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Abstract

Shelah’s Singular (cardinal) Compactness Theorem has been a cornerstone in the marriage of

Homological Algebra and Set Theory for 50 years now. This essay pays homage to this much-

celebrated theorem of mathematics, by attempting to provide the basics for someone with a grad-

uate understanding of mathematics to get involved. We introduce and present the necessary def-

initions and propositions from Homological Algebra and Set Theory. We, then, give a historical

overview of the most prevalent breakthroughs regarding the Singular Compactness Theorem. Fi-

nally, we conclude the essay with an analysis of a recent (2020) paper by Saroch and Stovicek that

shone a light upon a new, set-theoretic and general proof of the Theorem.
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Introduction

Shelah’s Singular Compactness Theorem is a well-known result in the field of Homological Alge-

bra, which in broad terms states that if a mathematical object (structure) contains "enough" smaller

mathematical objects (sub-structures) with a certain property P, then the original large object also

has that same property P. The main purpose of this essay is to gather bibliography on the matter,

explain the methods and tools used to prove some more general results based on Shelah’s original

theorem, and provide an easy and streamlined way for a reader of a graduate level to understand

the concepts and proofs that lead to this fascinating cross-over between Homological Algebra and

Set Theory.

The dissertation is constructed as follows: The first chapter is dedicated to a short introduction

on Homological Algebra; the reader is eased into the world of Category Theory (with the very

basic definitions of category, morphism and functor, together with some propositions covered in

a 3-month period taught in a class of a relevant subject), and then is immediately thrust upon the

study of Homological Algebra (with definitions such as that of a module and the Hom functor, as

well as propositions such as the Snake Lemma). Chapter 2 discusses some elementary Set Theory

(in the ZFC axiomatic system) with the goal to introduce the notions of cardinals and ordinals and

basic arithmetic of them. Since these two chapters are introductory and not the main material of

this paper, we stick to the bare minimum material we need in Chapter 3, skipping most of the (nice)

proofs we could present (though references to other works for all of them are provided throughout

the paper). Most of the work is being done in the last chapter, where we begin with a historic

account of relevant results and finally present the main theorem of the Šaroch and Št’ovíček [18]

paper, which we state below:

Theorem. Let R be a ring with enough idempotents. Let κ be a singular cardinal, M be a κ-

presented module and C a filter-closed class of modules. Assume that there is an infinite cardinal

ν such that, for all successor cardinals ν < λ < κ , there is a system Sλ witnessing that M is almost

(C ,λ )-projective. Then M ∈⊥ C

1
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Chapter 1

Homological Algebra: a short introduction

Homological algebra is the branch of mathematics that concerns itself with the study of homology

and functors. It stems from algebraic topology and abstract algebra (although, for our purposes,

we will barely touch on these two subjects). A relatively young mathematical branch, homological

algebra has proven its worth in a wide range of other areas, such as commutative algebra, algebraic

geometry and number theory, complex analysis and many more. As Rotman says in his great book

[12] (which will be our reference point for many of the omitted proofs and ideas in this chapter),

Homological Algebra has known great growth due to the appearance of category theory, hence the

first pages are given to a basic study of categories. After we have also given some elementary

module-theory background, we will then move on to Homological Algebra, up to the point where

we introduce the Tor and Ext functors, which appear in Chapter 3.

1.1 Some basics of Category Theory

Category theory introduces the notion of categories, a general mathematical structure that provides

a template for already-existing structures (such as sets, groups etc), and the notion of functors (a

generalized notion of a function), in order to study them from an abstract point of view (often with

the goal of applying these more abstract results to more concrete examples as mentioned). Let us

begin by introducing these two stars:

5
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Definition 1.1.1. A category C is comprised of three parts:

• the class of the objects in C , denoted by obj(C )

• a set of morphisms, denoted by Hom(A,B), for every two objects A,B in obj(C ) 1

• a composition operation Hom(A,B)×Hom(B,C)−→Hom(A,C), ( f ,g) 7→ g f for all A,B,C ∈
obj(C )

with the following rules:

• if A,A′,B,B′ ∈ obj(C ) with (A,B) ̸= (A′,B′) then their morphism sets are disjoint

• for every A ∈ obj(C ) there exists the identity morphism 1A ∈ Hom(A,A) such that f 1A = f

and 1B f = f for all f ∈ Hom(A,B)

• for all morphisms A
f−→B

g−→C h−→D 2 we have h(g f )= (hg) f (composition of morphisms

is associative)

Remark 1.1.2. Some common examples of categories, which also display the power of such an

abstract definition for categories, are the following:

• (Category of) Sets: the objects of this category are the sets, the morphisms are the functions

between sets, and composition is the normal composition of functions

• (Category of) Top: the objects are topological spaces, the morphisms are the continuous

functions, and composition is the normal composition of functions

• (Category of) Groups: the objects are algebraic groups, the morphisms are the group homo-

morphisms, and composition is the normal composition of functions

• (Category of) Ab: the objects are abelian groups

• (Category of) Rings: the objects are algebraic rings

• (Category of) RMod: the objects are left R-modules
1Although obj(C ) is generally a class, not a set, we will often use the notation A ∈ obj(C ) to denote that some

element A is an object of a category.
2By A

f−→ B we mean a morphism f ∈ Hom(A,B).
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Definition 1.1.3. A category S is called a subcategory of C if:

• every object of S is also an object of C

• HomS (A,B)⊆ HomC (A,B) for all A,B ∈ obj(S )

• for all f ∈ HomS (A,B), g ∈ HomS (B,C) the result g f ∈ HomS (A,C) of their composition

in S is the same as their result in C

• for every object A in S its identity morphisms in S and C are the same

We say that S is complete if for every A,B ∈ obj(S ) we have HomS (A,B) = HomC (A,B).

Definition 1.1.4. Let C ,D be two categories. Then the map T : C −→ D is called a (covariant)

functor when:

• for all A ∈ obj(C ) we have T (A) ∈ obj(D)

• for all f ∈ HomC (A,A′) we have T ( f ) ∈ HomD(T (A),T (A′))

• for all morhpisms A
f−→ A′ g−→ A′′ we have T (A)

T ( f )−→ T (A′)
T (g)−→ T (A′′) in D , and T (g f ) =

T (g)T ( f )

• for all A ∈ obj(C ) we have T (1A) = 1T (A)

Let us now look at a functor which lies at the heart of Category Theory:

Definition 1.1.5. Let C be a category, and A∈ obj(C ). We define the Hom functor to be the functor

TA from C to the category of Sets for which:

• TA(B) = Hom(A,B) for all B ∈ obj(C )

• for all f ∈Hom(B,B′) and all B,B′ ∈ obj(C ) the morphism TA( f ) : Hom(A,B)−→Hom(A,B′)

is given by: TA( f ) : h 7→ f h

One can easily see that this is indeed a functor. We will denote it by Hom(A,□). We will also write

f∗ for TA( f ) and call this the induced (by f ) map.

There is also a dual notion to the functor as defined previously, that of a contravariant functor:
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Definition 1.1.6. Let C ,D be two categories. Then the map T : C −→D is called a contravariant

functor when:

• for all A ∈ obj(C ) we have T (A) ∈ obj(D)

• for all f ∈ HomC (A,A′) we have T ( f ) ∈ HomD(T (A′),T (A))

• for all morphisms A
f−→ A′ g−→ A′′ we have T (A′′)

T (g)−→ T (A′)
T ( f )−→ T (A) in D , and T (g f ) =

T ( f )T (g)

• for all A ∈ obj(C ) we have T (1A) = 1T (A)

So a contravariant functor is a functor that "reverses the arrows".

The contravariant dual to the Hom functor is denoted by Hom(□,B) for an object B of a

category C . The induced morphism Hom( f ,B) : h 7→ h f is denoted by f ∗.

Definition 1.1.7. A morphism f : A −→ B in a category C is an isomorphism if there exists a

morphism g : B −→ A in C such that g f = 1A and f g = 1B. The morphism g is then called the

inverse of f .

Proposition 1.1.8. Functors preserve isomorphisms. That is, if T : C −→ D is a functor and f is

an isomorphism in C , then T ( f ) is an isomorphism in D .

Proof. Let g be the inverse morphism of f in C . Then T (g) is a morphism in D . Furthermore,

T ( f )T (g) = T ( f g) = T (1) = 1 = T (g f ) = T (g)T ( f ) if T is covariant, or T ( f )T (g) = T (g f ) =

T (1) = 1 = T ( f g) = T (g)T ( f ) if T is contravariant. This means that T (g) is the inverse morphism

of T ( f ).

Definition 1.1.9. Let S,T : A −→ B be two functors. A natural transformation τ : S −→ T is a

family (τA : S(A)−→ T (A))A∈obj(C ) of morphisms in B such that for every morphism f : A−→A′

in A we have: T ( f )τA = τAS( f ).

A natural transformation is called a natural isomorphism if every τA in the above definition is an

isomorphism. Two functors S,T are naturally isomorphic when there exists a natural isomorphism

between them. We will then write S ∼= T .

Definition 1.1.10. Let τ : S −→ T, σ : T −→ U be two natural transformations between the

functors S,T,U : A −→B that are of the same type (either all covariant, or all contravariant). We
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define their composition στ : S −→ U to be the natural transformation such that (στ)A = σAτA

for all A ∈ obj(A ).

Proposition 1.1.11. Let S : A −→ B be a functor, and ωS : S −→ S be its identity natural trans-

formation (that is, (ωS)A = 1S(A) : S(A)−→ S(A) for all objects A in A ). A natural transformation

τ : S −→ T is an isomorphism if-f there exists a natural transformation σ : T −→ S such that

στ = ωS and τσ = ωT .

Proof. Suppose that τ : S −→ T is an isomorphism. By definition, for every object A in A

the functor τA is an isomorphism, that is there exists a functor σA such that τAσA = 1T (A) and

σAτA = 1S(A). Define σ : T −→ S to be the family (σA : T (A)−→ S(A))A∈obj(A ). It’s easy to see

that this family is a functor (check Definition 1.1.9 directly). Hence, στ = ωS and τσ = ωT .

The converse is easily seen to also hold true.

Whenever F,G : A −→ B are two functors of the same type (either both covariant or both

contravariant), then we will denote by Nat(F,G) the class of all the natural transformations from

τ : F −→ G.

Lemma 1.1.12 (Yoneda’s Lemma). Let C be a category, A ∈ obj(C ) and G : C −→ Sets be a

covariant functor. Then there exists a 1-1 and onto function y : Nat
(
HomC (A,□),G

)
−→ G(A)

such that y(τ) = τA(1A).

Proof. Rotman p.37(25)

Definition 1.1.13. A covariant functor F : C −→ Sets is called representable if there exists an

object A in C such that F ∼= HomC (A,□).

Corollary 1.1.14. If C is a category, A,B ∈ obj(C ) and HomC (A,□) ∼= HomC (B,□), then there

exists an isomorphism f : A −→ B. The converse also holds.

Proof. Rotman p.39(27)

Definition 1.1.15. We define the Hilbert space H to be the set {(xi)
∞
i=0 | ∀i (xi ∈R) ∧

∞

∑
i=o

x2
i < ∞}.

The euclidean space Rn is then the subspace of H such that xi = 0 for all i ≥ n.
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Definition 1.1.16. We define the normal n-complex to be the set of all convex combinations

∆
n = [e0, . . . ,en] =

{ ∞

∑
i=0

tiei | ti ≥ 0 ∧
n

∑
i=0

ti = 1
}

where ei ∈ H with the i-th coordinate equal to 1 and every other coordinate equal to 0.

We call ei the i-th vertex of ∆n. A j-th edge of ∆n is the set of all the convex combinations

between j+1 vertices.

Definition 1.1.17. Let X be a topological space. A singular n-complex in X is a continuous map

σ : ∆n −→ X .

We define the sequence of singular n-chains in X recursively:

• S−1(X) = {0}

• for all n ≥ 0, Sn(X) is the free abelian group on the set of all singular n-complexes in X

Definition 1.1.18. We define the i-th face map en
i : ∆n−1 −→ ∆n as follows:

If (t0, t1, . . . , tn−1)= t0e0+t1e1+· · ·+tn−1en−1, then en
i (t0, t1, . . . , tn−1)= (t0, t1, . . . , ti−1,0, ti, . . . , tn−1)

Lemma 1.1.19. Let 0 ≤ j < i ≤ n−1. Then en
i en−1

j = en
je

n−1
i−1 : ∆n−2 −→ ∆n.

Proof. Verify directly from the above definitions and the composition of functions.

Definition 1.1.20. Let X be a topological space, and σ be a singular 0-complex in X . We define

∂0(σ) = 0. Now, let σ be a singular n-complex in X . We define ∂n(σ) =
n
∑

i=0
(−1)iσen

i . We define

the singular border map ∂n : Sn(X)−→ Sn−1(X) to be the linear extension of ∂n(σ).

Proposition 1.1.21. For all n ≥ 1 we have ∂n−1∂n = 0.

Proof. Since ∂m is the linear extension of a singular m-complex in X , it suffices to show that

∂n−1∂n(σ) = 0 for any singular n-complex in X .

By direct calculations we have:

∂n−1∂n(σ) = ∂n−1

( n

∑
i=0

(−1)i
σen

i

)
=

n

∑
i=0

(−1)i
∂n−1(σen

i ) =
n

∑
i=0

(−1)i
n−1

∑
j=0

(−1) j
σen

i en−1
j

and by the above lemma we get:
n

∑
i=0

(−1)i
n−1

∑
j=0

(−1) j
σen

je
n−1
i−1
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Definition 1.1.22. For all n ≥ 0 we define:

• the group of singular n-cycles to be Zn(X) := ker(∂n)

• the group of singular n-borders to be Bn(X) := im(∂n+1)

Corollary 1.1.23. For all n ≥ 0 we have Bn(X)⊆ Zn(X).

Proof. It follows immediately from Proposition 1.1.21.

This corollary allows us the following definition:

Definition 1.1.24. We define the n-th singular homology group of the topological space X to be the

group quotient Hn(X) = Zn(X)/Bn(X).

Remark 1.1.25. If f : X −→ Y is a continuous map, and σ : ∆n −→ X is a singular n-complex in

X , then their composition f σ : ∆n −→ Y is a singular n-complex in Y .

Definition 1.1.26. Let X ,Y be topological spaces, and f : X −→ Y a continuous map. We define

the chain map f# : Sn(X)−→ Sn(Y ) to be the map ∑
σ

mσ σ 7→ ∑
σ

mσ f σ .

Lemma 1.1.27. If f : X −→ Y is a continuous function, then ∂n f# = f#∂n for all n ∈ N.

Proof. Simply apply Definitions 1.1.18, 1.1.20 and 1.1.26.

Theorem 1.1.28. For all n ≥ 0 we have that the singular homology Hn : Top −→ Ab is a functor

with actions on:

• the objects X ∈ obj(Top) as X 7→ Hn(X) = Zn(X)/Bn(X)

• the morphisms f ∈ Hom(X ,Y ) as f 7→ Hn( f ) : Hn(X)−→ Hn(Y ) with Hn( f )(zn+Bn(X)) =

f#zn +Bn(Y ) for all zn ∈ Zn(X)

Proof. One only needs to apply Definitions 1.1.4, 1.1.24 and 1.1.26 to prove the theorem.

Corollary 1.1.29. If X ,Y are two topological spaces with the same homotopy type, then Hn(X) ∼=
Hn(Y ) for all n ≥ 0.

Definition 1.1.30. A functor (covariant or contravariant) T : RMod −→ Ab is called additive if for

all R-linear functions f ,g : A −→ B we have T ( f +g) = T ( f )+T (g).
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Proposition 1.1.31. Let R be a ring, and A,B be left R-modules.

• The HomR(A,□) functor is additive

• Let Z(R) be the center of R, and define r f : a 7→ f (ra) for r ∈ Z(R) and f ∈ HomR(A,B).

Then HomR(A,B) becomes a Z(R)-module.

Proposition 1.1.32. Let T : RMod −→ Ab be an additive functor. Then:

• If 0 : A −→ B is the zero map, then T (0) = 0

• T ({0}) = {0}

Definition 1.1.33. If f : M −→ N is an R-linear map between two left R-modules, we define

coker( f ) = N/im( f ).

Definition 1.1.34. A (finite or infinite) sequence of R-maps and left R-modules

· · · −→ Mn+1
fn+1−→ Mn

fn−→ Mn−1 −→ . . .

is called exact if for all n ∈ N we have im( fn+1) = ker( fn).

A short exact sequence is an exact sequence of the form 0 −→ A
f−→ B

g−→C −→ 0. It is also

called an extension of A by C.

Proposition 1.1.35. Let T : RMod −→ Ab be an additive functor. Then T (A⊕B)∼= T (A)⊕T (B).

Definition 1.1.36. A submodule S of a left R-module M is called a retract of M if there is an R-map

p : M −→ S such that p(s) = s for all s ∈ S.

Corollary 1.1.37. Let S be a submodule of M. Then there exists a submodule T such that M = S⊕T

if-f there exists a retraction p : M −→ S.

Proof. If the module T exists, put p : M −→ S to be s+ t 7→ s for all s ∈ S and t ∈ T . Verify that

p is an R-map and a retraction.

If a retraction p exists, then by the First Isomorphism Theorem for modules we have im(p) ∼=
M/ker(p), where im(p) = S. Put T = ker(p). Verify that each m ∈ M can be written as one and

only one sum s+ t where s ∈ S and t ∈ T .

Corollary 1.1.38. Let M = S⊕T be a left R-module.
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• If S ⊆ N ⊆ M and N is a submodule, then N = S⊕ (N ∩T )

• If S ⊆ S′ and S′ is a submodule, then M/S′ = S/S′⊕ (T +S′)/S′

Definition 1.1.39. A short exact sequence 0 −→ A i−→ B
p−→C −→ 0 is said to split if there exists

a map j : C −→ B such that p j = 1C.

Proposition 1.1.40. If a short exact sequence 0 −→ A i−→ B
p−→C −→ 0 splits, then B ∼= A⊕C.

Definition 1.1.41. A left R-module F is called free if there exists a set B such that F =
⊕
b∈B

Rb with

Rb = ⟨b⟩ ∼= R. In that case, B is called the base of F .

Remark 1.1.42. A free Z-module is a free abelian group.

Proposition 1.1.43. For every ring R and every set B, there exists a free left R-module F with base

B.

Proposition 1.1.44. Let R be a ring, X ⊆ R and F be a free left R-module with base X. Let M

be also a left R-module and f : X −→ M be a function. Then there exists a unique R-function

f̃ : F −→ M such that f̃ (x) = f (x) for all x ∈ X.

Theorem 1.1.45. Every left R-module M is a quotient of a free left R-module F. Furthermore, M

is finitely generated if-f F is finitely generated.

Theorem 1.1.46 (Left exactness). If 0 −→ A i−→ B
p−→C is an exact sequence of left R-modules,

and if X is a left R-module, then there exists an exact sequence of Z(R)-modules 0−→HomR(X ,A) i∗−→
HomR(X ,B)

p∗−→ HomR(X ,C).

Definition 1.1.47. A covariant functor T : RMod −→ Ab is called left exact if exactness of 0 −→
A i−→ B

p−→C implies exactness of 0 −→ T (A)
T (i)−→ T (B)

T (p)−→ T (C).

Definition 1.1.48. A covariant functor T : RMod −→ Ab is called exact if exactness of 0 −→
A i−→ B

p−→C −→ 0 implies exactness of 0 −→ T (A)
T (i)−→ T (B)

T (p)−→ T (C)−→ 0.

An analogous definition applies to contravariant functors.

Theorem 1.1.49. Let F,A,A′′ be left R-modules with F=free. If p : A −→ A′′ is onto, then for every

h : F −→ A′′ there exists an R-homomorphism g such that p ·g = h.

Definition 1.1.50. Let C,A,A′′ be left R-modules and p : A −→ A′′ be an onto map. A lift of the

map h : C −→ A′′ is a map g : C −→ A such that p ·g = h.
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Definition 1.1.51. A left R-module P is called projective if for every onto map p : A −→ A′′ and

every h : P −→ A′′ there exists a lift of h.

Remark 1.1.52. Obviously, every free left R-module is projective. The converse is not always true.

We will now give an equivalent definition for projectiveness.

Proposition 1.1.53. A left R-module P is projective if-f the functor HomR(P,□) is exact.

Proposition 1.1.54. A left R-module P is projective if-f every short exact sequence 0 −→ A i−→
B

p−→ P −→ 0 splits.

Corollary 1.1.55. If A ⊆ B are two left R-modules and B/A is projective, then A has a compliment

in B; that is, there exists a submodule C ⊆ B such that C ∼= B/A and B = A⊕C.

Theorem 1.1.56. A left R-module P is projective if-f there exist left R-modules F,A with F=free

such that F = A⊕P.

Corollary 1.1.57. • Every term in a direct sum of a projective module is itself projective.

• Every direct sum of projective modules is itself projective.

Remark 1.1.58. Let P be a left R-module and (Pn)n∈N be submodules such that:

• P =
⋃

n∈N
Pn

• {0}= P0 ⊆ P1 ⊆ ·· · ⊆ Pn ⊆ Pn+1 ⊆ . . .

• ∀n ∈ N ∃Xn ⊆ P (Pn+1 = Pn ⊕Xn)

Proposition 1.1.59 (Kaplansky). If R is a ring, P⊕Q =
⊕
i∈I

Mi for any set I and all Mi are countably

generated left R-modules, then P is a direct sum of countably generated left R-modules.

Corollary 1.1.60. • Every projective left R-module P is a direct sum of countably generated

projective left R-modules.

• If every countably generated projective left R-module is free, then every projective left R-

module is free.

Proposition 1.1.61. A left R-module A is projective if-f there exist (ai)i∈I ⊆ A and R-maps (φi :

A −→ R)i∈I such that:

• for every x ∈ A almost every φi(x) is 0
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• ∀x ∈ A
(
x = ∑

i∈I
(φi(x))ai

)
Moreover, A is generated by the set {ai, i ∈ I}.

Definition 1.1.62. The families (ai)i∈I,(φi)i∈I in the above proposition are called the projective

base of A.

Definition 1.1.63. Let X = {xi, i ∈ I} be a base of a free left R-module F , and Y = {∑
i∈I

ri jxi, j ∈

J} ⊆ F . If K = ⟨Y ⟩, then we say that a module M ∼= F/K has generators X and relations Y . We

also say that (X |Y ) is a representation of M.

Definition 1.1.64. A left R-module M is finitely presented if there exists an exact sequence Rm −→
Rn −→ M −→ 0 for some m,n ∈ N.

Remark 1.1.65. A left R-module M is finitely presented if-f it has a representation (X |Y ) where

both X and Y are finite sets.

Proposition 1.1.66. Every finitely generated projective left R-module is finitely presented.

Proposition 1.1.67 (Schanuel’s Lemma). Let 0−→K i−→ P π−→M −→ 0 and 0−→K′ i′−→ P′ π ′
−→

M −→ 0 be two short exact sequences where P,P′ are projective modules. Then K ⊕P′ = K′⊕P.

Corollary 1.1.68. If M is finitely presented and 0 −→ K −→ F −→ M −→ 0 is exact, F being a

finitely generated free module, then K is finitely generated.

Definition 1.1.69. A left R-module E is called injective if for all left R-modules A ⊆ B and all

f ∈ HomR(A,E) there exists g ∈ HomR(B,E) such that g · i = f , where i : A −→ B is the normal

embedding map.

Proposition 1.1.70. A left R-module E is injective if-f the functor HomR(□,E) is exact.

Proposition 1.1.71. If E is injective, then every short exact sequence 0 −→ E i−→ B
p−→C −→ 0

splits.

Proposition 1.1.72. • The direct sum of injective modules is itself injective.

• Every term in a direct sum of an injective module is itself injective.

Theorem 1.1.73 (Baer’s Criterion). A left R-module E is injective if-f every R-map f : I −→ E

with I being an ideal of R can be extended to an R-map g : R −→ E.
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Theorem 1.1.74. Let R be a ring. Then every left R-module is embeddable in an injective left

R-module.

Proposition 1.1.75. A left R-module E is injective if-f every short exact sequence 0 −→ E −→
B −→C −→ 0 splits.

Definition 1.1.76. Let M,E be left R-modules. Then E is called an essential extension of M if there

exists a one-to-one R-map α : M −→ E such that S∩α(M) ̸= {0} for every non-zero submodule

S ⊆ E.

Proposition 1.1.77. E is injective if-f it does not have any proper essential extensions.

Definition 1.1.78. Let M,E be left R-modules. Then E is called an injective envelope of M if E is

injective and an essential extension of M and M ⊆ E. We denote E by Env(M).

Theorem 1.1.79 (Eckman-Schöpf). Let M be a left R-module. Then:

• There exists an injective envelope of M

• If E,E ′ are two injective envelopes of M, then there exists an R-isomorphism φ : E −→ E ′

such that φ(x) = x for all x ∈ M.

1.2 Additive categories and functors

Definition 1.2.1. A category C is called additive if all of the below hold:

• HomC (A,B) is an abelian group for all objects A,B

• for all morphisms X a−→ A

f−→
−→
g B b−→ Y we have b( f +g) = b f +bg and ( f +g)a = f a+ga

• C has a zero object

• for all objects A,B we have A⊔B,A⊓B ∈ obj(C )

Definition 1.2.2. If A,B are objects in C , then their coproduct is the triplet (A⊔B,α,β ) where

A⊔B ∈ obj(C ) and α : A −→ A⊔B, β : B −→ A⊔B are morphisms (called embeddings) such

that for all X ∈ obj(C ) and morphisms f : A −→ X , g : B −→ X there exists a unique morphism

θ : A⊔B −→ X such that θα = f and θβ = g.
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Definition 1.2.3. A A ∈ obj(C ) is called an initial object if for every object X in C there exists a

unique morphism α : A −→ X .

Definition 1.2.4. If A,B are objects in C , then their product is the triplet (A⊓B, p,q) where A⊓
B ∈ obj(C ) and p : A⊓B −→ A, q : A⊓B −→ B are morphisms (called projections) such that

for all X ∈ obj(C ) and morphisms f : X −→ A, g : X −→ B there exists a unique morphism

θ : X −→ A⊓B such that pθ = f and qθ = g.

Definition 1.2.5. A A ∈ obj(C ) is called a terminal object if for every object X in C there exists a

unique morphism α : X −→ A.

Definition 1.2.6. If an object is both initial and terminal, then it is called a zero object in its cate-

gory.

Definition 1.2.7. Let C ,D be two additive categories. A functor T : C −→ D is called additive

if for every morphism f ,g in C we have T ( f +g) = T f +T g.

Lemma 1.2.8. Let C be an additive category, and M,A,B ∈ obj(C ). Then M ∼= A⊓B if-f there

exist morphisms i : A −→ M, j : B −→ M, p : M −→ A and q : M −→ B such that pi = 1A,

q j = 1B, p j = 0, qi = 0 and ip+ jq = 1M. Furthermore, A⊓B is a corpoduct with embeddings i, j,

and so A⊓B ∼= A⊔B.

Definition 1.2.9. A morphism u : B −→ C in a category C is called monomorphism (resp. epi-

morphism) if for all morphisms a,b we have (au = ab)−→ (u = b) (resp. (ua = ba)−→ (u = b)).

Definition 1.2.10. If u ∈ HomC (A,B) with C =additive, then the kernel of u is a morphism ker(u) :

K −→ A such that uker(u) = 0 and for all morphisms g : X −→ A with ug = 0 there exists a unique

morphism θ ∈ HomC (X ,K) such that ker(u)θ = g.

We also define the cokernel of u to be a morphism coker(u) : B −→C such that coker(u)u = 0 and

for all morphisms h : B −→ Y with hu = 0 there exists a unique morphism θ ∈ HomC (C,Y ) such

that θcoker(u) = h.

Proposition 1.2.11. Let u ∈ HomA (A,B) where A is additive. Then:

• If ker(u) exists, then u is a monomorphism if-f ker(u) = 0

• If coker(u) exists, then u is an epimorphism if-f coker(u) = 0

Definition 1.2.12. An additive category C is called abelian if:
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• every morphism in it has a kernel and a cokernel

• every monomorphism (resp. epimorphism) is a kernel (resp. cokernel)

Definition 1.2.13. Let f : A −→ B be a morphism in an abelian category. We define its image to

be: im( f ) = ker(coker( f )).

Remark 1.2.14. A sequence A
f−→ B

g−→C is exact if ker(g) = im( f ).

Remark 1.2.15. We write S.(X) =−→Cn+1(X)
∂n+1−→Cn(X)

∂n−→Cn−1(X) the singular complex of a

topological space X .

Definition 1.2.16. A chain complex in an abelian category A is a sequence of objects and mor-

phisms in A (called differentials)

(C.,d.) = · · · −→ An+1
dn+1−→ An

dn−→ An−1 −→ . . .

such that dndn+1 = 0 for all n ∈ Z.

If (C.,d.),(C.′,d.′) are chain complexes, then a chain map f = f . : (C.,d.) −→ (C.′,d.′) is a

sequence of morphisms fn : Cn −→C′
n such that d′

n+1 fn+1 = fndn+1 for all n ∈ Z.

Definition 1.2.17. If A is an abelian category, then the category of all of its complexes is denoted

by Comp(A ). In particular, if R is a ring, then we write RComp := Comp(RMod).

Definition 1.2.18. A complex (A.,δ .) is called a sub-complex of (C.,d.) if there exists a chain map

i : A.−→C. where every in is an isomorphism.

Proposition 1.2.19. If A is an abelian category, then Comp(A ) is also an abelian category.

Definition 1.2.20. A projective resolution of A ∈ obj(A ) where A is abelian is an exact sequence

P = · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ A −→ 0 where Pn are projective modules.

If A is the category of (left or right) R-modules and every Pn is free, then the resolution is also

called free.

Remark 1.2.21. Consider the projective resolution of A above. Then A ∼= coker(d1).

Proposition 1.2.22. Every left R-module has a free projective resolution.

As a dual to the projective resolution, the injective resolution of A is an exact sequence

E = 0 −→ A
η−→ E0 d0

−→ E1 d1
−→ E2 −→ . . . where every En is injective. We also have the re-

spective definition for a free injective resolution as well as the above proposition for a free injective

resolution.
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Definition 1.2.23. Given a projective resolution P of A ∈ obj(A ) as in Definition 1.2.20 we define

K0 = ker(ε) and Kn = ker(dn) for all n ≥ 1. The Kn is called the n-th syzygy of P.

Dually, for an injective resolution E of A we define V 0 = coker(η) and V n = coker(dn−1) for all

n ≥ 1. The V n is called the n-cosyzygy of E.

Definition 1.2.24. If (C,d) is a complex in Comp(A ), we define:

• the n-th chain to be the object Cn

• the n-th cycle to be Zn(C) := ker(dn)

• the n-th border to be Bn(C) := im(dn+1)

• the n-th homology to be Hn(C) := Zn(C)/Bn(C)

Proposition 1.2.25. If A is an abelian category, then the functor Hn : Comp(A )−→A is additive

for all n ∈ Z.

Proposition 1.2.26. Let A be an abelian category. If 0 −→ C′ i−→ C
p−→ C′′ −→ 0 is an exact

sequence in Comp(A ) then for every n∈Z there exists a morphism ∂n ∈HomA (Hn(C′′),Hn−1(C′))

such that ∂n(cls(z′′n) = cls(i−1
n−1dn p−1

n z′′n).

Definition 1.2.27. The morphisms ∂n of the above proposition are called connecting homomor-

phisms.

Theorem 1.2.28. Let A be an abelian category. If 0 −→ C′ i−→ C
p−→ C′′ −→ 0 is an exact

sequence in Comp(A ), then there exists an exact sequence in A :

· · · −→ Hn+1(C′′)
∂n+1−→ Hn(C′)

i∗−→ Hn(C)
p∗−→ Hn(C′′)

∂n−→ Hn−1(C′)−→ . . .

Corollary 1.2.29 (Snake’s Lemma). Let A be an abelian category. If the following diagram with

exact rows is commutative:

0 A′ A A′′ 0

0 B′ B B′′ 0

f g h

then there exists an exact sequence in A :

0 −→ ker( f )−→ ker(g)−→ ker(h)−→ coker( f )−→ coker(g)−→ coker(h)
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Definition 1.2.30. Let C,D be complexes, p ∈ Z. A map s : C −→ D of degree p is a sequence

sn : Cn −→ Dn+p.

Definition 1.2.31. Two chain maps f ,g : (C,d)−→ (C′,d′) are homotopic, we write f ∼= g, if for

all n ∈ Z there exists a map s = (sn) of degree +1 such that fn −gn = d′
n+1sn + sNn−1dn.

Theorem 1.2.32 (Comparison theorem). Let A be an abelian category, and f ∈ HomA (A,A′).

Consider the following diagram:

P2 P1 P0 A 0

P′
2 P′

1 P′
0 A′ 0

f̌2

d2

f̌1

d1

f̌0

ε

f

d′
2 d′

1 ε ′

where the rows are complexes. If ∀n ∈ Z (Pn = projective) and if the below row is exact, then there

exists a chain map f̌ : PA −→ P′
A such that the complete diagram is commutative. Furthermore,

every two such chain maps are homotopic.

Definition 1.2.33. If f : A −→ A′ is a morphism, and PA,P′
A are deleted projective resolutions of

A,A′ respectively, then a chain map f̌ : PA −→ P′
A is called over f if f ε = ε ′ f̌0.

1.3 Left derived functors

Let T : A −→ C be an additive covariant functor between two abelian categories, where A has

’enough projectives’. We fix a projective resolution

P = · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ A −→ 0

for every object A in A . From the deleted resolution PA we form the complex

T PA = · · · −→ T (P2)
T (d2)−→ T (P1)

T (d1)−→ T (P0)−→ 0

For all n ∈ Z we define (LnT )A = Hn(T PA).

Let f : A −→ A′ be a morphism. From the Comparison Theorem there exists a chain map f̌ :

PA −→ P′
A over f . Then T f̌ : T PA −→ T P′

A is also a chain map. We define (LnT ) f : (LnT )A −→
(LnT )A′ such that (LnT ) f = Hn(T f̌ ) = (T f̌ )n∗.

Definition 1.3.1. The functors LnT : A −→ C in the above construction are called left derived.
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Theorem 1.3.2. The left derived functors of the above construction are additive covariant functors

for all n ∈ Z.

Proposition 1.3.3. We have (LnT )A = 0 for all n < 0 and all A ∈ obj(A ).

Definition 1.3.4. Let B be a left R-module, and T =□⊗R B. We define TorR
n (□,B) = LnT . Simi-

larly, if T ′ = A⊗R □, we define torR
n (A,□) = LnT ′.

Proposition 1.3.5. Given two choices for the projective resolution of an object A, the respective

left derived functors are naturally isomorphic.

Corollary 1.3.6. Let A ∈ obj(A ) and P as above. Put K0 = ker(ε),Kn = ker(dn) for all n ≥ 1.

Then (Ln+1T )A ∼= (LnT )K0 ∼= (Ln−1T )K1 ∼= . . .∼= (L1T )Kn−1.

Proposition 1.3.7 (Horshoe Lemma). Let

P′
1 P′′

1

P′
0 P′′

0

0 A′ A A′′ 0

ε ′ ε ′′

i q

be a diagram in an abelian category A with ’enough projectives’, whose columns are projective

resolutions, and the last row is exact. Then there exists a projective resolution of A: P = · · · −→
P1 −→ P0 −→ A −→ 0 and chain maps such that, when input into the diagram above, the three

columns form an exact sequence of complexes.

Corollary 1.3.8. Let 0 −→ A′ −→ A −→ A′′ −→ 0 be a short exact sequence in RMod. If A′,A′′ are

finitely presented, then so is A.

Corollary 1.3.9. If T : RMod −→S Mod is an additive functor, then L0T is right-exact.

Theorem 1.3.10. The following hold:

• If the additive functor T : A −→ B is right-exact, and A ,B are additive categories with

A having ’enough projectives’, then T is naturally isomorphic to L0T .

• For every AR,R B modules, we have: TorR
0 (A,B)∼= A⊗R B ∼= torR

0 (A,B).
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Theorem 1.3.11. Let AR,R B be modules. Then for all n ≥ 0 we have TorR
n (A,B)∼= torR

n (A,B).

Theorem 1.3.12 (Axioms for Tor). Let (Tn : ModR −→ Ab)n≥0 be a sequence of additive covariant

functors. If:

• for every short exact sequence 0 −→ A −→ B −→ C −→ 0 there exists an exact sequence

with natural connecting homomorphisms:

· · · −→ Tn+1(C)
∆n+1−→ Tn(A)−→ Tn(B)−→ Tn(C)

∆n−→ Tn−1(A)−→ . . .

• T0 is naturally isomorphic to some □⊗R M

• TnP = {0} for every projective right R-module P and n ≥ 1

then for all n ≥ 0 the functor Tn is naturally isomorphic to TorR
n (□,M).

1.4 Right derived functors

In a dual way to how we constructed the left derived functors, we can also construct the right

derived functors. This time, we fix an injective resolution

E = 0 −→ B
η−→ E0 d0

−→ E1 d1
−→ ·· ·

of every object B in the abelian category A (which has enough injectives). From its deleted reso-

lution EB we can form the complex

T EB = · · · −→ T (E2)
T (d2)−→ T (E1)

T (d1)−→ T (E0)−→ 0

for an additive covariant functor T : A −→ C between abelian categories. Then, for all n ∈ Z we

define (RnT )B = Hn(T EB) and similarly for any homomorphism f : B −→ B′ we can define how

these functors act on it: (RnT ) f = (T f̌ )n∗ .

The duals of the theorems presented in the last section also hold for right derived functors, that

is the functor RnT : A −→ C is an additive covariant functor for all n ∈ Z, we have (RnT )B = 0

for all negative integers n and objects B, and the constructed right derived functors are unique in

a sense that they are naturally isomorphic to any such derived functors beginning with a different

injective resolution.
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Next is the definition that will make the statement of Shelah’s Singular Compactness Theorem

more compact:

Definition 1.4.1. For T = HomR(A,□), we define Extn
R(A,□) = RnT for all integers n.

Continuing in the dual nature of our previous statements we have:

Corollary 1.4.2. If T : RMod −→S Mod is an additive functor, then R00T is left-exact.

Theorem 1.4.3. The following hold:

• If the additive functor T : A −→ C is left-exact, and A ,C are additive categories with A

having ’enough injectives’, then T is naturally isomorphic to R0T .

• For all left R-modules A,B we have: HomR(A,B)∼= Ext0
R(A,B).

And finally:

Theorem 1.4.4 (Axioms for Ext). Let (Fn : RMod −→ Ab)n≥0 be a sequence of additive covariant

functors. If:

• for every short exact sequence 0 −→ A −→ B −→ C −→ 0 there exists an exact sequence

with natural connecting homomorphisms:

· · · −→ Fn−1(C)
∆n−1−→ Fn(A)−→ Fn(B)−→ Fn(C)

∆n−→ Fn+1(A)−→ . . .

• F0 is naturally isomorphic to some HomR(M,□)

• Fn(E) = {0} for every injective left R-module E and n ≥ 1

then for all n ≥ 0 the functor Fn is naturally isomorphic to Extn
R(M,□).
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Chapter 2

Set Theory: Cardinals and Ordinals

Set Theory is the branch of mathematics that concerns itself with developing a framework upon

which the rest of mathematics can build. It involves the basic notions of set and element, along

with some axioms on how these interact with each other. Although there are a lot of different

axiomatic systems, each with its pros and cons, the most common system and the one we will

be working on is the so-called Zermelo-Fraenkel system with the Axiom of Choice (or ZFC for

short). We will state the axioms here. However, our main objective is to present the tools necessary

to Chapter 3. These are mainly the properties of ordered sets and of cardinals and ordinals. The

interested reader can find a more detailed start to axiomatic Set Theory in [11].

2.1 Axioms of ZFC

It is in the author’s belief that every mathematical text revolving around some Set Theory (and not

only) should present the axiomatic system in which the work is being done. Here is the list of

axioms of ZFC which we will follow:

1. Axiom of Extensionality: Two sets are equal if they have the same elements.

∀x∀y
(
∀z(z ∈ x ⇐⇒ z ∈ y) =⇒ x = y

)
2. Axiom of Regularity: Every non-empty set x contains a member y such that x and y are

disjoint sets.

∀x
(
∃a(a ∈ x) =⇒ ∃y(y ∈ x∧¬∃z(z ∈ y∧ z ∈ x))

)
25
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3. Axiom schema of Specification: Let ϕ be any formula in the language of ZFC with all free

variables among x,z,w1, . . . ,wn. Then the set {x ∈ z | ϕ(x)} always exists.

∀z∀w1 . . .∀wn∃y∀x
(
x ∈ y ⇐⇒ ((x ∈ z)∧ϕ)

)
4. Axiom of Pairing: If x and y are sets, then there exists a set which contains x and y as

elements.

∀x∀y∃z(x ∈ z∧ y ∈ z)

5. Axiom of Union: For any set of sets F there is a set A containing every element that is a

member of some member of F .

∀F∃A∀Y∀x
(
(x ∈ Y ∧Y ∈ F) =⇒ x ∈ A

)
6. Axiom schema of Replacement: Let ϕ be any formula in the language of ZFC with all free

variables among x,y,A,w1, . . . ,wn . If ϕ is a function of x, A is its domain and ϕ(x) is always

a set, then the image ϕ(A) is contained in a set B.

∀A∀w1, . . . ,∀wn
(
∀x(x ∈ A =⇒ ∃!yϕ) =⇒ ∃B∀x(x ∈ A =⇒ ∃y(y ∈ B∧ϕ))

)
7. Axiom of Infinity: There exists an inductive 1 set X .

∃X(X = inductive)

8. Axiom of Power set: For any set x there exists a set y which contains every subset of x.

∀x∃y∀z
(
z ⊆ x =⇒ z ∈ y

)
9. Axiom of Choice: Let A,B be non-empty sets, and P ⊆ A × B be a relation such that

∀x ∈ A
(
∃y ∈ B(xPy)

)
. Then there exists a function f : A −→ B such that ∀x ∈ A(xP f (x)).

1A set A is called inductive if:

• /0 ∈ A

• ∀Y ∈ A(Y ∪{Y} ∈ A)
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2.2 Partial Orders and Linear Orders

By direct use of the axioms above, one can immediately prove some elementary statements (such

as the proposition: There is no set that contains every set) and give basic definitions (such as that

of the union, intersection, empty set and power set, some of which we have already used in the

formulation of the axioms). We now move on to the concept of partial orders.

First, let us remind ourselves of the definition of the ordered pair (due to Kuratowski):

Definition 2.2.1. For every two objects x,y we define the ordered pair (x,y) as the set {{x},{x,y}}.

For every sets A,B it is easy to prove that there exists a unique set Z such that

z ∈ Z ⇐⇒ ∃x ∈ A∃y ∈ B(z = (x,y))

This set is called the (cartesian) product of A,B and is denoted by A×B.

Definition 2.2.2. Let A,B be non-empty sets. A binary relation R from A to B is a subset of their

cartesian product A×B.

If (x,y) ∈ R we will simply write xRy.

Definition 2.2.3. A binary relation ≤ from a set A to itself is called a partial order if:

• ∀x ∈ A(x ≤ x) (reflexivity)

• ∀x,y ∈ A
(
(x ≤ y∧ y ≤ x) =⇒ x = y

)
(antisymmetry)

• ∀x,y,z ∈ A
(
(x ≤ y∧ y ≤ z) =⇒ x ≤ z

)
(transitivity)

A set on which we have defined a partial order is called a partially ordered set. We will often write

(P,≤) and talk about a partially ordered space (poset from now on), where P ̸= /0 is the underlying

set, and ≤ is the partial order on this set.

Furthermore, if x ≤ y and x ̸= y then we simply write x < y.

Definition 2.2.4. A partial order ≤ on a set A is called linear if ∀x,y ∈ A
(
(x ≤ y)∨ (y ≤ x)

)
, that

is: every two elements of A are ≤-comparable.
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Definition 2.2.5. Let (P,≤) be a poset, S ⊆ P and M ∈ P. The element M is called:

• an upper bound of S if ∀x ∈ S(x ≤ M)

• a maximum element of S if it is an upper bound of S and M ∈ S

• a supremum of S if it is the smallest of all upper bounds of S (so that M is an upper bound of

S and if M′ is an upper bound of S, then M ≤ M′). We will write M = supS (notice that the

supremum of a set is unique).

We may give similar definitions for when all of the above ≤-inequalities are reversed, by

turning "upper" into "lower", and "supremum" into "infimum".

Definition 2.2.6. Let (P,≤) be a poset and S ⊆ P. The set S is called a chain of P if every two

elements in S are ≤-comparable (so that the restriction of ≤ on S is a linear order).

Definition 2.2.7. A poset (P,≤) is called inductive if every chain of P has a supremum.

The following definition lies in the core of the part of Set Theory that interests us in this

essay. It will be referenced to time and time again (in silence, for the most part), and is essential to

cardinals and ordinals.

Definition 2.2.8. Let ≤ be a partial order on a (non-empty) set P. Then ≤ is called a well-order if

it is linear and every non-empty subset of P has a minimum element. Furthermore, (P,≤) will then

be called a well-ordered space.

We will write 0P to denote the space’s minimum element (or simply 0 when there is no risk of

confusion).

One can think of well-ordered spaces as consecutive line segments, each with a starting point

(and possibly not an end point). This image can help with the visualization and understanding of

the proofs, but as with all helping tools in mathematics, it should be taken with a grain of salt, and

not be solely relied upon to "prove" something.

Definition 2.2.9. Let (U,≤) be a well-ordered space and x ∈ U be an element of U that is not its

maximum. We define the successor of x to be the element SU(x) = min{y ∈U | x < y}.

The images of the function SU are called successor elements of U , or simply successors.
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Definition 2.2.10. Let (U,≤) be a well-ordered space and x ∈U . If x ̸= 0 and x ̸∈ SU [U ], then x is

called a limit point of U . We denote this by Limit(x).

We also write ωU = min{x ∈U | Limit(x)}.

Remark 2.2.11. The minimum element 0 of a well-ordered space is neither a successor nor a limit

point.

Definition 2.2.12. Let (U,≤) be a well-ordered space and I ⊆ U . The set I is called an initial

segment of U if ∀x ∈ I(y ≤ x =⇒ y ∈ I) (we also say that I is "downwards closed"). We write

I ⊑U .

If x ∈U , then the initial segment defined by x is the set segU(x) = {y ∈U | y < x}.

Remark 2.2.13. Notice that segU(SU(x)) = segU(x)∪{x}.

Proposition 2.2.14. Let (U,≤) be a well-ordered space, and I ⊆ U. Then I ⊑ U if-f I = U or

∃x ∈U(I = segU(x)).

Proof. Obviously, if I = U or ∃x ∈ U(I = segU(x)) then I is an initial segment of U . So let us

suppose that I is an initial segment of U . If I = U , we have nothing to show. If I ⊂ U then there

exists a point x0 ∈ U with x0 ̸∈ I. Consider the set P = {z ∈ U | z ̸∈ I}. This set is non-empty

(x0 ∈ P). Since the space (U,≤) is well-ordered, the set P has a least element, say x. We will show

that I = segU(x).

First we have that x ̸∈ I, since x = minP ∈ P. Now pick a y < x in U . Then y ̸∈ P, and so

y ∈ I. We have just shown that segU(x)⊆ I. Furthermore, I is an initial segment and x ̸∈ I, therefore

∀y ∈U(y > x =⇒ y ̸∈ I). This shows that I = segU(x).

Definition 2.2.15. Let (P,≤P),(Q,≤Q) be two posets, and π : P −→ Q be a function. We say that

π is an order-embedding if ∀x,y ∈ P
(
x ≤P y ⇐⇒ π(x)≤Q π(y)

)
.

Remark 2.2.16. Obviously, an order-embedding is one-to-one.

Definition 2.2.17. Let (P,≤P),(Q,≤Q) be two posets, and π : P −→ Q be a function. We say that

π is an order-isomorphism if it is one-to-one, onto and order-embedding.

Two posets (P,≤P),(Q,≤Q) are called order-isomorphic if there exists an order-isomorphism π :

P −→ Q. We write P =o Q.

The following proposition allows us to think of the order-isomorphic "relation" as some sort

of an equivalence relation between posets.

Page 29 of 87



CHAPTER 2. SET THEORY: CARDINALS AND ORDINALS Mitos A.

Proposition 2.2.18. The following hold:

1. For every poset (P,≤) we have P =o P

2. For every two posets (P,≤P),(Q,≤Q) we have P =o Q =⇒ Q =o P

3. For every three posets (P,≤P),(Q,≤Q),(R,≤R) we have (P =o Q∧Q =o R) =⇒ P =o R.

Proof. We will prove the 3 points in order.

1) Obviously, the identity function is always an order-isomorphism, so P =o P.

2) Let π : P −→ Q be an order-isomorphism between the two posets. Then its inverse function

π−1 : Q −→ P is easily seen to be an order-isomorphism as well.

3) Let π : P −→ Q , ρ : Q −→ R be two order-isomorphisms. Then their composition ρ ◦π :

P −→ R is easily seen to be an order-isomorphism as well.

Proposition 2.2.19. Let (P,≤P),(Q,≤Q) be two order-isomorphic posets, P =o Q. If (Q,≤Q) is a

well-ordered space, then so is (P,≤P).

Proof. Pick any two elements x,y∈P. Then their images under the order-isomorphism π : P−→Q

are ≤Q-comparable, say π(x) ≤Q π(y). By definition of the order-isomorphism, we also have

x ≤P y, so x,y are ≤P-comparable. This makes the ordering on P a linear order.

Now consider a non-empty set S ⊆ P. Then its image π[S] ⊆ Q is also non-empty, and since

(Q,≤Q) is well-ordered, the set π[S] has a minimum element. Put y = minπ[S]. Then there exists

x ∈ S such that π(x) = y. This x is also the minimum element of S; indeed, pick a z ∈ S. Then

π(z) ∈ π[S] and so π(z) ≥Q y = π(x), and by definition of the order-isomorphism we get x ≤P z.

This proves that the linear order on P is a well-order.

Definition 2.2.20. Let (P,≤) be a poset, and π : P −→ P be a function. Then π is called an

extension if ∀x ∈ P(x ≤ π(x)).

Theorem 2.2.21. Let (U,≤) be a well-ordered space and π : U −→ U be an order-embedding.

Then π is also an extension.

Proof. Suppose that there exists a point x ∈ U such that π(x) < x. Put A = {y ∈ U | π(y) < y},

and notice that x ∈ A. Since (U,≤) is well-ordered, A must have a minimum element, say x0.

Obviously, x0 ∈ A and so π(x0)< x0. But π is an order-embedding, and so π(π(x0))< π(x0). This

dictates that π(x0) ∈ A, which is a contradiction (since π(x0)< x0 = minA).
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This theorem has the following important consequence:

Corollary 2.2.22. No well-ordered space (U,≤) is order-isomorphic with a proper initial segment

I ⊏U.

Proof. Suppose (U,≤) is a well-ordered space which has an order-isomorphic proper initial seg-

ment I ⊏ U , and consider an order-isomorphism π : U −→ I. Put A = {y ∈ U | y ̸∈ I}. This set

is non-empty (since I is a proper subset of U), therefore it must have a minimum element, say

x = minA. By Theorem 2.2.21 we have x ≤ π(x). But π(x) ∈ π[U ] = I and I is an initial segment,

so x ∈ I, a contradiction.

Theorem 2.2.23 (Transfinite Induction). Let (U,≤) be a well-ordered space and P be a formula

with one free variable. Suppose that ∀y ∈ U
(
∀x < y(P(x)) =⇒ P(y)

)
. Then it is true that

∀y ∈U
(
P(y)

)
.

Proof. Suppose to the contrary that there is a x0 ∈ U such that P(x0) does not hold. Then the set

A = {y ∈U | ¬P(y)} is a non-empty subset of U , therefore it has a minimum element y∗ = minA.

Now ∀x ∈ U(x < y∗ =⇒ x ̸∈ A) , hence ∀x ∈ U(x < y∗ =⇒ P(x)). By the assumption of the

theorem we get that P(y∗) holds, which is a contradiction (since y∗ ∈ A).

Definition 2.2.24. Let (U,≤) be a well-ordered space. The successor space of U is the well-

ordered space Succ(U) =U ∪{tU} where tU is an element that does not belong to U 2, and where

we define its ordering ≤ by the following:

x ≤ y if-f (x,y ∈U ∧ x ≤ y)∨ (x ∈U ∧ y = tU)∨ (x = y = tU)

Remark 2.2.25. The successor space of a space U is unique up to order-isomorphism.

Remark 2.2.26. For every well-ordered space U we have U = segSucc(U)(tU)⊏ Succ(U).

Closely related to induction is recursion. Similarly from what we ordinarily know from the

natural numbers, we can state the transfinite recursion theorem (the proof of which we will omit

for brevity reasons).

Theorem 2.2.27 (Transfinite Recursion). Let U be a well-ordered space, A ⊆U , E ̸= /0 a set and

h : (A −→ E) −→ E a function 3. Then there exists a unique function f : U −→ E such that

f (x) = h( f |seg(x)) for all x ∈U.
2Such an element always exists; consider for example the set r(U) = {x ∈U | x ̸∈ x}
3By (A −→ E) we denote the set of all functions from A to E
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Definition 2.2.28. Let U,V be well-ordered spaces and π : U −→ V be a function. Then π

is called an initial order-isomorphism if it is an order-embedding and π[U ] ⊑ V . We will write

U ≤o V whenever an initial order-isomorphism from U to V exists.

Lemma 2.2.29. The composite of two initial order-isomorphisms is again an initial order-isomorphism.

Proof. We already know that the composite of two order-embeddings is an order embedding. It is

also easy to see that the image of the composite is an initial segment of the target space.

Proposition 2.2.30. For all well-ordered spaces U,V,W we have:

1. U ≤o U

2. (U ≤o V )∧ (V ≤o W ) =⇒ U ≤o W

3. (U ≤o V )∧ (V ≤o U) =⇒ U =o V

Proof. For (1), consider the identity function on U . For (2), use Lemma 2.2.29. For (3), again use

the previous lemma and remember Corollary 2.2.22.

The next theorem is quite intuitive, however its proof requires some work.

Theorem 2.2.31. Let U,V be two well-ordered spaces and π : U −→ V be a function. Then π is

an initial order-isomorphism if-f ∀x ∈U
[
π(x) = min{y ∈V | ∀u ∈U(u < x =⇒ π(u)< y)}

]
Proof. =⇒ ) For every x ∈ U define A = {y ∈ V | ∀u ∈ U(u < x =⇒ π(u) < y)} (which is non-

empty, since π(x) ∈ A) and put z = minA. Obviously z ≤ π(x), but suppose that z < π(x). Since

π[U ] ⊑ V we get z ∈ π[U ]. This means that ∃u ∈ U(z = π(u)). Moreover, since π is an order-

embedding, we have π(u)< π(x) ⇐⇒ u< x. However z∈A implies that π(u)< z, a contradiction.

⇐= ) Pick an x ∈ U and consider a u ≤ x. If u = x then obviously π(u) ≤ π(x). If u < x, then

π(u)< π(x) = min{y ∈V | ∀z ∈U(z < x =⇒ π(z)< y)}. So u ≤ x =⇒ π(u)≤ π(x).

On the other hand, consider a u ∈ U such that π(u) ≤ π(x). Then we cannot have x < u, because

π(x)< π(u) = min{y ∈V | ∀z ∈U(z < u =⇒ π(z)< y)}. So π(u)≤ π(x) =⇒ u ≤ x. We have

proven that π is an order-embedding. It remains to show that π[U ]⊑V .

Pick any x ∈U and consider any z ∈ V with z < π(x). Suppose that z ̸∈ π[U ]. Then z ̸∈ {y ∈
V | ∀u ∈U(u < x =⇒ π(u)< y)}, and so there exists a u < x such that π(u)≥ z. Consider the least
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such u ∈U . By z ̸∈ π[U ] we get z ̸= π(u), which means that z < π(u). However π(u) = min{y ∈
V | ∀v ∈ U(v < u =⇒ π(v) < y)}, and so there exists v < u with π(v) ≥ z. This contradicts the

minimality of u.

The important connection between well-ordered spaces and order relations becomes evident

in the following theorem:

Theorem 2.2.32. For every well-ordered space U and V we either have U ≤o V or V ≤o U.

Proof. If V = /0 then obviously V ≤o U . Let V be a non-empty set and 0V be its minimum element.

Also, put Ax = {y ∈ V | ∀u ∈ U(u < x =⇒ π(u) < y)} for every x ∈ U . By transfinite recursion

(Theorem 2.2.27) we may define a function π : U −→V such that

π(x) =

minAx , if Ax ̸= /0

0v , otherwise

Consider the following two cases:

1) ∀x ∈U(x ̸= 0U =⇒ π(x) ̸= 0V ): Then ∀x ∈U(π(x) =minAx), which implies that π is an initial

order-isomorphism (due to the last theorem), giving U ≤o V .

2) ∃a ∈U(a ̸= 0U ∧π(a) = 0v: Consider the minimum such a ∈U with this property, and put ρ =

π|segU (a). Then ∀x < a(ρ(x) = π(x) = minAx), meaning that ρ is an initial order-isomorphism

(again due to the last theorem). So ρ[segU(a)]⊑V .

Suppose that ρ[segU(a)] ̸=V . Then there exists z∈V such that ρ[segU(a)] = segV (z). Since a ̸= 0U

we get segU(a) ̸= /0 and so segV (z) ̸= /0, giving z ̸= 0V . So, by ∀x < a(π(x)∈ π[segU(a)] = segV (z))

we have ∀x < a(π(x) < z). Moreover, z is the minimum element with this property, and so z =

π(a) ̸= 0V . This is a contradiction of the hypothesis of case (2). This proves that ρ[segU(a)] =V ,

meaning V =o segU(a)≤o U .

Corollary 2.2.33. Let E be a non-empty class of well-ordered spaces. Then there exists a ≤o-

minimum element in E , meaning a space U0 such that U0 ≤o U for all U ∈ E .

Proof. Pick any W ∈ E . If W satisfies W ≤o U for every U ∈ E then we are done. Otherwise,

there exists some space which is order-isomorphic to some proper initial segment of W . Consider

the minimum element a ∈ W for which there exists a space U ∈ E such that U =o segW (a), and

put U0 = segW (a). Due to Theorem 2.2.32 for every U ∈ E we either have U <o U0 or U0 ≤o U .

However we cannot have U <o U0, for that would mean that there exists a a′ < a in W such that

U =o segW (a′), contradicting the minimality of a.
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2.3 Ordinals

We have done most of the work required to make an introduction to what ordinals are and how we

can do arithmetic on them. We are only missing a theorem about well-defined operators (or class

functions) analogous to transfinite recursion, which we will state (but not prove) here.

Theorem 2.3.1. Let H be a well-defined operator with one free variable, and U be any well-

ordered space. Then there exists a unique set B and a unique function f : U −→ f [U ] = B such

that f (x) = H( f |segU (x)) for all x ∈U.

Consider the operator H defined by: H(w) =

Image(w) , w = function

/0 , otherwise
. Let U be a well-

ordered space and apply Theorem 2.3.1. There exists a unique function vU : U −→ vU [U ] such

that vU(x) = H(vU |segU (x)) for all x ∈U .

Definition 2.3.2. We say that the unique vU defined above is the von Neumann surjection of the

well-ordered space U .

We define the ordinal number of U to be the set ord(U) = vU [U ] = {vU(x) | x ∈ U}. Also, any

set α for which there exists a well-ordered space U such that α = ord(U) will be called an ordinal

number. We write ON to denote the class of all ordinal numbers.

Remark 2.3.3. This rather strange definition becomes more understood with the following remarks:

• Since /0 is a well-ordered space, the set 0 := /0 is an ordinal number with ord(0) = 0 (it is in

fact the smallest ordinal, as we will later see).

• The set 1 := 0∪{0}= { /0} is an ordinal number with ord(1) = 1.

• The set 2 := 1∪{1}= { /0,{ /0}} is an ordinal number with ord(2) = 2.

• More generally, we can define the set n+ := n∪{n} for every set n. If n is an ordinal, then so

is n+ with ord(n+) = n+. This way, we have constructed the von Neumann natural numbers,

the set of which we denote by ω = {0,1,2,3, . . .}.

• The set ω of all natural numbers is an ordinal with ω = ord(ω).

• ord(ω ∪{ω}) = ω ∪{ω}
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Proposition 2.3.4. Let U,V be well-ordered spaces and π : U −→V be an initial order-isomorphism.

Then vV (π(x)) = vU(x) for all x ∈U.

Proof. Suppose that there exists some point in U for which the conclusion does not hold. Let x be

the least such point, so that vV (π(x)) ̸= vU(x). By definition of the von Neumann surjection, the

fact that π is an initial order-isomorphism and the choice of x we have:

vV (π(x)) = {vV (y) | y <V π(x)}

= {vV (π(t)) | t <U x}

= {vU(t) | t <U x}

= vU(x)

which is a contradiction.

Proposition 2.3.5. Let U be a well-ordered space, x ∈ U and put W = segU(x). Then W is a

well-ordered space with ord(W ) = vU(x).

Proof. Apply Proposition 2.3.4 to W and U with π being the identity function. For every y <U x

we get that vU(y) = vU(π(y)) = vW (y), and so:

vU(x) = {vU(y) | y <U x}= {vW (y) | y <U x}= ord(W )

Corollary 2.3.6. For every ordinal number α:

• Every element of α is an ordinal number

• There exists an ordinal β such that α ∈ β

Proof. Pick an element γ ∈ α . Then there exists x ∈ α such that γ = vα(x), which is an ordinal

number as Proposition 2.3.5 shows.

Now put β = α+ = α ∪{α}. As in Remark 2.3.3 we get that β is an ordinal.

Lemma 2.3.7. Let U be a well-ordered space, α = ord(U) and v : U −→ α be the von Neumann

surjection of U. Then ∀x,y ∈U(x < y ⇐⇒ v(x) ∈ v(y)).
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Proof. Obviously, if x < y then v(y) = {v(z) | z < y} by definition and so v(x)∈ v(y). Now consider

two elements x,y ∈U such that v(x) ∈ v(y). By definition, there exists z < y such that v(x) = v(z).

If x < z, then v(x) ∈ v(z) = v(x) by the above argument, a contradiction. If x > z, then we arrive at

the same contradiction. All that remains is x = z < y, concluding the proof.

Proposition 2.3.8. Let U be a well-ordered space, α = ord(U) and v : U −→ α be the von

Neumann surjection of U. Then α is well-ordered by the relation u ≤α v if-f u = v or u ∈ v.

Proof. Using Lemma 2.3.7 we can easily see that this is indeed a linear ordering on α . It is also

a well-order. Indeed, for any non-empty set S ⊆ α consider its pre-image under the von Neumann

surjection v−1[S], which is a non-empty subset of the well-ordered set U . Pick x to be the minimum

element of v−1[S]. Then v(x) is the minimum element of S.

Corollary 2.3.9. For every well-ordered space U it holds: U = ord(U).

Proof. Put α = ord(U) and v : U −→ α to be the von Neumann surjection of U . Lemma 2.3.7

and Proposition 2.3.8 give us x ≤U y ⇐⇒ v(x) ≤α v(y) (so v is an order-embedding) and one-

to-one. Furthermore, it is also onto by definition, and so the von Neumann surjection is an order-

isomorphism.

The proof of the next theorem is now immediate:

Theorem 2.3.10. Let U,V be well-ordered spaces with U ≤o V . Then ord(U)⊑ ord(V ).

Also immediate is the following:

Corollary 2.3.11. Let U,V be well-ordered spaces. Then U =o V if-f ord(U) = ord(V ).

We are ready to prove the most useful theorem in visualizing ordinals so far.

Theorem 2.3.12. For every ordinal α we have: α = {β ∈ ON | β <o α}

Proof. Let U be a well-ordered space such that α = ord(U). By Proposition 2.3.5 we get that

α = {vU(x) | x ∈ U} = {ord(segU(x)) | x ∈ U}. Since every well-ordered space that is <o U is

order-isomorphic to an initial segment of U , this equation gives us the desired result.

Remark 2.3.13. It is easy to see that for any two ordinals α,β we have: α =o β ⇐⇒ α = β .
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We can extend the previous remark to a lemma, which will then give us the much-desired

definition of a well-ordering in the ON class.

Lemma 2.3.14. For every two ordinals α,β the following statements are equivalent:

• α ≤o β

• α = β or α ∈ β

• α ⊑ β

• α ⊆ β

Proof. Combine the previous theorem and remark.

Definition 2.3.15. We define the (well) ordering in the class ON as follows: α ≤ β ⇐⇒ α ≤o β .

Proposition 2.3.16. For every two ordinals α,β we have exactly one of the following:

• α < β

• α = β

• β < α

Proof. Since ordinals are themselves well-ordered spaces, this result is immediate from Theorem

2.2.32.

Proposition 2.3.17. Let E be a non-empty class of ordinals. Then E has a ≤-least element.

Proof. Remember Corollary 2.2.33.

This fact allows us to define the "next" ordinal of any ordinal number.

Definition 2.3.18. Let α ∈ON. We define α+ := s(α) :=min{β ∈ON |α < β} to be the successor

ordinal of α .

This definition falls in-line with the successor of a natural number as this was defined in

Remark 2.3.3, since one easily proves that s(α) = α ∪{α}.
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Definition 2.3.19. Let A be a set of ordinals. We define the least upper bound of A to be the ordinal

number supA := min{β ∈ ON | ∀α ∈ A(α ≤ β )}.

Proposition 2.3.20. For every set of ordinals A we have: supA =
⋃

A.

Proof. Obviously any α ∈ A is a subset of
⋃

A. Additionally,
⋃

A is an ordinal number, which gives

us α ≤
⋃

A for every member of A. Therefore,
⋃

A is an upper bound of A, and supA ≤
⋃

A. But

now consider any β ∈
⋃

A. Then there exists an α ∈ A such that β ∈ α , or equivalently: β < α ,

giving us β < supA ⇐⇒ β ∈ supA, and so
⋃

A ⊆ supA ⇐⇒
⋃

A ≤ supA.

Next, a classification of the ordinals:

Definition 2.3.21. Let α be an ordinal number. Then:

◦ α is called a successor ordinal if there exists a β ∈ ON such that α is the successor of β (as in

Definition 2.3.18).

◦ α is called a limit ordinal if it is not zero nor a successor ordinal.

This classification of the ordinals into three categories (one containing only the zero ordinal,

one containing the successor ordinals, and one containing the limit ordinals) is essential for induc-

tive proofs on the class ON. The following proposition gives us a straight-forward way to handle

limit ordinals:

Proposition 2.3.22. Let λ ∈ ON. Then λ is a limit ordinal if-f it is not zero and λ = sup{α ∈ ON |
α < λ}.

Proof. If λ is a successor ordinal, say λ = s(β ), then sup{α ∈ ON | α < λ}= β < λ . On the other

hand, if λ is a limit ordinal, then for every α < λ there exists a β such that α < β < λ . This means

that
⋃

λ = λ , and by Proposition 2.3.20 and Theorem 2.3.12 we get the desired result.

We can now give an example of a limit ordinal: define ω1 to be the smallest uncountable

ordinal number. Then ω1 is a limit ordinal.

Let us now present the theorems regarding induction and recursion on the class of ordinal

numbers. However, we shall skip over their proofs for brevity reasons.

Theorem 2.3.23 (Induction on the Ordinals). Let P be a formula with one free variable. If

∀α ∈ ON
(
∀ξ < α(P(ξ )) =⇒ P(α)

)
, then ∀α ∈ ON(P(α)).
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Theorem 2.3.24 (Recursion on the Ordinals). For every well-defined operator H with one free

variable there exists a well-defined operator F with one free variable such that F(α) = H(F |α) for

all ordinal numbers α .

2.3.1 Ordinal Arithmetic

Finally, we have all the tools necessary to establish arithmetic on ordinals! In this section we shall

define what addition and multiplication of ordinals is, and discuss their most useful properties,

which we will need in Chapter 3 of this essay. Let us begin with the first operation: addition.

Definition 2.3.25. Let α,β be ordinals, and E,F be well-ordered spaces such that ord(E) = α ,

ord(F) = β and E ∩F = /0. Equip the union E ∪F with the ordering 4:

x ≤ y if-f (x ∈ E ∧ y ∈ F) or (x ≤E y) or (x ≤F y)

We write E +o F for the well-ordered space (E ∪F,≤) and call it the (ordinal) sum of E,F . We

then define:

α +β = ord(E +o F)

A straightforward application of this definition should suffice to prove the following:

Proposition 2.3.26. For all ordinals α,β ,γ we have:

• α +0 = 0+α = α

• α +1 = s(α)

• α +(β + γ) = (α +β )+ γ

Remark 2.3.27. Instead of the previous definition for the addition of ordinals, we could have equiv-

alently defined the ordinal sum recursively:

For all ordinals α,β ,λ we define α +0 = α , α +s(β ) = s(α +β ) and α +λ = sup{α +γ | γ < λ}
whenever λ is a limit ordinal.

4Essentially, we are placing the elements of E before the elements of F , preserving the ordering of each space

respectively. This is easily shown to be a well-order in E ∪F .
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Let us now present ordinal multiplication in a similar manner, before moving on to more

advanced properties of these operations.

Definition 2.3.28. Let α,β be ordinals, and A,B be well-ordered spaces such that ord(A) = α and

ord(B) = β . Equip the product A×B with the ordering 5:

(x1,y1)≤ (x2,y2) if-f (y1 <B y2) or (y1 = y2 and x1 ≤A x2)

We write A ·o B for the well-ordered space (A×B,≤) and call it the (ordinal) product of A,B. We

then define:

α ·β = ord(A ·o B)

Again, apply the above definition to proove:

Proposition 2.3.29. For all ordinals α,β ,γ we have:

• α ·0 = 0 ·α = 0

• α ·1 = 1 ·α = α

• α · (β · γ) = (α ·β ) · γ

Remark 2.3.30. Equivalently, we could have defined multiplication of ordinals recursively:

For all ordinals α,β ,λ we define: α · 0 = 0 , α · s(β ) = α ·β +α and α ·λ = sup{α · γ | γ < λ}
whenever λ is a limit ordinal.

Addition and multiplication have certain properties regarding preservation of ordinal inequal-

ities. One should treat them with care however, as the order of the ordinals is important!

Lemma 2.3.31. For all ordinals α,β ,γ the following hold:

• α ≤ β =⇒ α + γ ≤ β + γ

• α < β =⇒ γ +α < γ +β

• α +β = α + γ =⇒ β = γ

5Essentially, we are creating a latice with α rows and β columns, considering the lowest element to be the one

that’s most left, or the one that’s most up in case the two elements are on the same column. This is easily shown to be

a well-order in A ·o B.
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Proof. The proof will be an inductive one. We shall do the first point, the rest are left as an exercise.

Keep in mind what we already know for addition from Proposition 2.3.26 and Remark 2.3.27.

Let α ≤ β ,γ be ordinals.

◦γ = 0: Then α + γ = α +0 = α ≤ β = β +0 = β + γ .

◦γ = s(δ ): Then α +γ = α +s(δ ) = s(α +δ )≤ s(β +δ ) = β +s(δ ) = β +γ , where the inequality

stems from the inductive hypothesis that α +δ ≤ β +δ .

◦γ is a limit ordinal: Then α + γ = sup{α + δ | δ < γ} ≤ sup{β + δ | δ < γ} = β + γ , where the

inequality again stems from our inductive hypothesis.

Lemma 2.3.32. For all ordinals α,β ,γ the following hold:

• α ≤ β =⇒ α · γ ≤ β · γ

• (1 ≤ α) ∧ (β < γ) =⇒ α ·β < α · γ

• (α ·β = α · γ) ∧ (α ̸= 0) =⇒ β = γ

Proof. Similar to that of Lemma 2.3.31.

The following two lemmas are stated without their proofs. They will prove useful later on.

Lemma 2.3.33. Let S be a non-empty set of ordinal numbers, and α ∈ ON. Then α + supS =

sup{α +β | β ∈ S}.

Lemma 2.3.34. Let S be a non-empty set of ordinal numbers, and α ∈ ON. Then α · supS =

sup{α ·β | β ∈ S}.

The next proposition is a left distribution law. Notice that the right distribution law does not

hold for ordinal arithmetic.

Proposition 2.3.35. For all ordinals α,β ,γ we have: α · (β + γ) = α ·β +α · γ .

Proof. The proof is by induction on γ . Let α,β be two ordinals.

◦γ = 0: Then α · (β + γ) = α · (β +0) = α ·β = α ·β +α ·0 = α ·β +α · γ .

◦γ = s(δ ): Then α · (β + γ) = α · (β + s(δ )) = α · s(β + δ ) = s(α · (β + δ )) = s(α ·β +α · δ ) =
α ·β + s(α ·δ ) = α ·β +α · s(δ ) = α ·β +α · γ .

◦γ is a limit ordinal: Then α ·(β +γ) =α ·sup{β +δ | δ < γ}= sup{α ·(β +δ ) | δ < γ}= sup{α ·
β +α ·δ | δ < γ}= α ·β + sup{α ·δ | δ < γ}= α ·β +α · γ .
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Theorem 2.3.36 (Subtraction). For any α,γ ∈ ON with α ≤ γ , there exists a unique ordinal β such

that α +β = γ .

Proof. Consider the class ∆ = {δ ∈ ON | α +δ ≤ γ}. Then ∆ is a non-empty set, since 0 ∈ ∆ and

∆ ⊆ s(γ). Put β = sup∆. Then α +β = α + sup∆ = sup{α + δ | δ ∈ ∆} ≤ γ . Suppose now that

α +β < γ . Then α + s(β ) = s(α +β )≤ γ , and so s(β ) ∈ ∆, a contradiction. Therefore α +β = γ .

If β0 is another ordinal with the property α +β0 = γ , then α +β0 = α +β =⇒ β0 = β by Lemma

2.3.31. Hence, β is unique.

Definition 2.3.37. Let α,β be ordinals with α ̸= 0. We define the power αβ recursively:

• α0 = 1

• αs(β ) = αβ ·α

• αλ = sup{αβ | β < λ}, when λ is a limit ordinal.

Analogous to the lemmas we have just seen about addition and multiplication is the following:

Lemma 2.3.38. For all ordinals α,β ,γ with α > 1 we have: β < γ =⇒ αβ < αγ .

Proof. The proof is by induction on γ:

◦γ = 1: Then β = 0, therefore αβ = α0 = 1 < α = α1 = αγ .

◦γ = s(δ ): Then β ≤ δ =⇒ αβ ≤αδ <αδ ·α =αγ , with the last equality stemming from Remark

2.3.30.

◦γ is a limit ordinal: Then there exists an ordinal δ such that β < δ < γ . Therefore αβ < αδ ≤
αγ .

Lemma 2.3.39. Let S be a non-empty set of ordinals, and α ∈ON. Then: αsupS = sup{αβ | β ∈ S}.

The following theorem is a well-known property of powers.

Theorem 2.3.40. For all ordinals α,β ,γ we have: αβ+γ = αβ ·αγ .

Proof. The proof is analogous to that of Proposition 2.3.35.
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Proposition 2.3.41. For all ordinals α,β ,γ we have: (αβ )γ = αβ ·γ .

Proof. Again, the proof is by induction on γ .

Remark 2.3.42. Unfortunately, the property (α ·β )γ = αγ ·β γ does not hold in general. For exam-

ple: (ω ·2)2 = (ω ·2) · (ω ·2) = ω · (2 ·ω) ·2 = ω ·ω ·2 = ω2 ·2 < ω2 ·4 = ω2 ·22.

With this, we conclude the things we needed to say about ordinals and their arithmetic. Now

we can move on to the cardinals.

2.4 Cardindals

Cardinality in a broad sense is a measure of how many elements there are in a set. One would

expect sets like {1,2,3},{4,5,9},{sun,shoes,beach} to have cardinality 3, whereas a set like the

natural numbers, the real numbers and the complex numbers to have cardinality ∞.

In order to define cardinality (and cardinal numbers) mathematically, we need to talk about a

closely-related idea: that of equinumerous sets. We want two sets to be equinumerous when they

have "the same number" of elements. This can be achieved in the following way:

Definition 2.4.1. Two sets A,B are called equinumerous if there exists a one-to-one and onto func-

tion f : A −→ B. We will write A =c B.

We will also write A ≤c B if there simply exists a on-to-one function f : A −→ B. We will write

A <c B if A ≤c B but not A =c B.

Immediately from the definition, certain desirable properties of equinumerosity jump out.

Proposition 2.4.2. For all sets A,B,C we have:

1. A =c A

2. A =c B =⇒ B =c A

3. (A =c B)∧ (B =c C) =⇒ A =c C

Properties 1 and 3 hold if we replace the equation =c with inequality ≤c.
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Proof. For the first property, consider the identity function idA : A −→ A. For the second property,

remember that the inverse of a one-to-one and onto function is again a one-to-one and onto function.

Finally, for the third property, notice that the composition of two one-to-one (and onto) functions

is again a one-to-one (and onto) function.

With this new notion of how to "count" elements in a set, we can rephrase our goal regarding

cardinality: for every set A we want to define a set |A| such that A =c |A|, and additionally for any

set B such that A =c B we have |A|= |B|. So, without further ado, let’s define the cardinals!

Definition 2.4.3. Let A be any set. We define the cardinality of A to be the ordinal

|A|= min{α ∈ ON | α =c A}

Moreover, any set that serves as cardinality of some other set will be called a cardinal number.

Remark 2.4.4. By Proposition 2.3.17 and a consequence of the Axiom of Choice, the above ordinal

always exists. Further more, the two requirements we set above the definition are satisfied, due to

Proposition 2.4.2.

Definition 2.4.5. Let ω = {0,1,2,3, . . .} be the set of natural numbers, and P(ω) be its power-set.

Then, we define ℵ0 to be the cardinality of ω , and c to be the cardinality of P(ω).

Since cardinals are ordinals, it makes sense to have "the next largest" cardinal. More rigor-

ously, the following theorem holds:

Theorem 2.4.6. Every non-empty class E of cardinals has a ≤c-least element.

Proof. E is a non-empty class of ordinals. Apply Proposition 2.3.17, and show that this least

element is also ≤c-least.

This theorem is the main tool in proving the following corollary:

Corollary 2.4.7. Let E be a non-empty class of cardinals. Then there exists a cardinal number κ

such that ∀α ∈ E (α ≤c κ) and it is the smallest cardinal with this property.

Proposition 2.4.8. For every cardinal κ there exists a unique cardinal κ+ such that κ <c κ+, and

it is the smallest cardinal with this property.
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Proof. From Cantor’s Theorem, the cardinal of P(κ) is strictly larger than κ . Therefore, the class

of cardinals which are strictly larger than κ is non-empty. Apply the previous Corollary.

Definition 2.4.9. The unique cardinal κ+ defined by the previous Proposition is called the succes-

sor (cardinal) of κ .

Definition 2.4.10. Let α be any ordinal. We define the cardinal ℵα recursively:

• if α = s(β ), then ℵα =
(
ℵβ

)+
• if α is a limit ordinal, then ℵα = sup{ℵβ | β <c α}

With all that out of the way, let’s lay out the first cardinals. To begin with, all natural numbers

0,1,2,3, . . . are both cardinals and ordinals. The set ω of all natural numbers is again both a

cardinal and an ordinal (although we typically write ℵ0 when referring to this set as a cardinal).

Immediately after ℵ0 we have the cardinals ℵ1,ℵ2,ℵ3 and so on, up to ℵω and counting. We

have defined c to be the cardinal of P(ω) (which can be shown to be the cardinal of R as well, i.e.

R=c P(ω)).

On the other hand, the ordinals ω +1,ω +2,ω ·2 are not cardinals (they are equinumerous to

ω but strictly larger than ω).

2.4.1 Cardinal Arithmetic

Now that we know some elementary cardinals, it’s time for us to talk about how to do arithmetic

on them. Fortunately, cardinal arithmetic is easier than ordinal arithmetic.

Definition 2.4.11. Let κ,λ be cardinal numbers, and K,Λ be disjoint sets such that |K| = κ and

|Λ|= λ .6 We define the (cardinal) sum κ +λ := |K ∪Λ|.7

Two properties of cardinal addition can readily be proven. Notice how these are some of the

well known properties of the addition in the real numbers that we are used to.

6Such sets always exist; take for example K to be κ and Λ to be λ ×{0}.
7This operation is easily seen to be well-defined, i.e. for other such sets K′,Λ′ we have |K ∪Λ|= |K′∪Λ′|
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Proposition 2.4.12. For any cardinals κ,λ ,µ we have:

1. κ +λ = λ +κ (commutativity)

2. κ +(λ +µ) = (κ +λ )+µ (associativity)

Proof. It is enough to see that the analogous properties hold for the union of sets:

1. K ∪Λ = Λ∪K

2. K ∪ (Λ∪M) = (K ∪Λ)∪M

Now pick three suitable sets K,Λ,M that are pairwise disjoint, and write out the definition for each

cardinal addition.

Definition 2.4.13. Let κ,λ be cardinal numbers, and K,Λ be sets such that |K| = κ and |Λ| = λ .

We define the (cardinal) product κ ·λ := |K ×Λ|.8

Two properties of cardinal multiplication can readily be proven. As with addition, these are

also well-known properties of multiplication on the real numbers.

Proposition 2.4.14. For any cardinals κ,λ ,µ we have:

1. κ ·λ = λ ·κ (commutativity)

2. κ · (λ ·µ) = (κ ·λ ) ·µ (associativity)

Proof. It is enough to see that the following properties hold for the product of sets:

1. K ×Λ =c Λ×K

2. K × (Λ×M) =c (K ×Λ)×M

Now pick three suitable sets K,Λ,M, and write out the definition for each cardinal multiplication.

8This operation is easily seen to be well-defined, i.e. for other such sets K′,Λ′ we have |K ×Λ|= |K′×Λ′|
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Continuing our work on proving things that we have known to hold for the real numbers since

high school, we have the distributive property of addition and multiplication:

Proposition 2.4.15. For any cardinals κ,λ ,µ we have: κ · (λ +µ) = κ ·λ +κ ·µ .

Proof. It is enough to see that for disjoint sets Λ and M, and K any set, we have

K × (Λ∪M) = (K ×Λ)∪ (K ×M)

and that the sets K ×Λ , K ×M are again disjoint.

Definition 2.4.16. Let κ,λ be cardinal numbers, and K,Λ be sets such that |K| = κ and |Λ| = λ .

We define the (cardinal) power κλ := |(Λ −→ K)|,9 where the set (Λ −→ K) is the set containing

all functions from Λ to K.

Proposition 2.4.17. For any cardinals κ,λ ,µ we have:

1. κλ+µ = κλ ·κµ

2. (κ ·λ )µ = κµ ·λ µ

3. (κλ )µ = κλ ·µ

Proof. The proof utilizes the definitions of the cardinals operations we have just laid out. We shall

prove the first point, leaving the rest as an exercise.

Pick sets K,Λ,M such that Λ∩M = /0 and |K|= κ , |Λ|= λ , |M|= µ . Then:

κ
λ+µ = |(Λ∪M −→ K)|= |(Λ −→ K)× (M −→ K)|= κ

λ ·κµ

since every function f : Λ∪M −→ K is uniquely decomposed into two functions g : Λ −→ K and

h : M −→ K (Λ and M are disjoint sets).

Just as in ordinals, we can define an ordering on the cardinals. However, to prove that it is in

fact an ordering relationship, one has to show the Schröder-Bernstein Theorem first.

Theorem 2.4.18 (Schröder-Bernstein). For all sets A,B, if A ≤c B and B ≤c A, then A =c B.

9This operation is easily seen to be well-defined, i.e. for other such sets K′,Λ′ we have |(Λ −→ K)|= |(Λ′ −→ K′)|
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We shall omit this proof, but provide the statement of a lemma which is essential in proving

the above theorem. The interested reader may fill in the blanks themselves, or look for the proofs

in [11].

Lemma 2.4.19. Let C ⊆ B be sets. If there exists a one-to-one function f : B −→C, then B =c C.

Definition 2.4.20. Let κ,λ be cardinals, and K,Λ be sets such that |K|= κ and |Λ|= λ . We define

the relationship:

κ ≤ λ if-f K ≤c Λ

We also write κ < λ if κ ≤ λ and κ ̸= λ .

Combining Theorem 2.4.18 above and Proposition 2.4.2, one sees that this relation satisfies

all the properties required for it to be an ordering, as in Definition 2.2.3 (note that this is a binary

relation on the class of cardinals, not on a set as in the aforementioned definition).

A very important theorem concerning this ordering is Cantor’s Theorem about the cardinality

of the power-set. Again, the proof of this can be found in [11].

Theorem 2.4.21 (Cantor). For any set A we have: A <c P(A).

At this point, we cannot omit to mention the cardinality of the power-set:

Proposition 2.4.22. For any set K we have: |P(K)|= 2|K|.

Proof. We need to show that P(K) =c (K −→{0,1}). For that, define the function f : P(K)−→
(K −→ {0,1}) that maps any subset A of K to its identity function idA : K −→ {0,1},

idA(x) =

{
1 , x ∈ A

0 , x ̸∈ A

The function f is obviously one-to-one. Furthermore, it is onto. Indeed, pick any function g :

K −→ {0,1} and put A = g−1({1}). Then f (A) = g. This concludes the proof.

Corollary 2.4.23. For every cardinal κ we have: κ < 2κ .

Let us now see that this ordering is preserved by the cardinal arithmetic we have defined:
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Theorem 2.4.24. For all cardinals κ,λ ,µ we have:

1. κ ≤ λ =⇒ κ +µ ≤ λ +µ

2. κ ≤ λ =⇒ κ ·µ ≤ λ ·µ

3. κ ≤ λ =⇒ κµ ≤ λ µ

4. (κ ≤ λ )∧ (µ > 0) =⇒ µκ ≤ µλ 10

Some remarks about certain properties of cardinal arithmetic and ordering follow. These will

serve as a preliminary to proving some more general facts about infinite cardinal arithmetic.

Remark 2.4.25. In the following, κ is any cardinal, ℵ0 = |ω|, and c= |P(ω)|:

• ∀n ∈ ω (n+ℵ0 = ℵ0)

• ℵ0 +ℵ0 = ℵ0

• ℵ0 ·ℵ0 = ℵ0

• κ +0 = κ

• κ ·0 = 0

• κ ·1 = κ

• κ0 = 1

• 0κ = 0 , if κ > 0

• c= 2ℵ0

• κ +κ = 2 ·κ

• c+ c= c

• c · c= c

• ℵ0 · c= c

• ℵ
ℵ0
0 = c

2.4.2 Infinite Cardinal Arithmetic

This is perhaps the section we are mostly going to refer to in Chapter 3 of this essay. While it is the

culmination of everything we have said so far about ordinals and cardinals, it is far from difficult

to understand. Contrary to ordinals, infinite cardinals are much more intuitive.

This section requires a small detour into the Axiom of Choice, equivalent statements and some

of its consequences. However, this is beyond the scope of our paper, and we shall leave this detour

to the reader. Details can be found in [11].

10The only problem with µ = 0 is in κ = 0 < λ , since then µκ = 1 > 0 = µλ .
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Theorem 2.4.26. Every infinite set contains an infinite and countable subset. Consequently, if κ is

an infinite cardinal, then ℵ0 ≤ κ .

Proof. Fix an infinite set M, and construct the following sequence (An)n∈ω of finite sets recursively:

◦A0: Since M is infinite, it is non-empty. Pick an element a0 ∈ M and put A0 = {a0}
◦An+1: Suppose you have constructed all sets Ak for 0 ≤ k ≤ n. Since An is finite and M is infinite,

there exists an element an+1 ∈ M\An. Put An+1 = An ∪{an+1}.

Now consider the union of all these sets, A =
⋃

n∈ω An = {a0,a1,a2, . . .}. This is a countable subset

of M, thus proving the first claim.

One important consequence of (and in fact, an equivalent statement to) the Axiom of Choice is

that all cardinals are pairwise comparable. Hence, if κ is an infinite cardinal, then the above states

that we cannot have κ < ℵ0, giving us ℵ0 ≤ κ .

Proposition 2.4.27. Let α,β be cardinal numbers, with α = finite and β = infinite. Then

α +β = β .

Proof. Pick sets A,B such that |A| = α and |B| = β . Since β is infinite, by the above theorem B

contains a countable subset, say C. We will show that α +ℵ0 = ℵ0. From that, we will have:

α +β = α +(|C|+ |B\C|) = (α +ℵ0)+ |B\C|= ℵ0 + |B\C|= β

To that end, suppose without loss of generality that A∩C = /0, and write C = {c0,c1,c2, . . .} and

A = {a0,a1, . . . ,aα−1}. Define the function f : A∪C −→C with

f (x) =

{
cn , x = an

cn+α , x = cn

This is obviously a one-to-one function (since A,C are disjoint). It is also onto, for if we pick an

element cn ∈C, then:

1) f (an) = cn , if n < α; or

2) f (cn−α) = cn , if n ≥ α .

This concludes the proof; A∪C =c C =⇒ |A∪C|= |C| ⇐⇒ α +ℵ0 = ℵ0.

The following theorem needs Zorn’s Lemma and inductive spaces to be proven, which is why

we simply state it here.

Theorem 2.4.28. For every infinite cardinal α we have: α +α = α .
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Corollary 2.4.29. For all cardinals α,β , if at least one of them is infinite, then α+β =max{α,β}.

Proof. Without loss of generality and since the two cardinals α,β are comparable (by the Axiom

of Choice), assume α ≤ β (so that β is infinite). By Theorem 2.4.24 we have β ≤ α + β and

α +β ≤ β +β . Apply Theorem 2.4.28 to get that α +β ≤ β .

Similarly to the last theorem and corollary we have the following regarding multiplication.

Proving them can be done in a likewise manner.

Theorem 2.4.30. For every infinite cardinal α we have: α ·α = α .

Corollary 2.4.31. For all non-zero cardinals α,β , if at least one of them is infinite, then

α ·β = max{α,β}.

Corollary 2.4.32. Let α be an infinite cardinal, and γ > 0 be a finite cardinal. Then αγ = α .

Proof. The proof is by induction on γ , using the last corollary and Proposition 2.4.17.

Corollary 2.4.33. Let α,β ≥ 2 be finite cardinals, and γ be an infinite cardinal. Then αγ = β γ .

Proof. Without loss of generality, suppose that α ≤ β . We have ℵ0 ≤ αγ ≤ β γ . There also exists11

a natural number n for which β ≤ αn (since α ≥ 2). So, β γ ≤ (αn)γ = α(n · γ) = αγ , using

already-proven properties of cardinal arithmetic. This gives us: αγ ≤ β γ ≤ αγ , which proves the

statement.

We are now moving on to the final leg of our journey in the land of cardinals. We want to

define what an infinite sum/product of cardinals is. Our intuition serves us well.

Definition 2.4.34. Let (ai)i∈I be a non-empty collection of cardinals. Pick any pairwise disjoint

sets (Ai)i∈I such that ∀i ∈ I (|Ai|= ai). We define the infinite sum

∑
i∈I

ai = |
⋃
i∈I

Ai|

Definition 2.4.35. Let (ai)i∈I be a non-empty collection of cardinals. Pick any collection of sets

(Ai)i∈I such that ∀i ∈ I (|Ai|= ai). We define the infinite product

∏
i∈I

ai = |∏
i∈I

Ai|

11This remains to be proven. Hint: use finite induction on β .
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Remark 2.4.36. Both of the infinite sum and the infinite product of cardinals are well-defined.

Corollary 2.4.37. Let (ai)i∈I be a non-empty collection of cardinals, and α be an infinite cardinal

such that ∀i ∈ I (ai ≤ α) and |I| ≤ α . Then ∑i∈I ai ≤ α .

Proof. Pick a collection of pairwise disjoint sets (Ai)i∈I such that |Ai|= ai for all i ∈ I. Also, pick

a set A such that |A|= α . Then the collection (A×{λ})λ∈A consists of pairwise disjoint sets, each

with cardinality α . Hence:

∑
i∈I

ai = |
⋃
i∈I

Ai| ≤ |
⋃

λ∈A

A×{λ}|= |A×A|= α ·α = α

Remark 2.4.38. In the previous proof, we showed that ∑λ∈α α = α ·α , which follows our intuition

on what relationship addition and multiplication should have. More generally, it can be proven that

∑λ∈β α = α · β for any cardinals α,β . In a similar manner, one can prove the following about

multiplication and powers:

If α,β are cardinals, then αβ = ∏λ∈β α .

At this point, we cannot not state the famous König’s Theorem, though its proof requires the

Axiom of Choice, and is therefore left unexamined.

Theorem 2.4.39 (König). Let (ai)i∈I,(bi)i∈I two non-empty collections of cardinals, such that

∀i ∈ I (ai < bi). Then we have: ∑i∈I ai < ∏i∈I bi.

Corollary 2.4.40. There does not exist any sequence (αn)n∈ω of cardinals strictly smaller than c,

such that c= ∑n∈ω αn.

Proof. Apply König’s Theorem to the sequence of cardinals, and notice that c= cℵ0 = ∏n∈ω c.

Finally, we present a proposition that seems intuitively right, but requires the Axiom of Choice

to be proven:

Proposition 2.4.41. Let A,B be two sets, and h : A −→ B be an onto function. Then B ≤c A.
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2.4.3 Orders and Cardinals

Now that we have learned all we needed to learn about cardinals and partial orders, it’s time to

combine the two and give some final definitions that will be used in the next chapter.

Definition 2.4.42. Let (I,≤) be a poset, and J be a subset of I. Then J is called bounded if there

exists an upper bound for its elements, that is: ∃i ∈ I
(
∀ j ∈ J ( j ≤ i)

)
.

Furthermore, if J is not bounded, then J is called cofinal.

Definition 2.4.43. Let I be an unbounded partially ordered set (the case where I is a cardinal

number is of interest to us). We define its cofinality to be the cardinal number given by:

c f (I) = min{card(J) | J ⊆ I ∧ J = cofinal}

Notice that, in the case of cardinals, we can identify two types of situations: either the cardinal

number is equal to its own cofinality, or the cardinal number is larger than it. This gives rise to the

following notions, both of which are essential to the understanding of the Singular Compactness

Theorem.

Definition 2.4.44. Let κ be an infinite cardinal. Then κ is called:

• regular, if c f (κ) = κ

• singular, if c f (κ)< κ

In the presence of the axiom of choice, one can also use the following proposition to prove that

the cardinals ℵ0,ℵ1, . . . ,ℵn . . . are regular, whereas ℵω is the first singular cardinal. Remember

that each cardinal is an ordinal, hence it is a set κ = {α ∈ ON | α < κ}, and note that the supremum

of a set A of ordinals is just the union
⋃

A (Proposition 2.3.20).

Proposition 2.4.45. Let κ be a cardinal number. All of the following are equivalent:

• κ is regular

• If κ = ∑
i∈I

λi and λi < κ for all i ∈ I, then |I| ≥ κ

• If S =
⋃
i∈I

Si and |I|< κ and |Si|< κ for all i ∈ I, then |S|< κ
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Proof. 1 =⇒ 2) Suppose to the contrary that there exists a set I with |I|< κ and there exist cardi-

nals λi < κ for all i ∈ I such that κ = ∑
i∈I

λi. Then ∀i ∈ I (λi ∈ κ) meaning that the set J = {λi | i ∈ I}

is a subset of κ . Moreover, it is cofinal in it: indeed, if that weren’t the case, then we could find a

λ ∈ κ such that ∀i ∈ I (λi ≤ λ ) and |I| ≤ λ ; apply Corollary 2.4.37 to see that κ = ∑
i∈I

λi ≤ λ < κ ,

a contradiction. So, we have found a cofinal subset of κ that has cardinality |J|= |I|< κ , meaning

that κ is a singular cardinal, contradicting our hypothesis.

2 =⇒ 3) Suppose to the contrary that there exists a set S with |S| ≥ κ , and there exist sets I,(Si)i∈I

with cardinalities strictly smaller than κ , such that S =
⋃
i∈I

Si. By substituting S,Si with appropriate

subsets S′,S′i (for each i ∈ I), we may assume that |S|= κ; furthermore, we may assume that all of

the Si are pairwise disjoint (otherwise, substitute S̃i = Si ×{i} for Si). Then by Definition 2.4.34

we have: κ = |S|= |
⋃
i∈I

Si|= ∑
i∈I
|Si|. By hypothesis, it must be |I| ≥ κ , which is a contradiction.

3 =⇒ 1) Suppose to the contrary that κ is singular. Then by definition there must exist a cofinal

subset I ⊆ κ with |I| < κ . For each i ∈ I define the set Si = {α ∈ κ | α < i}, and put S =
⋃
i∈I

Si.

Notice that |Si| = card(i) ≤ i < κ . By applying our hypothesis we get that |S| < κ . However, I

being cofinal in κ means that S = κ , a contradiction.

Definition 2.4.46. Let (I,≤) be a poset. Then:

• it is called directed, if ∀i, i′ ∈ I
(
∃ j ∈ I (i ≤ j ∧ i′ ≤ j)

)
• if λ is a regular cardinal, the poset is called λ -directed if every subset of I with cardinality

less than λ has an upper bound.

Definition 2.4.47. Let (I,≤) be a poset, and λ be a regular cardinal. Then we say that I is λ -closed

if the supremum of any of its chains with cardinality less than λ lies in I.

Page 54 of 87



Chapter 3

Shelah’s Singular Compactness Theorem

It is finally time to discuss the main theorem of this report: Shelah’s Singular Compactness Theo-

rem. We will begin with a short background on the approaches to this result done in the past, and

then we are ready to begin developing and presenting the tools necessary to prove this very exciting

theorem.

3.1 Historical recount

No study of a subject would be complete without at least some notes on how the main ideas of

it came to be, how they took off and were morphed to aid in other areas of interest, and how

these ideas stand in modern times. However, therein lies an author’s probably most daunting and

difficult task: how is one to decide when an idea was born? How can one gather all the important

information on a, say, theorem, without risking going off on tangents, the other ends of which might

be completely unrelated to and of no interest to the scholar of the original theorem? How can one

do justice by the shape of these ideas in modern times?

For a theorem of mathematics, such as our own, that borrows from so many different areas, it

is impossible to carry out such a heavy task. Yet, the author of this essay has made as best an

effort as possible to present a coherent and streamlined version of the history of Shelah’s Singular

Compactness Theorem. To this end, only a superficial recount of the most important and relevant

to us breakthroughs will be shone a light upon, sacrificing many of the other, equally beautiful,

breakthroughs that have been discovered along the way by past contributors.
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In many ways, the beginning of an idea is both the hardest and easiest to pinpoint. Shelah’s

celebrated theorem was written in ink and paper in 1974, but in order to witness its beginnings, we

have to go back a few years; more specifically to 1952, when J. C. Whitehead is said (Ehrenfeucht

[3]) to have first presented his famous Whitehead problem on abelian groups. The problem states:

(WH): Is every abelian group with Ext1(A,Z) = 0 a free abelian group?

An abelian group A that satisfies the equation Ext1(A,Z) = 0 is called a Whitehead group. By

the recount of Eklof ([4]), the answer to the above question was already proven to be affirmative

when dealing with countable groups, i.e. every countable W-group is free.

It was this very problem that piqued Shelah’s interest, which led to his first paper on the subject

in the year 1973 (see [13]). In this paper, Shelah proved that (WH) for abelian groups of cardinality

ℵ1 is independent of ZFC. He does this by showing that ZFC + V = L (the usual ZFC axiomatic

set theory together with the axiom of constructibility, an axiomatic system already proven to be

consistent assuming consistency of ZFC) implies (WH); then he showed that the (already proven

to be consistent) axiomatic system ZFC + MA + 2ℵ0 > ℵ1 (where MA = Martin’s axiom) implies

that there are non-free W-groups of cardinality ℵ1, the negation of (WH). Therefore, (WH) must

be independent of ZFC. For both of these results, he uses a categorization of a group G based on

finite subsets and pure subgroups of it.

This first independence result was just the first step, however. A couple of years later, in

[14] Shelah graced the mathematical community with his much celebrated Singular Compactness

Theorem. This version uses lemmas about free algebras (a very set-theoretic version of ’free’ that

is later generalized by Hodges) to prove that:

Theorem (Shelah’s Singular Compactness Theorem). If G = λ -free group, where λ is a singular

cardinal, then it is λ+-free.

Here, λ -free means that every subgroup of cardinality < λ is free. The same holds for free

abelian groups, and those two prove compactness for these cases of ’free’ structures. To prove

compactness for free algebras in general, he uses the notion of E-freeness, where E is a filter. He

then went on ([15], [16]) to provide a more general independence result to (WH), even assuming

the Continuum Hypothesis.

Hodges in [10] refined Shelah’s proof of the Singular Compactness Theorem in the case of

abelian groups. He uses the notions of fully closed unbounded subsets and free factor of an abelian
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group (tightly coupled with the basis of the group), and presents a proof which revolves around

a two-player game where subgroups of a group A are chosen so that every other subgroup Bi is

a free factor of Bi+2. He then generalized the proof by giving a set of axioms that abstract the

notions involved: those of abelian groups (or other mathematical structures in their stead) and of

free. Note that this is different from the axiomatization that Shelah did in his original work, which

only regards algebras.

It is this latter system of axioms that David relaxed in [2] by eliminating the first axiom, and

Shelah himself expanded upon in [17] for a general theorem on lifting incompactness.

In Eklof and Fuchs [7] the version of the Singular Compactness Theorem that appears in

Hodges is used to fully characterize Baer modules over arbitrary valuation domains (so that all

such modules are free). This work is furthered by a subsequent paper ([8]) to Baer modules over

arbitrary domains, in which a stronger version of the Singular Compactness Theorem from the first

paper is developed by confining it to just modules and formulating it in such a way that it applies

below the cardinality of the ring.

In the following years, not much was done pertaining to new proofs of Shelah’s theorem. The

version that appeared in Hodges was the one most referred-to by authors to apply and the one that

saw the most re-prints and refinements of its proof. The most notable literature from 1990 to 2010

is as follows:

◦ Eklof [4]: it is an introductory article to the (WH) problem and the work of Shelah. A good start-

ing point that contains definitions, methods and tools used throughout the literature on the subject.

◦ Eklof [5]: it contains a detailed history of the connection between set theory and algebra, how the

former has helped solve some long-standing problems of the latter, as well as a lengthy bibliogra-

phy for further study.

◦ Eklof and Mekler [9]: the second version of this book is a solid read for anyone who wishes to

start small (from homomorphisms and extensions in algebra, from filters and large cardinals in set

theory) and work their way up to more advanced theories (cotorsion theory, dual groups and topo-

logical tools, just to name a few of its chapter titles). The historical notes at the end of each chapter

have been especially helpful in the compilation of this here section. Shelah’s Singular Compact-

ness Theorem (the version for modules that is inspired from Hodges) is an improved attempt at an

accessible proof, without losing generality.

◦ Eklof [6]: this small paper has again some history on the Whitehead problem, some preliminary

definitions, the notion of ’freeness’ for modules, and finally it explains a self-contained proof of

the Singular Compactness Theorem that appears in [9].
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The next big breakthrough comes almost twenty five years after the last one in the form of

a paper by Beke and Rosicky ([1]). The basic aim of this is to reformulate Shelah’s theorem in

categorical terms, state its new ‘functorial’ form that is broad enough to encapsulate all known ap-

plications of the theorem, then present the novel proof of it (which is based on the one by Hodges).

The theorem states:

Theorem (Singular compactness theorem (functorial form)). Let A be an accessible category with

filtered colimits, B a finitely accessible category and F : A −→ B a functor preserving filtered

colimits. Assume that F-structures extend along morphisms. Let X ∈ B be an object whose size µ

is a singular cardinal. If all subobjects of X of size less than µ are in the image of F, then X itself

is in the image of F.

Special attention is given to cellular objects, which, according to the authors, provide "the

most elegant version of singular compactness" without losing much generality. It is here that the

notions of ‘structure’ and ‘free’ are put into test: how much can one relax them while still keeping

the result of the theorem intact.

This brings us neatly along to the last article that we will cite, and it is the one that this essay

has set out to explain. The article is by J. Šaroch and J. Št’ovíček ([18]), was published in 2020, and

concerns itself with ∑-cotorsion modules. To show that a module being ∑-cotorsion is a property of

the complete theory of the module, the authors develop a general (set-theoretic) proof of Shelah’s

Singular Compactness theorem, which enhances the ideas found in [9].

We will now conclude this essay with an attempt to analyze the aforementioned paper by

Šaroch and Št’ovíček, in order to fully appreciate this new proof of the Singular Compactness

Theorem. But before we do so, let’s make sure that we clearly state the problem we are trying to

solve: What is the connection between co-limits and the roots of the functor Ext1(−,C), where C

is an object of a category C ? More specifically, if C is the class of all left R-modules and we define
⊥C = {M ∈ C | ∀C ∈ C (Ext1(M,C) = 0)}, then ⊥C is the class of projective modules; when can

one decompose a projective module into "smaller" projective modules, and, vice versa, when is the

co-limit of projective modules also a projective module?

Theorem (SSCT as appears in Šaroch and Št’ovíček). Let R be a ring with enough idempotents.

Let κ be a singular cardinal, M be a κ-presented module and C a filter-closed class of modules.

Assume that there is an infinite cardinal ν such that, for all successor cardinals ν < λ < κ , there

is a system Sλ witnessing that M is almost (C ,λ )-projective. Then M ∈⊥ C .
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3.2 The regular-cardinal case

In the rest of this essay, by R we mean an associative ring with a multiplicative identity element,

and by "module" we will mean a left R-module (i.e. a module in the class R-Mod).

The following definitions are a first bridge between homological algebra and set theory:

Definition 3.2.1. Let λ be a regular (uncountable) cardinal. A direct system
(
(Mi)i∈I , ( f ji)i≤ j

)
of

R-modules is called λ -continuous if for every J ⊆ I which is linearly ordered and has cardinality

|J|< λ there exists x ∈ I such that x = supJ and Mx = lim−→ j∈J
M j.

Remark 3.2.2. It follows immediately from the last definition and Definition 2.4.46 that if a direct

system
(
(Mi)i∈I , ( f ji)i≤ j

)
is λ -continuous, then the poset (I,≤) is λ -directed.

Definition 3.2.3. Let τ be an ordinal, and M be an R-module. Then a direct system {Mα | α < τ}
of modules is called a well-ordered continuous filtration of M if:

• M0 = 0

• M = lim−→α<τ
Mα

• every map Mα −→ M is 1-1

• for every limit ordinal α < τ we have Mα = lim−→β<α
Mβ

Let us now extend the definition of a finitely-presented module (Definition 1.1.64) to infinite

cardinal representation:

Definition 3.2.4. Let κ be any cardinal, and M be an R-module. We say that M is κ-presented if

there exists a short exact sequence R(κ) −→ R(κ) −→ M −→ 0 , where by R(κ) we denote the direct

sum of κ copies of R.

We also say that M is < κ-presented if there exists a cardinal λ < κ such that M is λ -presented.

Remark 3.2.5. The following hold:

i) If M′ is a quotient of a κ-presented module M, then M′ is κ-generated.

(Proof. Take the exact sequence R(κ) −→ R(κ) g−→M −→ 0 and let M′ =M/K for some submodule

K ≤ M. Put rµ ∈ R(κ), µ < κ , be the element with 1 for its µ-th coordinate, and 0 elsewhere. Then

M is generated by the set {g(rµ) | µ < κ} (since g : R(κ) −→ M is surjective), so M′ is generated

by the set {g(rµ)+K | µ < κ}.)
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ii) If M′ is a direct summand of a κ-presented module M, then M′ is κ-presented.

(Proof. Write M = M′⊕K, whence we get that M′ = M/K like above. Then M′ is the quotient

of a κ-presented module over a κ-generated module (K is κ-generated due to the previous point),

giving us that the relations in M′ are the relations in M plus the generators of K, which total κ .

Hence M′ is κ-presented itself.)

The following proposition will be used several times in the pages to come. It itself is a gen-

eralization of a well-known result about countably-presented modules and their representation by

finitely-presented modules.

Proposition 3.2.6. Let λ ≤ κ be cardinals with λ=regular, and M be a κ-presented module. Then

there exists a representation M = lim−→i∈I
Mi of < λ -presented modules, where the direct system(

(Mi)i∈I , ( f ji)i≤ j
)

is λ -continuous.

Proof. Since M is κ-presented, by definition there exists a short exact sequence R(κ) f−→ R(κ) −→
M −→ 0. Define

I = {(A,B) | A,B ⊆ κ with |A|, |B|< λ and f (R(A))⊆ R(B)}

and let ≤ be an ordering on that set, where (A,B)≤ (A′,B′) iff A ⊆ A′ and B ⊆ B′.

For every cardinal τ and every J ⊆ I with J = {(Aσ ,Bσ ) | σ < τ} and |J| < λ we have

(
⋃

σ<τ

Aσ ,
⋃

σ<τ

Bσ ) ∈ I (this is easy to verify using Proposition 2.4.45, since λ is regular); further-

more, ∀ρ < τ

(
(Aρ ,Bρ)≤ (

⋃
σ<τ

Aσ ,
⋃

σ<τ

Bσ )
)

.

Now for every (A,B) ∈ I define M(A,B) = coker(R(A) f|−→ R(B)). We have in this manner

constructed the modules of the wanted direct system, hence leaving us to define the homomor-

phisms between them to finish the proof. We are able to do this by defining the homomorphism

can(A′,B′),(A,B) = g : M(A,B) −→ M(A′,B′) such that the following diagram is commutative:

R(A) R(B) M(A,B) 0

R(A′) R(B′) M(A′,B′) 0

f|

g

f|

It is easy to prove that:

i) if J = {(Aσ ,Bσ ) | σ < τ} ⊆ I is a chain and (A,B) = (
⋃

σ<τ

Aσ ,
⋃

σ<τ

Bσ ) ∈ I, then (A,B) = supJ
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and M(A,B) = lim−→σ<τ
M(Aσ ,Bσ )

(Proof. To prove that (A,B) = supJ simply observe that for all σ < τ we have Aσ ⊆ A (likewise

for B); this means that (Aσ ,Bσ ) ≤ (A,B). Furthermore, for any other upper bound (A′,B′) of J

we must have Aσ ⊆ A′ and therefore
⋃

σ<τ

Aσ ⊆ A′ (likewise for B′), i.e. A ⊆ A′ and B ⊆ B′, giving

us (A,B) ≤ (A′,B′). In order to prove the limit equality, observe that cokernels commute with

colimits, therefore we have: M(A,B) = coker
(
R(A) f|−→ R(B))= coker

(
lim−→σ<τ

(R(Aσ )
f|−→ R(Bσ ))

)
=

lim−→σ<τ
coker

(
R(Aσ )

f|−→ R(Bσ )
)
= lim−→σ<τ

M(Aσ ,Bσ ).)

ii) we have M = coker(R(κ) f−→ R(κ)) = lim−→(A,B)∈I
M(A,B).

(Proof. Use the limits argument from above.)

This concludes the proof.

Remark 3.2.7. In the above proposition, if λ = κ , then we can take I to be linearly ordered, namely

M = lim−→α<λ
Mα . Indeed, for every α < λ pick α ≤ βα < λ such that f (R(α)) ⊆ R(βα ), and put

Mα = coker
(
R(α)

f|−→ R(βα )
)
.

The connection between λ -continuity and λ -representation can be further strengthened; for

that, we turn to a similar notion for functors.

Definition 3.2.8. Let λ be a regular cardinal. The functor F : R-Mod −→ Ab is called

λ -continuous if for every λ -continuous direct system
(
(Mi)i∈I , ( f ji)i≤ j

)
with M = lim−→i∈I

Mi the

natural map lim−→I∈I
FMi −→ FM is an isomorphism.

The next proposition illustrates the importance of the above definition using the Hom(M,−)

functor:

Proposition 3.2.9. Let λ be a regular cardinal. The module M is < λ -presented if-f the functor

Hom(M,−) : R-Mod −→ Ab is λ -continuous.

Proof. ⇒) Let
(
(Ni)i∈I , ( f ji)i≤ j

)
be a λ -continuous direct system, and N = lim−→i∈I

Ni. We will

show that the canonical map can : lim−→i∈I
Hom(M,Ni)−→ Hom(M,N) is one-to-one and onto.

onto: Pick a homomorphism g : M −→ N and let {mα | α < τ},{rα | α < τ} be the genera-

tors and the relations of M (such exist for some τ < λ , since M is < λ -presented). Consider

the set {g(mα) | α < τ} ⊆ N. By definition of the direct limit and λ -continuity of the system:

∃i ∈ I ∀α < τ
(
g(mα)∈ im(Ni

fi−→ N)
)
, where the { fk , k ∈ I} are the canonical homomorphisms.

Now, for every relation rα we have g(rα) = 0, therefore there exists r′α ∈ Ni with fi(r′α) = 0. Again
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from the direct limit there exists a j ∈ I such that {r′α | α < τ} ⊆ ker(Ni
f ji−→ N j

)
. Therefore the

function g can be written as the composition f j ◦ g̃ = ( f j)∗(g̃), for a homomorphism g̃ : M −→ N j.

Since the following diagram is commutative, we have proved the "onto" property of the can map.

lim−→i∈I
Hom(M,Ni) Hom(M,N)

Hom(M,N j)

can

( f j)∗

one-to-one: Pick a ξ ∈ ker
(

lim−→i∈I
Hom(M,Ni)

can−→ Hom(M,N)
)
. Then there exists an i ∈ I and a

g ∈ Hom(M,Ni) such that ξ = [g]. We have: 0 = can(ξ ) = ( fi)∗(g) = fi ◦ g : M −→ N, and so

∀α < τ

(
fi(g(mα)) = 0 ∈ N

)
. But then there exists j ∈ I such that ∀α < τ

(
f ji(g(mα)) = 0

)
.

Since the set {mα | α < τ} is a generating set of the module M, this tells us that f ji ◦g ≡ 0 : M −→
N j, and so ξ = [g] = [ f ji ◦g] = [0] = 0.

⇐) By Proposition 3.2.6 we can write the module M as lim−→i∈I
Mi for a λ -continuous direct

system of < λ -presented modules (Mi)i∈I .

By hypothesis, the canonical map can : lim−→i∈I
Hom(M,Mi) −→ Hom(M,M) is an isomorphism,

and therefore onto. Hence, for the identity homomorphism IdM there exists ξ ∈ lim−→i∈I
Hom(M,Mi)

such that IdM = can(ξ ). By definition of the direct limit, there exist i ∈ I , g ∈ Hom(M,Mi) such

that ξ = [g], and so: IdM = can(ξ ) = ( fi)∗(g) = fi ◦g. We will now show that Mi ≃ im(g)⊕ker( fi)

and M ≃ im(g). Then, M will be a direct summand of the < λ -presented module Mi, and so will

itself be < λ -presented by Remark 3.2.5.

The second claim, M ≃ im(g), is a direct consequence of the First Isomorphism Theorem and the

fact that g is one-to-one (since IdM = f ◦g is one-to-one). For the other claim, choose any m ∈ Mi.

Then fi(m)∈ M and m−g( fi(m))∈ ker( fi), since fi(m−g( fi(m))) = fi(m)− fi(g( fi(m)))
IdM= fi◦g

=

fi(m)− fi(m) = 0. So m = g( fi(m))+
(
m− g( fi(m))

)
∈ im(g)+ ker( fi), which shows that Mi =

im(g)+ ker( fi). It remains to show that im(g)∩ ker( fi) = {0}. For that, pick an element m in

im(g)∩ ker( fi). Since m ∈ im(g), consider m′ ∈ M
(
m = g(m′)

)
. Now, m ∈ ker( fi), therefore

fi(m)= 0. So, m′= IdM(m′)= fi(g(m′))= fi(m)= 0, giving us m= 0. The proof is completed.

We now give a definition that will play a crucial role to the rest of our analysis. Notice the

word almost.

Definition 3.2.10. Let C ⊆ R-Mod be a class of modules, and λ be a regular cardinal. A module

M is called almost-(C ,λ )-projective if there exists a λ -continuous direct system of < λ -presented
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modules (Mi)i∈I such that M = lim−→i∈I
Mi and ∀i ∈ I (Mi ∈ ⊥C ). In this case, we say that the direct

system witnesses the almost-(C ,λ )-projectivity of M.

We can already see the importance of this definition:

Remark 3.2.11. If M is < λ -presented and almost-(C ,λ )-projective (where λ is regular), then

M ∈ ⊥C .

Proof. Let
(
(Mi)i∈I , ( f ji)i≤ j

)
be the direct system that witnesses the almost-(C ,λ )-projectivity

of M. The map lim−→i∈I
Hom(M,Mi) −→ Hom(M, lim−→i∈I

Mi) = Hom(M,M) is onto. Therefore, the

identity map IdM factors through Mi for some i ∈ I, meaning that there exists g ∈ Hom(M,Mi) with

IdM = fi ◦g (where the f j : M j −→ M are the canonical homomorphisms). But then M is a direct

summand of Mi ∈ ⊥C , giving us that Ext1(M,C) is a direct summand of Ext1(Mi,C) = 0 for all

C ∈ C .

The above remark is very close to what we set out to do in this chapter. However, we can do

better than almost; for that, we have to introduce a new concept:

Definition 3.2.12. The homomorphism f : M −→N is called C -monomorphism if for every C ∈C

the homomorphism f ∗ : Hom(N,C)−→ Hom(M,C) is onto.

Let us familiarize ourselves with this new idea, by giving some remarks:

1) If C only contains injective modules, then every monomorphism is a C -monomorphism.

(Proof. It follows immediately from the definition of injective modules.)

2) If the injective cogenerator DR = Hom(RR,Q/Z) is in C , then every C -monomorphism is a

monomorphism.

(Proof. The exact sequence 0 −→ ker f −→ M
f−→ N of modules induces the exact sequence

Hom(N,DR)
f ∗−→Hom(M,DR)−→Hom(ker f ,DR)−→ 0, for every homomorphism f : M −→N

and modules M,N ∈ C . If DR ∈ C and f is a C -monomorphism, then f ∗ is onto, meaning that

Hom(ker f ,DR) = 0. Hence ker f = 0 and f is a monomorphism.)

3) The composition of two C -monomorphisms is a C -monomorphism.

(Proof. Remember that (g◦ f )∗ = f ∗ ◦g∗. If both f ∗,g∗ are onto, so is their composition.)

4) If both f ∈ Hom(M,N) , g ∈ Hom(N,L) are linear maps and g◦ f is a C -monomorphism, then

f is also a C -monomorphim.

(Proof. We want to show that f ∗ : Hom(N,C) −→ Hom(M,C) is onto for any C ∈ C . Pick
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any h ∈ Hom(M,C). Since g ◦ f is a C -monomorphism, there exists a h′ ∈ Hom(L,C) such that

h′ ◦ (g◦ f ) = h. The morphism h′ ◦g ∈ Hom(N,C) is then such that f ∗(h′ ◦g) = h′ ◦g◦ f = h.)

Proposition 3.2.13. Let f : M −→ N be a C -monomorphism, and D be a submodule of ∏
i∈I

Ci with

Ci ∈ C for all i ∈ I. Then:

• Every g : M −→ D factors through im f −→ D.

• If Ext1(coker f ,D) = 0, then f is a D-monomorphism.

Proof. Let πi : ∏
i∈I

Ci −→ Ci be the projection, and put gi = πi ◦ g : M −→ Ci, i.e. for m ∈ M

we have g(m) = (gi(m))i∈I . Notice that kerg =
⋂
i∈I

kergi. Since f is a C -monomorphism and

gi ∈ Hom(M,Ci), for every i ∈ I there exists a homomorphism hi ∈ Hom(N,Ci) with gi = hi ◦ f ,

therefore ker f ⊆ kergi, which in turn implies that ker f ⊆ kerg. Now, since im f ≃ M/ker f there

exists ḡ : im f −→ D with ḡ ◦ φ = g (where we have written f = i ◦ φ , φ : M −→ im f and

i : im f −→ N is the inclusion). This is what we were after.

For the second part of the proposition, consider the exact sequence:

0 −→ Hom(coker f ,D)−→ Hom(N,D)
i∗−→ Hom(im f ,D)−→ Ext1(coker f ,D) = 0

This gives that i∗ is onto, therefore there exists ¯̄g : N −→ D with ¯̄g ◦ i = ḡ. This concludes the

proof.

With this new tool, we can now give the following definition, a stronger notion than the one in

Definition 3.2.10:

Definition 3.2.14. Let C be a class of modules, and λ be a regular cardinal. The module M is

called (C ,λ )-projective if it is almost-(C ,λ )-projective and every canonical map Mi −→ M from

the direct system that witnesses it is a C -monomorphism.

The importance of this definition can be seen in the next proposition, which is a partial answer

to our original question:

Proposition 3.2.15. Let λ be a regular cardinal, and M be a λ -presented module which is (C ,λ )-

projective. Then M ∈ ⊥C .
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In order to prove Proposition 3.2.15 we first need to prove a special case of it in the form of a

lemma, which is often called Eklof’s Lemma.

Lemma 3.2.16 (Eklof’s Lemma). Let M = lim−→α<τ
Mα be a module where τ is a regular cardinal,

the direct system
(
(Mα)α<τ , ( fβα)β≤α

)
is τ-continuous, ∀α < τ (Mα ∈ ⊥C ) and every fα+1,α :

Mα −→ Mα+1 is a C -monomorphism. Then M ∈ ⊥C .

Proof. Pick any C ∈ C . We want to show that Ext1(M,C) = 0, i.e. that every exact sequence

0 −→C i−→ X
p−→ M −→ 0 splits. For every α < τ we will construct a linear map gα : Mα −→ X

such that:

i) p◦gα = fα (where fα : Mα −→ M is of course the canonical map)

ii) ∀β < α (gβ = gα ◦ fαβ )

Having done that, a homomorphism g : M −→ X with p ◦ g = IdM is induced, which is what we

are after. The construction will be done via induction on the ordinal α:

◦ α = 0: Since M0 ∈ ⊥C , the homomorphism p∗ : Hom(M0,X) −→ Hom(M0,M) is surjective.

Hence, we can find g0 : M0 −→ X with p◦g0 = f0, as desired.

◦ α=limit ordinal: By continuity of the direct system we have Mα = lim−→β<α
Mβ , and so there exists

a unique gα : Mα −→ X such that gα ◦ fαβ = gβ for all β < α .

◦ α = β +1 < τ: As in the 0-th inductive step, since Mα ∈ ⊥C there exists a homomorphism

h : Mα −→ X with p◦h = fα . Put c = fαβ = fβ+1,β . We can calculate that

p◦ (gβ −h◦ c) = fβ − fβ+1 ◦ c = 0

i.e. gβ − h ◦ c ∈ kerp∗. Combining this with the fact that the sequence 0 −→ Hom(Mβ ,C)
i∗−→

Hom(Mβ ,X)
p∗−→ Hom(Mβ ,M) is exact (which itself stems from 0 −→C i−→ X

p−→ M being exact

and Theorem 1.1.46), we get a t : Mβ −→C with i◦ t = gβ −h◦ c. But c is a C -monomorphism,

so there exists s : Mβ+1 −→ C with t = s ◦ c. Then i ◦ s ◦ c = gβ − h ◦ c =⇒ (i ◦ s+ h) ◦ c = gβ .

Define gα = gβ+1 = i◦ s+h. We can easily see that:

i) p◦gα = p(i◦ s+h) = p◦ i◦ s+ p◦h
im(i)=ker(p)

= 0+ fα = fα , and

ii) for any γ < α , we have gγ = gβ ◦ fβγ = (i◦ s+h)◦ c◦ fβγ = gα ◦ fαβ ◦ fβγ = gα ◦ fαγ

as desired. This concludes the proof.
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Continuing our work towards the proof of Proposition 3.2.15, we present the following lemma:

Lemma 3.2.17. Let λ > ℵ0 be a regular cardinal, f ∈ Hom(M,N), M = lim−→i∈I
Mi, N = lim−→ j∈J

N j

where the direct systems
(
(Mi)i∈I , (a ji)i≤ j

)
,
(
(Ni) j∈J , (b ji)i≤ j

)
are λ -continuous and their mod-

ules are < λ -presented. Then:

1) There exists a λ -continuous direct system (uk : Mik −→ N jk | k ∈ K) of homomorphisms with

f = lim−→k∈K
uk.

2) If f is an isomorphism, then every uk above can also be taken to be an isomorphism.

Proof. 1) We begin by defining the set

K = {(i, j,u) | i ∈ I, j ∈ J, u : Mi −→ N j with b j ◦u = f ◦ai}

as well as the following order on it:

(i, j,u)≤ (i′, j′,u′) ⇐⇒ (i ≤ i′)∧ ( j ≤ j′)∧ (b j′ j ◦u = u′ ◦ai′i)

This makes K a directed set where every chain of length < λ has a supremum. Indeed, for any

two elements (i1, j1,u1),(i2, j2,u2) ∈ K pick i ≥ i1, i2 in I and j ≥ j1, j2 in J; consider the below

diagram:
Mi1 N j1

Mi N j

M N

u1

ai1

aii1

b j1

b j j1u

ai

b j

f

where all of the already-completed subdiagrams are known to be commutative. Complete the

diagram by finding u : M −→ N (possibly by increasing the index j) such that the whole diagram

is commutative. Repeat the process with the element (i2, j2,u2), and we end up with (i, j,u) ∈ K

that is ≥ both (i1, j1,u1),(i2, j2,u2).

We will now show that f = lim−→k∈K
(Mik

uk−→ N jk). Pick m ∈ M and consider i ∈ I, mi ∈ Mi

such that m = ai(mi). Since the homomorphism f ◦ ai : Mi −→ N factors through some N j, for

some large i, j we can find u : Mi −→ N j such that (i, j,u) ∈ K. Then the following diagram is

commutative by construction of K:
Mi N j

M N

u

ai b j

f
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2) Following the construction of K above, we will show that there exists a cofinal subposet K′

of K such that for every (i, j,u) ∈ K′ we have u = isomorphism. Pick a random (i0, j0,u0) ∈ K. We

want to find an element (i, j,u)> (i0, j0,u0) such that u is an isomorphism. It is true that

Hom(N j0,M) = Hom(N j0, lim−→
i∈I

Mi) = lim−→
i∈I

Hom(N j0 ,Mi)

and

f−1 ◦b j0 ∈ Hom(N j0,M)

and so ∃v0 : N j0 −→ Mi1 for some i1 > i0 with ai1 ◦ v0 = f−1 ◦ b j0 . We can pick i1 large enough

so that we can find (i1, j1,u1) > (i0, j0,u0) in K. We repeat the argument for the new (i1, j1,u1)

element and find a larger (i2, j2,u2) ∈ K and so on.We can summarize our findings in the following

diagram:
Mi0 Mi1 Mi2 . . .Mi∞ = lim−→n∈NMin M

N j0 N j1 N j2 . . .Ni∞ = lim−→n∈NN jn N

u0 u1 u2 u∞
fv0 v1 v∞

where u∞,v∞ are the direct limits of their respective sequences. But now, making use of the com-

mutative triangles that emerge, we have u∞ ◦ v∞ = IdN∞
and v∞ ◦u∞ = IdM∞

. This means that u∞ is

an isomorphism, and (i∞, j∞,u∞)> (i0, j0,u0). This concludes the proof.

The above proof is fairly technical and a lot of the details have been skipped over. What we

are interested in is the corollary that stems from the lemma.

Corollary 3.2.18. If λ >ℵ0 is regular, M = lim−→i∈I
Mi = lim−→ j∈J

N j with the two direct systems being

λ -continuous, and their modules < λ -presented, then there exist cofinal λ -continuous subsystems

(Mi | i ∈ I′),(N j | j ∈ J′) that are isomorphic to each other.

Proof. Simply put f = IdM in the above lemma.

This corollary essentially allows us to talk about an "intersection" of the two systems, some-

thing that will help us a lot in the theory to come. With that, we are finally able to prove Proposition

3.2.15.

Proof. Since M is λ -presented, we can write M = lim−→α<λ
Mα for some λ -continuous direct system

where each module Mα is < λ -presented (see Remark 3.2.7). But M is also (C ,λ )-projective,
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therefore we can write M = lim−→ j∈J
N j for a λ -continuous system where each N j is < λ -presented,

each belongs to ⊥C and each N j
can−→ M is a C -monomorphism. We can now "merge" these two

systems together by use of the last corollary to find a cofinal λ -continuous J′ ⊆ J that is linearly

ordered. Apply Eklof’s Lemma to this system, and we get our desired result: M ∈ ⊥C .

3.3 The singular-cardinal case

Proposition 3.2.15 has been satisfactory in answering our initial question when the module M is

λ -presented, for some regular cardinal λ . Now, we turn our attention towards the case where M is

κ-presented for some singular cardinal κ . The answer here will be the main theorem of our thesis,

Shelah’s Singular Compactness Theorem.

Let us first discuss filters.

Definition 3.3.1. Let X be a non-empty set. A family F ⊆ P(X) is called a filter on X if:

i) ∀A ∈ F
(
∀B ⊆ X

(
(A ⊆ B −→ B ∈ F )

))
(F is upwards closed) and

ii) ∀A,B ∈ F (A∩B ∈ F ) (F is closed under finite intersections)

Definition 3.3.2. If λ=regular cardinal and F is a filter on X , then F is called λ -complete if for

every family (Ai)i∈I with |I|< λ and Ai ∈ F we have
⋂
i∈I

Ai ∈ F .

The following examples will help us familiarize ourselves with filters. Where it appears, X is

a non-empty set:

i) Pick x ∈ X and consider the family F = {A ⊆ X | x ∈ A}. Then F is a filter on X (this type of

filter is signified as F (x) and is called the principal filter of x).

ii) Put F = {A ⊆ X | card(X\A)< ∞}. Then F is a filter on X .

(Proof. Observe that if A ⊆ B, then X\B ⊆ X\A and |X\B| ≤ |X\A|. Also for any A,B ∈ F ,

|X\(A∩B)|= |(X\A)∪ (X\B)| ≤ |X\A|+ |X\B|< ∞.)

iii) Let (I,≤) be a directed set. Define FI =
{

A ⊆ I | ∃i ∈ I ({ j ∈ I | j ≥ i} ⊆ A)
}

. Then FI is a

filter on I. Moreover, if (I,≤) is λ -directed then FI is λ -complete.

(Proof. For any i ∈ I put Fi := { j ∈ I | j ≥ i}. First, observe that for any A ⊆ B ⊆ X with A ∈ FI , if

Fi ⊆ A, then Fi ⊆ B as well. Second, take any two A,B ∈ FI and let Fi0,Fi1 be the sets that witness

this. Since I is directed, we can find i2 ∈ I such that i0 ≤ i2 and i1 ≤ i2. But then Fi2 is a subset of

both Fi0 and Fi1 , so Fi2 ⊆ A∩B. This last argument can be adapted to show that λ -directedness of

(I,≤) implies λ -completenss of the filter FI .)
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iv) The filter FI is a principal filter F (x) for some x ∈ I if-f x is the maximum element of (I,≤).

(Proof. For the =⇒ way, notice that {x} ∈ F (x), hence {x} ∈ FI and that the sets Fi (see above

proof) are non-empty; use these to show that x is a maximal element in I. Since I is directed, it

follows that x is the maximum element. For the ⇐= way, use the definitions of the two filters to

show that FI ⊆ F (x) and that F (x)⊆ FI (for the last one, consider the set Fx = {x}).)

Symbolization: Let X be a non-empty set, (Mx)x∈X be R-modules and M = ∏x∈X Mx. For

m = (mx)x∈X ∈ M we will write z(m) = {x ∈ X | mx = 0} to mean the set of coordinates of m that

are zero.

Remark 3.3.3. For any m,m′ ∈ M and r ∈ R we have: z(m)∩ z(m′)⊆ z(m+m′) and z(m)⊆ z(rm).

Therefore, if for a filter F on X we define the subset ∑F M = {m ∈ M | z(m) ∈ F}, then it is

trivial to show that ∑F M is a (R-)submodule of M. We will call this the F -product of (Mx)x∈X .

Moreover the quotient M/∑F M will be called the reduced F -product of (Mx)x∈X .

If m,m′ ∈ M and p : M −→ M/∑F M is the quotient map, then p(m) = p(m′) if-f there exists an

A ∈ F such that mx = m′
x for all x ∈ A (we say that the coordinates of m and m′ are equal almost

everywhere).

Let us now tie these new ideas back to the theory we had started investigating. The next

definition is pretty self-explanatory:

Definition 3.3.4. Let C be a class of R-modules. We say that C is closed under filtered products if

for every family (Mx)x∈X of modules in C and every filter F on X we have ∑F (∏x∈X Mx) ∈ C .

Remark 3.3.5. If a class C ⊆ R-Mod is closed under products and directed unions, then it is closed

under filtered products.

(Proof. Notice that ∑F (∏x∈X Mx) =
⋃

A∈F
∏

x∈Ac
Mx.)

Proposition 3.3.6. Let C be a class of modules that is closed under filtered products, and let

λ > ℵ0 be a regular cardinal. If M ∈ ⊥C and M = lim−→i∈I
Mi for a λ -continuous directed system(

(Mi)i∈I , ( f ji)i≤ j
)

of < λ -generated modules, then there exists a λ -closed cofinal subset J ⊆ I

such that for all j ∈ J the canonical map f j : M j −→ M is a C -monomorphism.

Proof. Consider the set

S = {i ∈ I | fi : Mi −→ M is not a C -monomorphism }
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Then for each i ∈ S there exist a Ci ∈ C and a homomorphism gi : Mi −→Ci such that gi ̸∈ im( f ∗i ).

For i ∈ I\S put gi = 0 and pick any Ci ∈ C . For every i, j ∈ I define the map h ji : Mi −→ C j as

follows:

◦ if i ̸≤ j then h ji = 0 , or

◦ if i ≤ j then h ji = g j ◦ f ji, so that the next diagram commutes:

Mi M j

C j

f ji

h ji
g j

Now if i ≤ j ≤ k, then the following diagram also commutes:

Mi M j Mk

Ck

f ji

hk j◦ f ji

fk j

hk j gk

But since fk j ◦ f ji = fki we have hk j ◦ f ji = gk ◦ fk j ◦ f ji = hki, and so for all i ≤ j it is true that

{k ∈ I | hki = hk j ◦ f ji} ∈ FI (1).

Consider the inclusions vi : Mi −→
⊕
i∈I

Mi and the projections π j : ∏
k∈I

Ck −→ C j, and define

the map h :
⊕
i∈I

Mi −→ ∏
k∈I

Ck such that h ji = π j ◦ h ◦ vi for all i, j ∈ I. Also put C = ∏
j∈I

C j and let

p : C −→C/∑FI C be the usual quotient map. By definition of the direct limit and the direct sum

of modules, there exists a unique φ :
⊕
i∈I

Mi −→ M such that φ ◦vi = fi for all i ∈ I. Also, using the

fact from (1) we get that p◦h◦vi = p◦h◦v j ◦ f ji, and so there exists a unique u : M −→C/∑FI C

with p◦h = u◦φ . We can summarize these in the following diagram:

Mi
⊕
i∈I

Mi M

C C/∑FI C

Ck

vi φ

h
u

p

πk

C is closed under filtered products, meaning ∑FI C ∈ C . Also M ∈ ⊥C by hypothesis, so

Ext1(M,∑FI C) = 0. Therefore the map p∗ : Hom(M,C) −→ Hom(M,C/∑FI C) is surjective.

Put g : M −→ C such that u = p∗(g) = p ◦ g. Then p ◦ h = u ◦ φ = p ◦ g ◦ φ , which gives us

p◦h◦ vi = p◦g◦φ ◦ vi for all i ∈ I.
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Now, consider i ∈ I and let {mα | α < τ} be a generating set of Mi (where obviously τ < λ ).

Pick α < τ . Then the above equation gives p ◦ h ◦ vi(mα) = p ◦ g ◦φ ◦ vi(mα), and Remark 3.3.3

gives a set Aα,i ∈ FI such that πk ◦h◦ vi(mα) = πk ◦g◦φ ◦ vi(mα) for all k ∈ Aα,i. The filter FI is

λ -complete, and so
⋂

α<τ Aα,i ∈ FI . But filters are "upwards-closed" and so for all i ∈ I we have

{k ∈ I | πk ◦h◦vi = πk ◦g◦φ ◦vi} ∈ FI (2). Therefore for any i ∈ I there exists s(i)> i such that

for all k ≥ s(i) we have πk ◦h◦ vi = πk ◦g◦φ ◦ vi.

For i ∈ I consider the sequence i < s(i) < s(s(i)) = s2(i) < s(s2(i)) = s3(i) < .. . and put

j = s∞(i) = supn∈ω{sn(i)} ∈ I. So M j = lim−→n∈ω
Msn(i) and ∀k ≥ j

(
πk ◦ h ◦ v j = πk ◦ g ◦ φ ◦ v j

)
.

Therefore the subset J = { j ∈ I | ∀k ≥ j
(
πk ◦h◦ v j = πk ◦g◦φ ◦ v j

)
} is cofinal in I and λ -closed.

Finally, pick j ∈ J. Then (for k = j) it is true that

π j ◦h◦ v j = π j ◦g◦φ ◦ v j ⇐⇒

h j j = π j ◦g◦φ ◦ v j ⇐⇒

g j = π j ◦g◦ f j = f ∗j (π j ◦g)

This means that J∩S = /0, which concludes the proof.

We are now ready to introduce the main star of the show: Shelah’s Singular Compactness

Theorem. The proof of this needs to be broken down into bite-sized pieces, so one should look at

this as its own chapter, rather than one big and hard to follow proof.

3.3.1 Shelah’s Singular Compactness Theorem

Theorem 3.3.7. Let κ=singular cardinal, M=κ-presented module and C =class of modules which

is closed under filtered products. Suppose that there exists an infinite cardinal ν such that for each

successor cardinal λ with ν < λ < κ there exists a direct system Sλ of modules that witnesses the

almost-(C ,λ )-projectivity of M. Then M ∈ ⊥C .

We now begin the proof.

M is a κ-presented module, where κ is a singular uncountable cardinal, so by Proposition 3.2.6

we can write M = lim−→i∈I
Mi for a (ℵ1-continuous) direct system

(
(Mi)i∈I , ( f ji)i≤ j

)
of countably

presented modules. For each regular cardinal λ ≥ ℵ1 and each directed subset J ⊆ I with |J|< λ ,

put MJ = lim−→ j∈J
M j. Define Iλ = {J ⊆ I | J = directed and |J|< λ} and Sλ =

(
(MJ)J∈Iλ

)
together
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with the respective homomorphisms. The following lemma ensures that this is in fact a direct

system of modules:

Lemma 3.3.8. Let (I,≤) be a directed set, and X ⊆ I with |X | < λ , for a regular uncountable

cardinal λ . Then there exists a directed subset Y ⊆ I with |Y |< λ and X ⊆ Y .

Proof. Since I is a directed set, we may define a function f : I × I −→ I such that for each input

(i, j) it outputs an element k ∈ I with i ≤ k and j ≤ k. Now, put X0 = X and define recursively the

sets Xn = Xn−1∪{ f (i, j) ∈ I | i, j ∈ Xn−1} for all natural numbers n > 0. Then the set Y :=
⋃

n∈ω Xn

is our sought-after subset.

Indeed, Y is directed, since any two elements yn,ym can be found in some Xn,Xm; put l =max{n,m},

and notice that the set Xl+1 contains the image f (yn,ym) which is ≥ both yn,ym. Furthermore, the

cardinality of Y is < λ , since each Xn has cardinality < λ (this can be shown recursively, using the

equations λ +λ = λ and λ ·λ = λ from Theorems 2.4.28 and 2.4.30) and the sequence of sets has

cardinality ℵ0 < λ ; from the fact that λ is regular, Proposition 2.4.45 gives us that the cardinality

of their union also has cardinality < λ . Finally, it is obvious that X = X0 ⊆ Y .

Next, we prove that the system Sλ is λ -continuous. First, notice that for any chain X in Iλ

with |X | < λ we have
⋃

X ∈ Iλ . Indeed, since λ is regular and X is a family of < λ sets each

of cardinality < λ , this means that |
⋃

X |< λ . Furthermore, take any two elements j0, j1 ∈
⋃

X ;

then there exist J0,J1 ∈ X such that j0 ∈ J0, j1 ∈ J1. But X is a chain, therefore we may assume

that J0 ⊆ J1. Then by directedness of J1 we can find an element j ∈ J1 such that j ≥ j0 and j ≥ j1.

This j also belongs to
⋃

X , which shows that
⋃

X is a directed set.

But then for any such chain we also have:

M⋃
X = lim−→

i∈
⋃

X

Mi = lim−→
J∈X

(
lim−→
i∈J

Mi
)
= lim−→

J∈X

MJ ∈ Sλ

which gives us the λ -continuity. Finally, since we can write

MJ = lim−→
i∈J

Mi = coker
( ⊕

i< j∈J

Mi −→
⊕
i∈J

Mi
)

we have that every MJ in Sλ is < λ -presented.

For every successor cardinal λ (strictly between ν and κ), consider the λ -continuous direct

systems Sλ (given by hypothesis) and Sλ (constructed). By Corollary 3.2.18 we can replace the

Sλ with the "intersection" of the aforementioned systems. Then, each MJ ∈ Sλ that appears in
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our new system is itself the direct limit of a direct subsystem of our original
(
(Mi)i∈I , ( f ji)i≤ j

)
system; write Iλ for the set containing the directed subsets J ⊆ I that index these subsystems and

put I=
⋃

ν<λ<κ Iλ . It is now obvious that each Iλ has the following properties:

• /0 ∈ Iλ

(Proof. The zero module {0} is the direct limit of an empty directed system of modules and

exists in Sλ as well.)

• if A ⊆ I and |A|< λ , then ∃B ∈ Iλ such that A ⊆ B

(Proof. This is exactly Lemma 3.3.8.)

• if X ⊆ Iλ is a chain with |X |< λ , then
⋃

X ∈ Iλ

(Proof. Both the old Sλ (by definition) and the constructed Sλ (as shown above) are λ -

continuous. So the module M⋃
X will also exist in the new direct system.)

Now, let us define the set W = {(A,B) |A⊆B⊆ I with A,B= directed}, and more specifically

its subset W0 = {( /0,B) ∈ W }. These become ordered sets if we define the order:

(A,B)≤ (A′,B′) ⇐⇒ (A ⊆ A′)∧ (B ⊆ B′)

For every A⊆B⊆ I directed sets, consider the canonical map cBA : lim−→i∈A
Mi −→ lim−→i∈B

Mi and put

Φ(A,B) = coker(cBA). More specifically we have Φ( /0,B) = lim−→i∈B
Mi, and Φ( /0, /0) = {0}. Finally,

for every (A,B),(C,D) ∈ W with (A,B) ≤ (C,D) define the map Φ(A,B) −→ Φ(C,D) such that

the following diagram commutes:

Φ( /0,A) Φ( /0,B) Φ(A,B) 0

Φ( /0,C) Φ( /0,D) Φ(C,D) 0

cBA

cCA cDB

cDC

We make the following observations:

1. If A ∈ I then Φ( /0,A) ∈ ⊥C .

2. If Y ∈ ⊥C and the homomorphism f : X −→Y is a C -monomorphism, then coker( f )∈ ⊥C .

3. If (A,B) ∈ W ,B ∈ I and the natural map Φ( /0,A) −→ Φ( /0,B) is a C -monomorphism, then

Φ(A,B) ∈ ⊥C .
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From these three, we will prove the second observation (the first is simply Remark 3.2.11 applied to

the module lim−→i∈A
Mi = Φ( /0,A), whereas the third one is derived from the first two observations).

Proof. Pick C ∈ C and a homomorphism g : im( f )−→C. Write f = i◦π where i : im( f )−→Y

is the injection as usual. Then there exists h : Y −→ C such that g ◦ π = h ◦ f = h ◦ i ◦ π . But

π : X −→ im( f ) is surjective, therefore g = h ◦ i = i∗(h). We have thus shown that the map

i∗ : Hom(Y,C)−→ Hom(im( f ),C) is surjective. Combining this with the fact that the sequence

0 −→ Hom(coker( f ),C)−→ Hom(Y,C)
i∗−→ Hom(im( f ),C)−→ Ext1(coker( f ),C)−→ 0

is exact gives us that Ext1(coker( f ),C) = 0. This concludes the proof: coker( f ) ∈ ⊥C .

Let us now define a weaker order on the set W . For (A,B),(C,D) ∈ W with (A,B) ≤ (C,D)

write (A,B)⪯ (C,D) if-f the map Φ(A,B)−→ Φ(C,D) is a C -monomorphism.

Some properties of this new order which we will later use:

i) ( /0, /0) ∈ W is the minimum element

ii) if (A,B)⪯ (C,D) then (A,B)≤ (C,D)

iii) for all V,W,X ∈ W with V ≤W ≤ X and V ⪯ X , we have that V ⪯W

iv) let (A,B),(C,D)∈W be such that (A,B)≤ (C,D) and (A,C)⪯ (B,D) and ( /0,B)⪯ ( /0,D). Then

(A,B)⪯ (C,D)

v) let
(
(An,Bn)

)
n∈ω

be a ⪯-increasing sequence in W . Put (Aω ,Bω) =
(⋃

n∈ω An,
⋃

n∈ω Bn
)
∈ W

and suppose that ( /0,An)⪯ ( /0,Bω) for all n ∈ ω . If Bn ∈ I for all n ∈ ω , then ( /0,Aω)⪯ ( /0,Bω).

Let’s discuss their proofs:

Proof. (i) Obviously, for any (A,B) we have ( /0, /0) ≤ (A,B). Furthermore, the map

Φ( /0, /0) = {0} −→ Φ(A,B) is the zero map, which is easily seen to be a C -monomorphism.

Proof. (ii) This is immediate from the definition of the new order.

Proof. (iii) Take any three elements (A1,B1) ≤ (A2,B2) ≤ (A3,B3) in W such that (A1,B1) ⪯
(A3,B3). Consider the three commutative diagrams:

(1)

Φ( /0,A1) Φ( /0,B1) Φ(A1,B1) 0

Φ( /0,A2) Φ( /0,B2) Φ(A2,B2) 0

f
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(2)

Φ( /0,A2) Φ( /0,B2) Φ(A2,B2) 0

Φ( /0,A3) Φ( /0,B3) Φ(A3,B3) 0

g

(3)

Φ( /0,A1) Φ( /0,B1) Φ(A1,B1) 0

Φ( /0,A3) Φ( /0,B3) Φ(A3,B3) 0

h

that arise from the definitions of f ,g,h. Splice them together into one:

Φ( /0,A1) Φ( /0,B1) Φ(A1,B1) 0

Φ( /0,A2) Φ( /0,B2) Φ(A2,B2) 0

Φ( /0,A3) Φ( /0,B3) Φ(A3,B3) 0

f h

g

Now this is also easily seen to be a commutative diagram (using the properties of the canonical ho-

momorphisms of the direct system). In particular, we have h= g◦ f . Since h is a C -monomorphism

(by the weak order (A1,B1)⪯ (A3,B3)), from the 4th remark under Definition 3.2.12 we get that f

is also a C -monomorphism, which was desired.

Proof. (iv) Consider the following diagram, which has exact rows and columns:

Φ( /0,A) Φ( /0,B) Φ(A,B) 0

Φ( /0,C) Φ( /0,D) Φ(C,D) 0

Φ(A,C) Φ(B,D)

0 0

β α

γ

Pick N ∈C . We will show that the induced map Hom(α,N) : Hom(Φ(C,D),N)−→Hom(Φ(A,B),N)

is onto. Apply the Hom(−,N) functor to the above diagram. By the Snake Lemma (1.2.29) we get

an exact sequence

ker(γ∗)−→ Hom(Φ(C,D),N)
α∗
−→ Hom(Φ(A,B),N)−→ coker(γ∗)−→ ·· · −→ ·· ·
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and since γ∗ is onto by hypothesis (γ is a C -monomorphism), we finally get that α∗ is onto, meaning

that α is itself a C -monomorphism.

Proof. (v) From the relations An ⊆ Bn ⊆ Bω we get ( /0,An) ≤ ( /0,Bn) ≤ ( /0,Bω) for all n ∈ ω . But

we also have ( /0,An) ⪯ ( /0,Bω) , therefore by property (iv) we get ( /0,An) ⪯ ( /0,Bn) for all n ∈ ω .

Since Bn ∈ I by observation (1) above we have Φ( /0,Bn) ∈ ⊥C , and so Φ(An,Bn) ∈ ⊥C for all

n ∈ ω . By Eklof’s Lemma we get: Φ(Aω ,Bω) = lim−→n∈ω
Φ(An,Bn) ∈ ⊥C .

We want to prove that f : Φ( /0,Aω) −→ Φ( /0,Bω) is a C -monomorphism. Write f in the

usual form f = i ◦ φ , where i : im( f ) −→ Φ( /0,Bω) is the injection. Also, pick C ∈ C and a

homomorphism g : Φ( /0,Aω) −→ C. The proof will be complete once we finish proving the 3

steps below:

1. ker( f )⊆ ker(g)

2. ∃γ : im( f )−→C with γ ◦φ = g

3. ∃h : Φ( /0,Bω)−→C with h◦ i = γ , meaning: f ∗(h) = h◦ f = γ ◦φ = g.

Step 2 follows immediately from step 1: Define the morphism γ̃ : Φ( /0,Aω)/ker(φ) −→ C to be

γ̃(x+ ker(φ)) = g(x). The fact that ker(φ) = ker( f ) ⊆ ker(g) means that γ̃ is well-defined. From

the First Isomorphism Theorem we get the isomoprhism φ̃ : im( f ) −→ Φ( /0,Aω)/ker(φ) with

φ̃(φ(x)) = x+ker(φ). The desired γ is simply γ̃ ◦ φ̃ .

For step 3 consider the exact sequence 0 −→ im( f ) i−→ Φ( /0,Bω)−→ Φ(Aω ,Bω)−→ 0 and apply

the Hom(−,C) functor to it. Since Φ(Aω ,Bω)∈ ⊥C , we have coker(i∗) = Ext1(Φ(Aω ,Bω),C) = 0,

therefore the induced morphism i∗ : Hom(Φ( /0,Bω),C)−→ Hom(im( f ),C) is onto.

It remains to prove step 1. Pick t ∈ Φ( /0,Aω) with f (t) = 0. Then ∃n ∈ ω, tn ∈ Φ( /0,An)

such that t = λn(tn) where λn : Φ( /0,An) −→ Φ( /0,Aω) is the canonical map. By hypothesis,

the homomorphism f ◦ λn : Φ( /0,An) −→ Φ( /0,Bω) is a C -monomorphism, and so the map

g ◦λn factors through f ◦λn. This means that there exists a homomorphism ξ : Φ( /0,Bω) −→ C

with g ◦λn = ξ ◦ f ◦λn. This gives us: g(t) = g ◦λn(tn) = ξ ◦ f ◦λn(tn) = ξ ◦ f (t) = 0, and so

t ∈ ker(g).

We will now present a short sequence of propositions which will help us with the proof of the

main theorem.
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Proposition 3.3.9. Let C be a class of modules that is closed under filtered products, and M ∈ ⊥C .

Let also λ be a regular uncountable cardinal, and R(X) f−→ R(Y ) −→ M −→ 0 be a short exact

sequence. Put S(λ ) = {(X ′,Y ′) | X ′ ⊆ X ,Y ′ ⊆ Y, f (R(X ′))⊆ R(Y ′) and |X ′|+ |Y ′|< λ}. Then there

exists a VA(λ )⊆ S(λ ) such that:

i) for (X ′,Y ′)∈VA(λ ) we have that the map M(X ′,Y ′) −→ M is a C -monomorphism , where we have

put M(X ′,Y ′) = coker
(
R(X ′) f |−→ R(Y ′)

)
ii)

⋃
(X ′,Y ′)∈VA(λ )X ′ = X and

⋃
(X ′,Y ′)∈VA(λ )Y

′ = Y

iii) VA(λ ) is a directed set

iv) VA(λ ) is λ -closed.

Proof. We have already proven that S(λ ) is λ -continuous, that M(X ′,Y ′) = coker
(
R(X ′) f |−→ R(Y ′)

)
is

< λ -presented and that lim−→(X ′,Y ′)∈S(λ )
M(X ′,Y ′) = M ∈ ⊥C (see the proof of Proposition 3.2.6). By

Proposition 3.3.6 we also get that there exists a cofinal, λ -closed, directed subsystem VA(λ )⊆ S(λ )

such that property (i) holds. But VA(λ ) being cofinal implies property (ii), which concludes the

proof.

Corollary 3.3.10. Let A ∈ I and λ > ℵ0 be a successor cardinal with ν < λ < κ . Then there exists

a VA(λ )⊆ {( /0,A′) ∈ W | A′ ⊆ A and |A′|< λ} such that:

i) ( /0,A′)⪯ ( /0,A) for all ( /0,A′) ∈VA(λ )

ii)
⋃
( /0,A′)∈VA(λ )A′ = A

iii) VA(λ ) = directed

iv) VA(λ ) = λ -closed.

Proof. Apply the previous Proposition for M = Φ( /0,A) = lim−→i∈A
Mi.

Proposition 3.3.11. Consider A,B ∈ I with V = (A,B) ∈ W and ( /0,A) ⪯ ( /0,B). Also pick λ

a successor cardinal with ν < λ < κ . Then there exists a V (λ ) ⊆ {(A′,B′) ∈ W | A′ ⊆ A ,

B′ ⊆ B , A′ ⊆ B′ and |B′|< λ} such that:

i) ∀(A′,B′) ∈V (λ )
(
(A′,B′)⪯ (A,B) ∧ ( /0,A′)⪯ ( /0,A) ∧ ( /0,B′)⪯ ( /0,B)

)
ii)

⋃
(A′,B′)∈V (λ )A′ = A and

⋃
(A′,B′)∈V (λ )B′ = B

iii) V (λ ) is directed

iv) V (λ ) is λ -closed.

Proof. Consider the sets VA(λ ),VB(λ ) which we get from the previous Corollary, and put σ to be

the homomorphism Φ( /0,A)−→ Φ( /0,B). We can find a cofinal subsystem

Ṽ (λ )⊆ {(A′,B′) | A′ ∈VA(λ ) , B′ ∈VB(λ ) , A′ ⊆ B′}
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that is λ -continuous such that σ = lim−→(A′,B′)∈Ṽ (λ )
σ ′ and Φ(A,B) = lim−→(A′,B′)∈Ṽ (λ )

Φ(A′,B′), where

σ ′ is the homomorphism Φ( /0,A′)−→ Φ( /0,B′).

Now σ is a C -monomorphism and Φ( /0,B) ∈ ⊥C , so Φ(A,B) ∈ ⊥C . Hence, there exists a

cofinal, λ -closed, directed subset V (λ )⊆ Ṽ (λ ) such that the homomorphism Φ(A′,B′)−→Φ(A,B)

is a C -monomorphism for all (A′,B′) ∈V (λ ).

We have almost reached the end of the proof. One last theorem remains between us and a

complete proof of Shelah’s Singular Compactness Theorem.

Theorem 3.3.12. There exists a continuous ascending ⪯-chain {( /0,Cα) | α < cf(κ)} such that

I =
⋃

α<cf(κ)Cα and Cα ∈ I for all α < cf(κ).

Before proving this last theorem, let us first see how we can complete the proof of our main

theorem with it. We will give an outline of what we have done so far, and finish it off with the last

3 bullet-points:

1. We started with a κ-presented module M, where κ > ℵ0 is a singular cardinal.

2. We wrote M as the direct limit lim−→i∈I
Mi, with each Mi being countably presented.

3. We defined the λ -continuous, direct system of modules Sλ =
(
(MJ)J∈Iλ

)
for every successor

cardinal ν < λ < κ , where Iλ = {J ⊆ I | J = directed and |J| < λ} and each MJ = lim−→ j∈J
M j is

< λ -presented.

4. From the almost-(C ,λ )-projectivity of M we got a system Sλ which we intersected with our

constructed Sλ to get a new system Sλ with the desired properties of both.

5. We put Iλ to be the set of indices of this new system, and I=
⋃

ν<λ<κ Iλ .

6. We defined the family W = {(A,B) | A ⊆ B ⊆ I , A,B = directed } and a ≤-order on it.

7. We defined the modules Φ(A,B) = coker(MA −→ MB) for (A,B) ∈ W .

8. We showed that for any such pair, if B ∈ I and the morphism Φ( /0,A) −→ Φ( /0,B) is a C -

monomorphism, then Φ(A,B) ∈ ⊥C . More specifically, Φ( /0,B) ∈ ⊥C .

9. We defined the weaker ⪯-order on W such that (A,B) ⪯ (A′,B′) ⇐⇒ (A,B) ≤ (A′,B′) ∧
Φ(A,B)−→ Φ(A′,B′) is a C -monomorphism.

10. With this last theorem, we found a continuous ascending ⪯-chain {( /0,Cα) | α < cf(κ)} such

that I =
⋃

α<cf(κ)Cα and Cα ∈ I for all α < cf(κ).

11. Now, since Cα ∈ I we get that Φ( /0,Cα) ∈ ⊥C (see (8)). Furthermore, (10) also gives us that

each Φ( /0,Cα)−→ Φ( /0,Cα+1) is a C -monomorphism (see (9)).

12. By Eklof’s Lemma we have: lim−→α<cf(κ)Φ( /0,Cα) ∈ ⊥C .
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13. However I =
⋃

α<cf(κ)Cα and so lim−→α<cf(κ)Φ( /0,Cα) = M, completing the proof.

In order to prove Theorem 3.3.12 we will weed out all the unnecessary noise from before, and

keep just the points we will need. Some cross-over with the bullet-points above cannot be avoided:

For a directed set (I,≤) with cardinality κ we have defined I=
⋃

ν<λ<κ Iλ , where the Iλ are sets

containing as elements directed subsets of I with cardinality < λ and λ=successor cardinal such

that:

• /0 ∈ Iλ

• Iλ is λ -closed

• for any A ⊆ I with |A|< λ there exists B ∈ Iλ such that A ⊆ B

On the set W = {(A,B) | A ⊆ B ⊆ I directed subsets} we have defined the order ⪯ with the follow-

ing properties:

1. ( /0, /0) is the smallest element

2. if (A,B)⪯ (C,D) then (A,B)≤ (C,D)

3. if (A,B)≤ (C,D)≤ (E,F) and (A,B)⪯ (E,F) then (A,B)⪯ (C,D)

4. Proposition 3.3.11

5. if (A,B),(C,D)∈W and (A,B)≤ (C,D) and (A,C)⪯ (B,D) and ( /0,B)⪯ ( /0,D) then (A,B)⪯
(C,D)

6. if {(An,Bn)}n∈ω is an ascending ⪯-sequence in W and (Aω ,Bω) = (
⋃

n∈ω An,
⋃

n∈ω Bn) and

( /0,An)⪯ ( /0,Bω) ∀n ∈ ω and Bn ∈ I ∀n ∈ ω , then ( /0,Aω)⪯ ( /0,Bω).

Finally, we have also defined the subset W0 = {(A,B) ∈ W | A = /0}.

We will need the following lemma. It is here that the idea from Hodges regarding a proof by

a two-player game is utilized:

Lemma 3.3.13. For every X ∈W0 with |X | ≥ ν there exists N ∈W0∩ (I|X |+)
2 such that X ≤ N and

N ⪯ Y for all Y ∈ W0 with |Y |= |N| and N ≤ Y .
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Proof. Put µ = |X | and pick any N ∈ W0 ∩ (Iµ+)2. Define the N-Shelah game as follows:

"The game consists of two players who take turns after one another. Player 1 begins the game and

during his turn picks any Xn ∈W0 with |Xn| ≤ µ , where n is the number of the current round. Player

2 in his turn picks Nn ∈W0∩ (Iµ+)2 with Xn ≤ Nn and Nn−1 ⪯ Nn, where we have put N−1 = N. At

most ω rounds are played. Player 2 wins if-f he can play for ω rounds, otherwise Player 1 wins."

Define the set

S = {N ∈ W0 ∩ (Iµ+)2 | Player 1 does not have a winning strategy in the N-Shelah game }

We will show that ( /0, /0) ∈ S. This will mean that Player 1 does not possess a winning strategy for

the ( /0, /0)-Shelah game where X0 = X , and so Player’s 2 first pick will serve as the N that satisfies

the conditions of the statement we are after.

For every K ∈W0∩(Iµ++)2 fix an ascending ≤-chain {Kα ∈W0 | ∀α < µ+
(
|Kα | ≤ µ

)
} such

that
⋃

α<µ+ Kα = K. Consider a strategy s for Player 1, i.e. a function s(N0,N1, . . . ,Nn−1) = Xn,

for the ( /0, /0)-Shelah game. We will show that Player 2 can beat strategy s.

We will inductively define two ascending ≤-sequences {Mα ∈ W0 ∩ (Iµ+)2 | α < µ+} and

{Kα ∈ W0 ∩ (Iµ++)2 | α < µ+} such that:

(0) X0 ≤ M0

(1) ∀α < µ+ limit ordinal we have Mα =
⋃

β<α Mβ

(2) ∀α < µ+ we have Mα ≤ Kα

(3) ∀α < µ+ we have Mα+1 > Mα ∪
⋃

β≤α(Kβ )
α

(4) ∀α < µ+ ∀n ∈ ω ∀α0 ≤ α1 ≤ ·· · ≤ αn ≤ α with Mα0 ⪯ Mα1 ⪯ ·· · ⪯ Mαn being valid choices

for Player 2 we have s(Mα0,Mα1, . . . ,Mαn)≤ Mα+1.

We begin the induction.

◦n = 0 : Since X0 = ( /0,B0) ∈ W0, by the third property of Iµ+ (notice how µ+ < κ , because κ is

singular) there exists A0 ∈ Iµ+ with B0 ⊆ A0. Define M0 = ( /0,A0), so (0) holds. Likewise (since

µ++ < κ as well) define K0 ≥ M0.

◦n = α +1 : Put X̃α = {s(Mα0,Mα1 , . . . ,Mαn) ∈ W0 | φ(α)}, where φ(α) stands for "n ∈ ω, α0 ≤
α1 ≤ ·· · ≤ αn ≤ α with Mα0 ⪯ Mα1 ⪯ ·· · ⪯ Mαn being valid choices for Player 2". Notice that

|
⋃

X̃α |< µ+ (we have at most ω choices for n, and at most αω = α for the αi, so at most ω ·α =

α choices for s(Mα0 ,Mα1, . . . ,Mαn), and each such set has < µ+ elements since it is a Player 1

choice). Since |(Kβ )
α | ≤ µ for all β ≤ α and |Mα | ≤ µ , by adding yet another element to the set

Mα ∪
⋃

β≤α(Kβ )
α ∪

⋃
X̃α we get that |Mα ∪

⋃
β≤α(Kβ )

α ∪
⋃

X̃α |< µ+. By the third property of
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Iµ+ again we can find a Mα+1 ∈ W0 ∩ (Iµ+)2 such that (3) holds. Likewise define Kα+1 ≥ Mα+1.

◦n = α =limit ordinal: Let α < µ+ be a limit ordinal and suppose that we have defined Mβ ,Kβ for

all β < α . Define Mα =
⋃

β<α Mβ and Kα as in the previous steps. Notice that Mα ∈ W0 ∩ (Iµ+)2

since Mβ form a chain, and (1) holds.

By construction, (2) and (4) also hold. The induction has been completed.

Let us now put M =
⋃

α<µ+ Mα . We have: |M| = µ+ and M =
⋃

β<µ+ Kβ ∈ I2 by (3) above

(notice:
⋃

β<µ+ Kβ =
⋃

β<µ+(
⋃

α<µ+(Kβ )
α) =

⋃
α<µ+(

⋃
β<µ+(Kβ )

α) =
⋃

α<µ+(
⋃

β≤α(Kβ )
α) ≤⋃

α<µ+ Mα+1 = M). Use Proposition 3.3.11 and consider the system M(µ+) that it gives. Put

A = {β < µ+ | Mβ ∈ M(µ+)}. Then A is cofinal in µ+. Indeed, pick β < µ+. By definition we

have |Mβ | < µ+, therefore there must exist a V0 ∈ M(µ+) such that Mβ ⊆ V0. But then |V0| <
µ+ whereas |

⋃
M(µ+)| = |M| = µ+, and M =

⋃
α<µ+ Mα , so there must exist a β1 > β such

that Mβ1 ⊇ V0. Apply the same argument to Mβ1 in order to get a V1 ∈ M(µ+), β2 > β1 and

Mβ2 ⊇ V1, and continue inductively. Put β̄ = supn∈ωβn. Since β̄ is a limit ordinal, property (1)

of the sequence {Mα ∈ W0 ∩ (Iµ+)2 | α < µ+} gives us M
β̄
=

⋃
n∈ω Mβn and it is easy to see that⋃

n∈ω Mβn =
⋃

n∈ω Vn ∈ M(µ+). Therefore M
β̄
∈ M(µ+) and β̄ ∈ A, proving that A is cofinal in

µ+.

Now Player 2 defeats strategy s : For every Xn he can (by (4) above) choose Nn =Mβ ∈M(µ+)

for a large enough β ∈ A, since A is cofinal. The proof of the lemma is concluded.

We are now on the home stretch. Unfortunately, this next bit of the proof is fairly technical in

its nature. Nonetheless, we present the proof of Theorem 3.3.12.

Proof. Put µ = cf(κ), and fix a continuous, strictly-increasing sequence of cardinals (να | α < µ)

such that ν0 > µ +ν and the set of its terms is cofinal in κ (we can always find such a sequence by

definition of κ being a singular cardinal). For each n ∈ ω we inductively define a strictly-increasing

⪯-sequence (V n
α ∈W0 | α < µ) and arbitrarily picked enumerations An

α = {an
α,β ∈ I | β < να} with

V n
α = ( /0,An

α) as described below:

◦n = 0: For any α < µ choose V 0
α ∈ W0 ∩ (I

ν
+
α
)2 with cardinality να and

⋃
β<α V 0

β
≤V 0

α such that

∀Y ∈W0 with |Y |= |V 0
α |= να and V 0

α ≤Y we have V 0
α ⪯Y (such is always possible due to Lemma

3.3.13 above). Also, we may pick the enumerations such that
⋃

α<µ A0
α = I.

◦n = 1: For each α < µ pick arbitrary V 1
α ∈ V 0

α+1(ν
+
α ) with V 0

α ≤ V 1
α . Also, define the families of

subsets of I: B1
α = {B ⊆ I | ( /0,B) ∈V 0

α+1(ν
+
α ) ∧ A1

α ⊆ B}.
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◦n > 0 even: Using again Lemma 3.3.13 we choose the sets V n
α ∈ W0 ∩ (I

ν
+
α
)2 as in the n = 0 case.

Also, since ν0 > µ = cf(κ), we can pick the enumerations such that:

An
α ⊇ {an−1

γ,β | γ < µ ∧ β < min{νγ ,να}} (1)

We are left to do the induction on the odd numbers. This will require some more work:

◦n > 1 odd: By construction we have: An−3
α+1,A

n−1
α+1 ∈ I and V n−3

α+1 ⪯V n−1
α+1. Also, we may define the

sets Bi
α for i < n odd to be upwards directed, closed under unions of chains of length ≤ να , and

such that
⋃

Bi
α = Ai−1

α+1.

By Property (4) of the ⪯-order, we can choose arbitrary (An−2,n
α ,An

α)∈ (An−3
α+1,A

n−1
α+1)(ν

+
α ) such that

An−2,n
α ∈ Bn−2

α and An−1
α ⊆ An

α . Now, by re-definition of Bn−2
α (see (!) further down) there exists

an induced chain ( /0,A1,n
α )⪯ ( /0,A3,n

α )⪯ ·· · ⪯ ( /0,An−2,n
α ) that satisfies the following statement:

∀i < n odd
(

Ai,n
α ∈ Bi

α ∧ (Ai,n
α ,Ai+2,n

α ) ∈ (Ai−1
α+1,A

i+1
α+1)(ν

+
α )

)
(2)

where An,n
α := An

α . Put V n
α = ( /0,An

α).

(!) For every odd i < n we recursively replace the Bi
α with their subsets {B ∈ Bi

α | Ai,n
α ⊆ B}.

This change will not affect the desired properties of Bi
α . Furthermore, define Bn

α = {B ⊆ I | ∃A ∈
Bn−2

α

(
(A,B) ∈ (An−3

α+1,A
n−1
α+1)(ν

+
α ) ∧ An

α ⊆ B
)
} (this secures the existence of the chain mentioned

in equation (2) above; also it equips Bn
α with the properties necessary to carry out the induction).

The induction has now been completed. All we have to do is show that the chain S ={⋃
n∈ω V n

α | α < µ
}

is the chain we were looking for in the statement of the theorem.

First, we have
⋃

n∈ω V n
α =

⋃
k∈ω V 2k

α ∈ (I
ν
+
α
)2 since the sequence

{
V n

α | n ∈ ω
}

is increasing.

Second, equation (1) above gives us immediately that S is continuous. It remains to show that it

is also a ⪯-chain.

Pick α < µ . For every k ∈ ω define the following:

• Ak =
⋃

k≤ j<ω A2k+1,2 j+1
α

• Bk = A2k
α+1

• Vk = ( /0,Ak)

• Wk = ( /0,Bk)
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Observe that for each k ∈ ω we have Vk ⪯ Wk by Property (4), Wk ⪯ Wk+1 by the construction of

An
α+1 where n is even, and Vk ≤ Vk+1 ≤ Wk+1. By Property (3) we get Vk ⪯ Vk+1 for all k ∈ ω ,

meaning that the (Vn)n∈ω form a ⪯-chain. Furthermore, we have (Ak,Ak+1) ∈ (Bk,Bk+1)(ν
+
α ) for

all k ∈ ω and
⋃

k∈ω Ak =
⋃

j∈ω A j
α which easily follows from definition.

Now, each Bk belongs to I. From (Ak,Ak+1) ∈ (Bk,Bk+1)(ν
+
α ) we get ( /0,Ak) ⪯ ( /0,Bk). Fur-

thermore, we have ( /0,Bk) ⪯ ( /0,Bω) = ( /0,
⋃

n∈ω Bn) by the choice of ( /0,Bk) = V 2k
α+1, and thus

( /0,Ak)⪯ ( /0,Bω) ∀k ∈ ω . Lastly, from (Ak,Ak+1)⪯ (Bk,Bk+1) and Property (5) we conclude that

(Ak,Bk)⪯ (Ak+1,Bk+1).

We have just shown that the conditions to apply Property (6) on the sequence (Ak,Bk)k∈ω hold. We

can now conclude that
⋃

j∈ω V j
α ⪯

⋃
j∈ω V j

α+1, proving that S is a chain.

The proof of Theorem 3.3.12 is now complete.
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