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ABSTRACT

Remote sensing of snowfall has been proved to be a significant challenge since the start
of the satellite era. Several techniques have been applied to satellite data, in order to es-
timate the fraction of frozen precipitation that reaches the surface. This thesis aims at in-
vestigating the efficacy of different Machine Learning (ML), and especially Deep Learning
(DL) algorithms, in estimating the precipitation phase of NASA’s Integrated Multi-satellitE
Retrievals for the Global Precipitation Measurement (GPM-IMERG). To achieve that, a
training phase with hourly high-resolution numerical model outputs and in-situ observa-
tional data is chosen for the period of late-2020 and 2021. Results show that ML and DL
models can estimate precipitation phase with relatively high accuracy, when compared to
traditional methods, based on several case studies. The findings suggest that ML mod-
els offer a promising approach for advancing the nowcasting of snowfall and building a
long-term archive dataset of IMERG-based snowfall, utilizing conventional near real-time
data.

SUBJECT AREA: Machine Learning

KEYWORDS: Machine Learning, Deep Learning, Snowfall, Satellite Precipitation,
Precipitation Phase



ΠΕΡΙΛΗΨΗ

Η αναγνώριση της χιονόπτωσης με τηλεπισκόπηση έχει αποδειχθεί μια δύσκολη πρό-
κληση ήδη από τα πρώτα στάδια χρήσης δορυφόρων στην ανθρώπινη ιστορία. Στο παρελ-
θόν έχουν εφαρμοστεί ποικίλες τεχνικές σε δορυφορικά δεδομένα, με σκοπό την εκτίμηση
του ποσοστού των στέρεων κατακρημνισμάτωνπου φτάνουν στην επιφάνεια του εδάφους.
Η παρούσα εργασία στοχεύει στη διερεύνηση της αποτελεσματικότητας ποικίλων αλγόριθ-
μων Μηχανικής Μάθησης, καθώς και Νευρωνικών Δικτύων, για την εκτίμηση της φάσης
του υετού στα δεδομένα του αλγόριθμου Integrated Multi-satellitE Retrievals for the Global
Precipitation Measurement (GPM-IMERG) της NASA. Προς αυτήν την κατεύθυνση, επι-
λέχθηκε μια φάση εκπαίδευσης κατά την οποία χρησιμοποιούνται τα αποτελέσματα ενός
αριθμητικού μοντέλου πρόγνωσης καιρού σε ωριαίο χρονικό βήμα, μαζί με επιτόπιες πα-
ρατηρήσεις εδάφους από μετεωρολογικούς σταθμούς για τις τελευταίες εβδομάδες του
2020 και το 2021. Τα αποτελέσματα δείχνουν πως τα μοντέλα Μηχανικής Μάθησης, και
ειδικότερα τα Νευρωνικά Δίκτυα, μπορούν να εκτιμήσουν τη φάση του υετού με σχετικά
υψηλή ακρίβεια, σε σύγκριση με αντίστοιχες παραδοσιακές μεθόδους, σε πολλές από τις
μελετηθείσες περιπτώσεις. Τα ευρήματα υποδεικνύουν πως η Μηχανική Μάθηση αποτελεί
μια υποσχόμενη μέθοδο για τη βελτίωση της εκτίμησης της χιονόπτωσης από δορυφορικά
δεδομένα, αλλά και για τη δημιουργία ενός μακροχρόνιου αρχείου χιονοπτώσεων, που βα-
σίζεται στον αλγόριθμο IMERG, αξιοποιώντας συμβατικά δεδομένα σχεδόν πραγματικού
χρόνου.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μηχανική Μάθηση, Βαθιά Μηχανική Μάθηση, Χιονόπτωση,
Δορυφορική Εκτίμηση Υετού, Φάση Υετού
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Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates

1. INTRODUCTION

1.1 Precipitation

Precipitation is defined as ”all liquid or solid phase aqueous particles that originate in the
atmosphere and fall to the Earth’s surface” [1]. It plays a key role in the worldwide water
cycle and is of significant importance for meteorology, climatology and hydrology. Accur-
ate measurement of precipitation and its distribution at both regional and global scales
has always been a challenge for the scientific community. However, continuous advance-
ments in satellite technology have siginficantly improved precipitation-retrieval methods
over the last half century [2].

1.2 Precipitation Phase

Deriving the phase of precipitation and distinguishing between its liquid and frozen state,
is of major importance for human activities, hydrological processes and climate change
studies [3, 4]. For example, in a drainage basin (”an area of land where water from rain
or snow melt drains downhill into a body of water such as a river, lake, wetland or ocean”
[5]) the response time is different for rainfall and snowfall, while for remotely sensed ob-
servations a misclassification of precipitation phase can result in significant errors in the
estimated precipitation rate [4, 6].

Towards this direction, a plethora of techniques is being used today to detect snowfall.
Some of the most successful methods include using in-situ observations, remote sensing
through dual-wavelength radars, or using numerical weather models [7, 8]. However, none
of those approaches has been proved fully reliable, while for the most accurate ones, such
as the measurements from in-situ instruments, the available data are generally sparse or
even absent, for example in mountainous or sparsely populated areas [4, 9]. The use of
satellite data to obtain precipitation estimates has been one of the most used methods
for measuring precipitation so far, giving both satisfactory and continuous results with
almost no missing values or temporal and spatial gaps [10]. Nonetheless, the estimation
of precipitation phase based solely on satellites is still of mediocre performance for various
reasons [11].

1.3 Machine Learning

Rebala et al. (2019) [12] described Machine Learning (ML) as a computer science field
focusing on enabling computers to learn and improve their performance without requiring
explicit programming. Traditional programmingmethods involve creating a detailed design
and implementing it as a program, but this can be challenging for problems like detecting
handwritten characters, due to the difficulty in designing rules for such variations.

ML can be applied to various types of problems such as: classification, where data are
categorized into different classes, like will it rain or snow tomorrow; clustering, where data
points are grouped into clusters based on shared properties; and regression, which uses
historical data to forecast a continuous range of values, like temperature.

ML algorithms can be classified into various categories, based on the learning techniques

I. Dravilas 12
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they use [13, 14]:

• Supervised ML, that includes training on labeled target data.

• Unsupervised ML, that does not involve labeled target data.

• Semi-supervised ML, which uses both labeled data and unlabeled data for training.

• Reinforcement ML, where models learn by interacting with an environment.

Supervised Machine Learning is a subset of Artificial Intelligence that uses algorithms
which can learn a model or a set of rules from an existing labeled dataset, with the goal
of correctly predicting new and unlabeled data. A common aspect of all supervised ML
methods is the utilization of training data in order to optimize a set of weights that facilitate
predictions. The determination of these weights involves either minimizing the error (i.e.
loss) of the ML prediction (for regression problems) or maximizing the probability of a
class label (for classification problems). Even though ML algorithms are more accurate
than human-created rules for some types of problems, some ML algorithms, particularly
those based on neural networks, lack interpretability, which is crucial in certain domains
[12].

The use of Machine Learning in Meteorology has been constantly increasing during the
last few years (Chase et al. 2022) [15], and is predicted to increase even more, as the
volume of meteorological data that can be used to train ML models grows.

1.4 Machine Learning Models Used in Meteorology

According to Chase et al., some of the most common ML algorithms used in meteorology
are Linear Regression, Logistic Regression, Naive Bayes, Decision Trees, RandomForest
and Support Vector Machines.

1.4.1 Linear Regression

Linear Regression is a simple and computationally efficient method, which works by fitting
the weight terms (wi) in the following equation:

y =
N∑
i=0

wixi, (1.1)

where N is the number of features.

The loss function commonly used for Linear Regression is the Residual Summed Squared
error (RSS), given by the following formula:

RSS =
N∑
j=1

(yj − ŷj)
2, (1.2)

where N is the number of features, yj is the actual value and ŷj is the predicted value.

I. Dravilas 13
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1.4.2 Logistic Regression

Logistic Regression is a classification method that applies the logistic function (also known
as the sigmoid function) to the output of equation 1.1, in order to transform it to probability.

S(ŷ) =
1

1 + e(−ŷ)
(1.3)

The loss function used for Logistic Regression is the Cross Entropy Loss, which for a
binary classification problem can be written as follows:

CE =
N∑
i=0

−yi · log(S(ŷ)) + (1− yi) · log(1− S(ŷ)) (1.4)

1.4.3 Naive Bayes

One more probabilistic classification method is Naive Bayes, which uses Bayes’ theorem
to calculate the conditional probability of the input vector x belonging to each class.

P (y|x) = P (y)P (x|y)
P (x)

(1.5)

The term ”naive” in the Naive Bayes algorithm refers to its assumption that input features x
are independent of one another. That means, the algorithm treats each feature as if it has
no relationship with the others. This simplification allows the algorithm to model P (x|y) by
assuming a distribution, such as the normal distribution.

Figure 1.1. by Chase et al. shows a visualization of the probability distribution across a
range of temperatures, given the precipitation phase class ”snow” or ”rain” for a weather
station. The data are presented in a histogram, showing the relative frequency of obser-
vations in temperature bins. Smooth curves are overlaid on the histogram, representing
normal distribution fits to the data. Red colour is used to denote instances with rain, while
blue colour indicates instances with snow.

I. Dravilas 14
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Figure 1.1: Probability distribution of snow and rain across temperature vales. Reprinted from ”A
Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning” by R.

J. Chase, Weather and Forecasting, vol. 37, no. 8, pp. 1509–1529, Aug. 2022

1.4.4 Decision Trees

Decision trees are a widely used method for decision-making, working like flow charts,
which are especially valuable for classification tasks. Those trees split the data in sub-
groups, in a way that reduces Gini impurity or entropy after each split.

Gini impurity and entropy are both metrics that gauge the coherence of data labels within
each group. The objective is to select branches that lead to leaves with minimal Gini
impurity or entropy, resulting in distinct and, at the same time, consistent subgroups.

Gini = 1−
k∑

i=0

pi
2 (1.6)

Entropy = −
k∑

i=0

pilog2(pi), (1.7)

where for both metrics pi denotes the probability of class i in the training dataset.

1.4.5 Random Forest

Random Forest is a collection of Decision Trees, with each tree trained on a subset of
the input data or the input features. For classification tasks, the final result is usually
produced by counting the predicted classes of the tress and selecting the class with the
highest number of appearances.
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1.4.6 Gradient Boosted Trees

Gradient Boosted Trees are produced using an initial Decision Tree, called a weak learner,
which is iteratively trained in order to reduce the error remaining from the previous trees.

1.4.6.1 XGBoost

Chen et al. in 2016 [16] introcuded XGBoost, a tree boosting system improving the tradi-
tional tree boosting technique mentioned above.

XGBoost introduces a regularization function that penalizes the complexity of the model
and helps avoid overfitting. The regularized objective that is minimized is the following:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (1.8)

where

Ω(f) = γT +
1

2
λ∥w∥2 (1.9)

and

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F, (1.10)

becauseK additive functions are used to produce the output of the tree ensemble model.

Here, l represents a convex loss function, which quantifies the dissimilarity between the
predicted value ŷi and the actual target value yi. The second term Ω serves as a penalty
for the model’s complexity, ensuring that the final weights are smooth enough to prevent
overfitting. Essentially, this regularized objective will favour models that utilize simple and
predictive functions.

XGBoost also uses an exact greedy algorithm for split finding, which explores all possible
split points for each feature in order to determine the best one. However, for large datasets,
where a greedy search becomes very slow, the splits are approximated.
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2. BACKGROUND AND RELATED WORK

The problem of deriving precipitation phase has been extensively studied before, both with
conventional and Machine Learning methods.

2.1 Conventional Methods

Matsuo et al. in 1981 [17] showed that liquid water content and fall velocity of snowflakes,
and therefore the depth of the layer below freezing level where melting does not occur,
were dependent on surface air temperature, relative humidity, and snowflake mass.

In 2014, Lee et al. [18] presented the enhanced Matsuo scheme, an algorithm devised by
meteorologists to forecast winter precipitation types in South Korea. The scheme utilizes
air temperature, relative humidity, and the thickness of the 1000-850 hPa layer as input
parameters.

Sims and Liu in 2015 [4] studied the effect of multiple geophysical parameters on pre-
cipitation phase and developed a parameterization scheme that utilizes 2-m temperature,
relative humidity, low-level vertical lapse rate, surface skin temperature and surface type
to calculate the conditional probability of solid precipitation to occur. Surface pressure is
also used in order to calculate wet-bulb temperature (Tw).

2.2 Machine Learning Methods

In 2018, Behrangi et al. [9] reported that near-surface air temperature is usually used to
derive precipitation phase. To distuingish between liquid and solid phase, the most used
methods are a static threshold, a linear transition from all-rain to all-snow temperatures
and a sigmoidal relationship produced by a logistic regression model, that can map values
to probability of snow or rain to occur. It was found that relative humidity, wind speed and
air pressure can also affect the melting of snowflakes and thus more variables should be
used together with air temperature to determine precipitation phase. Even though among
all single predictors Tw yields the highest score, the authors concluded that the use of
logistic regression to combine the previously mentioned variables produces even better
results.

Tang et al. in 2018 [19] combined passive microwave, infrared and environmental data
using Deep Neural Networks to produce an improved snow estimation compared to GPM’s
passive microwave algorithm.

In 2020, Moon et al. [20] utilized correlation-based feature selection along with multinomial
logistic regression to determine precipitation phase. Model data from the European Centre
for Medium-Range Weather Forecasts (ECMWF) and the Regional Data Assimilation and
Prediction System (RDAPS) were used.

Shin et al. in 2022 [21] developed an ML-based winter precipitation type classification
algorithm, testing three popular supervised Machine Learning Algorithms, Decision Trees,
Random Forest and Support Vector Machines. The Random Forest algorithm exhibited
the most outstanding performance, having the highest Probability Of Detection and the
lowest False Alarm Ratio scores across all precipitation types. The results of the study
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indicate that Tw and 850-1000 hPa layer thickness are the two most important variables
for determining precipitation phase.

A paper presented at the AGU Fall Meeting 2022 by Bédard-Therrien et al. [22] intro-
duced an ML approach for partitioning precipitation phase, using air temperature, relat-
ive humidity and disdrometer data, along with a Random Forest Regression Model. The
precipitation phase used as target for the model, was measured with the WS100 radar
disdrometer, which identifies solid, liquid and mixed precipitation phases.

Sanò et al. in 2022 [23] developed a new ML-based algorithm for snowfall retrieval,
named SLALOM-CT (Snow retrievaL ALgorithm fOr gpM–Cross Track), using the Ad-
vanced Technology Microwave Sounder (ATMS) and Cloud Profiling Radar (CPR) ob-
servations. The Machine Learning algorithms that were compared, are Random Forest,
Gradient Boosting and Neural Networks. The most accurate model for snowfall detection
was a Convolutional Neural Network (CNN).
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3. MATERIALS AND METHODS

In this study, Machine Learning and especially Deep Learning (DL) algorithms are used
along with numerical weather data and in-situ observational data to classify the phase
of precipitation acquired by the Integrated Multi-satellitE Retrievals for the Global Pre-
cipitation Measurement (GPM-IMERG) operated by the National Aeronautics and Space
Administration (NASA) [24].

3.1 Description of the Acquired Data

3.1.1 In-situ Observations From Ground Stations

During the past 15 years, the Institute for Environmental Research and Sustainable De-
velopment of the National Observatory of Athens (NOA/METEO) has established and is
currently managing a dense network of automated weather stations throughout Greece
(NOAAN) [25]. The in-situ variables measured by NOAAN stations that are used in this
study include the air temperature, relative humidity and atmospheric pressure. Data from
a diverse range of 480 stations, spanning various geographical areas and altitudes, are
incorporated in the analysis.

Figure 3.1: The NOAAN weather stations used, coloured by altitude, and the corresponding grids
of BOLAM and IMERG over the Attica region.
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3.1.2 Numerical Weather Model Data

The National Observatory of Athens also runs the hydrostatic meteorological Bologna
Limited-Area Model (BOLAM) in operational mode. The current set-up of BOLAM at
NOA/METEO involves a grid covering Europe, the Mediterranean basin and North Africa.
The grid consists of 770 x 702 points with a 0.06° horizontal grid interval (≈6 km) and 40
vertical levels [26].

Numerous studies have consistently demonstrated that precipitation phase is influenced
by a combination of meteorological variables, with air temperature being a key determin-
ant. Another crucial variable that plays a vital role in precipitation phase determination is
relative humidity. Relative humidity quantifies the moisture content present in the air and
can aid in discerning the particle size distribution of precipitation. [21].

Geopotential Height is obtained by normalizing Geopotential, which represents the incre-
mental work performed by shifting a unit mass from a surface to another, by the acceler-
ation of gravity (= 9.80665m/s2) [27]. It helps identify the altitude corresponding to each
pressure level, thereby revealing the specific height at which variables like temperature
and relative humidity of an isobaric surface are observed.

Precipitation phase is also influenced by solid precipitation through the process of sublim-
ation, particularly when the melting layer is in a sub-saturated state. This phenomenon
can lead to an extended rain-snow transition zone, affecting the depth and distribution of
different precipitation types [28]. Additionally, cooling occurs when raindrops evaporate,
contributing to temperature changes in the atmospheric column [29]. In the context of
convective precipitation, downdrafts play a significant role in temperature discontinuity.
As colder air descends towards the ground, it can cause abrupt changes in temperature
profiles, influencing precipitation type on the ground [30].

Considering the above-mentioned factors that can influence precipitation phase, the fol-
lowing variables of BOLAM are used in the current study:

• Temperature at 1000 hPa, 950 hPa, 900 hPa, 850 hPa, 700 hPa, 500 hPa

• Geopotential Height at 850 hPa, 500 hPa

• Wind Direction at 1000 hPa, 900 hPa, 700 hPa, 500 hPa

• Specific Humidity at 1000 hPa, 950 hPa, 900 hPa, 850 hPa, 700 hPa, 500 hPa

• Relative Humidity at 1000 hPa, 950 hPa, 900 hPa, 850 hPa, 700 hPa, 500 hPa

• Precipitation

• Convective Precipitation

• Temperature 2 m

• Relative Humidity 2 m

• Atmospheric Pressure

• Model Terrain Height
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3.1.3 Satellite Precipitation Estimates

The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm is designed to in-
tercalibrate, combine and interpolate microwave precipitation measurements, along with
microwave calibrated infrared (IR) satellite measurements, precipitation gauge analyses
and possibly other precipitation estimators, at fine time and space scales worldwide. The
system runs multiple times for each observation time, providing a first estimation and suc-
cessively generating more accurate estimates as more data become available. IMERG
covers a global grid with a spatial resolution of 0.1° and its early products are available
with a delay of approximately 4 hours, in 30-minute time intervals [24].

Precipitation phase in IMERG is currently computed diagnostically, based on the Liu scheme
[4]. The Liu scheme used by NASA calculates the Probability of Liquid Precipitation Phase
(PLPP) based solely on data from a numerical weather model or model analysis, relying
on surface wet-bulb temperature values. For the purpose of this study, data from IMERG
Early Run are used. The precipitation estimates used are uncalibrated and IMERG PLPP
is based on wet-bulb temperature data from the Japan Meteorological Agency (JMA) Nu-
merical Weather Prediction (NWP) forecast [31].

3.2 Creation of a Custom Dataset

Snowfall observations in Greece are sparse in time and space, and usually only available
in airports [32]. As a consequence, the availability of such data is insufficient to adequately
train an ML Model and an alternative approach needs to be explored. Sims and Liu (2015)
showed that Tw is a better indicator than ambient air temperature for separating solid and
liquid precipitation [4]. Since air temperature, relative humidity and atmospheric pressure
data are available from the dense NOAAN weather station network, a dataset classifying
whether favorable conditions for snowfall were present for each station observation can
be created, based on Tw.

Using NOAAN observations for air temperature, relative humidity and atmospheric pres-
sure, BOLAM’s nowcast (namely the first 12 hours after model initialization time excluding
a spin-up period of 12 hours) and the 1.1°C Tw threshold chosen by NASA for IMERG V06
over land as the value corresponding to a Probability of Liquid Precipitation Phase equal
to 50%, a new dataset is created. For each in-situ observation, the new dataset contains
information about whether conditions were favorable for snowfall according to the surface
Tw<1.1°C threshold, the corresponding numerical weather model data for the nearest grid
point, as well as the station metadata such as latitude, longitude and altitude. The dataset
comprises data collected from 480 locations across Greece, covering the time period of
late-2020 and 2021. The temporal resolution of the dataset is set at 30 minutes, providing
detailed and frequent measurements that match the temporal resolution of IMERG V06.
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Figure 3.2: A heatmap of surface air temperature and relative humidity records by NOAAN stations
when conditions were favorable for snowfall (Tw<1.1°C).

A separate testing dataset is also created in the same way, using 3-month-long data from
early-2022 for 11 locations across Greece, with a temporal resolution of 1 hour.

In our datasets, Tw is calculated using the Newton’s IterationMethod as employed by Sims
and Liu (2015). Notably, this very method is also currently used by NASA for determining
PLPP in IMERG V06 data.

In Machine Learning, the models undergo a three-step process: training, validation, and
testing. During training, the model learns from a designated training dataset. The val-
idation dataset is then used to fine-tune the model, and finally, the model is tested on a
testing dataset that contains data it has not encountered before. However, constructing
these datasets can be challenging in the case of weather data, as spatial and temporal
overlaps may occur, compromising the integrity of the testing dataset.

For the purpose of this study, spatial independence is achieved by building training, val-
idation and testing datasets that do not contain data from identical station locations.

Moreover, temporal independence is achieved by constructing training and testing data-
sets using different time periods.

3.3 Machine Learning Models Used

Our goal is to train ML models that, given only the numerical weather model’s data and
metadata for a specific location, are able to solve the classification task of predicting
whether conditions favorable for snow are present near the surface or not. This layer
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can then be used as a mask on IMERG precipitation products to create an IMERG-Snow
dataset.

The three types of ML models used to solve this classification problem are a Random
Forest Classifier, a Gradient Boosting Classifier and a Feedforward Neural Network. The
latter is a subset of Deep Learning, where multiple layers are used to extract information
from data.

3.3.1 Random Forest

Random Forest was first introduced in 2001 and is consisted of many basic classifiers in
the form of Decision Trees [33]. Each Decision Tree makes a prediction, which is com-
pletely independent from the decisions of the other Decision Trees, and, in classification
tasks, the final result is produced by a voting procedure, resembling an ensemble tech-
nique.

3.3.2 Gradient Boosting

Gradient Boosting is a popular ML technique used, among others, in classification tasks.
It works by creating multiple weak models, which often are Decision Trees, and combining
them to form a better-performing model. This is usually done by building an initial weak
model, then a second model aiming to more accurately predict the cases where the first
one performs poorly, etc. Each newmodel created, targets minimizing the error of the loss
function; thus, the gradient of the loss function is calculated in every step of the algorithm
[34].

3.3.3 Feedforward Neural Network

Feedforward Neural Networks are the simplest type of artificial neural networks, where
information moves only in a forward direction, from the input nodes, to the hidden nodes
and to the output nodes [35]. Here, a multi-layer neural network, also called a Multilayer
Perceptron is used. A Multilayer Perceptron consists of multiple layers of computational
units, containing neurons that are connected to the neurons of the next layer. These
models are trained using back-propagation, a technique utilized to adjust the weight values
of each connection, in a way that minimizes the error between predictions and actual
values [36].

3.4 Training And Testing Process

3.4.1 Data Splitting and Cross-Validation

Data are divided into training and testing datasets based solely on station locations, using
an 80:20 ratio.
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Figure 3.3: The NOAAN weather stations divided into the training and the testing dataset.

Figure 3.4: The NOAAN weather stations divided into the training and the testing dataset, coloured
by altitude.
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For each of the three models described above, the best architecture is determined through
a 5-fold cross-validation process for hyperparameter tuning, ensuring that data for each
station location are exclusively present in only one of the training and validation data-
sets during each iteration. The best hyperparameters are determined after averaging the
F1-score (a measure of the harmonic mean of Precision and Recall) derived by training
each architecture on each of the five splits of the training dataset, and validating it on the
remaining 20% of the training dataset.

Finally, the trained models are tested on the corresponding testing dataset, comprising
20% of the initial dataset.

Figure 3.5: Schematic representation of the training phase.
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Figure 3.6: Schematic representation of the testing phase.

3.4.2 Hyperparameter Optimization

3.4.2.1 Random Forest

For the Random Forest model, the RandomForestClassifier from scikit-learn library is
used. The best-performing model is selected among the following grid of parameters,
using GridSearchCV, which performs an exhaustive search over the specified parameter
values:

• Maximum Tree Depth: 5, 7 or 10

• Number of Estimators (number of different Decision Trees in the ensemble method):
100, 200 or 400

• Class Weight (the weights associated with each class): None (same weight for each
class) or ”balanced” (automatic weights adjustment, based on the class frequencies
of the input dataset)

3.4.2.2 Gradient Boosting

For the Gradient Boosting model, the XGBClassifier from the XGBoost library is used. The
best-performing model is selected among the following grid of parameters, using Grid-
SearchCV, which performs an exhaustive search over the specified parameter values:

• Learning Rate (the pace at which the algorithm updates its parameters to reach a
local minimum): 0.1 or 0.2

• Maximum Tree Depth: 5, 7 or 10
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• Number of Estimators (number of additive trees): 100, 200 or 400

• Scale Pos Weight (the weights associated with each class): 1 (same weight for each
class) or 22 (the number of non-snow labels in our dataset is approximately 22 times
larger than the number of snow lables)

• Objective: ”binary:hinge” (hinge loss for binary classification) or ”reg:squarederror”
(regression with squared loss)

3.4.2.3 Feedforward Neural Network

For the Feedforward Neural Network, the PyTorch Machine Learning framework is utilized.
The architecture of themodel contains linear layers with 512 neurons, as well as non-linear
activation functions.

To introduce non-linearity into the model, a non-linear activation function is applied to the
output of each linear layer, with the exception of the last one, while a dropout layer is
incorporated after each of the previously-mentioned non-linear activation functions.

The final output of the model is transformed into probabilities using a Sigmoid activation
function applied to the output of the last linear layer. This step ensures that the model
outputs values within the range [0, 1], representing the probabilities of the input belonging
to each class of ”rain” or ”snow”.

The Adam optimizer is selected as the minimizer of the loss function during the training
process.

The best-performing model is selected among the following grid of parameters, using Op-
tuna, a hyperparameter optimization framework, which decreases execution time and en-
hances performance, compared to traditional methods such as GridSearch:

• Number of Linear Layers: 10 or 15

• Non-Linear Activation Function: ReLU or Tanh

• Dropout Rate (ignoration of randomly selected neurons to avoid overfitting): 0, 0.25
or 0.5

• Batch Size (the number of samples processed before a single update of the model):
128 or 256

• Number of Epochs (the number of complete passes through the training data): 10
or 20

• Criterion (the loss function): MSELoss or BCELoss

• Learning Rate of the Optimizer (the pace at which the optimizer updates the para-
meters to reach a local minimum): 1e-5, 2e-5, or 3e-5

For the training of the Feedforward Neural Network, due the compute-intensive nature of
the operations, CUDA programming model is utilized in order to parallelize the training
across GPUs and train the models faster.
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3.5 Evaluation and Metrics

The metrics used to evaluate the results of the models are Precision, Recall (also called
Probability of Detection - POD), F1-score, Critical Success Index (CSI), False Alarm Ratio
(FAR) and Heidke Skill Score (HSS).

3.5.1 Precision

Precision is a statistical metric that measures the proportion of the True Positive (TP)
results among all the Positive results predicted by the model, showing how many of the
Positive results the model predicted are actually correct and not False Positive (FP). A
value of 0 indicates complete disagreement between forecast and observations, while a
value of 1 indicates a perfect forecast.

Precision =
TP

TP + FP
(3.1)

3.5.2 Recall

Recall is a statistical metric that measures the proportion of the TP results among all
the actual Positive cases of a dataset (TP and False Negative - FN). It represents the
ability of the model to identify Positive cases and is also called Probability of Detection
(POD). As in Precision, a value of 0 indicates complete disagreement between forecast
and observations, while a value of 1 indicates a perfect forecast.

Recall =
TP

TP + FN
(3.2)

3.5.3 F1-score

F1-score is calculated as the harmonic mean of precision and recall, skillfully merging
these two competing metrics. As in Precision and Recall, a value of 0 indicates complete
disagreement between forecast and observations, while a value of 1 indicates a perfect
forecast.

F1 = 2
Precision ·Recall

Precision+Recall
(3.3)

3.5.4 Critical Success Index

Critical Success Index (CSI), also called Threat Score (TS), is a verification measure of
categorical forecast performance, which does not take into account the number of fore-
casts belonging in the negative class, that verify. Again, a value of 0 indicates complete
disagreement between forecast and observations, while a value of 1 indicates a perfect
forecast.
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CSI =
TP

TP + FP + FN
(3.4)

3.5.5 False Alarm Ratio

False Alarm Ratio (FAR) measures forecast performance by dividing the number of false
alarms by the total number of event forecasts. It indicates the percentage of negative class
events which were falsely forecast as positive events. A value of 1 indicates complete
disagreement between forecast and observations, while a value of 0 indicates a perfect
forecast.

FAR =
FP

TP + FP
(3.5)

3.5.6 Heidke Skill Score

Heidke Skill Score is a skill-corrected verification metric which also takes into account
the number of correct random forecasts. It is derived by dividing, the total number of
correct forecasts minus the number of correct random forecasts, by the total number of
forecasts minus the number of correct random forecasts. It measures the improvement of
the forecast over a chance forecast. Here, negative values indicate a forecast worse than
random chance, a value of 0 means no skill level, while a value of 1 is a perfect forecast
[37].

HSS = 2 · TP · TN − FP · FN

(TP + FN) · (FN + TN) + (TP + FP ) · (FP + TN)
(3.6)
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4. RESULTS

For each of the Random Forest, Gradient Boosting and Feedforward Neural Network mod-
els, the best architecture is selected after hyperparamter tuning, and is then evaluated on
the testing dataset.

4.1 Best Hyperparameters

The best hyperparameters found for each model are the following:

4.1.1 Random Forest

• Maximum Tree Depth: 10

• Number of Estimators (number of different Decision Trees in the ensemble method):
100

• Class Weight (the weights associated with each class): None (same weight for each
class)

4.1.2 Gradient Boosting

• Learning Rate (the pace at which the algorithm updates its parameters to reach a
local minimum): 0.1

• Maximum Tree Depth: 10

• Number of Estimators (number of additive trees): 400

• Scale Pos Weight (the weights associated with each class): 1 (same weight for each
class)

• Objective: ”reg:squarederror” (regression with squared loss)

4.1.3 Feedforward Neural Network

• Number of Linear Layers: 15

• Non-Linear Activation Function: ReLU

• Dropout Rate (ignoration of randomly selected neurons to avoid overfitting): 0.25

• Batch Size (the number of samples processed before a single update of the model):
128

• Number of Epochs (the number of complete passes through the training data): 20

• Criterion (the loss function): BCELoss

• Learning Rate of the Optimizer (the pace at which the optimizer updates the para-
meters to reach a local minimum): 1e-5
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4.2 Feature Importance

Feature importance serves as a scoring mechanism, providing insights into the usefulness
of each variable during the model’s construction.

For the Gradient Boosting model, we gain an understanding of feature importance through
two different calculations. The first approach, known as ”weight,” calculates the number
of occurrences of each feature within the tree. The second method, ”gain,” evaluates the
average gain achieved across all splits that involve the utilization of that specific feature
[38].

The visual representations in the following figures illustrate the most critical features of the
model using the two calculation methods. Notably, both Temperature at 2 m and altitude
emerge as highly influential variables, making appearances in both types of importance
metrics. Additionally, Temperature and Specific Humidity at the 1000 hPa isobaric surface
stand among the top three features, completing the groups of the three most important
contributors.

Figure 4.1: The ”weight” importance of each feature in constructing the Gradient Boosting model.
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Figure 4.2: The ”gain” importance of each feature in constructing the Gradient Boosting model.

4.3 Evaluation on the First Testing Dataset

The testing dataset used here is the one containing data for late-2020 and 2021 from 96
station locations in a 30-minute time-step.

4.3.1 Machine Learning Models

The six score metrics were calculated on the testing dataset for all the Random Forest,
Gradient Boosting and Feedforward Neural Network models, with regard to their ability of
predicting cases with conditions favorable for snowfall (Tw<1.1°C). Results are shown in
Table 4.1.

I. Dravilas 32



Machine Learning Snowfall Retrieval Algorithms for Satellite Precipitation Estimates

Table 4.1: Scores of the 3 ML models for predicting cases with conditions favorable for snowfall,
evaluated on the first testing dataset.

Model Precision Recall (POD) F1-score CSI FAR HSS
Random Forest 0.87 0.72 0.79 0.65 0.13 0.78

Gradient Boosting 0.87 0.81 0.84 0.72 0.13 0.83

Feedforward Neural Network 0.85 0.80 0.82 0.70 0.15 0.81

4.3.2 Conventional Methods

A comparison with traditional precipitation phase derivation techniques is also made on
the same testing dataset.

The first method uses the Probability of Liquid Precipitation Phase field currently available
in IMERG V06. This field is produced using a simple look-up table, which calculates PLPP
as a function of wet-bulb temperature. To achieve this for the Early Run dataset which is
used in our study, the surface temperature, humidity and pressure forecasts are taken
from the JMA NWP model [31]. According to NASA, the 1.1°C threshold for Tw is used to
distinguish between less and more than 50% PLPP over land.

The second method uses the raw nowcast data acquired from BOLAM for near-surface
air temperature, relative humidity and atmospheric pressure, in order to calculate Tw and
classify each case using the 1.1°C threshold. It is important to note here, that no correc-
tions are made to account for the difference between the model grid point altitude and the
actual station altitude.

Results for the two conventional methods are shown in Table 4.2.

Table 4.2: Scores of the 2 conventional methods for predicting cases with conditions favorable for
snowfall, evaluated on the first testing dataset.

Model Precision Recall (POD) F1-score CSI FAR HSS
IMERG V06 PLPP 0.61 0.61 0.61 0.44 0.39 0.59

BOLAM nowcast 0.66 0.81 0.73 0.57 0.34 0.71

4.4 Application and Evaluation on 2022 Data

The data employed in both the training and the testing phases for the aforementioned
methods span from late-2020 to 2021.

In this section, a new dataset comprising data from the initial three months of 2022 is intro-
duced. The purpose is to assess the predictive capability of the Gradient Boosting model,
which exhibited superior performance compared to all other methods, in predicting the
precipitation phase for data outside the training dataset’s time span. This is accomplished
using two methods.

Firstly, the model is applied to a grid encompassing data for various cold waves that im-
pacted Greece in 2022. The output is then used as a mask on IMERG V06 Early Run pre-
cipitation estimates and the results are plotted, allowing us to visualize and comprehend
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the model’s effectiveness in determining precipitation phase during real-world conditions.

Secondly, the model’s predictions for the initial three months of 2022 are compared with
the NOAAN weather stations measurements for 11 carefully selected locations.

These steps aim to evaluate and validate the model’s performance under real-world con-
ditions, both during specific weather events and in comparison to ground truth measure-
ments from established weather stations.

4.4.1 Examples of Application on IMERG Precipitation Estimates

During the initial three months of 2022, Greece experienced several cold waves of varying
intensity. To assess the effectiveness of the Gradient Boosting model in identifying the
precipitation phase during these events, BOLAM nowcast data are used as input. The
precipitation phase predicted by the model is then utilized to mask the corresponding
IMERG V06 Early Run uncalibrated precipitation data for the same time period.

4.4.1.1 10th of January 2022

On January 10th of 2022, a cut-off low in the upper/mid troposphere moved from Italy
towards the Ionian Sea in Greece. This weather system was accompanied by a mild cold
air advection from the Balkans towards Northern Greece.

As a result of these weather conditions, snowfall was expected in the mountains of Main-
land Greece and in some lower altitude areas of Western Macedonia.
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Figure 4.3: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 10th
of January 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.1.2 24th of January 2022

On January 24th of 2022, an upper level closed low over the Eastern Mediterranean res-
ulted in a significant cold air advection, leading to heavy snowfall in the eastern regions
of Greece, including Attica and the capital city, Athens, as well as the Aegean Islands.
The snowfall was so intense that it caused disruptions and paralysis in the affected areas
of Athens, and a two-day public holiday was declared by the Greek government after the
snowstorm [39].

Moreover, the adverse weather conditions also impacted Turkey, with heavy snowfall af-
fecting Istanbul. As a consequence, Istanbul Airport had to suspend its operations tem-
porarily.

The storm was named ”Elpis” by the Hellenic National Meteorological Service.
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Figure 4.4: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 24th
of January 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.1.3 29th of January 2022

On January 29th of 2022, a barometric low-pressure system developed in the southern
parts of the Ionian Sea and moved towards Crete, triggering precipitation in the regions of
Sterea Ellada and Peloponnese in Greece. Due to the presence of cold air masses over
Mainland Greece, the precipitation fell as snowfall in the aforementioned areas.
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Figure 4.5: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 29th
of January 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.1.4 8th of February 2022

On February 8th of 2022, a high-pressure system over Central and Western Europe led to
the formation of a trough, influencing the weather in Greece. The trough was accompanied
by cold air masses, causing snowfall in many areas of Mainland Greece.
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Figure 4.6: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 8th
of February 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.1.5 27th of February 2022

On February 27th of 2022, a storm named ”Bianca” by the Hellenic National Meteorolo-
gical Service, affected Greece, causing heavy snowfall in Northern Greece. Suburbs of
Thessaloniki, the second largest city of Greece, were also impacted by snowfall.
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Figure 4.7: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 27th
of February 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.1.6 10th of March 2022

On March 10th of 2022, a long-wave trough affected Greece from the northeast, caus-
ing snowfall in the eastern regions of the country, including some of the Aegean Islands,
Euboea and Athens.
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Figure 4.8: The 24-hour accumulated precipitation from IMERG that fell as snowfall during the 10th
of March 2022 in Greece, as indicated by the Gradient Boosting model.

4.4.2 Evaluation on 2022 Data From 11 Ground Stations

Air temperature, relative humidity and atmospheric pressure data were also acquired from
11 NOAAN weather stations for the period between the 1st of January 2022 and the 31st
of March 2022 in an hourly time-step. These data were utilized to calculate Tw and sub-
sequently compare the predictions of each model with the observed values.

The locations of the 11 ground stations where the evaluation was performed, are displayed
in the accompanying figure. It is noteworthy that most of these stations are situated at
relatively high altitudes.
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Figure 4.9: The NOAAN weather stations used for the 2022 period, coloured by altitude.

During this period, a total of 12300 cases with conditions favorable for snowfall (Tw<1.1°C)
were identified in the collected data. The table presented below, illustrates the capability
of various traditional techniques and ML models used in this study, in predicting these
cases.

Table 4.3: Scores of the the traditional techniques and the 3 ML models for predicting cases with
conditions favorable for snowfall, evaluated on the 2022 testing dataset.

Model Precision Recall (POD) F1-score CSI FAR HSS
IMERG V06 PLPP 0.87 0.58 0.70 0.53 0.13 0.48

BOLAM nowcast 0.89 0.84 0.87 0.76 0.11 0.73

Random Forest 0.96 0.85 0.90 0.83 0.04 0.81

Gradient Boosting 0.95 0.92 0.93 0.87 0.05 0.86

Feedforward Neural Network 0.95 0.92 0.93 0.88 0.05 0.86
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5. DISCUSSION

In this study, several Machine Learning techniques, including Deep Learning, are lever-
aged to identify conditions favorable for snowfall from numerical weather data. A training
process is performed using wet-bulb temperature data from in-situ observations of ground
weather stations as target data. Our primary goal is to create a reliable precipitation phase
mask, that can be employed in conjuction with satellite precipitation estimates from IMERG
to create an IMERG-Snow dataset.

5.1 Comparison With Previous Work

Moon et al. in 2020 [20] achieved an HSS of 73% in determining precipitation type for
snow cases, using ML models trained with short-range forecasts from numerical models
of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Re-
gional Data Assimilation and Prediction System (RDAPS). The individual HSS values for
ECMWF and RDAPS alone were comparatively lower at 52% and 55% respectively, while
the improved Matsuo scheme [18] used operationally at the time by the Korea Meteorolo-
gical Administration (KMA) exhibited an HSS of 71%.

In 2022, Shin et al. [21] trained and then fine-tuned ML models using dual-polarization
radar measurements and thermodynamic fields derived from the very-short-range forecast
system of KMA, which is updated by multiquadric interpolation of observations. A CSI of
96% was achieved, also outperforming the improved Matsuo scheme which scored 77%.

Sanò et al. in 2022 [23] developed a snowfall retrieval algorithm for the Advanced Techno-
logy Microwave Sounder (ATMS), using Cloud Profiling Radar (CPR) on board CloudSat
snowfall products as a reference. Regarding Snowfall Detection, a POD of 83% was
achieved, with a FAR of 18%. HSS and CSI scores reached 68% and 70% respectively.

In 2022, Xiong et al. [40] evaluated IMERG and ERA5 precipitation phase partitiniong on
a global scale, using target data from ground observations. POD of snowfall over land
was 87% for IMERG and 91% for ERA5. CSI was 67% for IMERG and 81% for ERA5,
while FAR was 16% for IMERG and 7% for ERA5.

In our study, IMERG exhibited a POD of 61%, CSI of 44% and FAR of 39%, results far
worse than the ones in the study of Xiong et al. It should be noted that the target variable
in our study is based on ground observations of Tw, and not on ground observations of
weather type. The predictor used by IMERG for rain-snow classification, however, is Tw.

The Gradient Boosting model used in this study achieved a POD of 81%, CSI of 72%,
HSS of 85% and FAR of 13%. This is a significant improvement compared to most of the
previously-described methods.

More specifically, compared to the PLPP product of IMERG as evaluated in our study,
the Gradient Boosting model achieves an improvement of HSS by 24 percentage points.
POD is improved by 20 percentage points and FAR by 26 percentage points.

Compared to the PLPP product of IMERG as evaluated by Xiong et al., POD of the Gradi-
ent Boosting model is worse by 6 percentage points, CSI is improved by 5 percentage
points and FAR is improved by 3 percentage points. It should be noted, however, that the
two studies use disparate target datasets.

In comparison with the results by Moon et al. and Sanò et al., HSS is improved by 10 and
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15 percentage points respectively, however the target datasets between the three studies
are also different. Moon et al. use ground observations of snowfall, Sanò et al. use Cloud
Profiling Radar products, while this study uses ground observations of Tw.

The CSI score of the Gradient Boosting model is worse by 24 percentage points compared
with the results by Shin et al. However, the latter study uses radar measurements and
products with blended observations as input data for the ML model. Such an accurate
illustration of the atmosphere is not available in our study, as the input data only consist
of a short-term forecast from a numerical weather model.

The results of our study show that ML-based models, including DL ones, trained on nu-
merical weather model data, offer a very promising approach for rain-snow partitioning.
Using the Gradient Boosting model, 81% of the total favorable for snowfall conditions are
identified, while 87% of such predicted cases are proved correct. The results present a
significant improvement when compared to solely relying on the near-surface forecast of
the numerical weather model (without altitude correction). In such instances, only 66% of
the predicted cases are proven correct.

5.2 Insights From the Application on IMERG Precipitation Estimates

Themap examples from real-world cases in 2022, generated by overlaying theMLmodel’s
output onto IMERG precipitation estimates, vividly demonstrate the effectiveness of the
Gradient Boosting model in accurately depicting areas impacted by snowfall during cold
waves.

For instance, in the case of January 24th, the model precisely identifies the extensive
snowfall that occurred in Northeast Attica and Istanbul, creating a faithful illustration of the
cold wave’s impact on these regions.

Similarly, on January 29th, the model successfully retrieves the significant amounts of
snowfall that affected themountains of Peloponnese, providing an accurate representation
of the weather event.

These compelling examples highlight the model’s capability to precisely capture and visu-
alize the spatial distribution of snowfall during cold waves, when combined with satellite
precipitation estimates. The accuracy and reliability showcased in these real-world cases
reinforce the model’s practical utility for snowfall identification and its potential to enhance
our understanding of weather patterns and their implications in specific regions.

5.3 Evaluation on 2022 Data From 11 Ground Stations

Utilizing a dataset spanning the first 3 months of 2022, we determine the precipitation
phase for data beyond the training dataset’s time span. This section predominantly fo-
cuses on station locations situated at relatively high altitudes, which experienced frequent
snow-favorable conditions during this period. Among the models evaluated, the Gradient
Boosting model and the Feedforward Neural Network exhibit the most promising perform-
ance, yielding nearly equal scores. These models demonstrate an impressive ability to
detect 92% of the actual snow-favorable cases, with a striking 95% of all the predicted
snow-favorable cases proved correct. This significant improvement stands in stark con-
trast to the performance of IMERG V06 PLPP, which detected only 58% of the actual
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snow-favorable cases and 87% of all the predicted snow-favorable cases were proved
correct.

Although BOLAM standalone outperforms IMERG V06 PLPP, it still lags behind the per-
formance of the ML models. Notably, IMERG V06 PLPP seems to exhibit very poor
performance when estimating precipitation phase in the areas of Samaria and Parnitha,
potentially due to the complex topography in these regions, leading to grid points being
located hundreds of meters lower than the actual station altitude. Remarkably, the ML
models have learned to address this consistent underestimation, resulting in impressive
performance for these specific locations too.

5.4 Limitations and Applications

Despite the promising results, we encountered certain limitations and challenges. One of
the key challenges is the absence of a robust dataset of snowfall observations for Greece.
To address this issue, near-surface Tw was used as the predictor determining precipitation
phase, in the same way that it is currently utilized in IMERG V06. However, a different
approach than the one currently in use by IMERG V06 was taken to derive whether the
near-surface Tw exceeded a certain threshold or not.

In terms of applications, the developed snowfall mask holds promise for improving satellite
precipitation estimates. By accurately identifying snowfall events, precipitation rate can
be better estimated, while comprehensive snowfall datasets can be developed for various
regions and time spans, helping provide response to snowfall events in near real-time, as
well as better understand hydrological processes.
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6. CONCLUSIONS

During this study an algorithm that is able to identify the precipitation phase of IMERG
precipitation data was developed, leveraging Machine Learning models based on Ran-
dom Forest and Gradient Boosting, and a Deep Learning model employing a Feedforward
Neural Network. The 1.1°C wet-bulb temperature was used as an upper threshold for solid
precipitation to occur over land. The results of our analysis indicate that the use of Machine
Learning models is a very promising approach for estimating precipitation phase. Specific-
ally, it was found that 81% of the actual snow-favorable conditions can be identified, while
87% of all the predicted snow-favorable conditions are proved correct. Application of the
best-performing model’s output on IMERG precipitation estimates from real-world cases,
also shows that rain-snow partitioning on IMERG data yields comprehensive and reliable
results.

The developed model’s capability to accurately determine precipitation phase on satellite
data, holds tremendous potential for near-real-time snowfall monitoring, providing valu-
able insights for emergency responses and aid distribution in areas affected by severe
weather. Furthermore, this model opens up new possibilities for creating a thorough and
enduring snowfall dataset, significantly enhancing our understanding of hydrological pro-
cesses, supporting various water resource management initiatives and contributing to a
deeper understanding of climate change impacts.

While our study has several strengths, it is not without limitations. For example, the wet-
bulb temperature threshold applied to distinguish between solid and liquid precipitation on
in-situ observational data, is not the optimal indicator for the actual precipitation phase. It
is planned to make use of additional snowfall in-situ data from NOAAN in order to further
evaluate the developed models.
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ABBREVIATIONS - ACRONYMS

ML Machine Learning

DL Deep Learning

IMERG Integrated Multi-satellitE Retrievals for GPM

PLPP Probability of Liquid Precipitation Phase

NASA National Aeronautics and Space Administration

Tw Wet-Bulb Temperature

JMA Japan Meteorological Agency

NWP Numerical Weather Prediction

NOA National Observatory of Athens

NOAAN National Observatory of Athens Automatic Network

BOLAM Bologna Limited-Area Model

POD Probability Of Detection

CSI Critical Success Index

FAR False Alarm Ratio

HSS Heidke Skill Score

ECMWF European Centre for Medium-Range Weather Forecasts

RDAPS Regional Data Assimilation and Prediction System

KMA Korea Meteorological Administration

ERA5 ECMWF Reanalysis v5
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