
National and KapodistRian UniveRsity of Athens

MSc Thesis

The Bootstrap Method for Discrete-Time
Markov Chains and Applications

Author:

Panagiotis AndReou
Supervisor:

Dr. Samis TRevezas

A thesis submitted in partial fulfillment of the requirements for the degree of M.Sc. in

Statistics and Operations Research

in the

Faculty of Science
Department of Mathematics

June 30, 2023



“The great thing about Statistics is that you get to play
in everyone’s back yard.”

John Tukey
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Department of Mathematics

Panagiotis Andreou

Abstract

The present thesis aims at presenting the application of the Bootstrap method on dependent
data. The Bootstrap method was introduced in the late ’70s by the eminent statistician
Bradley Efron, bringing a revolution in Statistics and many other related fields. In its initial
formulation, this method considered independent data. Here we are dealing with data that
exhibit a particular type of dependence, that of a discrete-time Markov chain. In the first
part of the thesis, we provide a theorem-proof type of presentation of the basic Markov
chain theory, both with discrete and arbitrary state space. In the second part, we focus on
the problem of estimating the transition matrix of a Markov chain based on an observed
path of the chain. We first examine how we can use asymptotic methods to tackle this
problem, presenting both the classical and the Bayesian framework. Then, we show how
we can exploit the Bootstrap method to approach this problem. We delve into both the
frequentist and the Bayesian frameworks of tackling this problem, and we give detailed
proofs of the main asymptotic results that validate these procedures. Finally, we apply the
above theoretical methods in simulated and real data.
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Η Μέθοδος Bootstrap στις Μαρκοβιανές Αλυσίδες Διακριτού

Χρόνου και Εφαρμογές

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Μαθηματικών

Παναγιώτης Ανδρέου

Περίληψη

Η παρούσα διπλωματική εργασία αποσκοπεί στο να παρουσιάσει την εφαρμογή της μεθό-
δου Bootstrap σε εξαρτημένα δεδομένα. Η μέθοδος Bootstrap εισήχθη στα τέλη της δεκα-
ετίας του 1970, φέρνοντας επανάσταση στη Στατιστική και σε πολλές επιστήμες που κά-
νουν χρήση αυτής. Ωστόσο, στην αρχική της μορφή η μέθοδος αυτή αφορούσε ανεξάρτητα
δεδομένα. Εδώ, ασχολούμαστε με δεδομένα που έχουν μία συγκεκριμένη δομή εξάρτησης,
αυτήν της Μαρκοβιανής αλυσίδας διακριτού χρόνου. Στο πρώτο μέρος της εργασίας, κά-
νουμε μία παρουσίαση της βασικής θεωρίας των Μαρκοβιανών αλυσίδων διακριτού χρό-
νου, τόσο με διακριτό όσο και με γενικό χώρο καταστάσεων. Στο δεύτερο μέρος της εργα-
σίας, εξετάζουμε πώς η μέθοδος Bootstrap μπορεί να χρησιμοποιηθεί για να εκτιμήσουμε
τον πίνακα πιθανοτήτων μετάβασης μίας Μαρκοβιανής αλυσίδας έχοντας παρατηρήσει
ένα μονοπάτι της. Εξετάζουμε και την κλασική και τηνΜπεϋζιανή αντιμετώπιση αυτού του
προβλήματος και παρουσιάζουμε αναλυτικά τις αποδείξεις βασικών αποτελεσμάτων που
αναδεικνύουν τις ασυμπτωτικές ιδιότητες των εκτιμητριών Bootstrap. Στο τελευταίο κεφά-
λαιο της διπλωματικής εργασίας, παρουσιάζονται κάποιες εφαρμογές σε προσομοιωμένα
και πραγματικά δεδομένα.
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Chapter 1

Discrete-Time Markov Chains

Markov chains are some of the simplest and most useful stochastic processes. Roughly
speaking, by a stochastic process we shall think of a collection of random phenomenawhose
evolution is examined over the passing of time.

1.1 Discrete state-space

1.1.1 Basic definitions and properties

Let (Ω,F ,P) be a probability space and S a countable¹ set in which the random variables
take values. By random variable we mean a measurable function X : Ω→ S such that

pi = P(X = i) = P({ω ∈ Ω : X(ω) = i}).

An S × S matrix P = (pij : i, j ∈ S) will be called stochastic if every row is a distribution
on S, i.e., if for every i ∈ S,

∑
j∈S pij = 1. We are now able to define a discrete-time

Markov chain.

Definition 1.1.1 (Markov Chain). Let λ be a distribution and P a stochastic matrix. The
family of random variables (Xn)n≥0 = {Xn : n ≥ 0} is called a Markov Chain with initial

distribution λ and transition matrix P , if

A. X0 ∼ λ, i.e., P(X0 = k) = λk, ∀k ∈ S,

B. the next state of the chain depends only on its present state, i.e.,

P(Xn+1 = in+1 | X0 = i0, X1 = i1, . . . , Xn = in)

= P(Xn+1 = in+1 | Xn = in) = pinin+1 .
(1.1.1)

¹since we have assumed a discrete state-space

2



3 1.1. Discrete state-space

We will denote by Markov(λ, P ) a Markov chain with initial distribution λ and transi-
tion matrix P . If the transition probabilities do not depend on the time at which we are
examining the process, the Markov chain will be called time-homogeneous. From now on,
whenever we say Markov chain, we will mean a time-homogeneous one, unless otherwise
stated.

We will now prove a very useful Theorem about Markov chains. In particular, we will
show that a Markov chain is entirely determined by its initial distribution and its transition
matrix.

Theorem 1.1.1. A stochastic process (Xn)
∞
n=0 is Markov(λ, P ) if, and only if, for all N ∈ N

and all i0, i1, . . . , iN ∈ S,

P(X0 = i0, X1 = i1, . . . , XN = iN ) = λi0pi0i1pi1i2 . . . piN−1iN . (1.1.2)

Proof. We consider a known result that a stochastic process is characterized by its finite-
dimensional distributions². Suppose that (Xn)

∞
n=0 is Markov(λ, P ) and let N ∈ N. Then,

by the multiplicative law of probability, we receive

P(X0 = i0, X1 = i1, . . . , XN = iN ) =

= P(X0 = i0) · P(X1 = i1 | X0 = i0) · . . . · P(XN | X0 = i0, . . . , XN−1 = iN−1) =

= P(X0 = i0) · P(X1 = i1 | X0 = i0) · . . . · P(XN | XN−1 = iN−1) =

= λi0pi0i1pi1i2 . . . piN−1iN ,

as equation (1.1.2) indicates. Conversely, assume that equation (1.1.2) holds for every N ∈
N. The idea now is to sum over every possible state iN ∈ S, so that the last term of the
intersection will drop and then, using induction, we will get the equation (1.1.1), indicating
that (Xn)0≤n≤N is Markov(λ, P ). Indeed,

P(X0 = i0, X1 = i1, . . . , XN = iN ) = λi0pi0i1pi1i2 . . . piN−1iN ⇒∑
iN∈S

P(X0 = i0, X1 = i1, . . . , XN = iN ) =
∑
iN∈S

λi0pi0i1pi1i2 . . . piN−1iN ⇒

P(X0 = i0, X1 = i1, . . . , XN−1 = iN−1) = λi0pi0i1pi1i2 . . . piN−2iN−1 ,

and thus equation (1.1.2) holds for N − 1 too. A simple inductive argument shows that
equation (1.1.2) holds for every n = 0, 1, . . . , N . Hence, the initial distribution satisfies
P(X0 = i0) = λi0 and for every n = 1, . . . , N we have

P(Xn+1 = in+1 | X0 = i0, X1 = i1, . . . , Xn = in) =

²this is an application of Dynkin’s π − λ theorem
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=
P(Xn+1 = in+1, X0 = i0, X1 = i1, . . . , Xn = in)

P(X0 = i0, X1 = i1, . . . , Xn = in)
=

=
λi0pi0i1pi1i2 . . . pin−1inpinin+1

λi0pi0i1pi1i2 . . . pin−1in

= pinin+1 ,

and the proof is complete.

Let

δij =

1, if i = j

0, if i 6= j

denote the Kronecker delta. Markov chains have the very useful property that at any point
they start all over again, forming a new Markov chain that is independent of the past. This
property is called memorylessness.

Theorem 1.1.2 (Markov property). Let (Xn)n≥0 be Markov(λ, P ) and Xm = i for some

m ≥ 0 and i ∈ S. Then, given that Xm = i, the process (Xk)k≥m is Markov(δi, P ) and is

independent of X0, X1, . . . , Xm−1.

Proof. We want to show that ({(X0, . . . , Xm−1), (Xm, Xm+1, . . . )} | Xm = i) are in-
dependent, and the second process is Markov(δi, P ). The distribution of the finite vector
(X0, . . . , Xm−1) is determined by a probability function, while the distribution of the (in-
finite) vector (Xm, Xm+1, . . . ) is determined by the distributions of all the finite vectors
(Xm, Xm+1, . . . , Xm+n), for n ∈ N. Thus, it suffices to show that

P(X0:m+n = i0:m+n|Xm = i) = P(X0:m−1 = i0:m−1|Xm = i)·

· P(Xm:m+n = im:m+n|Xm = i),

for every n ∈ N, and P(Xm:m+n = im:m+n|Xm = i) is given by the transition probability
matrix P . The latter is immediate since (Xn)n≥0 is by assumption a Markov chain. For the
former, let n ∈ N. Using the statement of Theorem 1.1.1, we get

P(X0:m+n = i0:m+n|Xm = i) = δiim
P(X0 = i0, . . . , Xm = im, . . . , Xm+n = im+n)

P(Xm = i)

=
P(X0 = i0, . . . , Xm = im)

P(Xm = i)
δiimpimim+1 . . . pim+n−1im+n

= P(X0:m−1 = i0:m−1|Xm = i) · P(Xm:m+n = im:m+n|Xm = i),

as we wanted to show.

Suppose that instead of a one-step transition, we want to examine the state in which
the Markov chain will be after n-steps, i.e., for every i, j ∈ S we are interested in the
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probabilities
p
(n)
ij = P(Xm+n = j | Xm = i) = P(Xn = j | X0 = i),

for every n ≥ 0, where by definition we set p(0)ij = δij . Let

P (n) = (p
(n)
ij : i, j ∈ S), n ≥ 0

denote the n-th order transition matrix. A surprisingly simple result tells us that P (n) is
equal to the algebraic n-th power of the transition matrix, i.e., Pn.

Proposition 1.1.1. For every natural number n ≥ 0, we have P (n) = Pn.

Proof. The proof consists of the Total Law of Probability and a simple induction argument.
For every i, j ∈ S and n ≥ 0, we have

p
(n)
ij = P(Xn = j | X0 = i) =

∑
k∈S

P(Xn = j,Xn−1 = k | X0 = i)

=
∑
k∈S

P(Xn−1 = k | X0 = i)P(Xn = j | Xn−1 = k,X0 = i)

=
∑
k∈S

P(Xn−1 = k | X0 = i)P(Xn = j | Xn−1 = k) =
∑
k∈S

p
(n−1)
ik pkj .

In matrix form, the above result is expressed as P (n) = P (n−1) · P . The desired result
follows by induction.

From the above proof we can actually infer the following very important identity, which
is referred to as the Chapman-Kolmogorov equation:

P (n+m) = P (n) · P (m), ∀n,m ∈ N. (1.1.3)

1.1.2 Stopping times and the Strong Markov property

In the previous paragraph we began by assuming a probability space (Ω,F ,P), where Ω

is a set, F is a σ-algebra (or σ-field) and P is a probability measure. But one could argue
that these technical terms do not reflect one’s intuitive ideas about randomness; at least not
in an obvious way. In a setting of randomness, Ω is the set of all possible outcomes of an
experiment, F is a collection of subsets of Ω in which an outcome ω ∈ Ω will be, and P
assigns a number to each set in F that shows how likely it is for this ω to lie in this set.
The key interpretation of the σ-algebra F is information. It is the specific σ-algebra that
tells us in which subsets of Ω will the observation ω be found.

Definition 1.1.2. Let {Fn : n ∈ N} be a filtration, i.e., an increasing sequence of σ-algebras
such that Fn ⊆ Fn+1 ⊆ F for every n ∈ N. A function T : Ω → N ∪ {∞} is called a
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stopping time according to the filtration (Fn)n≥0, if

{ω ∈ Ω : T (ω) ⩽ n} := {T ⩽ n} ∈ Fn, ∀n ∈ N.

It is immediate that the above condition is equivalent to {T = n} ∈ Fn, ∀n ∈ N. One
simply has to write {T = n} = {T ⩽ n} \ {T ⩽ n − 1} and use the properties of a σ-
algebra. Intuitively, T is a stopping time if the event that T takes a specific value can only
be determined by the information we have up to this stage, i.e., the event {T = n} depends
solely on X0, . . . , Xn. In other words, if someone is watching the stochastic process, he
will know at the time when T takes place. There are some classic and very useful examples
of stopping times in the case of Markov chains.

Example 1.1.1. Let j ∈ S. The first passage time Tj : Ω→ N ∪ {∞} defined by

Tj(ω) = inf{k ⩾ 1 : Xk(ω) = j}, (1.1.4)

is a stopping time, since for every n ∈ N we have

{Tj = n} = {inf{k ⩾ 1 : Xk = j} = n} = {X1 6= j, . . . ,Xn−1 6= j,Xn = j} ∈ Fn.

This stopping time tells us the first time that the chain goes at the state j.

Example 1.1.2. Let j ∈ S. The first hitting time HA : Ω→ N ∪ {∞} defined by

HA(ω) = inf{k ⩾ 0 : Xk(ω) ∈ A}, (1.1.5)

is a stopping time, since for every n ∈ N we have

{HA = n} = {inf{k ⩾ 0 : Xk ∈ A} = n} = {X0 6∈ A, . . . ,Xn−1 6∈ A,Xn ∈ A} ∈ Fn.

This stopping time tells us the first time that the chain falls into the set A.

Example 1.1.3. Let j ∈ S. The last exit time LA : Ω→ N ∪ {∞} defined by

LA(ω) = sup{k ⩾ 0 : Xk(ω) ∈ A}, (1.1.6)

is NOT a stopping time, since for every n ∈ N the event {LA = n} cannot be determined
from the random variables X0, . . . , Xn (it involves the future evolution of the chain as
well).

We are now ready to prove a very important property of Markov chains: the Strong

Markov property. ThisTheoremgeneralizesTheorem (1.1.2) in the sense that one can, instead
of conditioning on the state of the chain at a specific time, condition on a random time
(specifically a stopping time) and the memoryless property will still hold.
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Theorem 1.1.3 (Strong Markov property). Let (Xn)n⩾0 be Markov(λ, P ) and T a stop-

ping time of (Xn)n⩾0. Then, conditional on T < ∞ and XT = i, the process (Xk)k⩾T is

Markov(δi, P ) and independent of X0, . . . , XT−1.

Proof. Since T is a stopping time, it is determined by X0, X1, . . . , XT . If B is an event
depending onX0, X1, . . . , XT , then for everym ∈ N the eventB∩{T = m} is determined
by X0, X1, . . . , Xm. This observation is crucial, since we can now use Theorem 1.1.2. The
Markov property at time m yields

P({XT = j0, XT+1 = j1, . . . , XT+n = jn} ∩B ∩ {T = m} ∩ {XT = i}) =

= P(X0 = j0, X1 = j1, . . . , Xn = jn | X0 = i)P(B ∩ {T = m} ∩ {XT = i})⇒

∞∑
m=0

P({XT = j0, XT+1 = j1, . . . , XT+n = jn} ∩B ∩ {T = m} ∩ {XT = i}) =

=
∞∑

m=0

P(X0 = j0, X1 = j1, . . . , Xn = jn | X0 = i)P(B ∩ {T = m} ∩ {XT = i})⇒

P({XT = j0, XT+1 = j1, . . . , XT+n = jn} ∩B ∩ {T <∞} ∩ {XT = i}) =

= P(X0 = j0, X1 = j1, . . . , Xn = jn | X0 = i)P(B ∩ {T <∞} ∩ {XT = i}).

Dividing by P(T <∞, XT = i), we get

P({XT = j0, XT+1 = j1, . . . , XT+n = jn} ∩B | T <∞, XT = i) =

= P(X0 = j0, X1 = j1, . . . , Xn = jn | X0 = i)P(B | T <∞, XT = i),

which proves the desired independence.

1.1.3 Recurrence and Transience

If a Markov chain starts from a certain state, then howmany times will the chain revisit this
state? In response to this question, we classify a state according to the following definition.

Definition 1.1.3. Let (Xn)n⩾0 be a Markov chain with transition matrix P . We say that a
state i is recurrent if

P(Xn = i for infinitely many n | X0 = i) = 1.

If the expected return time mi := Ei[Ti] is finite, then we say that i is positive recurrent.

We say that a state i is transient if

P(Xn = i for infinitely many n | X0 = i) = 0.
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Our goal is to show that these two notions are mutually exclusive, i.e., each state is either
recurrent or transient. In order to do that, we will need more machinery. First, we give
some definitions and state two useful Lemmas.

Definition 1.1.4. Let j ∈ S. We defined the first passage time Tj : Ω → N ∪ {∞} as
Tj(ω) = inf{k ⩾ 1 : Xk(ω) = j}. We define recursively the n-th passage time T (n)

j to the
state j as a function T

(n)
j : Ω→ N ∪ {∞} that satisfies

T
(0)
j = 0, T

(1)
j = Tj , T

(n+1)
j (ω) = inf

{
k ⩾ T

(n)
j (ω) + 1 : Xk(ω) = j

}
,

for n ∈ N. The length of the n-th excursion is then defined as

S
(n)
j =

T
(n)
j − T

(n−1)
j , if T (n−1)

j <∞

0, otherwise
.

Lemma 1.1.1. Let n ≥ 2 and i ∈ S. Then, conditional on T
(n−1)
i < ∞, S(n)

i is independent

of Xk, 0 ≤ k ≤ T
(n−1)
i and

P
(
S
(n)
i = k | T (n−1)

i <∞
)
= P(Ti = k | X0 = i).

The proof is an application of the Strong Markov property on the stopping time T =

T
(n−1)
i . The details can be found in [34]. Intuitively, the above lemma tells us that the time

between two consecutive visits on the state i ∈ S has the same distribution as that of the
chain starting from i and revisiting it for the first time, which seems reasonable from the
Strong Markov property.

Let Vi denote the total number of the Markov chain’s visits to a state i. With the use of
an indicator function, Vi can simply be expressed as

Vi =
∞∑
n=0

1(Xn = i).

Since the functions 1(Xn = i) are non-negative and measurable, Beppo Levi’s Theorem
immediately yields

Ei[Vi] =

∫
Vi dP =

∫ ∞∑
n=0

1(Xn = i) dP =
∞∑
n=0

∫
1(Xn = i) dP

=

∞∑
n=0

Ei [1(Xn = i)] =

∞∑
n=0

Pi(Xn = i) =

∞∑
n=0

p
(n)
ii ,

where we defined Pi(Xn = i) := P(Xn = i | X0 = i). Let fi := P(Ti < ∞ | X0 = i)

denote the return probability to i. There is a useful connection between Vi and fi, as the
next lemma indicates.
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Lemma 1.1.2. For every n ∈ N we have Pi(Vi > n) = fn
i .

Proof. Let n ∈ N, ω ∈ Ω and X0 = i. If Vi(ω) > n, then T
(n)
i (ω) <∞. On the other hand,

if T (n)
i (ω) < ∞, then Vi(ω) > n. Hence, {Vi > n} = {T (n)

i < ∞}. In order to prove the
lemma, we will use induction on N. For n = 0 the result is true. Assuming it is true for n,
we have

Pi(Vi > n+ 1) = Pi

(
T
(n+1)
i <∞

)
= Pi

(
T
(n)
i <∞ and S

(n+1)
i <∞

)
= Pi

(
S
(n+1)
i <∞

∣∣∣T (n)
i <∞

)
Pi

(
T
(n)
i <∞

)
= fif

n
i = fn+1

i ,

where in the last equality we used Lemma 1.1.1, so the result is also true for n + 1. The
induction is complete.

We are now ready to prove the main theorem of this paragraph, which confirms that each
state is either recurrent or transient. The idea is to transfer the question in a more concrete
one, i.e., whether the probability Pi(Ti < ∞) is equal to 1 or strictly less than 1. Another
way to think about it is to study the series

∞∑
n=0

p
(n)
ii . Intuitively, if the state i is recurrent,

then the chain will return infinitely many times to it and, thus, the above series will diverge.
If the state i is transient, then from a specific point the chain will never revisit this state, so
the series is actually a finite sum and it converges.

Theorem 1.1.4. Let i ∈ S and Ti be the first passage time. Then,

(a) if Pi(Ti <∞) = 1, then i is recurrent and
∞∑
n=0

p
(n)
ii =∞;

(b) if Pi(Ti <∞) < 1, then i is transient and
∞∑
n=0

p
(n)
ii <∞.

In particular, each state is either recurrent or transient.

Proof. (a) If fi := Pi(Ti <∞) = 1, then we have

P(Xn = i for infinitely many n | X0 = i) = Pi(Vi =∞)

= lim
n→∞

Pi(Vi > n) = lim
n→∞

fn
i = lim

n→∞
1n = 1,

where in the third equality we used Lemma 1.1.2. Hence, i is recurrent and

∞∑
n=0

p
(n)
ii = Ei[Vi] =∞.

(b) If fi := Pi(Ti <∞) < 1, then Lemma 1.1.2 yields

∞∑
n=0

p
(n)
ii = Ei[Vi] =

∞∑
n=0

Pi(Vi > n) =

∞∑
n=0

fn
i =

1

1− fi
<∞,
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thus we receive

P(Xn = i for infinitely many n | X0 = i) = Pi(Vi =∞) = lim
n→∞

Pi(Vi > n) = 0

and i is transient.

1.1.4 Class structure

A very common idea in Mathematics is to classify objects according to a particular property.
Two objects might not be “equal”, but can be viewed as “equivalent” if certain common
properties are shared. This leads us to the idea of an equivalence relation. An equivalence
relation on a set S splits the set into subsets, each of which contains elements that can be
considered “the same” according to a specified property. We give the technical definition.

Definition 1.1.5. Let S be a set and S × S = {(i, j) : i, j ∈ S} be its Cartesian product. A
subset R ⊆ S × S is an equivalence relation on S if it satisfies the following properties:

(i) Reflexive: (i, i) ∈ R, ∀i ∈ S

(ii) Symmetric: if (i, j) ∈ R, then (j, i) ∈ R, ∀i, j ∈ S

(iii) Transitive: if (i, j) ∈ R and (j, ℓ) ∈ R, then (i, ℓ) ∈ R, ∀i, j, ℓ ∈ S.

The advantage of tracking an equivalence relation on a particular set is that we can then
decompose the set into smaller sets andworkwith each set separately, simplifying ourwork.
We will use this idea in our studying of Markov chains. We will define a binary relation on
the state-space S that partitions it into smaller sets, the equivalence classes.

Definition 1.1.6. We say that a state j ∈ S is accessible from a state i ∈ S, and write i→ j,
if there exists an n ∈ N such that

p
(n)
ij := P(Xn = j | X0 = i) > 0.

Definition 1.1.7. We say that i communicates with j, and write i ↔ j, if both i → j and
j → i.

Proposition 1.1.2. Let i, j ∈ S, i 6= j. The following equivalence holds:

i→ j ⇔ ∃n ∈ N, ∃ i1, i2, . . . , in−1 ∈ S : pii1pi1i2 . . . pin−1j > 0. (1.1.7)

Proof. First, suppose that i→ j. Then there exists n ∈ N such that

0 < P(Xn = j | X0 = i) =
∑

i1,...,in−1

pii1pi1i2 . . . pin−1j ,
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where the idea was to sum over all possible paths that lead from i to j. Thus there exist
i1, i2, . . . , in−1 ∈ S such that pii1pi1i2 . . . pin−1j > 0.

For the opposite direction, notice that

0 < pii1pi1i2 . . . pin−1j ⩽ P(Xn = j | X0 = i)

and, thus, i→ j.

Proposition 1.1.3. The binary relation “↔” is an equivalence relation on the state-space S.

Proof. Let i, j, ℓ ∈ S. Clearly i↔ i, since p(0)ii = 1 > 0. If i↔ j, then by definition j ↔ i.
Finally, let i ↔ j and j ↔ ℓ. Since we know from the above proposition that i → j and
j → ℓ implies i → ℓ, we get that i ↔ j and j ↔ ℓ implies i ↔ ℓ. Thus the binary relation
“↔” is an equivalence relation on the state-space S.

Definition 1.1.8. We say that “↔” partitions S into communication classes. If a Markov
chain has only one communication class, then it is called irreducible.

We stated in the beginning of the paragraph that an equivalence relation divides S into
subsets the objects of which exhibit similar properties. In the case of Markov chains, these
properties are recurrence and transience. We can strengthen Theorem 1.1.4 and prove the
following.

Theorem 1.1.5. Let C be a communication class. Then, either all of its states are recurrent or

all are transient.

Proof. Let C be a communication class and i, j ∈ C . Assume that i is transient. Since
i, j ∈ C , they communicate with each other, i.e.,

∃ n,m ∈ N : p
(n)
ij > 0 and p

(m)
ji > 0.

We have for every k ∈ N that

p
(n+k+m)
ii ⩾ p

(n)
ij p

(k)
jj p

(m)
ji ,

since there are many possible paths leading from i back to i and we specify a certain one
that passes through j. We thus have

p
(k)
jj ⩽

p
(n+k+m)
ii

p
(n)
ij p

(m)
ji

⇒
∞∑
k=0

p
(k)
jj ⩽

1

p
(n)
ij p

(m)
ji

∞∑
k=0

p
(n+k+m)
ii <∞,

where we know that the last series is finite by Theorem 1.1.4. We showed that if one state
of C is transient, then every other state of C is transient. By duality, if one state of C is
recurrent, then every other state of C is recurrent. We thus say that transience/recurrence
is a class property.
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An immediate corollary of the previous theorem is that an irreducible Markov chain has
either only transient or only recurrent states. If the latter is the case, one would expect that
the chain would hit each state in finite time. The probabilistic analogue of this intuitive
belief is stated in the following theorem, a proof of which can be found in [9].

Theorem 1.1.6. If a Markov chain is irreducible and recurrent, then for every state i ∈ S we

have that P(Ti <∞) = 1.

1.1.5 Stationarity

We will introduce the concept of a stationary distribution and use it to study the behavior
of a discrete-time discrete state-space Markov chain as time goes to infinity. Intuitively
speaking, a probability distribution is stationary with respect to a Markov chain if it is
left invariant by the chain’s transition matrix, i.e., a Markov chain that would start from a
stationary distribution would never be able to “escape” from this distribution.

Definition 1.1.9. Let (Xn)n≥0 be a Markov chain and j ∈ S a state. Let

dj = gcd
{
n ∈ N : p

(n)
jj > 0

}
,

assuming that {n ∈ N : p
(n)
jj > 0} 6= ∅, where gcd denotes the greatest common divisor.

(i) If dj = 1, then the state j is called aperiodic.

(ii) If dj > 1, then the state j is called periodic with period dj .

If the set {n ∈ N : p
(n)
jj > 0} is empty, then we define dj =∞.

Let (Xn)n∈N be Markov(π0, P ), i.e., the chain has initial distribution π0 and transition
matrix P = (pij)i,j∈S . We will denote by πn the probability distribution of the random
variable Xn, i.e., πn(j) := P(Xn = j), j ∈ S. We wish to study the limit of πn as n

approaches infinity. Since for every n ∈ N we have a distribution πn, the object of study
(πn)n∈N is a sequence of distributions and, thus, its limit needs more clarification. From
now on, distribution means probability distribution, unless otherwise stated.

Definition 1.1.10. Let (πn)n∈N be a sequence of distributions and π be a distribution. We
say that (πn)n∈N converges to π, and write πn −−−→

n→∞
π, if

lim
n→∞

πn(j) = π(j) ∀j ∈ S,

i.e., if pointwise convergence is satisfied.
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Scheffé’s Lemma³ in the discrete setting yields the following:

πn → π ⇒
∑
j∈S
|πn(j)− π(j)|→ 0. (1.1.8)

Definition 1.1.11. Let (Xn)n∈N be a Markov chain with transition matrix P = (pij)i,j∈S .
A probability distribution π = {π(j) : j ∈ S} on S is a stationary distribution for (Xn)n∈N

if it satisfies the following conditions:
π = πP∑
i∈S

π(i) = 1
(1.1.9)

or, in analytical form, 
π(j) =

∑
i∈S

π(i)pij ∀j ∈ S∑
i∈S

π(i) = 1
. (1.1.10)

Wewill show that if the sequence (πn)n converges to a distribution π, then π is stationary.
That means that the only candidate limits for the limit distribution are distributions that
satisfy the equations (1.1.9). Hence, we observe that already there is a connection between
stationary and limit distributions of a Markov chain.

Theorem 1.1.7. Let (Xn)n∈N be Markov(π0, P ) and (πn)n be the corresponding sequence of

distributions. If πn → π, then π is a stationary distribution.

Proof. A consequence of the Chapman-Kolmogorov equation (1.1.3) is that

πn = π0P
n, ∀n ∈ N, (1.1.11)

so for every n ∈ N we get recursively that

πn = π0P
n−1P = (π0P

n−1)P = πn−1P ⇔ πn(j) =
∑
i∈S

πn−1(i)pij ∀j ∈ S.

Sending n to infinity, the left-hand side becomes π(j) (by assumption) and for the right-
hand side we get∣∣∣∣∑
i∈S

πn−1(i)pij −
∑
i∈S

π(i)pij

∣∣∣∣ ⩽∑
i∈S
|πn−1(i)− π(i)|pij ⩽

∑
i∈S
|πn−1(i)− π(i)| −−−→

n→∞
0,

³If µ is a σ-finite measure on the measurable space (S,S ), and fn, f are measurable functions satisfying∫
S
fn dµ =

∫
S
f dµ = 1 and fn → f a.s., then

∫
S
|fn(s)− f(s)|µ(ds) → 0.

The proof follows upon noting that
∫
S
|fn(s) − f(s)|µ(ds) = 2

∫
S
(f − fn)

+ µ(ds), (f − fn)
+ → 0 a.s.,

0 ≤ (f − fn)
+ ≤ f , and using the Dominated Convergence Theorem.
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where in the last limit we used (1.1.8). It follows that

∑
i∈S

πn−1(i)pij −−−→
n→∞

∑
i∈S

π(i)pij

We conclude that
π(j) =

∑
i∈S

π(i)pij ∀j ∈ S ⇔ π = πP,

i.e., π is a stationary distribution.

The idea to name as stationary a distribution that satisfies (1.1.9) is better understood
through the next theorem, which tells us that if a Markov chain starts from a stationary
distribution, then its stochastic behavior will always be described by that. Furthermore, its
joint distribution remains the same regardless of the time at which we are examining the
case. In other words, the chain exhibits constant, or stationary, behavior over time.

Theorem 1.1.8. Let (Xn)n∈N be Markov(π0, P ). If π0 is a stationary distribution, then πn =

π0 for all n ∈ N and

P(X0 = x0, X1 = x1, . . . , Xk = xk) = P(Xn = x0, Xn+1 = x1, . . . , Xn+k = xk),

for every n, k ∈ N.

Proof. We will use induction to show that πn = π0 for all n ∈ N. For n = 0 it is obviously
true. For n = 1, we have from (1.1.11) that π1 = π0P = π0, thus it is also true. Assume
that it is true for n. For n+ 1 we have

πn+1 = πnP = π0P = π0,

and the induction is complete. Hence, πn = π0 for all n ∈ N. Now, let n, k ∈ N. From
(1.1.1) and (1.1.2), we have that

P(Xn = x0, Xn+1 = x1, . . . , Xn+k = xk) =

= P(Xn = x0)P(Xn+1 = x1 | Xn = x0) . . .P(Xn+k = xk | Xn+k−1 = xk−1)

= πn(x0)px0x1 . . . pxkxk−1
= π0(x0)px0x1 . . . pxk−1xk

= P(X0 = x0, X1 = x1, . . . , Xk = xk).

1.1.6 Coupling

Coupling is an extremely useful technique that is often used in Probability Theory in order
to prove statements that include random variables defined in different probability spaces.
The goal is to be able to compare these random variables (notice that in general we cannot
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write P(X 6= Y ), unless X and Y are defined on the same probability space). The idea
is to embed these random variables in a larger probability space in a way that does not
alter their distributions. The idea of coupling can be used in very simple settings such
as showing quickly that X ∼ Bin(n, 1/2) is stochastically larger than Y ∼ Bin(n, 1/3),
as well as in much more complicated settings such as coupling evolving random graphs
with multi-type branching processes to study centrality measures on networks. A typical
example is the PageRank algorithm, originally developed by Brin & Page at Google, in 1996.
Detailed expositions of how couplings between graphs are used along with the concept of
local weak convergence, can be found in [25], [35], [36], [37]).

First wewill give some technical definitions and theorems and thenwewill use a coupling
argument in order to prove one of the main theorems of the chapter, regarding the limit
behavior of a Markov chain. This paragraph is to be viewed mostly as an expository. For a
detailed approach and rigorous proofs of the following statements, the reader is referred to
[23].

Definition 1.1.12. Let (X,A ) be a measurable space. A signed measure on (X,A ) is a
function µ : A → R such that

(i) µ takes on at most one of the values −∞ or∞

(ii) µ(∅) = 0

(iii) if (Bn)n⩾1 is a sequence of pairwise disjoint sets, then

µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn).

Definition 1.1.13. Let µ be a signed measure on the measurable space (X,A ) and let
P,N ∈ A . We say that

(i) P is positive, if µ(E ∩ P ) ⩾ 0 for every E ∈ A .

(ii) N is negative, if µ(E ∩N) ⩽ 0 for every E ∈ A .

Theorem 1.1.9 (Hahn decomposition). Let µ be a signed measure on the measurable space

(X,A ). Then there exist a positive setP ∈ A and a negative setN ∈ A such thatP∩N = ∅
and X = P ∪N .

Notice that the Hahn decomposition need not be unique.

Definition 1.1.14. If {P,N} is a Hahn decomposition of X , then we define the measures
µ+, µ− : A → [0,∞]with µ+(A) = µ(P ∩A) and µ−(A) = −µ(N∩A) for everyA ∈ A .

Definition 1.1.15. Let (X,A ) be a measurable space and µ, ν two measures on it. These
measures are calledmutually singular if there are disjoint sets A,B ∈ A such that µ(A) =
0, ν(B) = 0 and X = A ∪B.



Chapter 1. Discrete-Time Markov Chains 16

Theorem 1.1.10 (Jordan decomposition). Let µ be a signed measure on the measurable space

(X,A ). Then there exist two mutually singular positive measures µ+ and µ− such that µ =

µ+ + (−µ−).

Definition 1.1.16. Let (E,E ) be a measurable space, whereE is a Polish space (i.e., homeo-
morphic to a complete, separable metric space). If µ is a bounded signed measure on (E,E )

such that µ(E) = 0, we define the total variation norm of µ as

‖µ‖TV := sup
∥f∥∞⩽1

∣∣∣∣∣
∫
E
f dµ

∣∣∣∣∣.
Using the Jordan-Hahn Decomposition, we can prove that ‖µ‖TV = 2 sup

A∈E
µ(A).

Definition 1.1.17. Let (E,E ) be a measurable space and E ⊗ E denote the smallest σ-
algebra containing E ×E . LetX and Y be two random variables defined on the probability
spaces (Ω1,F1,P1) and (Ω2,F2,P2), respectively, and taking values on the measurable
space (E,E ). A coupling of the random variables X and Y is any pair of random variables
(X̂, Ŷ ) taking values on (E×E,E ⊗E ) whose marginals have the same distribution asX
and Y , i.e.,

X
d
= X̂ and Y

d
= Ŷ .

Our goal generally is to find a coupling that makes the total variation norm ‖P1 − P2‖TV

as small as possible. We state without proof the basic coupling inequality.

Theorem 1.1.11. Given two random variables X and Y with respective probability distribu-

tions P1 and P2, then any coupling P̂ of P1 and P2 satisfies

‖P1 − P2‖TV ⩽ 2P̂(X̂ 6= Ŷ ). (1.1.12)

Remark 1. In practice, if we have a random variable X defined on a probability space
(Ω1,F1,P1) and a random variable Y defined on a probability space (Ω2,F2,P2), the cou-
pling argument allows us to define random variables X̂ and Ŷ on the space Ω = Ω1 × Ω2

such that
X̂(ω1, ω2) = X(ω1) and Ŷ (ω1, ω2) = Y (ω2).

We can then define a probability measure P such that

P(A1 × Ω2) = P1(A1) and P(Ω1 ×A2) = P2(A2),

for every A1 ∈ F1, A2 ∈ F2. Then the random variables X̂ and Ŷ are defined in Ω and
have the same distribution with X and Y , respectively. Indeed,

P(X̂ ∈ C) = P({X ∈ C} × Ω2) = P1(X ∈ C)
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and
P(Ŷ ∈ C) = P(Ω1 × {Y ∈ C}) = P2(Y ∈ C),

for every C ∈ F1 ⊗F2. Such a measure P is called a coupling measure.

1.1.7 Limit behavior

We will use a coupling argument in order to prove a very important theorem, that connects
the limit and the stationary distribution of a Markov chain if some “good” properties are
satisfied. First, we state two very useful Lemmas, proofs of which can be found in [34].

Lemma 1.1.3. Let (Xn)n∈N be an irreducible Markov chain with transition matrix P . Then,

the following are equivalent:

(i) every state is positive recurrent;

(ii) some state i ∈ S is positive recurrent;

(iii) the chain has a stationary distribution π.

If (iii) holds, then πi =
1

mi
for every i ∈ S, where mi = Ei[Ti] is the expected return time to

state i.

Lemma 1.1.4. Let (Xn)n∈N be an irreducible Markov chain with transition matrix P and

suppose there exists at least one aperiodic state. Then, for all sufficiently large n, we have

p
(n)
jk > 0 for all j, k ∈ S and all states are aperiodic.

We are now ready to prove the main theorem of the paragraph. The idea is to create a
second Markov chain (i.e., a coupling of the one we have) that has the desired stationary
distribution as its initial distribution. From the theorems that we have proved so far, we
understand the stochastic behavior of the second, constructed, Markov chain. The key-idea
of coupling here is to let both Markov chains run simultaneously until the time they meet
and then construct a new Markov chain that has the initial behavior of our desired chain
and the limit behavior of the second, well-understood, chain. Using the Strong Markov
property, we infer that the third chain is actually a copy of the first one, so we can show the
result for the third one, something that is easier.

Theorem 1.1.12 (Convergence to Equilibrium). Let (Xn)n∈N be an irreducible and aperiodic

Markov chain with transition matrix P , arbitrary initial distribution λ, countable state-space

S and suppose that the chain has a stationary distribution π = (π(j) : j ∈ S). Then, we have

that πn −−−→
n→∞

π or, equivalently,

lim
n→∞

πn(j) = π(j) ∀j ∈ S ⇔ lim
n→∞

P(Xn = j) = π(j) ∀j ∈ S

In addition, for all states i, j ∈ S we have that lim
n→∞

p
(n)
ij = π(j).
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Proof. By assumption, (Xn)n∈N is Markov(λ, P ). Let (Yn)n∈N be Markov(π, P ) and inde-
pendent of (Xn)n∈N, where π is a stationary distribution for (Xn)n∈N. Let⁴

T := inf{n ∈ N : Xn = Yn}

denote their first meeting time. For every n ∈ N, the event {T = n} is an element of the
σ-algebra generated by (Xk)0⩽k⩽n and (Yk)0⩽k⩽n, so T is a stopping time. We will show
that T is finite with probability 1. Let Wn = (Xn, Yn) be a Markov chain with state-space
the Cartesian product S×S. From the multiplicative behavior of the coupling measure, we
have that (Wn)n∈N has transition probabilities

p̃(i,k)(j,ℓ) = pij pkℓ ∀i, k, j, ℓ ∈ S

and initial distribution
µij = λi πj ∀i, j ∈ S.

By assumption, (Xn)n∈N is aperiodic, so from Lemma (1.1.4) we have that

p̃
(n)
(i,k)(j,ℓ) = p

(n)
ij p

(n)
kℓ > 0 ∀i, k, j, ℓ ∈ S,

for sufficiently large n. Thus, the 2-dimensional Markov chain (Wn)n∈N is irreducible. Fur-
thermore, (Wn)n∈N has a stationary distribution given by

π̃i,j = πi πj , ∀i, j ∈ S,

so by Lemma (1.1.3) we get that (Wn)n∈N is positive recurrent, so from Theorem (1.1.6) we
conclude that P(T <∞) = 1.

Remark 2. Since P(T < ∞) = 1 and T is a positive random variable, we infer that T is a
proper (non defective) random variable.

Now we want to create a Markov chain that has the same initial behavior as that of
(Xn)n∈N and the same limit behavior as that of (Yn)n∈N, since we can study that via The-
orem (1.1.7). So we begin by constructing a stochastic process {Zn : n ∈ N}, such that

Zn =

Xn, if n < T

Yn, if n ⩾ T
.

A graphic illustration is showed below. The continuous line depicts the Markov chain
(Xn)n∈N, the dotted line depicts the Markov chain (Yn)n∈N and the red line depicts the
constructed stochastic process (Zn)n∈N.

⁴here we use a coupling argument to define a sample space Ω on which both (Xn)n∈N and (Yn)n∈N are
defined and have the same distributions as before.
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We want to show that (Zn)n∈N is Markov(λ, P ). Since P(T ⩾ 0) = 1, by the definition
of Zn we have that P(Z0 = X0) = 1, so Z0 ∼ λ. Now we have to show that

P(Zn+1 = zn+1 | Zn = zn, . . . , Z0 = z0) = pzn,zn+1 , (1.1.13)

FiguRe 1.1: The coupling argument for Markov chains.

and then (Zn)n∈N will indeed be a Markov chain with initial distribution λ and transition
matrixP . The idea is to partition the coupled sample spaceΩ into smaller subsets that occur
for the different values that the stopping time T takes. Let n ∈ N. We have that

Ω =

n⋃
k=0

{T = k} ∪ {T > n},

so the joint probability becomes

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0) =

=
n∑

k=0

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T = k)+

+ P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T > n). (1.1.14)

We will examine these events separately. For every k = 0, 1, . . . , n we have that

{Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T = k} =
k⋂

i=0

{Xi = zi}
k−1⋂
i=0

{Yi 6= zi}
n+1⋂
i=k

{Yi = zi},

since T is the first meeting time of (Xn)n∈N and (Yn)n∈N, thus

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T = k) =
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= P

(
k⋂

i=0

{Xi = zi}

)
P

(
k−1⋂
i=0

{Yi 6= zi}
n+1⋂
i=k

{Yi = zi}

)

= P

(
k⋂

i=0

{Xi = zi}

)
P

(
k−1⋂
i=0

{Yi 6= zi}
n⋂

i=k

{Yi = zi}

)
pznzn+1

= P

(
k⋂

i=0

{Xi = zi}
k−1⋂
i=0

{Yi 6= zi}
n⋂

i=k

{Yi = zi}

)
pznzn+1

= P(Zn = zn, . . . , Z0 = z0, T = k) pznzn+1 ,

where in the third equality we used the independence of (Xn)n∈N and (Yn)n∈N. Similarly,
for the event {T > n} we get

{Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T > n} =
n+1⋂
i=0

{Xi = zi}
n⋂

i=0

{Yi 6= zi},

so the joint probability becomes

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0, T > n) = P(Zn = zn, . . . , Z0 = z0, T > n) pznzn+1

and, thus, equation (1.1.14) becomes

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0) =

=
n∑

k=0

P(Zn = zn, . . . , Z0 = z0, T = k) pznzn+1+

+ P(Zn = zn, . . . , Z0 = z0, T > n) pznzn+1 =

= pznzn+1

(
n∑

k=0

P(Zn = zn, . . . , Z0 = z0, T = k) + P(Zn = zn, . . . , Z0 = z0, T > n)

)
⇒

P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0) = P(Zn = zn, . . . , Z0 = z0) pznzn+1 ⇒

pznzn+1 =
P(Zn+1 = zn+1, Zn = zn, . . . , Z0 = z0)

P(Zn = zn, . . . , Z0 = z0)
⇒

pznzn+1 = P(Zn+1 = zn+1 | Zn = zn, . . . , Z0 = z0).

We conclude that (Zn)n∈N is Markov(λ, P ). Hence, (Xn)n∈N and (Zn)n∈N have the same
stochastic behavior, so for every j ∈ S we have that

πn(j) = P(Xn = j) = P(Zn = j) ∀n ∈ N.

Furthermore, since π is stationary and Y0 ∼ π, we know that π(j) = P(Yn = j) for all
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j ∈ S, n ∈ N. Let j ∈ S. We have that

|πn(j)− π(j)| = |P(Zn = j)− P(Yn = j)|

= |P(Zn = j, T ⩽ n) + P(Zn = j, T > n)− P(Yn = j, T ⩽ n)− P(Yn = j, T > n)|

= |P(Xn = j, T > n)− P(Yn = j, T > n)|

⩽ max {P(Xn = j, T > n),P(Yn = j, T > n)} ⩽ P(T > n).

We have, thus, shown that

|πn(j)− π(j)|⩽ P(T > n) −−−→
n→∞

0, ∀j ∈ S,

since T is proper by Remark 2 and consequently πn −−−→
n→∞

π. In order to show that

lim
n→∞

p
(n)
ij = π(j), we can simply start the chain (Xn)n∈N from the state i ∈ S, i.e., take

P(X0 = i) = 1, since in the preceding proof we started from an arbitrary initial distribution
λ. Then, p(n)ij = P(Xn = j) −−−→

n→∞
π(j).

1.1.8 Ergodic Theorem

We would like to know more about the asymptotic behavior of the averages over different
paths of a Markov chain, relating statistical and probabilistic properties of the chain. Until
now, we have seen the Laws of Large Numbers as the most common way to study such
averages. The problem is that the Laws of Large Numbers concern independent random
variables, while the random variables that build a Markov chain are exhibiting dependence.
The necessary modifications lead to a new class of extremely useful theorems, called Ergodic
Theorems.

Ergodic theorems give us information about the asymptotic behavior of the time average
of several orbits in a dynamical system, relating the so called time average and space average
together. In this paragraph we will prove the Ergodic Theorem for Markov chains. We will
state two versions of it and prove the first one, which is a special but very instructive case.

First, we state the Weak and the Strong Law of Large Numbers. The latter will be used in
our proof of the Ergodic Theorem.

Theorem 1.1.13 (Weak Law of Large Numbers). Let (Xn)n∈N be a sequence of iid⁵ random
variables, with E|X1|<∞ and E[X1] = µ. Then,

1

n

n∑
i=1

Xi
p→ µ,

⁵independent and identically distributed
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where the convergence in probability is defined by

∀ε > 0, P

(∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣ > ε

)
−−−→
n→∞

0.

Theorem 1.1.14 (Strong Law of Large Numbers). Let (Xn)n∈N be a sequence of iid random

variables, with E|X1|<∞ and E[X1] = µ. Then,

1

n

n∑
i=1

Xi
a.s.→ µ,

where the almost sure convergence is defined by

P

({
ω ∈ Ω : lim

n→∞

1

n

n∑
i=1

Xi(ω) = µ

})
= 1.

If, in addition, the random variables (Xn) are non-negative, then the Theorem holds even in

the case µ =∞.

We are now ready to state the two cases of the ErgodicTheorem for Markov chains. First,
recall that for a given state i ∈ S we define

Vi(n) :=

n−1∑
k=0

1(Xk = i) and Vi :=

∞∑
k=0

1(Xk = i)

to be the number of visits in i before the n-th step and the total number of visits in i,
respectively. We also refer to Definition 1.1.4 for the n-th passage time, T (n)

i , and the length
of the n-th excursion, S(n)

i . These two concepts are better illustrated in the following figure.

FiguRe 1.2: Passage times & lengths of excursions in Markov chains.
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Theorem 1.1.15 (Ergodic Theorem I). Let (Xn)n∈N be an irreducible Markov(λ, P ), where

λ is an arbitrary initial distribution. Then, for every i ∈ S,

Vi(n)

n
:=

1

n

n−1∑
k=0

1(Xk = i)
a.s.→ 1

mi
.

Proof. The Markov chain (Xn)n∈N is irreducible, so it is either transient or recurrent. If it
is transient, then we know that P(Vi <∞) = 1, and consequently

Vi(n)

n
⩽ Vi

n

a.s.−−−→
n→∞

0 =
1

mi
,

since mi = ∞. Suppose now that the chain is recurrent. Let i ∈ S. We know that P(Ti <

∞) = 1. By the Strong Markov property (1.1.3) we have that the process (XTi+n)n∈N is
Markov(δi, P ) and is independent of X0, X1, . . . , XTi , so it suffices to prove the theorem
for δi as the initial distribution. By Lemma (1.1.1), we get that S(1)

i , S
(2)
i , . . . are iid random

variables with Ei[S
(k)
i ] = mi for all k ∈ N. Thus, the Strong Law of Large Numbers can be

used and we have that
S
(1)
i + · · ·+ S

(n)
i

n

a.s.→ mi. (1.1.15)

Also, since (Xn)n∈N is recurrent, we know that

Vi(n)
a.s.→ ∞. (1.1.16)

Since we have taken λ = δi, the following two inequalities hold:

T
(Vi(n)−1)
i = S

(1)
i + · · ·+ S

(Vi(n)−1)
i ⩽ n− 1

and
T
(Vi(n))
i = S

(1)
i + · · ·+ S

(Vi(n))
i ⩾ n,

so we take
S
(1)
i + · · ·+ S

(Vi(n)−1)
i

Vi(n)
⩽ n

Vi(n)
⩽ S

(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
. (1.1.17)

Combining (1.1.15), (1.1.16) and (1.1.17), we get that

n

Vi(n)

a.s.→ mi

or, equivalently,
Vi(n)

n

a.s.→ 1

mi
.

Theorem 1.1.16 (Ergodic Theorem II). Let (Xn)n∈N be an irreducible, positive recurrent
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Markov(λ, P ) and let (π(j) : j ∈ S) be its unique stationary distribution. Then, for every

bounded function f : S → R, we have that

1

n

n−1∑
k=0

f(Xk)
a.s.→
∑
j∈S

π(j)f(j).

1.2 General state-space

In the preceding section we assumed that the state-space S was discrete, i.e., either finite or
countable. However, many interesting applications concern continuous state-spaces. For
instance, Hamiltonian Monte Carlo ([3], [11], [21]) and many other MCMC methods ([2],
[26]) operate on general spaces (mainly measurable topological spaces or metric spaces).
This led to a need for a much more general and richer theory for Markov Chains. When
dealing with general state-spaces, the idea is to think about sets instead of points. The dy-
namics of the chain are now described by a mapping called kernel instead of a matrix. The
surprising thing is that most of the results that we stated and proved for the countable
state-space case will still hold without assuming any specific structure for the new, possi-
bly uncountable, state-space.

1.2.1 Kernels

A kernel generalizes the notion of the transition matrix that we saw in the countable case.
Intuitively, a kernel is a mapping that tells us how possible it is to move to a specific set
given the position at which we are now.

Definition 1.2.1. Let (X,X ) and (Y,Y ) be measurable spaces. We say that a mapping
P : X × Y → [0,∞] is a kernel on X × Y if it satisfies the following:

(i) for every A ∈ Y , the mapping P (·, A) : (X,X ) → ([0,∞],B([0,∞])), described
by x 7→ P (x,A), is a Borel-measurable function.

(ii) for every x ∈ X , the mapping P (x, ·) : Y → [0,∞], described by A 7→ P (x,A), is
a measure on Y ;

We say that the kernel P is

• bounded, if sup
x∈X

P (x, Y ) <∞;

• a normalized kernel, if P (x, Y ) = 1 for all x ∈ X ;

• a Markov kernel, if (X,X ) = (Y,Y ) and P (x,X) = 1 for all x ∈ X .

Definition 1.2.2. Let (X,X ) and (Y,Y ) be measurable spaces. Let ν be a positive σ-finite
measure⁶ on (Y,Y ) and ξ : X × Y → [0,∞] be an X ⊗ Y -measurable function, where

⁶there exists a countable set I and measurable sets (Ai)i∈I of finite measure, such that Y =
∪
i∈I

Ai.
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X ⊗Y is the product σ-algebra of X and Y . We say that the kernel P : X×Y → [0,∞]

has density ξ, if
P (x,A) =

∫
A
ξ(x, y) ν(dy),

for all x ∈ X , A ∈ Y .

Remark 3. The notion of a kernel strictly generalizes that of a transition matrix in the
countable case by taking ν in definition 1.2.2 to be the counting measure. In particular,
let (S,P(S)) be a measurable space, where S is a countable set and P(S) denotes the
powerset of S, i.e., the set of all subsets of S. A Markov kernel P on S ×P(S) is a matrix
P = (pij : i, j ∈ S) such that each row {pij : j ∈ S} is a probability function, so a Radon-
Nikodym derivative. The kernel P is formally described by P (i, {j}) = P (i, j) = pij for
all i, j ∈ S, thus indeed generalizing the countable case.

1.2.1.1 Kernels and Integral Operators

If µ is a measure and f a measurable function, then we will be using the following notation
interchangeably:

µf =

∫
f dµ =

∫
µ(dx)f(x),

assuming the integral exists. This last notation serves us better if we observe that a ker-
nel gives rise to two integral operators. A kernel acts on measures from the right and on
functions from the left, as the next proposition shows⁷.

Proposition 1.2.1 (Kernels and Operators). Let (X,X ) and (Y,Y ) be measurable spaces

and P : X × Y → [0,∞] be a kernel on X × Y .

(i) If µ is a positive measure on (X,X ), then µP defined as

µP (A) =

∫
X
µ(dx)P (x,A), A ∈ Y ,

is a positive measure on (Y,Y ).

(ii) If f : Y → R is a measurable function, then Pf : X → R defined as

Pf(x) =

∫
Y
P (x, dy)f(y), x ∈ X,

is a measurable function.

Proof. (i) We have that µP (A) ⩾ 0 for every A ∈ Y . Let (Ai)i∈I be a countable selection
of disjoint elements of Y . Using the Beppo Levi Theorem, we get that

µP

(⋃
i∈I

Ai

)
=

∫
X
µ(dx)P

(
x,
⋃
i∈I

Ai

)
=

∫
X
µ(dx)

∑
i∈I

P (x,Ai)

⁷We assume that all the integrals that appear in the text exist, unless otherwise stated.
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=
∑
i∈I

∫
X
µ(dx)P (x,Ai) =

∑
i∈I

µP (Ai),

thus µP is a positive measure on (Y,Y ).

(ii) The measurability of Pf is a direct consequence of the measurability of f and of the
mapping x 7→ P (x,A) and of basic properties of the integral.

Definition 1.2.3 (Product Kernel). If (X,X ), (Y,Y ), (Z,Z ) are measurable spaces and
P1, P2 are kernels from (X,X ) to (Y,Y ) and from (Y,Y ) to (Z,Z ) respectively, then it
can be proved that we can define a new kernel P1P2 : X ×Z → [0,∞] by

P1P2 :=

∫
P1(x, dy)P2(y,A), x ∈ X,A ∈ Z .

The kernel P1P2 is referred to as the product kernel. Inductively, we can also define the n-th
product kernel Pn by

Pn(x,A) =

∫
X
P (x, dy)Pn−1(y,A),

from which we can take the Chapman-Kolmogorov equation

Pn+m(x,A) =

∫
X
Pn(x, dy)Pm(y,A). (1.2.1)

Notice that if the state-space is discrete, then the kernelP is a matrix (namely, the transition
matrix) and its n-th power is just the n-th power of the matrix. Thus, equation (1.2.1)
generalizes equation (1.1.3), providing a useful connection of the two cases. In essence, the
Chapman-Kolmogorov equation gives us information about the intermediate states from
which the Markov chain will pass in order to go from a particular state (or set) to another.

Definition 1.2.4 (Tensor Products). Wedefine the tensor product ofn kernels and the tensor
product of a measure with a kernel.

(i) If P is a kernel onX×Y , then we can define a kernel P⊗n on (Xn,X ⊗n) such that

P⊗nf(x) =

∫
Xn

f(x1, . . . , xn)P (x, dx1)P (x1, dx2) . . . P (xn−1, dxn).

This kernel is called the n-th tensorial product of P .

(ii) If ν is a σ-finite measure on (X,X ) and P is a kernel on (X,Y ), we define the tensor
product of ν and P to be a measure on (X × Y,X ⊗ Y ) such that

ν ⊗ P (A×B) =

∫
A
ν(dx)P (x,B),

for every A ∈X , B ∈ Y .
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1.2.1.2 Kernels and Random Variables

The notion of a kernel is strictly related to the concepts of conditional expectation and
conditional probability.

Definition 1.2.5 (Conditional Expectation & Probability). Let (Ω,F ,P) be a probability
space, X : Ω → R be a random variable with E|X|< ∞, and G ⊆ F be a σ-algebra. A
random variable Y : Ω → R is a conditional expectation for X with respect to G , if two
conditions are satisfied:

(i) Y is G -measurable;

(ii) for every A ∈ G , we have that
∫
AX dP =

∫
A Y dP.

It can be proved that such a random variable exists and is a.s.-unique (a proof is given in
[10]). We write Y = E[X | G ]. If we take X to be the A-indicator function, i.e., X = 1A,
we get the conditional probability of A with respect to G , i.e., P(A | G ) = E[1A | G ].

We now give two propositions that clarify the connection between kernels and random
variables.

Proposition 1.2.2. Let (X,X ), (Y,Y ) be measurable spaces and consider the mapping P :

X × Y → [0,∞] defined by

P (x,A) = P(Y ∈ A | X = x), x ∈ X,A ∈ Y .

Then, P is a normalized kernel on X × Y . We call it the conditional probability kernel of Y

given X .

Proof. Let A ∈ Y . The conditional probability P(Y ∈ A | X) is a σ(X)-measurable
random variable, so the function P (·, A) : X → [0,∞], defined by x 7→ P (x,A), is Borel-
measurable. Let x ∈ X . Then the function P (x, ·) : Y → [0,∞], defined by A 7→ P (x,A)

is by definition a positive measure. Obviously, P (x, Y ) = 1 and thus P is a normalized
kernel.

Proposition 1.2.3. Let P be a conditional probability kernel of Y given X .

(i) If the function f : Y → R is measurable, then Pf(x) = E[f(Y ) | X = x] for all

x ∈ X , for Pf as in Proposition 1.2.1.

(ii) If µ is the probability distribution of X , then µP is the probability distribution of Y .

Proof. The proof contains ideas that have already been discussed; only the notation changes
now.
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(i) Since P (x,A) expresses the conditional distribution of Y given thatX = x, we have
that

E[f(Y ) | X = x] =

∫
X
P (x, dy)f(y) = Pf(x).

(ii) For every A ∈ Y , we have that

P(Y ∈ A) = E[P(Y ∈ A | X)] =

∫
X
µ(dx)P (Y ∈ A | X = x)

=

∫
X
µ(dx)P (x,A) = µP (A),

so µP is the probability distribution of Y .

1.2.2 Homogeneous Markov Chains

Now that we have developed the useful theoretical machinery for kernels, we can define
a Markov chain in the general case, where the state-space might be either countable or
uncountable. First, we will need to give some measure-theoretic notation and terminology.

Let (Ω,F ,P) be a probability space and let (S,A ) be a measurable space, where S is
the state-space. Notice that, since we will start examining the chain’s behavior in terms of
sets instead of single points, we need a σ-algebra of the state-space’s subsets; this is the role
of A . Let T be a set that denotes time. Throughout this paragraph we will take T = N,
unless otherwise stated. A stochastic process is a family {Xn : n ∈ T} of random variables
Xn : Ω → S. In this case, the stochastic process can be viewed and treated as a function
X : T ×Ω→ S with X(n, ω) = Xn(ω). Alternatively, one can define a stochastic process
by examining its trajectory for each ω ∈ Ω. In this case, the stochastic process can be
viewed and treated as a function X̂ : Ω→ ST , where for every ω ∈ Ω the value X̂(ω) is a
function from T to S, satisfying X̂(ω)(n) = X(ω, n).

A sequence of σ-algebras (Fn)n∈T is a filtration in (Ω,F ) if for all n ∈ T we have
Fn ⊆ Fn+1 ⊆ F . If we endow a probability space (Ω,F ,P)with a filtration (Fn)n∈T , we
get the filtered probability space (Ω,F , (Fn)n∈T ,P). A stochastic process {Xn : n ∈ T}
is adapted to the filtration (Fn)n∈T if for every n ∈ T the random variable Xn is Fn-
measurable. We will write {(Xn,Fn) : n ∈ T} to denote an adapted stochastic process.
The natural filtration for a stochastic process is the one given byFX

n = σ(X0, X1, . . . , Xn),
n ∈ T . Notice that every stochastic process is adapted to its natural filtration.

We will now give some definitions for Markov chains with general state-space. The key-
idea is that we will be referring to sets instead of single points. Intuitively, we shall think
of the σ-algebra Fn as the information available at the n-th step.

Definition 1.2.6 (Markov chain). Let (Ω,F , (Fn)n∈T ,P) be a filtered probability space
and (S,A ) be a measurable space. We will call an adapted stochastic process {(Xn,Fn) :
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n ∈ T} a Markov chain with state-space S if

P(Xn+1 ∈ A | Fn)
a.s.
= P(Xn+1 ∈ A | Xn) (1.2.2)

for all n ∈ T , A ∈ A .

Note that we used the a.s.-notation, since the conditional probabilities are random vari-
ables, as we discussed in (1.2.5).

From now on, the time-set T will be the setN of natural numbers, unless otherwise stated.
We now give the definition of a homogeneous Markov chain, making use of the notion of
kernels that we introduced above. Note that, since we care about transitions within the
same state-space, we will use a kernel on S ×A , i.e., the Cartesian product of the set with
a set of its own subsets, instead of involving a σ-algebra of another set.

Definition 1.2.7. Let (Ω,F , (Fn)n∈N,P) be a filtered probability space, (S,A ) be a mea-
surable space andP be a kernel onS×A . We call the adapted stochastic process {(Xn,Fn) :

n ∈ N} a homogeneous Markov chain with state-space S and initial distribution the distri-
bution of X0, if

P(Xn+1 ∈ A | Fn)
a.s.
= P (Xn, A) (1.2.3)

for all n ∈ N, A ∈ A .

Intuitively we shall think of the previous definition as follows: the left-hand side is a
random variable that describes the next state of the Markov chain given the information
that we have so far, while the right-hand side involves a kernel and, thus, is telling us
how likely it is, given that the chain is in the state Xn at the n-th step, to go to the set A
afterwards. The fact that the stage itself does not play any role in the above equality implies
time-homogeneity.

In the countable state-space case, we showed that theMarkov chain is entirely determined
by its initial distribution and its transition matrix. It comes as no surprise that this property
still holds if we replace the transition matrix with a Markov kernel. In particular, we have
the following important analogue of Theorem (1.1.1)⁸, connecting the countable and the
uncountable case.

Theorem 1.2.1. Let P be a Markov kernel on S × A and λ an arbitrary distribution on S.

An S-valued stochastic process (Xn)n∈N is a homogeneous Markov chain with kernel P and

initial distribution λ, if for every n ∈ N the joint distribution of the vector (X0, X1, . . . , Xn)

is given by λ⊗ P⊗n.

⁸a proof can be found in [12]
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1.2.3 The Canonical Chain

A question that arises naturally is the following: given a probability distribution λ and a
Markov kernel P , can one find a Markov chain that has λ as its initial distribution and P as
its transition kernel? We will see that the answer is positive. Given a general state-space
S, the key-idea is to consider a new filtered probability space, whose sample elements will
be sequences of elements of S. This way, we will also be able to establish a nice connection
with the shift transformation from Ergodic Theory and, thus, use its results in our studying
of Markov chains’ limit behavior.

Definition 1.2.8 (Coordinate Process). Let (S,A ) be a measurable space. Let Ω = SN be
the set of sequences that take values in S, i.e.,

Ω = SN = {ω = (ω0, ω1, ω2, . . . ) : ωi ∈ S ∀i ∈ N},

endowed with the product σ-algebra A ⊗N. The stochastic process {Xn : n ∈ N} defined
byXn(ω) = ωn for every ω = (ω0, ω1, . . . , ωn, . . . ) ∈ Ω, is called the coordinate process on
S. Every ω ∈ Ω is called a path of the process. We endow the measurable space (SN,A ⊗N)

with the canonical filtration {Fn : n ∈ N}, where Fn = σ(X0, . . . , Xn) for every n ∈ N.

One can prove that, using an appropriate filtered probability space, we are always able to
find a Markov chain with given initial distribution and transition kernel. The proof of this
important result is highly technical, with emphasis mostly on measure-theoretical tools,
and lies outside the scope of the current thesis. The interested reader is referred to [12] for
a detailed proof.

Theorem 1.2.2. Let (S,A ) be a measurable space and P a Markov kernel on S × A . For

every probability measure λ on (S,A ), there exists a unique probability measure Pλ on the

measurable space (SN,A ⊗N) such that, for {Fn : n ∈ N} as above, the adapted coordinate

process {(Xn,Fn) : n ∈ N} is a Markov chain with initial distribution λ and transition

kernel P .

Definition 1.2.9 (Canonical Markov Chain). Let (S,A ) be a measurable space. Consider
the coordinate process {Xn : n ∈ N} and the canonical filtration {Fn : n ∈ N} on the
measurable space (SN,A ⊗N). If P is a Markov kernel on S × A and {Pλ} the family
of probability measures on (SN,A ⊗N) introduced by Theorem 1.2.2, then the coordinate
process {Xn : n ∈ N} will be referred to as the canonical Markov chain.

1.2.4 Ergodic Theory and Markov Chains

Ergodic Theory is an independent branch of Mathematics that was introduced in the 20th
century and, ever since, has had an immense effect on several scientific fields, such as
Number Theory, Probability & Statistics, Riemannian Geometry, Statistical Mechanics etc.
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Roughly speaking, Ergodic Theory deals with the study of the long-term statistical behav-
ior of certain dynamical systems, especially those which exhibit ergodicity⁹. In this section,
we will give some very introductory definitions and state the celebrated Birkhof’s Ergodic
Theorem, a theorem that has had tremendous applications in the theory of Markov chains
and MCMC methods. For a detailed presentation of Ergodic Theory, we refer the reader to
[7], [12], [16] and [32].

Definition 1.2.10 (Dynamical System). Let (Ω,F ,P) be a probability space, T : Ω→ Ω a
measurable and measure preserving map, i.e., T−1(F ) ⊆ F and P(T−1(A)) = P(A) for
every A ∈ F . Then, the quartet (Ω,F ,P, T ) is referred to as a dynamical system. We say
that T is a measure preserving transformation and P is invariant under T . If T is invertible
and T−1 is also measurable, we say that T is an invertible measure preserving transformation.

We will now use the space SN that we used previously in order to describe the canonical
chain.

Definition 1.2.11 (Shift operator). Let (S,A ) be ameasurable space and take the associated
measurable space (SN,A ⊗N). The mapping T : SN → SN defined by

ω = (ω0, ω1, ω2, . . . ) 7→ T (ω) = (ω1, ω2, ω3, . . . ),

is referred to as the shift operator. It can be shown that it is A ⊗N-measurable.

Definition 1.2.12 (Stationary Process). A stochastic process {Xn : n ∈ N} is stationary
if the joint distribution of (Xn1 , . . . , Xnk

) is the same as that of (Xn1+m, . . . , Xnk+m) for
every k,m, n1, . . . , nk ∈ N.

Definition 1.2.13. Let (Ω,F ) be a measurable space and T : Ω→ Ω a measurable map. A
random variable Y : Ω → R is called invariant for T if Y ◦ T = Y . An event A is called
invariant for T if A = T−1(A).

It is easy to check that the family

G = {A ∈ F : A is invariant for T}

is a sub-σ-algebra of F .

Definition 1.2.14 (Ergodic Dynamical System). Adynamical system (Ω,F ,P, T ) is ergodic
if P(A) ∈ {0, 1} for every A ∈ G .

We have now developed the machinery that is needed in order to connect ErgodicTheory
to Markov chains. The connection involves the result from Theorem 1.2.2 and the shift
operator, and can be summarized in the following proposition.

⁹intuitively, ergodicity expresses the idea that a point of a system will visit all the space in a way that is
random and uniform



Chapter 1. Discrete-Time Markov Chains 32

Proposition 1.2.4. Let (S,A ) be a measurable space. A probability measure P on the canon-

ical space (SN,A ⊗N) is invariant under the shift operator T : SN → SN if, and only if, the

coordinate process {Xn : n ∈ N} is stationary with respect to P.

Now we are ready to state and prove one of the most important theorems in Ergodic
Theory and the theory of Markov chains; the Ergodic Theorem. There are several ergodic
theorems, such as Birkhof’s pointwise ergodic theorem, von Neumann’s mean ergodic the-
orem, the maximal ergodic theorem etc. Here we will state and prove the first one, namely
the pointwise ergodic theorem, as introduced by George Birkhoff in 1932 (for historical
notes the reader is referred to [49]). The proof of this result is in Appendix A.

Theorem 1.2.3 (Pointwise ErgodicTheorem). Let (Ω,F ,P, T ) be a dynamical system, Y ∈
L1(P) a random variable and G the σ-algebra of T -invariant sets. Then, we have that

1

n

n−1∑
k=0

Y ◦ T k a.s.−→ E[Y | G ]. (1.2.4)

If the dynamical system (Ω,F ,P, T ) is ergodic, the σ-algebra G is trivial and thus the ergodic

theorem becomes
1

n

n−1∑
k=0

Y ◦ T k a.s.−→ E[Y ]. (1.2.5)

We can now use Theorem 1.2.2 in order to study Markov chains via dynamical systems
and get the Ergodic Theorem for Markov chains as a corollary of Theorem 1.2.3. Given the
state-space (S,A ), we will consider the canonical space (SN,A ⊗N) and the coordinate
process {Xn : n ∈ N}. For a Markov kernel P on S ×A , we endow the canonical space
with a family (Pλ) of probability measures such that the coordinate process is a Markov
chain with initial distribution λ and kernel P . Let T : S → S denote the shift operator.

Theorem 1.2.4 (ErgodicTheorem for Markov chains). Let P be a Markov kernel on S×A

and π a stationary distribution for P . Assume that the dynamical system (SN,A ⊗N,Pπ, T )

is ergodic and Y ∈ L1(Pπ). Then,

1

n

n−1∑
k=0

Y ◦ Tk
a.s.−→ Eπ[Y ]. (1.2.6)
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Chapter 2

Statistical Inference for Finite Markov

Chains

2.1 Introduction

In Chapter 1 we studied the probabilistic behavior of a Markov chain. That is, we assumed
that its transition matrix (or kernel) is known and gave a plethora of results that one can
get. Now we turn our interest to a problem of statistical nature: given a path of Markov
chain, what can we say about its transition probabilities? We will provide estimations in
two frameworks: the Classical (or Frequentist) and the Bayesian one. For that purpose, we
will be constrained in finite state-space Markov chains, although analogous results hold for
more general state-spaces as well (extended presentations can be found in [1], [5], [6], [46]).

Let {Xn : n ∈ N} be a time-homogeneous Markov chain with finite state-space S.
Without loss of generality, we can take S = {1, . . . ,m}. For two states i, j ∈ S, we define
the transition probability

pij = P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i),

so the transition matrix P is the m×m stochastic matrix

P =


p11 p12 · · · p1m

p21 p22 · · · p2m
...

... . . . ...
pm1 pm2 · · · pmm

 .

Wewill address the problem of estimatingP on the basis of a path {x0, x1, . . . , xn} of our
Markov chain. In the frequentist approach this is done by finding the Maximum Likelihood
Estimator (MLE), while the Bayesian approach requires that we determine the posterior
distribution.

34
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2.2 Frequentist approach

Let (Xn)n∈N be a Markov chain with unknown transition matrix P = (pij)i,j∈S . The goal
is to estimate P . In order to exploit the classical framework, we will make parametric as-
sumptions; that is, we will assume that the unknown quantities form a subset of a Euclidean
space. Wewill define two possible parametric spaces, find theMLE ofP and provide asymp-
totic results for it.

2.2.1 Parametrization

Unless P has a special structure (zeros in several positions etc), all m2 elements are con-
sidered unknown and, thus, the parametric space can be viewed as a subset of Rm2 . If
pi = (pi1, . . . , pim) ∈ Rm denotes the i-th row of P , then

P =


p1
...

pm

 = (p1 · · · pm)T ∈ Rm2
.

The two main ways to parametrize P are via the:

• Natural Parametric Space,

• Minimal Parametric Space.

Definition 2.2.1. The natural parametric space is the Cartesian product

Θ = Θ1 ×Θ2 × . . .×Θm,

where each Θi, 1 ⩽ i ⩽ m, is a probability simplex defined by

Θi =

{
(pi1, . . . , pim) : 0 ⩽ pi1, . . . , pim ⩽ 1,

m∑
k=1

pik = 1

}
⊆ [0, 1]m.

The idea for the use of another parametric space derives from the fact that, since the
probabilities of a row add up to 1, we only need m − 1 and not all m of them. A question
that arises is which of the m elements of each row we will discard. If one-step transitions
from a state to itself are possible (i.e., the diagonal elements of P are not identically equal
to 0), we generally discard the diagonal elements.

Definition 2.2.2. The minimal parametric space is the Cartesian product

Θ∗ = Θ∗
1 ×Θ∗

2 × . . .×Θ∗
m,
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where each Θ∗
i , 1 ⩽ i ⩽ m, is defined by

Θ∗
i =

{
(pi1, . . . , pi,i−1, pi,i+1, . . . , pim) :

∑
k∈Si

pik ⩽ 1

}
⊆ [0, 1]m−1,

where Si := {1, . . . , i− 1, i+ 1, . . . ,m}.

We provide a graphical illustration of Θi and Θ∗
i in the case m = 3.

FiguRe 2.1: Natural Para-
metric Space

FiguRe 2.2: Minimal
Parametric Space

2.2.2 Maximum Likelihood Estimation

Let λ be the initial distribution of (Xn)n∈N and {x0, x1, . . . , xn} a realization of the chain
at time n. We define the counting processes (nij(n))n∈N and (ni(n))n∈N by

nij(n) =

n−1∑
k=0

1(Xk = i,Xk+1 = j) and ni(n) =

n−1∑
k=0

1(Xk = i), (2.2.1)

the total number of i→ j transitions up to time n and the total number of visits in the state
before time n, respectively. The likelihood L(λ, P ) is given by

L(λ, P ) = P(X0 = x0, X1 = x1, . . . , Xn = xn)

= λx0 · P(X1 = x1 | X0 = x0) . . .P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0)

= λx0 · P(X1 = x1 | X0 = x0) . . .P(Xn = xn | Xn−1 = xn−1)

= λx0 ·
n∏

t=1

pxt−1xt = λx0 ·
∏
i∈S

∏
j∈S

p
nij(n)
ij .
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Since we cannot estimate the initial distribution λ based solely on one realization of the
chain, we will work conditioning on X0, so the likelihood becomes

Ln(P ) = P(X1, . . . , Xn;P | x0) =
∏
i∈S

∏
j∈S

p
nij(n)
ij =

m∏
i=1

m∏
j=1

p
nij(n)
ij , (2.2.2)

thus the log-likelihood is given by

ℓn(P ) := logLn(P ) =

m∑
i=1

m∑
j=1

nij(n) log pij . (2.2.3)

We wish to find the matrix P = (pij)i,j∈S that maximizes the likelihood (2.2.2) or, equiva-
lently, the log-likelihood (2.2.3) under the m constraint equations

m∑
j=1

p1j = 1,

m∑
j=1

p2j = 1, . . . ,

m∑
j=1

pmj = 1. (2.2.4)

The fact that we have m constraint equations reduces the degrees of freedom from m2 (the
number of the unknown parameters) to m2 −m. We can thus maximize (2.2.3) either by
using Lagrange multipliers or by eliminating parameters. We will proceed with the former.
Since we havem constraints, we will takem Lagrange multipliers, namely λ1, . . . , λm. Let
λ = (λ1, . . . , λm). The objective function then is

Λ(P, λ) = ℓn(P )− λ1

 m∑
j=1

pij − 1

− ...− λn

 m∑
j=1

pij − 1



= ℓn(P )−
m∑
i=1

λi

 m∑
j=1

pij − 1

 =
m∑
i=1

m∑
j=1

nij(n) log pij −
m∑
i=1

λi

 m∑
j=1

pij − 1

 .

Using the constraint equations (2.2.4), we get

∂Λ

∂λ1
=

∂Λ

∂λ2
= · · · = ∂Λ

∂λm
= 0.

For every i, j ∈ S, we have that

∂Λ

∂pij
= 0⇔ nij(n)

pij
− λi = 0⇔ pij =

nij(n)

λi

and from (2.2.4) we receive

m∑
j=1

pij = 1⇔
m∑
j=1

nij(n)

λi
= 1⇔ λi =

m∑
j=1

nij(n) = ni(n),
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where the last equality follows from a simple computation using (2.2.1). If we denote by
p̂ij(n) the maximum likelihood estimator of pij , the above arguments constitute (having
omitted a few technical details) a proof of the following.

Proposition 2.2.1 (M.L.E. of Transition Matrix). Let (Xn)n∈N be a discrete-time homoge-

neous Markov chain with finite state-space S, initial distribution λ and transition matrix P .

Let {x0, x1, . . . , xn} be an observed realization of the chain. If P̂n denotes the maximum like-

lihood estimator of the transition matrix based on the given path at time n, then we have that

P̂n = (p̂ij(n))i,j∈S , where

p̂ij(n) =


nij(n)

ni(n)
, if ni(n) > 0

0, if ni(n) = 0

.

2.2.3 Asymptotic Behavior

Now that we have an estimator, we would like to examine its asymptotic performance.
We will see that the MLE is strongly consistent and asymptotically normal. We will prove
the first (possibly avoiding a few technicalities) and state the second result. More concise
explanations can be found in [1], [5], [6] and [46].

Theorem 2.2.1 (Consistency of the M.L.E.). For every i, j ∈ S, we have that

p̂ij(n)
a.s.−→ pij ,

i.e., the maximum likelihood estimator P̂n = (p̂ij)i,j∈S is strongly consistent for the transition

matrix P .

Proof. Recall from definition (2.2.1) that

nij(n) =
n−1∑
k=0

1(Xk = i,Xk+1 = j) =
n−1∑
k=0

1(Xk = i)1(Xk+1 = j).

Applying Birkhof’s pointwise ergodic theorem, we get that

nij(n)

n− 1
=

1

n− 1

n−1∑
k=0

1(Xk = i,Xk+1 = j)

a.s.−→ E [1(Xk = i,Xk+1 = j)]

= P (Xk = i,Xk+1 = j)

= P(Xk = i)P(Xk+1 = j | Xk = i) = P(Xk = i) pij . (2.2.5)
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Using the same idea for ni(n) =
n−1∑
k=0

1(Xk = i), we have that

ni(n)

n− 1
=

1

n− 1

n−1∑
k=0

1(Xk = i)
a.s.−→ E [1(Xk = i)] = P(Xk = i). (2.2.6)

Combining (2.2.5) with (2.2.6), Slutsky’s theorem yields

p̂ij(n) =
nij(n)

ni(n)
=

nij(n)

n− 1
ni(n)

n− 1

a.s.−→ P(Xk = i) pij
P(Xk = i)

= pij

and the proof is complete.

Theorem 2.2.2 (Asymptotic Normality of the M.L.E.). Let π = (π1, . . . , πm) denote the

stationary distribution of (Xn)n∈N. The maximum likelihood estimator matrix P̂n is asymp-

totically normal, i.e.,
√
n(P̂n − P )

d−→ Nm2(0,Σ), (2.2.7)

where Σ is anm2 ×m2 block-diagonal matrix given by

Σ =



1

π1
Λ1 0 · · · 0

0
1

π2
Λ2 · · · 0

...
...

. . .
...

0 0 · · · 1

πm
Λm


and Λi, i = 1, 2, . . . ,m, arem×m covariance matrices defined by

Λi =


pi1(1− pi1) −pi1pi2 · · · −pi1pim
−pi2pi1 pi2(1− pi2) · · · −pi2pim

...
...

. . .
...

−pimpi1 −pimpi2 · · · pim(1− pim)

 .

In particular, for every i, j ∈ S we have that

√
nπi ·

p̂ij(n)− pij√
pij(1− pij)

d−→ N(0, 1). (2.2.8)

Remark 4. Notice that there is an interesting similarity with the Central Limit Theorem
applied to a multinomial distribution, that is

√
n · p̂i(n)− pi√

pi(1− pi)

d−→ N(0, 1).
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This does not come as a surprise, if we take into consideration the multinomial nature of
the problem (remember that the likelihood contains terms of the form p

nij(n)
ij ). The basic

difference now is that the sample size n becomes nπi, which is reasonable since we are
now interested in the i→ j transitions, so we want to examine how much time the Markov
chain has spent in the i state; and that is exactly what the stationary distribution tells us.

Remark 5. The above theorem, along with Slutsky’s theorem and the Continuous Map-
ping Theorem, can be used to derive asymptotic confidence intervals for pij , i, j ∈ S. In
particular, for a ∈ (0, 1) we have that

I1−a(pij) =

(
p̂ij(n)− za/2

√
p̂ij(n)(1− p̂ij(n))

ni(n)
, p̂ij(n) + za/2

√
p̂ij(n)(1− p̂ij(n))

ni(n)

)

is a 100(1− a)% confidence interval for pij , where za/2 is such that P(Z > za/2) =
a
2 for

Z ∼ N(0, 1).

2.3 Bayesian approach

2.3.1 Introduction

In Classical Statistics, we view parameters as constants. This assumption might seem in-
nocuous at first glance, but is crucial in the development and philosophy of this framework.
It turns out that this is not the only way to carry out statistical inference. One can view an
unknown quantity as a random variable and enter a quite different realm of inference, the
realm of Bayesian statistics. Apart from all the technical differences that arise with such a
change, the essence of the two approaches is quite distinct. In the heart of Bayesian infer-
ence lies the use of probability in order to quantify beliefs and uncertainty. The main tool
of Bayesian statistics is Bayes’ rule, which can intuitively be written as

P (model | data) = P (data | model)P (model)
P (data) .

There are four important quantities in the above formula:

(1) the likelihood: P (data | model),

(2) the prior distribution: P (model),

(3) the posterior distribution: P (model | data),

(4) the evidence (marginal likelihood): P (data).

A detailed exposition of the Bayesian approach to inference is outside the scope of this the-
sis. For an in-depth presentation of this framework, the reader is referred to [20]. In essence,
suppose we want to carry out inference about a (possibly multidimensional) parameter θ
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on the basis of the observations x. If, by any means, we have prior information for θ, we
can use it in our analysis and construct a prior distribution p(θ). We then compute the
likelihood f(x | θ), whose importance is already understood from the classical framework.
The ultimate goal of Bayesian statistics is to compute the posterior distribution π(θ | x).
Unlike classical statistics, in which there are several ways of carrying out inference (point-
wise estimation, confidence intervals etc), in Bayesian Statistics the posterior distribution
is the inference. Any quantity of interest can be computed using probabilistic arguments
on the posterior distribution. All the above characteristics are combined in Bayes’ rule as
follows:

π(θ | x) = f(x | θ) p(θ)
f(x)

=
f(x | θ) p(θ)∫

Θ f(x | θ) p(θ) dθ
∝ f(x | θ)p(θ). (2.3.1)

Notice that the denominator is a constant, so one can write π(θ | x) ∝ f(x | θ)p(θ), where
the symbol ∝ means “proportional to”. Such writing is valid, since π(θ | x) is a probability
distribution, so its integral is equal to 1 and, thus, the normalizing constant can be uniquely
determined.

A key element of the Bayesian approach is the notion of updating: one has some prior
beliefs and updates them on the basis of the observed data, in order to get the posterior
distribution. In order to carry out Bayesian inference, we first need to specify a suitable
prior distribution. A comfortable situation occurs when the prior and the posterior are in
the same distribution family. In such a case, the prior distribution is said to be conjugate for
the particular likelihood model.

2.3.2 Dirichlet Distribution

A likelihood that arises very often in Statistics is the binomial, since it measures the num-
ber of successes in a given number of Bernoulli trials. The conjugate family for a binomial
likelihood model is the family of Beta distributions and this is easy to check. The multidi-
mensional analogue of the binomial distribution is the multinomial distribution and it turns
out that the likelihood (2.2.2) is part of that. It would be computationally convenient to have
a distribution that is conjugate for the multinomial likelihood model. This is the family of
Dirichlet distributions.

Let m ∈ N and assume that we are working in the (m− 1)-simplex

Θ =

{
(x1, . . . , xm) : 0 ⩽ x1, . . . , xm ⩽ 1,

m∑
k=1

xi = 1

}
⊆ [0, 1]m.

For m = 2, the probability density function (pdf) of a Beta(p, q) distribution is

X ∼ Beta(p, q) ⇔ fX(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1.

TheDirichlet distribution is themultidimensional analogue for the Beta distribution. We say
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that a random variable X = (X1, . . . , Xm) follows a Dirchlet distribution with parameters
c1, . . . , cm > 0 and write X ∼ Dir(c1, . . . , cm) if its support is the (m − 1)-simplex Θ,
living in an m-dimensional space, and its pdf is given by

fX(x1, . . . , xm) =

Γ

(
m∑
i=1

ci

)
m∏
i=1

Γ(ci)

m∏
i=1

xci−1
i .

If we view a simplex as a discrete probability distribution, then the Dirichlet distribution
assigns a probability at each probability vector. In other words, the Dirichlet distribution
can be viewed as a distribution over distributions and has many interesting properties. Let
X = (X1, . . . , Xm) ∼ Dir(c1, . . . , cm). The mean value of each component is

E[Xi] =
ci

c1 + · · ·+ cm
, i = 1, . . . ,m,

assigning in a way the relative importance of each parameter. This result can be derived
from the fact that the marginal distributions of X’s components are Beta distributions. In
particular, if X = (X1, . . . , Xm) ∼Dir(c1, . . . , cm), then

Xk ∼ Beta(ck , c1 + · · ·+ ck−1 + ck+1 + · · ·+ cm), 1 ⩽ k ⩽ m.

In order to simulate a single observation (x1, . . . , xm) from Dir(c1, . . . , cm), we can first
simulate m independent observations yi ∼ Gamma(ci, 1) and then set

(x1, . . . , xm) =

(
y1∑m
i=1 yi

, . . . ,
ym∑m
i=1 yi

)
.

2.3.3 Posterior Inference

In our problem, the unknown parameter is θ = P and the likelihood is the same as in (2.2.2),
i.e.,

f(x | P ) = Ln(P ) = P(X1, . . . , Xn;P | x0) =
∏
i∈S

∏
j∈S

p
nij(n)
ij =

m∏
i=1

m∏
j=1

p
nij(n)
ij .

We need to find a suitable prior distribution for the matrix P . A reasonable idea is to study
each row independently and assign aDirichlet distribution, which is conjugate for themulti-
nomial likelihood model. In particular, if Pi· = (pi1, . . . , pim) denotes the i-th row of P ,
we can take a prior Pi· ∼ Dir(ci1, . . . , cim) assigning density

p(Pi·) ∝ pci1−1
i1 · · · pcim−1

im
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at each probability vector Pi·, so the prior of the whole transition matrix P becomes

p(P ) =

m∏
i=1

p(Pi·) ∝
m∏
i=1

pci1−1
i1 · · · pcim−1

im .

Combining the likelihood with the prior, the posterior distribution becomes

π(P | x) ∝ f(x | P ) p(P ) ∝
m∏
i=1

m∏
j=1

p
nij(n)
ij

m∏
k=1

pck1−1
k1 · · · pckm−1

km

=
m∏
i=1

(
p
ni1(n)−1
i1 · pni2(n)−1

i2 · · · pnim(n)−1
im

)
·

m∏
i=1

(
pci1−1
i1 · · · pcim−1

im

)

=
m∏
i=1

(
p
ni1(n)+ci1−1
i1 · · · pnim(n)+cim−1

i1

)
.

This shows that the prior independence of each row leads to posterior independence of each
row, i.e., Pi· | x ∼ Dir(ni1(n) + ci1, . . . , nim(n) + cim). Now that we have the posterior
distribution of each row and the transition matrix P in its whole, one can make inference
using probabilistic arguments on these posterior distributions. For instance, the posterior
mean of each transition probability is

E[pij | x] =
nij(n) + cij

m∑
k=1

(nik(n) + cik)

.

The main difference of the Bayesian approach in comparison to the frequentist one, is that
now we are not trying to study some characteristics (e.g. its standard error or sampling
distribution) of a statistic that estimates the parameter vector of interest, but rather we find
the whole posterior distribution of this parameter vector.



Chapter 3

Bootstrapping Finite Markov Chains

3.1 Frequentist Bootstrap

Consider an ergodic (positive recurrent, irreducible, aperiodic), time-homogeneous Markov
chain (Xn)n⩾0, with finite state space and transition matrix P . Let P̂n denote its maximum
likelihood estimator based on an observed path x = (x0, x1, . . . , xn), as discussed in (2.2.1).
Our goal is to estimate the sample distribution of the random variable

R(X, P ) :=
√
n (P̂n − P ).

For that, we adopt the parametric bootstrap approach, which consists of the following steps:

(1) Find an estimate of P . Here, we will use the maximum likelihood estimator P̂n.

(2) Use P̂n as a transition matrix and generate a path (X∗
0 , X

∗
1 , . . . , X

∗
Nn

), whereNn+1

is the length of the generated path.

(3) Using the plug-in principle, approximate the sample distribution of R(X, P ) by the
distribution of R∗ := R(X∗, P̂n). That is, find the maximum likelihood estimator P̃n

as if the matrix P̂n that generated the data was the unknown transition matrix, and
study the distribution of

√
Nn (P̃n − P̂n).

In practice, we implement the boostrap method using Monte Carlo simulation to generate
paths from the desired Markov chain whose transition matrix is to be estimated. The idea
behind the procedure described above is the following. We would like to estimate the sam-
pling distribution of the maximum likelihood estimator (MLE) of the transition probability
matrix, since this is the quantity that governs the behavior of the Markov chain (assuming
a fixed initial state). However, based on a given dataset, we only have one path, and hence
one MLE, so we cannot know how good this estimate is, what is its variability etc. For that,
we adopt the parametric bootstrap approach, which allows us to mimic the data obtaining
process and obtain several MLEs. Based on them, we can then provide point estimates and

44
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confidence intervals for the transition probabilities.

We shall see below that there is a nice asymptotic verification of the validity of the pro-
cedure described above. It turns out that

√
Nn (P̃n − P̂n) converges in distribution to the

same distribution as
√
n (P̂n − P ) does, i.e., N(0,Σ) (Theorem 2.2.2).

Before we state and prove this Theorem, we first state one of the most important Theo-
rems in Probability Theory, namely the Lindeberg-Feller Central Limit Theorem. This theo-
rem generalizes the well-known Lindeberg-Lévy Central LimitTheorem, which applies only
in the iid case. Now we drop the “identically distributed” condition and deal with indepen-
dent rows of independent random variables, possibly with different distributions each. If a
technical condition (which intuitively expresses the idea that the random variables do not
take large values with high probability) is satisfied, then the sum of these random variables
converges in distribution to a random variable following a Normal distribution. We will
state only the one (and most important) direction of the theorem. It is the case that if an
additional condition holds, then the converse is also true (but this is of less interest in our
case).

Theorem 3.1.1 (Lindeberg-Feller CLT). Let {Xnj : 1 ⩽ j ⩽ kn} be a triangular array of

independent random variables, that is

X11 X12 · · · X1k1

X21 X22 · · · X2k2

· · · · · · · · · · · ·
Xn1 Xn2 · · · Xnkn

· · · · · · · · · · · · ,

where, for every n, the random variables Xn1, . . . , Xnkn are independent and satisfy

E[Xnj ] = 0, σ2
nj = E[X2

nj ] <∞, s2n =

kn∑
j=1

σ2
nj > 0.

If the Lindeberg condition

∀ε > 0, lim
n→∞

1

s2n

kn∑
j=1

E
[
X2

nj I(|Xnj |⩾ εsn)
]
= 0 (3.1.1)

is satisfied, and we set Sn = Xn1 + · · ·+Xnkn , then we have that

Sn

sn

d→ N(0, 1). (3.1.2)

If we take the normalized version of the random variables, we get an equivalent formu-
lation of the Lindeberg-Feller CLT:

Theorem 3.1.2 (Lindeberg-Feller CLT). Let {Xnj : 1 ⩽ j ⩽ kn} be a triangular array of
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independent random variables, satisfying

E[Xnj ] = 0, σ2
nj = E[X2

nj ] <∞, s2n =

kn∑
j=1

σ2
nj = 1.

Then the following are equivalent:

A. Sn
d→ N(0, 1), where Sn := and max

1⩽k⩽kn
E[X2

nk] −−−→n→∞
0

B. The Lindeberg condition holds:

∀ε > 0, Ln(ε) :=

kn∑
j=1

∫
|x|>ε

x2 dFnj(x) −−−→
n→∞

0,

where Fnj is the cdf of the random variable Xnj .

Before we state the theorem about the asymptotic normality of the bootstrap estimator,
we state another very useful Proposition that helps us in proving things in a multidimen-
sional framework by simply examining 1-dimensional projections. This technique is gener-
ally referred to as the Cramér-Wold device. A short proof of this result can be obtained with
the use of characteristic functions (Billingsley [4], page 383).

Proposition 3.1.1 (Cramér-Wold). Let Xn = (Xn1, . . . , Xnk), n ∈ N, be a sequence of

random vectors in Rk, and X = (X1, . . . , Xk) ∈ Rk. Then, Xn
d→ X if, and only if,

a1Xn1 + · · ·+ akXnk
d→ a1X1 + · · ·+ akXk for all a1, . . . , ak ∈ R.

Now we are ready to state the main theorem regarding the asymptotic behavior of the
frequentist bootstrap procedure that we use in order to tackle the initial problem of interest.
The proof of this result is highly technical and is presented in detail in Appendix A.

Theorem 3.1.3. Let (Xn)n⩾0 be an ergodic, time-homogeneous Markov chain with transition

matrix P and finite state-space S = {1, . . . , s}. Let P̂n be its maximum likelihood estimator

based on an observed path x = (x0, x1, . . . , xn). For P̃n as described above and matrix Σ as

in (2.2.2), we have that √
Nn (P̃n − P̂n)

d→ Ns2(0,Σ), (3.1.3)

as n→∞ and Nn →∞.

3.2 Bayesian Bootstrap

A simple way of illustrating the general idea of Bayesian bootstrap is the following: suppose
the statistic of interest is the sample mean.

• The frequentist bootstrap procedure yields the bootstrap value
n∑

i=1
wixi at each step,

where wi ∼Multinomial(1, 1/n, . . . , 1/n), i = 1, . . . , n.
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• Problem: the discrete nature of the Multinomial distribution leads to non-smooth
estimators.

The Bayesian Bootstrap solves the above problem by using a continuous version of the
weights’ distribution, the Dirichlet distribution. We have the following:

(i) Take a sample {x1, . . . , xn} and calculate the sample mean.

(ii) Generate the weights wi ∼ Dir(1, . . . , 1), i = 1, . . . , n.

(iii) Take the bootstrap value
n∑

i=1
wixi.

(iv) Iterate the previous steps and take the mean of all the bootstrap values.

The above procedure leads to smoother estimators. Note that now the weights are random
variables.

3.2.1 Bayesian Bootstrap for Markov Chains

Let Bij denote the set Bij =

{
j∑

ℓ=1

ni(ℓ−1) + 1, . . . ,
j∑

ℓ=1

niℓ

}
, i, j ∈ S, where we define

ni0 = 0 for all i ∈ S. Note that each Bij can be written as

Bij = {ni1 + · · ·+ ni(j−1) + 1, . . . , ni1 + · · ·+ ni(j−1) + nij},

from which we conclude that each Bij has nij elements. Hence, the maximum likelihood
estimator (2.2.1) can be written as

p̂ij =
nij

ni
=

∑
t∈Bij

1∑ni
t=1 1

, (3.2.1)

which works as a useful connection between the asymptotic and the Bayesian bootstrap
approach. We will use this connection to define the Bayesian bootstrap estimators for the
transition probabilities.

Example 3.2.1. Wewill give an example in order to understand the notation better. LetN =

20 and suppose we have aMarkov chain path such that n11 = 2, n12 = 2, n13 = 2, n21 = 1,

n22 = 1, n23 = 4, n31 = 2, n32 = 4, n33 = 1. Then we have that n1 = n11+n12+n13 = 6,

n2 = n21 + n22 + n23 = 6 and n3 = n31 + n32 + n33 = 7. The sets Bij are defined as:

B11 = {n10 + 1, . . . , n11} = {1, 2}⇝ |B11|= n11 = 2

B12 = {n10 + n11 + 1, . . . , n11 + n12} = {3, 4}⇝ |B12|= n12 = 2

...

B32 = {n30 + n31 + 1, . . . , n31 + n32} = {3, 4, 5, 6}⇝ |B32|= n32 = 4
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B33 = {n30 + n31 + n32 + 1, . . . , n31 + n32 + n33} = {7}⇝ |B33|= n33 = 1

Notice that the sets Bi1, Bi2, . . . , Bim partition the set {1, 2, . . . , ni}, for all i ∈ [m].

We will use an estimator similar to the M.L.E. (3.2.1), but now we are going to include
simulation.

Definition 3.2.1 (Bayesian Bootstrap Estimator). For every i, j ∈ S = [m], the Bayesian
bootstrap estimator of pij is defined to be

p̂∗n(i, j) :=

∑
t∈Bij

Zit∑ni
t=1 Zit

, (3.2.2)

where Zit ∼ Exp(1) are iid random variables, for i = 1, . . . ,m, t = 1, . . . , ni.

Algorithm 1 Bayesian Bootstrap for Finite Markov Chains
1: Simulate iid Zit ∼ Exp(1), i = 1, . . . ,m, t = 1, . . . , ni.

2: Calculate p̂∗n(i, j) :=
∑

t∈Bij
Zit∑ni

t=1 Zit
and obtain the matrix estimator P̂ ∗.

3: Repeat the previous steps B times to obtain the estimators P̂ ∗
n1, . . . , P̂

∗
nB and approxi-

mate the posterior distribution π(P | x) using them.

Let P = (P1· P2· · · ·Pm·)
T denote the unknown transition matrix P and P̂ ∗

n = (p̂∗n(i, j))

the Bayesian bootstrap estimator. It can be shown that the joint distribution of each row of
P̂ ∗
n is Dirichlet with parameters involving the quantities nij . In particular,

P̂ ∗
i· ∼ Dir(ni1, . . . , nim).

Thus the joint distribution of the Bayesian bootstrap estimator P̂ ∗
n is a matrix-beta distri-

bution (product of independent Dirichlet distributions).

We now state the Central Limit Theorem for the Bayesian bootstrap procedure that we
described. The proof is presented in detail in Appendix A.

Theorem 3.2.1 (CLT for the Bayesian Bootstrap). Let i, j ∈ S and p̂ij denote the maximum

likelihood estimator of the transition probability pij . Then, for almost all sample sequences

x = (x0, x1, . . . , xn) we have

√
ni(p̂

∗
n(i, j)− p̂ij)√

p̂ij(1− p̂ij)

∣∣∣x d−→ N(0, 1), (3.2.3)

as n→∞. That is, the Bayesian bootstrap estimators are asymptotically normal.
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Applications

We wish to illustrate the validity of Theorem 3.1.3 empirically, with the use of simulated
and real data. For simplicity, we do it for a Markov chain with a state-space that only has
two elements. The functions used to simulate and estimate a discrete-time Markov chain,
along with the bootstrapping procedure that is followed, are presented below.

A. Define a function that has the initial state, the transition probability matrix and the
length n as inputs, and outputs n observations simulated from this Markov chain.
The pseudocode for this function is shown in Algorithm 2.

Algorithm 2 Simulate Markov Chain path
1: function simulate_dtmc(init_state, P, n)
2: states← {1, 2}
3: Initialize: path← rep(0, n)
4: path[1]← init_state
5: for i from 2 to n do
6: path[i]← sample(states, 1, P [path[i− 1]])
7: end for
8: return path
9: end function

B. Define a function that takes as input the path of a Markov chain and outputs the
MLE of its transition probability matrix. The pseudocode for this function is shown
in Algorithm 3.

C. Define a function that takes as input a transition matrix (in our case, the estimated
transition matrix), the original path length n, the bootstrap path length N and the
number of bootstrap iterationsB, and outputs a vector of the bootstrap results, which
are the values of the desired CLT type of quantity stated inTheorem 3.1.3. The pseudo-
code for this function is shown in Algorithm 4.

49
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Algorithm 3 Estimate Transition Probability Matrix
1: function estimate_matRix(path)
2: Initialize: est_P ← matrix(c(0, 0, 0, 0), 2, 2)
3: Initialize: P_hat← matrix(c(0, 0, 0, 0), 2, 2)
4: for i from 1 to (length(path)− 1) do
5: prev_state← path[i]
6: next_state← path[i+ 1]
7: est_P [prev_state, next_state]← est_P [prev_state, next_state] + 1
8: end for
9: for each row i in est_P do

10: s← sum(elements in row i)
11: for each element j in row i do
12: P_hat[i, j]← est_P [i,j]

s
13: end for
14: end for
15: return P_hat
16: end function

Algorithm 4 Bootstrap Transition Probability Matrix
1: function bootstRap(P_hat,N,B)
2: Initialize: clt← rep(0, B)
3: for i in 1 to B do
4: init_state← sample({1, 2}, 1, prob={0.5, 0.5})
5: boot_path← SIMULATE_DTMC(init_state, P_hat, N )
6: P_tilde← ESTIMATE_MATRIX(boot_path)
7: clt[i]←

√
N ∗ (P_tilde[1, 1]− P_hat[1, 1])

8: end for
9: return clt

10: end function
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4.1 Simulated Data

In this section, we use 1000 data points simulated by a Markov chain {Xn}n≥0 with state-
space S = {1, 2}, initial state X0 = 1 and transition probability matrix

P =

(
0.7 0.3

0.4 0.6

)
.

We run 1000 bootstrap replications and are interested in the quantity
√
Nn(P̃n− P̂n) of the

main theorem 3.1.3. For simplicity, we study
√
Nn(P̃n[1, 1]−P̂n[1, 1]), the one-dimensional

counterpart of the quantity of interest, and plot its histogram along with the normal density
predicted by Theorem 3.1.3 in Figure 4.1. The histogram shows a strong concentration to
the normal distribution, as the main theorem suggests.

FiguRe 4.1: Histogram of
√
Nn(P̃n[1, 1]− P̂n[1, 1]).

4.2 Real Data

We now apply the bootstrap method we introduced in Chapter 3 to a real dataset embedded
in R. In particular, we use the weather dataset, a data frame containing information on the
weather in Canberra, Australia, in the span of one year. For the full documentation of the
rattle package and the weather dataset included in it, the reader is referred to rattle.data.

Even though the data frame has dimension 366×24, we will only look at the trajectory of

http://cran.nexr.com/web/packages/rattle.data/rattle.data.pdf
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one variable, namely the RainTomorrow variable. This variable can theoretically take three
values: ‘Yes’, ‘No’, ‘NA’, although in our variable of interest there were no ‘NA’ values.
We convert ‘No’ to 1 and ‘Yes’ to 2. We assume that the modified RainTomorrow vector
constitutes a path of 366 observations from a discrete-time Markov chain with state-space
S = {1, 2}. To empirically verify the validity of this assumption, we look at the ACF plot
of our time-series data, as shown in Figure 4.2. We observe only one statistically significant
spike at lag 1, which shows that fitting a first order discrete-time Markov chain on the data
is a plausible assumption.

FiguRe 4.2: ACF plot of RainTomorrow data.

To give stronger evidence for the plausibility of fitting a first-order Markov chain to our
data, we compare it to fitting a second-order Markov chain, in which the dynamics are
governed by the following property:

P(Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X1 = i1, X0 = i0)

= P(Xn+1 = in+1|Xn = in, Xn−1 = in−1).

In our case, the possible states are four: (1, 1), (1, 2), (2, 1), (2, 2). Note that there are fewer
than 16 parameters to estimate, since some transitions, e.g. (1, 1)→ (2, 2), are not possible.
In particular, there are only 4 free parameters to be estimated, since at each state there are
only two possible transitions (e.g. from the state (1, 1) the chain can only visit either (1, 1)
or (1, 2)) and the matrix is stochastic, so we lose one degree of freedom for each row. Based
on the same observed path we used for the first-order Markov chain, we estimate the non-
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zero transition probabilities of the fitted second-order Markov chain. Now that we have the
MLEs of both models, we plug them into their log-likelihoods and compute the AIC and BIC
for both models. The results are shown in table 4.1. Based on these results, we conclude
that among the two candidate models, the first-order Markov chain is the preferable one.

1st-order DTMC 2nd-order DTMC
AIC 336.38 337.25

BIC 344.18 352.86

Table 4.1: AIC and BIC for the two models

The goal is to use the parametric bootstrap algorithm described previously in order to es-
timate the MLE of the probability transition matrix of the DTMC, i.e., we want the MLE of
the probability that tomorrow it will either rain or not, given that today it rained or not. The
summary statistics of the estimated transition probabilities based on the bootstrap method
are given in the table 4.2, and the histogram of the quantity used in the main theorem is
given in Figure 4.3.

Bootstrap Mean Bootstrap SD 95% CI
p̃11 0.8523 0.0198 (0.8114, 0.89)

p̃12 0.1477 0.0198 (0.11, 0.1886)

p̃21 0.6893 0.0583 (0.5789, 0.8039)

p̃22 0.3107 0.0583 (0.1961, 0.4211)

Table 4.2: Summary statistics for the entries of the 2× 2 bootstrap transi-
tion probability matrix P̃

As a quick sanity check, we notice that p̃11 + p̃12 = 1 and p̃21 + p̃22 = 1, as expected since
P̃ is a stochastic matrix. To see how robust the bootstrap mean estimator is, we plot the
trajectory of the bootstrap mean of p̃11 across the 1000 bootstrap replicates. The result is
shown in Figure 4.4. We observe that after a very short burn-in period, the estimate of p̃11
reaches the mean value of 0.85 in the first few bootstrap replications and fluctuates very
little until it reaches stationarity.
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FiguRe 4.3: Histogram of
√
Nn(P̃n[1, 1]− P̂n[1, 1]) based on the weather

data

FiguRe 4.4: Trajectory of the bootstrap mean of p̃11



Appendix A

Technical Proofs

In order to prove the pointwise ergodic theorem, we will first prove a useful lemma, often
referred to as the Maximal Ergodic Lemma.

Lemma A.0.1. Suppose Z is a random variable satisfying E|Z|< ∞ and E[Z | G ] > 0 a.s.

Then,

lim inf
n→∞

1

n

n−1∑
k=0

Z ◦ T k ≥ 0 a.s., (A.0.1)

where T is a measure preserving transformation.

Proof. For notational convenience, denote Sn :=
∑n−1

k=0 Z ◦ T k, n ≥ 1. Note that

E|Sn|≤
n−1∑
k=0

E|Z ◦ T k|≤
n−1∑
k=0

E|Z|= nE|Z|.

Define the quantities

Ln = inf
1≤k≤n

Sk and A =
{
ω ∈ Ω : inf

n≥1
Ln(ω) = −∞

}
.

Observe that the statement of the lemmawill follow immediately if we show that P(A) = 0.
For that, we note the following. Ln is a random variable for n ≥ 1, and A is a measurable
set. We have |Z|<∞ a.s., since E|Z|<∞ by assumption, and{

inf
n≥1

Sn = −∞
}
=
{
inf
n≥1

Sn ◦ T = −∞
}

a.s.,

so A is T -invariant, i.e., A = T−1(A). Indeed,

T−1(A) = {ω ∈ Ω : T (ω) ∈ A} = {ω ∈ Ω : inf Ln(T (ω)) = −∞},

Ln is given through the Sk’s, and

{inf Sn = −∞} = {inf Sn ◦ T = −∞} a.s.
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Note also that the sequence {Ln}∞n=1 is decreasing, so we have

Ln = inf
1≤k≤n

Sk = Z + inf
1≤k≤n

{Sk − Z}

= Z + inf
1≤k≤n

{
k−1∑
m=0

Z ◦ Tm − Z

}

= Z +min

{
0, inf

1≤k≤n−1

k−1∑
m=0

Z ◦ Tm+1

}

= Z +min{0, Ln−1 ◦ T}

≥ Z +min{0, Ln ◦ T}.

We thus get Z ≤ Ln − min{0, Ln ◦ T} = Ln + (Ln ◦ T )− = Ln + L−
n ◦ T a.s., where

(x)+ := max{x, 0} and (x)− := max{−x, 0} denote the positive and the negative part of
a quantity x, respectively. Recall thatA is invariant, so 1A = 1A ◦T , thus we get the useful
inequality

E[1AZ] ≤ E[1A · (Ln + L−
n ◦ T )] = E[1ALn] + E[1AL−

n ◦ T ]

= E[1ALn] + E[1A ◦ TL−
n ◦ T ] ≤ E[1ALn] + E[1AL−

n ]

= E[1ALn + 1AL
−
n ] = E[1A(Ln + L−

n )] = E[1AL+
n ].

We want to show that lim
n→∞

E[1AL+
n ] = E

[
lim
n→∞

1AL
+
n

]
= 0, to get E[1AZ] = 0 from

the preceding inequality. This follows from the Dominating Convergence Theorem, upon
noting that 1AL+

n
a.s.→ 0, L+

n ≤ Z+ and EZ+ ≤ E|Z|<∞. Thus, E[1AZ] = 0 and we get

E[1AE[Z | G ]] = E[1AZ] = 0,

where the first equality comes from the definition of conditional expectation. Now recall
that E[Z | G ] > 0 a.s. by assumption, so the previous equality yields P(A) = 0 or, equiva-
lently,

P
(
inf
n≥1

Ln = −∞
)

= P
(
inf
n≥1

inf
1≤k≤n

Sk = −∞
)

= 0,

showing that lim inf
n→∞

Sn
n ≥ 0 a.s., which is what we wanted to prove.
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We are now ready to prove Birkhof’s Ergodic Theorem.

Proof of Theorem 1.2.3. Let ε > 0. The idea is to utilize the Maximal Ergodic Lemma for a
suitably chosen random variable Z . For that, define Z = Y − E[Y | G ] + ε. Note that

E|Z|= E|Y − E[Y | G ] + ε|≤ E|Y |+E[E[|Y || G ]] + ε = E|Y |+E|Y |+ε = 2E|Y |+ε

and

E[Z | G ] = E[Y | G ]− E[E[Y | G ]] + ε = E[Y | G ]− E[Y | G ] + ε = ε > 0.

Since E[Y | G ] is G -measurable, it is also T -invariant. Thus, from Lemma (A.0.1) we get

lim inf
n→∞

1

n

n−1∑
k=0

Z ◦ T k ≥ 0 a.s.,

which yields

lim inf
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≥ E[Y | G ]− ε a.s.

Using −Y instead of Y in the last inequality, we get

− lim sup
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≥ −E[Y | G ]− ε,

which yields

lim sup
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≤ E[Y | G ] + ε a.s.

Combining these two inequalities, we get

−ε+ lim sup
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≤ E[Y | G ] ≤ lim inf
n→∞

1

n

n−1∑
k=0

Y ◦ T k + ε a.s.

Since ε > 0 was arbitrary, this proves that

lim sup
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≤ E[Y | G ] ≤ lim inf
n→∞

1

n

n−1∑
k=0

Y ◦ T k a.s.

Since it is always true that lim inf
n→∞

1

n

n−1∑
k=0

Y ◦ T k ≤ lim sup
n→∞

1

n

n−1∑
k=0

Y ◦ T k, the above yields

1

n

n−1∑
k=0

Y ◦ T k a.s.→ E[Y | G ].
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Theorem A.0.1. Let (Xn)n⩾0 be an ergodic, time-homogeneous Markov chain with transition

matrix P and finite state-space S = {1, . . . , s}. Let P̂n be its maximum likelihood estimator

based on an observed path X = (x0, x1, . . . , xn). For P̃n as described above and matrix Σ as

in (2.2.2), we have that √
Nn (P̃n − P̂n)

d→ Ns2(0,Σ), (A.0.2)

as n→∞ and Nn →∞.

Proof. Let {Xnr : 1 ⩽ r ⩽ Nn} denote the bootstrap sample that occurs as a Markov path
generated by the transition matrix P̂n. We define the quantities

m
(n)
i :=

Nn∑
r=1

1(Xnr = i) and m
(n)
ij :=

Nn−1∑
r=0

1(Xnr = i,Xn,r+1 = j).

Then, the desired matrix statistic takes the form

√
Nn (P̃n − P̂n) =

(√
Nn ·

(
m

(n)
ij

m
(n)
i

− nij

ni

))
i,j=1,...,s

=

(√
Nn ·

(
m

(n)
ij

m
(n)
i

− pnij

))
i,j=1,...,s

,

where pnij = (P̂n)ij is the (i, j)-element of the MLE P̂n. By the Cramér-Wold device 3.1.1,
it suffices to prove that for all ℓij ∈ R the sequence

k∑
i=1

k∑
j=1

ℓij
√
Nn

(
m

(n)
ij

m
(n)
i

− pnij

)

converges in distribution to a Normal distribution. Since a linear combination of Normal
distributions is a Normal distribution, it suffices to prove that the sequence

√
Nn

(
m

(n)
ij

m
(n)
i

− pnij

)

converges in distribution to a Normal distribution. The rest of the proof deals with this goal.

Let {W (n)
it }, i = 1, . . . , s, t ∈ N, be a sequence of independent random variables such

that P(W (n)
it = j) = pnij , for all j = 1, . . . , s, and recursively define

X
(n)
0 = 1 and X

(n)
i+1 = W

(n)

X
(n)
i m

, i ⩾ 0,

where m = 1 + #{ℓ : 1 ⩽ ℓ ⩽ Nn, X
(n)
ℓ = X

(n)
i }. This is a way to describe how the

bootstrap sample {Xnr : 1 ⩽ r ⩽ Nn} is generated.
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Fix i, j ∈ S and define the random variables

C
(n)
t (j) =

1, if W (n)
it = j, t = 1, . . . ,m

(n)
i

0, else
.

By definition, we have that C(n)
t (j) ∼ Bernoulli(pnij), since

P(C(n)
t (j) = 1) = P(W (n)

it = j) = pnij .

Let π̂n = (πn1, . . . , πns) be the limit distribution of P̂n. We denote by bxc the largest integer
which is smaller than x. For a fixed i ∈ S with πni > 0, we define

d
(n)
t (j) :=

C
(n)
t (j)− pnij√

bNnπnicpnij(1− pnij)
, n ∈ N, t = 1, . . . , bNnπnic.

Using the fact that C(n)
t (j) ∼ Bernoulli(pnij), we get that

E
[
d
(n)
t (j)

]
=

E
[
C

(n)
t (j)

]
− pnij√

bNnπnicpnij(1− pnij)
=

pnij − pnij√
bNnπnicpnij(1− pnij)

= 0

and

Var(d(n)t (j)) =
Var

(
C

(n)
t (j)

)
bNnπnicpnij(1− pnij)

=
pnij(1− pnij)

bNnπnicpnij(1− pnij)
=

1

bNnπnic
.

First, we will show that

S
(n)
⌊Nnπni⌋(j) :=

⌊Nnπni⌋∑
t=1

d
(n)
t (j) =

⌊Nnπni⌋∑
t=1

C
(n)
t (j)− pnij√

bNnπnicpnij(1− pnij)

d→ N(0, 1).

For that, we will use the Lindeberg-Feller Central Limit Theorem. Notice that

Var
(
d
(n)
t (j)

)
=

1

bNnπnic
⇒ s2n =

⌊Nnπni⌋∑
t=1

Var
(
d
(n)
t (j)

)
= bNnπnic ·

1

bNnπnic
= 1,

hence we will use the 2nd version of Lindeberg-Feller (Theorem 3.1.2). We thus have to
check the Lindeberg condition

∀ε > 0 Ln(ε) :=

⌊Nnπni⌋∑
t=1

∫
|x|>ε

x2 dFnt(x) −−−→
n→∞

0,
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where Fnt is the cdf of the random variable d(n)t (j). We have the following bound:

∣∣∣ d(n)t (j)
∣∣∣ =

∣∣∣C(n)
t (j)− pnij

∣∣∣√
bNnπnicpnij(1− pnij)

⩽

⩽1︷ ︸︸ ︷∣∣∣C(n)
t (j)

∣∣∣+ ⩽1︷ ︸︸ ︷
| pnij |√

bNnπnicpnij(1− pnij)

⩽ 2√
bNnπnicpnij(1− pnij)

.

Since P̂n
a.s.→ P and π̂n

a.s.→ π, where π = πP , we have that

πnjpnij(1− pnij)
a.s.→ πjpij(1− pij) > 0.

Let ε > 0. Since Nn −−−→
n→∞

∞ and Nn appears in the denominator of d(n)t (j), there exists

an n0 ∈ N such that for every n > n0 we have sup
t

d
(n)
t (j) < ε. Hence,

∫
|x|>ε

x2 dFnt(x) = 0, ∀n > n0, t = 1, . . . , bNnπnic,

which yields

Ln(ε) :=

⌊Nnπni⌋∑
t=1

∫
|x|>ε

x2 dFnt(x) = 0, ∀n > n0

and thus Lindeberg’s condition is satisfied. From the Lindeberg-Feller CLT, we obtain

S
(n)
⌊Nnπni⌋(j) :=

⌊Nnπni⌋∑
t=1

d
(n)
t (j) =

⌊Nnπni⌋∑
t=1

C
(n)
t (j)− pnij√

bNnπnicpnij(1− pnij)

d→ N(0, 1). (A.0.3)

We now observe that

pnj
a.s.→ pij ⇒ pnj

p→ pij ⇒
1√

pnij(1− pnij)

p→ 1√
pij(1− pij)

and √
bNnπnicpnij(1− pnij)√
bNnπnicpij(1− pij)

p→ 1.

Using (A.0.3) and Slutsky’s Lemma, we obtain

⌊Nnπni⌋∑
t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnicpij(1− pij)

=

⌊Nnπni⌋∑
t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnicpnij(1− pnij)

·
√
bNnπnicpnij(1− pnij)√
bNnπnicpij(1− pij)

d→ N(0, 1).

Now we define the quantity

ṁ
(n)
ij :=

⌊Nnπni⌋∑
t=1

1(Xt−1 = i,Xt = j)
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and write

m
(n)
ij −m

(n)
i pnij√

m
(n)
i

=
m

(n)
ij − ṁ

(n)
ij + ṁ

(n)
ij − bNnπnicpnij + bNnπnicpnij −m

(n)
i pnij√

m
(n)
i

=
ṁ

(n)
ij − bNnπnicpnij√

m
(n)
i

+

(
m

(n)
ij −m

(n)
i pnij

)
−
(
ṁ

(n)
ij − bNnπnicpnij

)
√
m

(n)
i

=

√
bNnπnic√
m

(n)
i

·

(
ṁ

(n)
ij − bNnπnicpnij√

bNnπnic

)
+

+

√
Nn√
m

(n)
i

·

(
m

(n)
ij −m

(n)
i pnij

)
−
(
ṁ

(n)
ij − bNnπnicpnij

)
√
Nn

. (A.0.4)

Recall that
⌊Nnπni⌋∑

t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnicpij(1− pij)

d→ N(0, 1),

from which we get

⌊Nnπni⌋∑
t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnic

d→ N(0, pij(1− pij))

and we observe that

⌊Nnπni⌋∑
t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnic

=

⌊Nnπni⌋∑
t=1

C
(n)
t (j)− bNnπnicpnij√
bNnπnic

.

From the definition of ṁ(n)
ij we see that

⌊Nnπni⌋∑
t=1

C
(n)
t (j)

d
= ṁ

(n)
ij , i.e., they have the same

distribution. From this, we get that

⌊Nnπni⌋∑
t=1

(
C

(n)
t (j)− pnij

)
√
bNnπnic

d
=

ṁ
(n)
ij − bNnπnicpnij√

bNnπnic
,

which yields
ṁ

(n)
ij − bNnπnicpnij√

bNnπnic
d→ N(0, pij(1− pij)). (A.0.5)

Our goal now is to show the following two convergences:

(i)
m

(n)
i

Nn
− πni

p→ 0
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(ii)

ηnij :=
m

(n)
ij −m

(n)
i pnij√

Nn
−

ṁ
(n)
ij − bNnπnicpnij√

Nn

p→ 0.

If we show these two, then from A.0.4 and A.0.5, the proof of the theorem is complete.
Indeed,

ṁ
(n)
ij − bNnπnicpnij√

bNnπnic
d→ N(0, pij(1− pij))

and

m
(n)
i

Nn
− πni

p→ 0
÷πni>0⇒

m
(n)
i

Nnπni
− 1

p→ 0⇒
m

(n)
i

Nnπni

p→ 1⇒ Nnπni

m
(n)
i

p→ 1⇒

bNnπnic
m

(n)
i

=
Nnπni

m
(n)
i︸ ︷︷ ︸
p→1

· bNnπnic
Nnπni︸ ︷︷ ︸

p→1

p→ 1⇒
√
bNnπnic
m

(n)
i

p→ 1,

so A.0.4 gives
m

(n)
ij −m

(n)
i pnij√

m
(n)
i

d→ N(0, pij(1− pij)).

From the Weak Law of Large Numbers, we get m
(n)
i

Nn

p→ πi, so
√
Nn√
m

(n)
i

p→ 1
√
πi

, and finally

from Slutsky’s lemma we have

√
Nn (p̃nij − pnij) =

√
Nn

(
m

(n)
ij

m
(n)
i

− pnij

)

=

√
Nn√
m

(n)
i︸ ︷︷ ︸

p→
1
√
πi

·
m

(n)
ij −m

(n)
i pnij√

m
(n)
i︸ ︷︷ ︸

d→N(0,pij(1−pij))

d→ N

(
0,

pij(1− pij)

πi

)
,

which is equivalent to what we wanted to show. Thus, it suffices to show (i) and (ii). We

begin with (i). We will show that m
(n)
i

Nn
− πni

p→ 0, i.e., we will show that for every ε > 0,

lim
n→∞

P

(∣∣∣m(n)
i

Nn
− πni

∣∣∣) = 0. First, we use a result on the mixing time of Markov chains.

Let n ∈ N. For every k > 0, there exists a constant C > 0 such that∣∣∣p(α)nij − πnj

∣∣∣ ⩽ Cραn,

where ρn = 1 −min
i,j

pnij < 1. Since the Markov chain in our case is finite and recursive,
we have pnij → pij , so ρn → 1−min

i,j
pij < 1 as n→∞, so there exist ρ < 1 and n0 ∈ N
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such that
∀n ⩾ n0

∣∣∣p(α)nij − πnj

∣∣∣ ⩽ Cρα, ∀α ∈ N. (A.0.6)

Now we are ready to prove (i). Let ε > 0. From Markov’s inequality, we have

P

(∣∣∣m(n)
i

Nn
− πni

∣∣∣ > ε

)
⩽ 1

ε2
E

[(
m

(n)
i

Nn
− πni

)2 ]
,

where

E

(m
(n)
i

Nn
− πni

)2
 = E


(
m

(n)
i −Nnπni

)2
N2

n


=

1

N2
n

E
[(

m
(n)
i −Nnπni

)2]

=
1

N2
n

E

(Nn∑
k=1

I(Xnk = i)−Nnπni

)2


=
1

N2
n

E

(Nn∑
k=1

(I(Xnk = i)− πni)

)2


=
1

N2
n

E

[
Nn∑
k=1

Nn∑
ℓ=1

m
(k,ℓ)
ni

]
, (A.0.7)

where m
(k,ℓ)
ni := 1i(Xnk)1i(Xnℓ) − πni1i(Xnℓ) − πni1i(Xnk) + π2

ni. We verify the last
equality in A.0.7. Using the definition and expanding, we see that

Nn∑
k=1

Nn∑
ℓ=1

m
(k,ℓ)
ni =

Nn∑
k=1

Nn∑
ℓ=1

1i(Xnk)1i(Xnℓ)−
Nn∑
k=1

Nn∑
ℓ=1

πni1i(Xnℓ)−
Nn∑
k=1

Nn∑
ℓ=1

πni1i(Xnk) +

Nn∑
k=1

Nn∑
ℓ=1

π2
ni

=

Nn∑
k=1

1i(Xnk)

Nn∑
ℓ=1

1i(Xnℓ)− πniNn

Nn∑
ℓ=1

1i(Xnℓ)− πniNn

Nn∑
k=1

1i(Xnk) +N2
nπ

2
ni

=

(
Nn∑
k=1

1i(Xnk)

)2

− 2πniNn

Nn∑
k=1

1i(Xnk) +N2
nπ

2
ni

=

(
Nn∑
k=1

1i(Xnk)−Nnπni

)2

=

(
Nn∑
k=1

(1i(Xnk)− πni)

)2

,

so A.0.7 holds and we get

E

[(
m

(n)
i

Nn
− πni

)2 ]
=

1

N2
n

E

[
Nn∑
k=1

Nn∑
ℓ=1

m
(k,ℓ)
ni

]
. (A.0.8)
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Recall that throughout the proof we are using the notation

1i(Xnk) := 1(Xnk = i) =

1, if Xnk = i

0, if Xnk 6= i
,

so we have E[1i(Xnk)] = E[1(Xnk = i)] = P(Xnk = i) = p
(k)
n1i, since X

(n)
0 = 1 by

assumption. Similarly, E[1i(Xnℓ)] = p
(ℓ)
n1i and E[1i(Xnk)1i(Xnℓ)] = p

(k∧ℓ)
n1i p

(|k−ℓ|)
nii , since

the Markov chain goes from state 1 to state i in k ∧ ℓ steps and from i to i in the remaining
|k − ℓ| steps. Thus,

Em
(k,ℓ)
ni = p

(k∧ℓ)
n1i p

(|k−ℓ|)
nii − πnip

(ℓ)
n1i − πnip

(k)
n1i + π2

ni.

Using A.0.6, we can write p
(α)
nij = πnj + ε

(α)
nj , where |ε(α)nj |⩽ Cρα. For notational conve-

nience, let s = k ∧ ℓ and t = |k − ℓ|, so we get

Em(k,ℓ)
ni = p

(s)
n1ip

(t)
nii − πnip

(ℓ)
n1i − πnip

(k)
n1i + π2

ni

= (πni + ε
(s)
ni )(πni + ε

(t)
ni )− πnip

(ℓ)
n1i − πnip

(k)
n1i + π2

ni

= �
�π2
ni + πniε

(t)
ni + πniε

(s)
ni + ε

(s)
ni ε

(t)
ni −�

�π2
ni − πniε

(ℓ)
ni −�

�π2
ni − πniε

(k)
ni +�

�π2
ni

= πniε
(t)
ni + πniε

(s)
ni + ε

(s)
ni ε

(t)
ni − πniε

(ℓ)
ni − πniε

(k)
ni ,

so A.0.6 yields that for every n ⩾ n0∣∣∣Em(k,ℓ)
ni

∣∣∣ ⩽ πni|ε(t)ni |+πni|ε(s)ni |+|ε
(s)
ni ε

(t)
ni |+πni|ε(ℓ)ni |+πni|ε(k)ni |

= πni

(
|ε(t)ni |+|ε

(s)
ni |+

1

πni
|ε(s)ni ε

(t)
ni |+|ε

(ℓ)
ni |+|ε

(k)
ni |
)

⩽ πni

(
Cρs + Cρt +

1

πni
Cρsρt + ρℓ + ρk

)
⩽ C ′(ρs + ρt + ρk + ρℓ),

for some constant C ′ > 0. So now the bound in A.0.8 becomes

E

[(
m

(n)
i

Nn
− πni

)2 ]
=

1

N2
n

E

[
Nn∑
k=1

Nn∑
ℓ=1

m
(k,ℓ)
ni

]
=

1

N2
n

Nn∑
k=1

Nn∑
ℓ=1

Em
(k,ℓ)
ni

⩽ 1

N2
n

Nn∑
k=1

Nn∑
ℓ=1

C ′(ρs + ρt + ρk + ρℓ)

⩽ C ′

N2
n

Nn∑
k=1

Nn∑
ℓ=1

(2ρk + ρℓ−k + ρℓ)
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⩽ C ′

N2
n

(
3Nn

∞∑
k=1

ρk +

Nn∑
ℓ=1

ℓ∑
k=1

ρℓ−k

)

⩽ C ′

N2
n

(
3Nn ·

1

1− ρ
+Nn ·

1

1− ρ

)

=
C ′

N2
n

· 4Nn

1− ρ
=

4C ′

Nn(1− ρ)
→ 0 as n→∞,

since Nn →∞ by assumption. Hence, Markov’s inequality yields

P

(∣∣∣m(n)
i

Nn
− πni

∣∣∣ > ε

)
⩽ 1

ε2
E

[(
m

(n)
i

Nn
− πni

)2 ]
⩽ 4C ′

ε2Nn(1− ρ)
→ 0 as n→∞,

which proves (i). Nowwe will prove (ii), i.e., ηnij
p→ 0. Define Sm :=

m∑
t=1

(
C

(n)
t (j)− pnij

)
,

where

C
(n)
t (j) =

1, if W (n)
it = j, t = 1, . . . ,m

(n)
i

0, else
.

Let ε > 0. From (i), there exists n0 ∈ N such that P
(
|m(n)

i − bNnπnic|> ε3Nn

)
< ε for

every n > n0. We will show that P(|ηnij |> ε)→ 0 as n→∞. By the definition of ηnij , Sm

and C
(n)
t (j), we have

P(|ηnij |> ε) = P
(∣∣∣S

m
(n)
i

− S⌊Nnπni⌋

∣∣∣ >√Nnε
)

= P
(
|m(n)

i − bNnπnic|> ε3Nn ,
∣∣∣S

m
(n)
i

− S⌊Nnπni⌋

∣∣∣ >√Nnε
)
+

+ P
(
|m(n)

i − bNnπnic|⩽ ε3Nn ,
∣∣∣S

m
(n)
i

− S⌊Nnπni⌋

∣∣∣ >√Nnε
)

⩽ P
(
|m(n)

i − bNnπnic|> ε3Nn

)
+ P

(
max

|m−⌊Nnπni⌋|⩽ε3Nn

|Sm − S⌊Nnπni⌋| >
√
Nnε

)

⩽ ε+ 2P
(

max
1⩽m⩽ε3Nn

|Sm|>
√
Nnε

) Kolmogorov’s maximal inequality
⩽

⩽ ε+ 2 · 2

ε2Nn
Var

(
S⌊Nnε3⌋+1

) independence
=

= ε+
4

ε2Nn

(
bNnε

3c+ 1
)
σ2 ⩽ Cε,

for some constantC > 0. Thus, ηnij
p→ 0, which proves (ii). From the observation we made

above, the proof of the theorem is now complete.
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Theorem A.0.2 (CLT for the Bayesian Bootstrap). Let i, j ∈ S and p̂ij denote the maximum

likelihood estimator of the transition probability pij . Then, for almost all sample sequences

x = (x0, x1, . . . , xn) we have

√
ni(p̂

∗
n(i, j)− p̂ij)√

p̂ij(1− p̂ij)

∣∣∣x d−→ N(0, 1), (A.0.9)

as n→∞. That is, the Bayesian bootstrap estimators are asymptotically normal.

Proof. Let i, j ∈ S. The idea is to decompose the quantity of (3.2.3) in pieces for which the
classical Lindeberg-Lévy Central Limit Theorem can be applied directly. For that, we first
introduce the following convenient notation:

Snij :=
∑
t∈Bij

(Zit − 1) and Sni,ni−nij :=

ni∑
t=1

(Zit − 1)−
∑
t∈Bij

(Zit − 1).

Notice that, since |Bij |= nij , the above quantities can be rewritten as

Snij =
∑
t∈Bij

Zit − nij and Sni,ni−nij =

ni∑
t=1

Zit −
∑
t∈Bij

Zit − ni + nij .

We will exploit the fact that these quantities include exponential random variables and use
Slutsky’s Lemma and CLT. We proceed with the following calculations:

√
ni(p̂

∗
n(i, j)− p̂ij) =

√
ni


∑

t∈Bij

Zit

ni∑
t=1

Zit

− nij

ni

 =
√
ni ·

∑
t∈Bij

Zit

ni∑
t=1

Zit

−
√
ni ·

nij

ni

=
√
ni ·

∑
t∈Bij

Zit

ni∑
t=1

Zit

− nij√
ni

=
ni

ni∑
t=1

Zit


∑

t∈Bij

Zit

√
ni

− nij

ni
·

ni∑
t=1

Zit

√
ni

 . (A.0.10)

Notice that(
1− nij

ni

)√
nij

ni
·
Snij√
nij
− nij

ni

√
1− nij

ni
·
Sni,ni−nij√
ni − nij

=

(
1− nij

ni

)√
nij

ni
·

∑
t∈Bij

Zit − nij

√
nij

− nij

ni

√
1− nij

ni
·

ni∑
t=1

Zit −
∑

t∈Bij

Zit − ni + nij

√
ni − nij

=

(
1− nij

ni

) ∑
t∈Bij

Zit − nij

√
nij

− nij

ni
·
nij −

∑
t∈Bij

Zit

√
ni

− nij

ni
·

ni∑
t=1

Zit − ni

√
ni

=

∑
t∈Bij

Zit − nij

√
nij

−
����������

nij

ni
·

∑
t∈Bij

Zit − nij

√
nij

+

����������

nij

ni
·

∑
t∈Bij

Zit − nij

√
nij

− nij

ni
·

ni∑
t=1

Zit

√
ni

+
nij√
ni
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=

∑
t∈Bij

Zit

√
ni

−
�
��
nij√
ni
− nij

ni
·

ni∑
t=1

Zit

√
ni

+
�
��
nij√
ni

=

∑
t∈Bij

Zit

√
ni

− nij

ni
·

ni∑
t=1

Zit

√
ni

,

thus (A.0.10) becomes

√
ni(p̂

∗
n(i, j)− p̂ij) =

ni
ni∑
t=1

Zit

[(
1− nij

ni

)√
nij

ni
·
Snij√
nij
− nij

ni

√
1− nij

ni
·
Sni,ni−nij√
ni − nij

]

=
ni

ni∑
t=1

Zit

[
(1− p̂ij)

√
nij

ni
·
Snij√
nij︸ ︷︷ ︸

(I)

− p̂ij
√
1− p̂ij ·

Sni,ni−nij√
ni − nij︸ ︷︷ ︸

(II)

]
.

(A.0.11)

Since Zit ∼ Exp(1), the Strong Law of Large Numbers yields

1

ni

ni∑
t=1

Zit
a.s.−→ E[Zit] = 1⇔ ni

ni∑
t=1

Zit

a.s.−→ 1, (A.0.12)

thus it suffices to prove that the quantity (I) − (II) converges in distribution to the stan-
dardized normal distribution. We have that

(I)

(1− p̂ij)
√
p̂ij

=

(1− p̂ij)

√
nij

ni
·
Snij√
nij

(1− p̂ij)
√
p̂ij

=
Snij√
ni

√
p̂ij

=
Snij

√
ni

√
nij

ni

=
Snij√
nij

=

∑
t∈Bij

(Zit − 1)

√
nij

=

∑
t∈Bij

Zit − nij

√
nij

|Bij |=nij
=

∑
t∈Bij

Zit −
∑

t∈Bij

E[Zit]

√
nij Var(Zit)

.

Applying the Lindeberg-Lévy Central Limit Theorem, we get

(I)

(1− p̂ij)
√
p̂ij

d→ N(0, 1). (A.0.13)

In the same spirit, we have that

(II)

p̂ij
√
1− p̂ij

=

p̂ij
√
1− p̂ij ·

Sni,ni−nij√
ni − nij

p̂ij
√

1− p̂ij
=

Sni,ni−nij√
ni − nij

=

ni∑
t=1

(Zit − 1)−
∑

t∈Bij

(Zit − 1)

√
ni − nij

=

(
ni∑
t=1

Zit −
∑

t∈Bij

Zit

)
− (ni − nij)

√
ni − nij

=

(
ni∑
t=1

Zit −
∑

t∈Bij

Zit

)
− E

[
ni∑
t=1

Zit −
∑

t∈Bij

Zit

]
√
ni − nij

.
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Applying the Lindeberg-Lévy Central Limit Theorem, we get

(II)

p̂ij
√
1− p̂ij

d→ N(0, 1). (A.0.14)

From (A.0.13) and (A.0.14), we receive that

(I)√
p̂ij(1− p̂ij)

=
(I)

(1− p̂ij)
√
p̂ij
·
√
1− p̂ij

d→ N(0, 1− p̂ij)

and
(II)√

p̂ij(1− p̂ij)
=

(II)

p̂ij
√
1− p̂ij

·
√
p̂ij

d→ N(0, p̂ij).

Finally, from Slutsky’s Lemma we get

√
ni(p̂

∗
n(i, j)− p̂ij)√

p̂ij(1− p̂ij)

∣∣∣x =
ni

ni∑
t=1

Zit

·

[
(I)√

p̂ij(1− p̂ij)
− (II)√

p̂ij(1− p̂ij)

]
d→ N(0, 1)

and the proof is complete.



Bibliography

[1] T.W. Anderson, L.A. Goodman. Statistical Inference about Markov Chains. The Annals of
Mathematical Statistics, 1957.

[2] A. Beskos, et al. MCMC methods for diffusion bridges. Stochastics and Dynamics 8.03
(2008): 319-350.

[3] M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:1701.02434 (2017).

[4] P. Billingsley. Probability and Measure. John Wiley and Sons, 1995. Link

[5] P. Billingsley. Statistical Inference for Markov Processes. The University of Chicago Press,
1961.

[6] P. Billingsley. Statistical Methods in Markov Chains. The Annals of Mathematical Statis-
tics, 1961.

[7] P. Billingsley. Ergodic Theory and Information. John Wiley & Sons, Inc., New York, 1965.

[8] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation and queues. Texts in
applied mathematics. Springer, New York, 1999.

[9] C. Casarotto. Markov Chains and the Ergodic Theorem. The University of Chicago, 2007.

[10] D. Cheliotis. Intorduction to Stochastic Calculus (in Greek). National and Kapodistrian
University of Athens, Kallipos, 2020.

[11] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. Interna-
tional conference on machine learning. PMLR, 2014.

[12] R. Douc, E. Moulines, P. Priouret, P. Soulier. Markov Chains. Springer Series in Oper-
ations Research and Financial Engineering, 2018.

[13] R. Durrett. Probability: Theory and Examples (4th edition). Cambridge Series in Statis-
tical and Probabilistic Mathematics, 2010.

[14] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics,
1979.

69

https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf


Bibliography 70

[15] B. Efron, R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall/CRC, 1994.

[16] M. Einsiedler, T. Ward. Ergodic Theory with a view towards Number Theory. Springer
Verlag, London, 2011.

[17] B. Fristedt, L. Gray.AModern Approach to ProbabilityTheory. Birkhauser, Boston, 1997.

[18] C.D. Fuh. The bootstrap method for Markov chains. Retrospective Theses and Disserta-
tions, Iowa State University, 1989.

[19] C.D. Fuh, T.S. Fan.ABayesian Bootstrap for Finite Markov-Chains. Institute of Statistical
Science, Academia Sinica, 1997.

[20] A. Gelman et al. Bayesian Data Analysis. Texts in Statistical Science, Chapman and
Hall/CRC, 2013.

[21] M. Girolami, B. Calderhead. Riemann manifold langevin and hamiltonian monte carlo

methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.2
(2011): 123-214.

[22] G.H. Givens, J.A. Hoeting. Computational Statistics, 2nd edition. John Wiley & Sons,
Inc., 2012. Link

[23] F. Hollander. Probability Theory: The Coupling Method. Mathematical Institute, Leiden
University, 2012.

[24] O. Häggström. Finite Markov Chains and Algorithmic Applications. London Mathemat-
ical Society Student Texts 52, Cambridge University Press, 2002.

[25] R. van der Hofstad et al. Local Weak Convergence for PageRank. Ann. Appl. Probab.
30(1): 40-79 (February 2020). DOI: 10.1214/19-AAP1494.

[26] M. Johannes, N. Polson. MCMC methods for continuous-time financial econometrics.
Handbook of Financial Econometrics: Applications. Elsevier, 2010. 1-72.

[27] V. Katsianos. Likelihood-Based Inference and Model Selection for Discrete-Time Finite

State-Space Hidden Markov Models. MSc Thesis, National and Kapodistrian University
of Athens, 2018. Link

[28] V.G. Kulkarni. Modeling and Analysis of Stochastic Systems (2nd edition). Chapman &
Hall/CRC Texts in Statistical Science, 2010.

[29] J. Lin. On the Dirichlet Distribution. Queen’s University, Kingston, Ontario, Canada,
2016.

[30] D. Logothetis. Algorithmic techniques of Bayesian and Classical approach in plant

growth models and convergence issues in the boundary of the parameter space (in Greek).
MSc Thesis, National and Kapodistrian University of Athens, 2016.

http://home.ustc.edu.cn/~liweiyu/documents/Geof%20H.%20Givens%20%20Jennifer%20A.%20Hoeting(auth.)%20-%20Comp.pdf
https://pergamos.lib.uoa.gr/uoa/dl/frontend/file/lib/default/data/2800185/theFile


71 Bibliography

[31] M. Loulakis. Stochastic Processes (in Greek). National Technical University of Athens,
Kallipos, 2015.

[32] A. Menegaki. Ergodic Theory notes (in Greek). National and Kapodistrian University of
Athens, 2017.

[33] S.P. Meyn, R.L. Tweedie.Markov Chains and Stochastic Stability. Springer-Verlag, 1993.

[34] J.R. Norris. Markov Chains. Cambridge University Press, 1997.

[35] M. Olvera-Cravioto et al. PageRank’s behavior under degree correlations. Annals of Ap-
plied Probability, Vol. 1, No. 3, pp. 1403-1442, 2021.

[36] M. Olvera-Cravioto et al. PageRank asymptotics on directed preferential attachment net-

works. Annals of Applied Probability, Vol. 32, No. 4, pp. 3060-3084, 2021.

[37] M. Olvera-Cravioto et al. PageRank Nibble on the sparse directed stochastic block model.
Proceedings of the 18th Workshop on Algorithms and Models for the Web Graph,
Toronto, Canada, March 2023.

[38] N. Papadatos. Probability Theory (in Greek). National and Kapodistrian University of
Athens, 2006.

[39] L.P. Peralta. Finite Markov Chains. Universitat de Barcelona, 2015.

[40] D.B. Rubin. The Bayesian Bootstrap. The Annals of Statistics, 1981. Link

[41] R. Tibshirani, T. Hastie, et al.The elements of statistical learning: data mining, inference

and prediction. The Mathematical Intelligencer, 2005.

[42] R. Tibshirani, T. Hastie, et al. An Introduction to Statistical Learning: with Applications

in R . Springer Texts in Statistics, 2013.

[43] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Sta-
tistical Society, 1996.

[44] S. Trevezas. Introduction to the statistical analysis of finite Markov chains. Laboratoire
MAS-ECP, 2013.

[45] S. Trevezas. Nonparametric Statistics (in Greek). National and Kapodistrian University
of Athens, 2020.

[46] S. Trevezas. Statistics for Stochastic Processes (in Greek). National and Kapodistrian Uni-
versity of Athens, 2021.

[47] S.R.S. Varadhan. Probability Theory. Courant Lecture Notes, 2000.

[48] Kernels and Operators

https://projecteuclid.org/journals/annals-of-statistics/volume-9/issue-1/The-Bayesian-Bootstrap/10.1214/aos/1176345338.full
https://www.randomservices.org/random/expect/Kernels.html


Bibliography 72

[49] Ergodic Theorems History

[50] Inference on Markov Chains (University of Washington)

[51] Maximum Likelihood Estimation for Markov Chains (Carnegie Mellon)

[52] Probability Theory (Berkeley)

https://www.pnas.org/content/112/7/1907
http://faculty.washington.edu/yenchic/18A_stat516/Lec6_MC_Inf.pdf
https://www.stat.cmu.edu/~cshalizi/462/lectures/06/markov-mle.pdf
https://www.stat.berkeley.edu/~aldous/205B/chewi_notes.pdf

	List of Figures
	I Probability Theory for Markov Chains
	Discrete-Time Markov Chains
	Discrete state-space
	Basic definitions and properties
	Stopping times and the Strong Markov property
	Recurrence and Transience
	Class structure
	Stationarity
	Coupling
	Limit behavior
	Ergodic Theorem

	General state-space
	Kernels
	Kernels and Integral Operators
	Kernels and Random Variables

	Homogeneous Markov Chains
	The Canonical Chain
	Ergodic Theory and Markov Chains



	II Statistics for Markov Chains
	Statistical Inference for Finite Markov Chains
	Introduction
	Frequentist approach
	Parametrization
	Maximum Likelihood Estimation
	Asymptotic Behavior

	Bayesian approach
	Introduction
	Dirichlet Distribution
	Posterior Inference


	Bootstrapping Finite Markov Chains
	Frequentist Bootstrap
	Bayesian Bootstrap
	Bayesian Bootstrap for Markov Chains


	Applications
	Simulated Data
	Real Data

	Technical Proofs
	Bibliography


