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EuxapioTieg

Dd1avovtog avTodg 0 LaKPOYPOVIOG GTHYOG TNG OAOKANPMOTG TOL H1OAKTOPIKOL GTO TE-
Aog Tov Ba NBera VO EVYAPIOTHG® LE OAN LOL TNV KapdLd OAOVS TOVG AVOPMITOVE TOL
pe vootpi&av. Agv Nrov kKaBoAov e0Koho Ta&idl aALA giyo TOLG KAADTEPOLS GLUVO-

J01TOPOLG.

Apyd B n0eha va vyaplotnom Beppd v TPIIEAn emttponyy Lov, Tov kvpto Iava-
yiovt Néoto, v kopia Atapdvio Blayoyidvvn kot tov kOpto Nikolao Aarélio, yio
TNV VTOGTHPIEN, TIC 10EEC KoL TNV cvveyn kafodnynon mov tpocépepay. Oa el va
EVYOPIOTHOM WNTEPWG TOV eMPAETOVTA KaONyNTH KOpro [Havayidwn Ndoto yia v
Gp1otn cvvepyaciag pLag, Kobodnynon Kot Ty VTOsTHPIEN TOL GE OAN TNV SLAPKELD TNG

EKTOVNOTG TNG £PELVOG.

2m ovvéyela, Bo NBeda apyd vo T £vo PEYEAAO LYOPIOTO GTNV Kupio Alopdvim
Blayoyidvvn, mov pe v auépilotn Katovonon, vropovy Kot kabodnynon pe fondnoce
GTO VO LTTOPEGM VO PEPM E1G TEPAS TO GTOYO HOV, VO KAVOVUE APIOTEG OMNUOGLEVGELG
POV NTAV TAVTO, 1] GOUUOYOG LoV € KAOe TpoOTo Bertivong twv apBpwv mov tpoeToi-
palo kot va pov divel avtonenoidnon va cuveyilom 0tav TpokOITAY TPOPANUOTIGHOL.
Na gvyoaplotTiom PuoiKa kot Tov KOpto ABavacio Zeétco Oyt Lovo yia v kafodynon
K0l T GLUPBOVAEC TOV AAAG TTOL NTOV 1] KIVITIPLOG SVVOUT TG 10£0G KO TNG OmOPOoNG
pov vo EeKviom ddakToptkd. Oa NBeha va gvyaplotom Eex®PLoTA TOVS GLUVUOEA-
(POVG GTO EPYACTIPLO TOV ANUOKPITOL TOV EXOVV dNUOVPYNGEL VO, APLGTO EPYOCIOKO
epeuvnTikd mepiPdiiov. Duoikd va Eexwpiom tov KOplo Ztédo Kapdoln kot tov gvyo-
PLOT® TOAD, TOL pe TNV TOALTIUN Porfeta Tov pe EBare GTNV AOYIKT TOV TPOYPOLLLLLO-
TICHOV KOl TNG VIOAOYIGTIKNG UNXaviKNG (660 Ntav €PKTd), GTNV OAOKANP®OT| T®V
npocopolwcemv pe to WRF pe emituyia, kot rav tpddopog va culnticovpe 0,11 Tpo-
BAnpa mapovotalotav. Na gvyoapiomom emmAéov tov kOpto Niko 'odvapn ya éva
OTUOVTIKO SNULOVPYIKO OTEIKOVIGTIKO TUN LA TV amotelecudtov oto GIS, kabdg kot
tov kvpro ['avvn Kayopevdxn and v Akadnuio AOMvav yio ta elcaywykd Pripoto

GTOV TPOYPUUUATIGUO e TNV YADoGA R.

Special thanks to professors Rita Margarida Antunes de Paula Cardoso and Pedro Sua-
rez from Instituto Dom Luiz of the University de Lisbon, for providing the EC-EARTH
global models dataset and sharing their knowledge during my stay in Lisbon for the 15-
days training in climate simulation with WRF model. I would also like to thank them
for their guidance and their support during those years.

I would also like to kindly acknowledge the Greek Research and Technology Network
(GRNET) where this work was supported by computational time granted in the
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National High-Performance Computer (HPC) facility ARIS to perform the long-term
climate simulations using WRF model under projects ID HRCOG (pr004020) and
HRPOG (pr006028).

OloxAnpovovtag Bo O 1010TEPWS VAL EVYAPIGTHO® BEPILA TOVS YOVELG LOL Kol KV-
plog Tov ayommpévo pov ovluyo Mive kot v k6pm pov Katepiva mov v apépiot
KATOVON O™, VTOGTHPIEN KOl OLYATTT) TOVG GUVETEAEGAV CLVUTTOAOYIGTO GTNV OAOKANPMO)

OVTNG NG £PEVVOG.
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Abstract

During the last decades, Greece is experiencing an increasing number of various
extreme events such as heat waves, drought, wildfires and floods, with serious
environmental and socio-economic impacts, which could be attributed to climate
change due to global warming. Focusing on drought problem, several regions of Greece
are currently facing severe drought conditions that are affecting agriculture, putting
availability of water resources at risk and threatening agriculture production. As the
area of Greece is characterized by complex topography and climate variability, the
investigation of climate change impact assessment in the topic of drought, requires the
existence of historical and projected timeseries of meteorological variables, such as
precipitation and temperature at regional or local scales for different future scenarios.
In this thesis, the dynamical downscaling technique was selected to perform high
resolution climate change projections of drought over Greece, using the Weather
Research and Forecasting model (WRF). Historical and future simulations were
performed at a spatial resolution of 5 km, to produce downscaled datasets, aiming to
capture the complex topographical characteristics of this country. The WRF model was
driven by the global model EC-EARTH. However, it was important initially to
investigate the capability of the model, to reproduce the long-term climate
characteristics, in such a high resolution, for the historical period using reanalysis ERA-
Interim data. To obtain reliable historical climate simulations of high spatial resolution,
it was mandatory to investigate the WRF model’s performance through continuous
validation of sensitivity tests for short periods of time to select the optimal setup that
best capture the climate of Greece. Thus, a series of preliminary studies were
conducted, examining the effect of parent coarse domain resolution (European domain)
and seven different combinations of model parameterization schemes on high
resolution (5 km) (domain of Greece) and initialization times, on simulation ability
during different periods (1-year for 2002 and 5-years 2000-2004), encouraging further
evaluation for long historical climate study. Such an approach was computationally
intensive but provided valuable insights into the model's behavior and performance.
Although, none of the configurations performed clearly better than the others over the
study area, regarding surface variables, the key selection was influenced by the effect
of precipitation compared to observations provided by the Hellenic National
Meteorological Service (HNMS).
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Afterward, WRF optimal model configuration was applied for a long-term
climatological period driven by ERA-Interim reanalysis and EC-EARTH model, to
detect uncertainties associated with RCM or inherited by the GCM. Both WRF outputs
were used to quantify the 5 km resolution model performance in a detailed validation
effort at various spatial and temporal scales for the minimum and maximum
temperatures (TX and TN) and precipitation (PR). These meteorological variables are
commonly employed in climate model validation and are the primary parameters for
obtaining climate indices for climate assessment impact studies. Overall, the statistical
analysis of the results showed evidence of the capability of the WRF model to represent
the main characteristics of the climate of Greece, along with their extremes and the
climate indices of extremes. Furthermore, downscaled results highlighted the added
value of the downscaling methodology compared to reanalysis and global fields to

represent the climate characteristics of the study area.

Further to the evaluation of the model performance with reanalysis, high-resolution
dynamical downscaling was applied with WRF, driven by the global EC-EARTH for
two different future emission scenarios (RCP4.5 and RCP8.5) and two 25-year future
time slices (2025-2049 and 2075-2099). The downscaled results aimed to investigate
the climate change signal of the regional climate, regarding the mean minimum and
maximum temperatures and total precipitation as well as the projected changes on the
indices of extremes. The analysis was based on the delta-change approach (Hay et al.
2000), by comparing the future model output to the results of the historical reference
period. Model’s results projected a noticeable magnitude of warming regarding both
temperatures with the most pronounced changes up to 5°C mostly over the eastern parts
of the country (TX) and over the western part of the mainland, the lonian Islands, and
in some plains of central and northern mainland and southern Crete (TN) under the
RCP8.5 in the far future period. The climate change signal of precipitation revealed a
general decrease of the annual precipitation all over the eastern part of the country (with

islands included) with the most dramatic reductions (above 40%).

Then, the investigation of drought characteristics in Greece focused on predicted
changes in temperature and precipitation using appropriate indicators, which can
provide a comprehensive interpretation of drought events. For the determination of
spatial and temporal drought characteristics in terms of severity, intensity and duration,

model daily outputs datasets were converted to monthly values to compute two drought
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indices, the Standardized Precipitation Index (SPI) and the Standardized Precipitation
Evapotranspiration Index (SPEI) for the examined period and scenarios. The present
study indicated that Greece will face relatively severe drought conditions in the
upcoming years. It was found that the drought conditions will be more severe in the
lowland areas (plain areas), such as Thessaly, Crete, etc. where all the agricultural
activity takes place. This research also revealed a shift of drought in the western parts
of the country, by the end of the 21st century, under both scenarios. Moreover, owing
to the high spatial resolution used, substantial differences in drought characteristics
were found in future projections between areas, highly varying in temporal and spatial
terms under the two emission scenarios. It was deduced that the study of drought events
IS not a straightforward task for areas of complex topography that present climatic
variations and the corresponding spatial and temporal characteristics may depend on
the choice of the index. Within this context, the produced high resolution projected
changes of the present study can serve as a firm and reliable basis for climate change

impact assessments based on drought characteristics for the area of Greece.
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Iepiinyn

Tig tehevtaieg dexaetieg, N EALGSa Provel Evav av&ovopevo aptBpd dStoapdpwv akpaiov
YEYOVOT®V, OTMC KOLOTA KaOGmva, Enpacio, TupKoylEs Kot TANUUOPES, LE OTUAVTIKEG
TEPPOAOVTIKEG KOl KOWVOVIKOOIKOVOMIKES EMIATAOCES, 7oL Oo umopodoav va
amod0oBovv otV KApatikn aAloyn Adym g vrepOéppavon tov mhavit. Eotidlovrog
010 TpOPANUa ¢ Enpaciog, apketég meployés e EAAGOaG avtipetonilovy onuepa
coPapéc ovvinkec Enpacioc mov emnpealovv ) yewpyia, Bétoviag oe Kivouvo
SfecIUOTNTO TOV VOATIVOV TOP®V KO ATEIMDOVTAG TN YEOPYIKN TAPAY®YN KaOMG Kot
dAhovg topeic. Kobmg m meproyn g EAAGSag yapaxtnpiletar amd moAdmAokn
TomoYpaPio Kot HeTABANTOTNTO TOL KAILATOG, 1) SIEPELYNON TG EKTIUNONG EMTTOCEMV
™G KMUOTIKNG aAlayng oto Bépa g Enpaciag amottel v Vmapén 16TOPIKAOV Kot
TPOPAETOUEVOV YPOVOGEIPDOY UETEMPOLOYIKOV UETOPANTOV, OT®G PpoxdnTmon Kot
Oepuokpaocieg oe Tomikn KAILOKO Y10 OlPOPETIKG LEAAOVTIKA GeVapLo. e VT TNV
SwtpPn, emAéyOnke N tEXVIKN SVVOUIKNG VITOKAIUAK®OONS Ylo. TNV EKTIUNGN T®V
HEALOVTIKAOV 0ALOY®V NG Enpaciog oe VYNAN avOALGT GTNV EVAAMTN TEPLOYN TNG
EAMAGOag, ypnoyomoidviag 1o povtédo ‘Epevvog wor [IpoPreyng Kopov (WRF,
Weather Research and Forecasting). Tw tv mopayoyn  dedopévov,
TpaypotortomOnkay Aowmov, 16TOPIKEG KOl UEALOVTIKEG TPOCOUOUDCELS OpLLOVTIOG
YOPIKNG avaivong 5 kKm mpokeiuévouv vo amotun®bodv to TOAITAOK TOTOYPUPIKE.
YOPOKTNPOTIKE avthg ™G Yopas. To povtého WRF, mov ypnoyomomOnke g
TEPLOYIKO KAMPOTIKO LOVTELD TPOPodoTHONKE amd To TaykOGo poviého EC-EARTH.
Qot6060, apywkd Mrav onuovtikd vo depevvndel 1 KavoéTTO TOL HOVIEAOL VO
avVoTapAyEL TO LOKPOTPODEGLOL YOPAKTIPLOTIKA TOV KAIpaTOC, oty avdivon 5 km, yia
™V 16T0pIKN TEPi0d0 Ypnoponoimdvtag dedopéva emavavirvong (Reanalysis) ERA-
Interim. o v amoKTon 0EIOTIGTOV IGTOPIKOV KAUOTIKOV TPOGOUOLDGEDY VYNANG
YOPIKNG avdAivong, dlepevviOnke n amddoon tov povrédov WRF péow ouvveyovg
EMKVPMOONG OOKIU®V gVOICONGIOG Yoo CUVTOUO YPOVIKO OAGTNUA, TPOKEEVOL VO
emheyOel  PEATIOTN pLOIOT OV amOTLTTAOVEL KOAVTEPQ TO KAipa TG EALGdac. Etot,
SeENYON Lo GEPA TPOKATAPKTIKDOV LEAETAV, TOV £EETOCAY TNV EXIOPOCT TOL APYIKOV
nediov  (Evpomaikd medio) kol enTA  SIUPOPETIKOV  GLVOLACUAOV  GYNUATOV
TOPAUETPOTTOINCTG HOVTEA®Y o LYNAN avaivorn (5 km) (topéag EAAGSOC) at
SPOPETIKOVS YPOVOLG OPYIKOTOINGNG, OTNV IKOVOTNTO TPOGOUOINCNG KALOTIKMV

TAPOUETPOV, Katd TN Sidpketa dtapopetikég meptddovg (1 €rog yia to 2002 kon Setia
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2000-2004). Mo tétolo. TPOGEYYISoT MTAV VTOAOYIOTIKO EVIOTIKY, OAAG Topeiye
TOAVTIEG TANPOPOPIEG VIO TN OCULUTEPIPOPE Kol TNV OmOO0GT TOL UOVIEAOV,
evBappHvovTog TEPAUTEP® AELOAOYNON Y10 LOKPOYPOVIO IGTOPIKT| LEAET TOV KAILOITOC.
[Topdro mov Kapio amd TG SIUHOPPADGELS OEV AMESWTE GUPADS KAADTEPQ ATO TIC AAAES
TNV TEPLOYN UEAETNG, OGOV aPOPA TIC LETAPANTEG TG EMPAVELNG, N Pacikn emhoyn
TOPOLUETPOTOMNGNG TOV HOVTIEAOL EMNPEBOTNKE KUPIOC amd TNV emidpacn g
Bpoyomtwong oe oOykplon pe TG mopatnpnoelg g EBvikng Metewporoyikng
Ymnpeoiog (EMY).

2t ovvéyewn, 1 Stopopewon tov PBédtiotov poviédov WRF epapudotnke yuo pio
poakpompdbeoun Kipatoroykny mepiodo mov kabodnyeitan and v ERA-Interim
reanalysis kot to povtého EC-EARTH, yia T cLyKEKPEVT YEQYPOUPIKY TEPLOYN, Y10
Tov evtomio o afefatotntmv mov oyetiCovror pe 1o RCM 1 mov kKAnpovoundnkay amd
10 GCM. Ta oamoteréopota tov WRF tov 600 16T0pIKOV TPOGOLOIDGEWYV,
YPNOUOTOONKOV Y10 TV TOCOTIKOTOINGT TNG EXIO0GNG TOL HOVTELOV avdAvenG 5 Km
o€ o Aemtopepn] mpoomddeln emaAnbevong o€ S1APOpPEG YWPIKEG KOl YPOVIKES
KMpokeg tov eldyotov ko péyiotov Bepuokpaciov (TX woar TN) kot g
Bpoyomtwong (PR). Avtég ot HeTempPOAOYIKES HETAPANTEG ¥PNOLOTOLOVVTOL GLVIBWG
oTNV ETOANOELOT TOV KMUOTIKOD HOVTEAOL Ko Elval o1 KOPIEG TAPAUETPOL Y10 T Ay
KMUOTIKOV OEIKTMV Y10 LEAETEG EKTIUNONG EMITTAOGE®V TOV KAILOTOC. XVUVOMKA, M
OTOTIOTIKY] OVOAVOT) TOV OMOTEAEGLATOV £0€1EE TNV KavOTNTA TOV poviédov WRF va
OVOTOPUGTIGEL TO KOPLOL YOPOUKTNPLOTIKA TOL KA{poTog g EAAGSaG, Tig akpaieg TS
TOVG KOl TOVG KAMUOTIKOVG Ogikteg Tov akpaiwv. EmumAéov, ta vyning avaivong
anoteAéopato tOVicay v cuuPoAn kot v mpootiféuevn aéia g pebodoroyiog
SUVOLIKNG VTOKAMUAK®OONG € GUYKPION HLE TO OPYIKE OEOUEVO TOV TOYKOGHIOL
povtélov reanalysis yio v avomopacoTocT) TOV KAUATIKOV YOPAKTNPIGTIKOV TNG

TEPLOYNG HLEAETNC.

[Mepartépw ™G a&oldynong g enidoong tov povtédov pe reanalysis, epoppoctnie
SUVOIKT VTOKAMPUAK®OOT VYNANG avdivong pe xpnon tov WRF, pe apywés ko
mAevpikéc ouvinkec amd to maykosuo EC-EARTH yo 600 dtopopetikd peAloviikd
oevapio eknoundv (RCP4.5 ko RCP8.5) kat 600 pelhovtikd ypovikd tufpoto 25 etmv
(20252049 kot 2075-2099). Ta vynANG avaAvoNG OTOTEAEGUATO OTOCKOTOVGAV GTN
JlEPELYNON TNG KALLATIKNG OVOUOATNG BOCIKOV KAMUOTIKOV TAPOUETPOV, OTMOC glval

Ol HECEG EMOYLOKEG KOl ETNOLEC EAAYIOTEG Kol UEYIOTES OEPUOKPACIES, 1| GUVOAIKN
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Bpoyxodmtwon Kabdg kot ot TPoPAETOUEVEG AAMAYEC OGOV QPOPA OTOVG OEIKTEC TV
akpoiov Tiudv. H oavdivon Pociommke oty mpocéyyion petafoing oéita,
OLYKPIVOVTOG TO ATOTEAEGUOTO TOV UEAAOVTIIKOD LOVTEAOV LE TO, ATOTEAEGHOTO, TNG
IGTOPIKNG TEPLOdOV avapopds. Ta omoteAéopota tov HoviéAov TpoéPfreyov Eva
a&oonueionto péyebog Bépuavong kol otig dVo OepuoKpOcies e TIG MO EVIOVEC
aAayég €mg kot 5°C kupiog ota avatolkd tunpata e xopos (TX) Kot 6to duTikd
TULOL TNG NTEPOTIKNG XOPOS, T [6via vold Kot o€ 0piopéveg Tedlddeg KEVIPIKN Kot
Bopera nrepotikn kKo votio Kpnn (TN) oto mhaicio tov RCP8.5 610 pakpivd pédiov.
H petafoin tov Bpoyontdcewv 6to HEALOV AOY® KAMUOTIKNG OAAAYNG, ATOKAALYE
YEVIKN PLeloN TG €TNGLOS PPOYOTTOONG LLE TIC O OPOUATIKES HEWDGELS (TAve amd

40%), o€ OAN TNV OVATOAIKT TTEPLOYN TNG XDPOS (KoL TOV VIGLDV).

21 ovvéxew, M OlEPELVNON TOV YUPOUKTNPOTIKOV NG Enpaciag oty EAAGOQ,
emKeVTpOONKe oTIc TpoPAendpeveg aAlayég tng Beprokpaciog Kot TG PPoyOnT®ong
LLE TNV PN ON KATOAANA®V OEIKTMOV, OL OTTOIEC UTOPOVV VO TOPEYOVV L0 OLOKATPOUEVN
epunveia tov yeyovotomv &npaciag. I'io ToV TPOcdopIoHd TOV YOPUKTNPIOTIKMV
Enpociag mov meprypdpovtal and tn coPapdtnTa, TNV £VTaoT Kol T JlIpPKELD, To
NUEPNGLO SEGOUEVO TOV TPOCOUOIDCEDMY UETATPATNKOV GE UNVIOIES TIHEG YO TOV
vroAoyloud dVo dektmv Enpaciac, Tov Standardized Precipitation Index (SPI) kot tov
Standardized Precipitation Evapotranspiration Index. (SPEIl) yw tig e€etaldpevec
TEPLOOOVS Kot To. oevapla. [evikotepa, n mapovoa perétn £6eiée 61t 1 EAAGoa O
AVTILETOTIGEL GYETIKA coPapéc cuvOnKes Enpaciag ta endueva ypodvia. Alamotdonke
ot o1 ovuvnkeg Enpaciog Ba etvar o Evtoveg oTIC TESIVES TEPLOYES, OIS 1| OecGaAi,
n Kpnn kA, 6mov Aapfavel ydpa 1 HEY1ot aypoTikni dpactnpiotnta. Avti n €pevva
ATOKAALYE EMIONG Lo LETATOTIOT TS ENPAGiag 0TI SVTIKEG TEPLOYES TNG YDPOGS, HEXPL
10 T€A0g ToV 210V aidva, Kot oto 000 cevdpro. EmmAéov, Adym ™G vymAng Y®pikng
avéAlvong mov ypnoyoromonke, BpEdnkoyv oNUOVTIKEG SPOPES GTA XAUPUKTNPICTIKA
mg Enpoaciog oto péEAAOV, peTalld meploydv, mov TowiAAovv o€ peydAo Pabuod
YOPOYPOVIKA 6T OVO GEVAPLO EKTOUTMV. ZOUTEPAGUOTIKG, 1) LEAETT] TOV YEYOVOT®V
Enpooiag dev elvan o amdn epyocio, €WK Yoo TEPLOYEG TOV AOY® TOAVTAOK®V
TOTOYPOUPIKADV YOPAKTNPIOTIK®OV ToPOLGLALOVV KAIHOTIKES SIOKVILAVGELS Ko Gpol TaL
AVTIOTOT(O YWPOYPOVIKA YAPOKTNPLOTIKA TOVG Pmopel vo eEapTdVTOL 0d TNV ETIAOYT
TOV O&lKTN. XT0 TAOIG10 AVTO, 01 LEAAOVTIKES OAAAYEG VYNANG XWOPIKNG OVAAVOTG TTOV

napNyOnoav oty mapovoo SatpiPr), HUTopodv va ¥PNoUENCOVV ¢ oTabEp] Kot
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a&omiotn Paom 0EG0UEVOV YO TIG EKTIUNGELS EMITTOCEDV TNG KAMUATIKNG OAAOYNG LE

Baon ta yopaknploTikd g Enpaciag yio v meproyn e EALGdag.
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Chapter 1 Introduction

This chapter provides a brief overview of the background of climate modelling in
the context of global climate warming with the evolution of global and regional models
and the benefit of the use of high resolution up to nowadays. Our discussion includes
previous research and its limitations on how climate change generally affects the Euro-
Mediterranean region and especially the area of Greece focusing on the study of
drought. Through the historical review, the need for accurate historical and future
climate simulations was highlight at sufficiently high resolution to estimate spatially
and in more detail the projective changes of drought and its characteristics in the entire
Greek area, which is characterized by complex topography. This effort has never been
done before for the whole country in the high resolution of 5 km and is very important
for the development of adequate mitigation and adaptation strategies for water
management. The deployment of water management strategies is imperative to improve
the resilience of society and avoid water scarcity problems, which can cause
considerable impacts on the local population well-being and agricultural crops and

yields.

1.1 Climate models

General circulation models (GCMs) are the primary numerical tools nowadays to
simulate large-scale properties, for the investigation of the response of the climate
system to climate change perturbations. On the other hand, the understanding of local
effects and their impacts can be directly studied through regional climate models
(RCMs), which are able to capture physically consistent regional and local circulations
(Leung et al. 2003; Wang et al. 2004; Laprise 2008).

GCMs can be used by climate scientists to study the physical mechanisms of climate,
and how these mechanisms are modified due to the increased emissions of Green House
Gases (GHG) and pollutants, and other changes in the Earth system like changes in land
use, causing the observed climate changes. GCMs are also used extensively for the
simulation of future climate projections since the industrial revolution, in view of global
climate change for the application of mitigation and adaptation measures. One of the

main goals for their use is to study the climatic impacts through extensive
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intercomparison exercises. Thus, successive CMIP (Coupled Model Intercomparison
Project) initiatives based on GCMs have been able to provide large ensembles that
showed some consistent signals over the European region (Cattiaux et al. 2013;
Basharin et al. 2015). CMIP3 simulations have preceded with an average grid mesh
larger than 2.5° and adopted the Special Report on Emissions Scenarios (SRES)
(Nakicenovic et al. 2000), while the CMIP5 (Lionello and Scarascia 2018) simulations
employed grids with approximately twice finer resolution than in CMIP3 under
different Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011)
adopted by the IPCC fifth Assessment Report (AR5) in 2014. The new generation of
Earth system models provides the opportunity to assess the latest ensemble (CMIP6)
that underpins the 6th Intergovernmental Panel on Climate Change, with much higher
climate sensitivity e.g. (Forster et al. 2019) related to the improved representation of
clouds and changes in the model physics (Zelinka et al. 2020) following the combined
pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration
Pathway (RCP) on climate projections.

However, the coarse resolution of these models of approximately 80 to 300 km
prevents detailed analysis of climate change at regional and local scales, such as
changes in climate extremes, water resources, and various other elements crucial for
future planning (Gutowski Jr et al. 2020). According to (EI-Samra et al. 2018) a number
of physical mechanisms (e.g. convection, clouds and precipitation, heterogeneity of
surface fluxes, and planetary boundary layer (PBL) turbulence) are not accurately
represented in the GCMs for the simulation of physically consistent regional and local
circulations, particularly for the regions characterized by complex topographical
features due to the rather coarse spatial resolution e.g., (Henderson-Sellers et al. 1995;
Déqué et al. 2007; Jacob et al. 2014; White et al. 2018; Vergara-Temprado et al. 2020).
Comprehensive analysis of regional impacts, therefore, requires higher-resolution
climate variables that cannot be obtained directly from coarse-resolution models. In
addition, the anthropogenically-induced regional atmospheric circulation changes are
not easy to detect using global simulations due to high internal variability and low
signal-to-noise ratio (Palmer 2013; Horton et al. 2015; Zhou et al. 2020). Thus, the
human-induced dynamic contribution to regional extremes should be assessed by
enhancing regional signals using a regional atmospheric model. In late years,
downscaling methodologies, such as dynamical downscaling using a regional climate

model (RCM), have been proposed to produce the high-resolution climate variables that

40



are much needed. A recent study on the biases of the GCMs and RCMs indicated that
RCMs could help to systematically reduce the biases of the driving GCMs (Serland et
al. 2018). According to Ke et al. (2013), RCMs with high spatial resolution: (1) resolve
better physical processes of regional, mesoscale and local scale circulation effects
(surface fluxes, breezes, convection, and heavy precipitation) and (2) improve the
representation of surface characteristics and their spatial variability in case of the
complex topography of the region with mountainous features and rough coastlines.
Additionally, the increase in spatial resolution of RCM simulations over the last
decades has resulted in the comprehension of regional climate processes including
important ensemble assessments of climate change effects over Europe. Past projects
such as the European project Prediction of Regional Scenarios and Uncertainties for
Defining European Climate change risks and Effects (PRUDENCE) (Christensen and
Christensen 2007; Christensen et al. 2007); and ENSEMBLES (Hewitt 2005) provided
regional climate simulations for the region of Europe at rather high resolutions of about
50 km and 25 km, respectively. More recently, through the international CORDEX
(Coordinated Regional Climate Downscaling Experiment) initiative, which is a
program sponsored by the World Climate Research Program (WRCP) to organize an
internationally coordinated framework to produce improved regional climate change
projections for all land regions worldwide, the EURO-CORDEX (Jacob et al. 2014;
Dosio 2016; Vautard et al. 2021) (http://www.euro-cordex.net/), and MED-CORDEX
(Ruti et al. 2016; Colmet-Daage et al. 2018) multi-model ensemble projects have been
enhanced as part of the European Copernicus Climate Change Service (C3S), resulting
in a high-resolution ensemble of unprecedented size produced higher resolution climate
studies of about 12,5 km (0.11°). The latter two, through some meticulous studies on
the benefits of increased spatial resolution in model skills of RCMs, have significantly
contributed toward our understanding of regional climate processes and their response
to climate change (Knist et al. 2016; Bartok et al. 2017; Cavicchia et al. 2018; Colmet-
Daage et al. 2018; Lhotka et al. 2018; Coppola et al. 2020; Jacob et al. 2020). CORDEX
program used the output of global simulations with RCMs from CMIP5, however,
projections of the latest global CMIP6 phase simulations with RCMs remain

unavailable at high spatial resolution.
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1.1.1 Added value of high resolution.

Regions for which RCM nesting is expected to provide substantial added value are
areas characterized by complex topographical features varying at scales smaller than
the resolution of GCMs. EURO-CORDEX experiments also included the evaluation of
regional models, in which the lateral boundary forcing for the RCMs, was provided by
ERA-Interim reanalysis data (Berrisford et al. 2009; Dee et al. 2011), from the
European Centre for Medium Range Forecasts (ECMWF) and the National Centers for
Environmental Prediction, NCEP/NCAR, (Kalnay et al. 1996). The added value of the
0.11° models becomes even more obvious by better representing surface characteristics
(e.g., orography and coastlines) and by more accurately solving the equations of motion
(Prein et al. 2016). Statistical analysis of different daily precipitation indices in
ensembles of Med-CORDEX and EURO-CORDEX experiments reported that 0.11°
simulations show remarkable performance in reproducing the spatial patterns and
seasonal cycle of mean precipitation over all regions, with a consistent and marked
improvement compared to the 0.44° resolution ensemble and the ERA-Interim
reanalysis (Prein et al. 2016; Fantini et al. 2018). In terms of sub-daily scales of a subset
of the EUROCORDEX 0.11° ensemble, (Berg et al. 2019) showed that the spatial
patterns over Germany were reproduced at least partly at a 12 h duration but not for
shorter periods. Yet, in a systematic analysis of climate classifications with GCMs and
RCMs, Tapiador et al. (2019) concluded that “the modeling of precipitation remains
the Achilles’ heel of models and thus of multidimensional indices, which are very
sensitive to this variable”. However, a high RCM resolution can help reduce model
uncertainties, better represent topographic effects, and improve precipitation
simulations (Sylla et al. 2010; Cardoso et al. 2013b; Warrach-Sagi et al. 2013; Warscher
etal. 2019; Tian et al. 2020) . In addition, due to their enhanced spatial resolution, they
are expected to provide added value in the simulation of the frequency distribution of
weather events and extremes (Torma et al., 2015). According to Expdsito et al. (2015),
this fact is especially relevant in climate studies on islands with a complex orography,
where regional models should have a resolution of a few kilometers (Zhang et al. 2009,
2012). For example, Pérez et al. (2014) showed that for the Canary Islands, the model
resolution should be of at least 5 km resolution to reproduce the observed geographical

distribution of temperature and, particularly, of precipitation.
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Moreover, several studies reported an improvement in simulated climate variables
through the use of high-resolution modeling, such as rainfall amount (Jung 2006;
Vigaud et al. 2012; Berg et al. 2013; Prein et al. 2013; Wagner et al. 2013), and
precipitation intensity (Frei et al. 2003; Boberg et al. 2010). Olsson et al. 2015 found
that using a high resolution (6 km) RCM (RCA3), low-frequency sub-daily extremes
were in good agreement with the values found in point observations in Sweden. A
similar study for Denmark revealed that RCM simulations at higher spatial resolution
(8 km and 12 km) represent extreme precipitation events better and future projections
depend on the combination of GCM-RCM, the spatial resolution and the temporal
aggregation (Sunyer et al. 2017). Nevertheless, for local scales where the climate is
mainly controlled by large-scale external features, the increase in spatial resolution of
the RCMs does not improve the simulated results (Giorgi and Gutowski 2015; Pieri et
al. 2015). Consequently, the technique of dynamical downscaling constitutes one of the
main tools to produce high-resolution climate variables from global simulations, using

regional climate models.

1.1.2 Climate change signal in Euro-Mediterranean region

Large parts of Europe, including the region of the Mediterranean basin, are
particularly responsive to global climate change (Giorgi 2006). The Mediterranean
Basin, located in a transition zone between mid-latitude and subtropical atmospheric
circulation regimes, with large topographic gradients, is very sensitive to changes in the
global mean climate state. In this context, previous IPCC reports have shown that the
Mediterranean region faces a number of climate risks, specially included in the
literature published since AR5, such as heat waves, droughts, desertification, wildfire,
soil and coastal erosion, and flooding (IPCC 2022). According to this latest report, over
the last decades, mean surface temperature has increased more rapidly in the
Mediterranean region than the global mean, and temperature extremes (heat waves,
peak temperatures) have increased (high confidence). Moreover, although observed
trends of precipitation are generally negative (low confidence) and vary strongly
between regions and for different seasons, droughts have become more frequent.
Recently, the global average temperature has been rising and is projected to increase up

to around 2°-5°C by the end of the twenty-first century based on different emissions
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scenarios and socio-economic pathways (Shared Socioeconomic Pathways, SSP)
(European Environment Information and Observation Network (Eionet) 2022).

Research studies based on the physical processes related to projecting future changes
(Giorgi and Lionello 2008; Mariotti and Dell’Aquila 2012; Barcikowska et al. 2018;
Lionello and Scarascia 2018) found that the important factors that influence the
response of the future regional atmospheric circulation and are responsible for the effect
of global warming are the increase of barotropic sea-level pressure (with NAO climate
variability) and geopotential height at the 500 hPa level in the central Mediterranean,
along with the thermal inertia of the large water mass of the Mediterranean Sea among
continents at these latitudes. The increasing anticyclonic circulation over the region
would lead to a reduction of precipitation over most parts of the region, and
intensification at the sub-regional scale in the northwestern areas. On the other hand,
during summer, the circulation change is associated with the intensification of the
Azores anticyclone (reduction of weather regimes producing precipitation events in the
northern part of the basin) and increased advection of warm dry continental air masses
towards the central and eastern Mediterranean. Also, NAO variability associated with
high positive values explains (in winter) up to 30% of the decadal precipitation changes
in the Mediterranean region.

Focusing on the phenomenon of drought, according to the latest IPCC WGII ARG
report (Ali et al. 2022), climate change is projected to intensify throughout the
Mediterranean region and its impacts include longer and/or more intensive droughts
that will become in the future more prevalent in many areas. Drought causes a cascade
of effects that will affect many different environmental systems in a region, through
direct and indirect natural processes (Vicente-Serrano et al. 2020). It is a recurring,
inevitable feature of climate that results in serious economic, environmental, and social
impacts (Wilhite and Pulwarty 2017). For those reasons, the recognition of drought as
a climate hazard is becoming an urgent priority in a warming world (IPCC 2022).

Previous modelling studies on drought projection from the Coupled Model
Intercomparison Project (CMIP) of phase three (e.g., CMIP3; (Dai 2011; Orlowsky and
Seneviratne 2012) and five (CMIP5; (Christel et al. 2014; Cook et al. 2014; Touma et
al. 2015; Polade et al. 2017; Ukkola et al. 2018; Sharafati et al. 2020; Salman et al.
2021)) revealed similar results, in which droughts were more frequent and severe in the
21st century over identified drought hotspots like the Mediterranean basin and some
adjacent areas. In the global scale study of Li et al. (2021), the results indicate that the
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magnitude and extent of droughts are projected to increase significantly with increasing
SSPs and warming in some regions of the world by the late 21st century.

At the regional scale, several studies (Ozturk et al. 2015; Marcos et al. 2017,
Daliakopoulos et al. 2017; Turkes et al. 2020; Spinoni et al. 2020) agree on the increase
in droughts over the past decades and on projected increases in the duration and
intensity of droughts for most parts of the Mediterranean basin, based on future climate
scenarios. The latest emission scenarios RCP4.5 and RCP8.5 simulations within the
CORDEX initiative indicate a reduced northwards shift of Mediterranean drying
evolution and slightly stronger mean precipitation increases over most of Europe as
well as a large decrease in surface water resources mostly during the wet season
(Tramblay et al. 2013; Jacob et al. 2014). Mathbout et al. (2021) emphasized that
droughts are not spatially coherent in the Mediterranean basin, demonstrating different
spatial patterns even at the regional scale or between eastern and western regions.
Drought conditions are established in the southern and eastern regions of the
Mediterranean Basin (Nastos et al. 2013a), however, recent studies also report, in high
confidence, that the North Mediterranean areas experience more frequent and intense
drought events (Ali et al. 2022).

1.2 Greece under climate change

As a northeastern Mediterranean country, Greece is highly vulnerable to the impact
of climate change (Barros 2014). Greece is characterized as a semi-arid region,
experiencing an increasing number of various extreme events during the last decades
that could be attributed to climate change directly or indirectly (e.g., fires, floods, heat
waves, dry episodes, etc.). Kostopoulou and Jones (2005) analysed extreme
precipitation indices that showed negative trends indicating drier conditions (from 1958
to 2000) for the eastern Mediterranean. Founda et al. (2004) analysed the 105-year
(1897-2001) surface air temperature record of the National Observatory of Athens
(NOA) revealing a tendency towards warmer years, with significantly warmer summer
and spring periods. Yet, the first comprehensive climate impact study was published in
2011 by an interdisciplinary committee set up by the Bank of Greece. According to the
findings of this report, based on the two extreme climate change scenarios B2 and A2
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of IPCC Working Group Ill, it is expected that by the end of the 21st century, the
decrease in precipitation levels due to anthropogenic factors would range between 5%
and roughly 19% countrywide, depending on the scenario, while mean temperature
would increase by 3.0°C to 4.5°C, respectively. Heavy rainfall is projected to become
more frequent in eastern and central Greece and in northwestern Macedonia, while
drought would increase for the eastern mainland and northern Crete (Zerefos et al.
2011). Previous studies, that analysed the potential seasonal (winter and summer) future
changes in temperature and precipitation conditions over the Greek area, were
conducted by Tolika and Zanis (2012), Zanis et al. (2009), during PRUDENCE and
ENSEMBLES projects, but in coarse resolution (50 to 25 km, respectively). More
specifically, the warming during winter was in the range of about 2.5-4.5 °C and
generally, it increased from the coastal areas to the central and northern continental
interiors based on the scenarios. The warming was even higher during summer with an
increase from 3.5 to 6 °C. A decrease of precipitation was estimated in the study of
Zanis et al. (2009), for the future climate for both winter and summer along with the
increasing mean temperature for the majority of nine RCMs from PRUDENCE projects
for the period 2071-2100 under the A2 emission scenario. These two latest studies also
noted that Greece would experience a persisting absence of rainfall. Winters were
estimated to be drier by the end of the twenty-first century with a decrease of up to —
30% in southern Greece, while the expected changes of summer precipitation showed
a prevailing decrease or rainfall heights up to — 60% with respect to the reference period
(mainly in the areas of Peloponnese and the eastern Aegean Sea). Moreover, a high-
resolution simulation was carried out with RegCM3 over the period 1960—2100 under
the A1B scenario, with 10 km spatial resolution for Greece by Zanis et al. (2015),
indicating small changes in the near period and larger by the end of the 21st century for
mean temperature and precipitation.

Apart from trends estimation and relative or absolute changes in climate variables,
climate change is also estimated based on the calculation of a number of indices. More
specifically, to gain a uniform perspective on observed changes in weather and climate
extremes, Expert Team on Climate Change Detection and Indices (ETCCDI) has
defined a core set of descriptive indices of extremes that describe particular
characteristics of extremes and involve the calculation of the number of days in a year

exceeding specific thresholds (Tank et al. 2009).
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According to Giannakopoulos et al. (2011) for IPCC SRES A1B scenario and during
the midcentury period, the largest increases derived from the ENSEMBLES models
simulations (0.25deg) were found in ‘summer’ days (>25°C) and ‘tropical’ nights
(>20°C), while urban areas would face warmer temperatures, which was translated into
more days with maximum temperature above 35°C. The increase was also found to be
greater in summer maximum temperatures compared with the winter minimum
temperatures. Kostopoulou et al. (2014) also estimated that the warmer future of the
area would also include a strong increase in the occurrence of tropical nights, summer
and hot days and a decrease of frost days and wet days based on the SRES A1B for the
late century. Recently, Founda et al. (2019) highlighted the expansion in hot extremes'
season by ~3-10 days/decade since the mid-1970s based on observational data for 10
Greek stations along with their projected increase according to EU-CORDEX climate
models under RCP8.5. Similarly, Georgoulias et al. (2022) indicated that as a
consequence of warming, the number of hot days and tropical nights in a year is
projected to increase significantly and the number of frost days to decrease, while the
number of consecutive dry days in a year to increase by 15.4 days (30%) under RCP8.5
at the end of the century, as derived from the ensemble of eleven EU-CORDEX climate
simulations.

Moreover, recent research studies have contributed to the investigation of different
sectors that climate change affects (e.g. forests, land, health, energy), under different
RCPs scenarios in Greece, mostly in the country’s specific areas, and not necessarily at
a high resolution below 12.5 km (EU-CORDEX resolution). For example, a large
increase in the future frequency of extremely hot nights was observed in the National
Observatory of Athens under all Urban Heat Island (UHI) regimes and climate
scenarios for the area of Athens, in the study of van der Schriek et al. (2020) that
assessed future variability in summer temperatures under different UHI intensity
regimes. With respect to thermal risk in the tourism sector, related studies analyzed the
present and future climate-tourism conditions in Milos Island interpreted by the
Physiologically Equivalent Temperature (PET) (Nastos and Matzarakis 2019) and
Santorini Island, based on the advanced Universal Thermal Climate Index (UTCI)
(Katavoutas et al. 2021) using regional climate models. Regarding the energy sector,
climate change impacts on wind resources and the wind energy potential in Greece were
assessed by Katopodis et al. (2019) and buildings’ heating and cooling demand and
energy use by Droutsa et al. (2021) derived from regional climate models (RCMs).
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(\Varela et al. 2020) presented a methodology for the estimation of fire weather
indicators of the current fire weather and for the near future applied in touristic areas in
Greece, based on (EURO-CORDEX) climate model data under RCP4.5 and RCP8.5.
Under the same scenarios, the future thermal feeling, estimated by Kambezidis et al.
(2021) showed an insignificant shift in the class of the thermal (dis)comfort index for
the 33 locations in Greece as derived from 33 stations and two EURO-CORDEX
climate models. Land degradation was also assessed by Kairis et al. (2022) in three
representative study sites of Thessaly, based on RCP4.5 and RCP8 from (EURO-
CORDEX) climate models, yielding that the desertification risk in the future is expected
to increase in comparison to the reference period. In the context of forest fire danger,
using the same climate models, Rovithakis et al. (2022) studied the changes in future
fire danger conditions for the different regions of Greece using the Canadian fire
weather index (FWI), under three RCPs, highlighting the progressively increased fire
danger, especially in the southern and eastern regions of Greece in the future, due to

the ongoing climate change.

1.2.1 Drought

Referring to drought, considerable drought incidents have been noted during the late
50 years (e.g., 1989-2003, 2007-2008) in Greece and a number of studies have
contributed to the assessment of drought conditions in Greece. Dalezios et al. (1991)
applied the Palmer Drought Severity Index (PSDI) based on station data, in the central
and northern regions of Greece. Severity-duration-frequency (SDF) relationships of
droughts and wet periods over Greece for hydroclimatic and agroclimatic design and
planning were also developed by Dalezios et al. (2000). Anagnostopoulou et al. (2003)
studied the drought phenomenon through the spatiotemporal analysis of the dry spells.
Vasiliades et al. (2009) indicated that long persistent droughts over Greece are related
to large scale atmospheric circulation patterns, such as the extension of the subtropical
anticyclone of the Atlantic (Azores) up to the central Mediterranean, characterized by
a high positive anomaly of geopotential height of 500mb over North-Eastern Europe or
high positive North Atlantic Oscillation (NAO) index. Tsakiris and Vangelis (2004)
presented SPI for characterising drought, while (Livada and Assimakopoulos 2007;
Karavitis et al. 2011, 2012; Tsesmelis et al. 2022) used SPI to detect and study
important drought events on a spatiotemporal basis based on station data. In addition,
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Tsakiris et al. (2007), proposed a new index, as “Reconnaissance Drought Index-RDI”
which includes, apart from precipitation, an additional meteorological parameter, the
potential evapotranspiration. A few studies have applied statistical analysis to obtain
spatiotemporal parameters of drought episodes in Greece (Nastos and Zerefos 2008,
2009). Vangelis et al. (2013) calculated Reconnaissance Drought Index using different
PET methods from two reliable meteorological stations in Greece. Paparrizos S et al.
(2016) estimated the Aridity Index (Al) for three selected areas in Greece based on local
observations data and interpolation methods. Extensively previous studies of Dalezios
et al. (2012, 2014, 2017a, 2017b, 2017c, 2018a, 2018b, 2018c, 2021) have also give
valuable insights on risk identification of agricultural drought, including assessment of
composite drought indices and using remotely sensed information in drought analysis.
More recently, Alpanakis et al. (2022), performed drought analysis using satellite-based
SPI index for the spatial variability in the region of Thessaly.

Other studies used datasets derived from global or regional models to assess the
historical and projected changes in drought. Loukas et al. (2007) examined the changes
in spatiotemporal drought characteristics of the Thessaly region using SPI through
GCM output and under SRES scenarios. Vasiliades et al. (2009) applied statistical
downscaling method in the outputs of the Global Circulation Model for the assessment
of climate change on hydrological, agricultural and water resources droughts in
Thessaly. Vrochidou et al. (2013b, a) assessed drought in Platis basin and for the island
of Crete based on bias-corrected historical and future GCM output data under RCPs
scenarios. Nastos et al. (2013b) studied the spatial and temporal variability of the
Aridity Index (Al) in Greece, derived from 8 regional models within the ENSEMBLES
European Project under SRES A1B, showing that drier conditions are expected to
become established in regions of Greece. Anagnostopoulou (2017) showed the
projected effects of climate change on meteorological drought in the Greek region using
five RCMs from the ENSEMBLES European Project. Paparrizos et al. (2018) estimated
projected changes of drought based on SPI using simulated data from the ENSEMBLES
European Project for three agricultural areas widespread in Greece. More recently,
Georgoulias et al. (2022) studied the consecutive dry days only for the end-of-the-
century period under RCP8.5 based on an ensemble of eleven EU-CORDEX models
simulations. These simulations under three RCPs, were also used in the study of

Mavromatis et al. (2022), for crop-specific temperature- and precipitation-related
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indices assessment that showed that the increased heat stress and water deficit are
expected to have negative crop impacts.

As it is presented here, a number of studies have contributed to the investigation of
drought conditions in Greece to assess the drought dimensions based on meteorological,
water supply and demand information, for the estimation and quantification of drought
conditions in the country’s hydrographic basin or specific areas, but not in the entire
country. In high spatial resolution simulations, the more detailed patterns can be related
to better-resolved physical processes and characteristics of regional/local circulation
effects like surface fluxes, breezes, convection and heavy precipitation. Im et al. (2010)
reported that for mountainous regions, even 10 km can be considered a coarse
resolution because a higher resolution is needed to provide useful information for input
into basin hydrology studies. Therefore, the resolution of 12.5 km (in EU-CORDEX)
is still not fine enough to sufficiently resolve mesoscale systems, valley flows and
therefore the spatial temperature pattern. In addition, such high spatial resolution
simulations are imperative when the topography of the region is rather complex with
mountainous features and rough coastlines, because of the improved representation of
surface characteristics and their spatial variability (Loukas et al. 2007). The significant
impact of orography on the convective precipitation distribution in the mountainous
area of the Mediterranean region, as it is mostly affected by lightning and convective
precipitation, was also confirmed by Khodayar et al. (2016). Paparrizos et al. (2018)
highlighted the importance of the influence of elevation and broadly the topography in
the generation of different climatic conditions in different basins which in turn affect
the spatial analysis of droughts.

Therefore, taking into account the previously commented considerations and the
added value that RCM provides, there has been limited effort to explicitly examine the
potential impacts of future climate change on droughts across Greece at higher spatial
resolution. More specifically, this presumption is attributed to the use of output data
from global models or of the commonly used horizontal resolutions ranges between 50
and 25 km (usually RCMs from ENSEMBLES project), 12.5km from EU-CORDEX
or application of interpolation methods with limited stations’ numbers. The need for
high—resolution climatology - drought analysis studies is highly linked to the
geomorphological complexity of the country due to 1) the orographic chain along the
central part together with the moisturized air masses coming from the central
Mediterranean Sea, 2) the extended coastal zones and numerous scattered islands,
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creating an inhomogeneous geographical distribution of climatic variables (rainfall,
temperature, etc.). Thus, given the country’s vulnerability, the need for updated and
reliable information on climate change projections based on more recent IPCC emission
scenarios and higher resolution data for the country is profound. As these topographic
features influence the local climate characteristics of parts of the country, providing
many different climatic variations across it (Eleftheriou et al. 2018), it is imperative to
study in higher detail drought characteristics that are expected to vary spatially. Also,
the benefit of spatial resolution increase from 12.5 km to 5 km is potentially very useful
for climate impact local studies. Taking also into consideration 1) the lack of reliable
observational gridded dataset covering the entire country, except that of satellite
precipitation data (CHIRPS, Duan et al 2016), which is mandatory for fine resolution
studies (1-4 km) in case of convection-permitting models, and 2) computational cost
and storage, the high horizontal resolution of 5 km used in our study, produces high-
resolution climate information that is computationally affordable and suitable for the
climate.

In conclusion, the study of future drought events recommends the use of regional
models which are capable of capturing the different processes associated with drought

events more precisely at a high-resolution spatial scale.

1.3 Objectives of the thesis

The general scope of the presented research is to investigate the future changes in
drought characteristics in Greece due to climate change, at a very high resolution
through a regional model and the application of a dynamical downscaling technique.

To achieve this, it was also important to establish the following:

e 1) benefits of high-resolution dynamic downscaling at 5 km
o Quantify the high-resolution model performance regarding the spatial
and temporal distribution of three meteorological variables, the
minimum temperature, the maximum temperature at 2m, and total
precipitation.
o Evaluate downscaled results and ERA-Interim reanalysis datasets with

the historical observations from the HNMS based on statistical metrics.
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©)

Prove/establish the added value of the downscaling methodology

regarding the reanalysis fields.

e 2) suitability of WRF under different configurations

©)

Examine the performance of the Weather and Forecasting Model (WRF)
optimal setup to dynamically downscale the coarse-resolution reanalysis
ERA-Interim datasets to the high spatial resolution of 5 km grid over the
area of Greece.

High-resolution downscaling (5 km) with WRF driven by the GCMEC
model for two different future emission scenarios (RCP4.5 and RCP8.5),
with 25-year historical data (1980-2004) and two 25-year future time
slices (2025-2049 and 2075-2099), to carry out a very detailed
assessment of future changes in the minimum and maximum

temperatures and the precipitation conditions for the Greek area.

e 3) spatial and temporal change of indicators

(@]

o

Assess the spatial and temporal change of climate indices based on
ETCCDI for extreme temperatures and precipitation.

Assess the spatial and temporal change of drought characteristics
(severity, duration, and intensity), which are thoroughly investigated
using two drought indices, the Standardized Precipitation Index (SPI)
and the Standardized Precipitation Evapotranspiration Index (SPEI) in

different timescales (6 and 12 months).

1.4 Research Innovation

The innovation in this work lies in the production and validation of new and reliable

high-resolution datasets of climate variables and pertinent indices taking into
consideration the complex topography of Greece. Overall, this work aims to provide
driving data for impact assessment models that require high spatial details and to study

the potential climate risks in a region characterized as a “climate hot spot” in [IPCC AR6

(Ali et al. 2022).

The 5 km resolution describes the Greek territory with significantly higher detail

than lower resolved RCM simulations, e.g., of the EURO-CORDEX ensemble. Within
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its limitations, this work advocates that a specific model setup is suitable for high-
resolution climate modeling studies (hindcast and future climate scenario runs) for the
domain of Greece as the specific parameterization schemes simulate better the
temperature and precipitation fields compared to the rest of the investigated setups. To
our knowledge, this is the first time that a comprehensive high-resolution WRF model
evaluation effort is presented, based on reanalysis and observational datasets, for this
geographical region and long-term, climatological historical and future periods. In
addition, the extended high-resolution datasets derived for the region by downscaling
EC-EARTH GCM data to 5 km for Greece are unique so far.

By leveraging the added value of the dynamic downscaling process to simulate as
accurately as possible the regional climate and future changes in Greece and to achieve
an improved characterization of the expected changes in temperature and precipitation
as well as their extremes, an important task in view of the pronounced warming
projected in the wvulnerable to climatic hazards Mediterranean region. These
meteorological variables are commonly employed in climate model validation and are
useful for obtaining climate indices and studies of climate change impact assessment.
The added value of the downscaled main climate variables also provides high
confidence to further study spatially the projective changes in ETCCDI indices.

The final motivation of this dissertation lies not only in the aforementioned
statements but also in the characterization in high detail of the future drought conditions
over the whole area using two drought indices, the SPI and the SPEI in different
timescales. In addition, the spatiotemporal changes of drought characteristics, i.e.,
severity, duration, and intensity, are thoroughly investigated as they could contribute to
the coordination of efficient climate change adaptation and mitigation strategies among
different sectors/areas for drought risk management.

This document consists of eight chapters, in total. Chapter 2 begins with the
description of the developed research methodology and continues with the application
of the dynamical downscaling technique, along with the description of the observational
datasets for evaluation purposes. It also provides a general description of the Weather
and Forecasting (WRF) model and basic model setup. Chapter 3 analyses the
investigation of the WRF model configuration through escalating sensitivity
experiments for the decision of the optimal model setup. Chapter 4 demonstrates the
evaluation of long-term high-resolution historical simulations derived from reanalysis

and global datasets by comparison to observations. Chapter 5 presents the derived
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results of the future changes in downscaled climate projections. Chapter 6 describes the
investigation of the changes in extreme climate indices. Furthermore, the work escalates
with the computations of drought indices and the analysis of future projections on
drought characteristics along with the concluding remarks which are included in
Chapter 7. Finally, Chapter 8 summarises the main key findings and presents future

recommendations based on the research performed. this work in Chapter 8.
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Chapter 2 Working Methodology and Models description

This chapter includes the description of the working methodology and climate
models that are used, along with the development and application of the downscaling
methodology to achieve high-resolution climate products for the study area of Greece.
Downscaling is a method for obtaining high-resolution climate or climate change
information from relatively coarse-resolution global climate models (GCMs).
Dynamical downscaling uses a limited-area, high-resolution model (a regional climate
model, or RCM) driven by boundary conditions from a GCM to derive smaller-scale
climate information. The description also includes details of the study area, the
observational and reanalysis datasets, the global circulation and regional models, and
the two emission scenarios (RCP 4.5 and 8.5),) and the basic WRF model configuration
and parameters that remain consistent during the investigation for the optimal setup.

The investigation of climate change impact assessment studies based on different
future scenarios requires projected future timeseries of meteorological variables such
as precipitation and temperatures at the regional or local scales. To satisfy the main
objective of the thesis, the development and application of the dynamical downscaling
technique (Figure 2.1 below) is required using a suitable regional model and input

datasets from a global circulation model.

Large scale Reanalysis global dataset General Circulation Model
(ERA-I) (EC-EARTH)

Sensitivity tests Control run
Hindcast run Future runs (RCP4.5 +RCPS.5)

Regional Climate Model
(WREF) for Europe

4 20 km daily -

Regional Climate Model
(WREF) for Greece

Dynamical
Downscaling

v SR, T A i .
s rme e e e ——

Assessment of future projections on:
Temperature
Precipitation

Climate Indices
Drought characteristics

Figure 2.1 Schematic presentation of the dynamical downscaling technique for climate

simulations in the area of Greece.
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2.1 Working Methodology

For the estimation of projected changes in the study area, it is important initially to
investigate the capability of the model to reproduce the long-term climate
characteristics, in 5 km resolution, for the historical period using reanalysis and global
model data. To obtain reliable historical climate simulations of high spatial resolution,
the WRF model’s performance was investigate through continuous validation of
sensitivity tests for a short period of time in order to select the optimal setup.

WRF model has been developed as a research and operational numerical weather
prediction model but is increasingly used as an RCM, because it allows users to choose
among a large combination of different configurations, according to the needs of each
study. Recent studies, many of these realized in the framework of the CORDEX project,
have focused on the performance of the Advanced Research WRF (ARW) model as
RCM to represent extreme events of temperature or precipitation, climate indicators,
and drought variability at high spatial resolutions. Generally, these studies, with rather
fine spatial resolution simulations (10 to 7 km) over Europe, have indicated an
improved description of simulation results by accurately reproducing climate features
at several time scales, climate patterns, extreme events and drought characteristics as
the WRF model allows to easily choose among a large number of physical
parameterizations, focusing on country level domains over Europe (Argiieso et al.
2011, 2012; Soares et al. 2012; Berg et al. 2013; Wagner et al. 2013; Cardoso et al.
2013a; Gao et al. 2015; Garcia-Valdecasas Ojeda et al. 2015, 2017; Sun et al. 2016;
Prein et al. 2017; Ojrzynska et al. 2017; Hu et al. 2018; Tian et al. 2020). These studies
showed an improved description of temperature spatial and temporal variability and
precipitation extremes, due to a better representation of regional processes, related to
orographic and coastal forcing. Drought studies also indicated that WRF generally
captures reasonably well the drought temporal evolutions with reliable temporal
correlations. Komurcu et al. (2018) reported that the improvement obtained with higher
resolution dynamical downscaling is dependent on the region simulated and the choice
of parameterizations and model setup used in the regional model.

Thus, a series of preliminary studies were performed to examining the effect of
parent coarse domain resolution (European domain) and different combinations of
model parameterization schemes on high resolution (5 km) (domain of Greece) and

initialization times, on simulation ability during different periods, encouraging further
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evaluation for this long historical climate study. Such an approach can be
computationally intensive, but it can provide valuable insights into the model's behavior
and performance. Those research works included firstly sensitivity tests with seven
different combinations of physics parameterizations for one year (Politi et al. 2018),
examining the performance of the model to simulate surface variables, to select the four
best setups, and then sensitivity tests for a period of 5 years with the selected schemes
to arrive at the optimal model configuration (Politi et al. 2020). After selecting the best
setup, the effects of reinitializing the model were investigated with three different types
of time integration approaches for the decision of the final model configuration. The
detailed statistical analysis and the results of sensitivity tests are included in Chapter 3.

Afterward, the optimal model configuration was applied, and the model ran for a
long-term, climatological period of 30 years, over the period 1980-2010, for the
specific geographical region. Then, the WRF output was used to quantify the 5 km
resolution model performance in a detailed validation effort at various spatial and
temporal scales for the minimum and maximum temperatures (TX and TN) and
precipitation (PR). These meteorological variables are commonly employed in climate
model validation and are useful for obtaining climate indices and studies of climate
change impact assessment. The performed statistical analysis involved the comparison
of the results from WRF output of the high-resolution domain, (hereafter WRF_5) and
the driver data ERA-Interim (hereafter ERA-I) with the available for Greece
observational data.

Further to the evaluation of the model performance with reanalysis, high-resolution
dynamical downscaling was applied with WRF, driven by the global EC-EARTH
(hereafter GCMEC) model data for the area of Greece and for two different future
emission scenarios (RCP4.5 and RCP8.5), with 25-year historical data (1980-2004), as
control run, and two 25-year future time slices (2025-2049 and 2075-2099). The
downscaled results (hereafter WRFEC) aimed to investigate: (1) the model
performance in the historical period compared to observational data; and (2) the
projected changes of the regional climate, regarding the mean minimum and maximum
temperatures and total precipitation as well as the indices of extremes. For the
investigation of drought characteristics, output data were converted to monthly values
to compute drought indices of the Standardized Precipitation Index (SPI) and the
Standardized Precipitation Evapotranspiration Index (SPEI) for two time periods in the
future and under two emission scenarios (RCP4.5 and RCP8.5). Both indices were
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calculated over the land grid cells of the nested domain for each grid point and for each
time period. In a final step, the analysis was performed to determine the modifications
in spatial and temporal drought characteristics in terms of severity, intensity and
duration under a changing climate. That approach followed the methodological steps
applied in other studies e.g., (Spinoni et al. 2018, 2019; Raymond et al. 2019; Turkes
et al. 2020; Garcia-Valdecasas Ojeda et al. 2021)

The working methodology is presented schematically in the Figure 2.2 below:

eSelection of domain horizontal resolution and the 4 best model setups from 7
different combinations of physics schemes (1 year run)

eSelection of the optimal model setup from the 4 different combinations of
physics schemes (5 years run)

eSelection of re-initialization time (monthly, seasonal or yearly)

Model's
Configuration
(Sensitivity tests)

eHindcast Simulation (WRF / ERA-INTERIM)
eHistorical-Control run (WRF / EC-EARTH)
Long-term eFuture projections for RCP4.5 and RCP8.5 (WRF / EC-EARTH)

Climate ¢Climate Indices
simulations

* Assessment of future drought characteristics based on SPI and SPEI indices
Future projection
of Drought

Figure 2.2 Description of the working methodology adopted in this research.

2.2. Study area

Greece is a southern European country in the Mediterranean region, that is bordering
the Ionian Sea, the Aegean Sea and the Mediterranean Sea, between 34°00'N to 42°00'N
latitude and 19°00'E to 28°30'E longitude. The mainland of Greece and its
approximately 1,500 islands extend from the European continent southward to the
Mediterranean, lonian, Cretan, Aegean, and Thracian seas. It is a mostly mountainous
country (circa 80%), making Greece one of the most mountainous nations among the
European countries, with mountain heights up to 2900 m (Mount Olympus). Greece
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includes an extended coastal line (measuring 15,021 km), encompassing many
peninsulas and numerous islands.

The climate in Greece is typical of the Mediterranean climate: mild and rainy
winters, relatively warm and dry summers and, generally, extended periods of sunshine
throughout most of the year. However, a great variety of climate subtypes, always in
the Mediterranean climate frame, are encountered in several regions of Greece due to
the influence of topography. These topographic features influence some local climate
characteristics for each region, as great mountain chains along the central part and other
mountainous bodies on the air masses coming from the moisture sources of the central
Mediterranean Sea, providing many different climatic variations across the country
(Eleftheriou et al. 2018). As a result, the various climatic characteristics and
meteorological parameters can alter the local climate, even within a few kilometers’
distance (Spyridi, Dimitra, VIachokostas et al. 2015) in a way that the country presents

an inhomogeneous geographical distribution of climatic variables.

2.3 Models and Observational Datasets

For the comparison of model output data against observed data, the present research
focused on model evaluation against real points and only validated observations by the
formal meteorological organization of Greece, the Hellenic National Meteorological
Service (HNMS).

2.3.1 Observational datasets

For the sensitivity experiments analysed in the present chapter, the available
observations were examined for continuity and consistency, retaining 28 temperature
stations, and 23 precipitation, relative humidity and wind speed stations for evaluation,
initially for the selected year 2002 and then for the 5-year period from 2000 to 2004.
The datasets were obtained from the

https://www.ecad.eu/download/ensembles/download.php) ECA&D station dataset.

Moreover, continuous observations covering the long-term simulations of 30 years,
analysed in Chapter 4, were not available due to the lack of formally validated data by
HNMS. The HNMS validated temperature dataset covered the period of 1980-2004

with measurements from 32 stations. On the other hand, the HNMS network of 66
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stations provided continuous precipitation observations for the period of 1980-2000.
The names of the stations and the location are included in the Appendix. Thus, the
model assessment was realized during those specific time ranges as dictated by the
validated data availability. Figure 2.3 illustrates the spatial distribution of the HNMS
stations for a) precipitation and b) minimum and maximum temperatures. The
geographical distribution of the available observational stations reveals, also, the
limited number of measurements over mountainous, mainland areas that might disrupt

the evaluation process over such regions.
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Figure 2.3 The observational stations used for the validation of the model results: a.

precipitation (blue dots) and b. temperature (red dots)

2.3.2 EC-EARTH model and RCPs

The selected GCM for this work was the EC-Earth model. EC-Earth is both a model
and a consortium that develops and applies the model. EC-Earth is a full physics
seamless atmosphere—ocean sea-ice coupled earth system prediction model (Hazeleger
et al. 2010) developed from the operational Integrated Forecast System (IFS) cycle 31r
of ECMWEF. EC-Earth has been developed to a state-of-the-art model system and as
such contributed significantly to CMIP5, the model intercomparison project that fed
into the 5th IPCC report and more recently in CMIP6 (Vautard et al. 2021). The EC-
Earth climate simulations and projections have been widely used for climate studies. In
a global scale, (Hazeleger et al. 2010) indicated that the EC-Earth model demonstrates
very good forecasting skills from daily up to interannual time scales (interannual

variability must be well represented for successful seasonal-to-decadal predictions) and

60



for the long-term mean climate. (Hazeleger et al. 2013) have shown that the EC-Earth
model simulates well the tropospheric fields and the dynamic variables, but not as good
the surface temperature and fluxes. Additionally, the EC-Earth model (v2.3) simulates
well the Arctic climate according to the study of (Koenigk et al. 2013). More recently,
the model was also downscaled to a regional scale in the Framework of Coordinated
Regional Downscaling Experiment (CORDEX) over different CORDEX domains at a
spatial resolution of 50 km and 12 km e.g., (Jacob et al. 2014; Prein et al. 2016). (Soares
et al. 2017; Cardoso et al. 2019) denoted that WRF at 9-km high resolution driven by
EC-Earth results were in good agreement with EUROCORDEX and observational data
for Portugal.

The set-up of the atmospheric model in the EC-Earth version 2.3 corresponds to the
use of a horizontal spectral resolution of T159 (triangular truncation at wavenumber
159), roughly 125 km, and a vertical grid with vertical 62 levels of a terrain-following
mixed sigma-pressure hybrid coordinates, of which about 15 are within the planetary
boundary layer (PBL) and 1 degree in the ocean with 42 vertical layers. The historical
and future projected (RCP4.5 and RCP8.5) datasets used for this study, were already
transformed into the appropriate (grib) format which is needed as input in the WRF
model.

During the working out of the thesis, four RCPs pathways were used for long-term
climate modeling and research for the IPCC Fifth Assessment Report (AR5) in 2014
(IPCC 2014). Note that a Representative Concentration Pathway (RCP) is a greenhouse
gas concentration (not emissions) trajectory. The pathways describe different climate
futures, all of which are considered possible depending on the volume of greenhouse
gases (GHG) emitted in the years to come. The two most frequently RCPs used by
almost all modeling groups (as well for the scope of this thesis), are RCP4.5 and
RCP8.5. The later RCP8.5, regarded as the most severe scenario, is built on the
assumption that the emissions rise throughout the twenty-first century (Riahi et al.
2011) implying at its end a radiative forcing of 8.5 W/m2 relative to the pre-industrial
era. On the other hand, RCP4.5 (Clarke L. et al. 2007; Moss et al. 2010) scenario is
representing an increase of 4.5 W/m2 in radiative forcing relative to the pre-industrial
era. It is a scenario according to which emissions peak around 2049 and stabilize until
2099 by the employment of a range of technologies and strategies for reducing
greenhouse gas emissions. By the year 2099, the corresponding RCP4.5 and RCP8.5
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greenhouse gas concentrations become equivalent to 650 and more than 1370 parts per

million (ppm) carbon dioxide (CO2), respectively, (Moss et al. 2010).

2.3.3 ERA-Interim Reanalysis Datasets

ERA-Interim global reanalysis (Dee et al. 2011) output is used as initial and

boundary conditions over limited area domains, in order to obtain high-resolution
information to reflect how global patterns influence regional weather conditions.
According to Duliére et al. (2011), the reanalysis data can be used for the evaluation of
regional models as they sufficiently represent the large-scale forcing necessary for the
models to simulate the physical processes and surface interactions. As agreed in
CORDEX (Giorgi et al. 2008), ERA-Interim reanalysis dataset has been used as a
“perfect” GCM to downscale in the evaluation simulations (Garcia-Diez et al. 2015).
The data assimilation system used to produce ERA-Interim is based on a 2006 release
of the IFS (Cy31r2). The system includes a 4-dimensional variational analysis (4D-Var)
with a 12-hour analysis window. ERA-Interim dataset has a coarse horizontal
resolution, around 80 km on 60 vertical levels from the surface up to 0.1 hPa, covering
the global atmosphere in a T255 spectral. ERA reanalysis is good enough to reproduce
climate conditions on large scale but not sufficient for representing regional or local
climate variability, extreme events, particularly in the cases of pronounced topography,
complex orography, irregular coastlines and surface heterogeneity. Finally, the ERA-
Interim datasets are available from January 1979 to 31 August 2019. Public access to
this dataset will be closed on June 1st, 2023. It has been superseded by the ERA5
reanalysis.
It should be mentioned that in this work, the ERA-Interim reanalysis datasets were used
instead of ERA-5 for downscaling, since the latter reanalysis dataset covering the total
period 1979-near present became publicly available in January 2019, and our work
(testing various regional model configurations and validations) had started in 2016. In
addition, Rita M. Cardoso and Pedro M. M. Soares from the Insituto Dom Luiz of the
University of Lisbon (Portugal) provided us ERA-Interim reanalysis datasets for the
entire historical period along with the EC-EARTH model input data for historical and
future periods in (grib) format and 6-hour timescale.
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2.4 Weather Research and Forecast model (WRF)

This section describes the Weather Research and Forecasting (WRF) Model
(Skamarock et al. 2008), the importance of using it as a regional climate model as
highlighted in previous studies and how in the current research the model had to be

configured to curry out historical and future climate simulations.

2.4.1 WRF model

The (WRF) Model is a state-of-the-art mesoscale numerical weather prediction
system designed for both atmospheric research and operational forecasting
applications. It features two dynamical cores, a data assimilation system, and a software
architecture supporting parallel computation and system extensibility. The model
serves a wide range of meteorological applications across scales from tens of meters to
thousands of kilometers. The effort to develop WRF began in the latter 1990s and was
a collaborative partnership of the National Center for Atmospheric Research (NCAR),
the National Oceanic and Atmospheric Administration (represented by the National
Centers for Environmental Prediction (NCEP) and the Earth System Research
Laboratory), the U.S. Air Force, the Naval Research Laboratory, the University of
Oklahoma, and the Federal Aviation Administration (FAA).

For researchers, WRF can produce simulations based on actual atmospheric conditions
(i.e., from observations and analyses) or idealized conditions. WRF offers operational
forecasting as a flexible and computationally efficient platform while reflecting recent
advances in physics, numerics and data assimilation contributed by developers from the
expansive research community. WRF is currently in operational use at NCEP and other
national meteorological centers as well as in real-time forecasting configurations at
laboratories, universities, and companies. The WRF Software Framework (WSF)

accommodates two Dynamics solvers:

a. Advanced Research WRF (ARW), and the b. Non hydrostatic Mesoscale Model
(NMM).

The Preprocessing System (WPS) (see Figure 2.4) consists of three programs with the
purpose of providing input data to the WRF real program for real data simulations
(NCAR (National Center for Atmospheric Research) and MMM (Mesoscale and
Microscale Meteorology Division) 2016):
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1. Geogrid — It defines the simulation domains and interpolates various terrestrial data

sets to the model domains.

2. Ungrib — It reads GRIB (Gridded Binary) files, ‘degribs’ the data, and writes the data

in a simple format.

3. Metgrid — It takes the output data from ungrib and horizontally interpolates it to the
simulation domains defined by geogrid. The vertical interpolation is performed by the

WREF real program.

-
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Figure 2.4 Schematic representation of the WRF preprocessing and processing system.
2.4.2 Basic WRF Model setup

As Greece is influenced by many mesoscale and synoptic systems and therefore, in
what concerns domain design, which is determining the area of interest, the parent
domain has to be large enough to take into account the large-scale dynamical patterns
that affect the region of the study. At first, two spatial configurations of the model were
composed of two nested grids. The spatial set-up of the first model was at 20 km
horizontal resolution outer (parent) domain (Europe) with 265 x 200 grid points and
the second at 25 km with 214 x 162 grid points, centered in the Mediterranean basin at
42.5 N and 16.00E. The high-resolution inner (child) domains of each model were set
up at 5 km (D02—Greece) of horizontal grid spacing 185 x 185 and 174 x 174 grid
points, respectively, named D02(25) and D02(20), according to their coarse domain
from where they were produced (Fig 2.5). The set-up of both models has used 40
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vertical levels arranged according to terrain-following hydrostatic pressure vertical
coordinates, and one-way nesting has been applied to avoid possible noise during
feedback from the inner domain to the coarse domain. As the simulations evolve, the
internal solution computed by the RCM drifts away from the driving analysis, thus
spectral nudging is applied above the PBL and only over the coarse domain. According
to Argiieso et al. (2011), spectral nudging reduces the effects of domain location and
geometry and prevents any inconsistencies along boundaries over an open system
during long-term simulations. The spectral nudging was applied for temperature, winds,
and geopotential height but not for humidity. In addition, the simulation was nudged

using wave numbers 5 and 4 in the x and y direction, respectively.

0° 10°E 20°E 30°E 40°E
0 500 1,000 1,500 2,000 2,500
! ] I ] Il ]

Kilometers

Figure 2.5 Modelling Domains: d01 refers to the outermost domain and d02 to the nested

domain of 5 km (region of Greece).

Table 2.1 Model’s version, horizontal grid spacing (Ax; in kilometers), initial and
boundary conditions, simulation period, humber of vertical levels and pressure of the

highest level.

Model: WRF-ARW Version 3.6.1

DOMAINS WRF1
DO1(EU) 20km
D02(GR) 5km
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ERA - INTERIM 6hourly reanalysis ( ~80km)

Initial and boundary conditions:
EC-EARTH model 6hourly (~125km)

Vertical levels 40 sigma levels (up to 50 hPa)

For each simulation, the last four days of the previous month were regarded as model

spin-up for the following month and were discarded, thus the model was re-initialized
every month. The frequent re-initialization of the runs retains sufficient long-term
forcing, outperforms the continuous simulation runs and distinguishes model errors that
develop quickly from those over a long period (Lo et al. 2008; Menendez et al. 2014;
Garcia-Diez et al. 2015). However, this way of re-initialization is going to be further
investigated in Chapter 3.4.
In what concerns the physics schemes, the radiation scheme was set to the newer
version of the Rapid Radiative Transfer Model, RRTMG,; (lacono et al. 2008) for both
longwave and shortwave radiation. Only the Noah LSM was employed as the land
surface model (LSM), as it is widely adopted for climate studies (Chen et al. 1996,
2001; Zhang et al. 2009). According to Cavan and Hare (2016) the scheme allows the
simulation of soil and land surface temperature, snow depth and snow water equivalent,
both water and energy fluxes, among others e.g., (Chen et al. 2001; Ek 2003; Feng et
al. 2008) . The Noah Scheme has four distinct soil layers (0.1, 0.3, 0.6 and 1.0 m) that
reach a total depth of 2 m, and one vegetation canopy layer. For the estimation of
potential evapotranspiration (PET), the Penman equation is used, while 16 soil and
vegetation parameters are utilized for the estimation of soil temperature, soil moisture,
snow cover and atmospheric feedbacks (Evans et al. 2005). Finally, the IGBP Modified
MODIS 20-category Land Use Categories was selected as the land use dataset, which
should only be used with the WRF Noah land surface model (Wang and Kotamarthi
2015).

For the evaluation and the validation of the WRF model, the European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) fields of
0.75° x 0.75° horizontal resolution were downscaled to the region of Greece. Thus, the
ERA-Interim reanalysis dataset was used to provide initial and boundary conditions.
The lateral boundary conditions and the sea surface temperature were both updated
every 6 h, from ERA-Interim. Respectively, regarding the historical and future

simulations, initial and boundary conditions were provided by the EC-EARTH model.
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In addition, for future projections, the equivalent-CO2 concentration was updated every

year according to the emission scenario in the WRF simulations.

2.4.3 Computing Resources

The short-term simulations of sensitivity tests were carried out using the WRF model
in SLURM Batch system in the HPC infrastructure (18x E3-1271v3 @ 3.6 GHz, GBit
ethernet, NFS) of the Environmental Research Laboratory of NCSR “Demokritos”,
using homemade bash scripts. A one-day simulation run needs approximately 1 hour
(557), so one month (of 35 days) simulation time needs 1.3 days which corresponds to
16 days for one simulation year (12 simulation months). In order to run simultaneously
and efficiently in different years, 48 CPUs were used.

The available computer power and resources in our laboratory that summed up to 96
nodes of 3TB RAM (45.5 TFlops) were not enough at all to carry out such kind of
simulations. Due to offered limited processing capacity, the work of the long-term
climate historical and projection experiments was supported by computational time
granted from the Greek Research and Technology Network (GRNET) in Athens, in the
National high-performance computing HPC facility (https://hpc.grnet.gr/en/), ARIS,
under projects ID HRCOG (pr004020) and HRPOG (pr006028), with the minimum
requested number of cores (240), as the optimal solution for the implementation of this
research. For the simulations, 80 cores were requested using 4 nodes as each node has
20 cores.

The methodology developed for the deduction of the optimal setup and thus the final
model configuration to proceed with long-term climate simulations, is detailed in the

following Chapter 3.
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Chapter 3 Sensitivity tests and selection of optimal model setup

For the decision of the model setup, it is important to consider many aspects, such
as the physics parameterizations, the domain resolution and the re-initialization time.
For the determination of the optimal model configuration, different sensitivity tests for
shorter and longer periods were conducted to establish high-resolution dynamical
downscaling climate simulations over the complex topography of Greece. This chapter
includes the description of the methodology and the results derived from each
sensitivity test. The objectives of the first sensitivity test concerned the selection of the
appropriate horizontal resolution of the first domain (at European scale) through the
performance of seven different combination of physics parameterizations of the model
at high resolution to simulate surface variables, along with the choice of the four best
setups, for one year simulation time. In addition, the second set of sensitivity tests was
carried out for a period of 5 years with the four selected schemes to arrive at the optimal
configuration for the model setup. In the third set of sensitivity tests, the effects of
reinitializing the model with three different types of time integration approaches were
examined using the best set-up for the decision of the final model configuration.

The examined parameterization schemes were selected in accordance with the
findings of previous studies for climate forecasting applications performed for specific
regions in Greece and others in the continent of Europe with the WRF model. Efstathiou
et al. (2013) studied the sensitivity of WRF to boundary layer parameterizations in
simulating heavy rainfall, and to different parameterizations according to microphysics,
boundary layer and convective schemes. Kartsios et al. (2015) and Pytharoulis et al.
(2014) worked on the characteristics of convective activity over central Greece,
Plexousakis (2013) performed a study of extreme weather events over Greece and
Giannaros et al. (2013) tested the urban heat island over Athens as well as the predicting
lightning activity in Greece (Giannaros et al. 2016). Matsangouras et al. (2011) made
the first attempt to model a tornado event. Considering convection schemes, Sindosi et
al. (2012) indicated that for the terrain of the Epirus region, north-west of the country,
the activation of a convective parameterization scheme in high resolution appears
necessary as the results were considerably improved; except for mountainous areas
where results with or without convective schemes were comparable. Similar results

were noted by Kotroni and Lagouvardos (2004) and Mazarakis et al. (2009), who
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studied summer thunderstorm activity forecasts over the urban area of Athens and
convective parameterization during a warm period, respectively. The setup of the WRF
model has been applied for operational and seasonal forecasting purposes
(Vlachogiannis et al. 2013; Eleftheriadou et al. 2016) in the Environmental Research
Laboratory of NCSR Demokritos.

For evaluation purposes, the results derived from the sensitivity tests were compared
with the observational data of HNMS, described in the previous chapter, through
detailed statistical analysis. As there were no available high-resolution observational
gridded datasets, the comparison of the simulations was realized through the closest
model grid point of the inner domain to the station e.g., (Zittis et al. 2016; EI-Samra et
al. 2018)

The results of the model simulations of the sensitivity tests were validated with all
available Greek station measurements by utilizing the following statistical metrics
shown in Table 3.1. according to each sensitivity study. Further information and
statistical formulas for statistical metrics are available in APPENDIX.

Table 3.1 Description of statistical tools for the validation process for each sensitivity tests

SENSITIVITY TESTS STATISTICAL METRICS
SENSITIVITY TEST 1 BIAS (or Pbias), RMSE, MAE (or MAPE), COR, STDE,
Taylor Diagrams

SENSITIVITY TEST 2 BIAS (or Pbias), RMSE, MAE (or MAPE), COR, Taylor di-

agrams

Statistical scores of Contingency Table: probability of detec-
tion (POD), critical success index (CSI) and false alarm ratio
(FAR) for four distinct threshold values of precipitation for
low rainfall (>1mm), medium rainfall (>2.5 mm), heavy rain-
fall (>10 mm) and extremely heavy rainfall days (>20 mm)
SENSITIVITY TEST 3 BIAS (or Pbias), RMSE, MAE (or MAPE), COR

Statistical scores of Contingency Table: Probability of detec-
tion (POD), success ratio (SR), bias and critical success index
(CsI)

The approach to evaluating our model setup and the downscaling methodology

included the analysis of coarse resolution original data and the simulated downscaled
high resolution datasets. Thereupon, the statistical analysis involved the comparison of

the output fields of the inner (nested) domain and driver data ERA-Interim with the
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available observational data. WRF downscaled temperatures were converted to daily
maximum and minimum variables, derived from the 6-h data simulations. The
minimum and maximum temperatures of the ERA-Interim data were derived from the
processing of the 00 and 12 UTC forecasts.

Height differences between model topography and stations were observed because of
the complexity of the topography and coastlines of the area. Thus, before proceeding
with the statistical analysis for temperature, a constant lapse-rate elevation correction
of 6°C/km was applied (Barstad et al. 2009; Heikkild et al. 2011; Soares et al. 2012) to

both minimum and maximum temperatures.
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3.1. Sensitivity test 1

To obtain reliable climate simulations of high spatial resolution with the future RCP
scenarios, a preliminary investigation of the effect of parent coarse domain resolution
and different combinations of model parameterization schemes on high resolution (5
km) regional climatology studies were performed over the domain of Greece,
downscaling ERA-Interim reanalysis data. The two spatial configurations of the model
were composed of two nested grids. The spatial set up of the first model was at 20 km
resolution outer (parent) domain (Europe) with 265 x 200 grid points and the second at
25 km with 214 x 162 grid points, centered in the Mediterranean basin at 42.5 N and
16.00E (Fig 3.1c- up). The high-resolution inner (child) domains of each model were
set up at 5 km (D02—Greece) of horizontal grid spacing 185 x 185 and 174 x 174 grid
points, respectively, named D02(25) and D02(20), according to their coarse domain
from where they were produced (Fig 3.1c-down). Fig. 3.1 shows the Greek topography
for each of the models’ setups in order to highlight the need of the higher spatial

resolution due to the irregular terrain and coastline of Greece.
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Figure 3.1 Real topography of the study area for Greece (a) ERA-Interim reanalysis
topography (b), and models' topography according to their horizontal resolution for the
area of Greece (¢).

For the first sensitivity test, the evaluation of the simulation period of the run starts
from 0000 UTC January 1, 2002, to 1800 UTC December 31, 2002. This year was
selected based on the maximum number of high quality available observational data,
uniformly distributed over the country.

Table 3.2 summarizes the way the different physical schemes were combined for each
of the seven simulations (PP1, PP2, PP3, PP4, PP5, PP6, and PP7). The cumulus
convection scheme controls the sub-grid scale effects of convective clouds. In our
study, the following options were mainly used, taking into consideration the gray zone
between 5 and 10 km for cumulus option (Skamarock and Dudhia 2011):

- Kain—Fritsch (KF);(Kain and Kain 2004),
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- Grell-3D (G3D),
- Grell-Freitas (GF),
- Betts—Miller—Janjic (BMJ); (Janji¢ 2001) or none in the high-resolution domains.

Table 3.2 Configuration of the Physics Parameterizations (PP) schemes for each of the

seven simulations.

DO1(EUROPE)

SIMID/ | PPl PP2 PP3 PP4  PP5  PP6 PP7
SCHEMES

MP | WSM6 WSM6 WSM6 WSM6 WSM6 WSM6 FE (new Eta)
SFL MM5 MO MO MM5 MM5 MO MO
PBL YSU MYJ MYJ YSU YSU MYJ MYJ
CUM KF G3D BMJ KF BMJ  GF G3D
RAD RRTMG

LSM NOAH

D02(GREECE)

MP | WSM6 THOM WSM6 THOM THOM WSM6 FE (new Eta)
SFL MM5 MO MO MM5 MM5 MO MO
PBL YSU MYJ MYJ YSU YSU MYJ MYJ
CUM - G3D BMJ KF  BMJ  GF G3D
RAD RRTMG

LSM NOAH

Concerning the Planetary Boundary Layer (PBL) schemes, Yonsei University (YSU);
(Hong et al. 2006) and Mellor—Yamada—Janjic (MYJ); (Level and Closure 1998) were
involved, associated with the corresponding surface layers schemes, which provide the
surface fluxes of momentum, moisture and heat to PBL scheme. The MYJ scheme is a
local closure model which applies a local approach to determine eddy diffusion
coefficients, based on the local turbulent kinetic energy (TKE) equation. No
information from lower or higher levels directly influences these terms. In this scheme,
the entrainment develops only from local mixing. In contrast, the YSU scheme is a non-
local closure scheme, where the critical Richardson number that describes the top of
the PBL is set to 0.25 over land for enhancing mixing in the stable boundary layer. In

this case, entrainment is explicitly treated.

The three following cloud microphysics schemes were used: WRF single-moment six-

class (WSM6) containing ice, snow and graupel processes (Hong and Lim 2006),
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Ferrier (FE) and Thompson (THOM), which includes six classes of moisture for ice as

prognostic variables (Thompson et al. 2008).

The analysis did involve comparisons of the WRF model simulations with available
measurements from the various stations of the inner (nested) domain. To evaluate the
WRF downscaling results and model performance, daily statistics are derived from the

6-h data simulations.

Table 3.3 Number of stations according to their location on Dominant IGBP- Modifies 20-
category Land Use, for high resolution domains D02(20) and D02(25).

WRF LU CATEGORY Number of Stations D02(20) /D02(25)
17 WATER 6 7
21 INLAND LAKES 0 1
12 CROPLANDS 11 10
8 WOODY SAVANNAS 4 3
13 URBAN 4 3
. EVERGREEN . .
NEEDLEAF FOREST
7 OPEN SHRUBLANDS 3 3

a) Analysis of the two 5 km domains over Greece

The first analysis involves the investigation of the discrepancies in the characteristics
as station/model elevation and land use (LU) category at the locations of the
observational stations and the centers of the grid cells between the two high inner
resolution domains (D02). Due to the difficult topography and the complexity of the
coastlines of the area, height differences between models-stations are observed. As it
was noticed in Figure 3.2, overall, 14 stations show a difference in height ranging from
50 m to 240 m, while seven stations present significant differences of 110 m to 240 m
in both high resolution domains, at Hellinikon, Samos, Thessaloniki, Tripoli, Milos,
Kithira and Tanagra locations. These discrepancies are possible to cause different
evolution of observational precipitation totals from model results, and therefore false
statistical results. These discrepancies are possible to cause different evolution of
precipitation totals from model results, and therefore false statistical results. In total,

six stations from D02(20) and eight stations from DO02(25) parent domains are the
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stations belonging to the grid described as water (id 17) in a percentage of 40% to 83%
and 40-100%, respectively. Table 3.3 shows in detail the total number of stations and
the LU category of the model in which they are found in the two high resolution
domains. Corfu, Heraklion, Methoni, Argostoli, Mitilini, Kithira, Naxos and lerapetra
are some of the weather stations that are located close to the coastal zone, but their
model point is characterized by the water LU category. In the following analysis it will
be indicated how their position may affect the statistical results.

As it was mentioned in the introduction, dynamical downscaling can add value to
the modelling process by using local information through the interaction with
mesoscale atmospheric features, particularly in regions with complex topography like
Greece. The difference in the elevation between the reanalysis orography of the outer
and inner model domains of WRF was quite significant throughout the domain, while

an improvement was obtained with the higher resolution as can be deduced from the
plotted data in Figure 3.2.
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Figure 3.2 Elevation of the models (red — green lines) for high resolutions D02(20), D02(25)
respectively and HNMS stations with blue line (left). Height differences between HNMS
stations and models (right), for D02(25) on blue bars and D02(20) on red bars.

The resolution elevation of the ERA-I orography improved from the outer to the inner
WRF model domains by increasing the spatial resolution. More specifically, as depicted
in detail Fig 3.1, the mountains reached in the ERA-1 up to 1,250 m of elevation, in the
WRF D01 up to 1,500 m, marking a significant deviation from the highest peak of
mountain Olympus (of around 2,900 m height), whereas in the higher resolution domain
d02, the maximum elevation reached up to 2,400 m. Also, the topography of Pindos,
the major mountain range of the country, as well as the higher mountains of the
Peloponnese and Crete are resolved very realistically in d02. Similarly, the lower
elevation features of the topography (valleys) resolved better in d02. These differences
occurred due to the smoothing of the topography caused by the weaker description in
the lower resolution domains. According to those findings, the aforementioned
improved topography of the study area obtained with D01 and d02 resolutions was not
possible to attain with the ERA-I coarse resolution. However, it was further evaluated
against observations to derive the degree of agreement between the two datasets in an

attempt to quantify the benefit of downscaling the reanalysis dataset.

b) Validation of physics parameterizations over the domain of Greece for D02(25)
and D02(20)
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3.1.1. Maximum Temperature and Minimum Temperature

The results of minimum and maximum temperatures yield overall small differences
not only between the inner domains but also between the seven simulation setups.
Figure 3.3 represents the seasonal cycle of the observed and simulated mean daily
minimum and maximum values of temperature by month for the total number of grid

points. The dashed black lines indicate observational data and colored lines the models’
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Figure 3.3 Observed and simulated mean daily TX and TN values, on the total grid points
by month, for the seven different simulations (PP1, PP2, PP3, PP4, PP5, PP6, PP7), for
the high-resolution domains (left and centered). Similarly, daily precipitation values (RR)

by month, for 2002 over Greece (on the right)

Similar representation and behavior of temperatures are observed for all physical
schemes. There is a consistent overestimation of the minimum temperature TN and
slightly consistent underestimation of TX for both inner domains. Table 3.4
summarizes the statistical metrics found in daily values for WRF's high resolution
domains derived from the different resolution coarse domains. The correlation
coefficients between the observed and the simulated maximum temperature TX are
0.95-0.96 with an overall negative BIAS from —0.92 to —1.33 for D02(20) and —1.1 to
—1.5 °C for D02(25), indicating a slightly better performance of the model for the PP3
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simulation scheme of D02(20). The RMSE and MAE errors range close to 2-2.5 °C,
with similar values found for all simulations. The correlation coefficients of minimum
temperature reveal lower values (0.92-0.93) for high resolution domains, for all
simulations, a finding in accordance to other studies (Zhang et al. 2009; Soares et al.
2012). The model performs better for TN with the PP2 scheme with positive BIAS near

2 °C for both high resolution domains.

Table 3.4 Statistical metrics of the seven simulations in the total grid points for daily
minimum temperature (TN), daily maximum temperature (TX), daily precipitation (RR),
daily relative humidity (RH) and daily wind speed (WS) for 2002, over the area of Greece.
The best performing configuration for each metric and variable is in bold.

2002 simID# PP1 PP2 PP3 PP4 PP5 PP6 PP7 OBS
D02(20) D02(25)| D02A20) DO2(25)| D02(20) DO2(25)| DO(20) DO2(25)| D02(20) DO2(25)| DO2(20) DO2(25)| DOA(20) DOZ(25)
BIAS(°C) | -1.33 -144 | -11 -132(-0.92 -1.1 |-1.15 -1.26 | -1.23 -1.37 | -14 -1.5 | -1.04 -1.21
RMSE(°C) | 253 2.58 | 255 258 249 2.50| 245 2.50| 246 252|256 259|252 254

TX MAE(°C) 2 206 | 199 205|193 196 | 192 198 | 1.93 2 2.03 207 | 196 2 Mean
COR 096 096 | 095 09 | 095 095 | 09 096 | 096 096 | 09 096 | 095 0.95| 212
STDE(°C) | 7.15 7.1 743 7.37 7.5 741 | 7.08 703 | 7A7 711 | 713 709 | 7.38 7.3 747
BIAS(°C) 216 2,19 | 2.14 2.08 | 2.27 229 | 227 227|228 229|214 216 | 216 2.19
RMSE(°C) | 343 34 342 3.32 | 354 351 )| 349 346 | 352 349|339 337|344 341

TN MAE(°C) 271 2.7 2.67 2.6 278 278 | 278 276|279 278|267 268|269 268 | Mean
COR 093 093 | 093 093|092 093 |09 093|093 093 | 0593 093|093 093] 125
STDE(°C) | 692 6.89 | 6.84 6.85 6.9 689 | 695 693 | 695 692 | 652 689 | 6.81 6.81 | 7.01
pBIAS{%) | 406 344 | 346 243 | 13.7 15.8 | 856 872 | 33.7 38 483 473 | 303 254
RMSE{mm)| 8.13 78 703 695|666 7.14 | 827 887 | 704 736|745 736 | 7.07 721

RR MAE 271 262 | 257 246 | 2.26 2.28 | 3.15 324 | 246 2.52 2.7 263 | 249 248
MAPE(%) | 758 64.3 | 645 454 | 25.6 29.5 |159.8 1628| 62,9 71.0 | 90.1 884 | 56.5 47.5 | Mean

COR 0.39 04 042 042 (046 041 | 045 042 | 044 043 | 043 045 | 043 0.4 1.87
STDE(mm) | 8.02 7.55 | 6,51 6.34 | 6.23 6.6 863 914 | 677 7,19 | 725 735|663 6.59 | 6.53
BIAS{%) -147 062 |-125 -0.08(-1.84 -027|-2.11 -136| -14 -052| -1.2 -0.3 |-143 -0.03
RMSE(%) |12.37 12 13.05 132 |1268 126 |1247 121 | 12.1 11.7 | 125 12.03| 13.1 131

RH MAE(%) 9.58 93 |10.19 104 | 986 991 | 9.67 936 | 935 9.07 9.7 9.38 | 10.21 10.34 | Mean
COR 061 062 | 058 057|060 059 | 060 060 | 0.62 0.63 | 060 061 | 0.58 0.57
STDE(%) | 1442 14.01|14.86 14.92|14.57 14.39)/14.08 136 | 14.23 13.74 |14.51 14.05|14.82 14.72| 133
BIAS{m/s) | 072 0.81 | 1.16 133 | 1.18 1,19 | 0.73 082 | 0.71 0.8 0.7 079 | 1.15 1.17
RMSE{m/s)| 2.03 2.03 | 2.24 241 | 226 227 | 2.05 2.04 |2.03 203 | 2.03 203|223 224

WS MAE(m/fs)| 157 158 | 176 187 | 178 179 | 1.57 158 | 1.57 1.58 | 1.56 157 | 1.76 1.77 | Mean
COR 063 065|064 062|064 064 | 062 065 | 062 0.65| 063 0.65 | 0.64 0.65
STDE(m/s) [ 191 2 211 223|209 212 ] 1953 201 ]| 191 2 193 2.02 2.1 213 | 2.37

Additionally, the analysis of the correlation coefficients of TN for each station (not
shown), showed values close to 0.75, while the correlation coefficients of TX appeared
to have a more dispersed behavior that varied from 0.5-0.7. An overall performance of
the simulations is illustrated in Figure 3.4 by Taylor plots were computed for yearly
and seasonal (winter, spring, summer and autumn) time periods of 2002 only for TN,
TX and RR. The white circle represents the standard deviation of precipitation station
data, while the black circle and black triangle represent the standard deviation of

minimum and maximum temperatures station data.
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For TX, the results present minute differences during all seasons for both high

resolution domains. In particular, in winter, spring and autumn seasons lower RMSE

errors (around 2 °C) and better correlations (0.9-0.95) are calculated than in summer

period where the RMSE value is around 2.5 °C and the coefficient correlation is equal

to 0.8. This probably occurs due to the more intense thermal instability during summer

in combination with the fact that some of the model points are not located on land - like

the observation stations — but on sea cells. Thus, there is stronger sea-land interaction

due to the greater differences in temperature during the summer period.
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Figure 3.4 Annual and seasonal Taylor plots of maximum temperature (TX, on triangle),
minimum temperature (TN, on circle) and precipitation (RR, on circle) for the seven
different physics parameterizations (PP1, PP2, PP3, PP4, PP5, PP6, PP7), for high
resolution domains D02(20) and D02(25).

This explanation is also justified in Fig. 3.5, where these stations are found to have the
higher RMSE values of about 3.5 °C. Same representation follows the TN with highest
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statistical errors (near 2.5-3 °C and 0.75-0.8, of RMSE and COR values respectively),

noticing a tendency of perceptible discrepancies, among the different parameterization

schemes during summer. As good agreement with observations is found and no

significant statistical differences are yielded among PPs schemes for TN and TX

temperatures, for both domain configurations, with slightly smaller errors for D02(20),

the selection of the two PBL schemes is not considered as critical.
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Figure 3.5 Root mean square error of modeled fields, maximum temperature (TX),

minimum temperature (TN) and precipitation (RR) for each of the HNMS stations, for

the seven different physics parameterisations schemes (PP1, PP2, PP3, PP4, PP5, PP6,

PP7) for 2002.
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3.1.2. Precipitation

A general overview of precipitation's statistical analysis doesn't show satisfactory
results in either physical schemes, or in high resolution domains. In Figure 3.3 (on the
right-hand plots) the seasonal cycle of the observed and simulated mean daily values
for precipitation is illustrated by month for the total grid points and stations, over the
area of Greece for the inner domains D02(20) and D02(25). The black dashed lines of
observations yield a seasonal variability of daily precipitation, which is noticed on the
models’ results. The model calculations of the seven simulation setups resulted in
overestimated precipitation values compared to observations, for both high resolution
domains, during the rainy months. These current findings are aligned with the fact that
WREF overestimates precipitation at higher spatial resolutions (Kotlarski et al. 2014). A
clear topographical dependency is revealed on the spatial distribution of total
precipitation (Fig. 3.8) with maximum values of annual precipitation found in the West
part of the country, related to fronts passage with orographic enhancement. However,
the seasonal pattern of daily precipitation is well captured by the majority of the
schemes during the year 2002, showing highest precipitation during winter and lowest
during summer. It is also concluded that the highest overestimation is noticed with the
PP4, while the lowest with PP3 simulation. This result is confirmed with the statistical
errors depicted on Table 3.4, with indicative values of positive percentage BIAS for
PP4 and PP3 of about 86% and 15% respectively. Figure 3.5 represents the RMSE error
of daily precipitation by station. It is probable that high values of RMSE for some
stations (Argostoli, Tripoli, Skyros) could be related to the difference in the locations
between the closest model point and station due to the mountainous or coastal
topography. (Kioutsioukis et al. 2016) reported better matching at stations located in
the continental Europe than those that had closer proximity to the Mediterranean. Such
overestimation in precipitation is caused by a combination of different factors reported
as gauge undercatchment (Frei et al. 2003; Kotlarski et al. 2014), overestimation of the
frequency of light rain events and biases in the atmospheric circulations (Garcia-Diez
etal., 2015). PP3 that shows the best performance in both high resolution domains, uses
WSM6 for microphysics, the Betts-Miller-Janjic cumulus parameterization, as PBL
scheme the Mellor—Yamada-Janjic and Monin-Obukhov similarity theory. PP4, on the
other hand, uses Thomson, Kain—Fritsch for convection and Yonsei University (YSU)

scheme. According to the seasonal Taylor plots, a small variation among seasons and
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simulations is deduced with more dispersed results and without significant differences

between the two high resolution domains.
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Figure 3.6 a. Mean daily precipitation cycle on 6 h temporal resolution for each season
for the selected year 2002 from Hellinikon SYNOP station data compared to the seven
models. b. Mean daily precipitation cycle on 6 h temporal resolution and each season, for
the selected year 2002 from Heraklion SYNOP station data, compared to the seven
models.

A similar pattern is noticed for each season. Moreover, lower RMSE errors and better
correlation (around 5 mm and 0.6, respectively) appear during spring, with PP2
configuration presenting the best performance in that season. The PP3 simulation shows
the best performance with respect to the statistical errors during the other seasons and
mostly during summer and autumn where the RMSE marks the lowest values of about
5 and 8 mm on both domains. PP2 and PP3 physical schemes are associated with the
MYJ PBL scheme and different convective schemes. MYJ and YSU parameterizations
are related with different ability to transfer moisture to the free troposphere. YSU that
uses the Richardson number to characterize instability and turbulence produces highest
latent heat and vertical velocity at mid-levels, resulting in transferring moisture at upper
levels, while MYJ, with increased vertical stability, doesn't produce sufficient vertical
mixing, yielding highest relative humidity at lower levels. One of the concluding
remarks, reported on by most of multi-physics studies, examining parameterization
combinations, is that although precipitation is more sensitive than temperature to the
choice of cumulus and planetary boundary layer parameterizations, there is no
combination clearly better than others (Fernandez et al. 2007; Argiieso et al. 2011;
Garcia-Diez et al. 2013). These findings are observed in minimum and maximum
temperatures (see Table 3.4), where differences among the statistical errors of the seven
simulations appear mainly in the first or second decimal digit (e.g., RMSE errors
between PP1 and PP7 are 2.53 and 2.52, respectively). Additionally, almost identical
representations on Taylor plots were deduced (see Fig. 3.4). Regarding precipitation, 5
out of 7 simulation setups have similar but not satisfactory results for statistical errors,
of about 40% of PBIAS and Correlation Coefficient close to 0.42.

Considering the mean precipitation daily cycle on 6 h temporal resolution and each
season, depicted on Figures 3.6a and 3.6b, for the case of Hellinikon and Heraklion
stations, graphical representations are not satisfactory. However, similar patterns of
mean daily cycle were detected during winter and autumn for Hellinikon station as well

as for winter, spring and summer in the majority of simulations for Heraklion station.
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As by definition wet days are those days when daily precipitation is above 0.1 mm
(Barstad et al. 2009), dry days are defined as those with daily precipitation below 0.1
mm. Table 5 represents the ratio percentage of the number of dry days in WRF to
observations for each model setup and station. WRF simulations overall underestimate
the number of dry days in the range [1-50] % among the different stations. Concerning
the 99th percentile of rainfall (Table 3.5), many of the stations strongly overestimate
extreme precipitation events for all simulations but others underestimate them. This fact
probably indicates the importance of locations. In the final processing, a ranking
procedure was carried out between simulations and each station based on their
statistical metrics of RMSE and MAE in order to find which configuration was the most
representative in the majority of the stations for precipitation. Results are presented in
percentages in Figure 3.7.
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Table 3.5 Ratios (WRF/OBS) of Dry days and 99th percentile for rainfall, according to each station and to each model's simulation. Figures in

SAMOSAIRPORT ~ 0.85(260) 0.8(247) 0.89(274) 0.76(234) 0.83(255) 0.79
SOUDA AIRPORT  0.81(230) 0.81(229) 0.9(254) 0.67(189) 0.87(245) 0.79

244) 0.82 (251
224) 0.84(237

307 |1.26(39.5) 1.3(40.7) 0.98(30.6) 1.73(54.1) 1.41(44.2) 1.41(44.2) 1.1(34.4) 31.3
283 | 1.81(40.4) 1.77(39.5) 1.26(28) 1.67(37.3) 1.32(29.4) 1.55(34.5) 1.46(32.5) 22.3

Dry Days 99th percentile
WRF/OBS WRF/OBS
Stations PP1 PP2 PP3 PP4 PP5 PP6 PP7 da’:{ :’Q’BS PP1 PP2 PP3 PP4 PP5 PP6 PP7  99thOBS
CORFU 0.86(222) 0.73(188) 0.85(219) 0.75(194) 0.81(207) 0.81(209) 0.79(203) 257 0.49(28.6) 0.47(27.5) 0.42(24.3) 0.62(36.1) 0.54(31.3) 0.61(35.5) 0.4(23.5) 581
HELLINIKON 0.84(248) 0.72(213) 0.83(245) 0.69(203) 0.74(219) 0.77(225) 0.78(230) 294 1.55(34.2) 1.14(25) 1.17(25.8) 2.03(44.6) 0.9(19.9) 1(21.9) 1.23(27.1) 22
HERAKLION 0.91(257) 0.85(240) 0.99(278) 0.72(203) 0.96(270) 0.86(243) 0.89(251) 282 0.64(16.4) 0.91(23.5) 0.79(20.4) 1.26(32.4) 0.74(19.1) 0.87(22.4) 0.76(19.6) 25.7
LARISSA 0.86(239) 0.74(207) 0.75(208) 0.74(207) 0.7(195) 0.74(205) 0.83(232) 278 1.01(27.1) 0.69(18.4) 0.67(17.9) 0.9(24.1) 0.9(24.1) 0.85(22.8) 0.76(20.2) 26.7
METHONI 0.64(216) 0.62(211) 0.71(242) 0.52(178) 0.6(205) 0.56(191) 0.62(211) 340 2.22(42.6) 2.03(38.9) 1.45(27.9) 2.42(46.4) 1.76(33.8) 1.48(28.4) 2.26(43.3) 19.2
)
)
ARGOSTOLI 0.86(220) 0.75(193) 0.9(231) 0.74(189) 0.79(201) 0.73(188) 0.82(210) 256 | 1.07(46.2) 1.1(47.2) 0.74(31.8) 1.18(50.9) 1.14(49.2) 0.8(34.6) 1.25(53.9) 43.1
CHANIA 0.79(235) 0.78(232) 0.85(255) 0.64(190) 0.84(251) 0.75(225) 0.8(239) 299 | 1.67(38.8) 1.31(30.4) 1.27(29.5) 1.77(41) 1.28(29.6) 1.52(35.3) 1.48(34.3) 23.2
THESSALONIKI 0.83(225) 0.7(188) 0.77(209) 0.72(194) 0.75(202) 0.67(180) 0.72(195) 270 |2.02(46.1) 1.59(36.3) 1.75(39.8) 1.86(42.3) 1.3(29.7) 2.15(49.1) 1.27(28.9) 22.8
ALEXANDROUPOLI  0.86(251) 0.73(215) 0.77(226) 0.67(195) 0.76(223) 0.75(219) 0.79(232) 293 | 1.52(38.1) 1.13(28.3) 1.76(44.1) 1.62(40.6) 1.58(39.7) 1.7(42.7) 1.16(29.2) 251

KOZANI 0.75(201) 0.6(160) 0.59(158) 0.52(140) 0.56(151) 0.63
IOANNINA 0.77(185) 0.61(145) 0.6(144) 0.55(132) 0.62(148) 0.69

168) 0.63 (170
164) 0.64 (154

268 1.5(29) 1.21(23.3) 1.26(24.4) 1.46(28.2) 1.71(33) 1.59(30.6) 0.92(17.8) 19.3

(
(
(
( 0.87(30.6) 1.49(52.3) 0.94(33) 0.96(33.8) 0.91(32.1) 35.2

239 1.48(52.1) 0.92(32.4

—~ e~ o~~~ o~~~ o~~~ o~ —~

)
)
)
)
)
)

)

)

)

)
MITILINI 0.96(279) 0.86(249) 0.96(278) 0.84(244) 0.92(266) 0.89(258) 0.89(258) 290 | 0.95(35.9) 0.86(32.6) 0.97(36.6) 1.23(46.2) 0.99(37.5) 0.66(24.7) 0.69(26) 37.7
AGRINIO 0.86(233) 0.64(174) 0.73(197) 0.58(158) 0.69(186) 0.61(166) 0.73(197) 271 |0.78(36.4) 0.6(27.9) 0.61(28.5 0.64(29.7) 0.62(29.1) 0.56(26.2) 0.66(30.6) 46.6
SKYROS 0.86(243) 0.71(202) 0.84(238) 0.63(178) 0.77(219) 0.7(198) 0.74(211) 284 | 0.87(34.8) 0.95(38.1) 0.83(33.3) 1.17(47.1) 0.55(22.2) 1.14(45.8) 0.85(33.9) 40.1
TRIPOLI 0.65(178) 0.62(170) 0.59(161) 0.44(121) 0.59(162) 0.65(178) 0.63(173) 274 | 1.73(38.9) 1.21(27.2) 1.32(29.6) 1.8(40.5) 1.63(36.6) 1.45(32.7) 1.22(27.4) 22.5
KALAMATA 0.82(221) 0.75(203) 0.85(228) 0.61(164) 0.77(207) 0.7(189) 0.81(219) 269 | 1.21(40.2) 0.92(30.5) 0.83(27.7) 1.03(34.3) 0.87(29) 1.2(39.8) 0.86(28.7) 33.2
NAXOS 0.91(270) 0.77(229) 0.95(282) 0.68(201) 0.87(257) 0.78(231) 0.82(245) 297 | 1.53(35.7) 1.05(24.6) 0.8(18.7) 1.09(25.5) 0.68(15.9) 1.37(32) 0.92(21.6) 23.4
MILOS 0.84(255) 0.72(219) 0.85(257) 0.69(208) 0.79(238) 0.73(222) 0.78(236) 303 |0.92(34.9) 0.83(31.6) 0.58(22) 0.96(36.4) 0.65(24.8) 0.85(32.1) 0.67(25.4) 37.9
KYTHIRA 0.82(240) 0.79(229) 0.85(246) 0.71(207) 0.79(230) 0.75(217) 0.81(236) 291 | 1.64(51.3) 1.34(41.8) 1.58(49.4) 1.94(60.8) 1.47(46) 1.56(48.7) 1.16(36.4) 31.3
RHODOS 0.91(274) 0.86(260) 0.96(291) 0.84(253) 0.91(275) 0.8(241) 0.88(267) 302 |2.23(67.7) 1.23(37.3) 1.34(40.6) 2.12(64.5) 2.29(69.5) 1.96(59.5) 1.5(45.5) 30.4
IERAPETRA 0.91(274) 0.89(270) 0.92(278) 0.74(223) 0.87(264) 0.86(259) 0.95(288) 302 | 1.26(28.4) 0.97(22) 0.76(17.1) 1.78(40.2) 0.87(19.7) 1.65(37.4) 0.97(22) 22.6

parenthesis concern number of dry days and 99th percentile values.
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Figure 3.7 Percentage of stations representing physical schemes based on RMSE and
MAE. The highest percentage represents the parameterization scheme (PP1, PP2, PP3,
PP4, PP5, PP6, PP7) which has the best score of statistical metrics (RMSE and MAE) for
precipitation, on the total number of stations.

For precipitation, PP3 was found to perform better in the majority of the stations
yielding percentages of lower RMSE and MAE of 35% and 41%, and 44% and 61%,
for the high resolution domains D02(25) and D02(20), respectively. Many studies have
reported the difficulty to model precipitation with WRF model configurations, yet more
when it is related to difficult topography and extended coastal complexity, such as in

the case of Greece.

However, the PP3 configuration (WSM6 with MYJ and BMJ) appeared to perform
better in the majority of the stations with the percentage of 40-60% combined with
lower statistical metrics RMSE and MAE. According to (Zittis et al. 2014), maximum
and minimum temperatures with WSM®6 scheme-driven simulations showed closer
agreement with the observational datasets/stations and also these simulations were able
to capture the annual precipitation cycle adequately. Other studies have also supported
these options of physical schemes (PP3 WRF setup) for climate applications, having
more balanced overall behavior for both surface variables (Argiieso et al. 2011; Soares
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et al. 2012; Katragkou et al. 2015). Efstathiou et al. (2013) indicated that WSMS6 in
conjunction with MYJ for hourly rain rates provided better statistical scores for light to

moderate precipitation over eastern Chalkidiki.

OBS Annual mean of Tmax (C) 30 Annual mean of Tmax (°C) - PP1

Annual mean of Tmax (°C) - PP4 Annual mean of Tmax (°C) - PP5
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Figure 3.8 Spatial distribution of a) annual mean maximum (Tmax) and b) annual mean
minimum temperature (Tmin) in °C and c¢) the annual precipitation (in mm) for the 5-km

region of Greece D02(20), for the selected year 2002.
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3.1.3. Relative humidity and wind speed

The results of relative humidity (Table 3.4) revealed a consistent underestimation of
RH for both inner domains. Statistical errors yield overall small differences not only in
both high resolution domains but also between the seven simulation set ups. The RMSE
and MAE errors range close to 12 and 9% respectively, with similar values found for
all simulations. The correlation coefficients between the observed and the simulated
RH are around 0.60 with an overall negative BIAS from—1.2 to —2.1% for D02(20) and
—0.03 to —1.36% for D02(25). The overall score indicates a slightly better performance
of the model for the PP5 simulation scheme (lowest errors in bold). On the other hand,
the statistical errors of wind speed (Table 3.4 also) showed a consistent overestimation
of WS for both inner domains, with similar values found for all simulations. The RMSE
and MAE errors range close to 2.2 and 1.5 m/s respectively, the correlation coefficients
between the observed and the simulated WS are around 0.64-0.65. A positive BIAS is
observed from 0.7 to 1.18 m/s for D02(20) and 0.79 to 1.33 m/s for D02(25) indicating
a slightly better performance for the PP6 model set up.

The statistical errors of relative humidity and wind speed yield overall small differences
not only on both high-resolution domains but also between the seven simulation setups.
A consistent underestimation of RH was observed, followed by a consistent
overestimation of WS for the sum of grid point stations. The representation of the
statistical errors by stations was just made to indicate the variety of results among
stations caused by the difference in the distance between the station and the nearest
model grid point due to the complex topography of the area. Thus, direct comparisons

were avoided with other studies considering the differences in locations.
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This study was a first step towards obtaining high resolution climatology in Greece,
with some limitations due to the rather short time of the examined period (one year)
and the limited number of observational data. To investigate further, the effect of the
choice of physics schemes combinations, more simulations of 5-years run along with
statistical analysis are analysed in the next Section 3.3 through the second sensitivity
test. These sensitivity studies will assist in the identification of the likely best set of
physics parameterization schemes exhibiting the most skill in the area of Greece to
advance efforts for consistent high resolution climate simulations and a more robust

assessment of future climate impacts in the country.

Key Remarks

e Lower errors were obtained with 20 km grid resolution than the 25 km of
the parent (European) domain considering the downscaled results of the
examined parameters.

e No significant statistical differences found between the two studied do-
mains D02(25) and D02(20) by means of statistical errors in the observed
and simulated data for the seven simulation set ups.

e Underestimation of simulated maximum temperature and overestima-
tion of the minimum temperature compared to station data.

e Overestimation of simulated precipitation with good representation of
spatial patterns.

e For precipitation, PP3 was found to perform better in the majority of the
stations yielding percentages of lower statistical errors.

e Consistent underestimation of relative humidity was observed, followed
by a consistent overestimation of WS for the sum of grid point stations.

e The 20 km spatial resolution grid will be preferably selected for historical
and future climate simulations.
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3.2 Sensitivity test 2

Following the results of the previous sensitivity test, 5 years of high-resolution
dynamical downscaling experiments were performed, from 2000 to 2004 inclusive,
with the use of the WRF model and 5 km spatial resolution. The period for the
evaluation of all the WRF simulations spans from 1 January 2000 until 31 December
2004. This period was selected based on the satisfactory number of high quality
available observational data. The simulations have run independently of each other with
parallel integration to decrease the total time needed to complete the S-year
climatology. The objective of this work is to validate the high-resolution downscaling
simulations with the use of the available observed values of minimum and maximum
daily temperature and daily precipitation, in order to select among different physics
parameterizations (e.g., cloud microphysics, boundary layer and cumulus), the
sufficient setup to investigate the overall model’s performance over the area of interest
for subsequent high resolution historic and future climate model experiments.

In the current study, four WRF simulations have been performed, using different
combinations of physics parameterizations, in order to investigate their effects on
temperature and precipitation fields in the inner domain of Greece. These different
experiments were finally selected considering previous results for the same area,
employing a larger set of WRF simulations covering 1-year period and more variables,
such as relative humidity and surface wind speed (Politi et al. 2018). For convenience
and link to this previous research, the names of the four best selected combinations of
physics parameterizations (as PP2, PP3, PP5, PP7) were kept. The simulations have run
independently of each other with parallel integration in order to decrease the total time
needed to complete the 5-year climatology. Table 3.6 summarizes the different
physical schemes combinations for each of the four simulations.

Table 3.6 Parameterization combinations of WRF model. The four different simulations
are named as PP2, PP3, PP5 and PP7.

Schemes — Microphysics PBL/SLP Cumulus

Sim.ID | D01 D02 D01 D02 D01 D02

PP2 WSM6 THOM MY]J/MO Grell-3D

PP3 WSM6  WSMeé6 MY]J/MO BM]
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PP5 WSM6 THOM YSU/MM5 BMJ

PP7 FE FE MYJ/MO Grell-3D

Focusing on precipitation verification, the accuracy of the simulated precipitation was
also determined by statistical scores of a contingency table using four distinct threshold
values of precipitation (for further information, see Table A.2 of the Appendix),
precipitation for low rainfall (>1mm), medium rainfall (>2.5 mm), heavy rainfall (>10
mm) and extremely heavy rainfall days (>20 mm) (Lagouvardos and Kotroni 2005;
Kryza et al. 2013; Dasari and Challa 2015), to evaluate small and large rainfall events,
for the location of each station separately.

3.2.1 Maximum Temperature and Minimum Temperature

Annual and seasonal changes in the daily minimum (TN) and maximum (TX)
temperatures for the selected period have been analyzed. In general, it was found that
physics parameterizations appear to have less noticeable effect on temperature than on

precipitation [56].
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Figure 3.9 Observed and simulated mean daily TX (a) and TN values (b), on the total grid
stations’ points by month, for the four different simulations (PP2, PP3, PP5, PP7), for the
high-resolution domain of Greece (D02) during 2000-2004.

In Figure 3.9, the inter-annual cycle of daily-average minimum and maximum values
of temperature by month is displayed for the total number of grid stations’ points for
the whole region of the study. The colored lines show the results of the simulations, and
the dashed, black lines indicate observational data. In general, the observational
seasonality is precisely captured during 2000—2004, while the summer/winter peaks are
clearly identified as well. Similar representation and behavior of temperatures are
observed regarding all physical schemes. Both temperature measures are in agreement
over the study period, but WRF TX results are consistently colder, while TN is much
warmer than observational data for all physical schemes. This bias appears to result
mainly from the summertime over-prediction of daily-minimum temperature and
summertime under-prediction of TX; daily maximum biases tend to be smaller in
magnitude and seasonally invariant, while the warm bias is mainly confined to the
maximum temperatures. Additionally, the spatial distribution (Figure 3.10) of the
simulated S5-years mean that the daily TX is characterized normally by a warm
decreasing gradient from the coasts and low altitudes regions to mountainous chains,
verified by the weather station values in spite of the limited number of observational

data. Similar results are observed for minimum temperature as well (Figure 3.11).
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Figure 3.10 Spatial distribution of 5-annual mean maximum temperature (TX) for the 5-
km region of Greece (D02), for the selected period 2000-2004.

ERA-interim also performed well the inter-annual cycle for both temperatures,
indicating lower values than the observed and modeled values during summer
maximum values in the case of maximum temperature. Table 3.7 presents the statistical
metrics calculated for daily values. A high correlation coefficient of 0.96 is observed
between the station and the simulated daily maximum temperature TX, with an overall
negative BIAS from —1.1 to —1.4 °C, indicating a slightly better performance of the
model for the PP3 (—1.06 °C) simulation.
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Figure 3.11 Spatial distribution of 5-annual mean minimum temperature (TN) for the 5-
km region of Greece (D02), for the selected period 2000-2004.

Table 3.7 Statistical metrics of the four simulations in the total grid points for daily
minimum temperature (TN), daily maximum temperature (TX) for 2000-2004, over the

area of Greece.
ID PP2 PP3 PP5 PP7 ERA-I
BIAS(°C) -1.24  -1.06 -1.39 -1.18 -2.64
TX RMSE(°C)  2.66 2.60 2.62 2.64 3.95
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MAE(°C) 2.08 2.01 2.06 2.06 3.18

COR 096  0.96 0.96 0.96 0.93

BIAS(°C) 2.08 221 2.22 2.11 0.77

TN  RMSE(C) 353  3.64 3.61 3.55 3.36
MAE(°C) 268  2.78 2.78 2.70 2.58

COR 092 092 0.92 0.92 0.90

The RMSE and MAE errors have values close to 2.6 °C and 2 °C, respectively, with
similar values found for all simulations. Regarding the daily TN, a high correlation
coefficient of 0.92 is observed between observations and model data, with a consistent
positive bias of around 2 °C, ~3.5 °C RMSE and ~ 2.7 °C MAE values. These findings
are in good agreement with high resolution climate analysis for temperature by Berg et
al. [4] for Germany, and little higher values regarding RMSE/MAE values, (especially
in the case of TX BIAS, which is found negligible —0.4 °C) in a similar study of Soares
et al. 2012 for Portugal. The results showed an improvement in maximum temperature
with respect to the ERA-Interim dataset, and higher bias regarding minimum
temperature, but without significant discrepancies on the other statistical errors. An
overall performance of the simulations is illustrated in Figure 3.12, by Taylor plots, for
seasonal periods (winter, spring, summer and autumn - 7a) and annual (7b) during
2000-2004.
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Figure 3.12 Seasonal and annual Taylor diagrams of the four WRF simulations (PP2, PP3,
PP5, PP7) with respect to observed daily maximum (TX) and minimum temperatures
(TN) for the high resolution domain of Greece (D02).

The diagrams for maximum temperature showed a good match between model
results and observations at seasonal time scales. The lowest performance was obtained
during the summer months, with correlations close to 0.75 that increase to 0.8 for PP5
simulation results. In addition, in the representation of metrics by station in Table 5,
high RMSE values are observed, of about 3-3.5 °C for several stations. It was found in
the initial study Politi et al. 2018 that the cell of the certain model points that correspond
to the location of the observed stations is characterized by the sea dominant land use
category (e.g., Corfu, Heraklion, Mitilini, Argostoli etc.), and consequently during
summer period could affect the results, with higher differences in temperature leading
to stronger sea-land interaction in combination with the appearance of more intense
thermal instability. The correlations in the other seasons are much higher in the range
of 0.9-0.95, and lower errors are observed with very similar values for all models. The
Taylor diagram in a yearly time scale showed a very good agreement of models’
performance, with no distinct differences among them during the 5-year period. The
correlation coefficient results showed a good match with values above 0.9 arising in the
climatological study of (Marta-Almeida et al. 2016) for seasonal time scales in Spain.

Minimum temperatures showed a slightly lower performance than TX, with
correlation values around 0.85 during spring, autumn and winter regarding all
simulations results, while during summer months, a correlation lower than 0.8 is

observed with no significant changes with respect to errors. A good agreement with
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observations is also found, and no significant statistical differences are yielded among
PPs models for TN, as illustrated in the Taylor plot of Figure 3.12 with respect to the
annual timescale. The values of the correlations are higher than 0.9, as an increasing
number of days were averaged. It is noticed that for all simulations the correlation
coefficients of TN vyield lower values (0.92-0.93) for high resolution domains, which
is in agreement with other works (Zhang et al. 2009, Soares et al. 2012). It could be
deduced that the model performs better for TN with the PP2 scheme with positive BIAS
near 2 °C. Table 3.8 depicts the best setup based on the daily values of statistical
metrics, RMSE, MAE and for the daily maximum temperature separately for each of
the 28 stations, during the 5 years and the four different experiments. These same
calculations were derived as well as for TN. Some exceptions in Table 3.8, concern 6—
7 stations, that their BIAS is in the range of 2-3.5 °C, and probably is related to the
selection of the nearest model point to a station that is not located in a land cell or
displays a significant height difference. From this analysis, it is evident that the setup
that statistically outperforms with the lowest errors among stations is PP3, showing a
significant improvement regarding the others, and thus representing the majority of the
stations in Greece.

Table 3.8 Values of statistical metrics of root mean squared error (RMSE) and mean

absolute error (MAE), regarding TX for the four different setups classified by station.
The final column indicates the best setup by station.

Stations PP2 PP3 PP5 PP7 PP2 PP3 PP5 PP7  BEST SETUP
RMSE (°C) MAE (°C)

CORFU 387 38 358 387 345 338 318 345 PP5
HELLINIKON 192 182 194 18 151 142 155 146 PP3
HERAKLION 338 328 323 337 289 277 272 287 PP5

LARISSA 253 249 269 25 201 195 214 198 PP3
METHONI 309 298 299 305 27 257 256 266 PP3
SAMOS AIRPORT 195 188 174 192 153 146 139 15 PP5
SOUDA AIRPORT 2 185 23 197 157 14 182 153 PP3
ANCHIALOS 245 239 257 238 18 18 201 1.8 PP3/PP7
ARGOSTOLI 358 349 349 356 304 293 293 301 PP3/PP5
CHANIA 182 175 21 179 142 135 167 14 PP3
CHIOS 209 209 173 207 163 162 133 161 PP5
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THESSALONIKI 2.73 2.68 2.76 2.71 2.26 2.2 2.33 2.24 PP3
ALEXANDROUPOLI 222 2.2 2.19 2.17 1.72 1.68 1.72 1.68 PP3/PP7
KOZANI 2.9 281 297 2.84 2.36 2.26 2.45 2.32 PP3
IOANNINA 2.25 215 222 2.25 1.73 1.64 1.74 1.7 PP3
MITILINI 398 392 364 3.99 3.38 3.31 3.09 3.38 PP5
AGRINIO 2.07 196 1.98 2.08 1.59 1.48 1.54 1.59 PP3
SKYROS 1.89 1.81 1.85 1.84 1.42 1.32 14 1.37 PP3
TRIPOLI 3.1 3.06 311 3.1 2.49 2.45 2.54 2.46 PP3
KALAMATA 2.28 222  2.08 2.23 1.82 1.77 1.66 1.79 PP5
NAXOS 191 193 156 1.87 1.49 1.52 1.2 1.45 PP5
MILOS 2.51 233  3.04 2.48 2.06 1.87 2.48 2.01 PP3
KYTHIRA 3.2 3.15 313 3.2 2.46 241 24 2.46 PP5
RHODOS 2.01 2.03 1.63 2.02 1.59 1.59 1.27 1.59 PP5
IERAPETRA 1.66 1.61 1.58 1.63 1.3 1.24 1.25 1.28 PP3
FLORINA 3.34 326 341 3.32 2.69 2.63 2.82 2.69 PP3
LAMIA 3.28 322 336 3.18 2.75 2.66 2.85 2.65 PP7
TANAGRA 2.08 208 1.95 2.05 1.56 1.54 147 1.54 PP5
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Figure 3.13 Comparison of the observed maximum temperatures by indicative weather

stations, and the four simulated results in terms of probability distributions. The dashed

line indicates the probability distribution of the observations.
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The comparison of model results and observations in terms of probability
distribution (see Figure 3.13) for all stations shows satisfied agreement for the majority
of the stations for the 5-year period daily TX, as all WRF simulations follow the pattern
distribution of observed data without having distinct differences among setups. In a
few stations, a lower model - observations correspondence is found. More specifically,
the Argostoli, Corfu, Florina, Heraklion, Kithira, Methoni, Milos and Mitilini stations
illustrate a large shift towards colder values in the medium temperature range with
higher density values. In Chania station all simulations appear to have higher density
values for hotter temperatures, while in lerapetra, the opposite behavior is observed. On
the other hand, the TN probability distributions of WRF simulations (Figure 3.14),
appear to have a large shift towards hotter values in the temperature range
corresponding to either higher or lower density. This behavior justifies the consistent
model’s overestimation, especially during the summer period. Percentiles of TX and
TN (the 1st, 5th, 25th, 75th, 95th and 99th) of daily values for the 28 stations, as well
as for the total region of Greece were calculated, in order to focus on the examination
of extremes described by the different simulations.

Percentiles for the WRF simulations versus observational percentiles are shown
indicatively in Figure 3.15 and Figure 3.16, for TX and TN for several stations, and
their average through the domain of Greece. As in the case of precipitation, the over- or
underestimation of the simulations is indicated by the blue line, which represents the
perfect description. It is evident that the maximum temperature is very well reproduced
by WRF, with no significant differences between the different simulations, and with
slight underestimation mostly for percentiles higher than 50%.
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Figure 3.14 Comparison of the observed minimum temperatures by indicative weather
stations, and the four simulated results in terms of probability distributions. The dashed

line indicates the probability distribution of the observations.

There are some stations, e.g., Argostoli or Mitilini, that appear to have larger
deviations in the extreme percentiles, and others like Naxos that show very good
performances in predicting the extremes. In accordance, regarding the minimum
temperature, all models’ setups indicate no significant differences in simulating
percentiles as well, however in what concerns their behavior an almost systematic
overestimation is observed overall. Probably, as (Pérez et al. 2014) point out in the case
study of the Canary Islands, these deviations could be due to the insufficient
temperature correction on the representation of mountainous areas, because the altitude

difference between the model and stations points has strong influence.
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Figure 3.15 Percentiles of daily maximum temperature for the four WRF simulations vs.

observational percentiles for some indicative stations and their average for the region of

Greece (D02). Straight line represents the perfect performance.
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Figure 3.16 Percentiles of daily minimum temperatures for the four WRF simulations vs.
observational percentiles for some indicative stations and their average for the region of

Greece (D02). Straight line represents the perfect performance.
3.2.2 Precipitation

Monthly precipitation time-series are illustrated in Figure 3.17. The seasonal pattern
of monthly precipitation is well captured by the majority of the schemes, also observed
in the study of Garcia-Diez et al. 2015, remarking the highest precipitation during
winter and lowest during summer. The black, dashed line illustrates the seasonal
variability of monthly precipitation derived from the average values of the available
stations, which is noticed on the models’ results. There are obvious similarities in the

precipitation patterns among all experiments and observed data for the 5 years of
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comparison, yielding smoothly the precipitation’s inter-annual variability, especially
during the wettest months and summer periods characterized by limited rainfall. Some
differences show that in general, there is an overestimation of precipitation compared
to ground data for all setups, and this probably is caused by excessive wintertime
precipitation (Caldwell 2010). On the other hand, ERA-Interim appears to
underestimate winter precipitation from November to January. Some cases of
precipitation’s underestimation are related to the PP3 setup during the study period, and

as this simulation appears to have the less overestimation among setups.
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Figure 3.17 Observed and simulated mean monthly cumulative precipitation values on
the total grid stations’ points, for the four different simulations (PP2, PP3, PP5, PP7), for
the high-resolution domain of Greece during 2000-2004.

This fact is also confirmed with the 5-yearly estimation of statistical errors based on
daily precipitation values in Table 3.9, where PP3 shows the best performance, with
positive percentage BIAS of about 19%, while the other models have values of over
40%. As being observed, RMSE, MAE and COR results as well show slightly better
performance for PP3 compared to the other simulations. It is worthy to note that PP3
bias (19%) is significantly smaller than the +50% reported in the Third Assessment
Report of the Intergovernmental Panel on Climate Change by (Giorgi et al. 2001) for
RCMs, and while not small, it is close to the range of the best performing RCMs shown
in several studies (Zhang et al. 2009; Rauscher et al. 2010; Heikkila et al. 2011; Soares
et al. 2012). PP3 uses the Betts—Miller—Janjic cumulus parameterization, WSM6 for

microphysics, the Mellor-Yamada—-Janjic as PBL scheme and Monin-Obukhov
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similarity theory (Table 3.7). Statistical metrics between ERA-Interim and the WRF

results indicate some loss of performance in the WRF model, with an underestimation

of 5.5% PBIAS value in the total of stations’ grid points.

Table 3.9 Precipitation Statistical metrics of the four simulations for all stations daily

precipitation (RR) for 2000-2004, over the area of Greece

PP2 PP3 PP5 PP7 ERA-I
PBIAS (%) 44.2 19.1 42.3 41.2 -5.53
RMSE (mm) 7.1 6.4 6.9 7.1 5.46
RR
MAE (mm) 2.31 2.01 2.22 2.27 1.66
COR 0.43 0.48 0.45 0.46 0.53

The study of the spatial distribution of S5-annual mean precipitation in WRF

simulations and observations shows a clear topographical dependency (Figure 3.18).

The analysis of the amount of precipitation yields large differences between plain areas

and higher elevations, with maximum values of annual precipitation found in the

western part of the country, related to fronts passages with increased vertical lift due to

orographic enhancement in mountainous locations. All simulations depict similarly the

spatial pattern of precipitation, with excessive rain being observed only in mountainous

locations; however, there are no representative stations to validate such precipitation

amounts.
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Figure 3.18 WRF Spatial distribution of the annual precipitation (in mm) for the 5-km
resolution of the region of Greece (D02), for the selected period 2000-2004.

The same behavior is observed for all model setups, although PP7 seems to produce
higher amounts of precipitation during the examined 5-year period than PP2 and PP3.
This fact could be related to the interaction of the microphysical scheme with the
association of PBL (MYJ) scheme, which is in line with other studies with higher
precipitation totals and more convective precipitation (Schwartz et al. 2010;
Kioutsioukis et al. 2016). Additionally, for precipitation over areas of complex
topography, wet bias is particularly found to be common to several RCMs (Gao et al.
2015; Guo et al. 2018), and is probably caused by an overestimation of orographic
precipitation enhancement (Gerber et al. 2018), and/or to an inaccurate PBL simulation
(Gao et al. 2015; Xu and Yang 2015; Xu et al. 2019).
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Figure 3.19 Seasonal Taylor diagrams of the four WRF simulations (PP2, PP3, PP5, PP7)
with respect to observed daily precipitation (RR) for the high-resolution domain of Greece
(D02).

The Taylor diagrams shown in Figure 3.19 provide the comparative assessment of the
four different model experiments to the choice of the physical parameterizations, to
simulate the seasonal spatial pattern of daily precipitation during the examined period.
The simulated results are compared to all observational data from 23 stations. The best
simulation is marked by the largest correlation, smaller CRMSE and being closer to the
observed standard deviation. It is found that the highest correlation in the range of 0.5—
0.6 is observed during the winter and spring seasons, with the poorest correlation in
summer, resulting though in the lowest centered RMSE values (~3.5 mm). It is well-
known that the satisfied representation of summer precipitation is a demanding field for
any model, and as the convective processes prevail, it is not easy to determine
confidently the appropriate cumulus scheme. The poor performance of model setups is

observed during winter and autumn, where the highest CRMSE values are displayed.
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All models’ simulations seem to have similar performance; however, PP3 appears to
have slightly lowest errors during all seasons, thus yielding a better performance
compared to the rest of the setups. Because of the heterogeneous spatial pattern of
precipitation in Greece, which is strongly associated with the orography, the extended
coastline (see Figure 3.1) and the limited number of stations for comparison, statistical

errors are also displayed per station in detail in Figure 3.20:
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Figure 3.20 (a) Root mean square error, (b) pbias and (c) correlation coefficient of
precipitation (RR) per HNMS station, for the four different physics parameterisations
schemes (PP2, PP3, PP5, PP7) for 2000-2004.

This analysis allows also exploring which of the simulations outperforms by station,

which of the stations statistically is better validated from the WRF model, and finally
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which setup represents outmost the majority of the stations in Greece. It is evident that

the prevailing simulation with the lowest errors among stations is represented by PP3,

showing a significant improvement regarding the others.
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Figure 3.21 Percentiles of daily precipitation for the four WRF simulations vs.

observational percentiles for the region of Greece and some indicative stations. Straight

(blue) line represents the perfect performance.

In general, regional models still misrepresent daily precipitation and precipitation
extremes because of resolution or/and parameterization deficiencies (Soares et al.
2012). The precipitation analysis was extended on studying the intensity of daily
precipitation; thus, the 80th, 90th, 95th and 99th higher ranking percentiles were
calculated. This analysis is very important for climate change assessment related to
extreme weather events, drought and flooding events, that have significant
socioeconomic impacts on the global community. The results are shown in Figure 3.21,
where the WRF percentiles distribution is plotted versus the observational data for the

domain of Greece and several indicative stations distributed all over Greece during
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these 5 years. The straight (blue) line depicts a perfect performance, indicating the over-
or under-estimation of the simulated values compared to the observations.

The percentiles, obtained for the area of Greece, show that all WRF simulations
follow the observational percentiles very well. The PP3 model setup outperforms
remarkably well the extreme percentile 99%, while the other setups tend to slightly
overestimate rainfall for 90% and 95% extremes. A general inspection of the percentiles
results by station shows that WRF dynamical downscaling simulations overestimate
extreme precipitation events, with few exceptions regarding the 99% percentile, and
also that PP3 model simulation tends to reproduce rainfall extremes better. than the
other setups.

In Table 3.10, precipitation verification statistics are presented in the contingency
table for four distinct threshold values of precipitation compared to the 5-year
observational data. This table depicts the results by station, only for the best performed
simulation PP3. The forecasts show reasonable skills for both low and medium intensity
rainfall days, as the model runs show POD values of (0.7-0.86) and (0.6-0.85),
respectively. Regarding extreme rainfall events, the majority of the stations indicate
POD values close to 0.5-0.6, followed by FAR values of (0.5-0.7), meaning that a very
low percentage of these rain events (observed and/or predicted) were correctly forecast.
Probably the rare episode of convective precipitation is often missed or underestimated
by the model and the convective scheme.

Table 3.10 Probability of detection (POD), false alarm ratio (FAR) and critical success

index (CSI), are based on the contingency table, described on Table A.2 (APPENDIX),
for four thresholds calculated for each station separately, only for PP3.

PP3 sim Imm/day 2.5mm/day 10mm/day 20mm/day
STATIONS POD FAR CSI |POD FAR CSI| POD FAR CSI| POD FAR CSI
CORFU 074 043 046 0.69 0.44 045 | 045 051 031 029 0.61 0.20
HELLINIKON 079 058 043 0.75 0.63 033 | 0.44 070 022 | 032 079 0.14
HERAKLION 071 043 054 0.63 0.46 0.41 0.51 0.60 029 | 0.32 0.63 0.21
LARISSA 0.69 059 040 0.62 0.62 0.31 0.37 071 019 | 0.08 094 0.03
METHONI 071 0.65 0.30 0.65 0.66 029 | 0.49 076 019 | 0.36 0.79 0.6
SAMOS AIRPORT 086 045 0.49 0.85 0.43 0.51 0.71 053 040 | 047 0.68 0.24
SOUDA AIRPORT 074 047 049 0.72 0.49 042 | 0.55 0.68 025 | 0.61 073 023
ARGOSTOLI 077 050 047 0.75 0.51 043 | 0.55 0.61 030 | 040 0.61 0.25
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CHANIA 072 053 0.39 0.67 0.57 035 | 0.53 072 023 | 050 075 0.20
THESSALONIKI 070 0.65 0.36 0.64 0.67 028 | 0.52 071 023 | 0.09 097 0.03
ALEXANDROUPOLI 0.72 054  0.39 0.69 0.57 0.36 | 0.58 061 030| 035 081 0.14
KOZANI 076 0.66  0.35 0.69 0.70 026 | 047 082 015| 014 098 0.02
IOANNINA 081 054 044 0.76 0.56 039 | 0.46 062 026 | 037 060 024
MITILINI 079 043 0.53 0.76 0.46 046 | 0.62 049 039 | 046 066 0.24
AGRINIO 073 051 042 0.64 0.52 038 | 0.50 050 034 | 028 070 0.17
SKYROS 076 053 042 0.71 0.52 0.40 | 047 072 021 039 071 0.20
TRIPOLI 078 059 040 0.71 0.62 033 | 0.60 071 024 | 037 08 0.12
KALAMATA 074 042 049 0.66 0.45 043 | 047 046 034 | 027 059 0.20
NAXOS 073 051 045 0.69 0.50 041 | 0.38 071 020 017 079 0.10
MILOS 081 050 042 0.75 0.52 042 | 0.44 0.64 025]| 0.21 0.77 012
KYTHIRA 086 047 044 0.81 0.50 044 | 055 063 029| 048 071 022
RHODOS 084 043 051 0.80 0.43 0.50 | 0.54 064 028 | 044 0.69 022
IERAPETRA 0.65 052 042 0.58 0.55 034 | 035 059 023 | 022 067 0.15

Given the small discrepancies between the results of these two setups in
temperatures and taking into account the noticeable difference in the results of PP3 for
precipitation, PP3 was recommended as a good choice for the upcoming climate
simulations. Several studies have supported the PP3 WRF setup (MYJ, WSMBG,
RRTMG, NOAH, BMJ) for climate or forecasting applications as overall, more
balanced behavior is displayed for both surface variables; the annual precipitation cycle
is captured adequately, and closer agreement with the observational datasets is found
regarding temperatures and their extreme values [2,37-39,44,88,94,95]. It should be
mentioned that this study was based on previous research that has already examined a
combination of physics parameterizations, and performed sensitivity tests for the area
of interest, analyzing the effect of the chosen schemes; therefore, an in-depth analysis
of physical scheme inter-comparison was not in the scope of the current work. The use
of RCMs for the simulation of historical, current and future climate, particularly in view
of the warming climate, is continuously increasing, as it is considered important for
studying regional climate changes. It is considered important to emphasize that the
current study aimed at identifying an appropriate WRF model set up in order to perform
in the future high-resolution historical climatology simulation, by downscaling ERA-

interim reanalysis to the domain of Greece.
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Key Remarks

Obvious similarities were found in the precipitation patterns among simulations
and observations during the 5-yr period, verifying smoothly the precipitation’s
inter-annual variability.

The lowest positive percentage BIAS of about 19% was calculated for the selected
combination of physics parameterizations PP3 while for the rest of the setups,
values of over 40% were obtained.

PP3 model simulation reproduced rainfall extremes better than the other setups,
even though the model overestimated extreme precipitation events with few ex-
ceptions regarding the 99% percentile.

A good match between modeled and observed data for the maximum and mini-
mum temperatures for all tested simulations with high correlation above 0.9,
negative bias around 1-1.5 °C, and a positive bias of around 2 °C, respectively.
Good performance was deduced with regards to the examination of extreme per-
centiles for temperatures and precipitation.

PP3 showed a slightly better performance for the maximum temperature in the
majority of the stations, while PP2 for the minimum temperature

The study advocates that the PP3 model setup, which corresponds to the combi-
nation of physics schemes, including WSM6, MYJ, and BMJ, is suitable for high
resolution climate modeling studies for the domain of Greece, as the specific pa-
rameterization schemes simulate better the temperature and precipitation fields
compared to the rest of the investigated setups.
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3.3 Sensitivity test 3

In this section, sensitivity experiments were performed in order to investigate the
impact of different initializations of input data on WRF model output variables with
different types of time integration approaches, focusing on high resolution integrations
for the area of Greece. This final sensitivity test included three types of experiments:
The first experiment involved re-initialization from the driving reanalysis data on a
monthly basis while the last 4 days of the previous month were regarded as model spin-
up for the following month, as an overlap period. In the second experiment, the model
was initialized every 6 months, with one month spin-up period, and the third experiment
was a long-term continuous run with a single initialization. The evaluation period was
from 0000 UTC 1 January 2002 to 31 December 2002. Again, the ERA-Interim
reanalysis dataset was used to provide initial conditions. Lateral boundary conditions
and sea surface temperature were both updated every 6 hours, from ERA-Interim. The
choices of the parameterization schemes were motivated by previous WRF tests studied

in the previous sections.

3.3.1 Maximum Temperature and Minimum Temperature

The statistical metrics are illustrated on Table 3.11. The different integration
approaches do not appear to have a significant effect on the skill of regional dynamical
downscaling and show a good representation for both temperatures. The errors of
monthly and seasonal re-initialization runs, averaged over the total station-points, are
almost identical for both temperatures (TN and TX), with negative bias around 0.9°C
of TX and positive bias of around 2.2°C of TN. Smaller biases of TX are found for the
continuous run, however RMSE and MAE result in higher values for TX and TN.

Table 3.11 Statistical errors for daily maximum and minimum temperatures (TX and TN)

and precipitation (PR) during 2002 in the total grid points, over the area of Greece.

SimID 1M 6M 1Y
Metrics
VARS
BIAS (°C) -0.91 -1 -0.81
T RMSE (°C) 2.49 2.51 2.83
MAE (°C) 1.93 1.96 3.22
COR 0.95 0.95 0.93
TN  BIAS (°C) 2.27 2.22 2.84
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RMSE (°C) 3.54 35 4.19

MAE (°C) 2.78 2.75 3.22
COR 0.92 0.93 0.9
PBIAS(%) 155 137 6.7

o RMSE (mm) 6.64 7.17 6.72
MAPE (%) 121 122 122
COR 0.46 0.43 0.41

3.3.2 Precipitation

Regarding precipitation results (PR), a less reduced statistical error is observed for
the daily precipitation PBIAS (6.7%), in the case of continuous run, although the overall
performance for precipitation simulation is not satisfactory. It was also noticed that the
model in all experiments notably overestimates the quantity of precipitation between
0.1 and Imm.

The results of the performance for the three model simulation approaches are
summarized on Table 3.12, derived from contingency (Table A.3, APPENDIX) for the
three different thresholds. The statistics were calculated for each station separately and
the mean values of the total of stations are illustrated in the table. The best value
calculated for a station is also indicated in parenthesis. It is observed that all simulations
appear to have similar results. The systematic overestimation of precipitation is also
verified by the bias in all experiments. Considering the verification for precipitation for
the 0.1mm threshold, the POD index of the average of the total station points resulted
in higher values, around 0.8 for the cases of the monthly and seasonal simulations.
Similar behavior of the POD index is seen for the other two thresholds as well. It is
noted that the continuous simulation (1Y) shows slightly lower performance than the
other two types of experiments.

Table 3.12 Statistical errors for precipitation (PR) based on contingency table, during

2002 in the total station grid points, over the area of Greece.

Sim ID 1M 6M 1Y
thresholds

POD 0.81(0.92) 0.79(0.94) 0.68 (0.88)
odmm SR 0.53(0.69)  0.52(0.69)  0.49 (0.59)
BIAS 1.66 (0.97)  1.62(0.97) 1.51(0.97)
Csl 0.46 (0.58) 0.45(0.60)  0.39 (0.47)
L POD 0.71(0.90)  0.71(0.90) 0.61 (0.86)
SR 0.52 (0.68) 0.53(0.71)  0.51(0.67)
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BIAS 1.47(0.97)  1.45(0.98)  1.32(1.00)

CSlI 0.42 (1.05) 0.43 (0.55) 0.38 (0.50)

POD 0.43 (0.65) 0.49 (0.71) 0.35(0.75)

SR 0.40 (0.74) 0.38 (0.63)  0.39 (0.69)
10mm

BIAS 1.16 (1.00) 1.12(1.00)  0.97 (1.00)

CSlI 0.26 (0.47) 0.24 (0.48)  0.23 (0.50)

Figure 3.22 illustrates the performance of soil moisture for the three different
initialization simulations (here for 4 stations shown) in order to determine the effect of
interruption on frequent restarts. Soil moisture behavior has also been examined but not
validated, due to lack of observations. A similar pattern was observed in the variation
of soil moisture between 0.15-0.45 m3/m3 for all experiments, with some slight
deviations occurring during the annual cycle. According to Qian et al. (2002),
comparing the effect of changing soil moisture to that of updating atmospheric
conditions, the rainfall differences are small among those soil-moisture re-initialization
experiments, suggesting the secondary importance of soil-moisture memory for

regional climate modeling in monthly timescales.

The sensitivity test showed that all simulations do not appear to have a significant
impact on the skill of regional dynamical downscaling and show overall a good
representation for daily minimum (TN) and maximum (TX) temperatures. Regarding
the results of precipitation (PR), a slight improvement is observed for the daily
precipitation pbias (6.7%), under the case of continuous run, although precipitation is
consistently strongly overestimated. A similar pattern was observed in the variation of
soil moisture between 0.15-0.45 m3/m3 for all experiments, with small deviations
found in the annual cycle. The similarity between modeled soil moisture suggests that
monthly re-initialization does not affect the simulated surface temperature and
precipitation fields. Contingency tables and probability density function (pdf) analysis
from indicative stations (depicted in figure 3.23) showed that the results were almost
indistinguishable between the three simulations. Based on these results, it was workable
to proceed to the use of monthly re-initialization of model runs, as none of the three
experiments introduced significant impact on the examined variables; moreover, it was
more efficient computationally to perform simultaneous runs (in parallel). This
procedure was also followed to avoid possible climatic shifts that may result from long-

term continuous simulations (Tian et al. 2020).
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Figure 3.22 Annual cycle of soil moisture of Larissa, Samos, Kozani and Tripoli stations,

during 2002 for monthly, seasonal and continuous run.
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Figure 3.23 Probability density function (pdf) analysis of daily TX, TN and precipitation
from indicative stations of Methoni, Alexandroupolis and Skyros for the three examined
types of re-initialization compared to observations.
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Key Remarks

o Different integration approaches do not appear to have a significant ef-
fect on the skill of regional dynamical downscaling.

e Smaller bias of maximum temperature and precipitation is found for the
continuous run, however RMSE and MAE result in higher values for TX
and TN.

e Noticeable overestimation of the quantity of precipitation between 0.1
and 1mm.

e Continuous simulation (1Y) shows slightly lower performance than the
other two types of experiments on precipitation verification.

e More efficient computationally to perform simultaneous monthly runs (in
parallel) and avoid possible climatic shifts from long-term continuous
simulations.

3.4 The selection optimal model setup

In the final section a summary of the overall optimal model configuration was
presented for the historical and future simulations based on the previous studies of
sensitivity tests.

The WRF model configuration applied in this study includes a one-way nested
domain, with a spatial resolution of 20 km x 20 km in the outermost domain (D01, 265
% 200 grid cells), centered in the Mediterranean basin, and 5 km X% 5 km in the innermost
one (d02, 184 x 184 grid cells). Both domains have 40 vertical layers. The model
domains share the same options of physics for radiation, microphysics, boundary layer
scheme, and convection. More specifically, the Mellor—Yamada-Janjic scheme (MYJ)
was employed, associated with the corresponding surface layers (SLP) scheme. In this
scheme, the entrainment develops only from local mixing. Regarding cloud
microphysics, the WRF single-moment six-class scheme (WSM-6) was used to
simulate six classes of water mass processes. The Betts—Miller—Janji¢ scheme was
chosen for the cumulus parameterization, taking into consideration the grey zone
between 5 and 10 km in the vertical for the cumulus option. The radiation scheme was
set to the newer version of the Rapid Radiative Transfer Model, RRTMG, for both
longwave and shortwave radiation. Finally, the Noah LSM was employed as the land

surface model (LSM), as it is used widely for climate studies. For each simulation, the
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last four (4) days of the previous month were regarded as model spin-up for the

following month and were discarded, thus, the model was re-initialized every month.
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Chapter 4 Evaluation of high-resolution Historical simulations

In this chapter, the analysis of the performance of the WRF model to represent the
historical climatology was analysed over the area of Greece, by dynamically
downscaling the coarse-resolution ERA-Interim reanalysis and EC-EARTH datasets to
the high spatial resolution of 5 km x 5 km grid.

The analysis aimed: (1) to show that our downscaling of ERA-Interim reanalysis to
the Greek area produces comparable results to the available observational products and
(2) to demonstrate the improvement in downscaled fields (WRF_5) compared to
reanalysis dataset and the added value of the downscaling methodology. In addition,
the investigation included the ability of the regional model WRFEC historical
simulation to represent historical climate through the comparison with the available
HNMS observational data.

In this chapter, the validation procedure which includes the statistical and spatial
analysis of the historical climate variables, involved initially the representation of
temperatures (subchapter 4.1) with WRF_5 (section 4.1.1) and WRFEC (section 4.1.2)
and then that of precipitation (subchapter 4.2) with each of the models. Statistical
metrics were calculated for the total number of available stations and then separately
by grid point to check the spatial distribution of the errors as well. The following
standard error statistics and other statistical methods estimated in this study are included
in table 4.1 and are described in the APPENDIX.

Table 4.1 Statistical metrics for the validation of historical simulations.

HISTORICAL SIMULATION STATISTICAL METRICS

HINDCAST RUN WITH ERA-INTERIM | BIAS (or Pbias), RMSE, MAE, COR, MIA, NSE
PDFs, g-q plots
CONTROL-RUN WITH EC-EARTH BIAS (or Pbias), RMSE, MAE, COR, MIA, NSE

PDFs

Additionally, a two-sided student test was performed to identify the areas with no
significant differences between observed and model data at the 95% confidence level.
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4.1 Maximum (TX) and minimum temperatures (TN)

4.1.1 Evaluation of high-resolution Hindcast simulations with ERA-I

a) Analysis of Spatial and Temporal Climatology

In this subsection, the 5-km WRF high resolution simulations for maximum and
minimum temperatures are analyzed and compared against ERA-Interim reanalysis
(ERA-I) and station data (OBS) to verify the added value of the increase of the

horizontal resolution.

The calculated mean maximum and mean minimum temperature monthly cycles,
averaged over the historical period 1980-2004, are presented in Figures 4.1(a) and
4.1(b), respectively, along with the corresponding values of the standard deviation. The
monthly mean values were calculated for each dataset at the grid-point location of each
station and then, were averaged over the total number of points (stations). Likewise,
Figures 4.1(c) and 4.1(d) show the calculated mean inter-annual variability of

maximum and minimum temperatures.

Overall, the monthly cycle patterns of TX and TN were well represented with WRF_5
and highly correlated to the climatology of the country. Greece has a typical
Mediterranean climate with summers characterized by long hot and dry spells
(T>30°C), peaking between end-July and August, and rather cold winter months
particularly, in its northern parts between end-January and February. However, milder
winter months experience the southern parts of the country and the islands (Zerefos et
al. 2011). The WRF_5 TX followed the typical pattern of monthly variation by
displaying lower values in the winter months and higher ones during the summer.
Besides, their comparisons to OBS revealed a very good agreement, slightly
underpredicted, but within the calculated error range (Fig. 4.1 (a)). On the other hand,
ERA-I simulations did not present a better comparison with OBS and systematically
were underestimated throughout all months. The same conclusions were drawn for the
inter-annual cycle of TX as depicted in Fig 4c, where WRF_5 simulations were in
impressive agreement with OBS, in contrast to ERA-I results, which were

underestimated persistently.
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Figure 4.1 Mean annual cycle (a and b) and inter- annual variability (c and d) of maximum
and minimum temperatures averaged over the historical period of 1980-2004 for the total
number of stations.

Furthermore, the high-resolution domain of WRF didn't cool enough throughout the
year as the results concerning the monthly cycle of TN showed a persistent
overestimation (by approximately, 1°C) compared to the reanalysis and OBS data
(Fig.4.1(b)). The calculated annual cycle presented the same difference, where the
simulation of the reanalysis revealed closer to the observed data values than the WRF_5
(Fig.4.1(d)). The particular model’s behaviour was attributed to persistently clear sky
strong inversions (e.g., Soares et al. 2012) in the complex topography of Greece in
conjunction with the smooth geomorphological representation of ERA-I that might
allow lower values of TN, especially over mountainous regions not realistically

resolved by reanalysis resolution (as illustrated in Fig.3.1(a)). Such an issue could not

133



ERA-1 vs OBS

be translated into canceling the ability of WRF to represent properly TN. A more
extended discussion on this can be found in the statistical comparison analysis section.

Figure 4.2(a) and Figure 4.3(a) illustrate the spatial distribution of 25-years simulated
(reanalysis and WRF model) mean daily TX and TN (in the same figure) with the
respective one of the meteorological point observations data. The spatial patterns of the
simulated WRF_5 TX and TN were in agreement with the general climatological
knowledge for this area and with the observational data, where at the same time, they
revealed ERA-I deficiencies in the representation of temperatures in Greece by losing

important information concerning the mountainous areas.

Annual Average TX 1980-2004
Flaltabiat
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41
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WRF_5 vs OBS
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Figure 4.2 a) Spatial distribution of 25-years mean daily maximum temperature TX for
ERA-1 and WRF_5 compared to weather station observations (points). b) Spatial
distribution of seasonal mean daily maximum temperature over the historical period of
1980-2004 for ERA-I and for ¢) WRF_5 in comparison to the weather station data

Figure 4.2(b and c) depicts the spatial distribution of 25 years seasonal mean daily
maximum temperature derived from ERA-I and WRF_5 compared to the stations,
respectively. The depiction was for winter (December, January, and February, DJF),
spring (March, April, and May, MAM), summer (June, July, and August, JJA), and
autumn (September, October, and November, SON). The comparison of WRF_5 with
the observational data (Fig. 4.2(c)) showed that the model represented very well the
geographical distribution of seasonal mean daily TX and illustrated the seasonal

variation with similar ranges of temperature values among the two datasets.
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Figure 4.3 a) Spatial distribution of 25-years mean daily minimum temperature TN for
ERA-1 and WRF_5 compared to weather station observations (points). b) Spatial
distribution of seasonal mean daily minimum temperature over the historical period of
1980-2004 for ERA-I and for c) WRF_5 in comparison to the weather station data
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The higher deviations were mostly attributed to the values over altitude or steep terrain.
Regarding WRF 5’s spatial patterns, differences between inland and coastal areas were
more intense during the summer. In the winter, mean TX varied from -4°C to 8°C, over
mountainous regions, whereas in the summer, mean TX ranged from 32°C to 36°C in
parts of west and south Greece. The comparison of WRF_5 TX with the observational
values showed an underestimation of WRF_5 TX during the autumn season (SON, Fig
4.2(c)) as well as a more homogeneous spatial distribution of the model with values
around 12-18°C. During spring, WRF 5 and observational temperatures compared very
well (MAM Fig 4.2(c)) with values in the approximate range of 16°C - 24°C. The
comparison revealed overall realistic seasonal TX temperature patterns for the parts of
the domain of lower elevation. Moreover, it is emphasised, that there was no
observational network on mountainous areas to deduce the temperature deviations
based on the terrain’s altitude. The seasonal distribution of reanalysis, as expected,

presented a limited variation in TX values across the whole domain (Fig. 4.2b).

Similarly, the spatial pattern of the WRF_5 simulated seasonal mean daily TN
compared very well to that of the observations, as illustrated in Fig. 4.3(c). The model
represented TN very well across all seasons, with the most vivid variations found in the
summer and winter periods with values higher than 12°C and lower than 12°C,
respectively, throughout the domain. The autumn TN values tended to have a more
homogenous spatial distribution over land, with values close to 12°C, while spring
presented higher TN up to 15°C. Same as with TX, ERA-I did not show a realistic
variation in the spatial distribution of TN values (Fig. 4.3(b)).

b) Evaluation based on statistical metrics

To assess our downscaling methodology quantitatively, it was necessary to proceed to
the statistical evaluation of the simulated mean fields from WRF_5 and the driver ERA-
Interim with historical observations of the examined variables. The statistical errors (as
described in APPENDIX) of maximum and minimum temperatures for daily and
monthly averages for WRF_5 and ERA-Interim were calculated against observational
data from the weather stations over the entire domain and summarized in Table 4.2.
Table 4.2 includes, also, the statistical errors for precipitation in terms of daily and
monthly cumulative values. In general, the WRF model performed better than

reanalysis showing improvement with the downscaling results (WRF_5). The TX daily
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and monthly scale correlation coefficients for WRF_5 were 0.95 and 0.98, respectively,
while the respective ones for ERA-I were much lower and equal to 0.82 and 0.8. The
rather better COR values for ERA-I could be attributed to the smooth patterns of the
reanalysis dataset, although their values did not unveil the heterogeneity across the
domain as manifested by the observations. As was foreseeable, the errors reduce with
the increasing time-averaging for WRF_5. The statistical results showed a cold bias of
around -0.6 °C regarding the daily and monthly TX WRF 5 and distinctively larger
values for ERA-I of -2.2°C and -3.3°C, respectively. For daily WRF 5 TX, the RMSE
and MAE were of the order of 2.5°C and 1.8°C, respectively, while for monthly
averaging, these errors reduced to values of 1.7°C and 1.2°C, respectively. On the other
hand, for ERA-I, the statistical errors were higher than and at least twice as large as the
ones for WRF_5. The efficiency metrics NSE and MIA also improved significantly
with the downscaling to values approximately equal to 0.9, while for ERA-I, their
values were below 0.7. The efficiency metric of MIA was improved significantly with
the downscaling to values approximately equal to 0.9, while for ERA-I, their values
were below 0.7.

Table 4.2 Statistical errors between model results and reanalysis against observations.

X Time COR BIAS(°C) RMSE (°C) MAE (°C) NSE MIA
WRF 5 | Daily  0.95 -0.57 25 1.83 0.91 0.86
Monthly ~ 0.98 -0.57 1.7 1.21 0.95 0.90
ERA-1 | Daily 082 -2.19 5.03 3.96 0.59 0.70
Monthly  0.80 -3.25 7.66 8.27 0.67 0.46

TN
Daily  0.92 1.05 2.97 2.32 0.82 0.80
WRF_5 | Monthly  0.96 1.05 2.17 171 0.89 0.85
Daily  0.79 -0.49 4.71 3.67 0.55 0.69
ERA-l | Monthly 0.88 -0.49 35 2.84 0.71 0.75
or COR PBIAS(%) RMSE(mm) MAE(mm) NSE MIA
Daily  0.45 3.40 6.22 1.92 0.05 0.64
WRF_5 | Monthly  0.67 6.60 46.87 29.31 0.40 0.65
Daily  0.13 17 7.06 2.44 -2.22 0.51
ERA-l | Monthly  0.62 -12.6 47.91 28.66 0.37 0.63
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Regarding TN, correlations were found to be slightly smaller than those of TX,
similarly to Zhang et al. (2009) and Soares et al. (2012), but indicated improved
downscaled results compared to those of reanalysis. Overall, the other statistical errors
have improved values against ERA-I except for bias. Both comparisons revealed a
warm bias of about 1 °C for WRF 5 and a cold bias around -0.5°C for ERA-I. The
efficiency metrics for TN showed an improved performance of the model compared to

reanalysis for both temporal scales.

In what concerns precipitation statistical errors over the entire domain, relatively low
correlation values were calculated between observations and WRF_5 results (around
0.5) and very much lower for the case of ERA-I (~0.13) on a daily scale. Although the
WRF model improved with downscaling the results on precipitation significantly
compared to ERA-I according to the error statistics, the values of COR, NSE, and MIA
remained lower than those on temperatures. In general, the WRF_5 model
overestimated precipitation compared to observational values but, the overall

improvement over the ERA-I values was a positive outcome.

The annual cycle of the mean statistical errors calculated for the monthly maximum-
minimum temperatures is presented in Figures 4.4 and 4.5, respectively, concerning
WRF_5 simulations and ERA-I against observations. The best results for TX were
obtained with the WRF_5 downscaling, which displayed lower BIAS than ERA-I
during all the months of the year and with values below 1 °C. In particular, from May
to July, ERA-I showed higher errors (BIAS, MAE, and RMSE) and a very much lower
correlation compared to WRF_5 simulation. April and May presented a bias error close
to zero for WRF_5. Additionally, both ERA-1 and WRF_5 underestimated TX
throughout the year. For some months, the acceptance criteria, defined by Emery et al.
(2001) for air temperature, -0.5° C<bias<+0.5 °C, were not sufficiently met. It was also
observed that MIA values for WRF_5 were higher for all the months compared to
reanalysis, with only slightly lower ones in summer and autumn. NSE was overall
higher for WRF_5 but it reached negative values only in June (NSE=-0.003), indicating
that the mean of the observations was a better predictor than the model for that month.
Similar results were obtained with the comparison of TN, where WRF_5 for all months
yielded much lower statistical errors than ERA-I (Fig. 4.5). ERA-I shows constantly
lower values of TN compared to observations and thus tends to yield lower values of

bias error. ERA-I presents a constant cold bias during all seasons except autumn.
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Consequently, the reanalysis bias in TN is much lower than that of WRF_5 due to
compensation errors. At the same time, downscaled model results were characterized
with remarkably higher correlations coefficients, MIA, and NSE values than the
reanalysis during all months. Those NSE values of the WRF_5 indicated that the
downscaled model data set was a more skillful predictor than the mean of the

observations.

Mean monthly errors - TX

— S B © A
[=] 0 -
i |

" . -\/\/ N
o 2 m
» o~

<
4 © — \/\_‘
o (BIAS) ~ (MIA) el (MAE)
' T T T T T T (=} T T T T T T T T T T T T

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

™~ 9 S B! —
© o

«©
n o )
o o~

© |
m e o0
o~ < | <+ 4

\/\— o
— —— WRF_5 s
=il (RMSE) ~ (COR) ERA | - (NSE)
T T T T T T =] T T T T T T ¥ T T T T T T
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

Figure 4.4 Annual cycles of mean monthly maximum temperature errors (TX) of the
ERA-I (dotted orange) and 5-km WRF (solid red) simulations over the entire domain
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Figure 4.5 Annual cycles of mean monthly minimum temperature errors (TN) of the ERA-
I (dotted orange) and 5-km WRF (solid red) simulations over the entire domain

The seasonal statistical analysis of WRF_5 and ERA-I data compared to weather
stations data were calculated and summarized in Table 4.3 for TX, TN, and PR. The
analysis was performed for each metric by pooling together all the points of monthly
values for the four seasons for the entire domain. WRF_5 TX correlations coefficients
were higher than for ERA-I in all seasons and more significantly with values around
0.95 for winter, spring, and autumn. Although the lowest value of 0.59 appeared in
summer, the downscaling of the model still strongly outperformed the reanalysis value
that was equal to 0.17. Furthermore, less cold bias was observed for WRF_5 TX
compared to ERA-I, with remarkably improved results, especially for spring and
summer seasons, as well as significantly smaller RMSE and MAE values across all
seasons. ERA-I outperformed WRF 5 with a smaller warm bias of TX (0.44°C) only
in SON. NSE indicated a negative skill of ERA-I during all seasons.

Table 4.3 Seasonal statistical errors of maximum temperature, minimum temperature

and precipitation between model results and reanalysis for the total stations' grid points.

X WRF_5 ERA-I
MAM JIA SON DJF MAM JJIA SON DJF
COR 0.94 0.59 0.96 0.93 0.59 0.17 -0.70 0.68
BIAS (°C) -0.29 -0.60 -0.73 -0.64 -9.47 -10.31 0.44 -6.29
RMSE(°C) 1.54 231 15 1.31 10.4 11.07 8.01 7.66
MAE(C°C) 1.06 1.58 1.11 1.08 9.47 10.32 6.95 6.37
NSE 0.86 -0.1 0.91 0.83 -5.38 -24.18 -1.87 -4.87
MIA 0.97 0.75 0.98 0.96 0.46 0.25 0.62 0.53
TN
COR 0.91 0.74 0.91 0.86 0.75 0.62 0.82 0.78
BIAS (°C) 0.99 121 1.32 0.66 -1.54 -1.15 0.8 -0.08
RMSE(°C) 1.97 2.2 2.31 2.19 3.75 3.18 3.36 3.68
MAE(C°C) 1.59 1.82 1.82 1.59 3.01 244 2.79 3.13
NSE 0.76 0.32 0.75 0.69 0.12 -0.42 0.46 0.13
MIA 0.76 0.58 0.76 0.76 0.82 0.74 0.89 0.85
PR
COR 0.59 0.47 0.62 0.56 0.49 0.54 0.58 0.52
PBIAS (%) 20.30 46.10 -3.80 1.90 8.50 39.20 -2850 -12.90
RMSE(mm) 40.23 23.55 52.80 61.85 40.68 21.00 56.07 62.82
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MAE(mm) 27.20 12.35 34.25 43.44 27.06 11.24 33.62 42.74
NSE 0.14 -0.23 0.35 0.26 0.12 0.02 0.27 0.23
MIA 0.56 0.58 0.62 0.54 0.56 0.58 0.62 0.54

Seasonal statistical errors of TN varied compared to those of TX. Seasonal correlation
values between model and reanalysis were comparable though WRF_5 outperformed
ERA-I in all seasons. Although a consistent warm bias was found for WRF_5 during
all seasons, the reanalysis results showed a warm bias of 0.8°C only in autumn. WRF 5
turned negative bias in reanalysis into positive bias during MAM, JJA, and DJF with
an improved model performance during spring. In general, the improvement was not as
obvious in bias, but it was unveiled with the higher WRF_5 COR, as well as with the
lower RMSE and MAE statistics of monthly TN in all seasons with values not above
2.3°C.

c) Probabilities densities and Q-Q plots

According to (Komurcu et al. 2018), the ability of a downscaling methodology to
reproduce mean values of observed fields and improve upon reanalysis forecasts is
significant; moreover, a worthwhile downscaling methodology should have the ability
to simulate climate extremes well. In this subsection, further analysis of the
meteorological variables, regarding the representation of the extremes, was performed
on daily basis for the examined variables, in terms of probability density function (PDF)
and quantile-quantile (Q-Q) plots. Figure 4.6 shows the seasonal probability
distributions of the daily maximum temperature for WRF_5, ERA-I, and station data
for the four seasons. The median temperature was underestimated by the ERA-I
reanalysis in general but more significantly during the summer period and slightly in
spring, showing a significant shift towards colder values. Overall, WRF_5 simulations
were in excellent agreement with the observations during all seasons, with some slight

shift of the median maximum temperature towards cooler values, in winter and autumn.
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Figure 4.6 Comparison of density distributions of daily TX between WRF_5, ERA-

Interim and observations for all seasons for 1980-2004

The observed and modeled quantiles, in Figure 4.7, present the calculated Q-Q
probability plots of daily maximum (TX) temperature produced by WRF_5 and ERA-

| for 1980-2004. The improvement in the representation of almost all quantiles,

including the extreme quantiles, with the downscaled results compared to those of the

reanalysis was evident for all seasons, and actually with WRF_5 marking an excellent

match with the 1:1 line.
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Figure 4.7 Q-Q plots of daily maximum (TX) temperature generated by WRF_5 and
ERA-Interim for 1980-2004, in comparison with observations for all seasons.

Figure 4.8 depicts the density distribution of TN. The WRF_5 histogram was in line
with the observations, while ERA-I indicated significantly lower density values for all
seasons but with good agreement along with the distribution tails. The distribution of
the WRF_5 model compared to observations showed a right shift towards higher TN
values in all seasons and particularly, in the summer and autumn. In what concerns the
daily minimum (TN) temperature quantiles in Figure 4.9, there was a clear
improvement of WRF_5 for all seasons compared to ERA-I, particularly in winter and
spring. In general, the extreme temperatures, maximum and minimum, were better
reproduced by the WRF_5 simulations. Overall, those results reinforced the added

value of the downscaling compared to reanalysis.
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Figure 4.8 Comparison of density distributions of daily TN between WRF_5, ERA-
Interim and observations for all seasons for 1980-2004
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Figure 4.9 Q-Q plots of daily minimum (TN) temperature generated by WRF_5 and ERA-

Interim for 1980-2004, in comparison with observations for all seasons.

Figure 4.10 presents the spatial distribution for each point station of monthly statistical
errors MIA and MAE for temperatures. It would not be so safe to express an absolute
conclusion regarding the minimum and maximum temperatures due to the poor
sampling of the stations but, stations with lower performance were localized, such as
those of Chania for TX and TN, Chania, Kalamata, and Lamia only for TN, see arrows
in Figure 4.10 (a, b, c and d)).
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Figure 4.11 Spatial distribution for seasonal errors (COR and BIAS) for monthly
maximum (a, b) and minimum (c, d) temperatures for the period 1980-2004 for WRF_5.

The spatial distribution of the COR and BIAS statistics, between WRF_5 and stations
data for each season, is presented in the (Figure 4.11) for the examined meteorological
variables. Regarding TX, there was a significant change in the model downscaling
performance for winter and summer compared to spring and autumn. The correlation
coefficient reached lower values (below 0.9) for the majority of the stations during DJF
and JJA but not less than 0.8. The MAM and SON COR values were consistently high,
around 0.98 for all stations. Bias error was under-predicted for all seasons in the

majority of the stations, except for a few stations that slightly over-predicted TX during
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mostly MAM and JJA (represented by orange to red colors dots). Similar results were
found for TN concerning the seasonal correlations with values not lower than 0.9 except
for a few stations during DJF and JJA where COR values varied from 0.7 to 1. A
systematic warm bias was observed during all seasons except for colder bias, mainly in

coastal stations, marked with blue color.

4.1.2 Evaluation of high-resolution Control-run simulations with EC-EARTH

In this section, the differences of mean annual variables between WRFEC Control Run
(1980-2004) and station observations (OBS) were first presented. The individual grid
point biases between the local observational stations and WRFEC simulation are shown
in Fig. 4.12(a.) for TX and Fig. 4.12(b.) for TN.

TX — ANNUAL (WRFEC minus OBS) TN

Annual Differences WRFEC-OBS Annual Differences WRFEC-OBS
- .

Figure 4.12 Differences of mean annual a. TX and b. TN between WRFEC Control Run
(1980-2004) and station observations, (green square points specify no statistical
differences between the mean distributions of annual temperatures according to
Student’s t test at the 95% confidence level)

It is obvious that the biases are not consistently negative or positive regarding the
temperatures. WRFEC results revealed that no pattern was observed regarding the
annual minimum and maximum temperature differences between model and individual
station data. It was also noticed that most of the stations had differences in the range of
-1.5 to 1.5°C for both temperatures. WRFEC model seems to underestimate the
maximum temperatures and overestimate the minimum temperatures in the majority of

the available stations. It is observed that the differences of mean annual variables
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between modelled and observed variables of TX and TN are not enough relevant.
Therefore, the monthly and seasonal model bias was also investigated. In Fig. 4.13 (a
and b), the calculated mean maximum and mean minimum temperature monthly cycles,
respectively, are depicted averaged over the historical period 1980-2004, along with the
corresponding values of the standard deviation. The monthly mean values were
calculated for each dataset at the grid-point location of each station and then averaged
over the total number of points (stations). The monthly model results of TX show
excellent agreement in the period from November to April, followed by an
underestimation of the model from May to October (Fig. 4.13(a.)). On the contrary, the
monthly simulated TN values agree better with observations in the period from May to
October (except of June) with a slight overestimation of the model from November to
May (Fig. 4.13(b.)). Overall, the monthly cycle patterns of TX and TN were well
represented with WRFEC and highly correlated to the climatology of the country. The
WRFEC simulation has very similar biases to the ones encountered in Politi et al.
(2021), where the same model setup was forced by ERA-Interim. The higher biases are
mostly associated with the warmer period months where WRFEC tends to produce
lower maximum temperatures, while higher minimum temperatures are found during
the colder months. The results indicate that GCMEC reproduces the observed monthly
TX cycle but underestimates it. The performance of the global model improves in the
case of monthly TN values, but it does not outperform the WRFEC model.

Mean Monthly Maximum Temperature

30+

) B vwrrec
‘ QBES
L ]

"0 ][i

an feb mar apr may aug sep oct nov dec
Months
a.

150



Mean Monthly Minimum Temperature

30
;620' ‘ l l l l Bl wrrec
; ] OBS
= H GCMEC

il ”i”ll Jidi

Al

an feb mar apr may Jun aug sep oct nov dec
Months
b.

Figure 4.13 Mean annual cycle of a) TX and b) TN averaged over the historical period of
1980-2004 for the total number of stations for GCMEC, WRFEC and OBS.

Figures 4.14 (a and b) depict the differences of 25 years seasonal mean maximum
temperature and minimum temperature compared to the stations, respectively. The
seasonal means are shown for winter (December, January, and February, DJF), spring
(March, April, and May, MAM), summer (June, July, and August, JJA), and autumn
(September, October, and November, SON). Smaller seasonal differences of maximum
temperature are observed during the winter period in the range of -1 to 1.5°C. In
particular, during winter there is a north - south gradient towards negative differences.
On the other hand, the highest differences (above -5°C) are obtained during summer in
a few coastal stations. Furthermore, the results showed more station locations with
positive differences during spring and winter season, while negative differences are
seen mainly during autumn, for the seasonal TX.
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Seasonal Differences WRFEC-OBS °c

Figure 4.14 Differences of mean seasonal a. maximum and b. minimum temperatures
between WRFEC Control Run (1980-2004) and station observations, (green square
points specify no statistical differences between the mean distributions of seasonal TX/TN

according to Student’s t test at the 95% confidence level)

Regarding the minimum temperatures, positive differences are found mainly during
spring. The greater differences of about -2.5 to 2.5°C, are noticed during the summer
period. Positive differences higher than 2°C (> 2°C) are also calculated in winter. It is
observed that the majority of the stations with no statistically significant differences
(green square points) in the mean values (-0.5° to 0.5°C) for TX, is observed during
spring and winter seasons, while for TN during autumn and winter. The model
presented also greater negative seasonal differences during summer regarding the
minimum temperature in most areas, something that underlines the trend of the model

to reduce minimum temperature in summer.

To assess our downscaled global model quantitatively, it was necessary to proceed to
the statistical evaluation of the simulated mean fields from WRFEC with historical
observations of the examined variables. The statistical errors (as described in
APPENDIX) show the ability to represent the mean structure of the surface variables
at different temporal scales for monthly to annual averages. The statistical analysis
results of TX and TN were calculated using available observational data from the
weather stations over the entire domain (Table 4.4). The approach for analysis also
involved the investigation of the driver data performance of the global model EC-
EARTH (GCMEC) by comparison with the observational data and WRF-EC output to
showcase the added value of the downscaling methodology. Bias results of WRF-EC
for all temperatures and time scales presented consistent values, which did not vary

significantly between them, with cold bias around 1.1°C for maximum temperature and
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a warm bias of 0.24°C for minimum temperature. The monthly, seasonal and annual
scales correlation coefficients for TX and TN varied, of which seasonal values yielded
the highest correlation of 0.95 and 0.94, respectively. In general, RMSE and MAE
statistics progressively reduced along time scales, with the lower errors being identified
on the annual scale. The efficiency scores of MIA and NSE showed an improved
performance of the model on the seasonal scale with a range of values of 0.83-0.88.
Furthermore, the statistical errors of WRF-EC presented improved values against
GCMEC. Both temperatures of GCMEC revealed a colder bias (-2.98°C for TX and -
0.4°C for TN). It is worth mentioning here, that WRF-EC produced an improved bias
of TN, not only compared to GCMEC but also to the one of the downscaled reanalysis
datasets with WRF in the study of (Politi et al. 2021). In addition, the RMSE and MAE
metrics of the global model were larger than the ones of WRF-EC. Moreover, the
efficiency metrics showed an improved performance of WRF-EC compared to the
driver global model for all temporal scales. Thus, the statistical analysis of temperatures
reveals a very good performance of the WRF-EC model and highlights the added value
of the downscaled fields compared to those of the forcing GCM.

Table 4.4 Statistical errors of maximum and minimum temperatures and precipitation

model results against observations for all grid points of available stations.

TX COR BIAS(®C) RMSE(C) MAEECC) NSE MIA
Monthly ~ 0.80 -1.13 2.99 2.35 0.83 0.80
WRCEC | Seasonal 0.95 -1.14 2.37 1.78 0.88 0.82
Annual 0.65 -1.14 1.77 1.38 -0.37 0.5
Monthly 0.92 -2.98 4.17 3.49 0.67 0.71
GCMEC | Seasonal 0.94 -2.97 3.78 3.21 0.67 0.69
Annual 0.41 -2.98 3.33 3.06 -4 0.27
TN
Monthly 0.92 0.24 2.57 2.04 0.85 0.81
WRCEC | Seasonal  0.94 0.24 2.08 1.66 0.88 0.83
Annual 0.83 0.23 1.6 1.26 0.67 0.72
Monthly 0.87 -0.42 3.36 2.61 0.73 0.76
GCMEC | Seasonal 0.87 -0.42 3.07 2.38 0.74 0.76
Annual 0.75 -0.42 2.76 2.02 0.10 0.76
PR COR PBIAS (%) RMSE(mm) MAE(mm) NSE MIA
Monthly 0.41 -10.2 64.92 40.31 -0.16 0.54
WRFEC | Seasonal 0.57 -10 120.71 81.78 0.13 0.59

153



Annual 0.39 2.9 292 212 -0.2 0.47

Monthly 0.34 14.3 66.78 41.59 -0.12 0.0
GCMEC ‘ Seasonal 0.49 142 133.17 89.83 0.2 0.45

‘ Annual 0.17 14.2 299.02 235.42 -0.34 0.36

Additionally, a worthwhile downscaling methodology should have the ability to
simulate climate extremes well. For this reason, the quality of our downscaled results
was assessed based on the realistic simulations of extremes of daily TX, TN, and RR
for each season. Figure 4.15 shows the seasonal probability distributions of the daily

minimum temperature for WRFEC model and station data.
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Figure 4.15 Comparison of density distributions of daily TN between WRFEC and

observations for all seasons for 1980-2004
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Figure 4.16 Comparison of density distributions of daily TX between WRFEC and

observations for all seasons for 1980-2004

The median TN was underestimated by the model during the summer period, showing
a significant shift towards colder values. Overall, the WRFEC simulations were in good
agreement with the observations along with the distribution tails, during all seasons,
with a very slight shift of the median TN towards warmer values, in winter, spring and
autumn. Regarding the probability distribution of maximum temperature, illustrated in
Figure 4.16, there was a significant shift towards lower temperature values in summer
with lower density values. The median TX was also underestimated by the model
during autumn but with higher density values than the observational data. A slight
maximum temperature underestimation by the model compared to observations was

observed for winter and spring.
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Figure 4.17 Comparison of temperature percentiles for extreme values for TN (left) and
TX (right). TX was obtained from May to September (MJJAS) and TN was obtained from
November to February (NDJF).

From the comparison of temperature percentiles for extreme values of model results
versus observations (Fig. 4.17), a very good agreement is found in 90th, 95th and 99th
percentiles of TN while a slight overestimation is obtained with the model in the coldest
TN values (5th and 10th percentiles). The highest percentiles of TX (higher than 90)
are slightly underestimated by the model. The two-sided Kolmogorov-Smirnov (KS)
test was applied on daily data for each season and returned estimations of p-values<0.05
which rejected the null hypothesis of equal distribution between models and
observations. In addition, the calculated Kolmogorov—Smirnov distances between
simulated (WRFEC and CGMEC) and observed data provided a quantitative
assessment of the added value of downscaling results. The comparison indicated that
the high-resolution WRFEC model returned lower values of (KS) D than those of

GCMEC on average for both temperatures and all seasons.

In what concerns the statistical results, Cardoso et al. (2019) reported that in the case
of Portugal, EUROCORDEX models showed a cold bias regarding the maximum
temperature and declared that those biases were clearly inherited from the forcing GCM
since different RCM forced by the same GCM produced similar bias; on the other hand,
the internal model variability played a stronger role in minimum temperature. Similarly,
to the previously mentioned study, our findings of a cold GCM bias in TX are inherited
also by WRF (Table 4.4). On the other hand, the sign of the TN bias changes in between
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the coarse (GCMEC) and downscaled simulations (WRFEC). The slight poor
performance of WRFEC for summer temperatures (a strong underestimation in summer
TX and TN) could be probably related to boundary conditions deficiencies inherited by
the GCM and/or due to the internal model dynamics and physics (Giorgi et al. 2001;
Dasari et al. 2014).
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4.2 Precipitation

4.2.1 Evaluation of high-resolution Hindcast simulations with ERA-I

a) Analysis of Spatial and Temporal Climatology

The WRF_5 mean annual cycle of monthly total precipitation (Fig. 4.18(a)) was well
represented by the model concerning the maximum values in the winter and minimum
ones in the summer period, with a rainier season from mid-autumn to mid-spring.
According to the climatology of Greece, the precipitation patterns are generally higher
during the late autumn and winter months, along with the most significant amounts of
rainfall. In fact, in November and especially December, the country receives the highest
amounts of monthly rainfall, which decreases towards spring (Zerefos et al. 2011).

Substantially low precipitation amounts characterize the spring and summer months.

WRF_5 leads to an improvement in representing the annual cycle (Fig. 4.18(a)) in
comparison with ERA-I, as it presents a better agreement with observations, except for
March and the period between May and July. WRF_5 slightly overestimates the rainfall
amounts between January and July; however, from August to November the WRF
performance is strikingly accurate and the WRF_5 annual cycle almost overlaps with
that of observational data. In November and December, the performance of the model

reversed, resulting in lower precipitation values than the observations.
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Figure 4.18 a. Mean annual cycle and b. inter-annual variability of precipitation
(mm/month) averaged over the historical period of 19802000 for the total of stations.

The overlapping of WRF_5 annual cycle with that of observational data between
August and November, is a good indicator of WREF’s ability to produce rainfall
correctly when nested in good-quality boundary conditions (Garcia-Diez et al. 2015)
because the model parameterizations have a higher impact on rainfall outputs when
precipitation is controlled by local factors mostly during the late summer and mid-

autumn (Argtieso et al. 2012).

On the other hand, the ERA-I simulations underestimated rainfall during most months
of the year (August until April) but an overestimation was found between May and July.
Annual precipitation can also vary considerably from year to year, as Fig. 4.18b
illustrates the inter-annual cycle of the historical period from 1980-2000. WRF_5
overestimated the mean total precipitation for some years while ERA-I tended to
underestimate it. ERA-I and OBS precipitation patterns have only a very close
agreement between the years 1989 and 1994. Figure 4.19a shows the spatial distribution
of mean annual total precipitation for ERA-I and WRF_5 in comparison to point
observations (together in the same figure). The WRF_5 model captured well, in general,
the observed spatial pattern of the annual precipitation fields, while it was more than
evident that for ERA-I, it failed to depict the variance in the spatial distribution by
smoothing the precipitation patterns in the mountainous areas. Both ERA-I and WRF_5
outputs showed that the maximum values of annual total precipitation were observed
in the western part of the domain and over the mainland in a direction running from
northwest-to-southeast due to the presence of high mountains. On the other hand, the
annual total precipitation pattern showed smaller values over the Aegean Sea following

the climatology of the country.
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Figure 4.19 a) Annual total precipitation climatology averaged over the historical period
of 1980-2001 for ERA-I and WRF_5 in comparison to weather station data (points data).
b) Spatial distribution of mean seasonal accumulated precipitation over the historical
period of 1980-2000 for ERA-I and for c) WRF_5 in comparison to weather station data
(points data)
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At this point, it should be pointed out that due to the coarse station network on
mountainous areas, it was not feasible to verify the excessive and more intense rainfall
amounts. For this reason, a cross-comparison was made with the mean annual
precipitation provided by the climate atlas of Greece for the period 1971-2000. The
climate atlas has been developed by the formal meteorological organisation of Greece,
the Hellenic National Meteorological Service (HNMS) and is available at
http://climatlas.hnms.gr/sdi/?lang=EN. Although there is a 10-year offset, this dataset
remains the only reliable source of information on the mean climatology of Greece. The
cross-comparison shows that the spatial model performance is in good agreement with
the HNMS data, as large rainfall amounts above 2000mm are mainly observed on the
mountains of western Greece (Pindos), the Mount Olympus and the mountains of the
island of Crete, while 1200 to 2000 mm are observed on the mountainous regions of
the Peloponnese. Additionally, these findings are in line with the Report of the Bank
of Greece (Zerefos et al. 2011) and (Nastos et al. 2016), where the mean annual
precipitation received by the Greek mountain ranges is reported to be above 2,200 mm
over Pindos, 1,800 mm over the mountains of Crete, and 1,600 mm over the mountains
of the Peloponnese. The lowest amounts below 400 mm are reported in the two
mentioned studies, in the Saronic Gulf, the Eastern Peloponnese and the islands of the
Southern Aegean (see Fig 3.1(a) — for location guidance). Furthermore, there are not
available validated satellite high-resolution data that could be reliably used for model
output validation because there are limitations in the evaluation of the satellite data,
mostly due to the complex terrain of Greece and the data sparse mountainous regions,
as acknowledged by Nastos et al. (2016). However, Tian et al. (2020) based on other
studies of Herrera et al. (2010), Heikkila et al. (2011), Argiieso et al. (2012) explained
that complex terrain with high elevations (e.g., over high mountains) of more than 2,000
m are related to the highest deviations of precipitation produced by the model,
suggesting that WRF at a 10 km resolution may still not capture these topographical
features. Based on this and the description of the model topography (Figure 3.1, chapter
3), it could be assumed that the current deviations in precipitation amounts between the
WRF_5 and OBS are due to the model horizontal resolution and the coarse network of

the stations.

Figure 4.19 (b and c) depicts the spatial distribution of mean seasonal total precipitation
for ERA-1, WRF_5, with point observations, respectively. WRF_5 model results were
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overall in agreement with the observations for the rainier seasons of autumn and winter.
They also presented higher precipitation amounts over mountainous areas and in the
western parts of the country, following the known climatological patterns. Besides, the
spatial pattern of precipitation in Greece is strongly associated with orography, and
almost all low-pressure systems crossing the country and resulting in intense rainfall
come from the west. Finally, the spatial distribution of ERA-I seasonal total
precipitation did not yield a variation across the domain that could be comparable to
that of the observations in autumn and spring seasons (Fig 4.19b).

b) Evaluation based on statistical metrics

The WRF_5 overestimated the rainfall during most months of the year, particularly
from April to July, and underestimated it in November and December. On the other

hand, ERA-I underestimated precipitation during autumn and winter months.

The annual cycle of the mean statistical errors calculated for the monthly total
precipitation is depicted in Figure 4.20, concerning WRF_5 simulations and ERA-I
against observations. The results obtained with the WRF_5 produced similar MAE and
RMSE errors but higher correlation with the observed annual cycle compared to those
of reanalysis which outperformed WRF_5 during summer months. Moreover, the
annual cycle of the efficiency metric MIA showed an improved performance of the
model compared to reanalysis. The NSE score for WRF_5 was negative only during
May and summer. Its value for the rest of the months indicates positive model skill.
Therefore, overall, the downscaled WRF_5 simulation clearly showed some added

value compared with the driver reanalysis dataset ERA-Interim.
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Figure 4.20 Annual cycle of mean monthly precipitation errors (PR) of the ERA-I (dotted

orange) and 5-km WRF (solid green) simulations over the entire domain.

Figure 4.21 presents the spatial distribution for each point station of monthly statistical

errors MIA and MAE for precipitation. Concerning the spatial pattern for precipitation,

MIA values in the majority of the stations range from 0.7 to 0.9 with some exceptions

in the north of the country, and some limited coastal stations with values above 0.6.
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Some of these stations presented absolute errors above 30 mm (and probably related to
mountainous or coastal locations), while most of them showed values between 10 and

30 mm.

Regarding the seasonal statistical errors of monthly precipitation for WRF_5 and ERA-
Interim (Table 4.4, subsection 4.1.2), comparable results were found concerning the
correlation, where model values were low in the range of 0.47 in summer to 0.62 in
autumn but slightly better than ERA-I. Seasonal biases of WRF_5 were significantly
lower compared to ERA-I, except in the spring and particularly in the summer, where
a higher overestimation was noted. The amplitude of RMSE errors was also comparable
for all seasons between WRF_5 and ERA-I.

Seasonal variation of COR by station

Figure 4.22 Spatial distribution for seasonal errors (COR and PBIAS) for monthly
cumulative precipitation for the period 1980-2000 for WRF_5

Likewise, concerning the precipitation fields, (Figure 4.22a), the seasonal pattern of
WRF_5 yielded similar correlation coefficients for all stations with a range of 0.6-0.85,
showing a good ability of the downscaling process to describe the precipitation in
Greece with slightly higher values specifically in autumn. However, in summer, the

correlation values were smaller. This correlation pattern was in agreement with the
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global seasonal precipitation. In all seasons, WRF_5 downscaled results overestimated
precipitation in most parts of Greece, except in the southwest coasts as well as in the
eastern coast (and islands) in the winter, where precipitation was underestimated with
a range -40 to -10% (Figure 4.22b). The WRF_5 performance was regarded as
outstanding because pbias rarely exceeded +25-30% in the majority of the stations, in

agreement with Argiieso et al. (2012).
c) Probabilities densities and Q-Q plots

To compute the PDF for precipitation, only the rainy days with precipitation amounts
higher than 1 mm (Tank et al. 2009) were included, because the focus was placed on
the examination of the probability of rainfall intensity and not of the precipitation
occurrence. The seasonal frequency distribution of daily precipitation (Fig. 4.23) was
plotted on a logarithmic scale with bins of 1 mm to highlight the extremely strong
precipitation rates. Climate models tend to produce too much light precipitation, also
verified for WRF according to our study. During all seasons, the downscaled model
results improved compared to ERA-I, which presented a higher left shift with the
absence of the highest precipitation bins due to the smoother fields of reanalysis.
Noticeable were some cases where WRF produced excess precipitation events (above
200 mm/day) compared to observations during spring. That might be caused either by
the model or by the station density that could be too low to accurately satisfy the
WRF_5 resolution, especially in mountainous areas. Based on observations, the longest
tails, with events close to 200 mm/day were observed for winter and particularly in
autumn. Sometimes, the later season is also associated with extratropical cyclones,
which produce intense extremes and flooding events in West Greece (Pytharoulis et al.
2000; Nastos et al. 2018; Emmanouil et al. 2021). These events were properly captured
only with the higher resolution simulations of WRF_5.
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Figure 4.23 Comparison of frequency distributions of daily precipitation between
WRF_5, ERA-Interim and observations for all seasons in the period 1980-2000

Figure 4.24 depicts the quantiles distribution of simulated and observed precipitation

data to assess further the ability of the model to produce extremes. It was evident that

WRF_5 presented more efficiently, especially the higher-ranking quantiles than ERA-

I in all seasons, with the closest description of quantiles found in spring. Although

during all seasons, both ERA-I and WRF_5 persistently underpredicted the strongest

precipitation events, WRF_5 only presented the ability to overestimate the extreme

quantiles in the spring, a fact that was also verified in the previous PDF analysis. The

ERA-I dataset could not capture the high-intensity event tails in any of the cases due to

the relative homogeneity induced by the coarse resolution of reanalysis.
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Figure 4.24 Q-Q plots of daily precipitation generated by WRF_5 and ERA-Interim for
1980-2000, in comparison with observations for all seasons.

4.2.2 Evaluation of high-resolution Control run simulations with EC-EARTH

Model results were overall in agreement with the climatology of Greece, where the
precipitation patterns were generally higher during the late autumn and winter months,
along with the most significant amounts of rainfall. The results also yielded higher
precipitation amounts over mountainous areas and in the western parts of the country
that were strongly associated with the orography, and the fact that almost all low-
pressure systems crossing the country and resulting in intense rainfall come from the
west. Indeed, during fall and winter prevailing westerly winds from the lonian Sea hit
the west coasts and the mountain range of central mainland (Pindos), generating

precipitation all along the west region of Greece. Thus, the orographic precipitation is
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an important phenomenon that affects a large portion of the west part of the country.
The windward side of a mountain affected by prevailing winds is usually wetter and the
leeward side of the mountain is usually dryer due to the moisture released when
precipitation occurs. WRCEC results are in line with the climate atlas that has been
developed by HNMS) (available at http://climatlas.hnms.gr/sdi/?lang=EN), also
described in detail in the hindcast analysis by Politi et al. (2021). In the study area, the
good representation of the major mountainous locations and coastline obtained with the
downscaling approach allows the production of cyclogenesis and the associated
orographic wind systems whatever the quality of the large-scale circulation provided at
the RCM’s boundaries by the global model (Politi et al. 2021).

Seasonal Relative Differences WRFEC-OBS
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Figure 4.25 Mean seasonal total precipitation between WRFEC Control Run (1980-2004)
and station observations, (green square points specify no statistical differences between
the mean distributions of seasonal RR according to Student’s t test at the 95% confidence

level)
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Figure 4.26 Relative differences of a. mean annual total precipitation between WRFEC
Control Run (1980-2004) and station observations, (green square points specify no
statistical differences between the mean distributions of seasonal RR according to
Student’s t test at the 95% confidence level)

The seasonal relative differences illustrated in Figure 4.25, revealed that WRFEC
overall reproduced well the observations, with a general small dry bias (up to -0.4)
during all seasons and a few localized exceptions of wet bias, in accordance with the
results described by Soares et al. (2017). More specifically, it was found that
particularly in summer and less in autumn, WRFEC underestimated slightly the
precipitation in parts of the west and central Greece. The annual relative differences (in
fraction) in Figure 4.26 showed a consistent pattern of underestimated annual
precipitation from WRFEC in the range of 0.2 to 0.4, in the west and north stations of
the country. On the seasonal scale, the majority of the station points have no statistically
significant differences among observed and model mean values during all seasons
(Figure 4.25). On average, only around 10 stations out of 66 present statistically
significant differences with the higher number of stations found in autumn and winter
seasons. On the annual temporal scale, almost half of the stations (29 out of 66) do not
present statistically significant differences in the mean values between the observed and
simulated points (Figure 4.26). In addition, the model showed some difficulty in
describing some regions characterized by high relative differences, probably due to

coarse station density which is associated with the complex topographical features. The

169



light seasonal rainfall under-prediction was over most parts of the country, but with a

good description of the spatial precipitation pattern.

Mean Monthly Total Precipitation
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Figure 4.27 Mean annual cycle of precipitation (mm/month) averaged over the historical
period of 1980-2000 for the total number of stations for GCMEC, WRFEC and OSB.

The WRFEC mean annual cycle of monthly total precipitation (Figure 4.27) was
sufficiently represented by the model concerning the maximum values in the winter and
minimum ones in the summer. In comparison with observations, WRFEC generally
underestimated the rainfall amounts. The under-prediction was observed in January and
between March and April, while from April to June the model slightly overestimated
precipitation. In particular, the model’s performance in June and July was strikingly
accurate, however from August to December the performance of the model reversed,
resulting in lower precipitation values than the observations, particularly in November
and December. Yet, it should be emphasized that the rather large error bars in all
datasets analyzed are due to the large spatial variability of precipitation in the study
area (Hatzianastassiou et al. 2008). Overall, GCMEC tends to overestimate the values
from January to July, and indicates a better performance compared to WRFEC only in

January, August, September and October.

Regarding the precipitation statistical errors over the entire domain (Table 4.4,
subsection 4.1.2), the values of COR, NSE, and MIA remained lower than those on
temperatures. In general, the WRFEC model underestimated precipitation compared to
observations on monthly and seasonal scales (less than 10%) but presented a very good
performance on the annual scale with a small positive pbias of 2.9%. On the other hand,
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GCMEC consistently overestimated precipitation (around 14% in all temporal scales).

As in the case of temperatures, the seasonal values of WRFEC precipitation yielded the
highest correlation of 0.57, larger than that of the GCMEC value (0.45). In general, the
WRFEC model yielded a noticeable improvement on precipitation compared to

GCMEC according to the error statistics (Table 4.4). Also, those statistics presented a

very much improved agreement when compared to the study of Kotlarski et al. (2014)

that reported precipitation biases in the £40% range, regarding the EUROCORDEX

ability to represent the European precipitation.

The seasonal frequency distribution of daily precipitation (Figure 4.28) was plotted on

a logarithmic scale with bins of 1 mm to highlight the extremely strong precipitation

rates.
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Figure 4.28 Comparison of frequency distributions of daily precipitation between
WRFEC and observations for all seasons in the period 1980-2000.

Overall, the model underestimated the precipitation events below 100 mm/day in winter
and autumn but could produce more extreme events during those periods. Noticeable is
the case where the model produced in excess precipitation events (above 150 mm/day)
compared to observations during spring. That might be caused either by the model or
by the station density that could be too low to accurately satisfy the WRFEC resolution,

particularly over mountainous areas.

Furthermore, for the longer-term temporal statistics (e.g., seasonal, annual), which are
of interest to the present study, the added value in higher-resolution simulations is not
always evident in current RCMs. Downscaling with a limited area model as WRF
contributes to partly replicating the inaccurate feature of the large-scale field from the
global model even in the boundary layer where small scale processes dominate its
dynamics. For example, comparisons between 0.11° and 0.44° EUROCORDEX
experiments indicated no systematic temperature bias reduction in the high-resolution
experiments, while for precipitation, seasonal mean biases could be larger in the higher-
resolution EUR-11 set of simulations (Kotlarski et al. 2014; Soares and Cardoso 2018;
Zittis et al. 2019). Although our simulation has some biases in most variables, no
significant departures are noticeable from observations. It is also a positive outcome
that the model brings high detail in the spatial patterns and added value to the
probability distributions, as the simulated frequency distribution of the precipitation
and temperature extremes from the 5-km WRFEC is consistent with the observed

structure and extreme values.

4.3 Main Conclusions for Hindcast and Control run

The investigation showed that the WRF model might very well represent the annual
and seasonal geographical distribution of TX and TN in the study area. Also, the high-
resolution model produced the seasonal differences observed with similar ranges
concerning the temperature values, although there was a limited number of
meteorological stations available (a network of 32 stations of continuous observations).
Similar were the findings of (Kryza et al. 2017) who indicated that the spatial

distribution of meteorological variables obtained with the WRF model with the same
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horizontal resolution (5km x 5km) for Poland was convincingly reproduced, following
the country’s climatology. It was pointed out that the comparisons with similar regional
climate studies should carefully be performed, as there can be quantified and qualified
differences between geographical regions in terms of data availability, station network

density, horizontal resolution, and driving forcings.

It is regarded as a valuable and important finding that our downscaling methodology
provided a very good agreement with the observations for maximum and minimum
temperatures compared to the coarse resolution ERA-Interim. More specifically,
considering TX, WRF_5 reduced remarkably the daily bias from -2.19°C of reanalysis
to -0.6 °C with a very high correlation coefficient equal to 0.96. The same range of bias
error (mean surface temperature) was also found by Kryza et al. (2017) that was equal
to 0.23 °C for Poland, (but resulted from the use of twice as many stations) and Soares
et al. (2012a) for Portugal with 9 km of horizontal model resolution, with the value of
0.1°C. Another study of Heikkild et al. (2011) using WRF at 10 km resolution and
forced by ERA-40 reported a mean bias of -0.7 °C and 0.97 correlation.

Concerning TN, although a cold bias of ERA-1 was found to change to warm bias from
-0.5 °C to 1°C, all the other statistical metrics unveiled that downscaled model results
remained to present the best performance against reanalysis. Other studies did not report
improved results but a similar range of bias (e.g., Soares et al. 2012) from 0.5 °C to -
0.4 °C. Daily maximum and minimum temperature biases were between 0.06 to 1.84

°C in the study of (Zhang et al. 2016) for the Hawaiian Islands.

Generally, improved results for WRF_5 were also found regarding the RMSE and MAE
values of monthly TN in seasonal analysis, although correlation coefficients were
comparable. PDF analysis and quantiles revealed an improvement of WRF_5 during
spring, winter, and autumn but not for summer for the extreme quantiles compared to

reanalysis.

Regarding precipitation, WRF_5 model results, as well as ERA-Interim, reproduced
reasonably well the observed precipitation at monthly and inter-annual time scales,
evidenced by the two more rainy seasons, spring and autumn, and the winter
precipitation maximum. These results were generally in line with previous analyses

(e.g., (Fantini et al. 2018)) that simulated similar regions (e.g., Italy).
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Overall, WRF_5 reproduced well the spatial pattern of the observed annual and
seasonal precipitation in most parts of Greece, even though there were large wet biases
over the mountainous regions. These biases most likely resulted from the unrealistic
simulation of rain shadow effects on precipitation caused by the high mountains (Tian
et al. 2020). Precipitation results were better reproduced in our WRF-downscaled
simulations compared to ERA-Interim because biases and RMSEs were significantly

reduced by the downscaling.

Precipitation values satisfactorily correlated with observations from 66 stations
(covering the period 1980-2000), uniformly distributed over the study area (monthly
correlation coefficient mean COR = 0.67 for all stations; and seasonally COR = 0.62—
0.82 for individual stations). Those findings were not as good as in the study of Cardoso
et al. (2013) during summer regarding the seasonal precipitation correlation for the
Iberia maybe due to the higher density network of the latter, but in agreement with
Heikkild et al. (2011) for Norway. PBIAS results were similar to other studies found
by (Argiieso et al. 2012; Cardoso et al. 2013), where WRF significantly overestimated
precipitation in most of Iberia during summer, while in winter and -autumn in our case-
the underestimation of ERA-I turned to an improved small PBIAS for WRF. The
monthly errors were similar and comparable to the other previous studies; for example,
Soares et al. 2012, reported monthly values of COR, RMSE, MAE, and PBIAS of 0.89,
-8.9%, 24.4 mm, and 43.4 mm, respectively. Furthermore, the WRF model performance
was outstanding compared to other studies over Europe (Argiieso et al. 2012; Fantini et
al. 2018) because pbias rarely exceeded +25-30% in the majority of the stations
(Argiieso et al. 2012; Fantini et al. 2018).

In g-q plots, WRF_5 simulation produced better extremes compared to the driver data
that consistently underestimated most quantiles while WRF_5 showed an
overprediction of higher quantiles during spring. Prein et al. (2016) in a comparison
study via daily g-gq plots of EU-CORDEX with observations found that the 0.11°
models outperformed on the representation of extreme precipitation in all regions in
MAM against 0.44°, but not for the Carpathians and the Alps regions. That behavior
could be attributed to the fact that extreme precipitation events often have small spatial
and temporal extents, and thus their analysis in a combination of complex topography

remains very sensitive.
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In general, the presented results highlight the ability of the WRF_5 model to correctly
distribute precipitation all over Greece, which indicates its efficiency to reproduce the
climatic characteristics of different regions and to sufficiently incorporate the effect of
complex topographical features.

At this point, it is necessary to discuss an important issue in what concerns the added
value of WRF model regarding the downscaled precipitation results compared to ERA-
I. At a first look, comparing the statistical metrics namely MAE, RMSE, PBIAS, COR,
MIA and NSE between ERA_| and OBS and between WRF 5 and OBS, the
improvement in downscaled results is not entirely clear (Tables 2 and 3). On the other
hand, the representation of extreme climate by RCMs is an increasingly important issue
for impact assessment. The process of deeper investigation of the ability of the WRF
model to simulate climate extremes in terms of probability densities and Q-Q plot
revealed a clear improvement in terms of extreme values (Figs. 16 and 17). According
to this analysis, WRF_5 represented in all seasons more efficiently the higher-ranking
quantiles than ERA-I. These results highlight the fact that WRF_5 adds value compared
to reanalysis in terms of extreme precipitation values, which is of high interest for
evaluating the impact of climate change and at the same time, reinforcing the need of
using dynamical downscaling. Thus, WRF_5 overcomes the problems associated with
the observational dataset or even the lack of station data especially at high-altitude by
yielding a significant improvement in terms of extreme values. This conclusion does
not denounce the importance of the availability of high-quality observational datasets
in terms of density network, long-term continuous and homogeneous data, for high-
resolution model studies, to overcome any deficiencies of an RCM in representing mean

values.
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The presented results give confidence that the current version of the WRF model, set-
up and parameterized with a high resolution of 5 km for the domain of Greece, can
simulate synoptic meteorological variables and their extremes, pointing to its high
potential to yield reliable information on future climate changes in extreme weather. In
what concerns the ability of a GCM to reproduce the climatology of Greece at high
resolution, the historical model performance evaluation showed that bias results for all
temperatures and time scales presented consistent values, with cold bias around 1.1°C
for TX and a warm bias of 0.24°C for TN with high correlation values with observations
during monthly and seasonal time scales. The historical WRFEC generally simulated a
dry bias in total precipitation, which was extended to almost the whole country with
some excess of precipitation extreme events during spring and summer, but with a good
description of the spatial precipitation pattern. Overall, those findings suggested that
our downscaling method was able to produce results in line with the historical
observations. These results are establishing confidence in the use of historical and

dynamically downscaled simulations using GCM projections.

Key Remarks

e WRF_5 represented very well the annual and seasonal geographical dis-
tribution of TX and TN in the study area.

e Downscaling methodology provided a very good agreement with the ob-
servations for maximum (-0.6 2C) and minimum (12C) temperatures.

e PDF analysis and quantiles revealed an improvement of WRF_5 during
spring, winter, and autumn.

e WRF_5 reproduced well the spatial pattern of the observed annual and
seasonal precipitation in most parts of Greece.

e Precipitation results were better reproduced by WRF_5 compared to ERA-
Interim as concluded by the reduced statistical errors.

e WRF_5 represented in all seasons more efficiently the higher-ranking
quantiles than ERA-I, yielding a significant improvement in terms of ex-
treme values.

o WRF_EC bias results for all temperatures and timescales presented con-
sistent values, with cold bias around 1.1°C for TX and a warm bias of
0.24°C for TN with high correlation values with observations during
monthly and seasonal timescales.

e WRF_EC described well the spatial precipitation’s pattern and produced
a dry bias in total precipitation.
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Chapter 5 Future Projections

This chapter describes the results of the investigation of the downscaled projected
changes of the global model EC-EARTH for minimum and maximum temperatures and
precipitation under two RCPs (RCP4.5 and RCP8.5) in the near future (2025-2049) and
far future (2075-2099).

5.1 Future projections of minimum and maximum temperatures

WRFEC represented very well the geographical distribution of annual and seasonal
mean daily TX and TN (Figs 5.1(a) -5.4(a.)) in the historical period and clearly
illustrated the seasonal variation with similar ranges of temperature values also found

in the previous study of Politi et al. (2021).

The annual mean and seasonal projected changes, based on delta change approach
(Delta = future period- historical period) along with the spatial distribution of the
historical period are depicted in Figs. 5.1, 5.2, 5.3 and 5.4. In general, the warming
projections for the far future show larger changes for maximum than for minimum
temperature, for both scenarios, and for the annual mean and seasonal temperatures. On
the other hand, the projected changes are less intense during the near future with GCM
differences under the two scenarios. According to a 2-tailed t-test, the projected changes
seen in all figures are statistically significant at the 95% confidence level over the entire
region. It is obvious from these figures that the mean temperatures derived from
maximum and minimum temperatures increase consistently, but with different

magnitudes across the regions and emission scenarios.

Because of the higher greenhouse gas emissions and radiative forcing of RCP8.5 by the
end of the century, the magnitude of the mean annual maximum temperature warming
for RCP8.5 is greater than that for RCP4.5 (Figure 5.1). According to the RCP4.5, the
largest warming is obtained over the eastern part of the country (some northeastern
inland parts and eastern coasts) reaching up to 2 °C in the period 2025-2049 and extends
more towards southeastern areas up to 2.5°C in the period 2075-2099. In the case of the
RCP8.5 scenario, the difference between the two future periods is remarkably more

pronounced and the mean daily TX is found to increase up to 4.5 °C in the far future,
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particularly in some eastern and coastal parts. It is also observed that the pattern of

changes is clearly linked to the orography of central Greece and the island of Crete.

The investigation of the projected changes for the seasonal maximum temperature
revealed a relative seasonality (Figure 5.2). There is a different spatial pattern of
temperature (TX) change for each season. Under both RCPs, there are significant
regional differences in terms of projected temperature increase in each season. Under
the RCP8.5 in the far future period, WRFEC projects a robust magnitude of warming
over the whole country. The model predicts maximum TX increases in the range of
2.75 and 3.75 °C in winter and autumn, but in summer and spring the changes reach
values from 3 °C, near the coast, up to 5°C in some inland areas and in the north-eastern
Greece. In the near future, TX increases mark a west-east gradient in spring and winter
in the range of 0.75 to 2.5°C, which is profoundly linked to the orography of central
mainland. The lower projected changes are observed in winter with TX increases from

0.75 to 1.5°C under both RCPs and only in the near future period.

ANNUAL TX 1980-2004
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Figure 5.1 a. WRFEC annual mean historical climatology, b. WRFEC climate change
differences for daily maximum temperature (2025-2049 minus 1980-2004 and 2075-2099
minus 1980-2004) for RCP4.5 and RCP8.5. (Areas with no dots specify statistically
significant changes using a Student’s t-test at the 95% confidence level).
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Figure 5.2 a. WRFEC mean historical climatology, b. WRFEC seasonal climate change
signal for daily maximum temperature (2025-2049 minus 1980-2004 and 2075-2099
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minus 1980-2004) for RCP4.5 and RCP8.5. (Areas with no dots specify statistically
significant changes using a Student’s t-test at the 95% confidence level).

Considering the mean daily minimum temperature in RCP4.5, increases are projected
up to 1.5 °C in northeastern regions in the near future and in the range between 1.75
and 2.5 °C in the far future (Figure 5.3). RCP8.5 shows a much greater warming than
RCP4.5 by the end of the century with a west-east gradient, reaching values from 3°C
up to 4 °C. TN is expected to increase up to 3.5 °C near the coasts and the islands of
the central Aegean Sea, while the increase will be a little higher in the islands of the
north and eastern Aegean area. Overall, the projected changes for the minimum
temperature in the far future, according to both scenarios, are similar to the changes of
the maximum temperature, but with mitigated properties; the changes are less sharp

with smaller contrasts and the west-east gradient also less intense.
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Figure 5.3 a. WRFEC annual mean historical climatology, b. WRFEC climate change
signal for daily minimum temperature (2025-2049 minus 1980-2004 and 2075-2099
minus 1980-2004) for RCP4.5 and RCP8.5. (Areas with no dots specify statistically

significant changes using a Student’s t-test at the 95% confidence level).

Under RCP4.5, the magnitude of the warming in autumn is the lowest of all seasons
with values around 0.5 to 1°C (Fig. 5.4). During the summer and winter seasons of the
future period 2075-2099, the WRF simulation projects a higher temperature increase of
2-2.5°C in the entire country, uniformly. During winter in the near future projection,
the largest warming occurs over some inland parts and northeastern Greece. The model
projects a small west-east gradient of warming in spring, for both future periods. Under
RCP8.5 and during the near future projection, the model produced much milder
warming (especially during autumn) in the range of 0.75 to 2.5 °C with the higher
temperature increase in the northeastern part of the country and some coastal areas.
However, during the far future period, the model’s projection in summer predicts a
larger magnitude of warming over the western part of mainland, the lonian Islands and,
in some plain parts of central and northern mainland and southern Crete. In these areas,
the highest maximum temperatures are usually observed during summers. According
to the projections, the high increases will impact these areas adversely. During winter,
the model projects notably the most significant warming over the mountainous areas,
while in spring, the temperature increases are smaller in the western than in eastern

parts of the country.
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Figure 5.4 a. WRFEC mean historical climatology, b. WRFEC seasonal climate change
signal for daily minimum temperature (2025-2049 minus 1980-2004 and 2075-2099
minus 1980-2004) for RCP4.5 and RCP8.5. (Areas with no dots specify statistically

significant changes using a Student’s t-test at the 95% confidence level).

In similar previous studies, based on global and regional models, projected changes
were found to be rather uniform, as relatively small-scale climate features and feedback
were smoothed due to the coarser resolution. In general, Wagner et al (2012) explained
that the projected climate change signals of the coarse domain were transferred to the
fine resolution without strengthening or weakening the climate change signal; but the
higher resolution added some more detail in the spatial patterns as expected.

In what concerns temperature change signal, WRFEC simulation projects an annual
mean warming over Greece, which is significant at the 95 % confidence interval for all
grid points. In general, during the far future period, the model projects a robust
magnitude of warming with most pronounced changes over the whole country under
the RCP8.5 scenario. This conclusion is in accordance with (Varotsos et al. 2021a) who
examined the impacts of climate change on the tourism sector from a large ensemble
member of RCMs from the EUROCORDEX under three RCP emissions scenarios.
Overall, the warming projections for the far future show larger changes for maximum
than for minimum temperature, under both scenarios, and for the annual mean and
seasonal temperatures. On the other hand, the projected changes are less intense during
the near future with no significant differences under the two scenarios. The model
predicts TX increases in the range of 2.75 and 3.75 °C in winter and autumn, but in
summer and spring the changes may range from 3 °C, near the coast, up to 5°C in some
inland areas and in north-eastern Greece. In the near future, TX increases mark a west-

east gradient in spring and winter in the range of 0.75 to 2.5°C, which is profoundly
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linked to the orography of central Greece. The results are generally consistent with
previous studies indicating that the Mediterranean region and southern Europe will
exhibit an amplified temperature increase in comparison to the rest of the continent
(Giorgi et al. 2004). Our findings are also in agreement with the most recent study of
(Coppola et al. 2021) that estimated for RCP8.5 during summer late century period
maximum signal over the Mediterranean land regions (where Greece is included) of
around 4.5°C with EUROCORDEX ensemble and 6.5°C with CMIP6. The lower
projected changes are observed in the winter with TX increases from 0.75 to 1.5°C
under RCP4.5 and RCP8.5 and only in the near future period. Overall, the projected
changes for TN in the far future, according to both scenarios, are similar to the changes

of TX, but less sharp with smaller contrasts and the west-east gradient also less intense.

5.2 Future projections of precipitation

The signal of climate change on the annual precipitation over Greece given by the WRF
simulation is shown in Figure 5.5. All the results point out a general decrease of the
annual precipitation all over the eastern part of the country (with islands included).
However, an increase of 20% is projected in the western areas only in the near future
and without statistical significance. Although in the less severe scenario (RCP4.5) the
decreases of rainfall are smaller than RCP8.5, there is a significant reduction in the
range of -30 to -40% in areas like the island of Evia and in small areas of the central
mainland. This reduction, according to RCP8.5, becomes more extended towards the
western parts of the country, particularly in the far future. More specifically, the model
indicates decreases around —25% throughout most parts of the domain. Additionally,
the most dramatic reductions above -30% and in some cases up to -50% are found in
eastern Crete, eastern Peloponnese, central mainland and in few areas of the eastern

part of the country.

The projections for the seasonal precipitation changes under RCP4.5 and RCP8.5 are
depicted in Figure 5.6. Under RCP4.5, the precipitation reduction is projected to values
over 30% in eastern Greece. The model also estimated statistically non-significant
changes of increasing rainfall during autumn around 10% in some small areas all over
the country and, only in western Greece during all the other seasons of both future

periods. The most dramatic reductions (above 40%) of seasonal precipitation are
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observed under RCP8.5 in the far future covering almost all the country. In all seasons,
small positive and negative changes are projected of around 10%, located mostly in the
western parts of the mainland, the lonian Islands and western Crete. Nevertheless, these
changes are non-significant in most areas of the country. In general, the total annual
projected changes are related to the reduction of precipitation during winter, spring and

autumn, since the summer precipitation contributes the minimum to the annual total.
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Figure 5.5 a. WRFEC mean historical climatology, b. Annual mean precipitation relative
changes given by WRFEC for RCP4.5 and RCP8.5 (2075-2099 minus 1980-2004) / 1980—

2004. (Areas with dots specify changes not statistically significant using a Student’s t test
at the 95% confidence level).
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Figure 5.6 a. WRFEC mean historical climatology, b. Seasonal mean precipitation relative
changes given by WRFEC for RCP4.5 and RCP8.5. (Areas with dots specify changes not

statistically significant using a Student’s t test at the 95% confidence level).

PDF distributions of daily precipitation intensity in the present and future climate
scenarios are depicted in Figure 5.7 below. All distributions are similar to each other
up to the precipitation bin of around 60 mm, where the transition between reduction
and increase of frequency of extreme precipitation occurs. This rainfall amount
corresponds to the 99th percentile in historical and future climate periods. An increase

188



of extreme rainfall amount (above ~300 mm/day) is obtained under the future scenarios

with a rather low frequency of occurrence.
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Figure 5.7 WRFEC PDFs of precipitation (mm/day) in the historical and future climate

periods.

The projected changes for precipitation are in accordance with the studies of Tolika and
Zanis (2012) that also reported that Greece would experience a persisting absence of
rainfall. More specifically, the climate change signal of precipitation over Greece
revealed a general decrease of the annual precipitation all over the eastern part of the
country (with islands included) with the most dramatic reductions, above -30% and in
some cases up to -50%, found in eastern Crete, eastern Peloponnese, central mainland
and in few areas of the eastern part of the country. However, the large increase for
summer precipitation in both scenarios in western Greece is most-probably related to a
more south-westerly flow in the simulated historical period. Summertime precipitation
during the historical period is considerably strong (see Figure 4.21), probably due to
the convection-permitting setup and related to these isolated and usually very local
events particularly in the period 2025-2049. This internal variability of simulation was
also found in the study of Knist et al. (2020). Under RCP4.5, notable summer increases
in the southerly flows were estimated up to 40%, which combined with large-scale

subsidence, could cause a significant rise in the occurrence of heat wave events
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(Karozis et al. 2021). The latter study which was part of our work revealed that
estimated changes in the air mass flows under future high-emission scenarios imply
changes in their associated synoptic patterns. Compared to our results, the changes in
the total precipitation were found less pronounced under both the RCP4.5 and RCP8.5
in the period 2031 and 2060 over Crete in a study of (\Varotsos et al. 2021b) for 5 RCM’s
CORDEX ensembles. The differences between the two scenarios in summer were large
in eastern Greece, indicating a great natural variability over the region. For example, in
some areas (Crete, eastern coastal parts of central Greece), the change was a decrease
in RCP4.5 but an increase in RCP8.5. Similar findings between the two scenarios were
obtained in the study of (Chen et al. 2019) for the projected changes in eastern Asia
which is characterized by complex topography.

The projected changes in temperature and precipitation are related to dynamic and
thermodynamic future changes. According to (Giorgi and Lionello 2008), the drying in
the Mediterranean region is associated with increasing anticyclonic circulation which
causes a northward shift of the mid-latitude storm track. This northward shift has a
seasonal migration and it is maximum in summer and minimum in winter. Lionello and
Scarascia 2018 reported that the circulation change would lead to a significant reduction
of precipitation for most of the region (Greece included) due to the intensification of
the Azores anticyclone in summer that causes increased advection of warm dry
continental air masses towards the eastern Mediterranean. The same study concluded
that in winter, the increase in barotropic sea level pressure and geopotential height at
the 500 hPa level in the central Mediterranean hinders the penetration of humid air from
the Atlantic towards the southern and eastern Mediterranean areas. Additionally, in the
study of a comparative assessment of backward trajectories with WRCEC in the near
future and both RCPs, Karozis et al. 2021 deduced for Greece a reduction of cyclones
up to 45% originating from the cyclogenesis region of the central Mediterranean and
the Adriatic Sea. Moreover, the same study revealed the tendency (higher probability
of occurrence) of increased long-range southerly flows from Africa (circa 40%) under
RCP4.5 and consequently the appearance of an increased number of heatwaves that
could also result in drier conditions in the future. (Russo et al. 2014) and (Coumou et
al. 2018) also reported future enhancement of mid-latitude heat waves due to non-linear
interactions between Arctic teleconnections and other remote and regional feedback

processes.

190



5.3 Main Conclusions for Future Projections

The presented study constituted a first attempt to demonstrate the benefits of a high-
resolution dynamical downscaling to simulate as accurately as possible the regional
climate future changes in Greece. Further to this, the study aimed to provide driving
data for impact models that require high spatial details. It must be mentioned that at this
stage, only one GCM and RCM have been used, limiting the quantification of the
uncertainty of the results. Also, bias correction was not applied to improve the climate
projections regarding the examined variables, given the lack of consistent gridded
observational datasets required for such regions of complex topography and climate
variation.

WRFEC results projected a noticeable magnitude of warming regarding TX with the
most pronounced changes up to 5°C mostly over the eastern parts of the country under
the RCP8.5 in the far future period. In addition, the model’s projection in summer
predicted a larger magnitude (near 5°C) of warming for TN in the far future over the
western part of the mainland, the lonian Islands, and in some plains of central and
northern mainland and southern Crete. The climate change signal of precipitation
revealed a general decrease of the annual precipitation all over the eastern part of the
country (with islands included) with the most dramatic reductions (above 40%) in
seasonal precipitation observed under RCP8.5 almost all over the country in the far
future. The model also estimated statistically non-significant changes of increasing
rainfall during autumn and spring, of more than 10% in some small areas of western
Greece in both periods and RCPs (except of RCP8.5 in the far future).
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Key Remarks

Noticeable magnitude of warming regarding TX with the most pronounced
changes up to 5°C mostly over the eastern parts of the country under the RCP8.5
in the far future period.

Larger magnitude (near 5°C) of warming for TN in the far future over the western
part of the mainland, the lonian Islands, and in some plains of central and north-
ern mainland and southern Crete

Annual precipitation will reduce all over the eastern part of the country (with is-
lands included) with the most dramatic reductions (above 40%) in seasonal pre-
cipitation observed under RCP8.5 almost all over the country in the far future.
Increased precipitation during autumn and spring, of more than 10% in some
small areas of western Greece in both periods and RCPs
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Chapter 6 Climate Indices

In this chapter, the computed differences in climate indices between the two future
periods and the historical period were present. The results of the statistical analysis
presented in chapter 4, using the GCM coarser data and the downscaled simulations
against temperature and precipitation observations, demonstrate the capability of
WRFEC to capture the climate characteristics and variability Greece. This provides
confidence in obtaining and using WRFEC simulations to calculate ETCCDI climate
indices. Furthermore, the comparison of GCMEC and WRFEC calculated ETCCDI
indices with those calculated using observational station data is carried out, to highlight
the added value of using the higher resolution simulations of 5 km. The comparison
with observations clearly indicates the improvement in all calculated ETCCDI indices
with WRFEC, against those of GCMEC at the locations of the stations.

6.1 ETCCDI Climate Indicators

To analyze spatially the climate change signal of extreme temperature and precipitation
over Greece, the extreme temperature and precipitation indices established by the
Expert Team (ET) on Climate Change Detection and Indices (ETCCDI,

https://www.wcrp-climate.org/etccdi) have also been calculated. Extreme climate

indices unified by ETCCDI effectively promote detection and research of extreme
weather and climate change, allowing for comparison between extreme weather and

climate change in different regions.

Table 6.1 Definition of extreme temperature and precipitation indices

Code Name Definition Unit
SuU Summer days Annual count when daily maximum temperature >25 °C  days
HD Hot days Annual count when daily maximum temperature >35 °C  days
TR Tropical nights Annual count when daily minimum temperature >20 °C  days
FD Frost days Annual count when daily minimum temperature <0 °C  days

R20 mm  Very heavy precipitation days Annual count when precipitation >20 mm days
R50 mm Extreme precipitation days Annual count when precipitation >50 mm days
DD Dry days Maximum number of consecutive days when days

precipitation <1 mm
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6.2 Historical presentation and Projective changes of ETCCDI

The changes in the number of days where daily TX was above 25°C (summer days, see
Figure 6.1) appeared to have an increasing frequency for both scenarios and periods
with less intense increase of an average of 5 to 20 days during the near future period in
the mountainous and inland regions and 25 days in the coastal regions and the islands.
The greater increases of around 25 days were observed all over the country in RCP4.5
in 2075-2099 while the most robust changes were obtained under RCP8.5. More
specifically, the regional mean changes increase to 50-60 more days almost all over the
country (around 40 days over the mountains) and up to 80 days in the coastal areas of
eastern Evia, southwestern Peloponnese, north Crete and the islands. No statistically
significant future changes are observed in mountainous areas under both scenarios in
the near future period. Hot days (Figure 6.2), as characterized by a daily TX larger than
35°C, have a well-marked increased frequency of 30 to 45 days, especially for RCP8.5
in the far future, in specific regions such as in the central-eastern mainland (Thessaly
region), Thessaloniki region (central Macedonia region), Attica, some areas in
Peloponnese, southern Crete and western parts of Greece. No remarkable changes were
observed under RCP4.5 during both periods. It is also obvious that the areas with non-
statistically significant change are centered only in the mountainous areas of central

Greece and Peloponnese in the far future period under RCP8.5.
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Figure 6.1 Annual mean summer days changes for 2025-2049 (near future) and 2075-2099
(far future) relative to 1980- 2004. In the top figure, the summer days index is depicted
for the historical period. (Areas with dots specify changes not statistically significant using
a Student’s t-test at the 95% confidence level).
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Figure 6.2 Annual mean hot days changes for 2025-2049 (near future) and 2075-2099 (far
future) relative to 1980- 2004. In the top figure, the hot days index is depicted for the
historical period. (Areas with dots specify changes not statistically significant using a

Student’s t-test at the 95% confidence level).
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Figure 6.3 Annual mean tropical nights changes for 2025-2049 (near future) and 2075-
2099 (far future) relative to 1980- 2004. In the top figure, the tropical night index is
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depicted for the historical period. (Areas with dots specify changes not statistically
significant using a Student’s t-test at the 95% confidence level).

Regarding the tropical nights number illustrated in Figure 6.3, a general increase of
about up to 30 days is found under RCP4.5 and RCP8.5 for the near future all over the
country compared to the reference period. The change becomes more severe in the far
future (30-40 days more) for RCP4.5 in the north-west part of Peloponnese and Crete,
surpassing the 50 days under RCP8.5 and over the entire country. Only in the
mountainous regions tropical nights note the lower increase, except for the period 2075-
2099 in RCP8.5 (30 days of increase). It is also obvious (Fig. 6.3) that coastal areas are
more affected than continental parts by increased days of tropical nights. No statistically
significant changes are observed only in mountainous areas of central Greece and

Peloponnese under RCP45 for both periods and under RCP8.5 in the near future.
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Figure 6.4 Annual mean frost days changes for 2025-2049 (near future) and 2075-2099
(near future) relative to 1980- 2004. In the top figure, the frost days index is depicted for
the historical period. (Areas with dots specify changes not statistically significant using a
Student’s t-test at the 95% confidence level).

In Figure 6.4, a robust reduction is noted in the climate signal of frost days in the
mountains, which reduces towards the coastal areas in the far future period. No
noticeable differences are observed under both scenarios in the near future period. The
strongest reduction of about 60 days is obtained under RCP8.5 in the far future. The
calculated changes in frost days are statistically significant everywhere in the domain.

Both indices, illustrated in Figure 6.5 and Figure 6.6, show an increase in the climate
change signal of extreme precipitation events, in the western part of the country for
RCP4.5 in both periods and, the near future under RCP8.5 (up to 10 days). On the other
hand, the highest decreases in the number of days with heavy precipitation are found

mainly over the high mountainous areas of Crete and eastern mainland. This reduction
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is more pronounced under RCP8.5 in the far future. The calculated changes in the
number of days with heavy rainfall are statistically significant everywhere in the
domain (Figure 6.5). However, the changes in the very heavy rainfall events are
projected with no statistical significance in the north and eastern parts of the mainland

during both periods and scenarios.
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Figure 6.5 Annual mean heavy precipitation days changes for 2025-2049 (near future)
and 2075-2099 (far future) relative to 1980- 2004. In the top figure, the number of heavy

precipitation days (>20mm) is depicted for the historical period. (Areas with dots specify

changes not statistically significant using a Student’s t-test at the 95% confidence level).
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Figure 6.6 Annual mean very heavy precipitation days changes for 2025-2049 (near
future) and 2075-2099 (far future) relative to 1980- 2004. In the top figure, the number of
very heavy precipitation days (above 50mm) is depicted for the historical period. (Areas
with dots specify changes not statistically significant using a Student’s t-test at the 95%

confidence level).

In what concerns dry days with daily precipitation less than 1 mm (Fig. 6.7), it is
obvious that during both periods and scenarios the eastern part of the country would
experience a consistent increase of dry days from 5 to 15 days. In addition, the strongest
positive change is shown under RCP8.5 in the far future, all over the country with the
most robust signal in the eastern parts (up to 35 days). Meanwhile, a reduction of dry
days is reported up to 10 days, in the western parts of the country, the lonian and Aegean
Islands, Crete and some regions in the northeast mainland, with an exception during
2075-2099 under RCP8.5. The calculated changes in dry days are statistically

significant everywhere in the domain.
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Figure 6.7 Annual mean dry days changes for 2025-2049 (near future) and 2075-2099 (far
future) relative to 1980- 2004. In the top figure, the number of dry days (below 1 mm) is
depicted for the historical period. (Areas with dots specify changes not statistically

significant using a Student’s t-test at the 95% confidence level).
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Consequently, the climate change signal derived from the climate indices of extremes
shows that it is clearly obvious that in both scenarios and periods extreme events would
become gradually more extreme, reaching their peak in RCP8.5. These results are in
good agreement with the studies of (Giannakopoulos et al. 2011; Kostopoulou et al.
2014). Leaver 2018 has also highlighted a considerable increase in the likelihood and
occurrence of high temperatures based on ETCCDI climate indices based on EU-
CORDEX datasets (0.44°) for the area of Greece. In agreement with our findings,
another study using EU-CORDEX results (0.11°) reported future warming in Greece
with the number of hot days and tropical nights in a year projected to increase
significantly and the number of frost days to decrease, particularly under RCP8.5
(Georgoulias et al 2022). Moreover, our results are consistent with EU-CORDEX hot
days results for the areas of Italy and the Balkans (where Greece is included) recently
analysed by Coppola et al. (2020) where the number of hot days (>35°C) is robustly
projected to increase by more than 50 days in the far future. Regarding precipitation,
dry days become more frequent under RCP8.5 in the far future all over Greece with the
eastern part of the country being highly prone to drought events. All these changes
would have important impacts on agriculture production and human discomfort, as

these are typical critical thresholds above which these sectors are affected.

6.3 Main Conclusions of Future Projections for ETTCDI

The climate change signal in what concerns the number of summer days is considerably
increasing everywhere and particularly under RCP8.5 in the far future. The highest
increases of hot days (greater than 35 days of daily TX>35°C) are observed over the
plains of central-east mainland, central Macedonia, western mainland and Peloponnese
under RCP8.5. Our results showed a decrease in the number of tropical nights, over the
highly mountainous areas of the mainland and Crete in both periods and under both
RCPs. On the other hand, their number increased elsewhere, becoming more vivid
towards the coastal areas, particularly in the far future under RCP8.5 over the islands
and parts of the western mainland. The number of frost days decreases everywhere in
both periods and under both RCPs reaching most significant decreases over the
mountainous areas and the eastern parts of the mainland under both RCPs in the far

future.
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Regarding precipitation climate indices, our findings revealed a reduction in the number
of days with RR>20 mm everywhere apart from western Greece in both periods under
RCP4.5 and in the near future under RCP8.5. The increases in the number of days of
extreme precipitation (RR>50 mm) are less profound and mostly over the high altitudes
of western Greece in both periods under both RCPs. Yet, the largest decreases are found
over the highly mountainous areas of eastern mainland and Crete in the far future and
under both RCPs. The number of dry days decreases in western Greece and the islands
in both periods and under both RCPs, with an exception during 2075-2099 under
RCP8.5. Significant increases are found over the mountainous areas and eastern

mainland, which become more robust in the far future under RCP8.5

Key Remarks
e Increases in the number of hot days with more pronounced changes over the plain

areas under RCP8.5 in the far future.

e Decrease in the number of tropical nights, over the highly mountainous areas of
the mainland and Crete in both periods and under both RCPs.

e Reduction in the number days with RR>20 mm all over the country apart from
western Greece in both periods under RCP4.5 and in the near future under RCP8.5

e Significant increases of dry days were projected over the eastern part of the
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Chapter 7 Historical and Future Projections on Drought

Characteristics

From the previous chapters, climate gridded datasets of precipitation and minimum
and maximum temperatures were derived from regional climate simulations for the area
of Greece, with the WRF-ARW model appropriately setup, driven by the EC-EARTH
global model. This chapter, in the first section, includes a description of the applied
methodology for the calculation of drought indices based on these climate gridded
datasets and the overall methodology for the estimation of drought characteristics. The
next section continues with the analysis and the presentation of the results associated
with the impact of climate change on drought characteristics in high resolution in

Greece.

7.1. SPI and SPEI

Although various definitions of drought exist, there is no universally accepted
definition of drought, since there is a wide variety of sectors affected by drought, as
well as due to its diverse spatial and temporal distribution (Heim, 2002). Nevertheless,
by considering drought as a hazard, there is a tendency to define and classify droughts
into different types, however, the relationship between the different types of droughts
is complex. In international literature, three operational definitions are considered,
namely meteorological or climatological, agrometeorological or agricultural and
hydrological drought (Wilhite et al., 2000). As a fourth type of drought, the
socioeconomic impacts of drought can also be considered.

More specifically, meteorological drought is a phenomenon associated with
prolonged and abnormal moisture deficiency, characterised by a precipitation anomaly
being lower than average. It is usually described by the magnitude and duration of
precipitation deficit with respect to the long-term climatology, often analyzed with
statistical indices like the Standardized Precipitation Index (SP1) (Mckee et al. 1993).
The agricultural drought is caused by the combination of a lack of precipitation
(meteorological drought) with the demand of the atmosphere for water. It is defined by

the availability of soil water to support crop and forage growth and there is no direct
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relationship between precipitation and infiltration of precipitation into the soil
(Dalezios 2018). This type of drought is affected by both climate change and human
activity on land, but also by direct human influences on the hydrological cycle. The
hydrological drought refers to low flow periods with a streamflow or groundwater level
deficit under “natural” conditions. Related indices often include the annual minimum
of a streamflow average taken over several consecutive days. The final type of socio-
economic drought is a result of water scarcity due to weather conditions, related to the
water supply creating an imbalance between supply and demand for essential economic
resources and affects various sectors such as food, transportation, hydropower etc.

The socio-economic impacts associated with agricultural drought can be severe. In
this study, in order to identify dryness or wetness conditions that can cause drought
impacts on various sectors, the Standardized Precipitation Index (SPI) [67], proposed
by WMO 2010, and Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al. 2010) are estimated. These two indices are among the most
widely used indices for drought identification and monitoring in Europe. As no single
drought index alone may precisely describe all the attributes of drought conditions, their
combination is a common approach in the scientific literature lately (Spinoni et al.
2015; Akbari et al. 2016; Jehanzaib et al. 2020; Dukat et al. 2022; Faye 2022).

The SPI is calculated by fitting a probability density function to a given frequency
distribution of precipitation totals for a station or grid point and for an accumulation
period (Faye Cheikh et al. 2019) and then the probabilities are transformed into a
normalized distribution with a mean equal to zero and a variance of one, developed by
Mckee et al., (1993). The SPI values can be interpreted as the number of standard
deviations by which the observed anomaly deviates from the long-term mean.

SPI is calculated as follows in equation (1):

where, xi refers to the current precipitation in the examined period, xj refers to the mean

precipitation of the timeseries, and o refers to the standard deviation of the timeseries.

SPEI is estimated using the same methodology as mentioned for SPI but includes

the climatic water balance which is the difference between precipitation and
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evapotranspiration. The inclusion of temperature on SPEI’s calculation (through
potential evapotranspiration (PET)) is suggested by European Drought Observatory
(see the source link in https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000) and
the Integrated Drought Management Programme (IDMP,
https://public.wmo.int/en/programmes/integrated-drought-management-programme)
since it is more suitable for the study of impact of future climate change. Details of the
SPEI calculation can be found in (Vicente-Serrano et al. 2010; Begueria et al. 2014).
The distribution functions used for computing those indices were the 'log-Logistic' for
SPEI, and ‘Gamma'’ for SPI. The applied herein distributions are the most widely used
in literature and recommended by the indices’ original developers (Spinoni et al. 2019).
Here, to calculate the SPEI index, the monthly potential evapotranspiration is estimated
based on the Samani equation H. Hargreaves and A. Samani, 1985 (H. Hargreaves and
A. Samani 1985) by estimating solar radiation from monthly minimum and maximum
temperature along with the location (latitude) of the grid cell. This method is frequently
used in drought studies (Vangelis et al. 2011; Vicente-Serrano et al. 2011; Spinoni et
al. 2020). The comparison of SPI and SPEI is made to assess the impact of potential
evapotranspiration which is a metric of the atmospheric evaporative demand (AED) to
determine the drought in the study areas as well as the uncertainty in the results obtained
using the SPI.

According to Wu et al., (2007) SPI values at scales up to 3-months are being non-
normally distributed in arid and semi-arid regions. Furthermore, (Karavitis et al. 2014;
Spinoni et al. 2019) point out in their studies that semi-arid and arid areas could give
an unreliable estimation of meteorological indices computed at short accumulation
periods (e.g., 3-months), especially with SPI because climatic conditions usually
exhibit an extended dry period of at least a few months with a notable number of zero
values that can cause statistical errors related to distribution’s calculation (Cressie
2015). Thus, the SPI or SPEI values of 6- and 12-months are proposed as more
appropriate for denoting not only meteorological but also agricultural droughts, applied
in several studies (Karavitis et al. 2012, 2014; Stagge et al. 2017; Oikonomou et al.
2019; Tsesmelis et al. 2019) in arid and semi-arid regions. Accordingly, the SPI-6,
SPEI-6, SPI-12, and SPEI-12 are selected for the drought characterization in Greece.

Both indices in the 6- and 12- months timescale are calculated over the nested
domain for each grid point and all precipitation data are converted to monthly values.
Also, the time series of the drought indices are calculated over the land grid cells for
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each time period. Drought conditions are indicated as SPI decreases below —1.0, while

increasingly severe excess rainfall is indicated as SPI increases above 1.0, as described

for all drought indices values in Table 7.1. The applied classification is consistent with

EU recommendations for this area which is part of the Euro-Mediterranean area (World

Meteorological Organization (WMO) and Global Water Partnership (GWP) 2016;

Copernicus European Drought Observatory (EDO): https://edo.jrc.ec.europa.eu/ 2020).
Table 7.1 Classification of the SPI values. The same applies to the SPEI.

SPI1 value Drought class
SPI>2.0 Extremely wet
1.5<SPI<2 Severe Wet
1.0<SPI<1.5 Moderate Wet
-1.0<SPI<1.0 Normal Climate
-1.0<SPI<-1.5 Moderate Dry
-2.0sSPI<-1.5 Severe Dry
SPI<-2 Extreme Dry

In this context, the characterization of a drought event is established when dry or
near-normal conditions are followed by drought conditions with values of the index
below —1 at least for two consecutive months. In the same way, it is considered that the
event ends when the value of index corresponds to near normal/wet conditions (index
values greater than 0). In order to examine the drought characteristics, three different
parameters are used: (1) severity which is determined as the absolute sum of SPI and
SPEI values for a drought event; (2) duration as the length of each drought event (in
months); and (3) mean intensity which is calculated as the average SPI and SPEI value
during a drought event or even defined by the severity divided by duration. Drought

characteristics are depicted schematically in Figure 7.1.
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Figure 7.1 lllustration of drought duration, severity, intensity and events.

The analysis of projected changes of drought was evaluated through the Delta-
Change approach (Hay et al. 2000) in terms of duration, intensity, frequency, and
severity of drought events by comparing indices, their time scales, scenarios and
periods. Thus, future climate changes of drought characteristics are defined as the
differences (Delta change) between the projection run (near or far period) and the
control run (reference period). Along with the projected changes of drought
characteristics, the trends of drought characteristics were studied, as well as their
significance. The linear trend is calculated based on the annual values of intensity,
severity and duration of drought events. Figure 7.2 presents the regions of particular

interest, as agricultural areas, based on the results.

211



\ ~— ey

' [E. Macedonia )

{

7 W. Macedonial
! %

'

3§

lonian

sea ‘ 3

R5

Peloponnese

Figure 7.2 Regions of particular interest of the country for discussion. Agricultural areas
are depicted in orange color.

To calculate the SP1 and SPEI, the R software was used, the “SPEI” package (Vicente-
Serrano et al. 2010; Begueria et al. 2014). In addition, drought characteristics and trends

have been analyzed in the R environment (http://www.r-project.org/index.html).

7.2 SPI-SPEI 6-month timescale

In this section, the results of drought characteristics and their trends derived from the
SPI and SPEI values of the 6-months timescale were analyzed. The frequency (number
of events), duration, severity, and intensity of the events shown in the following figures
are expressed per 5 years (with an exception in the frequency of drought events that
was summed only for the reference period). The historical conditions of drought
characteristics are also depicted for each case.

Figure 7.3a depicts the total frequency of drought events during the 25-year reference
period calculated by SPI and SPEI. Both indices yield a similar pattern of drought
events, however, SPEI presents droughts of increased frequency and spatial coverage
compared to SPI. The number of relatively higher frequency drought events (above 8)
are found in northern Greece (parts of eastern and central Macedonia), central
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mainland, the Peloponnese, Evia, and several islands (of the northern and central
Aegean Sea and the lonian Sea), and western Crete. Figure 7.3b shows the SPI and
SPEI projected changes in the number of drought events (per 5 years), based on the
different emission scenarios and future periods. The two indices show an overall
decrease in the frequency of drought events in both future periods over the country and
under both emission scenarios, apart from parts of Crete, Thessaly, western central

Greece and the Peloponnese.
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Figure 7.3 a) Drought frequency as the number of events in 25 years for the reference
period (1980-2004) for the SPI (left) and the SPEI (right) indices computed at 6-months
timescale. b) Changes in the frequency for the 6-month SPI and SPEI for the near future
period (2025-2049) and the far future (2075-2099) relative to the reference period (1980—
2004) under RCP4.5 and RCP8.5.

It should be clarified that the plain areas of Crete and Thessaly exhibit an outstanding
contribution to the country’s agricultural sector and therefore, potential projected
changes in drought frequency are of immense importance. The same holds for the areas

of western and north-eastern Peloponnese.

According to SPI and SPEI, the drought events are projected to be more frequent in the
near future period than in the recent past under RCP4.5 in the plain areas of Thessaly,

Thrace, western-central continental Greece, central Peloponnese and eastern Crete.
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Overall, changes in the far future period and under RCP4.5 yield decreased frequency
of drought events in central and northern parts of the country, particularly those
obtained by SPEI. On the other hand, the far future projections using both indices under
RCP8.5 present a reduced signal of drought frequency over Thessaly compared to
RCP4.5 results. Notably, the SPEI projected changes in the far future and under RCP8.5
showed the strongest signal of reduction in drought events compared to all other cases
examined. It could also be mentioned that a reduced frequency of drought events is
projected over the highly populated region of Attica except for the near-future SPEI
projections under RCP8.5.

The duration of drought events attains values up to 12 months/5y for the historical
period with both indices, but in the case of SPEI, the larger part of the land area is
characterized from at least 6-8 months/5y duration, as it is illustrated in Figure 7.4a.
Our results are in agreement with the findings of (Loukas and Vasiliades 2004) for the
region of Thessaly and the historical drought investigation of (Livada and
Assimakopoulos 2007) indicating severe droughts slightly increasing from north to

south and from west to east.

Regarding the projected duration (Figure 7.4b), under RCP4.5 and according to both
indices, the drought events are projected to be longer in the near future than in the past
in Thessaly (~4months/5y), in north-eastern Greece (Macedonia), western-central
Greece and north-western Peloponnese, eastern Crete and eastern Aegean (islands).
Shorter drought events are observed in Epirus, the mountainous parts of the mainland,
eastern parts of central Greece, and northeastern Peloponnese. Some of these areas like
western Macedonia, and Epirus show in the far future an increased duration of drought

events and a reduced one in Evia.
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Figure 7.4 a) Drought Duration as the averaged values obtained for the entire reference
period (1980-2004) for the SPI and the SPEI indices computed at 6-months timescale. b)
Changes in the duration for the 6-month SPI and SPEI for the near future period (2025—
2025-2049) and the far future (2075-2099) relative to the reference period (1980-2004)
under RCP4.5 and RCP8.5

In the near future period and under RCP8.5, the increase of drought length is more
intense in the eastern parts of the country (with the Aegean islands included), with both
indices and less intense in Crete. However, in the far future, the projected RCP8.5
change of increased duration of drought events is more intense and shifted to the
western parts of the country (Epirus/western Greece and western Peloponnese) and
Crete, with almost the same spatial patterns for the two indices. On the other hand, a
notable reduction in the signal of drought duration is observed over the larger part of
the central and eastern mainland with Attica included.

Concerning the severity (Figure 7.5) and the duration of drought events, the drought
events are projected according to both indices to follow, on average, the same spatial
patterns, while the spatial patterns of the drought intensity (Figure 7.6) are less
homogeneous and this remark is also made in the study of (Christel et al. 2014). The
intensity of drought events using both indices, as illustrated in Figure 7.6a, shows that
SPI yields higher values and spatial coverage compared to SPEI. The intensity is
projected to be higher and more extended with SPI than SPEI (see Figure 7.6b), for all
periods and RCPs, and particularly for the northern and eastern parts of the country and
Crete, with the additional inclusion of the western mainland during the far future under
both RCPs.
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Figure 7.5 a) Drought Severity as the averaged values obtained for the entire reference
period (1980-2004) for the SPI and the SPEI indices computed at 6-months timescale. b)
Changes in the severity for the 6-month SPI and SPEI for the near future period (2025—
2049) and the far future (2075-2099) relative to the reference period (1980-2004) under
RCP4.5 and RCP8.5
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2049) and the far future (2075-2099) relative to the reference period (1980-2004) under
RCP4.5 and RCP8.5

The analysis of drought characteristics is also studied in terms of spatial trends for the
area of Greece, for the two periods, RCPs and indices to examine their differences along
with the representation of their statistical significance. Severity and duration trends, as
illustrated in Figure 7.7 and Figure 7.8, show similar spatial patterns for both scenarios
over Greece. In general, the projected results show both positive and negative trends,
with larger areas presenting a strong positive (of which in many areas statistically
significant) trend by using both indices mainly under RCP8.5 due to a combination of

both warming and drying climate change signal (see (Politi et al. 2022)
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Figure 7.8 Trends of Severity, Intensity and Duration for the 6-months SPEI under
RCP4.5 and RCP8.5 for the period 2025-2049 and 2075-2099. The black dotted areas show
significant changes in the drought characteristics at the 5% significance level

On the other hand, both indices revealed a negative trend under RPC4.5 mainly during
the far future period all over the country with a statistically significant trend in some
areas in the northern part of the country, western Peloponnese and the lonian islands.
Yet, there are some exceptions, where statistically significant positive trends are noticed
with SPEI resulting in more intense drought events, for example in areas of Thessaly,
Thrace, Chalkidiki and Crete but at the same time these drought events are less severe

and/or of shorter duration (Figure. 7.8).

Under RPC4.5 and in the near future, statistically significant positive trends are
observed with intense drought events in western mainland and eastern Macedonia, with
an also statistically significant positive trend in severity and duration in western

mountainous parts and western Crete.

Finally, itis also worthy to report that under RCP8.5 for both periods there is a northeast
to southwest gradient towards negative trends in some areas of central-eastern Greece,
eastern Peloponnese, the Aegean Islands, Crete and Thrace, without being statistically
significant though. In the far future and in both emission scenarios, a decrease in the
mean duration and severity is observed locally on the eastern coasts of the mainland,
probably related to the extreme rainfall events that only persist there in the far future,
as it has been indicated in the study of (Vlachogiannis et al. 2022). This outcome is
associated with the Arctic amplification and possible connection to the weakening of
mid-latitude storm tracks (Chang et al. 2016). A profound positive statistically
significant trend in changes in drought characteristics is found mainly locally over areas

in Macedonia, Thrace, Thessaly and Peloponnese using both indices and under both
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periods. The high spatial resolution of the simulations gives the opportunity to
determine the specific areas of a rather small extent prone to drought, e.g., northern
parts of the island of Rhodes under RCP4.5 in the near future (Figure 7.7) and the
islands of Lesvos and Chios in eastern Aegean Sea under RCP8.5 in the near future
(Figure 7.8). However, when averaged over the whole area of Greece, it was necessary

to proceed with the investigation of the general response to drought tendency.

In this context, boxplots illustrate the trends of the total land area of drought
characteristics during each period and emission scenario (Figure 7.9). The drought
characteristics are calculated by spatial and temporal averaging (over five years).
Drought intensity, duration and severity follow similar patterns, showing positive
trends using both indices in the near future period under both scenarios and only in the
far future under RCP8.5. It is deduced that RCP8.5 drought characteristics with SPI1-6
and SPEI-6 present a stronger positive trend than those obtained under RCP4.5. The
negative projected trend in the far future period under RCP4.5 is probably related to the
negative projected trend of maximum temperature and simultaneously the positive
projected trend of precipitation (particularly in the west parts of the country for both

variables) during the same period (not shown), leading to wetter and milder conditions.
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Figure 7.9 5-years mean trends of drought severity, intensity and duration averaged over
land area, for the 6-months SPI/SPEI under RCP4.5 and RCP8.5 for the period 2025-
2049 and 2075-2099 and the reference period (1980-2004)

7.3 SPI-SPEI 12-month timescale

As depicted in Figure 10a, historical simulations with SPI and SPEI illustrate similar
spatial patterns of drought event, with an exception in some areas of western
Peloponnese where SPEI presents droughts of increased frequency and spatial coverage
compared to SPI. Moreover, the two indices agree on the projected decrease or increase
in drought frequency (per 5 years) with a higher number of drought events being
observed under RCP4.5 during both time periods (Figure 7.10b).
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Figure 7.10 a) Drought frequency as the number of events in 25 years for the reference
period (1980-2004) for the SPI and the SPEI indices computed at 12-months timescale. b)
Changes in the frequency for the 12-months SPI and SPEI for the near future period
(2025-2049) and the far future (2075-2099) relative to the reference period (1980-2004)
under RCP4.5 and RCP8.5

Drought duration for the historical period shows that SPEI covers more extended areas
of longer duration all over the country than the SPI, mainly in eastern Macedonia,
Thrace, Epirus, Central Greece (with Attica and Evia included) and northern
Peloponnese (Figure 7.11a). Increases in projected drought duration under RCP4.5
affect many plain areas all over Greece, with maximum values of duration of ~8
months/5y occurring in Macedonia and in local areas in Thessaly, northern Evia, central
Greece, the lonian and Aegean islands, Crete and the Peloponnese (Figure 7.11b). In
the near future, only Epirus and northeast Peloponnese are the regions with reduced

duration of drought events. While, in the far future, only the eastern Peloponnese,
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Attica, south Evia, and eastern Rhodes will experience drought events of shorter
duration. These results are deduced with both indices. Under RCP8.5, the duration will
be longer in some parts of the eastern country and Crete in the near future. Nevertheless,
the signal will change in the far future with a longer duration in the southern and western
Peloponnese, central-west continental parts and Epirus, central Macedonia and Thrace.
Thus, the regions of north-east Peloponnese, northern Evia and Thessaly are projected
to experience the strongest decrease in drought duration in the far future. Overall, the
differences between SPI and SPEI in duration are almost negligible.
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Figure 7.11 a) Drought duration as the number of events in 25 years for the reference
period (1980-2004) for the SPI and the SPEI indices computed at 12-months timescale. b)
Changes in the duration for the 12-months SP1 and SPEI for the near future period (2025-
2049) and the far future (2075-2099) relative to the reference period (1980-2004) under
RCP4.5 and RCP8.5

In what concerns the increase in drought duration (e.g. Figure. 7.11a) and severity (e.g.
Figures 7.12a) for the historical period for the region of Thessaly, our results are in
agreement with the findings of Loukas and Vasiliades (2004). Furthermore, our
findings agree with the historical drought investigation of Livada and Assimakopoulos
(2007) indicating severe droughts slightly increasing from north to south and from west

to east (e.g. Figures 7.4a and 7.10a).
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In general, the overall area projected to be impacted by more severe drought events in
the future is much larger according to SPI than the SPEI as depicted in Figure 7.12b.
However, in some locations, the opposite signal in severity is detected between the two
indices (e.g. central Macedonia, Attica) in the near future, particularly under RCP8.5.
This finding concerning Attica and SPI is consistent with the results of (Karozis et al.
2021) that indicated a reduction of air mass origin up to 45% originating from the
cyclogenesis region of the central Mediterranean and the Adriatic Sea. Over the island
of Crete and the northern and eastern parts of the country, the drought severity is
projected to increase under both RCPs and future periods, but more prominent increases
are found with the SPI index. Moreover, both indices indicate more notable increases
in drought severity in the south-western parts of the country in the far future, under
RCP8.5.
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Figure 7.12 a) Drought severity as the number of events in 25 years for the reference
period (1980-2004) for the SP1 and the SPEI indices computed at 12-month timescale. b)
Changes in the duration for the 12-months SPI and SPEI for the near future period (2025—
2049) and the far future (2075-2099) relative to the reference period (1980-2004) under
RCP4.5 and RCP8.5

The climate change signal of reduced drought conditions in several western parts of the
country and over some locations in the central and northern mainland (e.g. Thrace) is
associated with the increased precipitation as derived in the study of (Politi et al. 2022),
during both periods under RCP4.5 and in the near future under RCP8.5. Additionally,
in these areas, the increase in precipitation is strong enough to outweigh the effect of
increasing temperature (and, thus, the evapotranspiration), explaining why the drought
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variables decrease according to SPI. Those areas will be characterized by a hot and wet
future, potentially being exposed to even more weather precipitation extremes (Spinoni
et al. 2020).

Regarding drought intensity under RCP4.5, there is a clear climate change signal for
more intense drought events derived from SPI in the areas of central and eastern
Macedonia, northern Evia, some locations in central Greece and the Aegean islands and
Crete, in both future periods (Figure 7.13). High intensity of drought events under
RCP8.5 will additionally impact several locations of western Greece and Peloponnese
in the far future. However, using the SPEI index, the climate signal of drought intensity
becomes overall significantly weaker, locally more limited, which yields future
droughts of reduced intensity under both RCPs.
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Figure 7.13 a) Drought intensity as the number of events in 25 years for the reference
period (1980-2004) for the SPI and the SPEI indices computed at 12-month timescale. b)
Changes in the duration for the 12-months SP1 and SPEI for the near future period (2025—
2049) and the far future (2075-2099) relative to the reference period (1980-2004) under
RCP4.5 and RCP8.5

Similar patterns are observed regarding the spatial trends of corresponding drought
characteristics derived from the 12-months SPI and SPEI, as presented in figures 7.14
and 7.15 respectively, however, the results obtained with SPI show higher positive
trends. Regarding the far future, the two scenarios show different tendencies of
projected drought conditions, with larger areas of strong positive trends under RCP8.5.
In particular, the projections with both indices reveal longer and more intense and
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severe drought events under RCP8.5. However, the results indicate, with spatially

limited statistical significance, an amplified signal for Crete with less intense and severe

droughts of shorter duration, in the near future and under RCP8.5.
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Figure 7.14 Trends of Severity, Intensity and Duration for the 12-months SPI under
RCP4.5 and RCP8.5 for the period 2025-2049 and 2075-2099 over the area of Greece. The
black dotted areas show significant changes in the drought characteristics at the 5%

significance level.
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Figure 7.15 Trends (per year) of Severity, Intensity and Duration for the 12-months SPEI
under RCP4.5 and RCP8.5 for the period 2025-2049 and 2075-2099 over the area of
Greece. The black dotted areas show significant changes in the drought characteristics at
the 5% significance level.

Under RCP.4.5, projected changes of drought characteristics are milder than those
under RCP8.5 for both periods but indicate some notable remarks where some areas are
prone to longer and more severe and intense droughts. In the near future and under
RCP4.5, statistically significant drought characteristics over western Crete are
projected to increase resulting in longer and more intense and severe events. The
majority of the country tends to be exposed to more severe and longer drought events,
except for Macedonia, Thrace, islands of north-eastern Aegean and some local areas in
southern Peloponnese. It should be mentioned that areas in the central mainland with a
positive trend of statistical significance in drought duration and severity become more
spatially extended with the SPEI index under RCP4.5 in the near future. In addition,
under RCP4.5, some areas of western Greece and Thrace are prone to a positive
statistically significant trend on projected changes in drought intensity in the far future.

On the other hand, a profound positive statistically significant trend in changes in
drought intensity is found using both indices mainly over the areas of Macedonia and
Lesvos in the near future, under RCP8.5. Also, in the far future and under RCP8.5, a
positive statistically significant trend in drought intensity is obtained with both indices
for some areas of central Macedonia and Thessaly. Moreover, a noteworthy positive
trend of statistical significance in severity and duration is revealed with SPI only in
large parts of Thessaly. In general, drought conditions are related to the local climate
conditions which are characterized by low precipitation with high variability.
According to the two indices, RCP8.5 drought characteristics, as illustrated in Figure
7.16, present a stronger positive 5-years trend than those obtained under RCP4.5,

similarly as in the study of 6-months indices.
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Figure 7.16 5-years mean trends of drought severity, intensity and duration averaged over
land area, for the 12-months SPI/SPEI under RCP4.5 and RCP8.5 for the period 2025-
2049 and 2075-2099 and the reference period (1980-2004).

7.4. Discussion and conclusions

The presented results based on these two drought indices showed that Greece will
experience an increasingly severe climate with increasing drought severity and duration
under moderate (RCP4.5) and extreme (RCP8.5) global emission scenarios in almost

all parts of the country.

In general, previous works that indicate an increase in the frequency, duration and
severity of drought events, conducted for local areas of Greece under different periods
and/or IPCC scenarios, are in agreement with our findings in the context of future
projections; Vasiliades et al. (2009) for Karla Lake in Thessaly, Zerefos et al. (2011)
for the eastern part of the mainland (from Thrace down to the Peloponnese), Nastos et
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al. (2013) for eastern Greece and northern Aegean Islands, VVrochidou et al. (2013) for
Crete, Anagnostopoulou 2017 and Paparrizos et al. 2018 for Ardas and Sperchios river
basins in north-eastern and central Greece. Similar reports are included on the critical
review of water resources in Greece by Kourgialas (2021). More recently, Georgoulias
et al. 2022 found that the number of consecutive dry days in a year will increase by 15.4
days (30%) at the end of the century for central-southern Aegean Sea and continental
areas around based on an ensemble of EURO-CORDEX regional climate simulations.
Kairis et al. 2022 indicated that desertification risk in the future is expected to increase
in a study of future land degradation for Thessaly, using the RCA4 / MPI-ESM-LR
models from EURO-CORDEX. The study of Spinoni et al. 2018, based on an ensemble
of 11 bias-adjusted simulations from the EURO-CORDEX datasets using a composite
index (combination of SPI, SPEI, and RDI), showed that an increasing drought trend is
projected to continue and grow stronger until the end of the 21st century over southern
Europe for both scenarios investigated (RCP4.5 and 8.5). In general, a composite
drought index takes into account multiple drought characteristics which have been
successfully applied for drought detection (Ziese et al., 2014), monitoring (Sepulcre-
Canto et al., 2012; Cammalleri et al., 2017), and prediction (Hao et al., 2016).

The positive trends observed in drought intensity, severity and duration on 12 months’
timescale analysis, are also consistent with the tendency (higher probability of
occurrence) of increased long-range southerly flows (40%) under RCP4.5 and hence
more heatwaves, that can result in drier conditions in the future, as reported by Karozis
et al. 2021 in a study of a comparative assessment of backward trajectories in the near
future and both RCPs. It also observed that the drought tendencies of the two indices
revealed for some areas contradicting values. The interpretation of these cases (not only
for 6-months indices but 12-months as well) is more complicated since it must be
considered the climate change signal of precipitation (SPI) and temperature (SPEI) and
consequently evapotranspiration or both variables in these areas. In some cases, drought
characteristics increase with increasing temperature and/or decreasing precipitation,
while in other parts of Greece they may remain the same or even decrease. Each region
or river basin may have its own unique response to climate change. Consequently, the

sensitivity to continued climate warming becomes very region-specific.

Furthermore, the results derived by both indices enhance the importance of using their

combination for studying drought projections since by excluding temperature could
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lead to an incomplete interpretation of the situation. Projections of drought events using
SPI show more moderate/robust changes or trends than those from the SPEI or the
opposite, according to the area, topography, etc. This is because an index based solely
on precipitation cannot explain the full magnitude or spatial extent of drying reflected
by the SPEI (Cook et al. 2016). In fact, (Ault et al. 2016) has pointed out that as the
temperature increases in the future, the evapotranspiration increases also (because of
the greater moisture demand by the atmosphere) which is possible to result in even
more profound impact than precipitation deficits in a warmer world. Hence, the use of
SPEI is imperative in the investigation of climate change impacts on drought. On the
other hand, droughts can also be caused by changes in rainfall characteristics in terms
of seasonality, dry spells and precipitation intensity. That causes of drying depend on
the season and are probably linked to the dominant seasonal precipitation formation
mechanisms in winter (synoptic processes, NAO anomalies) and summer (local
phenomena due to convection), as suggested by Brogli et al. (2019). Thus, it would
also be of great importance to investigate with regard to observed climate change, in
general, the possibility of positive trends particularly occurring in case of wet periods

in areas prone to drought.

The impact of global warming and reduced precipitation on the country will become
more evident in the far future, as the extreme maximum temperature will become the
most significant hazard, particularly under RCP8.5 (Vlachogiannis et al. 2022). This
fact can lead to a remarkable increase in evaporative demand resulting in a shift toward
more arid climates. In this context and considering that the projected climate change is
likely to result in more frequent and severe weather-related extremes (Ali et al. 2022),
it is of the highest importance to investigate over which areas meteorological or

agricultural droughts are likely to become more frequent, more intense and/or severe.

The present study indicated that Greece will face relatively severe drought conditions
in the upcoming years. Moreover, our findings are comparable with those in other
studies conducted for the Mediterranean region (Garcia-Valdecasas Ojeda et al. 2017;
Guerreiro et al. 2018; Spinoni et al. 2018). Overall, our results point towards a warmer
and drier future, particularly under RCP8.5 in agreement with the latest IPCC report on
the Mediterranean region by Ali et al. 2022. It is also observed that both SP1 and SPEI
followed similar patterns in what concerns the spatial distribution of drought severity,

intensity, and duration. This fact declares an agreement at local level in spatiotemporal
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resolution; however, a weaker signal is found in the case of SPEI that in some cases

minimizes the effect of drought characteristics, particularly at the 12-months timescale.

The results of this study could be used for estimating the impacts of future drought
events, and consequently, for the development of adequate mitigation and adaptation
strategies for water management under climate change in Greece. In addition, the im-
portance of these results lies in the calculation of two drought indices to estimate the
projected changes on drought characteristics in high resolution that takes into
consideration the complex topography of Greece, and how the results can differentiate
based on the parameter that is probably most dominant in future change between
temperature (potential evapotranspiration) and precipitation in the future. However, the
complex topography of the domain or parts of it may imply the requirement of further
impact drought assessment studies by downscaling the climate data to even higher than
a 5 km resolution. It was found that the drought conditions will be more severe in the
lowland areas (plain areas), such as Thessaly, Crete, etc. where all the agricultural
activity takes place. Sordo-Ward et al. (2017) who studied past and future SPEI
droughts in the La Plata Basin suggested the need for a potential relocation of certain
crops from the exposed vulnerable regions towards cooler and wetter regions. This
conclusion is reinforced by the increased statistical significance calculated in those
areas. The results also point out that special attention needs to be given to avoid water
scarcity problems that will have a great impact on the local population and agricultural
activities.

Summarising, the investigation of drought characteristics focused on projected
changes in temperature and precipitation in Greece, which can provide a comprehensive
attribution of drought events. It is deduced that the study of drought events is not a
straightforward task for areas of complex topography that present climatic variations
and the corresponding spatial and temporal characteristics may depend on the choice of
the index. Some limitations are related to the fact only one GCM and RCM have been
used in this study and no bias correction was applied to improve the climate projections
regarding the examined variables, given the lack of consistent gridded observational
datasets required for such regions of complex topography and climate variation. In
general, the future changes in drought characteristics are expected to have a significant
impact on the country’s ecosystems, as well as on a number of human activity sectors

(e.g. health, agriculture, tourism, forest fire risk, loss of biodiversity, etc.). In any case,
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the produced high resolution projected changes of the present study can serve as a firm
and reliable basis for climate change impact assessments based on drought

characteristics for the area of Greece.

Key Remarks

e Both SPI and SPEI followed similar patterns in what concerns the spatial distri-
bution of drought severity, intensity, and duration.

e 12-months SPI and SPEI for the period 2075- 2099 and under RCP8.5 have shown
a profound increase in the mean duration of drought events along with in-
creased severity for the areas of Crete, central Aegean islands (Cyclades), south-
ern Peloponnese, western continental Greece, Attica, central Macedonia and
Thrace.

e A positive statistically significant trend in drought intensity is also observed
with both indices for some areas of central Macedonia and Thessaly

e Drought events with the 12-months analysis are projected to be more frequent
locally in the central to northern parts of the country, under RCP4.5 than
RCP8.5, in both future periods.

e 6-months SPI and SPEI yield that a more extended area is affected by drought
conditions and more severe and prolonged drought events are expected under
both scenarios (particularly, in areas of central and eastern part of the country
in the near future, and areas of the western parts in the far future).

e (Central and eastern mainland will experience a notable reduction in the signal
of drought duration along with decreased frequency of drought events in the
far future under RCP8.5.

e Thessaly, a region of high agricultural interest, will experience more frequent
and longer drought events in the near future under RCP4.5.

e Crete (and mainly the eastern part) is projected to experience increasingly more
prolonged and severe drought events under both scenarios and periods.

e Reduced frequency of drought events is projected over the highly populated re-
gion of Attica, except for the near-future SPEI projections under RCP8.5

e RCP8.5 drought characteristics with both indices present a stronger positive
trend than those obtained under RCP4.5
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Chapter 8 Conclusions

8.1 Key Findings

The motivation for this work lay in the necessity of gathering reliable climate future
information on the primary climate variables associated with the phenomenon of
drought, such as maximum and minimum temperatures and precipitation to calculate
and evaluate future drought characteristics for Greece. Accordingly, this research
included WRF simulations duly performed to analyze the projections of drought
characteristics due to climate change using two drought indices over the whole country
of Greece with a spatial resolution of 5 km, which to the best of our knowledge is the
highest used so far (higher-resolution data are available only for very few basins). The
The model simulations were carried out with the dynamical downscaling technique for
the area of interest under RCP4.5 and RCP8.5. Consequently, the state-of the art
extended high-resolution climate datasets derived for the region to 5 km for this area
are unique so far. In particular, the 5km horizontal resolution allowed better
understanding of subscales phenomena and how climate change can affect them. In
addition, the application of this high-resolution dynamical downscaling methodology
could be applied in areas characterized by complex topography as dynamical

downscaling provides added value in such cases.

The suitability of the WRF model, to simulate the climate characteristics of the study
area, required initially the appropriate configuration of the model through sensitivity
tests. For this purpose, at first a set of seven different combinations of physics schemes
were compared with observational datasets for one year in terms of extreme
temperatures and precipitation to derive the four best performing set ups. Using these
set ups, more sensitivity tests were applied to 5-year periods to obtain the most effective
set of parameterization schemes. In addition, the model sensitivity to reinitialisation
was investigated following three different types of time integration approaches to
conclude the optimal model configuration. This procedure requested the evaluation of
the downscaled results and ERA-I reanalysis datasets with the historical observations
from the HNMS network based on statistical metrics. The procedure and the selection

of the optimal setup were analysed in Chapter 3.
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Following the optimal model configuration, WRF simulations were performed for the
climatological period of 25 years (1980-2004) owing to observational data availability.
The model performance at 5 km spatial resolution (WRF_5) was evaluated with
statistical tools using observational data from the HNMS network. In addition, the
coarse resolution ERA | data were compared with observations. The research work
resulted in the proof of the added value of the high-resolution downscaling (5 km)
methodology using the reanalysis fields of ERA-Interim and secondly validated high
resolution historical climatological downscaled datasets driven by the EC-EARTH

global model from 1980 to 2004. The main findings were reported in Chapter 4.

This work aimed also to provide projected climatological datasets for impact models
that require high spatial details. To that end, downscaled fields with WRF driven by the
GCMEC model for two different future emission scenarios (RCP4.5 and RCP8.5) and
two 25-year future time slices (2025-2049 and 2075-2099) were obtained. This was
regarded as a great achievement and it involved a detailed assessment of future changes
in minimum and maximum temperatures and precipitation for Greece, along with the
spatial and temporal change of climate indices based on ETTCDI. The high spatial
detail of climatological variables in Greece pointed out distinct and vulnerable areas
prone to climate change, as described in Chapters 5 and 6 and highlighted in the final
remarks of those chapters.

In the Chapter 7, projected spatial and temporal changes of drought characteristics
(severity, duration, and intensity of drought events) were thoroughly investigated using
two drought indices, the Standardized Precipitation Index (SPI) and the Standardized
Precipitation Evapotranspiration Index (SPEI) in different timescales (6 and 12
months). The high spatial resolution identified in high detail the areas that will face less
or more drought in the future. Overall, our results pointed toward a warmer and drier
future, particularly under RCP8.5. It was also shown that both SPI and SPEI followed
similar patterns in what concerns the spatial distribution of drought severity, intensity,
and duration. That fact declared an agreement at a local level in spatiotemporal
resolution; however, a weaker signal was found in the case of SPEI that in some cases
minimized the effect of drought characteristics, particularly at the 12-month timescale.
The projected higher frequency and longer duration meant the stabilization in drier
conditions. In this context, the 12-month indices represented more suitably the

prolonged duration of drought events. Moreover, owing to the high spatial resolution
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used, substantial differences in drought characteristics were found in future projections
between areas, highly varying in temporal and spatial terms under the two emission

scenarios.

8.2 Future recommendations

Future work could consider trend analysis and calculation of return periods
following differentiation between wet and dry seasons, the analysis of moisture
transport impacting selected regions during extreme conditions, or studies based on
analysis of other factors influenced by drought, such as the characteristics of soils,
hydrology, production of different types of crops, etc. Also, further research could
include drought impacts using other drought indices or hydrological parameters and
soil parameters in the most affected areas of agricultural or tourism interest (e.g.,
Thessaly, Crete, Islands) as already identified in our study, to investigate extensively
water resource availability for agricultural production and fire risk assessment. In the
context of climate change studies and services, future work could consider applications
of the WRF model datasets to other economic sectors such as tourism, energy etc. In
addition, since the dynamical downscaling technique with the WRF model is a valuable
tool to study future climatology in high spatial resolution, especially in areas with
complex topography, its application should be included in research works using CMIP6
data and new SSPs scenarios, which has been the focus of interest in the research
community nowadays. The SSPs are based on five narratives describing broad
socioeconomic trends that could shape future society. Thus, these scenarios look at five
different ways in which the world might evolve in the absence of climate policy and
how different levels of climate change mitigation could be achieved when the

mitigation targets of RCPs are combined with the SSPs.

It must be mentioned that at this stage, only one GCM and RCM have been used,
limiting the quantification of the uncertainty of the results. Also, bias correction was
not applied to improve the climate projections regarding the examined variables, given
the lack of consistent gridded observational datasets required for such regions of
complex topography and climate variation. In summary, uncertainties still exist in
projecting future climate changes in Greece—a region with a complex topography and

unique weather and climate systems, thus, the importance of in-depth analyses of model
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simulations and large ensembles of high resolution should be emphasized. A natural
follow-up would also be to investigate the use of an ensemble of different bias corrected
methods results with observational data to quantify the uncertainty of the dynamical
downscaling results in the past and future periods for climate indices and particularly
for specific areas which are projected to be more affected by extreme events in the

future.

Finally, as extreme weather becomes increasingly frequent and changes in the
climate more pronounced, the finer spatial resolution of such gridded products could
contribute to enhancing the potential of digital modelling of the Earth systems to
provide better capabilities for the assessment and prediction of environmental extremes
in support of risk assessment and management. Through richer observation datasets and
increased simulation capabilities, humanity will be better prepared to respond to major
natural disasters, adapt to climate change and predict with higher confidence the

socioeconomic impacts.
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APPENDIX

A.1 Statistical metrics

The following standard errors statistics, with formulae described in Table A.1 (where
“0” is the value of the observational data, “f” is the simulated data) were estimated: the
BIAS, the root mean square error (RMSE) that gives an overview of the accuracy of
simulations, the mean absolute error (MAE), a measure of the absolute values of the
model errors, the Pearson’s correlation coefficient (COR), the modified Index of
Agreement (MIA), developed by (Willmott 1981; Legates and McCabe Jr. 1999) as a
standardized measure of the degree of model prediction error, and finally the Nash—
Sutcliffe efficiency (Nash and Sutcliffe 1970), NSE, which is a normalized skill score
that determines an overall performance and can vary between 1 for perfect agreement
and — oo for complete disagreement. While the NSE has traditionally been used in
hydrological applications, it can also be applied to any type of model data with paired
observations of the same quantities (Lee et al. 2018). According to Bieniek et al. (2016),
station and reanalysis data contain their uncertainties; however, the term BIAS is used
only to denote the differences between the WRF model output and observational data
and not to imply that the differences are errors entirely born in the model results. The
model error was calculated as the difference between the modeled and observed values.
The total error was then found by pooling together all the points of meteorological
stations and not by averaging.

The statistical indices used in the present study are given in the table below:
Table A.1 Summary of statistical formulas calculated for model evaluation in this study:

Parameter Formula Range Ideal
value

Mean Bias Error

1% _
BIAS = NZ(;(fi—oi):f—é

(—o0,0) 0
Root Mean Square Error
! ety Bl = 0)?
N (0,50) 0
Mean Absolute Error 1<
MAE = = |~ o
=0 (0,0) 0
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2L (fi — )0 = 0)

COR =
Pearson Correlation [ ~ —
Coefficient Yico(fi — )2 Xiso(0; — 0)? (-1.1) 1
Modified Index  of ™o - fi
Agreement MIA = 1- — _—1|( : fi)l =
Yi | (fi—o)| + XL, [(0; — 0)| (0,1) 1
Nash-Sutcliffe efficiency NSE = 1 (0 — fi)?
=1-55—=
Li=1(0: = 0) (-Inf,1) 1

A.2 Taylor diagrams

Taylor diagrams are used in addition to provide a comprehensive statistical and
graphical verification of how well observed and simulated patterns match each other in
terms of their correlation and normalized standard deviation (Taylor 2001). Taylor

diagrams were computed through R scripts with “plotrix” package.

A.3 Contingency tables

Categorical (CAT) verification statistics measure the agreement between the estimated
and observed occurrence of P events. The capability of the model to distinguish
dichotomous (yes/no) P events.

In the case of sensitivity test 2, the accuracy of the simulated precipitation was
determined by statistical scores of a contingency table (Table A.2): probability of
detection (POD), critical success index (CSI) and false alarm ratio (FAR). In this study
for four distinct threshold values of precipitation was used for low rainfall (>1mm),
medium rainfall (>2.5 mm), heavy rainfall (>10 mm) and extremely heavy rainfall days
(>20 mm) to evaluate small and large rainfall events, for the location of each station

separately.

Table A.2 Contingency table and statistics. The counts a, b, ¢ and d are the total number

of hits, false alarms, misses and correct rejections.

Event observed POD FAR CSI

Event forecast YES NO | (Perfect score: 1) (Perfect score: 0) (Perfect score: 1)
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YES

NO

a/(a+c)

b/(a+b) a/(a+b+c)

For sensitivity test 3, the accuracy of the simulated precipitation was also determined

by the previous measures based on contingency tables, described on Table A.3, for 3

thresholds (0.1mm, Imm, and 10mm), calculated for each station separately.

Table A.3 Contingency table and statistics.

Event observed

POD SR Bias CSI
Event forecast YES NO
YES a b
a/(atc) 1-(b(atb)) (atb)/(a+c) a/(atb+c)
NO c d
A.4 Stations HNMS
Precipitation’s stations provided by HNMS

ID NAME ELEVATION LON LAT
16606 Serres 32 23.567 41.083
16609 Xanthi 43 24.88 41.13
16611 Soufli_Palios 15 26.3 41.0794
16613 Florina 695 21.43 40.79
16614 Kastoria-Airport 660.95 21.28 40.45
16619 Trikala_Imatheias 1 22.55 40.6
16622 | Thessaloniki/Mikra 2 22.967 40.517
16627 Alexandroupolis 4 25.917 40.85
16628 Konitsa 530 20.74462 40.04807
16641 Kerkyra 1 19.912 39.603
16642 loannina 483 20.817 39.7
16643 Aktio 3 20.7613  38.9214
16645 | Trikala_Thessalias 163 21.76247 39.55857
16648 Larisa 73 22.417 39.65
16650 Limnos 4 25.2333  39.9167
16655 Astros 25 22.72 374
16657 Domokos 570 22.3002 39.12756
16662 Skopelos_Palios 11 23.7333  39.1167
16665 Aghialos 15.3 22.78 39.22
16667 Mytilini 4 26.596 39.059
16672 Agrinio 72 21.39458 38.6241
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16673
16674
16675
16681
16682
16685
16687
16688
16689
16692
16693
16699
16701
16706
16707
16710
16711
16715
16716
16717
16718
16723
16724
16725
16726
16732
16734
16736
16737
16738
16743
16744
16746
16747
16749
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761

Nafpaktos
Aliartos
Lamia
Edipsos
Andravida
Argostoli
Araxos
Diabolitsi
Patra
Aigio
Desfina
Tanagra
Nea_Filadelfia
Chios
Pyrgos
Tripoli

Stephani(Korinthia)

Tatoi
Elliniko_Airport
Pireus
Elefsis
Samos
Argos
Sparti
Kalamata
Naxos
Methoni
Aigina_Palios
Githeio
Milos
Kythira
Thira
Souda
Chania
Rodos
Anogeia
Gortis
Heraklion
Fourni
lerapetra
Siteia
Rethymno
Timpaki
Kasteli
Zaros

15
110
107

14
25
15
108

64
585
138
136

23

12
651
960
225

10

29

31

10

38
204

34

2.7
183
167
36

151

95
801
182

39
316

30

50

6.7
336
343

21.83
23.1
22.44613
23.04
21.2833
20.503
21.42
21.95
21.7375
22.06889
22.52981
23.533
23.73
26.13172
21.42667
22.401
22.833
23.776
23.7333
23.63167
23.55
26.68199
22.71355
22.43638
22.017
25.383
21.7
23.44364
22.55
24.45
23.0167
25.433
24.1167
24.0148
28.21661
24.88
24.93
25.174
25.333
25.333
26.095
24.48904
24.77
25.33
24.9

38.38
38.38
38.90364
38.86
37.9167
38.118
38.15
37.2833
38.25556
38.25
38.42082
38.339
38.05
38.35341
37.67667
37.527
37.75
38.11
37.8877
37.93556
38.07
37.79368
37.62824
37.05306
37.067
37.1
36.8333
37.74813
36.75
36.7167
36.2833
36.4167
35.4833
35.51303
36.42896
35.29
35.06
35.339
35.2667
35.2667
35.205
35.3612
35.07
35.2
35.11667
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Temperature’s stations

NAME ELEVATION LON LAT
SERRES 32 23.567 41.083
FLORINA 695 21.43 40.79
THESSALONIKI/MIKRA 2 22.967 40.517
ALEXANDROUPOLIS 4 25.917 40.85
KOZANI 621 21.839 40.287
KERKYRA 1 19.912 39.603
IOANNINA 483 20.817 39.7
AKTIO 3 20.7613  38.9214
TRIKALA_THESSALIAS 163 21.76247 39.55857
LARISA 73 22.417 39.65
LIMNOS 4 25.239 39.92
AGHIALOS 15 22.78 39.22
MYTILINI 4 26.596 39.059
AGRINIO 72 21.39458 38.6241
LAMIA 107 22.44613 38.90364
SKYROS 12 24.4872  38.9676
ARGOSTOLI 25 20.503 38.118
ARAXOS 15 21.42 38.15
TANAGRA 138 23.533 38.339
CHIOS 23 26.13172 38.35341
TRIPOLI 651 22.401 37.527
ELLINIKO_AIRPORT 10 23.7333  37.8877
SAMOS 10 26.68199 37.79368
KALAMATA 6 22.017 37.067
NAXOS 9 25.383 37.1
METHONI 34 21.7 36.8333
THIRA 36 25.433 36.4167
SOUDA 151 24,1167  35.4833
RODOS 95 28.21661 36.42896
HERAKLION 39 25.174 35.339
SITEIA 30 26.095 35.205
CHANIA 7 24.0148 35.51303
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