPOTNYIKES
EMOVOCTOYEVONG QPUPUAK®OV, TpoTeivape Bepameieg MOV EVOEYOUEVOS AVTIGTPEPOLV TIG
LETAYPAPIKESG OLATOPOYES TOV LOVOKVTTAP®V 6T0 XEA.

Téhog, epapudlovtag pio. GLVOVAGHEVN LETAYPOUPIKT AVAALGT GTO TOVTIKO KOl TOV dvOpmTo,
npoodopicape pio Yovidlokyn VTOYPOEY| €VOEIKTIKN VEQPPITIONG AVKOL GTO TEPAUATIKO

povtédo movtikoL Yo ZEA, n omola mpoPAémet pe akpifela v avamtuén veppitidoag AvKov.
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Introduction

Diagnosis and management of SLE

Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disease that can have
devastating effects on various organs including the kidneys, the skin, the joints, and the
central nervous system and is defined by the aberrant production of antinuclear antibodies
(ANA) [1]. SLE is a global disease, with the annual incidence rate in Europe ranging from 1
to 4.9 per 100,000 [2-4]. SLE predominantly affects women of childbearing age [2] and is
among the leading causes of death in females of this age group [5]. Racial and ethnic
disparities characterize prevalence, severity, and clinical course of SLE [2]. Patients with
SLE of African and Hispanic ancestry are at higher risk for SLE associated renal involvement
and suffer from significantly increased SLE related mortality compared with Caucasians [2].
Clinical heterogeneity defines SLE. The major clinical features and their frequency are
illustrated in Figure 1 [6]. SLE is a largely clinical diagnosis -supported by laboratory
findings- after excluding alternative diagnoses. A diagnostic approach to patients with
suspected SLE, incorporating a combination of the ACR-1997, SLICC-2012 and
EULAR/ACR-2019 classification criteria, has previously been proposed by our group
(Figure 2.) [6].

The clinical spectrum of SLE encompasses several distinct endotypes. SLE with
antiphospholipid syndrome constitutes an evolving SLE phenotype, which displays increased
risk of neuropsychiatric SLE (NPSLE), thrombotic and obstetric complications [6, 7].
Although childhood-onset SLE (cSLE) is a rare disease, it has captured much attention due to
its impact on the growth and development of the affected individuals [6]. Patients with cSLE
more frequently suffer from severe disease and are more likely to experience high disease
activity at presentation [6]. Albeit SLE is considered a mainly multisystem autoimmune
disease, organ-dominant disease courses (musculoskeletal, dermatologic, haematologic, renal,
neurological) can also occur, often complicating accurate diagnosis.

SLE is typically a relapsing-remitting disease, whereas long quiescent and chronic active
disease patterns account for 30% of SLE cases [6, 8]. Achieving remission is associated with
reduced damage accrual in SLE [9]. The remission rates of SLE from large published series
widely vary, while the highest prevalence of prolonged remission among Caucasian patients

with SLE was observed in an italian cohort with 37% [6, 10]. Adverse prognostic factors
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related to unremitting disease included the haematological manifestation and the
glomerulonephritis [10].

Accurate assessment of the disease activity as well as clear definition of response criteria and
disease states are fundamental, as they largely guide clinical practice in SLE. Several activity
indices -validating global or organ specific disease activity- have been proposed, including
the SLE Disease Activity Index (SLEDAI), the British Isles Lupus Activity Group (BILAG)
index, the Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA)-
SLEDAI Physician Global Assessment (PGA) and the SLE Disease Activity Score (SLE-
DAS) [6, 11]. Notably, the current activity indices exhibit limitations affecting the success of
SLE clinical trials. To this end, the investigators in the belimumab trials employed the SLE
Responder Index (SRI), which comprises criteria from three different validated indices, the
(SELENA)-SLEDAI, the PGA and the BILAG [6]. An important step towards a treat-to-
target strategy for SLE, was taken through the development of a consensus-based definition
of remission (Table 1.) and lupus low- disease activity state (LLDAS) (Table 2.) [12-14].
Disease activity should be differentiated from damage, which is consistently associated with
poor clinical outcomes and negatively affects survival of SLE patients [6, 15]. The
SLICC/ACR Damage Index (SDI) represents a widely used index to ascertain accumulation
of organ damage in SLE, due to SLE itself, treatment complications or related comorbidities
[6].

Despite the advances in the understanding of the SLE pathogenesis over the past decades,
management of lupus patients poses challenges (Figure 3.). Attainment of sustained low
disease activity state or remission and prevention of flares are the major therapeutic goals for
patients with SLE. The antimalarial hydroxychloroquine is the mainstay long treatment in
SLE, unless contraindications exist. Glucocorticoids remain a cornerstone of SLE treatment,
however cumulative glucocorticoid exposure may lead to organ damage in patients with SLE
[16]. To this end, glucocorticoid dose should not exceed 7.5 mg/day (prednisone equivalent),
during chronic maintenance treatment [6]. To enable a more rapid tapering of glucocorticoids
and reduce flare rates, prompt initiation of immunomodulatory agents, such as azathioprine,
methotrexate, mycophenolate, cyclosporine is recommended [6]. Cardinal disease
manifestation, childbearing potential and cost play a crucial role in the selection of the most
appropriate immunomodulatory agent for each patient. For instance, patients with
predominantly mucocutaneous and musculoskeletal features might benefit more from a
treatment with methotrexate, whereas azathioprine or cyclosporine might be more suitable in

haematological disease or when pregnancy is expected [6]. Cyclophosphamide and rituximab
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are reserved for the treatment of life-, organ-threatening, refractory disease. Belimumab is a
human monoclonal antibody that inhibits the soluble B lymphocyte stimulator (BLyS) and is
the first biological agent approved by the U.S. Food and Drug Administration (FDA) for
treatment of adults with persistently active or flaring SLE who are receiving standard therapy
[6]. Efficacy of anifrolumab - a human monoclonal antibody to the type I IFN receptor
subunit 1- across multiple organ domains was suggested by a post-hoc analysis of phase 3
TULIP-1 and TULIP-2 clinical trials, leading to the FDA approval for treatment of adult
patients with moderate to severe, active, autoantibody-positive SLE. Interestingly, multitarget
treatment represents an emerging therapeutic concept in SLE over the last decade. The
AURA-LN phase 3 study has shown that the addition of the calcineurin inhibitor voclosporin
to the standard of care induction therapy for Lupus Nephritis (LN) increased the rate of renal
response, though more serious adverse events were observed [17]. Accordingly, the BLISS-
LN study demonstrated that in active LN the combination therapy of belimumab with

standard therapy was superior -in terms of renal responses- to standard therapy alone [18].

Neurological disease (18%)
Strokes (5%), Seizures (4%)
Cranial neuropathies (2%), Cognitive dysfunction (2%) \______ Acute cutaneous lupus (71%)

Chronic cutaneous lupus (11%)
Malar rash (45%)
Oral ulcers (26%)

Non-scarring alopecia (31%)

Serositis (19%)

Renal disease (21%)
Leucopenia (35%)
Thrombocytopenia (16%)
Antiphospholipid syndrome (10%)
Lymphadenopathy (9%)

Raynaud (37%)

Autoimmune haemolytic anaemia (3%) ————— Livedo reticularis (10%)
Arthritis (85%)
Childhood SLE
Fever (31%) Fever (46%)
Neurological disease (17%)
Non-criteria major organ involvement (19%) | Renal disease (42%)

Figure 1. Clinical features of SLE and their frequency. Adopted by Fanouriakis A, Tziolos
N, Bertsias G, et al., 2021.
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Figure 2. A diagnostic approach to patients with suspected SLE, incorporating a combination
of the ACR-1997, SLICC-2012 and EULAR/ACR-2019 classification criteria. Adopted by

Fanouriakis, et al., 2020.

Definition of remission in SLE

For defining remission in SLE, a validated index must be used
e Suggested indices are: clinical SLEDAI=0; BILAG 2004 D or E only; clinical ECLAM=0

These must be supplemented by the physician’s global assessment being below an appropriate

threshold (eg, <0.5 on a 0-3 scale)

A distinction will be made between remission off therapy and remission on therapy

o Remission off therapy requires the patient to be on no other treatment for SLE than
maintenance antimalarials

Remission on therapy allows patients to be treated with maintenance antimalarials, stable, low-dose

glucocorticoids (eg, prednisone <5 mg/day), maintenance immunosuppressives and/or stable

(maintenance) biologics

Table 1. Definitions of remission in SLE. ECLAM, European consensus lupus outcome

measure. Adopted by van Vollenhoven R, Voskuyl A, Bertsias G, et al., 2017.
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Definition of Lupus Low Disease Activity State

1. SLEDAI-2K <4, with no activity in major organ systems (renal, CNS, cardiopulmonary,
vasculitis, fever) and no haemolytic anaemia or gastrointestinal activity
2. No new features of lupus disease activity 4.7 compared with the previous assessment
3. SELENA-SLEDALI physician global assessment (PGA, scale 0-3) <1
4. Current prednisolone (or equivalent) dose <7.5 mg daily
Well tolerated standard maintenance doses of immunosuppressive drugs and approved biological

agents, excluding investigational drugs

Table 2. Lupus Low Disease Activity State definition. CNS, central nervous system;
LLDAS, Lupus Low Disease Activity State; SLEDAI, Systemic Lupus Erythematosus
Disease Activity Index. Adopted by Franklyn K, Lau CS, Navarra SV, et al., 2015.

TREATMENT OF SYSTEMIC LUPUS ERYTHEMATOSUS

1ine  [HEQ ] | 6cPo/iM
Adjunct:
Refractory [ HE@ | [ &cpo/im MTX/AZA
Sun protection
Vaccinations
Exercise
1ine [ Hea | | GcPo/iv MTX/AZA oI MMF No smoking
Body weight
Refracory | HCQ  GCPO/V | BEL NI MMF Blood pressure
Lipids
[ severe ] i
wine  [Hea ] [ ecro/v MMF cve ,
Antiplatelets
Refractory [ HE@ | | &cpo/iv cve RTX Anticoagulants
(in aPL-positive
patients)
Low Disease Activity
TARGET: SLEDAI <=4; HCQ - Prednisone <= 7.5 mg/d

Immunosuppresives (in stable doses — well tolerated)

Figure 3. EULAR recommendations for the SLE treatment strategy and therapeutic goals.
aPL, antiphospholipid antibody; AZA, azathioprine; BEL, belimumab; CNI, calcineurin
inhibitors; CYC, pulse cyclophosphamide; EULAR, European League Against Rheumatism,;
GC, glucocorticoids; HCQ, hydroxychloroquine; MMF, mycophenolate mofetil; RTX,
rituximab; SLEDAI, SLE Disease Activity Index. Adopted by Fanouriakis A, Tziolos N,
Bertsias G, et al., 2021.

19



Aetiology and pathogenesis

Genetics and transcriptomics

The genetic contribution to the development of SLE is evident from the considerably high
heritability (43.9%) among first degree relatives of patients with SLE [19]. Although several
monogenic conditions - including single gene defects of complement component 1q (Clq)
subcomponent A (C1QA), three-prime repair exonuclease 1 (TREX1), or deoxyribonuclease
1-like 3 (DNASEI1L3) - can lead to SLE-like disease [20], in most cases a diverse array of

genetic variants influence susceptibility to the disease.

Large genome-wide association studies (GWAS) have enabled the identification of risk
alleles for SLE in or near genes linked to apoptotic mechanisms, DNA repair and clearance of
cellular debris (TREX1, DNASEI, autophagy related 5 (ATGS)) [19]. SLE associated loci
coding for proteins implicated with nucleic acid sensing machinery and type I interferon
(IFN) signaling, such as interferon regulatory factor 5 (IRFS5), signal transducer and activator
of transcription 4 (STAT4), Toll-like receptor 7 (TLR7), and TLR9 have also emerged as
putative disease genes [19]. Additionally, genetic variants within or near genes involved in B
and T cell function, such as protein tyrosine phosphatase 22 (PTPN22), tumor necrosis factor
superfamily member 4 (TNFSF4), protein phosphatase 2 catalytic subunit a (PPP2CA), B cell
scaffold protein with ankyrin repeats 1 (BANK1), and cluster of differentiation 3 (CD3Z)
loci might contribute to the T and B cell hyperactivity in SLE [19].

Most SLE genetic variants localize to non-coding, regulatory genomic regions and could thus
determine the epigenetic dysfunction in SLE, with potential impact on the gene expression.
Transcriptome analysis of the peripheral blood mononuclear cells (PBMCs) from SLE
patients showed aberrant expression of genes related to type I IFN signaling and
granulopoiesis [21, 22]. Accordingly, Banchereau et al demonstrated an incremental
enrichment of the neutrophilic gene expression signatures towards progression to active LN
[23]. Taking a step forward, applying an unbiased clustering approach, the same group
detected transcriptome modules associated with dysregulated natural killer (NK), T and B
cell responses as well as a plasmablast signature indicative of active disease status [23]. In
addition to gene expression signatures linked to adaptive and innate immunity, Panousis et al
identified a whole blood “activity signature” enriched in immune cell metabolism, protein

synthesis and proliferation pathways [24]. Notably, targeted transcriptional analysis of T cells
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from the peripheral blood of SLE patients revealed gene signatures correlating with dsDNA
antibodies production, low complement levels and nephritis, underscoring the essential role

of T cells in the development of SLE [25].

To bridge the gap between non-coding GWAS discoveries and downstream affected genes,
transcriptome-wide-association studies (TWAS) have received more attention over the last
years. TWAS leverage predictive models of expression, through integrating GWAS findings
and gene expression reference panels, in order to uncover gene-complex traits associations.
To this end, Yin et al performed — for the first time — a TWAS for SLE, identifying 276
candidate genes and demonstrating the genetically regulated transcriptional activity of

ACAPI in the context of SLE [26].

Epigenetics

Epigenetic mechanisms of gene regulation including the DNA methylation, non-coding
RNAs and the histone modifications, are thought to be closely related to the pathogenesis of
SLE. Global DNA hypomethylation has been reported in T cells from patients with active
SLE, resulting in heightened expression of autoimmune-related, methylation-sensitive genes,
such as ITGAL, TNFSF7, CD40L IL6, IL10, IL13, CD6 and CD11A [27]. Additionally,
Tsokos et al demonstrated that in SLE T cells, DNA methyltransferase 1 (DNMT1) and
DNMT3a downregulation leads to hypomethylation of the PP2Aca promoter and subsequent
enhanced binding of the transcriptional enhancer p-CREB, which is linked to overexpression
of the SLE associated PP2Aca [28]. Accordingly, methylation intensity of the PP2Aca
promoter displayed an inverse correlation with SLE activity [28]. Interestingly, genome-wide
methylation studies in naive CD4+ T cells from SLE patients revealed significant
hypomethylation in several type I IFN-regulated gene loci, arguing for a potential
pathogenetic implication of the aberrant DNA methylation in SLE [29, 30].

Abnormal histone modification patterns have been reported in splenocytes from MRL/Ipr
lupus-prone mice [31]. Moreover, global histone H3 and H4 hypoacetylation have been
observed in CD4+ T cells from patients with active SLE [32]. Taking a step forward, Hedrich
et al showed evidence that in SLE T cells enhanced expression of the transcription factor
cAMP-responsive element modulator (CREM)a facilitates the recruitment of the histone

deacetylase 1 (HDACI1) to the IL2 promoter, contributing -through histone H3KI18
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deacetylation- to the transcriptional repression of the IL2 gene, a hallmark of the human SLE
T cells [33]. On the other hand, increased CREMa binding within the IL17A promoter results
in decreased recruitment of the HDACI and DNMT3a at this site, which in turn might
account for heightened expression of IL17 by CD4+ T cells in SLE [34]. Of note,
administration of the HDAC inhibitor suberoylanilide hydroxamic acid has shown
encouraging results in lupus-prone mice, underscoring the potential role of the epigenetic
modifications as therapeutic targets in SLE [35].

Complete understanding of the non-coding RNA regulation in SLE still remains elusive.
Lashine et al suggested that the downregulation of the miR-155 in PBMCs from SLE patients
might associated with decreased IL2 production through augmented expression of the protein
phosphatase 2A (PP2A) [36]. Additionally, the miR-146a, which functions as a negative
regulator of type I IFN pathway in PBMCs from SLE patients, has been found to inversely
correlate with disease activity [37]. Several studies indicated the potential impact of crosstalk
between epigenetic modifications on the transcription regulation in SLE. For example, miR-
148a and miR-126, which are both overexpressed in SLE CD4+ T cells, might contribute to T
cell autoreactivity via suppression of DNMT1 and subsequent DNA-hypomethylation [38].

Overview of the SLE pathogenesis

Aberrant clearance of apoptotic material, deregulated nucleic acid sensing, abnormal
lymphocyte activation, signal transduction and cytokine production, as well as impaired
degradation of neutrophil extracellular traps (NETs) are key concepts around the
pathogenesis of SLE, leading to loss of tolerance and tissue damage. Accordingly, multiple
subsets of immune cells display defective phenotypes and functions in the context of SLE

(Figure 4.).
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Figure 4. Overview of the SLE pathogenesis. BAFF, B-cell activating factor; BAFF-R,
BAFF receptor; CAMP, cathelicidin antimicrobial peptide; FcR, Fc receptor; MHC, major
histocompatibility complex; TACI, transmembrane activator and cyclophilin ligand

interactor; TLR, Toll-like receptor. Adopted by Tsokos et al., 2021.
T cells

Loss of T cell tolerance is thought to play an indispensable role in the occurrence and the
development of SLE. SLE human T cells are chronically activated and are characterized by
aberrant signaling through the T-cell receptor (TCR) [19]. Specifically, in T cells from SLE
patients, the expression levels of the CD3({ chain are significantly downregulated and the
TCR-CD3 complex frequently bears a substitution by the homologous Fc receptor common
gamma subunit chain (FcRy) [19]. Rather than the tyrosine-protein kinase ZAP-70, which
pairs the CD3{ chain, FcRy recruits the tyrosine-protein kinase SYK, contributing to the
hyperactivated phenotype of the T cells in SLE [19, 39]. Notably, alterations of the
expression and composition of the lipid rafts have been described in SLE T cells, promoting
the excessive T cell activation [19].

Immunometabolism has emerged as central mechanism for the regulation of T cell responses.

Chronic activation of autoreactive T cells in SLE results in persistent mitochondrial
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hyperpolarization [40]. Indicative of the oxidative stress, which characterizes SLE T cells, is
the depletion of the major intracellular antioxidant glutathione in the plasma of SLE patients
as well as the beneficial effect of the N-acetylcysteine on disease activity in a pilot SLE
clinical trial [40].

Although SLE T cells display a hyperactive phenotype, decreased production of IL2 by T
cells represents a hallmark of SLE [19]. Besides its central role in the development and
function of immunosuppressive Trg cells, IL2 constrains IL17 production, which is
abnormally elevated in serum from SLE patients [40]. Double-negative T cells (CD4—CD8-)
were shown to produce increased amounts of IL17 in SLE [40]. Notably, double-negative T
cells are expanded in SLE and infiltrate the kidneys of both patients and lupus-prone mice,
amplifying local inflammation and tissue damage [40].

T cell-B cell interactions represent a crucial checkpoint in the process of secondary B cell
maturation and the maintenance of tolerance. In SLE, T cell-B cell interactions are aberrant,
often occurring in tertiary lymphoid organs and are more transient compared to healthy
individuals [19, 40]. T follicular helper (Tm) cells constitute a subset of effector T cells,
essential for B-cell maturation and immunoglobulin production. Specifically, Tm cells
produce IL21 and provide the necessary receptor engagement in the germinal center,
facilitating isotype switching and somatic hypermutation. T cells are expanded in spleens of
MRL/Ipr mice [41], whereas circulating Tm cell are increased in SLE patients and were
correlated with plasmablasts as well as the anti-ds DNA autoantibodies titers [40, 42]. In
addition, extrafollicular helper T cells (eTm) represent an anatomically distinct CD4+T cell
subpopulation that regulate plasma cell differentiation outside the follicle [44]. Remarkably,
Liarski et al suggested that T, cells are evident within lymphoid aggregates in renal biopsies
from patients with active LN [42, 43]. In this line, Yin et al showed evidence for abnormal
renal accumulation of y82 T cells, an IL21-secreting subpopulation of y6 T cells, which might
support the formation of extrafollicular germinal centers in SLE kidney [45].

Cytotoxic CD8+ T cells in SLE exhibit reduced cytolytic capacity, contributing to the
increased risk of infections that defines the disease [46]. To this end, expansion of a
dysfunctional CD38+CD8+ T cell subset, with features of reduced granzyme and perforin
production was reported in peripheral blood from SLE patients [46]. Of note, emerging
evidence suggests that in SLE, self-reactive CD8+ T cells tend to lose CD8 expression,
turning into PD-1 expressing, double-negative T cells, which display impaired anti-viral
responses in vitro [47]. In addition, in SLE patients, prolonged type I IFN exposure promotes

CD8+ T cells apoptosis via metabolic rewiring [48].
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B cells

Although SLE presents extraordinary heterogeneity, production of autoantibodies is nearly
universal among patients with SLE. SLE is characterized by increased numbers of self-
reactive B cells, both in new emigrant and mature naive B cell compartments, indicating
profound defects in B cell tolerance. Specifically, pronounced naive B cell (CD19+CD27+)
lymphopenia, expansion of transitional B cell (CD19+CD24"CD38"), switched memory B
cell (CD19+CD27+IgD+), double-negative (CD19+CD27+IgD+) B cell and
plasmablast/plasma cell (CD27MCD38+CD19%Ms[g®*CD20+CD138+) populations are
associated with active disease [19]. In addition, impaired regulatory capacity of the
CD19+CD24MCD38" B cells, which suppress the differentiation of T helper 1 cells -partially
via the secretion of IL10- have been described in SLE [49].

Several B cell intrinsic risk alleles are linked to loss of B cell tolerance, amplifying the loop
of autoimmunity in SLE [50]. For example, in patients with SLE, risk alleles for BANKI,
BLK, CSK, and FCGR2B might contribute to the increased B cell activation via hyper-
responsiveness to B cell receptor (BCR) engagement, whereas PTPN22 risk allele might lead
to hypomethylation of proteins included in BCR signaling pathway, resulting in dampening
of tolerance in immature B cells [50].

Unlikely dendritic cells, in B cells, specific antigen uptake is mediated through BCR, which
after engagement, bound to antigen undergoes endocytosis and proceeds via intracellular
routing to TLR7- and TLR9-containing late endosomes, resulting in TLR-induced B cell co-
stimulation [S1]. In SLE, breach of B cell tolerance to autoantigens is at least partially
regulated in a cell-intrinsic manner by TLRs [51]. To this end, B cell-specific TLR7 deletion
prevents formation of autoantibodies against RNA-associated autoantigens and limits
systemic autoimmunity in lupus-prone mice [52], whereas B cell-intrinsic TLR9 deletion
restrained TLR7-mediated spontaneous autoimmunity in C57BL/6 mice [53]. In this line,
selective B cell-inactivation of TLR signaling adaptor Myd88 ameliorates nephritis in
MRL/Ipr mice [19].

Aberrant cytokine production is strongly implicated with loss of B cell tolerance in SLE. B-
cell activity factor (BAFF) is a critical survival factor for transitional and mature B cells and
excess of BAFF rescues self-reactive B cells from peripheral deletion. Serum levels of BAFF

are increased in patients with SLE and correlate with the presence of autoantibodies [54].
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Moreover, BAFF overexpression in lupus prone mouse model leads to a striking acceleration
of glomerular pathology [55]. Of note, B-cell depletion therapy in patients with SLE often
results in elevated levels of BAFF, posing the concern that repopulating B cell subsets could
exert an autoreactive phenotype [56]. To this end, targeted BAFF inhibition represented a
reasonable therapeutic approach in SLE, leading to the approval of the anti-BAFF
monoclonal antibody belimumab from the FDA for the therapy of patients with active SLE.

Neutrophils

Dysregulated functional properties of neutrophils have been reported in SLE. Impaired
phagocytic capacity of SLE-derived neutrophils is well established, predisposing to infections
[19]. Accordingly, Lupus Erythematosus (LE) Cell, a blood granulocyte that have engulfed
opsonized apoptotic remnants, was the first neutrophil abnormality discovered in bone
marrow of SLE patients. Moreover, diminished generation of reactive oxygen species (ROS)
characterizes neutrophils from SLE patients and is associated with increased disease activity
and organ damage [57]. Notably, reduced ROS production might affect the apoptopic
pathway, promoting defective clearance of cell remnants and autoantigen exposure in SLE
[40]. Although neutrophils in SLE exhibit decreased phagocytic activity, they display an
activated phenotype and overexpress adhesion molecules [19].

NETosis is a regulated form of neutrophil cell death that contributes to host defense against
pathogens and involves extrusion of chromatin decorated with proinflammatory cytokines
and antimicrobial proteins. Of note, this extruded material serves as source of citrullinated
peptide and nucleic acid antigens, driving autoantibody production in SLE [40]. Enhanced
NET formation does appear to occur in SLE in vivo [58]. SLE is characterized by elevated
levels of low-density granulocytes —a pathologic neutrophil subset-, which exhibit increased
capacity to form neutrophil extracellular traps (NETs) [40]. Netting neutrophils are major
amplifiers of type I IFN production in SLE [58]. Specifically, Garcia-Romo et al showed
evidence that NETs containing DNA as well as large amounts of antimicrobial peptides
induce type I IFN production by plasmacytoid dendritic cells (pDCs) in a TLR9-dependent
manner [S8]. In turn, enhanced type I IFN stimulates NET formation in SLE, indicating the
presence of a positive feedback loop [40].
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Dendritic cells

Dendritic cells (DC) are professional phagocytes, implicated in clearance of apoptotic
material and presentation of self-antigens, thus serving as critical link between innate and
adaptive immune system. Patients with SLE present decreased number of circulating
conventional DC, but expansion of the pDCs subpopulation [40]. Excessive accumulation of
pDCs has been described in kidney biopsies from SLE patients and cutaneous lupus lesions,
implying their contribution to local tissue damage [19]. pDCs have been proposed as a major
source of type I IFN in SLE [59]. Specifically, immunocomplexes containing self-nucleic
acids activate DCs, resulting in type I IFN secretion via TLR7 and TLR9 stimulation [40]. In
addition to its cytotoxic effects on variety of cells, which might facilitate increased
autoantigen exposure, type I IFN directly affects T cells, promoting their survival, activation,
and proliferation [40]. Moreover, type I IFN sensing by B cells decreases threshold for BCR
stimulation, modulates antigen presentation, survival, and cytokine production, and promotes
alterations in B cell development process, including arrested development at the early stages
and expansion of B cells at transitional stage [60].

Conventional DCs are essential for antigen presentation, priming naive T cells upon antigen
uptake and maturation induced by appropriate maturation signals. To this end, RNA sensing
by conventional DCs has been demonstrated to play a principal role in driving LN in
conditional SLE mice overexpressing TLR7 [61]. Notably, DCs are major providers of

BAFF, promoting survival and activation of autoreactive B cells in SLE.

Monocytes/Macrophages

Monocytes and macrophages represent an essential arm of innate immunity exhibiting
versatile immunoregulatory, inflammatory and tissue repairing capabilities and thus playing
an instrumental role in the development of SLE [62]. Macrophage depletion ameliorates
nephritis mediated by pathogenic antibodies in lupus prone mice [63]. Along this line, renal
macrophage infiltration represents a strong prognostic factor towards development of
proliferative LN [40]. Aberrations in monocyte/macrophage-mediated CD40/CD40L co-
stimulation contribute to the polyclonal B cell hyperactivity, which defines SLE [62]. SLE
patients demonstrated a significantly higher number of circulating CD40L-expressing

macrophages compared to healthy individuals [62]. Taking a step forward, data from murine

27



studies showed that CD40L overexpression by B cells induces SLE like phenotype, while
anti-CD40L treatment prevents activation of self-reactive B cells as well as generation of
autoantibodies in lupus mouse models [62, 64]. Notably, elevated IFNa levels in serum of
SLE patients induce differentiation of monocytes into DCs, promoting self-antigen
presentation to autoreactive T and B cells [62].

Monocyte-macrophage lineage cells from patients with active SLE consistently overexpress
adhesion molecules, which are essential for cell migration [62]. Accordingly, increased
monocyte recruitment into blood vessels might contribute to the accelerated atherosclerosis
process, which defines SLE [40].

Impaired clearance of apoptotic material serves as an important trigger of autoimmunity in
SLE. Non-inflammatory phagocytosis of apoptotic cells by monocyte-derived macrophages
obtained from SLE patients is impaired, resulting in increased accumulation of nuclear
autoantigens in the germinal centers of the lymph nodes [65]. In addition, defective
reticuloendothelial system Fc-receptor function accounts for the prolonged circulation of the
immune complexes in SLE [66]. In this line, Kavai et al demonstrated that decreased Fc
receptor expression and function on macrophages associated with active disease and renal
involvement in SLE [67].

Unbalanced macrophage polarization towards M1 phenotype has been implicated with the
SLE pathogenesis [62]. Macrophages from patients display excessive production of
proinflammatory cytokines, including interleukin (IL)1pB, IL6, tumor necrosis factor alpha
(TNFa), IFNy and C-C motif chemokine ligand 2 (CCL2) [62]. Additionally, SLE monocytes
secrete large amounts of BAFF, a crucial cytokine for the survival of autoreactive B cells
[62]. Despite M1 predominance, enhanced production of IL10, which directs macrophage
polarization to an immunosuppressive phenotype, has been reported in SLE. Monocytes are
an important source of IL10 in the peripheral blood of SLE patients, while priming with IFNa
unleashes the proinflammatory functions of IL10, including induction of antibody production

[68, 69].

Unmet medical needs in SLE — Aim of the study

SLE is a disease of complex etiology, characterized by the failure of multiple regulatory
mechanisms within the immune network. Despite the advances in understanding of
pathogenesis of SLE, there are still important unmet medical needs in the management of

SLE patients. Among others, the late diagnosis, the largely unpredictable disease course, the
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lack of effective biomarkers, the increased morbidity and mortality, the damage accrual, the
co-morbidities, the residual disease activity, the frequent flares, and the toxicity of the
majority of the treatments remain substantial burdens for patients with SLE. The great
challenges posed by the vastly diverse nature of SLE, and the paucity of informative outcome
measures are reflected into the largely modest results of many SLE clinical trials. Over the
last decades, only belimumab, anifrolumab and voclosporin demonstrated efficacy in
randomized controlled clinical trials and received FDA approval for treatment of patients
with SLE, underscoring the urgent need for novel therapeutic agents in the disease.

It is important to note, that current classification criteria and disease activity assessment tools
do not necessarily capture the entire range of pathophysiological processes underlying SLE.
To this end, several high-throughput strategies have proposed SLE subtypes as distinct
disease entities based on molecular portraits. For example, Toro-Dominguez et al developed
the scoring system MyPROSLE (Molecular dYsregulated PROfiles of SLE patients), which
enabled the stratification of SLE patients based on immune related gene-modules and
successfully predicted different clinical outcomes [70]. Similarly, Banchereau et al employed
a personalized transcriptional immunomonitoring approach, which facilitated the
classification of the SLE patients based on the immune networks best correlating with disease
activity in each patient [23].

Herein, we sought to establish a computational pipeline, which could facilitate the
stratification of the SLE patients according to their whole blood transcriptional profiles,
irrespective of their clinical annotation. Taking a step forward, we used our molecular
taxonomy approach to optimize therapeutic decisions in a personalized medicine approach.
Lastly, we proposed novel compounds that could counteract the transcriptional aberrations of

SLE patients in a targeted manner.
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Objectives: Treatment of Systemic Lupus Erythematosus (SLE) is characterized by a
largely empirical approach and relative paucity of novel compound development. We
sought to stratify SLE patients based on their molecular phenotype and identify putative
therapeutic compounds for each molecular fingerprint.

Methods: By the use of whole blood RNA-seq data from 120 SLE patients, and in a data-
driven, clinically unbiased manner, we established modules of commonly regulated genes
(molecular endotypes) and re-stratified patients through hierarchical clustering. Disease
activity and severity were assessed using SLEDAI-2K and Lupus Severity Index,
respectively. Through an in silico drug prediction pipeline, we investigated drugs
currently in use, tested in lupus clinical trials, and listed in the iLINCS prediction
databases, for their ability to reverse the gene expression signatures in each molecular
endotype. Drug repurposing analysis was also performed to identify perturbagens that
counteract group-specific SLE signatures.

Results: Molecular taxonomy identified five lupus endotypes, each characterized by a
unique gene module enrichment pattern. Neutrophilic signature group consisted primarily
of patients with active lupus nephritis, while the B-cell expression group included patients
with constitutional features. Patients with moderate severity and serologic activity
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exhibited a signature enriched for metabolic processes. Mild disease was distributed in
two groups, exhibiting enhanced basic cellular functions, myelopoiesis, and autophagy.
Bortezomib was predicted to reverse disturbances in the “neutrophilic” cluster,
azathioprine and ixazomib in the “B-cell” cluster, and fostamatinib in the “metabolic”

patient subgroup.

Conclusion: The clinical spectrum of SLE encompasses distinct molecular endotypes,
each defined by unique pathophysiologic aberrancies potentially reversible by distinct

compounds.

Keywords: mol drug

INTRODUCTION

Systemic lupus erythematosus (SLE) has a unique set of
attributes, which has established it as the prototype among
systemic autoimmune diseases. With few notable exceptions,
recent advances in the understanding of SLE pathogenesis have
failed to translate into new therapies. High-throughput methods
have enabled the discovery of novel drugs in a time- and cost-
efficient manner. To this end, the Connectivity Map (CMap)
project is the first powerful drug repurposing platform that
embedded gene expression responses of 4 human cell lines
treated with different doses of a large collection of FDA-
approved compounds (1). Taking a step forward, the NIH-
supported Library of Integrated Network-Based Cellular
Signatures (LINCS) enriched the transcriptomic databases of
the CMap project by integrating the gene expression profiles of
more than 60 cell lines before and after exposure to more than
20,000 perturbagens (2). In this context, Toro-Dominguez et al.
employed the successor of the CMap, Lincscloud, suggesting the
therapeutic potential of phosphoinositol 3 kinase and
mammalian target of rapamycin (mTOR) inhibitors in SLE (3).

We have previously used mRNA sequencing to define the
transcriptomic signature of SLE patients. Our data showed that
SLE is characterized by a “susceptibility signature” present in
patients in clinical remission compared to healthy controls.
Additionally, we identified an “activity signature” present in
patients with active disease, which was mainly associated with
genes that regulate immune cell metabolism, protein synthesis
and proliferation. Lastly, we detected a “severity signature”, best
illustrated in active nephritis, linked to granulocyte and
plasmablast/plasma-cell pathways (4).

In the present study, we used the same RNA-sequencing
dataset in order to stratify lupus patients according to underlying
fundamental molecular aberrancies and predict personalized
therapeutic options. Specifically, we established an in silico
drug prediction pipeline to select the optimal treatments for
each patient subgroup, among compounds that have already
been tested against SLE in clinical trials. We also deployed a
personalized drug repurposing pipeline to identify FDA-
approved drugs or patented compounds for different
indications, that could be applied as potential therapeutic
agents for each group of SLE patients. We provide a
comprehensive, in-depth analysis of the human SLE

p! i ic lupus ery drug

transcriptome to guide precision care and new therapeutic
compound development.

MATERIALS AND METHODS

Patients

Whole blood transcriptional profiles of 120 patients with SLE
and 58 healthy individuals (4) were analyzed. Disease activity at
the time of blood sampling was assessed by the modified
Systemic Lupus Erythematosus Disease Activity Index 2000
(SLEDAI-2K), after exclusion of the serologic features (anti-
dsDNA and complement levels) (clinical SLEDAI) (5).
Remission was defined as a clinical SLEDAI-2K = 0 and daily
prednisolone dose of <5 mg (6, 7). Active disease was defined as a
clinical SLEDAI-2K >4. Irreversible organ damage was assessed
using the SLICC damage index (SDI) (8). Lupus Severity Index
was calculated for each patient (9).

Co-Expression Network Analysis

We employed CoCena® (construction of co-expression network
analysis-automated, https://github.com/UlasThomas/CoCena2),
using the 10,000 most variable genes as input, to determine
modules of co-expressed transcripts. Next, agglomerative
hierarchical clustering of patients, based on their group fold
changes (GFC) for each cluster of co-expressed genes, defined
the disease molecular endotypes. Functional enrichment analysis
was performed using clusterProfilerR package (10).

Drug Prediction Analysis

DEseq2 was used to identify differentially expressed genes
(DEGs) specific for each patient’s endotype (11). We obtained
gene expression signatures of drugs that are incorporated in the
treatment recommendations for SLE (12), or have failed to reach
SLE clinical trials endpoints and are included in the following
iLINCS sublibraries: i) iLINCS chemical perturbagens
(LINCSCP); ii) iLINCS targeted proteomics signatures
(LINCSTP); iii) Disease-related signatures (GDS);
iv) Connectivity Map signatures (CMAP); v) DrugMatrix
signatures (DM); vi) Transcriptional signatures from EBI
Expression Atlas (EBI); vii) Cancer therapeutics response
signatures (CTRS); and viii) Pharmacogenomics transcriptional
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signatures (PG). These were downloaded using the iLINCS API
(https://github.com/ucbd2k/ilincsAPI/blob/master/
usingllincsApis.Rmd). Statistically significant DEGs from each
drug signature were ordered by decreasing fold change
magnitude. The top 300 DEGs were selected and
upregulated/downregulated genes were identified. Gene set
enrichment analysis (GSEA) was performed using fgsea R
package (13). To determine the optimal number of drug
clusters for k-means clustering, the elbow method was applied.

Drug Repurposing Analysis

Drug repurposing results were prioritized using the
bioinformatic tool CoDReS (Computational Drug repositioning
score) (14), which enables the exploration of compound
drugability, based on an algorithm that combines functional
and structural scores. The functional score quantifies the
pharmacodynamic potential of a compound by assessing its
association to SLE hallmarks. This potential includes the
binding affinity to SLE molecular targets (enzyme, receptor,
transcription factor, etc.), as well as the overlap of its genomic
targets with genes implicated in the pathogenesis of the disease.
The structural score pertains to the pharmacokinetic properties
of compounds and contains information related to the
hydrophilic-lipophilic balance, solubility, permeability, as well
as oral bioavailability of a drug candidate, based on the “Lipinski
rules of 5” (15) and “Veber’s rule” (16).

RESULTS

Co-Expression Analysis Stratifies SLE
Patients Into Distinct Endotypes in an
Unbiased Data-Driven Manner

Applying the CoCena® pipeline, we identified nine modules of
co-expressed transcripts illustrated with different colors in
Figure S1. Hierarchical clustering of samples according to each
module’s group fold changes (GFC) reassigned patients into five
groups (G1 to G5) (Figures 1A, B). To define disease-driving
molecular mechanisms, we investigated the CoCena®-derived
modules enrichment in each patient group (Figures 1C, D).
Interestingly, groups displayed distinct enrichment patterns,
each exhibiting unique major module predominance. Platelet
activation and hemostasis were identified as two group 1 specific
signals (G1, “Hemostasis” group), overrepresented in the orchid
module. Detailed functional enrichment analysis of the dark-grey
module revealed that autophagy-associated signatures were
prominently enriched in patient group 2 (G2, “Autophagy”
group). Macroautophagy disturbances in G2 are accompanied
by deregulation of pathways involved in neutrophil activation
and toll-like receptor (TLR) cascade. Combined enrichment of
the pink module, linked to aberrancies of mRNA splicing and
mRNA surveillance mechanisms, and the dark-orange module,
implicated among others in mitochondrial dysfunction,
efficiently distinguished group 3 (G3, “Metabolism” group).
Heightened expression of the indian-red module, which
predominantly consists of genes implicated in neutrophil

Personalized Therapy Approach in SLE

activation and degranulation, defines group 4 (G4,
“Neutrophil” group). Enrichment of the dark-green module,
which comprises genes (such as CD38, BLNK, IGHAI,
TNFRSF17, CD22, CD79A, MS4Al, IGHD) linked to B-cell
and plasmablast-mediated responses, was indicative of group 5
(G5, “B cell” group). Interestingly, G5 displays a concurrent
increased expression of the steel-blue module, which is
associated with type I interferon (IFN) signaling.

Molecular Clusters Are Associated With
Distinct Clinical Traits

To evaluate the clinical implications of molecular endotype
characterization, we next assessed each group’s clinical
features, including demographics, clinical manifestations,
serologic features, and administered treatments. The
“Neutrophil” group (G4, n= 11, 9.1% of the total cohort)
almost uniformly encompassed patients with active lupus
nephritis (n=9/11) (Figure 2). Patients of this cluster also
exhibited high serologic and clinical activity; the majority were
treated with cyclophosphamide at the time of blood sampling
(Figures 2, S2, 83). The “B-cell” group (G5, n=18, 15% of the
total cohort) was characterized by high prevalence of
constitutional symptoms. Although statistical significance was
not reached, a tendency to a higher frequency of hematological
and neurological manifestations was apparent in this cluster.
Mucocutaneous and musculoskeletal manifestations were most
common in the “Metabolism” group (G3, n=30, 25% of the total
cohort), occurring in 63% and 50% of patients, respectively,
while a history of neuropsychiatric SLE (NPSLE) was reported in
27%. Interestingly, the clinically heterogenous “Hemostasis”
group (G1, 24.2% of the total cohort) was characterized by
high frequency of male patients, while Disease Modifying Anti-
Rheumatic Drugs (DMARDs) were the most commonly used
therapy. Finally, the “Autophagy” group (G2, n=32, 26.7% of the
total cohort) consisted of patients with mild to moderate SLE.
Accordingly, photosensitivity and malar rash were found in
59,3% and 81,2% of the patients of G2, respectively.

Molecular Endotypes Can Be Used to
Predict Group-Specific Effective
Compounds Towards Personalized
Therapeutic Decisions

To explore personalized therapeutic solutions, we identified
compounds tailored to each group’s molecular fingerprint.
This was achieved through leveraging our CoCena® based co-
expression analysis, to establish an in silico, signature-based,
drug prediction pipeline. As group-specific signatures, we
employed the DEGs resulting from the comparison of each
SLE endotype with a pool of 58 healthy controls.

To this end, we initially collected the transcriptional profiles
corresponding to cellular responses against drugs that are either
currently used in clinical practice, are or have failed in SLE
clinical trials and are listed in the iLINCS prediction databases
(Table S1). Our query returned 3,900 drug signatures (Table S2).
Using SLE group-specific transcriptional profiles as input, we
performed GSEA against the datasets of the top upregulated and
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FIGURE 1 | (A) Hierarchical clustering of the samples based on the magnitude of the expression of each gene module (identified in Figure $1) defined five groups
of patients (G1 to G5). Briefly, the x-axis demonstrates the patients analyzed in our study. GFC denotes the Group Fold Changes (defined in Figure S1); GB denotes
the sample; the number after the GB acronym denotes each patient database ID. (B) Alluvium plot illustrating the distribution of the SLE patients into the patient
groups G1-G5 generated after the hierarchical clustering of the samples according to each module’s group fold changes. Briefly, the 120 SLE patients included in
our study are displayed in the left vertical box (Patients). Each horizontal block comesponds to a patient. The distribution of the patients according to the presence
and the activity of Lupus Nephritis (LN) was demonstrated in the middle vertical box. The distribution of the patients into the five CoCena2 analysis defined patient
groups was shown in the right vertical box. (C) Heatmap showing the mean of the GFCs of the CoCena2 analysis derived gene modules in each one of the
previously defined patient groups. Group specific GFCs demonstrated similar and counteracting gene expression patterns among patient groups. Briefly, increased
expression of the indian-red module characterized G4. Enrichment of the dark-green module defined G5. Heightened expression of the dark-grey module
distinguished G2. Lastly, enrichment of the pink and dark-orange modules was indicative of G3. (D) Dot plot displaying the functional enrichment analysis of the
CoCena2-derived modules. Gene modules are shown on the basis of the graph. Enriched gene ontologies and pathways are shown on left side of the graph. Briefly,
the indian-red module included genes that were mainly enriched in neutrophil activation and degranulation. Functional enrichment analysis of the dark-green module
revealed disturbances related to plasmablast-mediated responses. Dark-grey module predominantly consisted of genes related to autophagy. Genes of the pink
module were enriched in mRNA splicing, whereas gene ontologies related to mitochondrial function were overrepresented among the genes included in the dark-

orange module.

top downregulated DEGs for each drug signature and
normalized enrichment scores (NES) were defined. Next, we
calculated the difference (ANES) of the NES from the
downregulated gene set and the NES from the upregulated
gene set for each drug signature per SLE cluster (Table $3).
Accordingly, a positive ANES indicated compounds that were
predicted to reverse the group-specific transcriptomic
aberrancies. To determine endotype-specific drug candidates,
we applied k-means clustering, in order to group drug signatures
according to ANES (Figures $4, S5). Drug signatures with the
highest ANES within each drug cluster induce cellular
transcriptional alterations which most efficiently counteract
group-specific SLE signatures.

In G5, the top signatures were linked to azathioprine
(ANES=2.76) and ixazomib (ANES=2.67) (Figure 3A), whereas
in G2 to the proteasome inhibitor bortezomib (ANES=2.84).
Signatures related to the SYK kinase inhibitor tamatinib
(ANES=2.81) were top ranked in G3 subgroup (Figure 3B). In
G4 group, signatures related to bortezomib occurred in high
frequency (76%) among the top 50 signatures, starting with a
ANES score 2.54 and, together with the calcineurin inhibitor
cyclosporine (ANES score 2.49), might represent alternative G4-
specific therapeutic options (Figure 3C). Finally, in both groups
4 and 5, signatures related to vitamin D derivatives (such as
seacalcitol) prevailed, with a ANES score 3.04 and
2.97, respectively.
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FIGURE 2 | Barplots demonstrating the prevalence of clinical features, Physician Global Assessment (SLE.status.(Physician)) and serological activity across patient
groups. The G4 was defined by the high prevalence of active lupus nephritis. Constitutional symptoms occurred most frequently in the G5. Mucocutaneous and
musculoskeletal manifestations were more prevalent among patients of the G3. *p < 0.05; **p < 0.01 in Kruskal-Wallis test, Chi-squared test.

Since the majority of the G4 patients were treated with
cyclophosphamide at sampling, an agent that could drastically
alter the whole blood transcriptional landscape, we divided G4
into two subgroups; one treated with cyclophosphamide (G4A,
n=6/11) and a “cyclophosphamide-free” subgroup (G4B, n=5/
11) and we applied the drug prediction pipeline. In accordance
with our initial findings, bortezomib was overrepresented among
the top 10 signatures in both subgroups (Tables $4, S5).

Drug Repurposing Tailored to SLE
Molecular Aberrancies

Finally, we sought to propose new SLE therapeutic agents. To
this end, we used a drug repurposing pipeline identifying
patented compounds with potentially unrecognized efficacy in
SLE. Using the iLINCS and CLUE platforms, we identified novel
compounds that could reverse the previously defined SLE group-
specific signatures. To sort out the top perturbagens derived from
the iLINCS platform, we applied a negative concordance score
cut-off of < -0.5. Regarding the CLUE based analysis, only
compounds exhibiting an inhibitory score of < -50 were
selected. Lastly, group-specific perturbagens were determined,
as shown in the Venn diagram (Figures 4A, B). To enhance the
performance of our approach, group-specific compounds were
ranked, according to their druggability (“druggability
prediction”). For this purpose, we used the bioinformatic tool

CoDReS (Computational Drug Repositioning Score) (14).
Uploading the iLINCS- and CLUE-derived compound lists
(which were related exclusively to each SLE endotype) to the
CoDReS platform resulted in the re-ranking of the repurposed
drugs, according to their biological and pharmaceutical potential
(Tables S6-S15).

G1 Subgroup

Our analysis indicated the p38 MAP kinase inhibitor vx-102 (17)
and the TBK1 and IKK kinase inhibitor amlexanox, as
potentially beneficial compounds. Lenalinomide, which has
been tested in SLE clinical trials (18), and the c-met-HGFR
(hepatocyte growth factor receptor) inhibitor pf-04217903 (19)
might also be considered as treatment options for Gl
SLE patients.

G2 Subgroup

The GSK3B/CDK double kinase inhibitor kenpaullone (20) was
found to reverse G2-specific transcriptional patterns. Notably,
the antidiabetic DPP4 inhibitor saxagliptin (21), the DNA
methylation inhibitor zebularine [used for the treatment of
CD4+ T cells mediated uveitis in a murine model (22)], the
smoothened receptor antagonist erismodegib [inhibitor of the
sonic hedgehog signaling (23)] were also identified as potential
therapeutic compounds.
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A Selected drug signatures from signature cluster 3 showing the highest ANES
scores in patient group G5

B Selected drug signatures from signature cluster 1 showing the highest ANES scores in
patient group G3

FIGURE 3 | (A) Heatmap of the selected top 50 drug signatures from signature cluster 3 (Figure S4) showing the highest ANES score in the G5 patient group.
Signatures of the azathioprin and the ixazomib showed the highest ANES scores in the G5 patient group. MLN2238: Ixazomib. Labeling was carried out based on
the following strategy: “drug name"_"database". (B) Heatmap of the selected top 50 drug signatures from signature cluster 1 with the highest ANES score in the G3
patient group. Signatures of SYK kinase inhibitor tamatinib showed the highest ANES scores in the G3 patient group. (C) Heatmap of the selected top 50 drug
signatures from signature cluster 4 with the highest ANES score in the G4 patient group. 76% of the top 50 drug signatures for G4 patient group belonged to the
proteasome inhibitor bortezomib. 179324-69-7: Bortezomib.
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Vx-102 (38 MAPK Inhibitor)

Varktinib (EGFR Tyrosine Kinase Inhvibitor)
Preladenant (A2A Adenosine Receptor Ant; 3

FIGURE 4 | (A) Group specific compounds derived from iLINCS platform-based drug repurposing analysis. (B) Group specific compounds derived from CLUE

platform-based drug repurposing analysis.

Other Subgroups

Concerning G3, we identified numerous potential drug
candidates, including the protein kinase ¢ (PKC) inhibitor
sotrastaurin (24), the EGFR receptor kinase inhibitor
tyrphostin 47 (25), and the mTOR kinase inhibitors azd-8055,
wye-125132, ku-0063794, wye-354 and torin-1 (26). Our data
also underlined the potential role of the dual PI3K/mTOR kinase

inhibitor dactolisib, the proteasome inhibitors ixazomib and mg-
132 (27), the histone deacetylase inhibitors (HDACs)
panobinostat, vorinostat, dacinostat, apicidin and merck60 (28,
29), and the HSP90 inhibitor biib021 (30) for potential treatment
of patients in G3. Based on their pathophysiological relevance,
the HIF (hypoxia inducible factor) modulator vu-0418946-1
(31), the NFkB inhibitor cay-10470 (32), the CXCR2
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antagonist sb-225002 (33), the JAK2 inhibitor fedratinib (34),
might represent promising therapeutic choices for G3 patients.

Moreover, chemical substances, such as the EGFR 2 receptor
tyrosine kinase inhibitor varlitinib (25), the A2A adenosine
receptor antagonist preladenant (35) and the niacin (vitamin
B3) (36) were found to be G4-specific drug candidates.

Finally, small molecules, such as the artemisinin derivative
artesunate, a drug applied for malaria (37), the dual FLT-3/JAK 2
kinase inhibitor lestaurtinib (38), the class1/2 HDAC inhibitor
givinostat (39), the mTOR kinase inhibitor vistusertib (26) and
the autophagy inhibitor bafilomycin-al (40) were identified as
G5-specific compounds.

DISCUSSION

Despite advances in our understanding of SLE pathogenesis,
selecting the optimal treatment for each individual patient
remains a challenge. Herein, we applied a whole blood
transcriptome-based molecular taxonomy strategy to stratify
SLE patients according to their molecular fingerprints.
Leveraging high-throughput computational methods, we
exploited patient molecular endotypes to optimize putative
therapeutic choices in a personalized approach. Finally, we
applied available bioinformatic tools to establish a personalized
drug repurposing methodology for the identification of new
compounds that could enrich our armamentarium in
SLE treatment.

Our data-driven re-stratification approach recapitulated the
spectrum of previously identified lupus pathophysiological
processes. For example, Banchereau et al. have shown that
progression to active lupus nephritis is accompanied by an
incremental enrichment of neutrophilic gene expression
signatures (41). Accordingly, transcriptional signatures
reflective of neutrophil activation defined G4 subgroup in our
study, which consisted almost exclusively of active lupus
nephritis patients.

Previous studies have highlighted the crucial role of type I
IEN signaling in the loss of B cell tolerance and autoantibody
production in SLE-prone mice (42). Gene expression signatures
indicative of type I IFN production, B cells and plasmablast
activation prevail in G5 group, implying the presence of type I
IFN-induced autoreactive B cell development.

Incomplete response to existing drugs remains a substantial
challenge for SLE patients, while various reasons related both to
the disease and to trial design have accounted for the failure of
several SLE clinical trials. Exploiting one of the largest drug
signature databases to date, iLINCS, allowed us to predict the
best patient endotype-specific drug candidates from a pool of
currently available therapies and drugs. To this end, Alexander
et al. have proposed the proteasome inhibitor bortezomib as a
putative therapeutic option for patients with refractory lupus
(43). Our unbiased approach indicated that use of bortezomib
might be efficacious for the treatment of patients belonging to the
“Neutrophil” molecular endotype. Moreover, expression of Syk is
increased in SLE T cells and skin lesions of lupus MRL/Ipr mice

Personalized Therapy Approach in SLE

(44, 45), while administration of Syk inhibitors ameliorates
kidney injury in lupus-prone mice (44). In this regard, our
results suggest that patients in the G3 “Metabolism” subgroup
might benefit most from treatment with fostamatinib. Depletion
of abnormal plasma cells is considered a potential mechanism of
action of the proteasome inhibitor ixazomib (46). In this context,
our drug prediction analysis further substantiates the therapeutic
relevance of targeting B cell responses in patients’ group G5 (“B-
cell” subgroup).

Over the last years, in silico drug repositioning studies for SLE
have been published, based on gene expression and genetic
profiles (47-49). Furthermore, efforts have been made to
individualize drug repurposing results, according to the
molecular features of lupus patients (49), whereas several
studies have applied literature mining approaches, in order to
prioritize the most promising compounds (50, 51). Herein, we
performed personalized drug repurposing analysis using two
robust, high-throughput platforms (iLINCS and CLUE).
Notably, the top-ranked compounds were assessed not only
through extensive literature review, but also according to their
“druggability” profile. Activation of PI3K/Akt/mTORCI
signaling pathway characterizes T cells of SLE patients (52). In
addition, pharmacological dampening of PI3K signaling in
lupus-prone mice provides evidence for the therapeutic
potential of targeting PI3K/Akt/mTORCI pathway in SLE (52).
Similarly, our findings indicate that several inhibitors of the
PI3K/mTOR pathway (azd-8055, dactolisib) might be promising
therapeutic options for patients belonging to the “Metabolism”
(G3) group. Aberrant type I IFN and IFN-y signaling and the
encouraging results from baricitinib phase 2 study in SLE
provide a clear rationale for targeting the JAK/STAT pathway
in SLE (53). To this end, administration of the JAK2 inhibitor
fedratinib, identified by our approach as an appropriate
treatment for patients in G3 group, might also confer
therapeutic benefit.

Certain limitations of our study deserve acknowledgment.
First, the vast majority of patients included in this study were
receiving immunosuppressive treatment at sampling, thus
therapy-induced immunosuppression may be mirrored in the
whole blood transcriptional profile, altering the expression of
essential pathophysiological mechanisms. Moreover, our in silico
drug prediction strategy is an explorative approach and
additional in vitro and in vivo studies are clearly required to
confirm our findings. Results of the phase III clinical trials
BLISS-LN (54) and AURORA 1 (55) have shown a clinical
benefit of adding belimumab or voclosporin, respectively, on
top of standard-of-care in patients with lupus nephritis.
Regarding the molecular complexity of the disease, also
underscored by our findings, these studies might denote the
need towards combination treatment approaches. Obviously,
further drug combination prediction analysis might be useful
to explore new avenues for SLE treatment.

In summary, we present a molecular taxonomy-based
pipeline to guide therapy and identify new compounds for
patients with SLE, based on a comprehensive, in-depth analysis
of the transcriptome. These data need to be further validated and
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tested in preclinical models of SLE and in longitudinal
clinical studies.
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Supplementary Figure 1 | Modules (pink to indian-red) of commonly regulated
transcripts as identified by CoCena2 analysis and heatmap depicting the group fold
changes (GFC) of each sample per module. The identified transcript modules were
illustrated in the annotation color bar on the right side of the heatmap. The patients
analyzed in our study were shown in the x-axis of the heatmap. GFC were defined
for each gene by computing the mean expression of a gene across all samples,
followed by calculating the sample specific fold change of the gene expression from
the overall mean. Then, the GFC of all genes within each module were added and
divided by the total number of genes of each module, returning the GFCs of each
sample per module. Briefly, the color intensity represented the relative magnitude of
the expression of each gene module per SLE patient. GFC denotes group fold
change; GB followed by number denoted the patient identifier according to our
anonymous coding system.

Supplementary Figure 2 | Barplots demonstrating the distribution of
demographic features as well as the frequency of NPSLE history, Antiphospholipid
Syndrome (APS) history, serum anti-DNA antibodies positivity, antiphospholipid
antibodies positivity across the patients groups. “:p<0.05; **:p<0.01 in Kruskal-
Wallis test, Chi-squared test.

Supplementary Figure 3 | Barplots displaying the treatments the patients were
receiving at the sampling timepoint. Cyclophosphamide and MMF were the most
commonly used treatments in the G4. *:p<0.05; **:p<0.01 in Kruskal-Wallis test,
Chi-squared test.

Supplementary Figure 4 | Clusters of drugs signatures (Cluster 1-4) as
identified by k-means clustering according to the ANES scores. ANES score was
defined as the difference between the NES from the downregulated gene set and
the NES from the upregulated gene set for each drug signature. Utilizing the
calculated ANES scores, drug signatures were next grouped using the k-means
clustering method into 4 clusters, which were shown on the right side of the
heatmap. The heatmap visualized how each of the 4 identified drug clusters were
enriched in the specific patient groups. A group specific predominant
enrichment of a drug cluster indicated that the drugs included in the drug cluster
of interest might be the most potent drug candidates for the specific patient
group. Briefly, cluster 4 contained drug signatures that were predicted to most
efficiently reverse the transcriptional aberrations of G4. Accordingly, drug cluster
3 might contain the best drug candidates for group G5, whereas drug cluster 1
included drug signatures that might most effectively counteract the G3-specific
transcriptional changes.

Supplementary Figure 5 | Elbow method identified optimal number of drug
clusters for k-means clustering.

Supplementary Table 1 | Drugs that are currently used in the treatment of SLE or
evaluated in SLE clinical trials and their gene expression signatures are included in
iLINCS sublibraries.

Supplementary Table 2 | Gene expression signatures of the drugs of table 1.
that are listed in the ILINCS prediction databases.

Supplementary Table 3 | Ranking of specific drug related signatures for each
SLE patients’ molecular endotype, according to ANES score.

Supplementary Table 4 | Drug related signatures with ANES scores for patient
group G4A.

Supplementary Table 5 | Drug related signatures with ANES scores for patient
group G4B.

Supplementary Table 6 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 7 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 8 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 9 | Ranking of the compounds derived from the iILINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 10 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 11 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 12 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Supplementary Table 13 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients' molecular endotypes separately.

Frontiers in Immunology | www.frontiersin.org

May 2022 | Volume 13 | Article 860726

39



Garantziotis et al.

Supplementary Table 14 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.
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ABSTRACT

Objectives Patients with lupus nephritis (LN) are in urgent
need for early diagnosis and therapeutic interventions
targeting aberrant molecular pathways enriched in affected
kidneys.

Methods We used mRNA-sequencing in effector (spleen)
and target (kidneys, brain) tissues from lupus and control
mice at sequential time points, and in the blood from 367
individuals (261 systemic lupus erythematosus (SLE) patients
and 106 healthy individuals). Comparative cross-tissue and
cross-species analyses were performed. The human dataset
was split into training and validation sets and machine
learning was applied to build LN predictive models.

Results In murine SLE, we defined a kidney-spedific
molecular signature, as well as a molecular signature

that underlies transition from predlinical to overt disease
and encompasses pathways linked to metabolism,

innate immune system and neutrophil degranulation. The
murine kidney transcriptome partially mirrors the blood
transcriptome of patients with LN with 11 key transcription
factors regulating the cross-species active LN molecular
signature. Integrated protein-to-protein interaction and drug
prediction analyses identified the kinases TRRAP, AKT2,
CDK16 and SCYL1 as putative targets of these factors

and capable of reversing the LN signature. Using murine
kidney-specific genes as disease predictors and machine-
learning training of the human RNA-sequencing dataset, we
developed and validated a peripheral blood-based algorithm
that discriminates LN patients from normal individuals
(based on 18 genes) and non-LN SLE patients (based on 20
genes) with excellent sensitivity and specificity (area under
the curve range from 0.80 to 0.99).

Conclusions Machine-learning analysis of a large whole
blood RNA-sequencing dataset of SLE patients using human
orthologs of mouse kidney-specific genes can be used for
early, non-invasive diagnosis and therapeutic targeting of LN.
The kidney-specific gene predictors may fadilitate prevention
and early intervention trials.

INTRODUCTION
In lupus nephritis (LN), current therapy fails to
induce remission in more than 50% of patients.

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Prediction of patients with systemic lupus
erythematosus (SLE) that will develop nephritis
and early diagnosis represents an unmet
need because of the limited value of known
predictors and the invasiveness of kidney
biopsy.

= Even with best treatment up to 40% of
patients fail to reach a complete renal response
suggesting that early diagnosis and prompt
treatment including targeting of renal specific
pathways is needed.

WHAT THIS STUDY ADDS

= Distinct, renal-specific molecular pathways are
associated with the development of nephritis
and its progression from subclinical to full
blown disease in murine SLE.

= The mouse kidney transcriptome mirrors the
human whole-blood transcriptome in lupus
nephritis (LN).

= Upstream and downstream regulators of the
cross-species (murine and human) kidney-
specific gene signatures have been identified as
putative targets in LN and novel cross-species
drug signatures for kidney disease in lupus.

= Using the mouse kidney-specific transcriptome
and through training by machine-leaming
techniques of a large whole-blood RNA-
sequencing dataset of SLE patients, we
developed and validated an algorithm that
predicts patients that will develop LN based on

a small number (no more than 20) of genes.

increased fibrosis, with 15%-20% of patients
eventually developing end-stage kidney disease.'”
Importantly, several clinical trials have failed to
meet their primary endpoint® * with only two new
treatments approved for LN.*” Accordingly, there is
urgent need for therapeutic interventions targeting
aberrant molecular pathways enriched within the
kidneys, to maximise drug efficacy.

et al. Ann Rheum Dis Even in cases with clinical remission, repeat kidney Subclinical (silent) LN represents an early stage
2022;81:1409-1419. biopsies often exhibit residual inflammation and  in the natural history of the disease'*™"* prior to
BMJ Frangou E, et al. Ann Rheum Dis 2022;81:1409-1419. doi:10.1136/annrheumdis-2021-222069 eu I ar 1409
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HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE
AND/OR POLICY

= Common cross-species (murine and human) genes could be
prioritised as potential therapeutic targets for LN or tested as
an alternative, non-invasive ‘liquid biopsy’ marker of kidney
disease in patients with SLE.

= The mouse kidney-specific set of gene predictors may be used
towards monitoring human kidney disease in SLE patients

and enrolment in LN prevention and early treatment studies.

full-blown disease.”* ' Notably, genetic and immunological
interventions in lupus models have underscored the potential to
avert autoantibody deposition and ensuing immune responses
within the kidneys,""™"" suggesting that preemptive therapy
might represent a valid therapeutic concept.”® ' However, the
mechanisms underlying the progression to clinical LN are not
clearly understood and kidney biopsies at the preclinical stage
are not performed.

In this paper, we performed sequential mRNA-sequencing
studies in effector (spleen) and target tissues (kidneys, brain)
from lupus and healthy mice, as well as in the whole blood
of patients with systemic lupus erythematosus (SLE) (including
patients with active or responding LN or neuropsychiatric
lupus) and healthy individuals. Comparative cross-tissue and
cross-species analyses yielded common, cross-species, nephritis-
specific genes that could be prioritised as potential therapeutic
targets. Using machine-learning algorithms, we constructed
a clinical-transcriptome predictive model that can be tested
as a non-invasive ‘liquid biopsy’ marker of kidney disease in
patients with SLE, to be used for monitoring of kidney disease
in SLE, as well as enrollment in LN prevention and early treat-
ment studies.

METHODS

Patients and healthy individuals

Patients with SLE (n=261) who met the SLICC 2012 or EULAR/
ACR 2019 classification criteria and age-matched and sex-
matched healthy individuals (n=106) were recruited from the
Departments of Rheumatology and Nephrology at the Univer-
sity Hospitals of Heraklio, ‘Attikon’ University Hospital and
the respective Blood Transfusion Units. Active LN was defined
by the presence of proteinuria more than 0.5 g/day and active
urine sediment. A kidney biopsy was performed in all patients
with evidence of active kidney disease. Patients either devel-
oped active LN de novo or had had a history of LN and were
flaring at the time of sampling. Responding LN was defined by
preservation or improvement of kidney function with reduction
of proteinuria to less than 50% after 6 months of therapy or
less than 0.5-0.7 g/day by 12 months.** *' Following informed
consent, whole blood was sampled, and RNA was extracted
from all participants.

Animals

NZB/W-F1 mice were sacrificed at the prepuberty (1 month
old), preautoimmunity (3 months old) and nephritic (6 months
old with proteinuria more than 200 mg/dL for three consecu-
tive days) stage of SLE. Age-matched C57BL/6 mice were used
as controls. Spleen, kidneys and brain were removed for RNA
extraction.

RNA-sequencing

RNA libraries were prepared using the Illumina Truseq kit.
Paired-end 37 bp (for mouse) and 67 bp (for human) mRNA-
sequencing was performed on the Illumina HiSeq2000 and
HiSeq4000, respectively, at the University of Geneva Medical
School.* FastQC software assessed quality.?? Raw reads were
aligned to the mouse (mm10 version) and human (hg38 version)
genome using STAR V.2.6 algorithm.”* Gene quantification
was performed using HTSeq.* Differential expression analysis
of mouse and human data was conducted using DESeq2?® and
edgeR,” respectively. Enrichment and network analyses were
performed using gProfiler” and GeneMANIA.” The Expres-
sion2Kinases (X2K)*® was used to yield transcription factors
(TFs), kinases and protein-to-protein interaction (PPI) networks.
Prediction of drugs was performed with L1000CDS? search
engine.’! Statistical significance was set at 5% false discovery
rate (Benjamini-Hochberg).

Machine learning

The human mRNA-sequencing dataset was randomly split into
training (70%) and validation (30%) sets. Using the training
set and feature selection algorithms, the smallest set of human
orthologs that most accurately predicted the outcome of interest
was selected. Using these orthologs as predictors, models were
fit and compared for their ability to predict human disease. To
improve performance, clinical predictors (not included in the
definition of active or responding LN) were added to the final
model. Accuracy, sensitivity, specificity and area under (AUC) the
receiver operating curve (ROC) were determined in the valida-
tion set.

Detailed information for all methods can be found
in online supplemental material. Scripts used and
online supplemental table can be found at https:/1drv.
ms/u/s!Au_gakpSntTbrGO3-3RQ39ByOId12e=MLF007.

RESULTS

Molecular signatures associated with murine LN and
transition from preclinical to clinical disease

Patients with SLE are in urgent need for therapeutic interven-
tions targeting molecular pathways enriched within individual
tissues to treat their disease effectively and safely. To decipher
aberrant molecular pathways enriched uniquely within the
kidneys in SLE, we profiled gene expression at the spleen (an
effector peripheral lymphoid organ), kidneys and brain (major
end-organ tissues) from NZB/W-F1 lupus mice and age-matched
C57BL/6 healthy counterparts. Tissues were collected at the clin-
ical (nephritic) stage of the disease when nervous system involve-
ment also occurs. Differentially expressed genes (DEGs) in lupus
versus healthy mice tissues were analysed. Using genes differen-
tially expressed within kidneys of the NZB/W-F1 lupus mice but
not in other tissues studied, we defined a ‘kidney-specific signa-
ture’ comprising 726 DEGs (425 upregulated, 301 downregu-
lated) (online supplemental figure S1A,B, table S1A). Enriched
functions within this signature included pathways linked to cell
metabolism, innate immune system and neutrophil degranula-
tion (online supplemental figure S1C, table S1B), reiterating the
role of neutrophils in lupus kidney injury.>* By representing the
signature DEGs as a gene network, we found several hub genes
with high-degree nodes of the network corresponding to human
lupus-susceptibility loci**-** such as FCGR2B, PTPRC, ITGAM,
NCF1 and RASGRP1 (online supplemental figure S1D, table
$1C).

1410 Frangou E, et al. Ann Rheum Dis 2022;81:1409-1419. doi:10.1136/annrheumdis-2021-222069
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Figure 1

Mouse kidney-specific transcriptome of lupus mice between the clinical (nephritic) and the preclinical (prepuberty) stage of the lupus.

(A) Venn diagram demonstrating the comparison between differentially expressed genes (DEGs) within the spleen, the kidneys and the brain from
NZB/W-F1 lupus mice at the clinical (nephritic) versus the preclinical (prepuberty) stage of lupus. The kidney-specific gene signature is defined by 507
genes that are differentially expressed only within kidneys but not in other tissues, (B) Heatmap of the 507 kidney-specific DEGs (316 upregulated,
191 downregulated), (C) Dot-plot diagram demonstrating functionally enriched REACTOME pathways of the 507 kidney-specific DEGs, (D) gene
network representation of the 507 kidney-specific DEGs. Hub genes that correspond to lupus risk loci are depicted by larger size fonds. ROS, reactive

oxygen species; TCR, T cell receptor.

Next, we examined the molecular events underlying tran-
sition from the preclinical to clinical stage of lupus kidney
disease by comparing DEGs between the tissues from lupus mice
probed at the prepuberty versus the nephritic stage. Genes that
were differentially expressed uniquely within kidneys of the
NZB/W-FI lupus mice but not in other tissues studied defined
the ‘kidney-specific LN-transition signature’ comprising 507
DEGs (316 upregulated, 191 downregulated) (figure 1A,B,

online supplemental table S2A) that were enriched in innate and
adaptive immune system pathways. The former were linked to
neutrophil degranulation and reactive oxygen species produc-
tion in phagocytes, whereas the latter included T cell receptor
signalling, signal transduction by G-protein coupled receptors
(in particular, chemokine receptors) and costimulation through
programmed cell death protein 1 (PD-1) signalling. In addi-
tion, pathways involved in platelet activation, signalling and

Frangou E, et al. Ann Rheum Dis 2022;81:1409-1419. doi:10.1136/annrheumdis-2021-222069 1411
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aggregation were identified (figure 1C, online supplemental
table S2B). Of note, the lupus-susceptibility risk loci PTPRC,
NCF1 and ITGAM genes, as well as the IRF8,*** emerged as
hub network genes, suggesting a pathogenic role during evolu-
tion from preclinical to clinical LN (figure 1D, online supple-
mental table S2C).

To analyse the sequential molecular events underlying the
evolution towards LN, we identified DEGs in tissues from lupus
vs healthy mice demonstrating a strain-specific effect in a time-
series analysis. DEGs within kidneys demonstrating the lupus-
specific pattern were combined with genes within kidneys that
were differentially expressed across all stages of the disease.
Combined signatures were compared across tissues and genes
that were differentially expressed uniquely within kidneys—but
not in other tissues—defined the ‘sequential kidney-specific
signature’, composed of 1668 genes (online supplemental table
S3A). Functional interpretation of the result revealed enrich-
ment in the establishment of sister chromatid cohesion pathway
(online supplemental table S3B). Kidney-specific DEGs in lupus
versus healthy mice at the preautoimmunity stage, kidney-
specific DEGs from lupus mice at the preautoimmunity versus
the prepuberty stage and the respective functional enrichment
analyses are presented in online supplemental tables S3C-F.
DEGs within kidneys demonstrating the strain-specific pattern
in the time-series analysis are presented in online supplemental
figure S2.

The human peripheral blood and the murine kidney
transcriptome share common kidney-specific signatures and
associated hub genes

Kidney biopsy, an invasive procedure linked to increased risk for
adverse events, is currently essential to confirm diagnosis and
guide therapeutic decisions in LN; however, it is still an imper-
fect predictor of response to treatment. Previous studies have
reported shared molecular signatures within LN kidneys of mice
and humans,*® as well as between kidney and non-kidney (eg,
skin) tissues of patients with LN.?” *® Recent evidence suggests
that neutrophils from ultraviolet skin reach the kidney and cause
inflammation in murine models; it is conceivable that these
circulating neutrophils prior to their homing to the kidneys may
be captured in the blood.*” To this end, we next asked whether
the kidney-specific signatures in murine lupus may exist also
in patients with LN using blood as an easily accessible, mini-
mally invasive tissue. Specifically, we investigated whether the
mouse kidney could serve as non-invasive (not-requiring biopsy
in humans) marker of kidney disease in human SLE. To address
this, we performed whole-blood mRNA-sequencing in 141 SLE
patients and 48 healthy counterparts. Data were combined with
our previously analysed cohort,** thus yielding a dataset of 367
individuals (including 261 SLE patients and 106 healthy indi-
viduals) (online supplemental table S4A). We found extensive
transcriptome perturbations with 10 672 DEGs between active
LN patients and healthy individuals (online supplemental figure
S3A, table S4B) and 4119 DEGs between active LN and SLE
patients without history of kidney disease (non-LN patients)
(figure 2A, online supplemental table S4C).

Next, we examined whether the human peripheral blood
from patients with LN shares common gene expression aberra-
tions with the mouse kidney-specific gene signatures. Using the
human orthologous genes of the mouse genome, we examined if
the mouse ‘kidney-specific signature’ is present in the blood of
patients with active LN as compared with healthy individuals. A
total 272 genes (193 upregulated and 79 downregulated) were

common between the two datasets (online supplemental figure
S3B,C, table SSA), referred to as ‘shared active LN signature’.
Neutrophil degranulation was the most significantly enriched
pathway in this signature (online supplemental figure S3D,
table S5B), whereas gene network analysis revealed that the
lupus-susceptibility risk loci NCF2, ITGAM, NCF1, RASGRP1
and FCGR2A** were high-degree hub genes, suggesting their
central pathogenic role in LN (online supplemental figure S3E,
table S5C).

A similar cross-species analysis was performed to determine
whether the mouse ‘kidney-specific LN-transition signature’
intersects with the human blood transcriptome of patients
with active LN versus non-LN patients. Ninety-seven common
genes (67 upregulated and 30 downregulated) were identified
(figure 2B,C, online supplemental table S6A), comprising the
‘shared active LN-transition signature’. Functional enrichment
analysis revealed pathways linked to hematopoietic cell lineage,
B-cell receptor signalling and immunoregulatory interactions
between lymphoid and non-lymphoid cell (figure 2D, online
supplemental table S6B). CD53, ITGB2 and LAPTMS were the
highest-degree hub genes, underscoring their role in evolution of
LN. The risk locus ITGAX was also identified, further supporting
its pathogenic role*® and its gene expression deregulation within
kidneys during lupus progression (figure 2E, online supple-
mental table S6C).

To characterise the ‘sequential kidney-specific signature’ in
the context of human LN, we compared the human ortholo-
gous genes of the mouse signature with the DEGs between active
LN patients and healthy individuals and revealed 609 common
genes that defined the ‘shared sequential kidney-specific signa-
ture’ (online supplemental table S7A). These genes were func-
tionally enriched in pathways linked to selenocysteine synthesis
and non-sense mediated decay independent of the exon junction
complex (online supplemental table S7B).

In silico analysis of upstream regulators, downstream kinases
and drug signatures for the identification of novel therapeutic
targets in LN: Kinases TRRAP, AKT2, CDK16 and SCYL1 as
putative targets for reversing the LN signature

Genetic association studies have identified TFs to play a major
pathogenic role in SLE."’ Taking advantage of our study design,
we performed TF enrichment analysis®® in the cross-species
gene signatures and found a total of 11 TFs (including E2F4,
FOXMT1, SPI1 and SIN3A) and 6 TFs (including SPI1, IRFS,
RUNX1 and VDR), which were predicted to regulate the ‘shared
active LN signature’ (figure 3A, online supplemental table S8A)
and the ‘shared active LN-transition signature’ (figure 3B, online
supplemental table S9A), respectively.

To decipher downstream kinases of the shared gene signatures
that might serve as druggable targets, the aforementioned lists of
enriched TFs were expanded by identifying proteins previously
shown to physically interact with them, followed by construction
of PPI subnetworks (online supplemental table S8B, table S9B).
Based on the overlap between known kinase-substrate phos-
phorylation interactions and the proteins in the subnetworks,
we found kinases that phosphorylate the proteins interacting
with the TFs. The kinase TRRAP was predicted to phosphory-
late the NCOR2 and HCFC1 (hypergeometric p=0.0004799)
that interact with the enriched TFs that regulate the ‘shared
active LN signature’ (online supplemental table S8C); and the
AKT2, CDK16 and SCYL1 kinases were predicted to phosphor-
ylate ACTN4 and AES or SMARCA4 or AES (hypergeometric
p=0.005443), respectively, that interact with the enriched TFs
that regulate the ‘shared active LN-transition signature’ (online
supplemental table S9C), suggesting they could represent

1412 Frangou E, et al. Ann Rheum Dis 2022;81:1409-1419. doi:10.1136/annrheumdis-2021-222069
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Figure 2 Common genes between the kidney-specific gene expression profile from lupus mice at the symptomatic (nephritic) versus the
asymptomatic (prepuberty) stage and the whole-blood gene expression profile from active LN (aLN) patients versus SLE patients without history

of kidney involvement (non-LN) define a ‘shared active LN-transition signature’. (A) Heatmap of the 4119 differentially expressed genes (DEGs) in
the whole-blood from aLN patients versus non-LN patients, (B) Venn diagram demonstrating the comparison between the orthologous genes of the
mouse kidney-specific DEGs from NZB/W-F1 lupus mice at the symptomatic (nephritic) versus the asymptomatic (prepuberty) stage and the whole-
blood gene expression profile from aLN versus non-LN SLE patients. The ‘shared active LN-transition signature’ is defined by the union of the Venn
diagram, corresponding to 97 common genes, (C) Heatmap of the ‘shared active LN-transition signature’, composed of 97 genes (67 upregulated, 30
downregulated), (D) Dot-plot diagram demonstrating functionally enriched REACTOME pathways of the ‘shared active LN-transition signature’, (E)
gene network representation of the ‘shared active LN-transition signature’. Hub genes that correspond to lupus risk loci are depicted by characters of
a larger size. LN, lupus nephritis; SLE, systemic lupus erythematosus.

putative targets in LN. Complete upstream pathways of the Finally, through the L1000 Characteristic Direction Signature
gene signatures connecting the enriched TFs to kinases through ~ Search Engine (L1000CDS?), we detected the top S0 drugs or
known PPIs were also inferred (online supplemental tables S8D  small molecule compounds (online supplemental tables S8E and
and S9D). S9E) and the top 50 compound combinations that may reverse
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Figure 3 Upstream regulators of the ‘shared active LN signature’

and the ‘shared active LN-transition signature”. (A) Dot-plot diagram
demonstrating the transcription factors (TF) that are predicted to
reverse the common genes between the kidney-specific gene expression
profile from lupus vs healthy mice at the clinical (nephritic) stage and
the whole-blood gene expression profile from active LN (aLN) patients
vs healthy individuals (HI). The x-axis represents the hypergeometric

p value and dots correspond to the number of enriched targets of the
TF, (B) Dot-plot diagram demonstrating the TF that are predicted to
reverse the common genes between the kidney-specific gene expression
profile from lupus mice at the clinical (nephritic) versus the preclinical
(prepuberty) stage and the whole-blood gene expression profile from
patients with active LN (aLN) versus SLE patients without history of
kidney involvement (non-LN). The x-axis represents the hypergeometric
p- value and dots correspond to the number of enriched targets of the
TF. LN, lupus nephritis; SLE, systemic lupus erythematosus.

the ‘shared active LN signature’ and the ‘shared active LN-transi-
tion signature’, respectively (online supplemental tables S8F and
S9F). Among these, the R(+)—6-BROMO-APB was predicted
to reverse the former, and the HEMADO, norketamine hydro-
chloride, trichostatin A and others were predicted to reverse
the latter signature, respectively, in the HA1E kidney cell line,
suggesting they could be further tested in the therapy of LN.

Eighteen genes may predict patients with active LN from
healthy individuals

Demographic, clinical and serological data are imperfect in
predicting the onset of kidney disease in patients with SLE.
Importantly, early identification and prompt treatment have been
linked to improved outcomes.'* ' We examined whether the
human orthologs of the mouse kidney-specific gene signatures

and the human whole-blood gene signatures may predict those
patients with SLE who will develop LN. For this, the complete
mRNA-sequencing dataset was randomly split into training
(70%) and validation (30%) sets, and machine-learning algo-
rithms were applied (figure 4).

To distinguish patients with active LN from healthy individ-
uals, we used the human orthologs of the mouse kidney-specific
DEGs from lupus versus healthy mice at the nephritic stage
(corresponding to the ‘kidney-specific signature’, composed of
726 DEGs). To remove noise and keep the smallest set of human
orthologs of the mouse genes which best predicts outcome, we
performed feature selection using recursive feature elimination
with a random forest (machine-learning) model under a 10-fold
cross-validation. Based on model accuracy, a set of 50 human
orthologs were selected. Next, prediction models were fit to
identify which performs best with the selected genes. The glmnet
model using 18 genes—including PLD4, PTPRN2, CASP8 and
POLE (figure SA, online supplemental table $10)—(32 genes
had a coefficient=0 and were considered redundant in the
model) best distinguished patients with active LN from healthy
individuals with a 10-fold cross-validation calculated accuracy
of 95.7% (95% CI (0.85% to 0.99%)], 100% sensitivity and
92.9% specificity (0.99 AUC of the ROC curve analysis) in the
validation set (figure 5B,C), demonstrating an excellent model
efficiency to discriminate true positive (active LN patients) from
false positive (healthy individuals) cases. Inclusion of clinical
factors (not included in the definition of active or responding
LN), such as age, gender and the presence of anti-dsDNA, did
not improve further the performance of the model. Using the
validation set, principal component analysis (PCA) demonstrated
that the 18 selected genes could accurately discriminate patients
with active LN from healthy individuals (figure 5D). The rela-
tionship between the expression of each gene and the probability
of predicting active LN is demonstrated in online supplemental
figure S4. These data define a LN prognostic gene signature
and demonstrate the feasibility of developing and validating an
algorithm to predict patients with active LN from healthy indi-
viduals non-invasively, through machine-learning analysis of a
large whole blood RNA-sequencing dataset of SLE patients using
human orthologs of mouse kidney-specific genes as predictors of
kidney involvement.

Machine-learning model distinguishes LN from non-LN SLE
patients

Next, we examined whether the above approach could also
discriminate active LN patients from SLE patients without
kidney disease (non-LN patients) in a non-invasive manner. We
sought that the kidney-specific gene expression profile of lupus
mice at the clinical (nephritic) versus the preclinical (prepu-
berty) stage of the disease (corresponding to the ‘kidney-specific
LN-transition signature’, composed of 507 DEGs) could reflect
the whole-blood gene expression profile of SLE patients with
active LN versus SLE patients without history of LN (non-LN
patients). Thus, we used the human orthologs of the mouse
‘kidney-specific LN-transition signature’ as predictors, and
applied feature selection under a 10-fold cross-validation. Based
on accuracy, 20 genes best predicted the outcome. Models were
fit to identify which performs best with the selected genes.
Model performance was further improved by the addition of
age, sex and presence of anti-dsDNA, as predictors of outcome.
As expected, due to the higher likelihood of patients with prolif-
erative LN to have anti-DNA antibodies, the presence of anti-
dsDNA was the most important predictor of kidney disease,
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used to develop a prediction model and the test set was used to validate the results. Using the training set, feature selection was applied to remove
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which performs best using the gene signature selected in the previous step. Once the best model was selected based on accuracy, sensitivity and
specificity, the addition of age, gender and the presence of anti-dsDNA as predictors were tested if they could improve the model. The final model was
validated in the test set. AUC, area under the curve; CV, cross-validation; dsDNA, double-stranded DNA; ROC, receiver operating characteristic curve.

followed by the expression of PTPRO gene (the lower its expres-
sion, the higher the probability of predicting active LN) and
IL10RA gene (the higher its expression, the higher the proba-
bility of predicting active LN). Male sex and younger age of SLE
patients were associated with higher probability of active LN. In
the validation dataset, the glm model displayed accuracy 81.7%
(95% CI (0.70% to 0.90%)), sensitivity 63.2% and specificity
90.2% (AUC 0.80) in distinguishing patients with active LN
from SLE patients without history of LN (figure 6A-C, online
supplemental table S11, figure S5), demonstrating that the
model correctly identified SLE patients without LN (true nega-
tive cases). Using the validation set, PCA demonstrated how gene
predictors could accurately discriminate patients with active LN
from non-LN SLE patients (figure 6D). Together, these data

demonstrate the feasibility to distinguish patients with active
LN from SLE patients without kidney involvement. These gene
predictors could be of prognostic value in the clinical setting
following further validation studies in independent cohorts.

DISCUSSION

Patients with LN are in need for an early diagnosis and thera-
peutic targeting of aberrant molecular pathways enriched within
the affected kidneys. Here, we performed sequential mRNA-
sequencing in three tissues of lupus and healthy mice, and in
the whole-blood of SLE and healthy individuals. Through cross-
tissue analysis, we defined a murine kidney-specific molecular
signature and a molecular signature that underlines progression
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Figure 5 Machine-learning modelling of the human whole-blood RNA-sequencing data, using mouse kidney-specific genes as predictors,
distinguishes patients with active lupus nephritis (active LN) from healthy individuals (H) in a non-invasive manner and defines a LN prognostic gene
signature. (A) The 18 predictors of the glmnet model distinguishing patients with active LN from healthy individuals based on their importance, as
evidenced by their absolute coefficient. Gene predictors in green fonts indicate that the higher their expression the higher the probability of being

a patient with active LN compared with being a healthy individual; while gene predictors in red fonts indicate that the lower their expression the
higher the probability of being a patient with active LN, (B) Characteristics of the prediction model of patients with active LN from healthy individuals,
(C) Receiver operating characteristic curve (ROC) analysis of the glmnet model in the validation set reveals an area under the curve (AUC) of 0.99, (D)

principal component analysis (PCA) using the 18 genes.

from the predisease stage to overt clinical disease. We also
demonstrated that the murine kidney transcriptome mirrors—in
part—the human whole blood transcriptome of LN patients and
found upstream and downstream transcriptional regulators that
may be prioritised as potential therapeutic targets. Finally, we
developed a blood gene-based predictive model for human LN
that can be tested as an alternative, non-invasive ‘liquid biopsy’
marker of kidney disease in patients with SLE. Pending further
confirmation, this marker could identify patients in need of
monitoring for development of LN, as well as enrolment in LN
prevention and early treatment studies.

To improve therapeutic interventions and optimise the use of
animal models, gene expression profiling across three samples
and species is important in defining how mouse biology can
be extrapolated to humans.*! To this end, the sequential cross-
organ (murine spleen, kidney and brain) and cross-species
(murine and human) comparative transcriptomics analysis in
this paper is novel, defining unique-to-kidney molecular aber-
rancies in SLE that can be extrapolated to the transition from the
preclinical to clinical stage of human LN. Our human transcrip-
tomic analysis involved a large number of well-characterised

patients and healthy controls which makes it the larger, single-
centre, RNA-seq analysis ever performed in SLE. In addition to
providing potential biomarkers for prediction and non-invasive
diagnosis and monitoring, our data also reflect biological path-
ways involved both in the development and clinical transition of
LN in a systematic and unbiased manner, without preconceived
notions.

In view of the heterogeneity of lupus, we used next-generation
sequencing as an unbiased and not requiring a priori hypothesis
approach to uncover novel molecular pathways implicated in
major end-organ injury in SLE. Initially we performed mRNA-
sequencing of a peripheral lymphoid organ (the spleen, that
may be used as a surrogate of peripheral blood) and two end-
organ tissues (kidneys and brain) from the NZB/W-F1 lupus
model at the prepuberty, preautoimmunity and nephritic stage
of SLE and identified the molecular profile which is expressed
uniquely within kidneys of this model—but not in other tissues
studied—and the molecular profile that characterises unique-
to-kidney molecular events underlying LN transition from the
preclinical to clinical stage of kidney disease. In this process, we
identified pathways enriched within each signature and found
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(PCA) using the 20 gene-predictors. LN, lupus nephritis; SLE, systemic lupus erythematosus;

that hub genes correspond to lupus susceptibility risk loci (such
as the PTPRC, ITGAM, NCF1 and IRF8 genes), reinforcing
their pathogenic role in LN and the progression from preclin-
ical to clinical kidney disease. Validating our results, the VEGE
TLR2 and SOCS3 genes were also differentially expressed in the
kidneys from NZB/W-F1 mice 9 months old vs 6 months old as
well as the kidneys from patients with LN.*¢ In agreement with
Arazi et al,** genes such as the ITGAM and FCGR2B were also
differentially expressed in the ‘kidney-specific gene signature’.
The FPR2, IL18R1, ITGAM and NCF4 genes were also differen-
tially expressed in the myeloid lineage from paediatric patients
with LN,* genes such as the MDP1, PTGR1 and MX2 were also
differentially expressed within the kidneys from LN patients, as
assessed by microarrays** and genes such as the TMEM167A,
TNFAIP8 and VCAMI were also differentially expressed in
kidney tubular cells from LN patients.**

Blood transcriptome analysis identified similarities as well
as differences from the molecular signatures detected within
kidneys in patients with LN, underscoring that limitations exist

in the use of blood for uncovering kidney disease processes.**
However, gene expression studies have shown shared inflamma-
tory responses within kidneys between mice and humans with
LN, but also shared gene signatures between kidney tubular
cells and keratinocytes of LN patients.’” ** Our data suggest
that the mouse kidney transcriptome and the human whole-
blood transcriptome share a common gene expression profile
that corresponds to common biological processes and pathways.
Lupus medications were held for 12 hours prior to sampling thus,
a potential downstream effect cannot be excluded. However,
validating our results, in the ‘shared active LN signature’, genes
such as the CEACAM1, TYMP, NCOA7 and AIM2 were also
differentially expressed in interferon stimulating genes identified
through single-cell RNA-sequencing within the kidneys from
LN patients*> and SERPINA1, IL1RN and ABCB1 genes were
also differentially expressed in kidney tubular cells from LN
patients.*® We also identified hub genes of the common cross-
species kidney-specific gene network corresponding to lupus-
susceptibility risk loci, uncovering their cross-species pathogenic
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role in LN, and identified that the pathway interactions between
lymphoid and non-lymphoid cell characterises the transition
from preclinical to clinical LN across species. Although we do
not validate the LN blood transcriptome with the kidney tran-
scriptome in humans, part of the mouse kidney transcriptome
mirrors the human whole-blood transcriptome in patients with
LN, suggesting that common genes can be prioritised as poten-
tial therapeutic targets for LN, or tested as an alternative, non-
invasive ‘liquid biopsy’ marker of kidney disease in patients with
SLE.

To decipher cross-species specific targets in LN, we used
systems biology approaches and combined our experimental
data with simulation-based analyses. We report upstream and
downstream regulators of the cross-species kidney-specific gene
signatures as specific targets in LN and describe novel cross-
species drug signatures for kidney disease in lupus, suggesting
non-immune-based approaches to be tested in LN therapeutics,
as ‘add on’ therapy to conventional immune therapy. We must
underscore that due to limitations in the analysis, identified TFs
are not restricted to immune cells therefore therapies targeting
them could have off-target effects with potential toxicity.

Although current therapeutic decisions in LN are guided
by its histological classification,?® ' ** kidney histology is
an imperfect predictor of kidney outcome,' highlighting the
need for improved biomarkers.** The urokinase-type plasmin-
ogen activator receptor and the decrease in urinary epidermal
growth factor to creatine ratio have been identified as inde-
pendent predictors of progression to chronic kidney disease in
patients with glomerular diseases*¢ *’; however, a biomarker for
preclinical LN has not been identified. Since preclinical LN is
an early stage in the natural history of the disease and improve-
ments in the prognosis of LN have been attributed to early
diagnosis and prompt therapy,'®"* we used machine-learning
approaches to identify non-invasive predictors of kidney
involvement in SLE patients. Specifically, we used the ‘kidney-
specific gene signature’ as a tool to build a machine-learning
algorithm to distinguish patients with active LN from healthy
individuals and demonstrated that this approach can be used
successfully as a non-invasive prediction method. Then, using
the murine lupus kidney-specific transcriptome, we built and
validated a machine-learning algorithm that predicts patients
with active LN from SLE patients without LN, to be used in the
monitoring for kidney disease in such patients and enrolment
in LN prevention and early treatment studies. Although valida-
tion in an independent dataset was not used, cross-validation
was performed during modelling, thus reinforcing our results.
These gene predictors could be of prognostic value in the clin-
ical setting, following further validation studies in independent
cohorts. Although machine-learning distinguishes patients
with LN from non-LN patients accurately, yet at this point
this method is not better than clinical diagnosis of LN. More-
over, sequential clinical and transcriptomic data are necessary
for the prediction of patients that will flare. The prediction of
patients that truly have responding LN would have also been
useful; however, a kidney-specific signature corresponding to
responding kidney disease (not preclinical) is not available in
murine, making this algorithm not applicable for this purpose.
Further validation in independent human datasets or longitu-
dinal studies are needed to further explore these findings in
human LN.

In conclusion, common cross-species, nephritis-specific genes
could be used as potential therapeutic targets for LN or tested
as a surrogate, non-invasive ‘liquid biopsy’ marker of kidney
disease in patients with SLE. These kidney-specific genes can be

used to design prevention and early intervention trials, following
their validation in longitudinal studies.
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Abstract

Objectives: Monocytes -key regulators of the innate immune response- are actively involved
in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel
compounds that might serve as monocyte-directed targeted therapies in SLE.

Methods: We performed mRNA sequencing in monocytes from 15 patients with active SLE
and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus
Erythematosus Disease Activity Index 2000 (SLEDAI-2K). Leveraging the drug repurposing
platforms iLINCS, CLUE and L1000CDS?, we identified perturbagens capable of reversing
the SLE monocyte signature. We identified transcription factors and microRNAs that regulate
the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases,
respectively. A gene regulatory network, integrating implicated transcription factors and
microRNAs was constructed, and drugs targeting central components of the network were
retrieved from the DGIDDb database.

Results: Inhibitors of the NF-kB pathway, compounds targeting the heat shock protein 90, as
well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted
to efficiently counteract the aberrant monocyte gene signature in SLE. Based on our network-
based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent
potential drug candidates in SLE.

Conclusions: Application of two independent - a transcriptome-reversal and a network-based
-drug repurposing strategies uncovered novel agents that might remedy transcriptional
disturbances of monocytes in SLE.

Introduction
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Monocytes and macrophages constitute a major cellular compartment derived from
hematopoietic myeloid precursors. Monocyte-macrophage lineage cells exhibit versatile
immunoregulatory, inflammatory and tissue repairing capabilities and play an instrumental
role in the development of systemic lupus erythematosus (SLE) [1]. Data from murine and
human SLE studies demonstrated that the polyclonal B cell hyperreactivity, an
immunological hallmark of SLE, might be at least partially attributable to aberrations in
monocyte-mediated CD40/CD40L co-stimulation [1-5]. Abnormal activation of autoreactive
T and B cells in SLE could also be caused by dysregulated cytokine production by
monocytes. Monocytes in SLE display excess production of the B-lymphocyte stimulator
(BLyS) which promotes the survival and proliferation of B cells [6]. Moreover, these cells are
a major source of IL10 and IL6 in the peripheral blood of SLE patients, which in turn
augments antibody production and induces plasma cell differentiation, respectively [6].
Besides their contribution to the aberrant activation of adaptive immune system, defects in
non-inflammatory phagocytosis by macrophages are implicated in the impaired clearance of
cellular debris, that serves as a crucial trigger for the production of autoantibodies in SLE [1,
7, 8, 9, 10]. Notably, monocytes in SLE not only significantly contribute to the generation of
the interferon (IFN) signature per se, but also give rise to plasmacytoid dendritic cells which
are considered as the primary type I IFN producing cells in SLE [11,12].

Several powerful computational tools have facilitated de novo drug development and drug
repurposing processes in a cost-effective and time-saving manner. The library of integrated
network-based cellular signatures (LINCS) L1000 dataset integrated over a million gene
expression profiles of human cell lines before and after exposure to more than 20,000
perturbagens. Taking a step forward, the LINCS L1000 Characteristic Direction Signatures
Search engine (L1000CDS?) enabled the prioritization of thousands of small-molecule
signatures, according to their ability to counteract disease specific transcriptional profiles
[13]. We have previously employed an iLINCS-based drug repurposing pipeline [14, 15],
suggesting the potential therapeutic relevance of compounds targeting the PI3K/mTOR
pathway in SLE.

Herein, we employed two independent drug repurposing approaches to identify novel
compounds that might restore the molecular aberrancies of monocytes in SLE. Using the
iLINCS, CLUE and L1000CDS? platforms, we propose putative novel drugs potentially
capable of reversing the monocyte-specific SLE gene signature. We also report FDA-
approved drugs and patented compounds that might disturb the gene regulatory network of

SLE monocytes, suggesting they should be tested as monocyte-targeted therapies in SLE.
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Materials and Methods

Patients

Monocytes were isolated (CD14" cells through FACS technology, BD FACS ARIA Ilu) from
peripheral blood samples of 15 SLE patients fulfilling the 2019 EULAR/ACR classification
criteria for SLE [16]. Patients were recruited from the Rheumatology Outpatient Department
of the Attikon University Hospital and the University Hospital of Heraklion [16]. Ten age-
and sex-matched healthy individuals were used as controls. Disease activity was evaluated
using the modified Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-
2K); SLEDAI-2K >4 defined active disease [17, 18]. All participants provided informed

consent and the study approval was obtained from the local institutional review boards.

RNA sequencing and differential expression analysis

RNA libraries were prepared using the Illumina TruSeq kit. Paired-end mRNA sequencing
was performed on the Illumina HiSeq2000 platform. The reads were aligned to the human
reference genome (GRCh38.p12) by STAR RNA-Seq aligner [19]. Differential expression

analysis was conducted using the edgeR Bioconductor R package [20].

Drug repurposing analysis

Using the iLINCS [21], CLUE [22] and L1000CDS? [13] platforms, we identified
compounds that reverse the SLE monocyte signature. The following libraries were used for
search in the iLINCS platform: a) iLincs chemical pertubagen library (LINCSCP); b)
Connectivity map signatures (CMAP); c¢) Drug matrix signatures (DM); d) Cancer
therapeutics response signatures (CTRS); and e) Pharmacogenomics transcriptional
signatures (PG). Through extensive Pubmed literature review, the top-ranked compounds
derived from each platform, were re-evaluated based on their functional relation to SLE-

associated gene or protein targets.

Network analysis

The transcription factors and the microRNAs (miRNAs) that regulate the expression of the
statistically significant, differentially expressed protein-coding genes were identified using
the databases TRRUST and miRWalk, respectively. The drug-protein interactions were
retrieved from the DGIdb database. Networks were constructed using the igraph package and

their visualizations using the ggraph and qgraph packages in R [23, 24].
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Results

The SLE monocyte gene signature can be utilized to predict potential drug repurposing

To propose existing FDA-approved or investigational compounds that might serve as novel
monocyte-targeted therapies in SLE, we sought to identify compounds with potency to
reverse the monocyte gene expression profile. Differentially expressed genes (DEGs)
(absolute Fold Change > 1.5, P-value < 0.01) of monocytes between SLE patients and healthy
individuals defined the monocyte-specific signature (Supplementary Table 1). Using iLINCS,
CLUE and L1000CDS? platforms, the top 50 compounds that were predicted to counteract
the SLE monocyte-specific gene signature most efficiently - according to their inhibitory
scores - were identified (Supplementary Table 2-4).

Our analysis indicated several p38 MAP kinase inhibitors, such as the “L-skepinone” [25], as
a potential novel strategy of tuning monocytes in SLE. Additionally, the mTOR inhibitor
“sirolimus” [26], as well as the calcineurin inhibitor “tacrolimus” [27], were recognized as
potent modulators of the lupus monocyte gene signature. In line with studies underlying the
crucial role of NF-kB in the survival and activation of monocytes [28], NF-«kB pathway
inhibitors, such as the compound “parthenolide” [29,30], were predicted to reverse the SLE
monocyte gene signature, whereas agents targeting the SLE-related Pim-1/NFATc1/NLRP3
signaling axis [31] might also represent promising therapeutic approaches. The sphingosine-1
phosphate receptor modulator “fingolimod”, which has shown possible efficacy in
neuropsychiatric lupus manifestations in the MRL/[pr lupus mouse model [32], might
therapeutically interfere with the monocyte-mediated orchestration of immune responses in
SLE.

Finally, common compounds reversing the monocyte gene signature were identified by the
three different platforms (Figure 1): the heat shock protein 90 inhibitors “geldanamycin” and
“NVP-AUY922”, the Insulin-like growth factor 1 receptor (IGF-1R) inhibitor “BMS-
536924”, the BCR-ABL and Src family tyrosine kinase receptor inhibitor “dasatinib” and the
Cyclin-Dependent Kinase 9 inhibitor “alvocidib”, suggesting they could be further tested as

agents reversing the pathological molecular phenotype of monocytes in SLE.

Gene interaction network analysis as a guide for drug repurposing
Next, we sought to propose compounds that modulate the expression of multiple targets in
the gene regulatory network of SLE monocytes. To this end, the transcription factors that

regulate the transcriptional landscape of monocytes in SLE were retrieved from the TRRUST
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database (Supplementary Table 5). To reveal post-transcriptional regulators, the miRNAs that
could regulate the gene expression profile of SLE monocytes were yielded using the
miRWalk database (Supplementary Table 6). Thus, a comprehensive miRNA-gene
interaction network - inferred using the monocyte gene signature, transcription factors and
miRNAs - was constructed (Figure 2). Topological analysis of the constructed network
uncovered a high degree of interconnectivity of genes encoding the proinflammatory
mediators IL6 and ILIP. In line with studies underscoring the pivotal contribution of
monocytes as IFN-producing cells in SLE, genes linked to type I IFN pathway, such as /RF7,
IFIT3, as well as the transcription factor STATI emerged as hub nodes [33]. Top-ranked hub
miRNAs included the miR-124-3p, which has been found significantly upregulated in
peripheral blood mononuclear cells and serum from SLE patients [34], as well as several
miRNAs, with still largely unknown function in the context of SLE, such as miR-24-3p, miR-
302c¢-3p and miR-302d-3p.

To identify agents with potentially unrecognized efficacy in SLE, we next determined drugs
targeting hub genes of the miRNA-gene interaction network. Using the DGIdb database, a
detailed drug-gene interaction network was constructed (Figure 3A, Supplementary Table 7),
revealing the anti-IL-12/IL-23 antibody ‘“ustekinumab” and the epidermal growth factor
receptor (EGFR) inhibitor “cetuximab”. Interestingly, the recombinant human TNF receptor
Fc fusion protein “etanercept” as well as the chimeric monoclonal anti-TNFa antibody
“infliximab” were identified as highly interconnected nodes.

Considering the extensive alterations of transcriptional regulation in SLE monocytes, we
additionally constructed the drug-transcription factor interaction network (Figure 3B). The
proteasome inhibitor “bortezomib” was yielded as potential drug candidate, whereas several
natural compounds and plant extracts, such as “resveratrol”, “quercetin” and “curcumin”
might efficiently modulate the activity of the dysregulated transcription factors in SLE

monocytes [35-39].

Discussion

Herein, we applied a transcriptome-reversal combined with a network-based drug
repurposing approach to identify novel compounds which might represent putative
therapeutic options in SLE, through targeting transcriptional disturbances of monocytes.
Using high-throughput drug repurposing tools, we identified agents predictive of reversing
the molecular aberrations of SLE monocytes. By employing a gene network-based analysis,

we propose agents to target essential regulators of the monocyte transcriptional landscape.
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Several in silico drug repurposing studies have deployed whole blood gene expression
profiling to suggest tailored SLE treatment choices [14, 40]. In view of the central role of
monocytes in several aspects of SLE pathogenesis [1], it is tempting to speculate that the
targeted therapeutic manipulation of monocytes in SLE might improve clinical outcomes and
minimize side effects. To this end, we performed a monocyte-specific drug repurposing
analysis in the context of SLE. The inhibitor of the serine/threonine kinase Pim-1 “SGI-1776”
was identified as a promising monocyte targeted therapy, corroborating experimental data
which suggest that inhibition of the Pim-1/NFATc1/NLRP3 pathway ameliorates nephritis in
lupus mouse models [31]. Despite the recently published phase 3 trial [42, 43], our findings
indicate that the IL12/IL23 inhibitor ustekinumab may efficiently disrupt the molecular
interaction network of monocytes and therefore some patients might indeed benefit from this
drug.

Previous in vitro and in vivo data support the notion that HSP90 might represent a potential
drug target in SLE [44-46]. Interestingly, HSP90 facilitates the TLR7/9-mediated nucleic
acid recognition in SLE, therefore promoting IFN-o production from plasmacytoid dendritic
cells [44]. To this end, the potential therapeutic application of the HSP90 inhibitor,
geldanamycin, revealed by our analysis could merit further clinical investigation.

Complete understanding of miRNA regulation in SLE still remains elusive. Herein, we
detected novel miRNAs, which might possess regulatory properties in the gene network of
SLE monocytes. Given that each miRNA could concurrently influence multiple effectors of
pathways, targeting the dysregulated miRNAs may also show promise for the future
treatment of SLE. Accordingly, therapeutic modulation of the highly interconnected miR-
124-3p, which has been designated as predictor of remission in SLE [34], might shed new
insights into SLE treatment.

Our study has certain limitations, related to the function and topology of the cell subset and
the methods used. Tissue macrophage compartment in steady state is mainly derived from
embryonic precursors and actively contributes to maintenance of tissue homeostasis and
resolution of inflammation [41]. Therefore, targeted pharmacological manipulation of tissue
resident macrophage populations that might be driving pathology in SLE needs to be
evaluated. In addition, our analysis is a computational approach and further experimental and
clinical investigation is required to validate our findings.

In summary, using two independent computational system biology approaches, we identified

novel compounds that are predicted to restore the function of monocytes in SLE. The
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therapeutic implications of our findings need to be further defined in animal models of SLE

models and then tested in clinical trials.

Figures

[ 2194

Geldanamycin (Heat Shock Protein-90 inhibitor)
NVP-AUY922 (Heat Shock Protein-90 inhibitor)

Alvocidib (CDKS9 kinase inhibitor)

BMS-536924 (IGF-1 Receptor kinase inhibitor)

Dasatinib (BCR-ABL and Src family tyrosine kinase inhibitor)

Figure 1. Venn diagram demonstrating the common compounds identified by the three

different drug repurposing platforms, iLINCS, CLUE and L1000CDS?.
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Figure 2. Interaction network integrating the protein coding differentially expressed genes
(DEGs) identified by the differential expression analysis of the monocytes from SLE patients
versus healthy individuals, the transcription factors identified to regulate their expression and
the miRNAs that are associated with them. Only nodes with degree >3 were depicted. Genes
encoding the interleukins IL6, IL1b as well as genes implicated in the JAK/STAT pathway

were among the most highly interconnected nodes.
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Figure 3A. Interaction network combining the protein coding differentially expressed genes
(DEGs), the transcription factors and the miRNAs as defined in Figure 2 and the drugs that
are predicted to interact with the DEGs, according to the DGIdb database. Nodes with degree
> 2 were included in the network on the right side of the graph. From the nodes included in
the network on the right side of the graph, we selected the DEGs, transcription factors and
miRNAs with degree > 10, as depicted in the network on the left side of the graph. Among
others, the monoclonal antibodies targeting the IL12/IL23 as well as the TNF pathways were
identified.
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Figure 3B. Interaction network showing the transcription factors that regulate the expression
of the monocyte gene signature in SLE and the compounds that interfere with their function.
Only nodes with degree > 2 were demonstrated. The proteasome inhibitor bortezomib as well

as several natural products emerged as potential drug candidates.
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Discussion

SLE is heterogenous, multisystem autoimmune disease with paroxysmal and largely
nonlinear disease course. Although the prognosis and the survival of SLE patients have been
dramatically improved over the last decades, management of SLE still remains far from
optimal. To this end, integration of personalized medicine into clinical practice could advance
research endeavors and yield remarkable progress in treatment of SLE patients. In this study,
we employed a robust molecular taxonomy strategy in order to re-stratify patients with SLE
based on their whole blood transcriptional fingerprints. Leveraging the molecular endotypes
determined by the co-expression network analysis, we established an in-silico drug prediction
pipeline to select compounds tailored to each group’s molecular portraits. To identify novel,
potentially beneficial therapeutic agents, that could restore the whole blood molecular
disturbances of SLE patients, we also applied a transcriptome-reversal drug repurposing
strategy. Finally, considering the instrumental role of the monocytes in the development of
SLE, we employed a combined transcriptome-reversal and network-based drug repurposing
strategy in order to propose patented compounds, that might efficiently target multiple genes

of the transcriptional landscape of the SLE monocytes.

The heterogeneity of SLE confounds the diagnosis and the treatment of the disease.
Specifically, the clinical and molecular diversity of the disease often accounts for the great
variability in response to treatment, hindering effective drug development in SLE. Many
transcriptional studies in the last few years have focused on the data-driven stratification of
the SLE patients, to guide precision care and inform clinical trial design. For example, type I
IFN [22], granulopoiesis-related [21], as well as CD8+ T cell exhaustion gene expression
signatures [71] could define SLE endotypes according to disease susceptibility, activity, and
severity, while machine learning-based approaches, leveraging gene expression data could
predict SLE disease activity with 70% accuracy [72]. In the same context, a longitudinal
analysis of a well-characterized paediatric cohort of patients with SLE identified the
functionally annotated molecular endotypes: plasmablast, type I IFN response,
neutrophil/myeloid cell, and lymphocyte [23]. Additionally, single-cell transcriptomic
analyses of renal, skin biopsies, blood and urine from LN patients resolved differential
cellular responses and provided novel insights into pathophysiological mechanism underlying

SLE at tissue level [73-75].
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Herein, we re-stratified the SLE patients, using one of the largest, single-center RNA
sequencing cohorts, including rich phenotyping data. Notably, our taxonomy strategy
recapitulated the whole spectrum of pathophysiological features underlying SLE. For
example, gene expression signatures indicative of neutrophil activation and degranulation
defined the patient group 4, which included almost uniformly patients with active LN,
corroborating experimental data suggesting that progression to active lupus nephritis is
accompanied by an incremental enrichment of neutrophilic gene expression signatures [23].
Importantly, contrary to previous studies, the scope of our study was not limited in the
molecular taxonomy in SLE, but rather included a signature-based drug prediction analysis.
Specifically, exploiting the drug signature databases of iLINCS, we proposed endotype-

tailored therapeutic options from a pool of currently available drugs.

With few notable exceptions, the novel insights into pathogenesis of SLE have failed to
translate into new therapies. Given the substantial costs, the existing limitations in SLE trial
design, the high attrition rates and the slow pace of drug discovery and development, re-
inventing approved or abandoned compounds by screening them for new indications has
emerged as an attractive proposition. Herein, using two robust, high-throughput platforms
(ILINCS and CLUE), we identified novel agents that could target the PI3K/Akt/mTORCI
and the JAK/STAT pathways and might represent potential endotype-specific drug
candidates. Since monocytes have been implicated as key players in the pathogenesis of SLE,
we additionally applied two independent computational system biology approaches to
propose agents that might reverse the transcriptional disturbances of SLE monocytes. In
accordance with previous studies indicating that pharmacological dampening of the Pim-
I/NFATc1/NLRP3 pathway ameliorates nephritis in lupus mouse models, our analysis
proposed the inhibitor of the serine/threonine kinase Pim-1 “SGI-1776” as a potential

monocyte targeted therapy in SLE.

Highly complex molecular stratification strategies do not undermine the importance of a
unifying, core gene expression signature, that could assist diagnosis in SLE. To this end,
Haynes et al. performed an integrated, multi-cohort meta-analysis of 7,471 samples from 40
independent, publicly available whole transcriptome SLE datasets [76]. A 93-gene signature,
consistent across diverse tissues and cell types, efficiently distinguished SLE from other
autoimmune or inflammatory diseases and correlated significantly with disease activity [76].

Herein, applying a comparative cross-tissue, cross-species, time-series analyses, we
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determined a LN specific gene signature, that might serve as a surrogate, non-invasive “liquid

biopsy” marker of kidney disease in patients with SLE.

Our study has several limitations. Firstly, the observational nature of our analysis, does not
allow the detection of predictors of flare. The majority of the patients included in our study
were receiving immunosuppressive agents, suggesting that treatment-induced transcriptional
alterations might have an impact on our results. Additionally, our study is a computational
approach, and further in vitro and in vivo studies are required to confirm our findings. In view
of the encouraging results of the phase III clinical trials BLISS-LN [18] and AURORA 1
[17], treatment landscape in LN is changing, with combination treatment regimens
challenging the sequential concept. Therefore, computational methods enabling systematic

in-silico screening of combinatorial treatments in SLE merit further investigation.

In conclusion, our personalized molecular taxonomy strategy classified SLE patients into five
molecular endotypes, based on their whole blood transcriptional disturbances. The stratified
transcriptomes predicted patient endotype specific drug candidates, targeting the dysregulated
gene expression profiles of the SLE patients. To propose novel, potentially beneficial agents,
we designed an in-silico, signature-based drug repurposing pipeline. Considering the
indispensable role of monocytes in the pathogenesis of SLE, we next employed two
independent drug repurposing approaches, to identify novel compounds that might restore the
transcriptional disturbances of these cells in SLE. Lastly, using a time-series, mouse kidney-
specific transcriptome analysis, we constructed a clinical-transcriptome predictive model, that

predicted patients that will develop LN.
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