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Abstract

This master’s thesis explores the optimization of resource allocation in
emergency response systems and healthcare facilities, with a focus on the
dispatching of rescue units and the scheduling of nurses’ appointments.

The first part of the thesis will focus on the allocation and programming of
rescue units. The importance of time in emergency situations and the need
for quick deployment of rescue units to incident locations is emphasized. To
achieve this objective, the thesis draws upon optimization concepts such as
the Travelling salesman problem, the multiple Travelling salesman problem,
and the vehicle routing problem. These concepts are incorporated into the
formulation of a mathematical model that addresses the resource allocation
optimization challenges in emergency response scheduling. Subsequently,
some heuristic methods will be described to solve the problem, as well as
metaheuristic methods to improve the heuristic solution.

The second part of the thesis focuses on a specific problem: the opti-
mization of the scheduling of nurses’ appointments for optimum response to
medical emergencies. For this, there will be a description of the problem
and the model. A new adapted heuristic algorithm is presented as well as
a metaheuristic algorithm to improve the heuristic solution. Combining the
available theory, artificial intelligence and algorithmic methods, there will be
an application on real data.

Finally, the results of the application on real data will be analysed. The
performance of the proposed algorithm will be judged on simulated trials.
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Περίληψη

Η διπλωματική εργασία εξερευνά τη βελτιστοποίηση κατανομής πόρων σε

συστήματα αντιμετώπισης έκτακτης ανάγκης και εγκαταστάσεις υγειονομικής

περίθαλψης, με εστίαση στην αποστολή μονάδων διάσωσης και στον προγραμ-
ματισμό ραντεβού νοσηλευτών.

Το πρώτο μέρος της εργασίας θα εστιάσει στην κατανομή και τον προ-

γραμματισμό μονάδων διάσωσης. Η σημαντικότητα του χρόνου σε επείγουσες
καταστάσεις και η ανάγκη για γρήγορη διάθεση μονάδων διάθεσης σε τοπο-

θεσίες περιστατικών τονίζεται. Για να επιτευχθεί αυτός ο στόχος, η εργασία
βασίζεται σε έννοιες βελτιστοποίησης όπως το πρόβλημα του πλανόδιου πωλ-

ητή, το πολλαπλό πρόβλημα πλανόδιων πωλητών και το πρόβλημα δρομολόγησης
οχήματος. Αυτές οι ιδέες ενσωματώνονται στον σχηματισμό ενός μαθηματικού
μοντέλου που απευθύνεται στις προκλήσεις της βελτιστοποίησης κατανομής

πόρων. Ακολούθως, θα περιγραφούν κάποιες ευρετικές μέθοδοι για την λύση
του προβλήματος, καθώς και μετευρετικές μέθοδοι για την βελτίωση της ευ-
ρετικής λύσης.

Το δεύτερο μέρος της εργασίας εστιάζει σε ένα συγκεκριμένο πρόβλημα: την
βελτιστοποίηση του προγραμματισμού ραντεβού νοσηλευτών για την βέλτιστη

ανταπόκριση σε επείγοντα περιστατικά. Για αυτό, θα υπάρξει μια περιγραφή
του προβλήματος και του μοντέλου. ΄Ενας νέος προσαρμοσμένος ευρετικός
αλγόριθμος παρουσιάζεται καθώς και ένας μετευρετικός αλγόριθμος για την

βελτίωση της ευρετικής λύσης. Συνδυάζοντας την υπάρχουσα θεωρία, τεχνητή
νοημοσύνη και αλγοριθμικές μεθόδους, θα υπάρξει εφαρμογή πάνω σε πραγ-
ματικά δεδομένα.

Καταληκτικά, τα αποτελέσματα της εφαρμογής πάνω σε πραγματικά δεδομένα
θα αναλυθούν. Η απόδοση του προτεινόμενου αλγορίθμου θα κριθεί από προ-
σομοιωμένες δοκιμές.
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Chapter 1

Introduction

In the face of emergencies, time is of the essence. The ability to rapidly
deploy rescue units to incident locations can mean the difference between life
and loss. Additionally, within the healthcare sector, ensuring that nurses’
appointments are optimally scheduled is essential for efficient resource uti-
lization. These challenges demand innovative solutions that leverage opti-
mization techniques to tackle complex routing and scheduling problems. This
thesis endeavors to provide such solutions and optimize resource allocation
in both emergency response systems and healthcare settings.

1.1 Vehicle Routing Problem

One fundamental problem that underlies the optimization of resource allo-
cation is the Vehicle Routing Problem (VRP). The VRP involves determining
the optimal routes for a fleet of vehicles to serve a set of customers, while
minimizing total travel distance or time. It is a classic optimization problem
with various real-world applications, including emergency response systems
and delivery services.

Generally, the VRP is described as the problem of designing optimal deliv-
ery or collection routes from one or several depots to a number of geograph-
ically scattered cities or customers subject to side constraints.

To be more elaborate, let V = {1, . . . , n} be a set of vertices representing
cities with the depot located at vertex 1, and A be the set of arcs. We
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denote G = (V,A) as the graph of the cities and the arcs. With every arc
(i, j), i ̸= j, is associated a non-negative distance matrix C = (cij) (i.e.
the matrix of travel costs or travel times). When C is symmetrical, it is
often convenient to replace A by a set E of undirected edges. In addition,
it is assumed that there are m available vehicles based at the depot, where
mL ≤ m ≤ mU . If mL = mU , m is said to be fixed. If mL = 1 and
mU = n − 1, m is said to be free. If m is not fixed, it is usual to associate
a fixed cost f on the use of a vehicle. Moreover, the solution of VRP comes
from the designing of a set of least-cost vehicle routes so that:

1. each city in V \ {1} is visited exactly once by exactly one vehicle;

2. all vehicle routes start and end at the depot;

3. some side constraints are satisfied;

Some other constraints may be:

i. capacity restrictions: a non-negative weight (or demand) di is attached
to each city i > 1 and the sum of weights of any vehicle route may not
exceed the vehicle capacity;

ii. the number of cities on any route is bounded above by q (this is a
special case of (i) with di = 1 for all i > 1 and D = q);

iii. total time restrictions: the length of any route may not exceed a pre-
scribed bound L; this length is made up of intercity travel times cij
and of stopping times δi at each city i on the route;

iv. time windows: city i must be visited within the time interval [ai, bi]
and waiting is allowed at city i;

v. precedence relations between pairs of cities: city i may have to be
visited before city j.

1.2 Travelling Salesman Problem

Another related problem that arises in our context is the Travelling Sales-
man Problem (TSP). The TSP seeks to find the shortest possible route that
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a salesman must take to visit a set of cities exactly once and return to the
starting city. It is a well-known NP-hard problem with a wide range of ap-
plications, including route optimization in emergency response systems and
healthcare logistics.

Another definition of the TSP includes graphs. Again, as in the VRP, we
have a set of n cities and a set of routes. Therefore, we define the graph
G = (V,A). Furthermore, there is a length ca associated to each route a ∈ A
and the assumption that G is connected. Just as we mentioned before, the
goal is to find a trip for the salesman to visit every city requiring the least
possible total distance. There is a chance that a route is used more than
once, and a city visited more than once. For this reason, each edge has a
non-negative weight, in order to avoid tours.

1.3 Multiple Travelling Salesman Problem

In scenarios where multiple agents are involved, such as multiple rescue
units or multiple nurses, the Multiple Travelling Salesman Problem (MTSP)
becomes relevant. The MTSP extends the TSP by considering multiple sales-
men, each with their own set of cities to visit. The objective is to determine
optimal routes for each salesman that collectively minimize the overall dis-
tance or time.

Here, all salesmen could share the same depot or there could be multiple
depots. In all cases, each salesman starts and returns to their depot. If the
number of salesmen is not fixed, then a fixed cost could be assigned to each
salesman if they are used in the solution. Other variations of the problem
could include time windows, i.e. certain cities need to be visited in specific
time periods, or even restrictions on the number of cities each salesman can
visit. In this problem, aside from the number of cities each salesman will
visit, we seek to find the optimal routes in order to minimize the value of the
objective function, i.e. distance, time etc.

The MTSP can be considered as a relaxation of the VRP.
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1.4 Real-world applications

Theoretically, one could start working on optimizing the schedules of res-
cue units/nurses using stochastic methods. Although the stochastic vehicle
rooting problem introduces a new level of complexity by taking into account
uncertainties, such as travel times and changes in demands, it comes with
an increase in the complexity making the solution of the problem practi-
cally unfeasible. The same applies when we consider the Travelling Sales-
man Problem (TSP) and the Multiple Travelling Salesman Problem (MTSP).
Consequently, many algorithms have been created to approach the optimal
solution, while keeping the complexity to a minimum.

All the algorithms formulate the problem within the context of the Vehicle
Rooting Problem (VRP). At the same time, they incorporate elements of the
Travelling Salesman Problem (TSP) and the Multiple Travelling Salesman
Problem (MTSP) into our resource allocation optimization problem. These
problems provide insights into the allocation and routing of multiple rescue
units or nurses, taking into account their respective tasks and constraints.

It is important to highlight that the results obtained from these algorithms
need to be obtained within a logical timeframe. The urgency and time-
sensitive nature of emergencies and medical appointments require practical
solutions that can be implemented efficiently. Therefore, the focus of this
thesis is to strike a balance between achieving accurate results and obtaining
them within a reasonable amount of time.

Optimizing the dispatching of rescue units and the scheduling of nurses’
appointments can lead to reduced response times during emergencies, en-
hanced coverage, and increased patient satisfaction. The proposed models
and algorithms can serve as valuable tools for decision support systems in
real-world emergency response systems and healthcare facilities.

In the first part of this thesis, the emergency dispatching of rescue units
is studied and analysed. The units are ranked, their service times may be
random variables with a standard deviation, and the problem seeks to min-
imize a weighted sum (R/STSD/

∑
wjCj). There is a satisfying number of

heuristic algorithms in existence. In order to decide which could be the most
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useful in emergency situation, a simulation was designed and the results were
compared. Moreover, the results from each algorithm are inserted in a num-
ber of metaheuristic algorithms, in order to achieve better results. When we
arrive at a decision about the best pair of heuristic-metaheuristic algorithms,
we pass on to medical appointments and emergencies.

In the second part, the pair of algorithms is adapted on a given problem
and a simulation is run on real data. The schedules then are used to run a
simulation on medical emergencies.

In conclusion, this master’s thesis aims to contribute to the field of re-
source allocation optimization in emergency response systems and healthcare
settings. By addressing the challenges of emergency response and nurse ap-
pointment scheduling, this research strives to provide practical and effective
solutions that optimize resource allocation, minimize response times, and en-
hance the overall effectiveness of emergency response systems and healthcare
services.
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Chapter 2

Emergency incidents

This chapter focuses on the problem of optimal allocation of rescue units
in an emergency situation. Specifically, a study by Wex et al., 2014, is
presented.

2.1 Problem specification

Let m be the number of available rescue units and n the number of inci-
dents that need to be processed. For this problem, we assume that m ≤ n,
meaning that the number of available rescue units is smaller than or equal
to the number of incidents, which is usually the case in natural disasters.
Moreover, we assume the following properties:

Property 1. Each incident has specific requirements and every rescue unit
has different capabilities. This property accounts for the fact that not every
rescue unit is able to process each incident.

Property 2. The processing times depend both on the incident and on
the rescue unit.

Property 3. The travel times between the locations of incidents vary be-
tween units.

Property 4. The processing of an incident must not be interrupted (non-
preemption).
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Property 5. Each incident has a different significance. Therefore, it is
assigned a weighting factor accounting for both casualties and damage in-
duced over time. We name this weight “factor of destruction” or “severity
level”. The overall harm is measured, as a proxy, by the sum of weighted
completion times regarding the processing of incidents.

In the following section, a decision support model is developed. The goal
is to find the schedules and assignments of rescue units to incidents that
minimize the sum of completion times of incidents weighted by their sever-
ity.

2.2 Mathematical Model

Here, we will present an optimization model to find optimal schedules and
assignments of rescue units to incidents. The model is presented in a binary
quadratic formulation.
Firstly, we use the following notation:

Table 1
Notation used in the mathematical model.
Input parameters
n Total number of incidents, with set I = {1, . . . , n}
m Total number of rescue units, with set

K = {1, . . . ,m}
wj ∈ R≥0 Factor of destruction (severity level) of incident j
pkj ∈ R≥0 Time required by rescue unit k to process incident

j; ∞ if rescue unit k is incapable of addressing
incident j

skij ∈ R≥0 Travel time required by rescue unit k to move from
incident i to incident j; if i = 0 then rescue unit k
resides at its depot before travelling to incident j

13



capki ∈ {0, 1} 1 if rescue unit k is capable of addressing incident
i; 0 otherwise

Decision variables
Xk

ij ∈ {0, 1} 1 if incident i is processed by rescue unit k imme-
diately before processing incident j; 0 otherwise

Y k
ij ∈ {0, 1} 1 if incident i is processed by rescue unit k (at any

time) before processing incident j; 0 otherwise

Secondly, the mathematical model can be written as:

min
Xk

ij ,Y
k
ij

n∑
j=1

wj

m∑
k=1

n∑
i=0

[
pki Y

k
ij +

(
pkj + skij

)
Xk

ij + Y k
ij

(
n∑

l=0

Xk
lis

k
li

)]
(O)

s.t.

n∑
i=0

m∑
k=1

Xk
ij = 1, j = 1, . . . , n, (C1)

n+1∑
j=1

m∑
k=1

Xk
ij = 1, i = 1, . . . , n, (C2)

n+1∑
j=1

Xk
0j = 1, k = 1, . . . ,m, (C3)

n∑
i=0

Xk
i,n+1 = 1, k = 1, . . . ,m, (C4)

Y k
il + Y k

lj − 1 ≤ Y k
ij , i = 0, . . . , n; j = 1, . . . , n+ 1;

k = 1, . . . ,m; l = 1, . . . , n,
(C5)

n∑
i=0

Xk
il =

n+1∑
j=1

Xk
lj, l = 1, . . . , n; k = 1, . . . ,m, (C6)

Xk
ij ≤ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C7)
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Y k
ii = 0, i = 0, . . . , n+ 1; k = 1, . . . ,m, (C8)

Y k
ij ≤ capki, i = 1, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C9)

n+1∑
l=1

Xk
il ≥ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C10)

n∑
l=0

Xk
lj ≥ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C11)

Xk
ij, Y

k
ij ∈ {0, 1}, i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m. (C12)

Firstly, we have written the objective function (O) which is the weighted
sum of completion times over all incidents. We can write the objective func-
tion as

∑n
j=1 wjCj, where:

Cj =
m∑
k=1

(
n∑

i=0

(
pki +

n∑
l=0

Xk
lis

k
li

)
Y k
ij +

n∑
i=0

(
pkj + skij

)
Xk

ij

)
,

which is the completion time of incident j. Since only one rescue unit pro-
cesses the incident j, only one of the addends is non-zero. That is the one
that corresponds to the unit k that processes the incident j. We understand
that (for the unit k that processes incident j)

n∑
i=0

(
pkj + skij

)
Xk

ij

is the processing time of incident j and the travel time to j starting from the
incident that was processed immediately before incident j. It is now clear
that (for the unit k that processes incident j) the

n∑
i=0

(
pki +

n∑
l=0

Xk
lis

k
li

)
Y k
ij

is the sum of processing times of the incidents that preceded the incident j
and the travel times between those incidents.
Then, the restrictions of the problem follow (C1-C11) and, finally, the re-
striction of non-negativity.
We note that two new incidents have been added. These are fictitious given
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by 0 as the starting point (named depot) and n+1 as the ending point. Since
these incidents do not require any processing time, we fix pk0 = pkn+1 = 0.
Moreover, we give each unit k a setup time sk0j ≥ 0 to move from its starting
point to incident j. Also, we set skj,n+1 = 0 for all rescue units k, because we
do not want to take into consideration the travelling times from their last
scheduled incident to their ending point and focus only on the minimization
of the response time towards incidents. As we have already mentioned, the
factor of destruction of incident j is denoted by wj, meaning the lower the
factor of destruction, the less severe the incident.
In order to ensure that there is exactly one incident that is processed im-
mediately before each of the n non-fictitious incidents, we have constraint
(C1). In order to ensure that there is exactly one incident that is processed
immediately after each of the n non-fictitious incidents, we have constraint
(C2). Constraints (C1) and (C2) also ensure that each non-fictitious incident
is processed by one rescue unit. Constraint (C3) follows, which guarantees
that each rescue unit starts processing the fictitious incident 0 (the depot).
Similarly, constraint (C4) ensures that each unit ends processing the fictitious
incident n + 1. Constraint (C5) accounts for the transitivity in predecessor
relationships. This means that if an incident i is processed (not necessarily
immediately) before any incident l and the incident l is processed (not nec-
essarily immediately) before an incident j, then the constraint ensures that
Y k
ij = 1. If an immediate predecessor for a specific incident j exists, there has

to be a successor as given by constraint (C6). If an incident i immediately
precedes an incident j, then it generally precedes it, as given by constraint
(C7). The constraint (C8) prevents a reflexive, direct or indirect predecessor
relationship. If a rescue unit k does not have the capability to process an
incident i, they should not be assigned to it. Therefore, we have constraint
(C9). The constraints (C10) and (C11) together, ensure that if a rescue unit
k does not process an incident i before an incident j, Y k

ij = 0. To be more
precise, the constraints (C10) and (C11) together, set Y k

ij = 0 if a rescue unit
k does not process either one of the incidents i or j. However, if a unit k
processes both i and j, but j is processed before i, the constraints do not set
Y k
ij = 0 (it can be set to 1 and still satisfy all the constraints), but thanks to

the minimization of the objective function, Y k
ij takes the value 0 (because all

the parameters and variables are non-negative).
Constraint (C12) makes the model a binary program.
Each feasible solution of the minimization model represents valid schedules
and assignments of all rescue units.
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2.3 Heuristics for solving the RUASP

Not only is it proved that the Rescue Unit Assignment and Schedul-
ing Problem (RUASP) is NP-hard, but also some practical runtimes where
evaluated. More specifically, small up to moderately large instances with
m,n ≤ 40 were used to evaluate the requested times. Using a mixed integer
non-linear programming optimizer, the Simple Branch and Bound solver in
GAMS, it was found that even small instances cannot be solved optimally in
a practically reasonable time. This conclusion was confirmed in interviews
with the German Federal Agency of Technical Relief (THW), where it was
made clear that decision support in practice cannot take more than 30 min-
utes. Therefore, several heuristics for solving the RUASP are presented.

Greedy heuristic: This heuristic method is applied in practice in emer-
gency operations centers, usually in a manually-operated and non-automated
decision-making process. Here, the incidents are ranked by their level of their
severity and are processed from most severe to least severe. It is for this rea-
son that this method is called GREEDY heuristic.

Construction heuristics: Seven heuristics are adapted (Weng et al., 2001)
proposed for solving the R/STSD/

∑
wjCj scheduling problem. The heuris-

tics are named SCHED1 to SCHED7.

Improvement heuristics: The classical 2-opt and 3-opt exchange pro-
cedure are adapted within a single rescue unit (Lin, 1965; Lin & Kernighan,
1973) as well as multi-unit 2-opt and 3-opt, resulting in four heuristics. More-
over, a load balancing heuristic is presented.

GRASP metaheuristics: The improvement heuristics and the construc-
tion heuristics, that are mentioned above into GRASP (Greedy Randomized
Adaptive Search Procedure) metaheuristics, are amalgamated.

Monte Carlo-based heuristic: So as to account for randomness in the
search procedure, we suggest a Monte Carlo-based heuristic.
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More details on the heuristics and metaheuristics will follow.
The suggested heuristics, except for the Monte Carlo-based heuristic, can
be divided into two categories. One set of 8 construction heuristics, which
generate initial feasible solutions of RUASP instances, and a set of 5 im-
provement heuristics, which iteratively produce new feasible solutions while
testing them for local optimality. Every construction heuristic was combined
with every improvement heuristic to produce 40 composed heuristics, which
are used in the computational experiments.
Now, the construction heuristics as well as improvement heuristics will be
analysed. Then, an description of GRASP metaheuristics and the Monte
Carlo-based heuristic will follow.

2.4 Construction heuristics

The set of construction heuristics includes the Greedy heuristic and some
construction heuristics originating from the scheduling literature.
Let τk be the total processing and setup time for unit k in the corresponding
loop and let αk be the last assignment that was taken on by unit k in the
corresponding loop. Here, the setup time is the total time needed for a unit
to arrive at the current incident. Let, also, p̃i be the average processing
time of the units that are capable of processing incident i. In the end, each
heuristic will return a list, σ = (σ1, . . . , σm), of the schedules for all m units.

2.4.1 Greedy heuristic

Today, the Greedy heuristic is used in emergency operations centers to
model best practice. The idea, here, is to arrange the incidents in descending
order of the factor of destruction and then to assign each of those incidents
to a unit cleverly chosen. In order to make the assignment of an incident j
to a rescue unit k we take under consideration both the assignment history
and the updated travel times of each unit. The pseudocode of the Greedy
algorithm is as follows:

1: Sort incidents in decreasing order of severity, w1 ≥ w2 ≥ . . . ≥ wn, and
set C ← {w1, . . . , wn}.

18



2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do

4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit← arg min
k∈K∗

(
τk + skαk,i

)
chooses unit with lowest start time.

8: else

9: return unsuccessful (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

For example, in an arbitrary iteration i = ι, the algorithm takes the fol-
lowing steps:

1. Creates a set K∗ = {k ∈ K|capki = 1} which contains all the units
that are able to process the incident i.

2. If the above set is non-trivial, the algorithm chooses the unit with the
lowest start time. If K∗ = ∅, it returns a message of failure and the
algorithm stops.

3. If such a unit is found, the algorithm updates τunit to τunit + sunitαunit,i
+

puniti , αunit to i and σunit to σunit ∪ {i}.
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Evidently, the Greedy algorithm overlooks the possibility that it may not
offer the best results by processing the most severe incidents first, since the
processing times may also play a crucial role in the decision-making process.
It is also easily proven that the Greedy algorithm could easily fail in produc-
ing good results to an instance of the RUASP. On the other hand, thanks to
its simplicity, the results are generated quickly and can be applied without
computational support for small instances.

2.4.2 Scheduling heuristics

The algorithms in this subsection consider the trade-off between severity and
processing time. This way, 7 heuristics are adapted to fit theR/STSD/

∑
wjCj

scheduling problem. The initial heuristics were suggested by Weng et al.
(2001).

The SCHED1 heuristic that follows, differs from the Greedy algorithm.
Firstly, the ratio of the processing time averaged over all units to the severity
level is what determines the order of the jobs. Secondly, so as to assign
incidents to units, except for the time required to travel to the location of
the respective incident, the time required to process the incident is also taken
under consideration. The SCHED1 algorithm proceeds as follows:

1: Sort incidents by
p̃1
w1
≤ p̃2

w2
≤ . . . ≤ p̃n

wn
with p̃i ← 1

M

∑
k∈{κ|capκi=1}

pki , (M = #{κ|capκi = 1})

being the average processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do

4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.
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6: if K∗ ̸= ∅ then

7: unit← arg min
k∈K∗

(
τk + skαk,i

+ pki
)

chooses unit with lowest sum of

time.

8: else

9: return unsuccessful (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

The second scheduling heuristc is named SCHED2 and has a slight change
from SCHED1. Here, the incident in a arbitrary iteration, is assigned to
the rescue unit which has the lowest processing time. To put it simply, the
pseudocode of SCHED2 takes the following form:

1: Sort incidents by
p̃1
w1
≤ p̃2

w2
≤ . . . ≤ p̃n

wn
with p̃i ← 1

M

∑
k∈{κ|capκi=1}

pki , (M = #{κ|capκi = 1})

being the average processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do

4: Select incident i← ι to be processed.
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5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit← arg min
k∈K∗

pki chooses unit with lowest processing time.

8: else

9: return unsuccessfully (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

We easily understand that the algorithm of SCHED2 differs from that of
SCHED1 only in the 7th step.

The third scheduling heuristic is named SCHED3 and differs from SCHED1
by considering processing times and travel times but ignoring history. There-
fore, the SCHED3 algorithm takes the following form:

1: Sort incidents by
p̃1
w1
≤ p̃2

w2
≤ . . . ≤ p̃n

wn
with p̃i ← 1

M

∑
k∈{κ|capκi=1}

pki , (M = #{κ|capκi = 1})

being the average processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
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4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit ← arg min
k∈K∗

(
skαk,i

+ pki
)

chooses unit with lowest sum of

travel and processing time.

8: else

9: return unsuccessful (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

The next heuristic presented is the SCHED4 heuristic which differs from
SCHED1 in the first step. Here, the incidents are renumbered using their
minimum processing time. Hence, the SCHED4 algorithm takes the following
form:

1: Sort incidents by
p̃1
w1
≤ p̃2

w2
≤ . . . ≤ p̃n

wn
with p̃i ← min

k∈{κ|capκi=1}
pki

being the minimum processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
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4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit← arg min
k∈K∗

(
τk + skαk,i

+ pki
)

chooses unit with lowest sum of

start and processing time.

8: else

9: return unsuccessfully (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

The next heuristic presented is the SCHED5 heuristic which differs from
SCHED2 in the first step. Here, similarly to the previous case, the incidents
are renumbered using their minimum processing time. Hence, the SCHED5
algorithm takes the following form:

1: Sort incidents by
p̃1
w1
≤ p̃2

w2
≤ . . . ≤ p̃n

wn
with p̃i ← min

k∈{κ|capκi=1}
pki

being the minimum processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
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4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit← arg min
k∈K∗

pki chooses unit with lowest processing time.

8: else

9: return unsuccessfully (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

The scheduling heuristic SCHED6 differs from SCHED3 in the first step.
Here, similarly to the case of SCHED4, the incidents are renumbered using
their minimum processing time. Hence, the SCHED6 algorithm takes the
following form:

1: Sort incidents by
p̃1
w1
≥ p̃2

w2
≥ . . . p̃n

wn
with p̃i ← min

k∈{κ|capκi=1}
pki

being the minimum processing time of incident i, and set
C ← { p̃1

w1
, . . . , p̃n

wn
}.

2: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

3: for ι = 1 to n do
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4: Select incident i← ι to be processed.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing incident.

6: if K∗ ̸= ∅ then

7: unit ← arg min
k∈K∗

(
skαk,i

+ pki
)

chooses unit with lowest sum of

travel and processing time.

8: else

9: return unsuccessfully (no feasible assignment).

10: end if

11: Update τunit ← τunit+sunitαunit,i
+puniti , αunit ← i, σunit ← σunit ∪ {i}.

12: end for

13: return σ ← (σ1, . . . , σm) being the list of schedules.

We note that for the last 3 heuristics (SCHED4, SCHED5, SCHED6), it
is required that a minimum p̃i ← min

k∈{κ|capκi=1}
pki exists. If it doesn’t, then

the respective incident cannot be processed by any unit. Therefore such an
instance has no feasible solution. The following algorithm SCHED7 selects
both incident and unit in the same step. This way, drawbacks induced by
pre-ordering incidents (as in algorithms SCHED1 to SCHED6) are avoided.
The pseudocode of the SCHED7 algorithm is as follows:

1: Initialize the current completion time of each rescue unit, set all rescue
units to start at the depot, give an empty set of assignment to each
rescue unit i.e.

τk ← 0, αk ← 0, σk ← ∅ ∀k ∈ K.

2: Initialize list of incidents I ← {1, . . . , n}.
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3: Set C ← {
τk+skαk,i+pki

wi
|i ∈ I, k ∈ K} and c← min

i∈I,k∈K

τk+skαk,i+pki
wi

.

4: for ι = 1 to n do

5: Select incident i∗ ∈ I and unit k∗ ∈ K corresponding to c, i.e. here is
the ratio of completion time to severity level minimal. If no minimum
exists, stop unsuccessfully (no feasible assignment possible).

6: Update I ← I \ {i∗}, τk∗ ← τk∗ + sk
∗

αk∗,i∗
+ pk

∗
i∗ , αk∗ ← i∗, σk∗ ←

σk∗ ∪ {i∗}.

7: Update C ← {
τk+skαk,i+pki

wi
|i ∈ I, k ∈ K} and c← min

i∈I,k∈K

τk+skαk,i+pki
wi

.

8: end for

9: return σ ← (σ1, . . . , σm) being the list of schedules.

2.5 Improvement heuristics

In this section, some improvement heuristics for k-opt node exchanges and
load balancing are presented. The k-opt node exchanges is used to find a lo-
cally optimal solution by exchanging k nodes (incidents), either in the same
unit (by exchanging the order in which the unit processes them) or between
units. It was found that the 3-opt node exchange had a bigger percentage
to arrive at a locally optimal solution than the 2-opt node exchange. The
k-opt node exchange for k ≥ 4 is more time consuming than the 3-opt node
exchange, due to the increase in the complexity. It was found, though, that
the 4-opt node exchange, despite being more complex, did not have a signif-
icantly larger chance of arriving at a local optimal solution than the 3-opt
node exchange. For this reason, only the 2-opt and 3-opt node exchange
heuristics will be described.

2.5.1 Routing heuristics

In the routing literature, k-opt exchange procedures comprise improve-
ment heuristics that are used for solving the Travelling salesman problem
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(Lin, 1965; Lin & Kernighan, 1973), where in each iteration a k-opt ex-
change is applied until no further k-opt exchange leads to an improvement
of the objective value (this means that a local optimum is reached). In the
current problem, though, the exchange of 2 or 3 edges across units may lead
to infeasible solutions. This could happen if (sequences of) incidents are as-
signed to units which are not capable of processing these incidents. For this
reason, not edges, but nodes (i.e. incidents) are exchanged. These moves are
referred to as 2-nodes and 3-nodes exchange respectively. These exchange
procedures are applied in two ways. Firstly, a k-node exchange is applied
inside the schedule of each rescue unit individually (named 2NSU with k = 2
and 3NSU with k = 3 respectively). Secondly, exchanges are applied across
schedules of multiple rescue units (named 2NΜU with k = 2 and 3NΜU
with k = 3 respectively). The procedures of the resulting four heuristics are
shown below:

Fig. 2 Illustration of 2-nodes and 3-nodes exchange steps in a single unit.

28



Fig. 3 Illustration of 3-nodes exchange steps across units.

2.5.2 Load balancing heuristic

In this subsection, it is aimed to solve a specific problem. More specifically,
when queues of rescue units tend to get long in large-scale disaster scenarios,
the process of the incidents at the end of the queue need to wait comparably
long. This way, excessively large harm is unavoidable (in terms of objective
value). So as to avoid an extremely severe impact, a load balancing heuristic
LOADBAL is suggested. This aims to improve a current solution by reas-
signing the last incidents in a queue to the end of another queue. Let ik be
the last incident in the (ordered) list σk. The pseudocode of the LOADBAL
heuristic is as follows:
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1: Initialize (for |σk| = mk, σk = {k1, k2, . . . , kmk
})

harm(σk) ←
mk∑
ζ=1

wkζ

(
ζ∑

l=1

skkl−1,kl
+ pkkl

)
to be the harm related to unit

k ∈ K.

2: repeat

3: k∗ ← arg max
k∈K

harm(σk) selects the unit k∗ with the highest harm

and the last incident ik∗ processed by this unit .

4: Select the unit k′ for which the processing of incident ik∗ as the last
incident of the queue results in the lowest additional harm, i.e.
k′ ← arg min

κ∈{k∈K|capκ,ik∗=1}
harm(σk ∪ {ik∗})− harm(σk).

5: Determine the reduction and the increase of harm caused by moving
incident ik∗ from the queue of unit k∗ to k′, i.e.
∆ harmk∗ ← harm(σk∗)− harm(σk∗ \ {ik∗}),
∆harmk′ ← harm(σk′ ∪ {ik∗})− harm(σk′).

6: if ∆harmk∗ −∆harmk′ > 0 then

7: Create new solution with less harm by setting
σk∗ ← σk∗ \ {ik∗}, harm(σk∗)← harm(σk∗)−∆harmk∗ ,
σk′ ← σk′ ∪ {ik∗}, harm(σk′)← harm(σk′) + ∆harmk′ .

8: end if

9: until ∆harmk∗ −∆harmk′ ≤ 0

2.6 GRASP metaheuristics

The construction heuristics follow the same search path repeatedly. To cure
this defect, GRASP (Greedy Randomized Adaptive Search Procedure) may
offer diversity to the solutions of the construction heuristics (Feo & Resende,
1995; Pitsoulis & Resende, 2002; Risende & Ribeiro, 2003). To be more
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precise, GRASP is a multi-start metaheuristic for combinatorial problems in
which each iteration consists of two phases: construction and local search.
In the construction phase, a construction heuristic is used to create feasible
solutions, whose neighbourhood is searched using a improvement heuristic.
The search continues until it reaches a local minimum. The result is the best
overall solution. GRASP variants of algorithms GREEDY and SCHED1 to
SCHED7 as construction heuristics are given by the following pseudocode.

1: Initialise S ← Ø.

2: for iter = 1 to N (max. iterations)

3: Perform greedy randomized construction by initializing candidate set
C, i.e. perform initial steps in algorithms GREEDY and SCHED1 to
SCHED7 respectively.

4: for l = 1 to n do

5: Compute cmin ← min{c|c ∈ C} and cmax ← max{c|c ∈ C}.

6: RLC← {c ∈ C|c ≤ cmin + α(cmax − cmin)}.

7: Select randomly a value c ∈ RLC and let i be the corresponding
incident.

8: Perform steps inside the loop in algorithms GREEDY or SCHED1
to SCHED7 without reassigning i.

9: Update C ← C \ {i}.

10: end for

11: Set σ ← (σ1, . . . , σm) being the list of schedules.

12: Perform local search upon σ by one of the improvement heuristics
giving σ′. Update list of solution by S ← S ∪ {σ′}.

13: end for

14: return solution minS.
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Here, α is the percentage of the number covered by a greedy choice. This
kind of candidate list limitation is seen in the bibliography as value restric-
tion. Furthermore, limitations on the candidate list can be pursued by allow-
ing only the β best elements, in a type of limitation referred to as a cardinality
restriction. Of course, one can apply both limitations simultaneously.

To specify, in steps 3 and 8, only one of the algorithms (GREEDY, SCHED1,
. . . , SCHED7) is used and not any combinations of them. It all depends on
which solutions we want to ameliorate by adding randomness to the finding
of the solution.

2.7 Monte Carlo-based heuristic

Finally, in order to solve the RUASP, a Monte Carlo-based heuristic is
designed. The Monte Carlo simulation offers flexibility in future extensions
of the optimization model. For example, it is flexible in co-allocation of rescue
units and the consideration of informational uncertainty. Moreover, due to
the many constraints of the RUASP, it is obvious that this problem is highly
flexible. Regardless, it is expected that the Monte Carlo-based heuristic will
not easily get stuck in a local optimum. Of course, there are more complex
scenarios where “evaluation procedures rely a great deal on trial and error”.
In contrast, this defect is cured by a Monte Carlo method.

It is denoted that the incidents are iteratively scheduled in two stages. In
the first stage, an incident is assigned to one of theD most appropriate rescue
units. Here, the appropriateness is defined only based on the processing times
of the units. The goal behind this choice, is double. Firstly, assignments of
incidents to units that require an extremely long time for processing are
avoided (which is why D ∈ [0%, 100%]). Secondly, this way, randomness is
included. The last is done by not assigning incidents to units that require the
shortest processing time among all units. In a second stage, each incident is
inserted into the incident queue of the previously selected unit. In order to
determine the position of the new incident in the queue, the weighted ratio of
the severity of incident wi and the time pk

∗
i it takes the selected rescue unit

to process this incident are taken into consideration. Each queue k∗ lists its
incidents in decreasing order of the values wi/p

k∗
i .
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Just like all Monte Carlo algorithms, the Monte Carlo-based heuristic runs
a fixed number of iterations with the Monte Carlo-based heuristic being the
one with the lowest value found in all iterations. The two input parameters
required are D and N . The value D ∈ [0%, 100%] is used for the selection
of rescue units and N is the number of the feasible solutions generated. The
pseudocode of the Monte Carlo-based heuristic is the following:

1: for iter = 1 to N (max. iterations) do

2: Initialize the cumulative processing time of each rescue unit, rescue
units to start at the depot, the ordered list of incidents assigned to
unit, i.e. curr process time(k)← 0, αk ← 0, σk ← Ø ∀k ∈ K.

3: while I ̸= Ø do

4: Select next incident i ∈ I and update I ← I \ {i}.

5: K∗ ← {k ∈ K|capki = 1} are all units capable of processing
incident i.

6: if K∗ = Ø then

7: return unsuccessfully (no feasible assignment).

8: end if

9: Sort K∗ in ascending order of curr process time and select ran-
domly a rescue unit k∗ with one of theD lowest values of curr process time
of all rescue units in K∗.

10: Update τk∗ ← τk∗ + sk
∗

αk∗ ,i
+ pk

∗
i , αunit ← i.

11: curr process time(k∗)← curr process time(k∗) + pk
∗

i .

12: Set σk∗ ← σk∗ ∪ {i} and order σk∗ in descending order of wi/p
k∗
i .

13: end while

14: end for

15: return σ = (σ1, . . . , σm) being the list of schedules.
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2.8 Computational experiments

In this subsection, some computational experiments are presented and the
suggested heuristics are evaluated. This evaluation is done mainly based on
two touchstones. Firstly, the solutions of the heuristics are compared to a
lower bound of the optimal solution. Due to the fact that finding optimal
solutions turned out to be computationally infeasible (even for comparatively
small instances), lower bounds are needed. So, the gap between the lower
bound and a solution found with a heuristic is an upper bound of the gap
between the optimal solution and the heuristic solution. This means that
the gap underestimates the quality of the heuristic solutions. Secondly, since
the GREEDY heuristic represents the best practice behaviour of emergency
operation centers, its solution serves as a point of reference. For this reason,
the solutions of all the suggested heuristics are evaluated regarding their
improvement over the GREEDY heuristic. Subsequently, an appropriate
RUASP relaxation will be found so as to estimate lower bounds. Afterwards,
the data generation of the experiments are explained and, finally, the results
and runtimes are presented and discussed.

2.8.1 Relaxation of the RUASP

An effort was made to solve the binary quadratic programming formulation
of the problem using the software package GAMS. Although, due to the NP-
hardness of the RUASP, optimal solutions could not be reached even for
small instances (40 incidents and 40 rescue units). It is for this reason that
appropriate relaxations of the RUASP were derived. It was denoted that even
after the relaxation of some of the constraints, runtimes varied between 11
and 22 hours, with an average of 15.6 hours. The trials showed an exponential
increase in the runtimes with the increase of numbers of units and incidents,
with the number of incidents having a stronger impact. It is obvious that
these runtimes to find an optimal solution are inappropriate.

2.8.2 The major earthquake in Japan in 2011

In a numerical experiment, data was drawn from interviews with associates of
the THW (Bundesanstalt Technisches Hilfswerk) which were in direct contact
to first search and rescue teams after the major earthquake in Japan in 2011.
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Accordingly, the values of the input parameters are as described in the Table
2 below:

Table 2
Settings in randomly generated scenarios. Here, U(α, β, γ) is the discrete
uniform distribution between α and β with step size γ.
Input parameters Value, range or distribution
Number of rescue units m ∈ {10, 20, 30, 40}
Number of incidents n ∈ {10, 20, 30, 40}
Number of instances 10
Processing times pkj ∼ N(20, 10)

Travel times skij ∼ N(1, 0.3)

Factors of destruction wj ∈ {1, 2, 3, 4, 5}
Capabilities of rescue units Ak ∼ U(1, 5, 1), k ∈ K

Capabilities required by incidents Ri ∼ U(1, 5, 1), i ∈ I,

capki =

{
1, if Ak = Ri;
0, else

Number of iterations 500000

It is assumed that there is a maximum of 40 units and 40 incidents (Wex
et al, 2014, 697-708). Processing times are large compared to travel times.
So, travel times should have a smaller mean value as well as variance. Also,
the factor of destruction of an incident indicates the level of severity. This
resulted in 5 levels of severity: low (1), guarded (2), elevated (3), high (4),
and severe (5) harm. The severity levels are selected according to a discrete
uniform distribution. The “rescue units” had a total of 5 capabilities (po-
licemen, fire brigades, paramedics, search and rescue units, special casualty
access teams). It is also assumed that each incident requires exactly one
rescue unit.

2.8.3 Summary of data evaluation

The scenarios considered consisted of 10, 20, 30 and 40 incidents and units,
where the number of units did not exceed the number of incidents. For each
combination of the number of incidents and the number of units, 10 instances
were randomly generated and solved by all heuristics (combined or not with
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a metaheuristic). What was measured in the end, was the average ratio
µ
(
Hi

LB

)
, where Hi is the heuristic solution and LB is the lower bound. This

means that for smaller ratios, better solutions are gained (closer to the lower
bound). Moreover, the respective averages where calculated when applying
the GREEDY heuristic without any improvement heuristic, which is what
represents the best current practice. The experiments showed the following:

• Every combination of construction and improvement heuristic improved
the results of the GREEDY algorithm in all instance sizes at a sig-
nificance level of .01 (p-value of t-test). Even after composing the
GREEDY algorithm with any metaheuristic, the results were better
than simply applying the GREEDY algorithm (.01 level of significance).

• Results showed that the SCHED7 construction heuristic in combination
with any of the metaheuristics lead to superior results in all instances
compared to the other construction heuristics combined with the same
or any other improvement heuristic (metaheuristic) (.05 significance
level with a few exceptions).

• The results of the GREEDY heuristic combined with any of the meta-
heuristics are worsening as the problems gets larger. On the contrary,
the combinations of the rest of the heuristics with any metaheuristics
maintain mean ratios below 1.5.

• Concerning the MC heuristic, results are great in scenarios small in
size, but they worsen as the numbers of units and incidents get larger.
Still, through, in almost all instances the MC algorithm dominates the
GREEDY algorithm in most of its combinations (.01 level).

• Among the combinations with improvement heuristics used, the ones
combined with 3NMU showed the best results (at the .05 level). Gen-
erally, though, the improvement heuristics can ameliorate the solutions
of the construction heuristics (in almost 50% of the instances at the .01
level).

• Even though the GRASP metaheuristic showed mixed results, the re-
sults achieved by the heuristics ranged at most from 10.9% up to 33.9%
above the lowed bound.
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2.8.4 Runtimes

As previously mentioned, the results are to be found within minutes in
real natural disasters. Thankfully, all the heuristics fulfill this condition.
More specifically, all heuristics required less than one second, except for
the ones involving the 3NMU which required up to 20 seconds in instances
of largest sizes and the MC heuristics. Concerning the MC heuristics, the
average runtimes varied between 3.45 minutes (for small instances) and 18.26
minutes (for large instances). Results showed that the runtimes of the MC
grow linearly with both rescue units and instances.
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Chapter 3

Appointments and emergencies

3.1 Description

In this section, we try to solve a vehicle rooting problem of a fixed number
of units responding to medical appointments and emergencies. Firstly, we
present the respective properties of the current problem:

Property 1. Each incident has specific requirements and every rescue unit
has different capabilities. This property accounts for the fact that not every
rescue unit is able to process each incident.

Property 2. The processing times depend only on the incident and not
on the rescue unit.

Property 3. The travel times between locations are the same between units.

Property 4. The processing of an incident must not be interrupted (non-
preemption).

Property 5. Each incident has the same significance.

Property 6. Each one of the appointments has a time window in which
it has to be addressed.
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We would prefer to keep the more experienced nurses available to respond
to medical emergencies. Consequently, we would prefer to assign as many
scheduled appointments as possible to the less experienced nurses and as
few as possible to the more experienced ones. Thus, the problem focuses
on minimizing the total travel time of the nurses while keeping the more
experienced ones available to respond to medical emergencies.

3.2 Available Data

The data comes from a company situated in Peristeri, Greece. This com-
pany offers medical services at home in all of Attica, Greece. In total, there
are 49 different medical services offered and 12 different nurses that act as
independent rescue units. The service times for each of the 49 types of inci-
dents are presented below:

Service no. Required time Description (in Greek)
1 5’ ΄Ενεση

2 10’ Αιμοληψία ενηλίκων

3 60’ Αιμοληψία παιδιών

4 12’ Συλλογή ούρων με TIEMAN
5 15’ Λήψη καλλιέργειας αίματος

6 5’ Λήψη καλλιέργειας τραύματος

7 10’ Λήψη καλλιέργειας κοπράνων

8 9’ Λήψη καλλιέργειας πτυελών

9 5’ Λήψη ρινοφαρυγγικού δείγματος

10 40’ ΄Εναρξη ενδοφλέβειας χορήγησης

11 45’ Ενδοφλέβεια χορήγηση (ορός/φάρμακα/παρεντερική)
12 25’ Χορήγηση εντερικής σίτισης

13 30’ Χορήγηση μέσω κεντρικής γραμμής

14 24’ Περιποίηση κεντρικής γραμμής

15 30’ Τοποθέτηση GRIPPER
16 35’ Αλλαγή φλεβοκαθετήρα

17 15’ ΄Ελεγχος φλεβοκαθετήρα

18 15’ Φλασάρισμα - διατήρηση φ/κ
19 30’ Αλλαγή τραχειοστομίας
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Service no. Required time Description (in Greek)
20 15’ Περιποίηση τραχειοστομίας

21 30’ Αλλαγή γαστροστομίας

22 15’ Περιποίηση γαστροστομίας

23 26’ Αλλαγή και περιποίηση στομίων

24 10’ Οξυγονοθεραπεία

25 20’ Νεφελοποίηση

26 30’ Αναρρόφηση

27 25’ Διαλείπων καθετηριασμός

28 25’ Τοποθέτηση FOLEY
29 27’ Αλλαγή FOLEY
30 32’ Αλλαγή FOLEY υπερηβικού
31 15’ ΄Ελεγχος FOLEY - πλύση κύστεως
32 5’ Αλλαγή ουροσυλλέκτη

33 40’ Τοποθέτηση LEVIN
34 42’ Αλλαγή LEVIN
35 20’ ΄Ελεγχος LEVIN
36 20’ Ηλεκτροκαρδιογράφημα

37 33’ Αέρια αίματος

38 14’ Περιποίηση κατάκλισης - τραύματος
39 40’ Χειρουργικός καθαρισμός

40 20’ Τοποθέτηση αεροστρώματος

41 22’ Κοπή ραμμάτων

42 45’ Ατομική υγιεινή

43 20’ Τοπική υγιεινή

44 30’ Υποκλυσμός υψηλός

45 16’ Υποκλυσμός χαμηλός

46 40 ΄Εναρξη π/κ
47 20’ Περιποίηση κύστης κόκκυγος

48 5’ RAPID/μοριακό test
49 15’ Φλασάρισμα port

Below is presented a table on which we see which services can be provided
by each of the 12 units.
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Service no. Unit no.
1 2 3 4 5 6 7 8 9 10 11 12

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ - ✓ - - ✓ - - - -
4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
15 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - - -
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
19 ✓ ✓ ✓ ✓ ✓ ✓ - - - - - -
20 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ - -
21 ✓ ✓ ✓ ✓ ✓ ✓ - - - - - -
22 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ - -
23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓
26 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
27 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
29 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
30 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - - -
31 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
32 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
33 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ -
34 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Service no. Unit no.
1 2 3 4 5 6 7 8 9 10 11 12

35 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ -
36 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
37 ✓ ✓ ✓ ✓ ✓ - - ✓ - ✓ - -
38 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
39 ✓ ✓ - ✓ ✓ - - - - - - -
40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
41 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
42 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
43 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
44 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
45 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
46 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
47 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
48 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
49 ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - -

Capabilities of nurses

3.3 Mathematical Model

Now, we present an optimization model to find the optimal schedules and
assignments of nurses to appointments. The model is presented in a binary
linear formulation.
Firstly, we use the following notation:

Table 2
Notation used in the mathematical model.
Input parameters
n Total number of incidents, with set I = {1, . . . , n}
m Total number of nurses, with set K = {1, . . . ,m}
pj ∈ R≥0 Time required by a capable nurse to process inci-

dent j, j ∈ I ∪ {n+ 1}, (pn+1 = 0)
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skij ∈ R≥0 Travel time required by nurse k to move from in-
cident i to incident j; if i = 0 then nurse k re-
sides at its depot before travelling to incident j; if
j = n+ 1 then nurse k returns to their depot and
finishes their shift

ak ∈ R≥0 The significance of the time of rescue unit k, k ∈
K. The quantities ak increase as the experience of
nurse k increases. This means that if nurse k is
more experienced than nurse t, then ak ≥ at.

capki ∈ {0, 1} 1 if nurse k is capable of addressing incident i; 0
otherwise

minj ∈ R≥0 The earliest moment a nurse can start processing
incident j, j ∈ I ∪ {n+ 1}, (minn+1 = 0)

maxj ∈ R≥0 The time by which a nurse must have finished pro-
cessing incident j, j ∈ I

Workk ∈ R≥0 The total number of minutes a nurse has to work,
including their break, k ∈ K

Breakk ∈ R≥0 The number of minutes the break of nurse k lasts,
k ∈ K

Bk
0 ∈ R≥0 The starting time of nurse k, k ∈ K

M ∈ R≥0 M > 24 · 60 (fixed number)

Decision variables
Xk

ij ∈ {0, 1} 1 if incident i is processed by nurse k immedi-
ately before processing incident j; 0 otherwise,
k ∈ K, i ∈ {0} ∪ I, j ∈ I ∪ {n+ 1}

Y k
ij ∈ {0, 1} 1 if incident i is processed by nurse k (at any

time) before processing incident j; 0 otherwise,
k ∈ K, i ∈ {0} ∪ I, j ∈ I ∪ {n+ 1}

Bk
l ∈ R≥0 The time by which nurse k will be done with the

incident l; M if nurse k doesn’t process incident l,
k ∈ K, l ∈ I ∪ {n+ 1}.

43



Notes:

1. For nurse k (∀k ∈ K), the incidents 0, n+1 refer to their depot. Incident
0 refers to the depot as a starting point and incident n+1 refers to the
depot as a finishing point. Depot for different nurses may differ.

2. For i, j ∈ I, i ̸= j, skij = sij ∀k ∈ K. In other words, between
locations of appointments, all nurses need the same transport time.
These times may differ only in the case that i = 0 or j = n + 1, since
the depot for different nurses may differ.

3. An incident may include/require more than one services.

4. All times are expressed in minutes.

5. The reader understands that for each incident l, the times Bk
l are cal-

culated taking into account that the nurse cannot start processing the
incident l before minl.

6. The quantity ak does not depend on the time the shift of nurse k starts.
The values of ak generally depend also on the travel times between
locations, as well as the significance of a nurse over the travel time.

Now, the mathematical model can be written as:

min
Xk

ij ,Y
k
ij

m∑
k=1

n∑
i=0

n+1∑
j=1

aks
k
ijX

k
ij (O’)

s.t.
n∑

i=0

m∑
k=1

Xk
ij = 1, j = 1, . . . , n, (C1’)

n+1∑
j=1

m∑
k=1

Xk
ij = 1, i = 1, . . . , n, (C2’)

n+1∑
j=1

Xk
0j = 1, k = 1, . . . ,m, (C3’)

n∑
i=0

Xk
i,n+1 = 1, k = 1, . . . ,m, (C4’)

44



Y k
il + Y k

lj − 1 ≤ Y k
ij , i = 0, . . . , n; j = 1, . . . , n+ 1;

k = 1, . . . ,m; l = 1, . . . , n,
(C5’)

n∑
i=0

Xk
il =

n+1∑
j=1

Xk
lj, l = 1, . . . , n; k = 1, . . . ,m, (C6’)

Xk
ij ≤ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C7’)

Y k
ii = 0, i = 0, . . . , n+ 1; k = 1, . . . ,m, (C8’)

Y k
ij ≤ capki, i = 1, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C9’)

n+1∑
l=1

Xk
il ≥ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C10’)

n∑
l=0

Xk
lj ≥ Y k

ij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C11’)

Bk
l = max

(
n∑

j=0

(
Bk

j + skjl + pl
)
Xk

jl,minl + pl,
(
1− Y k

0l

)
M

)
,

l = 1, . . . , n+ 1; k = 1, . . . ,m,

(C12’)

n∑
i=0

n+1∑
j=1

(skij + pj)X
k
ij ≤Workk − Breakk, k = 1, . . . ,m, (C13’)

Bk
n+1 ≤ Bk

0 +Workk, k = 1, . . . ,m, (C14’)

maxl ≥
m∑
k=1

Y k
0lB

k
l , l = 1, . . . , n, (C15’)

Xk
ij, Y

k
ij ∈ {0, 1}, i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m. (C16’)

The objective function is the weighted sum of travel times of all nurses. In
comparison to the first model we presented, the weights here, ak, do not corre-
spond to factor of destruction rather to the“cost” of having nurses unavailable
for emergencies. The objective function can be written as

∑m
k=1 akCk, where:

Ck =
n∑

i=0

n+1∑
j=1

skijX
k
ij
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which is the total travel time of nurse k. If we want to minimize the total
time (travel time and service time), we can write the Ck as:

Ck =
n∑

i=0

n+1∑
j=1

(pj + skij)X
k
ij.

Constraint (C1’) ensures that there is exactly one incident that is processed
immediately before each one of the n non-fictitious incidents. Constraint
(C2’) ensures hat there is exactly one incident that is processed immedi-
ately after each one of the n non-fictitious incidents. Constraints (C1’) and
(C2’) also ensure that each non-fictitious incident is processed by one nurse.
Constraint (C3’) ensures that each nurse starts processing the fictitious in-
cident 0 (the depot). Similarly, constraint (C4’) ensures that each unit ends
processing the fictitious incident n + 1. Constraint (C5’) accounts for the
transitivity in predecessor relationships. This means that if an incident i is
processed (not necessarily immediately) before any incident l and the inci-
dent l is processed (not necessarily immediately) before an incident j, then
the constraint ensures that Y k

ij = 1. If an immediate predecessor for a specific
incident j exists, there has to be a successor as given by constraint (C6’). If
an incident i immediately precedes an incident j, then it generally precedes
it, as given by constraint (C7’). The constraint (C8’) prevents a reflexive,
direct or indirect predecessor relationship. If a rescue unit k does not have
the capability to process an incident i, they should not be assigned to it.
Therefore, we have constraint (C9’). The constraints (C10’) and (C11’) to-
gether, ensure that if a rescue unit k does not process an incident i before
an incident j, Y k

ij = 0. Constraint (C12’) sets the times Bk
l as described in

the notes. Constraints (C13’) and (C14’) ensure that nurse k does not over-
work. More specifically, constraint (C13’) ensures that each nurse has time
for their break. Constraint (C14’) ensures that no nurse will work overtime.
Constraint (C15’), ensures that appointment l will be assigned to the nurse
that can process it in the required time window.
Constraint (C16’) makes the model a binary program.
Each feasible solution of the minimization model represents valid schedules
and assignments of all nurses.

In order to find the schedule of each nurse, for example nurse k, we are
interested in the quantities Bk

l < M, l ∈ I, k ∈ K. Afterwards, so as to
estimate the times of arrival of nurse k at the appointments, we calculate the
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quantities Ak
l = Bk

l − pl for the incidents where Bk
l < M .

3.4 Proposed Heuristic for the problem

Since the new model to be solved has even more constraints, its solution
would take even more time than the previous one. Therefore, we have to find
a heuristic algorithm in order to find a heuristic solution in reasonable time.
For this reason, and as analysed before, we adapt a modification of SCHED7
heuristic to our problem. The pseudocode of this adapted algorithm is as
follows:

1: Initialize the sorted list of incidents I = {1, . . . , n} so that mini ≤
mini+1, i = 1, . . . , n− 1.
Let K = {1, . . . ,m} be the list of nurses.
Initialize the current completion time of each nurse, set all nurses to
start at their depot, give an empty vector of assignments to each nurse
i.e.

τk ← Bk
0 , αk ← 0, σk ← {} ∀k ∈ K.

2: for i = 1 to n do

3: We create the set of nurses that can respond to appointment i. Set
C ← {(k,Ak

i )|Ak
i = max

(
τk + skαk,i

, mini

)
, capki = 1,

Ak
i + pi ≤ min

(
maxi, B

k
0 +Workk − Breakk − ski,n+1

)
, k ∈ K}.

If C = ∅, stop unsuccessfully (no feasible assignment possible).

4: We create the set of nurses that increase the least the value of the
objective function.
Set H ← arg min

k
{akskαk,i

|
(
k,Ak

i

)
∈ C}.

5: Choose k∗ = min{k|k ∈ H}.

6: Update τk∗ ← Ak∗
i + pi, αk∗ ← i, σk∗ ← σk∗ ∪ {

(
i, Ak∗

i

)
}.

7: end for

8: return σ ← (σ1, . . . , σm) being the list of schedules.
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In step 1, we sort the incidents according to the time their time windows
start. Since each time window has the same length, we do not need to take
into account the ends of the time windows yet. We also sort the nurses
in increasing experience. Afterwards, we do the classic initial step as in
SCHED7.
In step 3 (and afterwards), the quantities Ak

i denote the time that nurse k
arrives at incident i. For each incident i, the set C contains the couples
of nurses that can respond to appointment i and their respectful times of
arrival at appointment i. A nurse can respond to an appointment i if they
are capable of processing to all the services demanded by appointment i.
In step 4, we create a set H of nurses (that are able to respond to incident
i) and increase the least the value of the objective function.
In step 5, we choose one nurse from set H. We can choose randomly, but
here we decided to choose the one from the least experienced ones.
In step 6, we update the values of τk∗ , ak∗ and the set σk∗ for the chosen
nurse k∗.
In step 8, we return the list of schedules.

3.5 Proposed Metaheuristic

In this subsection, we propose an adapted 3NMU metaheuristic algorithm.
This adapted algorithm must choose the three nurses and three appointments
(one of each) and swap them among the three nurses. Of course, the chosen
appointments can only be swapped if each of the nurses can process their
newly appointed incidents. The new schedules are created and accepted if
the objective function takes a lower value than previously. The pseudocode
of this adapted algorithm is as follows:

1: for k in K do

2: for l in K \ {k} do

3: for q in K \ {k, l} do

4: for a = 1 to length(σk) do

5: for b = 1 to length(σl) do
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6: for c = 1 to length(σq) do

7: It only makes sense to swap appointments that should be addressed
in the same time window. So:
if minσk(a)[1] == minσl(b)[1] == minσq(c)[1] &&
capk,σq(c)[1] == capl,σk(a)[1]

== capq,σl(b)[1]
== 1 do

8: Set the trial schedules, the “flags” and the current appointment
σ′
k ← σk, σ

′
l ← σl, σ

′
q ← σq, σ

′
k(a)← σq(c), σ

′
l(b)← σk(a),

σ′
q(c)← σl(b), wk ← 0, wl ← 0, wq ← 0, d1 ← a, d2 ← b, d3 ← c.

9: Set the time that nurse k finishes with their last appointment
if d1 > 1 do

10: τk ← σ′
k(d1 − 1)[2] + pσ′

k(d1−1)[1], αk ← σ′
k(d1 − 1)[1]

11: else

12: τk ← Bk
0 , αk ← 0

13: end if

14: Set the time that nurse l finishes with their last appointment
if d2 > 1 do

15: τl ← σ′
l(d2 − 1)[2] + pσ′

l(d2−1)[1], αl ← σ′
l(d2 − 1)[1]

16: else

17: τl ← Bl
0, αl ← 0

18: end if

19: Set the time that nurse q finishes with their last appointment
if d3 > 1 do

20: τq ← σ′
q(d3 − 1)[2] + pσ′

q(d3−1)[1], αq ← σ′
q(d3 − 1)[1]

21: else

22: τq ← Bq
0, αq ← 0

23: end if
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24: Set the new trial schedule of nurse k
while (wk == 0 && d1 ≤ length(σ′

k)) do

25: Set A← max
(
minσ′

k(d1)[1]
, τk + skαk,σ

′
k(d1)[1]

)
26: if A+ pσ′

k(d1)[1]
< maxσ′

k(d1)[1]
do

27: Set τk ← A+ pσ′
k(d1)[1]

, σ′
k(d1)[2]← A, αk ← σ′

k(d1)[1],
d1 ← d1 + 1

28: else

29: Set wk ← 1

30: end if

31: end while

32: if τk + skσ′
k(length(σ

′
k))[1],n+1 > Workk − Breakk do

33: Set wk ← 1

34: end if

35: Set the new trial schedule of nurse l
while (wl == 0 && d2 ≤ length(σ′

l)) do

36: Set B ← max
(
minσ′

l(d2)[1]
, τl + slαl,σ

′
l(d2)[1]

)
37: if B + pσ′

l(d2)[1]
< maxσ′

l(d2)[1]
do

38: Set τl ← B + pσ′
l(d2)[1]

, σ′
l(d2)[2]← B, αl ← σ′

l(d2)[1],
d2 ← d2 + 1

39: else

40: Set wl ← 1

41: end if

42: end while

43: if τl + slσ′
l(length(σ

′
l))[1],n+1 > Workl − Breakl do
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44: Set wl ← 1

45: end if

46: Set the new trial schedule of nurse q
while

(
wq == 0 && d3 ≤ length(σ′

q)
)
do

47: Set D ← max
(
minσ′

q(d3)[1], τq + sqαq ,σ′
q(d3)[1]

)
48: if D + pσ′

q(d3)[1] < maxσ′
q(d3)[1] do

49: Set τq ← B + pσ′
q(d3)[1], σ

′
q(d3)[2]← D, αq ← σ′

q(d3)[1],
d3 ← d3 + 1

50: else

51: Set wq ← 1

52: end if

53: end while

54: if τq + sqσ′
q(length(σ

′
q))[1],n+1 > Workq − Breakq do

55: Set wq ← 1

56: end if

57: Set trial schedules as new schedules if they lower the value of the
objective function
if wk + wl + wq == 0 &&∑

g=k,l,q ag

(∑length(σ′
g)−1

h=1 sgσ′
g(h)[1],σ

′
g(h+1)[1] + s0,σ′

g(h)[1]
g + sgσ′

g(length(σ
′
g)),n+1

)
<∑

g=k,l,q ag

(∑length(σg)−1
h=1 sgσg(h)[1],σg(h+1)[1] + s0,σg(h)[1]g + sgσg(length(σg)),n+1

)
do

58: Set σk ← σ′
k, σl ← σ′

l, σq ← σ′
q

59: end if

60: end if
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61: end for

62: end for

63: end for

64: end for

65: end for

66: end for

In steps 1-3, we choose 3 different nurses.
In steps 4-6, we choose one appointment from each nurse.
In step 7, we check if these appointments belong in the same time window.
If not, these nurses cannot exchange appointments. We also check to see if
after the exchange, each of the nurses will be able to process their new ap-
pointment. If one of them cannot, they cannot exchange appointments. The
“flags” wk, , wl, , wq reveal if there is a problem with the new assignments.
In step 8, we create the new schedules, with exchanged appointments (σ′

k, σ
′
l, σ

′
q).

Now, the times of the appointments need correction. For each one of the
nurses, we find the first appointment whose time needs correction (d1, d2, d3).
In steps 9-13, we create the current completion time and current position of
nurse k.
In steps 14-18, we create the current completion time and current position
of nurse l.
In steps 19-23, we create the current completion time and current position
of nurse q.
In steps 24-34, we make the corrections on the schedule of nurse k, whilst
checking to see if any problems occur.
In steps 35-45, we make the corrections on the schedule of nurse l, whilst
checking to see if any problems occur.
In steps 46-56, we make the corrections on the schedule of nurse q, whilst
checking to see if any problems occur.
In steps 57-58, if no problems have occurred, we check if the new schedules
lower the value of the objective function. If yes, we accept these new assign-
ments.
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This algorithm check all possible exchanges between all possible triplets of
nurses.

3.6 Simulation

First of all, we divide Attica into the following divisions:

1. Central Athens: This region would encompass the central areas of
Athens, including landmarks such as Syntagma Square, Monastiraki,
and Plaka.

2. Northern Athens: This region would cover the northern neighborhoods
of Athens, including areas like Kifissia, Marousi, and Psychiko.

3. Southern Athens: This region would include the southern neighbor-
hoods of Athens, such as Glyfada, Voula, and Alimos.

4. Western Athens: This region would encompass the western neighbor-
hoods of Athens, including areas like Peristeri, Aigaleo, and Petroupoli.

5. Parnitha Division: This division could include municipalities and areas
located in the northern part of Northern West Attica, such as Acharnes,
Thrakomakedones, and the vicinity of Mount Parnitha.

6. Mandra Division: This division could encompass municipalities and
areas situated in the southern part of Northern West Attica, including
Mandra, Elefsina, and the surrounding regions.

7. Lavreotiki Division: This division could include municipalities and ar-
eas located in the eastern part of Southern West Attica, such as Lavrio,
Sounio, and the surrounding regions.

8. Megara Division: This division could encompass municipalities and
areas situated in the western part of Southern West Attica, including
Megara, Nea Peramos, and the nearby regions.

9. Marathon Division: This division could include municipalities and ar-
eas located in the eastern part of Northern East Attica, such as Marathon,
Nea Makri, and the surrounding regions.
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10. Rafina-Pikermi Division: This division could encompass municipalities
and areas situated in the central part of Northern East Attica, including
Rafina, Pikermi, and the nearby regions.

11. Pallini Division: This division could include municipalities and areas
located in the western part of Northern East Attica, such as Pallini,
Gerakas, and the vicinity.

12. Markopoulo Division: This division could include municipalities and ar-
eas located in the eastern part of Central East Attica, such as Markopoulo
Mesogeas, Koropi, and the surrounding regions.

13. Paiania Division: This division could encompass municipalities and
areas situated in the central part of Central East Attica, including
Paiania, Pallini (partially), and the nearby regions.

14. Glyka Nera Division: This division could include municipalities and
areas located in the western part of Central East Attica, such as Glyka
Nera, Pallini (partially), and the vicinity.

15. Vouliagmeni Division: This division could include municipalities and
areas located in the southern part of Southern East Attica, such as
Vouliagmeni, Voula, and the surrounding regions.

16. Vari Division: This division could encompass municipalities and areas
situated in the central part of Southern East Attica, including Vari,
Varkiza, and the nearby regions.

17. Markopoulo Mesogaias Division: This division could include munici-
palities and areas located in the eastern part of Southern East Attica,
such as Markopoulo Mesogaias, Kouvaras, and the vicinity.

18. Piraeus

Then, using Google Maps, we calculate the matrix of times between re-
gions.
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Division 1 2 3 4 5 6 7 8 9
1 15 30 30 20 45 35 70 55 70
2 30 20 40 25 25 30 50 40 45
3 30 40 20 50 60 60 60 70 70
4 20 25 50 20 35 30 70 40 55
5 45 25 60 35 15 35 65 50 60
6 35 30 60 30 35 10 75 20 70
7 70 50 60 70 65 75 20 85 80
8 55 40 70 40 50 20 85 10 80
9 70 45 70 55 60 70 80 80 15
10 50 30 50 45 40 50 55 50 30
11 40 15 45 30 30 40 50 40 45
12 50 30 40 40 40 40 40 45 55
13 40 20 40 35 40 35 40 40 50
14 40 20 40 35 35 40 40 45 50
15 45 45 15 40 60 60 55 70 80
16 55 40 25 40 60 60 45 65 80
17 55 30 35 40 55 50 30 55 60
18 30 40 45 25 50 40 85 50 75
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Division 10 11 12 13 14 15 16 17 18
1 50 40 50 40 40 45 55 55 30
2 30 15 30 20 20 45 40 30 40
3 50 45 40 40 40 15 25 35 45
4 45 30 40 35 35 40 40 40 25
5 40 30 40 40 35 60 60 55 50
6 50 40 40 35 40 60 60 50 40
7 55 50 40 40 40 55 45 30 85
8 50 40 45 40 45 70 65 55 50
9 30 45 55 50 50 80 80 60 75
10 15 25 30 20 20 55 55 35 55
11 25 10 15 15 15 35 35 20 40
12 30 15 10 15 20 25 20 15 55
13 20 15 15 10 10 40 35 25 45
14 20 15 20 10 10 40 35 25 45
15 55 35 25 40 40 10 10 30 45
16 55 35 20 35 35 10 10 25 55
17 35 20 15 25 25 30 25 10 55
18 55 40 55 45 45 45 55 55 10

From the given data, we know that there are approximately 80 medical
appointments per day and 50−55% of those are between the hours 7:00-15:00.
We know that in each shift there are 5-6 nurses working. We only know the
experience of 12 nurses. Therefore, we will simulate only two shifts, 7:00-
15:00 and 15:00-23:00. In each of those shifts, there will be 6 nurses working.
In the each shift there will be 40 appointments simulated.

Moreover, from the data, we know that there are 20-25 medical emergencies
per day. After we are done with the scheduling using the algorithms, we will
simulate 16 medical emergencies, in order to calculate the percentages of the
answered and unanswered calls.

We proceed to simulate the medical appointments. For the each shift,
there will be 10 appointments per two-hour window. For each incident, in
a given time window, we will choose randomly a location. The medical
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services demanded for each appointment will be generated with the help of
a geometric random variable. From the data, we calculate that a customer
asks for approximately 1.25 services. Therefore, we will need a geometric
random variable with mean 0.25. We conclude that the random variable will
be Geom(0.8) which counts the number of failures before the first success.
According to the provided data, 75% of the demanded services are of type
(service number) 1, 2, 4, 5, 10, 11, 38. From the rest, 90% of them are of
type 7, 8, 14, 23, 24, 26, 28, 29, 32, 34, 44. For this reason, we will choose
the types of services according to a vector of probabilities. Each one of the
services 1, 2, 4, 5, 10, 11, 38 is chosen with probability 75%/7 = 75/700,
each one of the services 7, 8, 14, 23, 24, 26, 28, 29, 32, 34, 44 is chosen with
a probability 25%× 90%/11 = 225/11000 and each one of the rest is chosen
with a probability 25%× 10%/33 = 25/33000.

We also assume that we do not have appointments in all regions of Attica
each day. Due to the large travel times, unprecedented incidents and medical
emergencies, it would be preferable only to visit a few regions each day. In
this simulation, we assume that those regions are 1,2,4,18.

We then calculate the levels of experience of each nurse based on how many
different types of services they can provide.

We now present the data in R.

#The times needed for the provided services

times of services=c(5, 10, 60, 12, 15, 5, 10, 9, 5, 40, 45, 25, 30, 24, 30,
35, 15, 15, 30, 15, 30, 15, 26, 10, 20, 30, 25, 25, 27, 32, 15, 5, 40, 42,
20, 20, 33, 14, 40, 20, 22, 45, 20, 30, 16, 40, 20, 5, 15)

#The matrix of capabilities of nurses

Capabilities of nurses<- matrix(c(
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0
), nrow = 49, ncol = 12, byrow = TRUE)

#The sums of rows=the vector of experience

experience of nurses=c(49,49,48,48,49,45,36,44,41,43,38,32)

#the travel times of nurses between locations

Travel times= matrix(c(
15, 30, 30, 20, 45, 35, 70, 55, 70, 50, 40, 50, 40, 40, 45, 55, 55, 30,
30, 20, 40, 25, 25, 30, 50, 40, 45, 30, 15, 30, 20, 20, 45, 40, 30, 40,
30, 40, 20, 50, 60, 60, 60, 70, 70, 50, 45, 40, 40, 40, 15, 25, 35, 45,
20, 25, 50, 20, 35, 30, 70, 40, 55, 45, 30, 40, 35, 35, 40, 40, 40, 25,
45, 25, 60, 35, 15, 35, 65, 50, 60, 40, 30, 40, 40, 35, 60, 60, 55, 50,
35, 30, 60, 30, 35, 10, 75, 20, 70, 50, 40, 40, 35, 40, 60, 60, 50, 40,
70, 50, 60, 70, 65, 75, 20, 85, 80, 55, 50, 40, 40, 40, 55, 45, 30, 85,
55, 40, 70, 40, 50, 20, 85, 10, 80, 50, 40, 45, 40, 45, 70, 65, 55, 50,
70, 45, 70, 55, 60, 70, 80, 80, 15, 30, 45, 55, 50, 50, 80, 80, 60, 75,
50, 30, 50, 45, 40, 50, 55, 50, 30, 15, 25, 30, 20, 20, 55, 55, 35, 55,
40, 15, 45, 30, 30, 40, 50, 40, 45, 25, 10, 15, 15, 15, 35, 35, 20, 40,
50, 30, 40, 40, 40, 40, 40, 45, 55, 30, 15, 10, 15, 20, 25, 20, 15, 55,
40, 20, 40, 35, 40, 35, 40, 40, 50, 20, 15, 15, 10, 10, 40, 35, 25, 45,
40, 20, 40, 35, 35, 40, 40, 45, 50, 20, 15, 20, 10, 10, 40, 35, 25, 45,
45, 45, 15, 40, 60, 60, 55, 70, 80, 55, 35, 25, 40, 40, 10, 10, 30, 45,
55, 40, 25, 40, 60, 60, 45, 65, 80, 55, 35, 20, 35, 35, 10, 10, 25, 55,
55, 30, 35, 40, 55, 50, 30, 55, 60, 35, 20, 15, 25, 25, 30, 25, 10, 55,
30, 40, 45, 25, 50, 40, 85, 50, 75, 55, 40, 55, 45, 45, 45, 55, 55, 10
),nrow = 18, ncol = 18, byrow = TRUE)

We can now start the simulation.
Firstly, we set the values ak (∀k ∈ K) as

#The vector of a k
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a=(109, 109, 108, 108, 109, 107, 102, 106, 104, 105, 103, 101)

and the locations of the depots of the nurses, for which we use a discrete
uniform random variable

#the depots of the nurses

depot=floor(18*runif(12))+1

This way, we get the simulated values:

depot =(11, 18, 7, 12, 12, 15, 14, 4, 1, 3, 13, 14)

We, also, write a function to calculate the travel time of each nurse be-
tween locations. For this simulation, we only take into consideration the
travel times between appointments, and set travel times from or to depots
equal to 0. The function is as follows:

#The travel time of nurse k from location i to location j

S <- function(i,j,k) {

if (i==0 && j!=81) { #from depot to first appointment of nurse k

return(0)

} else if (i==0 && j==81) { #if the nurse isn’t assigned to any
appointments

return(0)

} else if (i!=0 && j==81) { #from last appointment of nurse k to
depot

return(0)

} else { #between appointments

return(Travel times[i,j])
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}

}

It is time to simulate the appointments. We will follow the procedure we
described:

#Appointments

time of appointment=matrix(0,nrow=1,ncol=80) #the time needed for
the appointments

location of appointment=matrix(0,nrow=1,ncol=80)

appointment min=matrix(0,nrow=1,ncol=80)

appointment max=matrix(0,nrow=1,ncol=80)

capability for appointment=matrix(0,nrow=12,ncol=80) #this matrix
shows if nurse k (row) can respond to the demands of the appointment
i (column)

for (i in c(1:80)) {

services=sample(c(1:49), 1+rgeom(1,0.8), prob = c(75/700, 75/700,
25/33000, 75/700, 75/700, 25/33000, 225/11000, 225/11000, 25/33000,
75/700, 75/700, 25/33000, 25/33000, 225/11000, 25/33000, 25/33000,
25/33000, 25/33000, 25/33000, 25/33000, 25/33000, 25/33000, 25/33000,
225/11000, 25/33000, 225/11000, 25/33000, 225/11000, 225/11000, 25/33000,
25/33000, 225/11000, 25/33000, 225/33000, 25/33000, 25/33000, 25/33000,
75/700, 25/33000, 25/33000, 25/33000, 25/33000, 25/33000, 225/11000,
25/33000, 25/33000, 25/33000, 25/33000, 25/33000))

time of appointment[i]=sum(times of services[services])

location of appointment[i]=sample(c(1,2,4,18),1)

for (k in c(1:12)) {

capability for appointment[k,i] = prod(Capabilities of nurses[services,k])
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}

#The time window of appointment i

if (i<=10) {

appointment min[i]=7*60

appointment max[i]=9*60

} else if (i<=20) {

appointment min[i]=9*60

appointment max[i]=11*60

} else if (i<=30) {

appointment min[i]=11*60

appointment max[i]=13*60

} else if (i<=40) {

appointment min[i]=13*60

appointment max[i]=15*60

} else if (i<=50) {

appointment min[i]=15*60

appointment max[i]=17*60

} else if (i<=60) {

appointment min[i]=17*60

appointment max[i]=19*60

} else if (i<=70) {

appointment min[i]=19*60

appointment max[i]=21*60
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} else if (i<=80) {

appointment min[i]=21*60

appointment max[i]=23*60

}

}

We gain the following results:

time of appointment=(10, 22, 15, 12, 25, 40, 40, 14, 40, 15, 52, 14, 10,
5, 5, 15, 40, 17, 10, 45, 40, 15, 30, 15, 19, 40, 40, 5, 5, 55, 15, 42, 14,
50, 60, 9, 5, 10, 12, 30, 45, 15, 45, 12, 34, 14, 16, 5, 40, 10, 25, 45, 40,
15, 40, 15, 106, 14, 14, 45, 14, 10, 10, 12, 9, 45, 5, 15, 40, 5, 40, 12, 27,
15, 45, 14, 45, 5, 45, 65)

location of appointment=(18, 1, 18, 1, 1, 1, 18, 2, 1, 2, 2, 4, 2, 4, 4, 4,
1, 18, 1, 1, 4, 4, 1, 2, 18, 2, 4, 2, 18, 18, 4, 4, 2, 1, 4, 1, 1, 1, 1, 4, 4, 18,
2, 4, 18, 18, 18, 1, 18, 18, 1, 2, 18, 1, 2, 4, 1, 4, 1, 18, 1, 18, 2, 1, 18, 1,
1, 4, 4, 18, 18, 2, 4, 1, 4, 4, 4, 1, 18, 4)

appointment min=(420, 420, 420, 420, 420, 420, 420, 420, 420, 420,
540, 540, 540, 540, 540, 540, 540, 540, 540, 540, 660, 660, 660, 660,
660, 660, 660, 660, 660, 660, 780, 780, 780, 780, 780, 780, 780, 780,
780, 780, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 1020, 1020,
1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1140, 1140, 1140, 1140,
1140, 1140, 1140, 1140, 1140, 1140, 1260, 1260, 1260, 1260, 1260, 1260,
1260, 1260, 1260, 1260)

appointment max=(540, 540, 540, 540, 540, 540, 540, 540, 540, 540,
660, 660, 660, 660, 660, 660, 660, 660, 660, 660, 780, 780, 780, 780,
780, 780, 780, 780, 780, 780, 900, 900, 900, 900, 900, 900, 900, 900,
900, 900, 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020, 1020,
1140, 1140, 1140, 1140, 1140, 1140, 1140, 1140, 1140, 1140, 1260, 1260,
1260, 1260, 1260, 1260, 1260, 1260, 1260, 1260, 1380, 1380, 1380, 1380,
1380, 1380, 1380, 1380, 1380, 1380)
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t(capability for appointment)= #the transpose of the matrix, line i
describes which nurses can complete the demanded services of appoint-
ment i

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 1 1 1 1 1
1 1 0 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1

We assume that each nurse works for 8 hours= 8 · 60 minutes, out of
which they can have a 30 minute break. We will also assume that the nurses
1,3,5,6,11,12 will work during the first shift and the nurses 2,4,7,8,9,10 will
work on the second. This way, the sum of experiences of the nurses on each
shift will be equal.
Therefore,

Work=matrix(8*60, 1, 12) #how many minutes each nurse works

Break=matrix(30, 1, 12) #how many minutes lasts the break of each
nurse

B0=c(7*60, 15*60, 7*60, 15*60, 7*60, 7*60, 15*60, 15*60, 15*60, 15*60,
7*60, 7*60) #the minute each nurse starts working

Now, we write in code the adapted SCHED7 algorithm.

#Adapted SCHED7 algorithm

#Initialization

t=B0 #current completion time of each nurse

alpha=matrix(0,1,12) #all nurses start at their depot
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#initiation for the schedules sigma k, the first column will present the
appointment, the second, the nurse that will respond, the third, the
estimated time of arrival

my sigma=matrix(0,nrow=81,ncol=3)

for (i in c(1:80)) {

C<-matrix(0,ncol=2)

A=matrix(0,ncol=12)

for (k in c(1:12)) {

A[k]=max(t[k]+S(alpha[k],location of appointment[i],k), appoint-
ment min[i])

condition1= (capability for appointment[k,i]==1)

condition2= (A[k] + time of appointment[i]<min(appointment max[i],
B0[k] + Work[k]-Break[k] - S(location of appointment[i],81,k)))

if (condition1 && condition2 ) {

C<-rbind(C,c(k,A[k]))

}

}

if (dim(C)[1]==1) {

print(paste(”No feasible assignment possible for appointment”, i))

} else {

#create the vector of the nurses that increase the least the value
of the objective function

H=c(a[C[-1,1][1]]*S(alpha[C[-1,1][1]], location of appointment[i],
C[-1,1][1]))

for (l in C[-1,1][-1]) {
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H=c(H,a[l]*S(alpha[l], location of appointment[i], l))

}

H=C[-1,1][which(H==min(H))]

#choose which nurse will respond to incident i

k star=min(H[which(a[H]==min(a[H]))])

#Update

t[k star]=A[k star] + time of appointment[i]

alpha[k star]=location of appointment[i]

my sigma[i+1]=c(i, k star, A[k star]) } }

my sigma=my sigma[-1,]

#Then we divide each schedule

sigma 1=my sigma[my sigma[,2]==1,-2]

sigma 2=my sigma[my sigma[,2]==2,-2]

sigma 3=my sigma[my sigma[,2]==3,-2]

sigma 4=my sigma[my sigma[,2]==4,-2]

sigma 5=my sigma[my sigma[,2]==5,-2]

sigma 6=my sigma[my sigma[,2]==6,-2]

sigma 7=my sigma[my sigma[,2]==7,-2]

sigma 8=my sigma[my sigma[,2]==8,-2]

sigma 9=my sigma[my sigma[,2]==9,-2]

sigma 10=my sigma[my sigma[,2]==10,-2]

sigma 11=my sigma[my sigma[,2]==11,-2]

sigma 12=my sigma[my sigma[,2]==12,-2]
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Each nurse will have their own schedule. Every schedule will be a matrix
with two columns. The first column consists of the appointment numbers
and the second consists of the expected arrival time of the nurse at the ap-
pointment. After we run the algorithm, all appointments have been assigned
to nurses. As expected, the nurses with the most experience have the fewest
appointments. We now present the schedule of each nurse:

First shift Second shift
sigma 1= sigma 11= sigma 2= sigma 8=
5 420 2 420 46 900 44 900
30 660 7 472 80 1260 49 937

11 552 60 1020
sigma 3= 16 629 sigma 4= 69 1140
4 420 21 664 45 900 77 1260
19 540 23 724 57 1020 78 1325
20 565 33 784 79 1260
27 660 36 828 sigma 9=
29 725 37 852 sigma 7= 42 900
34 780 41 900 48 945
38 845 sigma 12= 47 970 53 1020

1 420 50 996 54 1090
sigma 5= 8 470 51 1036 58 1125
6 420 10 504 52 1091 63 1164
39 780 12 544 61 1166 64 1204
40 812 13 583 62 1210 67 1231

14 618 65 1230 72 1266
sigma 6= 15 643 70 1249 73 1303
3 420 22 668 71 1264
9 465 24 708 76 1329 sigma 10=
17 540 28 743 43 900
18 610 31 780 55 1020
25 660 32 815 56 1085
26 719 59 1120
35 784 66 1149

68 1214
74 1260
75 1295
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We move on to simulate 16 medical emergencies. Since we do not know
anything about their distribution during the day, we are going to simulate
8 medical emergencies during the first shift and 8 during the second. Once
a medical emergency is announced (called in), it must be addressed within
1-2 hours. Each time of announcement will follow a uniform distribution
in the respective shift. The time window of the medical emergency starts
at the time of the announcement and (for the simulation) ends 90 minutes
afterwards. The medical emergencies can demand any type of service. Here,
we assume that the number of services follows the same distribution as the
number of services of each appointment. Finally, the emergency appointment
can be demanded at any region of Attica.

#Emergencies

time of emergency=matrix(0,nrow=1,ncol=16) #the time needed for
the emergencies

location of emergency=matrix(0,nrow=1,ncol=16)

emergency min=matrix(0,nrow=1,ncol=16) #beginning of time win-
dow of the medical emergencies

emergency max=matrix(0,nrow=1,ncol=16) #end of time window of
the medical emergencies

capability for emergency=matrix(0,nrow=12,ncol=16) #this matrix show
if nurse k can respond to the demands of the emergency i

for (i in c(1:16)) {

emergency services=sample(c(1:49),1+rgeom(1,0.8))

time of emergency[i]=sum(times of services[emergency services])

location of emergency[i]=sample(c(1:18),1)

for (k in c(1:12)) {

capability for emergency[k,i] =
prod(Capabilities of nurses[emergency services,k])

}
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if (i<=8) { #the emergencies of the first shift

emergency min[i]=floor((8*60-30)*runif(1))+7*60

emergency max[i]=emergency min[i]+90

} else { #the emergencies of the second shift

emergency min[i]=floor((8*60-30)*runif(1))+15*60

emergency max[i]=emergency min[i]+90

}

}

We present the results of the algorithm.
The time needed at each of the appointments is:

time of emergency= (48, 24, 5, 10, 40, 26, 24, 25, 110, 5, 40, 5, 67, 55,
26, 15)

The beginning of each time window is:

emergency min= (568, 790, 654, 690, 590, 458, 831, 595, 1302, 955,
924, 1253, 1190, 1188, 1072, 1101)

We are going to address these incidents to nurses 1, 5 (for the first shift)
and nurses 2,4 (for the second shift). Since all times are uniformly distributed
and the chosen nurses have very few appointments, we only want to calculate
the free time of each nurse and the time needed for the emergencies in each
shift. For each shift, we will calculate how many minutes are needed to
address all emergencies (travel times and times for each emergency). If the
free time of the experienced nurses (in each) shift exceeds the time needed
for the emergencies, then all emergencies can be addressed. For this part,
we do not need to find a complex algorithm that takes into consideration
the capabilities of each nurse, because the experienced nurses can address all
types of incidents. Therefore, we calculate:
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emergencies1=time of emergency[1] #the total time needed for the emer-
gencies of the first shift (initialization)

emergencies2=time of emergency[9] #the total time needed for the emer-
gencies of the second shift (initialization)

#the total time needed for the emergencies of the first shift

for (i in c(2:8)) {

emergencies1=emergencies1+S(i-1,i,1)+time of emergency[i]

}

#the total time needed for the emergencies of the second shift

for (i in c(10:16)) {

emergencies2=emergencies2+S(i-1,i,1)+time of emergency[i]

}

#the free time of nurse 1

if (length(sigma 1)>2) {

free time1=8*60-sum(time of appointment[sigma 1[,1]])

for (i in c(2:length(sigma 1[,1]))) {

free time1=free time1-S(i-1,i,2)

}

} else {free time1=8*60-sum(time of appointment[sigma 1[1]])}

#the free time of nurse 5

if (length(sigma 5)>2) {

free time5=8*60-sum(time of appointment[sigma 5[,1]])

for (i in c(2:length(sigma 5[,1]))) {

free time5=free time5-S(i-1,i,2)
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}

} else {free time5=8*60-sum(time of appointment[sigma 5[1]])}

#the free time of nurse 2

if (length(sigma 2)>2) {

free time2=8*60-sum(time of appointment[sigma 2[,1]])

for (i in c(2:length(sigma 2[,1]))) {

free time2=free time2-S(i-1,i,2)

}

} else {free time2=8*60-sum(time of appointment[sigma 2[1]])}

#the free time of nurse 4

if (length(sigma 4)>2) {

free time4=8*60-sum(time of appointment[sigma 4[,1]])

for (i in c(2:length(sigma 4[,1]))) {

free time4=free time4-S(i-1,i,2)

}

} else {free time4=8*60-sum(time of appointment[sigma 4[1]])}

#we check if the experienced nurses can make it to all the appointments

if (emergencies1 > free time1 + free time5 | emergencies2 > free time2
+ free time4) {

print(”Not all emergencies can be addressed.”)

} else {print(”Success.”)}
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And the result is: ”Success.”

We then run 10000 trials. In each trial, we assumed new depots, new
appointments, new medical emergencies the same way as in the simulation
above. We calculated the percentage of appointments that cannot be assigned
to any nurse via the algorithm and the percentage of medical emergencies
that cannot be addressed. As for the medical emergencies, we assume that
all will be addressed if the experienced nurses have more combined free time
than the sum of travel times between the emergencies and service times for
all medical emergencies. If not, then we decrease the demanded time by one
medical emergency and check again. We repeat this process and count the
failures in addressing medical emergencies until the condition is satisfied. In
order to count these failures, we added the following piece of code:

if (emergencies1 > free time1 + free time5 | emergencies2 > free time2
+ free time4) { #if there is not enough time to face all the medical
emergencies

for (i in c(1:8)) {

if(emergencies1 > free time1 + free time5) { #if there is not
enough time in the first shift

emergencies1=emergencies1-time of emergency[i] #we abstract
the time of one medical emergency

fails = fails+1 #we increase the number of failed responses by
one

if (emergencies1 > 0) {

emergencies1 = emergencies1 - S(i,i+1,1) #we abstract the
travel time to this medical emergency

}

}

if(emergencies2 > free time2 + free time4) { #if there is not
enough time in the second shift
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emergencies2=emergencies2 - time of emergency[i+8] #we ab-
stract the time of one medical emergency

fails = fails+1 #we increase the number of failed responses by
one

if (emergencies2 > 0) {

emergencies2 = emergencies2 - S(i,i+1,1) #we abstract the
travel time to this medical emergency

}

}

}

}

The results showed that only 0.8% of appointments and 2.59% of medical
emergencies cannot be addressed. These failures in scheduling happen in
cases where many appointments demand services that only the experienced
nurses can provide.

In the case where a = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), in 10000 new trials,
0.9% of appointments and 93.7% of medical emergencies could not be ad-
dressed. These failures happen because of the values of the vector a. Since
we do not assign greater values to the experienced nurses, the appointments
are assigned to all nurses without preference, thus leaving the experienced
nurses with insufficient free time.

In the case where a = (39, 39, 38, 38, 39, 37, 32, 36, 34, 35, 33, 31), in 10000 new
trials, 0.8% of appointments and 2.7% of medical emergencies could not be
addressed.

According to these results, it is evident that we have to assign bigger
coefficients to more experienced nurses in order for them to have the necessary
time to respond to medical emergencies.
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In a new scenario, where each customer chooses a service using a discrete
uniform over all types of services, we run 10000 trials for the same cases of
the value of vector a.

In the case where a = (109, 109, 108, 108, 109, 107, 102, 106, 104, 105, 103, 101),
we run 10000 trials and the results showed that 1.8% of appointments and
12.1% of medical emergencies could not be addressed.

In the case where a = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), we run 10000 trials and
the results showed that 4.1% of appointments and 98% of medical emergen-
cies could not be addressed.

In the case where a = (39, 39, 38, 38, 39, 37, 32, 36, 34, 35, 33, 31), we run 10000
trials and the results showed that 1.8% of appointments and 12.3% of medical
emergencies could not be addressed.

From the results we obtained, we deduce that, in all scenarios, we need
to assign bigger coefficients to experienced nursed in order to get the best
results possible.
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Chapter 4

Conclusion

In this master’s thesis, we have undertaken a comprehensive examination
of the resource allocation optimization challenges present in emergency re-
sponse systems and healthcare settings. Our primary focus was to address
the efficient deployment of rescue units to incident locations and the optimal
scheduling of nurses’ appointments. Through the application of optimization
techniques and algorithmic approaches, our aim was to provide innovative so-
lutions that optimize resource allocation, minimize response times, and en-
hance the overall effectiveness of emergency response systems and healthcare
services.

Throughout the course of this research, we have recognized the critical role
that time plays in emergency situations. The ability to swiftly deploy rescue
units to incident locations can often be the determining factor between life
and loss. Similarly, in healthcare settings, the efficient scheduling of nurses’
appointments is paramount for maximizing resource utilization and ensuring
timely medical care for patients. These challenges necessitated the develop-
ment of novel approaches and optimization models capable of addressing the
complexities inherent in routing and scheduling problems in both domains.

All the algorithms presented in the first part formulate the first problem
within the context of the Vehicle Rooting Problem (VRP). At the same
time, they incorporate elements of the Travelling Salesman Problem (TSP)
and the Multiple Travelling Salesman Problem (MTSP) into our resource
allocation optimization problem. These problems provide insights into the
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allocation and routing of multiple rescue units or nurses, taking into account
their respective tasks and constraints.

The algorithm presented in the second part of the thesis builds upon the
foundation of the SCHED7 algorithm and exhibits remarkable performance,
providing results within approximately one second. The algorithm’s low fail-
ure rates attest to its efficacy. Furthermore, the algorithm’s speed allows
for the verification of proposed schedules prior to appointment scheduling,
thereby minimizing the risk of failures in responding to medical emergencies.
Additionally, we propose that the assignment of each medical emergency
should be determined in real time, considering the presence of unknown pa-
rameters such as increased traffic and potential delays from previous ap-
pointments. Reviewing the current status of each nurse before making an
assignment would ensure the most appropriate allocation of resources.

The outcomes of this research hold substantial implications for the field
of emergency response systems and healthcare resource management. By
optimizing the dispatching of rescue units and scheduling of nurses’ appoint-
ments, the proposed algorithm contributes to the enhancement of emergency
response capabilities, improved patient care, and increased operational effi-
ciency. These findings have practical applications for decision support sys-
tems within real-world emergency response systems and healthcare facilities.

As avenues for further research, it would be valuable to explore the scala-
bility and robustness of the algorithm in larger-scale scenarios with diverse
constraints. Additionally, integrating real-time data and advanced predictive
analytics could enhance the algorithm’s adaptability to dynamic changes and
improve its decision-making capabilities. Further investigations into incor-
porating additional optimization techniques and considering multi-objective
optimization would expand the algorithm’s applicability and potential ben-
efits.

In conclusion, this master’s thesis has addressed the resource allocation
optimization challenges in emergency response systems and healthcare set-
tings. By developing an algorithm that optimizes the dispatching of rescue
units and scheduling of nurses’ appointments, we have made significant con-
tributions to improving emergency response capabilities, patient care, and
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operational efficiency. The findings of this research offer practical implica-
tions for decision support systems in real-world emergency response systems
and healthcare facilities. Future research endeavors can build upon these
findings by exploring scalability, incorporating real-time data, and expand-
ing the algorithm’s optimization capabilities.
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