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NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

Abstract
Department of Mathematics

Master In Statistical And Operational Research

Statistical Techniques for Hydroponic Greenhouse’s Irrigation Management Driven By

Functional-Structural Plant Models

by Konstantinos FLORAKIS

This master thesis presents an introduction to hydroponic greenhouse irrigation management, focus-

ing on applying functional-structural plant models for water consumption estimation and prediction.

Hydroponic greenhouse cultivation has become increasingly popular in recent years due to its numer-

ous advantages over traditional farming methods, such as greater efficiency in resource use, higher

crop yields, and the ability to grow plants year-round. However, precise and effective irrigation

management is critical for achieving optimal crop growth and yield in hydroponic greenhouses.

To address this issue, functional-structural plant models, including the GreenLab model, are

investigated to estimate and predict water consumption in hydroponic greenhouses with a particular

focus on "Ekstasis" Tomato, where data are available. Through this research, innovative concepts

emerge, leading to fresh approaches in the modeling. These models are fitted via maximum likelihood

for parameter estimation. The results demonstrate that the above models provide a more accurate

and precise approach to irrigation management, with biological interpretation, which significantly

improves water use efficiency.

The study also investigates the effects of various environmental and crop factors on water con-

sumption in hydroponic greenhouses, such as temperature, humidity, light intensity, and plant growth

stage. By incorporating these factors into the models, a more comprehensive understanding of the

irrigation requirements of hydroponic crops is obtained, enabling more precise and efficient irrigation

management.

Overall, this thesis contributes to the hydroponic greenhouse irrigation management field by

providing a systematic and data-driven methodology that can be applied in practical settings. The

findings of this study may offer helpful insights into the sustainable cultivation of hydroponic crops,

particularly in light of current global climate change concerns.

HTTP://WWW.UOA.GR
http://math.uoa.gr


4

Περίληψη

Στατιστικές Μέθοδοι στην Διαχείρηση ΄Αρδευσης σε Υδροπονικά Θερμοκήπια, κατευθυνόμενες

από λειτουργικά και δομικά μοντέλα

Η παρούσα διατριβή αποτελεί μια εισαγωγή στη διαχείριση της άρδευσης των υδροπονικών θερμοκηπίων, με

έμφαση στην εφαρμογή λειτουργικών και δομικών μοντέλων για την εκτίμηση και πρόβλεψη της κατανάλ-

ωσης νερού. Τα μοντέλα που χρησιμοποιήθηκαν περιλαμβάνουν το GreenLab, τα οποία εφαρμόστηκαν

μέσω της παραμετρικής μεθόδου μέγιστης πιθανοφάνειας. Κατα την διερεύνηση αυτών των μοντέλων,

νέες μέθοδοι μοντελοποίησης του προβλήματος εμφανίστηκαν. Τα αποτελέσματα δείχνουν ότι τα μοντέλα

αυτά παρέχουν μια πιο ακριβή, αποτελεσματική προσέγγιση, με βιολογική περιγραφή, για τη διαχείριση της

άρδευσης στα υδροπονικά θερμοκήπια.

Στη έρευνα αναλύονται επίσης οι επιπτώσεις διαφόρων περιβαλλοντικών και καλλιεργειακών παραγόντων

στην κατανάλωση νερού στα υδροπονικά θερμοκήπια, όπως η θερμοκρασία, η υγρασία, η ένταση του φωτός

και το στάδιο ανάπτυξης των φυτών. Με την ενσωμάτωση αυτών των παραγόντων στα μοντέλα, επιτυγχάνε-

ται μια πιο συνολική κατανόηση των απαιτήσεων άρδευσης των υδροπονικών καλλιεργειών, επιτρέποντας πιο

ακριβή και αποτελεσματική διαχείριση της άρδευσης.

Εν κατακλείδι, η συγκεκριμένη έρευνα επιθυμούμε να συμβάλλει στον τομέα της διαχείρισης άρδευσης

στα υδροπονικά θερμοκήπια παρέχοντας μια συστηματική μεθοδολογία που μπορεί να εφαρμοστεί σε πρακ-

τικές καταστάσεις. Λαμβάνοντας υπόψη τις τρέχουσες προκλήσεις της παγκόσμιας ασφάλειας τροφίμων και

της κλιματικής αλλαγής, θεωρούμε ότι τα ευρήματα αυτής της μελέτης μπορούν να προσφέρουν χρήσιμες

προτάσεις για τη βιώσιμη καλλιέργεια των υδροπονικών καλλιεργειών.
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Chapter 0

Motivation and a bit of backstory

1 Greenhouse Irrigation for Sustainable Agriculture

Agriculture has been a key aspect of human civilization since the Neolithic revolution, serving as a

major driving force in the food supply chain (Flannery, 1973). With advancements in science and

technology, new tools and methods are being developed to increase the efficiency and precision of

agricultural practices. One such tool is the greenhouse, which enables the growth of plants in regulated

climatic conditions, even out of season (Oxford-University-Press, 1989). While various operations are

crucial for greenhouse management, including ventilation, heating, cooling, and lighting, irrigation

management (IM) plays a vital role in ensuring efficient plant growth and business operations.

IM in greenhouses involves monitoring and regulating water consumption, ensuring the appro-

priate amount of water is applied to plants while minimizing excess usage. Effective IM can prevent

economic losses due to overwatering or water deficits and improve the overall efficiency of water

usage (Ünlü et al., 2011). Therefore, it is essential to consider the water consumption of plants and the

efficiency of water usage in IM practices.

In conclusion, implementing effective IM practices is critical for achieving efficient plant growth

and sustainable business practices for greenhouse operations. The focus on efficient water usage will

ensure successful plant growth and promote environmental sustainability in agriculture.

2 Backstory

In 2020, the world was confronted with a myriad of unprecedented challenges, most notably the global

pandemic. As for me, I was in the process of completing the final courses of my Bachelor’s degree

when September arrived. I was confident in my ability to successfully finish these courses, but I found

myself uncertain about my future path and aspirations.

In the midst of this uncertainty, I reached out to my uncle who lives in Serres and runs a greenhouse

company. With the pandemic-imposed restrictions looming, I wanted to contribute to his business
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beyond the traditional laborer roles. I was determined to find a problem that could put my knowledge

and skills to good use. Serendipitously, the greenhouse, a family connection, and my desire to support

my uncle created the perfect environment to uncover such a challenge.

FIGURE 1: Irrigation Machine and menu

As fate would have it, my intuition was correct. I moved to Serres on the 8th of October 2020 and

started working at my uncle’s greenhouse company. In the early days, I observed my uncle and boss

struggling to manage the irrigation system. The exhausting task of constantly monitoring the plants

and adjusting the irrigation according to fluctuating weather conditions seemed both exasperating

and time-consuming. Although I had no prior expertise in statistical modeling, I recognized this as

the problem I sought to solve and eagerly began gathering data.

Fortunately, a meteorological station was already set up near the greenhouse, and my suggestion to

install gauges inside the greenhouse to track temperature and humidity was well-received. However,

the initial datasets we collected turned out to be flawed. Our initial method of recording water usage

at 2:00 p.m. resulted in a one-day time interval, which merged readings from different days, like

sunny and cloudy days, which could affect plant water consumption differently. Despite a month of

hard work spent on these flawed datasets, I learned valuable lessons from the experience.
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FIGURE 2: A station to measure Water Consumption

As time went by, I discovered a seminar on Monte-Carlo techniques led by Professor Trevezas.

During the first session, the professor mentioned his previous work on plant modeling, which imme-

diately captured my attention. I eagerly reached out to him through email, and our correspondence

began. He generously provided me with guidance and suggestions for my early modeling attempts.

In January 2021, we implemented an initial irrigation regimen for tomato and cucumber crops

based on a linear regression model. Over the following months, we set up a pipeline to incorporate data

from the meteorological station into our models. After dividing the day into heuristic segments, we

applied the generated regimen to the plants, resulting in production levels that met our expectations.

Moreover, the supervising agronomist confirmed that key solution statistics like EC1 and pH2 remained

stable. However, I must emphasize that these findings are purely anecdotal. This thesis aims to elevate

this work to rigorous scientific standards.

1electrical conductivity; a non-specific measurement of the concentration of both positively and negatively charged ions
within a sample, usually expressed in milli-Siemens per centimeter (mS/cm) or microSiemens per cm (μS/cm)

2the measure of hydrogen ion concentration in a sample used to determine the acidity or alkalinity of a product
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Chapter 1

Data Driven Models (DDMs)

1 Linear Regression

The first model approach for the problem was Linear Regression (LR), mainly for simplicity. In the

next paragraph, we recall LR, and then specialize it to our case. For more information, the reader can

refer to (Faraway, 2002) or other standard books in LR.

1.1 The Linear hypothesis

Let Y be the dependent variable (output) and X1, X2, . . . , Xp be the independent variables (input, predictors)

for a given problem. The general problem of regression consists of finding a relationship of the form

Y = f (X1, X2, . . . , Xp) + ε,

by estimating from the output an appropriate function f linking the output to the predictors while

adding an error term ε to accommodate for the discrepancies.

The linear hypothesis simplifies the problem to the following parameter estimation problem:

Y = b0 + b1X1 + . . . + bpXp + ε,

where b0, b1, . . . , bp are unknown coefficients and b0 is typically called intercept.

Even though parameters enter linearly, the predictors do not have to be linear. For example:

Y = b0 + b1 log X1 + b2X2
2 + . . . + bpXp,

is still a linear model, but with respect to {1, log X1, X2
2 , . . . , Xp} and not the original predictor variables.
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Linear models seem rather restrictive but because the predictors can be transformed and combined

in any way, they are actually very flexible. Truly non-linear models often arise from a theory about

relationships between variables rather than an empirical investigation.

1.2 Matrix Representation

The linear equations

yi = b0 + b1xi1 + . . . + bpxip + ε i, i ∈ {1, . . . , n}

can be formulated as:

Y = Xb + ε, (1.1)

where

Y = (y1, . . . , yn)
T, b = (b0, . . . , bp)

T, ε = (ε1, . . . , εn)
T

and the so-called design matrix is given by

X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 ,

where a column of ones was introduced to represent the intercept column. As we discussed before,

the goal is to estimate b, in a way that minimizes ε in an appropriate sense. Working on Rn euclidean

distance will be used as the minimization criterion.

1.3 Least squares estimation

We might define the best estimate of b as that which minimizes the sum of the squared errors, εTε.

That is to say that the least squares estimate of b, called b̂ minimizes:

n

∑
i=1

ε2
i = εTε = (Y− Xb)T(Y− Xb)

= YTY− 2bTXTY + bTXTXb.
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Differentiating with respect to b and setting to zero, we get that b̂ satisfies:

−2XTXb̂ + 2XTY = 0

XTXb̂− XTY = 0.

These are called the normal equations. Under the assumption that XTX is invertible:

b̂ = (XTX)−1XTY.

After estimating b with b̂ we say that we have a model fit with the fitted values Ŷ (predicted values of

Y based on the same training set):

Ŷ = Xb̂ = X(XTX)−1XTY = HY,

where H = X(XTX)−1XT is called the hat matrix and has some nice properties:

• H is symmetric (HT = H)

• H is idempotent (H2 = H)

• Predicted values: Ŷ = HY = Xb̂

• Residuals: ε̂ = Y− Xb̂ = Y− Ŷ = (I − H)Y

• Residual sum of squares: ε̂T ε̂ = YT(I − H)(I − H)Y = YT(I − H)Y.

1.4 Gauss Markov Theorem

We found a way to estimate b with b̂. Why is b̂ a good estimate? Actually there are two main reasons:

• If the errors are independent and identically normally distributed, it is the maximum likelihood

estimator. Loosely put, the maximum likelihood estimate is the value of b that maximizes the

probability of the data that was observed.

• The Gauss-Markov theorem states that it is the best linear unbiased estimate.

Theorem 1.1. Suppose E[ε] = 0 and Var[ε] = σ2 I. Suppose also that the structural part of the model,

E[Y] = Xb is correct. Let ψ = cTb, where there exists a linear combination qTY such that E[qTY] = cTb

(such ψ is called estimable). Then, in the class of all unbiased linear estimates of ψ, ψ̂ = cT b̂ has the minimum

variance and is unique.
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Proof. Let qTY be a linear unbiased estimator of ψ = cTb. We will show that Var[qTY] ≥ Var[cT b̂].

Note here that b̂ = (XTX)−1XTY, in the case where XTX is invertible, which means that b̂ is also a

linear combination of Y.

Since qTY is unbiased estimator of cTb we have for all b:

EqTY = qTEY

or qTXb = cTb. (1.2)

Because this holds for all b, we derive qTX = cT. Another useful observation we have to note is that:

Var(cT b̂) = cTVar(b̂)c

= cT(XTX)−1XTVar(Y)
(
(XTX)−1XT

)T
c

= σ2cT(XTX)−1c, (1.3)

where we used the fact that because XTX is symmetric, its inverse (if exists) is also symmetric.

The last result we will need is referring to the hat matrix H, and it states that for any vector

v ∈ Rn×1:

vTv ≥ vT Hv. (1.4)

To prove that, observe:

(I − HT)H = (I − H)H = H − H2 = 0, the zero vector.

Now, the left hand side of 1.4 can be expressed as ||v||2, while the right hand side can be written as:

vT Hv = vT HT Hv, H idempotent and symmetric

= ||Hv||2

By the Pythagorean theorem, we have:

||v||2 = ||Hv||2 + ||(I − H)v||2, (1.5)
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which because ||(I − H)v||2 ≥ 0 proves the claim.

Combining the previous observations, for the Var(qTY) we have:

Var(qTY) = qTVar(Y)q

= σ2qTq

≥ σ2qT Hq

= σ2qTX(XTX)−1XTq

= σ2cT(XTX)−1c

= Var(cT b̂),

and the proof is complete.

1.5 Mean and Variance of b̂

Now b̂ = (XTX)−1XTY so its mean vector and variance(-covariance) matrix is given by

• Mean E[b̂] = (XTX)−1XTXb = b (unbiased)

• Variance Var[b̂] = σ2(XTX)−1.

1.6 Estimating σ2

Recall that the residual sum of squares was ε̂T ε̂ = YT(I − H)Y. Now after some calculation, one can

show that E[ε̂T ε̂] = σ2(n− p) which shows that

σ̂2 =
ε̂T ε̂

n− p

is an unbiased estimate of σ2. As b ∈ Rp×1 and y ∈ Rn×1, the model has a systematic structure (after

estimating b) over p dimensions, with the n− p dimensions that remain to be responsible for the

random variation, there are, as a result, the degrees of freedom of the model.
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1.7 Goodness of fit

1.7.1 R2

How well does the model fit the data? The Ŷ = (ŷi)i=1,...,n is the vector of fitted values. One measure

is R2, the so-called coefficient of determination or percentage of variance explained

R2 = 1− RSS
TSS

,

where RSS = εTε is the residual sum of squares, and TSS = ∑n
i=1(yi − ȳ)2 is the total sum of squares.

Usually R2 is in (0, 1). Values closer to 1 indicate better fits. We can also achieve negative values with

really bad fits. For simple linear regression R2 = r2 where r is the correlation between x and y. One

may face two different scenarios when attempting to predict the dependent variable y. In the absence

of the independent variable x, the most reasonable prediction would be the mean of y, denoted as ȳ.

However, this prediction may exhibit considerable variability due to the lack of information about

x. Conversely, when x is known, the regression fit can be used to make more precise predictions,

assuming there is some relationship between x and y. The coefficient of determination, R2, quantifies

the proportion of the variance in y that is predictable from x, with values closer to one indicating

better predictions.

It is essential to note that the conventional definition of R2 assumes the presence of an intercept in

the model. In the absence of an intercept, alternative definitions of R2 may be employed, but these

should not be directly compared with the R2 values obtained from models with an intercept. Caution

is advised when interpreting high R2 values derived from models without an intercept.

The acceptability of a given R2 value is contingent upon the specific field of application. In the

biological and social sciences, weaker correlations and increased noise are common, resulting in

generally lower R2 values. An R2 value of 0.6 may be deemed satisfactory in these fields. On the other

hand, in physics and engineering, controlled experimental conditions often yield higher R2 values,

with 0.6 considered relatively low. Ultimately, understanding the particular domain is necessary to

assess the adequacy of an obtained R2 value accurately.

1.7.2 R2 adjusted

Even though R2 has a very intuitive representation, it has a drawback. The R2 statistic increases with

respect to the number of parameters, which means that it can be misleading for a big number p of
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parameters. To avoid such pit holes, R2-adjusted has been proposed:

R2
adj = 1− (1− R2) · n − 1

n− p− 1
,

where an adjustment has been made to penalize extra parameters.

1.7.3 Residual standard error

An alternative measure of model fit is the residual standard error, denoted as σ̂. This statistic is directly

related to the standard errors of the estimates of the model parameters and predictions. One of the

advantages of using σ̂ is that it is expressed in the same units as the response variable, facilitating

interpretation within the context of the specific dataset. However, this property may also be considered

a disadvantage, as it requires a deeper understanding of the practical significance of the measure,

unlike the unitless R2, which is more straightforward to comprehend.

2 Model Selection

In most practical settings, various regression models will be viable for our dataset. It’s even plausible

that we’ve broadened the scope of potential models by incorporating fresh variables derived from

the ones initially accessible, achieved through alterations, introduction of interactions, or inclusion of

polynomial expressions. This section delves into the difficulties when handpicking the optimal subset

of predictors.

Additional information could seemingly be advantageous, leading one to ponder why we wouldn’t

just incorporate all accessible variables into the model. Nevertheless, opting for a more compact model

may be preferable for several reasons. The principle of Occam’s Razor asserts that the simplest one

reigns supreme among various credible interpretations of a phenomenon. When applied to regression

analysis, this conveys that the smallest model sufficiently accommodating the data is optimal.

Occam’s Razor stands strong as a persuasive heuristic, yet our core focus within the realm of

regression modeling must remain tireless. The potential for attaining heightened predictive capabilities

lies in the realm of more comprehensive models. Thus, even though the concept of slimmer models

may exude appeal, we remain resolute in our commitment to safeguarding predictive ability.

In the pursuit of comprehending the explanatory influence of predictors, exercising caution with

regard to automated variable selection methods becomes necessary. These scenarios underscore the

prominence of a handful of noteworthy predictors while relegating the remaining to auxiliary roles
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demanding meticulous oversight. To place dependable responsibility upon an automated procedure

for such a task would not be advised.

In the evaluation of prospective models, we could employ hypothesis testing techniques to facilitate

selection or opt for criterion-based methods to gauge relative fit, guiding our decision-making process.

These choices are both explored in the present section.

2.1 Testing-Based Procedures

Among variable selection techniques, Backward Elimination is the most straightforward and can be

implemented without specialized software. Even in scenarios of intricate hierarchies, the manual

execution of backward elimination remains feasible, factoring in the eligibility of variables for removal.

The procedure commences with all predictors within the model, subsequently discarding the

predictor with the highest p-value surpassing the threshold αcrit. The model is then reconfigured,

followed by the exclusion of the least significant remaining predictor, under the condition that its

p-value surpasses αcrit. Each iteration excludes progressively more "nonsignificant" predictors until

the selection process culminates.

The threshold αcrit, at times referred to as "p-to-remove," need not be constrained to 5%. If the

aim is predictive performance, a cutoff of 15 to 20% might yield optimal results, although methods

specifically tailored for superior predictive accuracy are recommended. Forward Selection, in essence,

operates in the reverse direction of the backward method. It commences with an absence of variables

in the model. Then, their p-values are evaluated upon inclusion for each predictor not presently within

the model. The predictor exhibiting the lowest p-value below the threshold αcrit is incorporated. This

process persists until no additional predictors can be introduced. Stepwise Regression amalgamates

backward elimination and forward selection elements. This approach is apt for circumstances where

the inclusion or exclusion of variables is modified during the early phases, with the potential for

alterations later on. A variable can be appended or removed at each stage, and diverse methodologies

exist to execute these actions precisely.

Testing-oriented methodologies exhibit computational efficiency and straightforwardness, yet they

carry with them significant limitations:

• The gradual process of adding or discarding variables, one by one, can result in overlooking the

"optimal" model.

• Interpreting p-values too rigorously is cautioned due to extensive multiple testing, casting

skepticism on their validity. The act of removing less impactful predictors frequently inflates the
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significance of the remaining ones. This phenomenon fosters an exaggerated estimation of the

retained predictors’ significance.

• These procedures lack a direct link to ultimate objectives like prediction or explanation, poten-

tially falling short in addressing the core problem. It’s essential to bear in mind that, within any

variable selection approach, selecting a model is inherently tied to the fundamental purpose

of investigation. This process tends to magnify the statistical significance of variables retained

within the model. Variables that are excluded may still exhibit correlations with the response

variable. Concluding that these variables hold no relation to the response would be an oversim-

plification; their omission merely signifies they don’t contribute additional explanatory power

beyond the variables already encompassed in the model.

Stepwise variable selection often leans towards models that are more compact than ideal for predictive

purposes. Imagine a basic regression featuring just one predictor variable. If the statistical significance

of the slope for this predictor hovers near the threshold, there might not be substantial evidence to

establish its association with y firmly. However, it could still be judicious to leverage it for predictive

intents.

2.2 Criterion-Based Procedures

When we clearly understand the intended purpose behind a model, we can establish a measure to

assess how effectively a specific model aligns with that objective. From the range of possible models,

we can then select the one that best optimizes this criterion.

Opting for a model g, parameterized by parameters θ, that closely approximates the true model f

seems intuitive. The disparity between g and f could be quantified by calculating the distance using a

function L( f , gθ). Such a function is called a loss function. Many choices exist in the literature, we just

note some of them here (Lg denotes the likelihood with respect to model g):

• AIC (Akaike Information Criterion):

AIC( f , g) = − 2 log(Lg) + 2 k

• BIC (Bayesian Information Criterion):

BIC( f , g) = − 2 log(Lg) + k log(n)
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• Kullback-Leibler Divergence:

KL( f , g) =
∫

f (x) log
(

f (x)
g(x)

)
dx

• Mean Squared Error (MSE):

MSE( f , g) =
∫
( f (x)− g(x))2 dx

Unfortunately, some of them (e.g., MSE) are impractical for direct implementation because we do not

know f . To select among a set of models, we choose the model which minimizes the contextual loss

function. All the stepwise methods mentioned in the previous section can be adapted in such a way

that each step (addition or deletion) is chosen according to a loss function.
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Chapter 2

Agronomic Variables

’Keep your face to the sun and you will never see the shadows.’

— Helen Keller.

The intricacies of agricultural ecosystems are often a confluence of multiple factors that determine

the success and sustainability of crop production, efficiency of water consumption, and balanced

growth. Among these factors, agronomic variables play a crucial role in shaping the productivity,

quality, and resilience of agricultural systems. This chapter delves into the significance of several

key agronomic variables, namely temperature, humidity, solar radiation, vapor pressure deficit,

evapotranspiration, and others, in the context of modern agriculture.

A profound understanding of these variables is instrumental in designing effective agronomic

management strategies that adapt to the dynamic and complex nature of agroecosystems (Hatfield

and Prueger, 2015). The assessment of these factors provides essential insights into crop growth,

development, and yield response under varying environmental conditions (Levitt (1980); Taiz et al.

(2015)). Moreover, the comprehensive analysis of these agronomic variables helps in optimizing

resource use, minimizing environmental impacts, and enhancing overall agricultural sustainability

(Fageria, 2012).

In this chapter, we will explore each agronomic variable individually, discussing their effects on

crop growth and development, as well as their implications for agricultural management practices.

1 Solar irradiance

Solar radiation, also referred to as solar energy or sunlight, is the electromagnetic energy emitted by

the sun that reaches Earth’s surface (Gueymard, 2004). The electromagnetic spectrum encompasses a

broad range of wavelengths and frequencies. Ultraviolet (UV) radiation typically spans wavelengths

from about 10 nm to 400 nm, with corresponding frequencies in the range of approximately 30 PHz

(petahertz) to 750 THz (terahertz). Visible light lies between the ultraviolet and infrared regions, with
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wavelengths ranging from around 400 nm (violet) to 700 nm (red) (Figure 2.2) and frequencies from

approximately 430 THz (red) to 790 THz (violet). Infrared (IR) radiation extends from about 700 nm to

1 mm wavelengths, with corresponding frequencies ranging from roughly 430 THz down to 300 GHz

(gigahertz). This radiant energy originates from nuclear fusion reactions taking place in the Sun’s

core, where hydrogen atoms merge to create helium, liberating an immense quantity of energy as

electromagnetic radiation (Carroll and Ostlie, 2006).

Solar radiation plays a crucial role in driving various physical, chemical, and biological processes

on Earth, including photosynthesis in plants, oceanic and atmospheric circulation, and the generation

of weather patterns. It is also the primary source of renewable energy, with technologies such

as photovoltaic cells and solar thermal collectors designed to harness solar energy for electricity

generation and heating purposes respectively (Kalogirou (2004)).

Definition 2.1. The per unit time quantity of solar radiation incident upon a unit area on Earth’s surface is

termed solar irradiance, which is typically measured in Watts per square meter (W/m2). (Kopp and Lean, 2011)

Different light wavelengths have different energy levels and, consequently, different irradiance

values (W/m²). The energy of a photon is proportional to its frequency and inversely proportional to

its wavelength. As a result, shorter wavelengths (like ultraviolet) carry more energy per photon than

longer wavelengths (like infrared).

What we mean in Definition 2.1 by "per unit time quantity of solar radiation" is actually referring

to the power of the solar radiation. Solar irradiance involves the sum of the energy carried by all

wavelengths of light (UV, visible, and IR) in the solar spectrum that reaches a given area on Earth’s

surface, usually expressed in Watts per square meter (W/m²).

It is important to note that solar irradiance varies depending on factors such as the time of day,

latitude, season, and atmospheric conditions (e.g., cloud cover, air pollution) (Kopp and Lean, 2011).

This noise can also be observed in Figure 2.1. Observe the periodic variations in the data, which can

be attributed to the Earth’s movement and are responsible for the seasonal changes we experience

throughout the year. As a result, the amount of solar radiation reaching any particular location on

Earth’s surface can change throughout the day and year.

Understanding solar radiation is essential for various scientific disciplines, such as climatology,

meteorology, and renewable energy research, as it profoundly impacts the Earth’s energy balance,

climate systems, and the development of sustainable energy solutions.

Solar radiation is introduced as a key driving factor influencing evapotranspiration, a variable

that will be elaborated upon in subsequent sections, and it will be represented by solar irradiance

measured in (W/m2).
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FIGURE 2.1: Solar radiation measurements from 2020 and 2021 are displayed, as recorded
by a Davis Vantage Pro 2 (Plus) meteorological station.

FIGURE 2.2: Illustration of the sinusoidal nature of light waves across the visible spec-
trum. The facet labels provide the corresponding frequency and wavelength ranges
for each color. Note that this graph serves as a conceptual representation and does not

directly depict the actual differences in wavelengths and frequencies between colors.
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2 Temperature

Definition 2.2. In scientific terms, temperature is a physical property that quantifies the degree of hotness or

coldness of a substance or environment (Boltzmann, 2012). It serves as an essential parameter in thermodynamics

and is commonly expressed in units such as Celsius (◦C), Fahrenheit (◦F), or Kelvin (K).

The concept of temperature arises from the fundamental principle that, at the microscopic level,

the kinetic energy of particles in a substance is directly related to their thermal agitation, with higher

temperatures corresponding to greater particle motion (Fermi, 1956).

Temperature plays a critical role in various natural and artificial systems, including biological

processes and industrial applications. In the context of plant growth and development, temperature

significantly influences the physiological and biochemical activities of plants, with each species

exhibiting a specific temperature range characterized by minimum, maximum, and optimum values

(Boote et al., 2013). These temperature thresholds directly affect the plants’ metabolic rates, nutrient

uptake, photosynthesis, and overall growth performance (Porter and Gawith, 1999).

Furthermore, temperature is a vital factor in agricultural production, as it is one of the few envi-

ronmental variables that can be controlled, albeit within certain limits. By manipulating temperature

conditions, crop yields and quality can be optimized, making temperature regulation a crucial aspect

of modern agricultural practices (Lobell et al., 2011).

In our context Temperature is also a driving factor of evapotranspiration, as is Solar radiation, and

will be measured in Celsius (◦C).

3 Thermal time

Temperature is widely considered a critical environmental factor in agriculture, significantly influenc-

ing plant growth and development (Boote et al., 2013). Plant maturation relies on adequate heat, and

extreme temperature conditions can induce stress and impede growth rates. In agricultural research,

this strong temperature dependence is often modeled using Growing Degree Days (GDD), which

quantifies the heat received by vegetation in a single day as a time unit for estimating crop growth

(Snyder et al., 1999).

The underlying principle of GDD is that a crop’s growth rate optimizes at a specific temperature (To)

and decreases to zero below a base temperature (Tb) or above a ceiling temperature (Tc). Consequently,

the average daily temperature can be compared against these extreme temperatures to serve as a

growth indicator. The summation of GDD over a plant’s lifespan yields the Accumulated Growing

Degree Days (AGDD), a statistic representing the plant’s age.
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FIGURE 2.3: Minute measurements of Temperature (top), Humidity (bottom) 4/6/21
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Definition 2.3. Let Tb represent the base temperature, Tc the ceiling temperature, and Tmin(t) and Tmax(t) the

minimum and maximum temperature at day t. Then,

(i) the Growing Degree Days at day t, denoted by GDD(t), are defined by

GDD(t) :=
Tc

max(t) + Tb
min(t)

2
− Tb, (2.1)

where Tc
max(t) = min{Tmax(t), Tc} and Tb

min(t) = max{Tmin(t), Tb},

(ii) the Accumulated Growing Degree Days until day t, denoted by AGDD(t), are defined by

AGDD(t) :=
t

∑
s=1

GDD(s). (2.2)

4 Humidity

Humidity, a fundamental concept in the study of atmospheric science, pertains to the amount of water

vapor present in the air, constituting a crucial factor in determining weather patterns and influencing

human comfort levels (Wallace and Hobbs, 2006). Although there exist multiple methods to quantify

humidity, the most commonly employed measures are absolute humidity (AH), specific humidity

(SH), and relative humidity (RH) (Stull, 2015).

Definition 2.4. Absolute humidity refers to the mass of water vapor per unit volume of air (g/m³), which

fluctuates in response to changes in air temperature and pressure (Figure 2.3). Specific humidity, on the other

hand, is the mass of water vapor per unit mass of moist air (g/kg), remaining invariant with respect to changes

in air pressure. Moist air is defined as air containing water vapor, while air composed of a mixture of gases (i.e.

oxygen, nitrogen) without considering water vapor content is referred to as dry air.

Unlike AH and SH, relative humidity constitutes a dimensionless ratio, expressing the amount of water

vapor in the air as a percentage of the maximum capacity at a given temperature and atmospheric pressure.(Stull,

2015).

Figure 2.3 displays the inverse relationship between temperature and RH. It is worth mentioning

that the greenhouse windows were opened a little before 9:00 am, leading to a slight temperature

decrease and the release of water vapor, which in turn caused a decline in RH. The windows were

closed at 20:00 pm. Fluctuations in the humidity measurements can be attributed to plant transpiration.

As moist air exits the greenhouse, plants contribute new moist air, resulting in a cycle that produces

these variable measurements (Monteith, 1977).

The significance of humidity in atmospheric processes is paramount, as it not only impacts

the formation of clouds, precipitation, and air quality, but also affects plant growth, agricultural
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productivity, and the distribution of ecosystems (Trenberth et al., 2015), (Taiz et al., 2015). In the realm

of plant growth, humidity plays a critical role in regulating transpiration rates, nutrient uptake, and

gas exchange, with both excessively high and low humidity levels capable of adversely affecting plant

health and development (Larcher, 2003).

Accurate measurements of humidity are, therefore, essential for improving weather forecasting,

facilitating climate modeling, and addressing environmental challenges, as well as optimizing agri-

cultural practices and ensuring the sustainable management of natural resources. By understanding

the complex interplay between humidity and various biological, physical, and chemical processes,

researchers and practitioners can work towards developing effective strategies to mitigate the impacts

of climate change and safeguard our planet’s ecosystems.

Difference in values of humidity, create deficits, a concept that will be introduced with Vapor Pres-

sure Deficit (VPD) explained in later section. VPD is the last key driving factor of evapotranspiration.

5 Transpiration

Transpiration, a vital physiological process in plants, refers to the movement of water from roots to

aerial parts, culminating in the loss of water vapor from plant surfaces, primarily through stomata

located on the leaves (Taiz et al., 2015). This process plays a crucial role in maintaining plant water

balance, facilitating nutrient uptake, and driving gas exchange for photosynthesis (Larcher, 2003). It is

regulated by a combination of biotic and abiotic factors, including plant anatomy and morphology,

soil moisture, temperature, humidity, and light intensity (Jones, 1992).

Transpiration can be categorized into two primary types: cuticular and stomatal transpiration.

Cuticular transpiration occurs through the waxy cuticle layer covering the leaf surface, constituting a

minor component of total water loss due to the relatively low permeability of the cuticle (Schönherr,

2006). Stomatal transpiration, on the other hand, accounts for the majority of water loss in plants and

is closely linked to the opening and closing of stomata, which are controlled by guard cells in response

to environmental cues and internal signals (Hetherington and Woodward, 2003).

Understanding the dynamics of transpiration is essential for optimizing plant growth, agricultural

productivity, and water management. Accurate measurements of transpiration rates, alongside

comprehensive knowledge of the factors that influence them, are crucial for developing effective

strategies to improve crop performance under changing environmental conditions.

Within this discussion, transpiration will be considered as part of evapotranspiration. However,

understanding transpiration is also vital for grasping biological modeling and the link to Water
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Consumption, which will be introduced in the following chapter. A better intuition about the physics

behind transpiration can be found in the next section.

6 Vapor Pressure Deficit (VPD)

Vapor-pressure deficit, or VPD, is the difference (deficit) between the amount of moisture in the air

and how much moisture the air can hold when it is saturated. Vapor pressure deficit (VPD) represents

a vital parameter that significantly impacts the process of evapotranspiration (ET). In the following

section, we shall explore this topic in greater detail. It is essential to note that VPD plays a fundamental

role in crop models, as evidenced by various studies in the field (Castellvi et al., 1996).

In greenhouses during the winter season, a high vapor pressure deficit (VPD), particularly due

to air exchange during midday period, can limit plant biomass and yield. Thus, the VPD control in

greenhouses is of immense importance for cultivating plants (Lu et al., 2015). The VPD model is based

on the following two hypotheses:

• Hypothesis I: The VPD is a symmetrical function of time (x-axis) with respect to the y-axis

(representing VPD values).

• Hypothesis 2: The actual vapor pressure (ea) remains fairly constant throughout the day.

Under these assumptions, the resulting model is as follows (Castellvi et al., 1996):

Esat = a exp
(

b · Tair

c + Tair

)
, Eair = Esat · RH

VPD = Esat − Eair

= Esat(1− RH) (2.3)

where, VPD is measured in kPa, Tair the ambient Temperature (oC), Esat the saturation vapor

pressure (kPa), Eair partial pressure of the water vapour in the air (kPa), RH the relative humidity (%)

and a,b,c location depended constants. This formation is generally known as the Magnus form.

Constants a, b, c are usually approximated. In the agricultural bibliography Buck (1981) investi-

gated various intervals for Temperature values. Castellvi et al. (1996) present a proof of Magnus form

derivation and compare different methods for estimating VPD, suggesting the 2.3 formulation. In our

context, VPD is introduced only to provide the needed intuition for the deficit that drives transpiration

and introduce vapor pressure (which will be used in Evapotranspiration).



33

FIGURE 2.4: The figure illustrates the daily average VPD measured during the summer
months of 2021.

Intuitively, VPD assists plant water circulation, as the difference between the leaf’s water-saturated

surface and the air’s partially filled water pressure encourages water to exit the leaf. While this

explanation does not encompass the entire underlying mechanism, it serves as a step towards a

comprehensive understanding.

Visual inspection of VPD (Vapor Pressure Deficit) values can also contribute to our understanding

of the phenomenon. To facilitate this examination, we can refer to the graphical representation

presented in Figure 2.4 and Figure 2.5. The notable shift observed on day 81 (Figure 2.4) can be

attributed to a change in the measurement instrument’s position, from a lower to a higher point,

leading to lower relative humidity measurements than the ones observed at the lower point. The

same shift can be observed at day 84, where the instrument were return to its initial position. This

example can highlight the sensitivity of calculated VPD values with respect to RH values, and how

much can VPD vary in the same space. Fig 2.5 reveals the extreme change of VPD values with respect

to Humidity, under normal stable Temperature values (∼ 25− 30oC).

7 Evapotranspiration

Evapotranspiration (ET) is a vital process involving the transfer of water from the surface to the

atmosphere via evaporation and plant transpiration. Potential evapotranspiration (PET) is a significant

parameter indicating the environmental demand for ET. PET signifies the ET rate for a short, uniformly
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FIGURE 2.5: VPD in 3d

tall green crop with sufficient water availability in the soil. It captures the energy accessible for water

evaporation and the wind’s capacity to carry water vapor from the ground into the lower atmosphere.

Numerous models are available to estimate PET in agricultural systems, including Penman-

Monteith, Thornth-waite, Hamon, Hargreaves-Samani, Turc, Makkink, and Priestley-Taylor. The

Food and Agricultural Organization of the United States (FAO) suggests the use of Penman-Monteith.

However, it has been shown that estimating PET accurately is challenging, and caution should be

exercised when using PET to estimate actual water loss from natural systems (Lu et al., 2005).

In this study, the Priestley-Taylor method was selected for estimating PET for two main reasons.

First, unlike the Penman-Monteith method, the Priestley-Taylor method does not necessitate the leaf

area index (LAI), a parameter that is challenging for an average producer to obtain. Second, the

Priestley-Taylor method has demonstrated good performance and primarily requires a radiation

measurement, which is more readily accessible (Lu et al., 2005). The Priestley-Taylor equation for PET

estimation is presented below:

λPET = α
∆

∆ + γ
(Rn − G) (2.4)

where, PET the Potential Evapotranspiration (mm/day), Rn, net radiation (W/m2), in our case

Solar irradiance, λ = 2.501 − 0.002361 · T: latent heat of vaporization (MJ/kg), T average daily

temperature (oC), α = 1.26 a calibration constant, ∆ the slope of the saturation vapor pressure
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temperature curve (kPa/oC), G Soil heat flux density (W/m2) and γ the psychrometric constant

(kPa/oC)

Potential evapotranspiration actually combines all the need variables as promised. Calculated PET,

over a day period, can be observed in Figure 2.6. Notably, variations in solar radiation contribute to

the observed noise in the data. A distinct upward trend is visible from the start until around day 50,

followed by a subsequent downward trend. These patterns can be attributed to the Earth’s movement

and are consistent with the trends observed in Figure 2.1.

FIGURE 2.6: The potential evapotranspiration (ET) during the summer months of 2021 is
estimated using the Priestley-Taylor method.





37

Chapter 3

Knowledge Driven Models (KDM)

1 Terminology

In this section we explain some notions which are important for the development of this master thesis

and we introduce the necessary notations:

• Irrigation Volume (IrrV): the volume of water applied to plants.

• Slab: a substrate on which plants are placed. In the greenhouse where this study was conducted,

a slab consists of 3 plants.

• Station: a combined system of a slab and a pot which serves for water collection.

• Runoff (Ro f f ): the excess water applied on a station. It is collected in the pot, under the slab.

• Phytomer: a structure comprising an internode that ends in a node on which organs (leaves,

fruits and axillary meristems) are attached (De Reffye et al., 2021).

• Cycle of development (CD): the average duration, in thermal time, required to place a new

phytomer at the end of the plant main stem is called the cycle of development (CD).

• truss: A collection of fruits attached to the plant, including the petiole which connects them.

• crown: The combination of primary bearing axes and secondary branching axes involves

quantifying the phytomers produced per axis in a plant structure. A tree consists of numerous

primary and secondary plant canopies. Along the main stem, it is generally the same branched

limb that extends until growth ceases, resulting from the termination of the apical meristem.

Definition 3.1. The per average plant volume of water consumed by a station is referred to as Water Con-

sumption (Wc), and it is calculated as follows:

Wc(t) =
VIrr(t)− Ro f f (t)

n
, (3.1)
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where n is the number of plants on the station which refers to a group of plants all growing on the same substrate.

VIrr(t) is the volume (L) of applied water at time t, and Ro f f (t) the volume (L) of the corresponding collected

excess water.

It should be noted that Ro f f is measured the next morning, leaving approximately 12 hours between

collection and measurement. In our study, n = 3, and the water consumption WC corresponds to the

dependent variable that we try to estimate and predict.

2 Models with biological representation

Tackling biological problems, models that can dynamically capture the changes in plant evolution

are considered. Examples of this type include the LNAS model (Log-Normal Allocation Senescence)

(Chen et al., 2013) and the GreenLab model (Yan et al. (2004), De Reffye et al. (2021)). Despite the lack of

biomass measurements, it is challenging to investigate the idea of recovering plant’s growth dynamics

by measuring only water consumption. The idea behind this approach is that transpiration and

biomass production can be considered proportional (Howell and Musick, 1985). Since the GreenLab

model will play a central role in the modeling approach, this chapter serves as an introduction to this

model and explains how it will be utilized to address the problem at hand. This model will also settle

the ground for an innovative approach discussed at the end of the chapter.

2.1 GreenLab

The GreenLab model (Yan et al., 2004) is a functional-structural plant model (FSPM), combining both

functional and structural description metabolic processes with phytomer-level structures (De Reffye

et al., 2021). Breaking the procedure into those fundamental components enables study from the organ

up to the macroscopic level. The ecophysiological concepts assumed in crop models (i.e. thermal

time, radiation use efficiency (RUE)) assist the model. As an FSPM there are some restrictions; the

study must be conducted on the same fixed genotype (clone, variety), with plants of the same age,

under the same conditions (i.e. Temperature, light, humidity). Furthermore, GreenLab is a discrete,

mathematical model with a limited set of variables and physically interpretable parameters, enabling

parameter estimation, model analysis, model evaluation, optimization, and control of farming systems.

For the simulation of the development of the plant, it is sufficient to define the rules regulating the

physiological age value of any recently produced phytomer (De Reffye et al., 2021). The next section

describes this process.

Organogenesis depends heavily on thermal time, according to a base temperature of 12oC (Shamshiri

et al., 2018). A hypothesis done for simplicity is that the thermal time elapsing between the growths
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FIGURE 3.1: (A) Greenlab automaton for tomato development and (B) resulting plant
architecture at GC 25. (Dong et al., 2008)

of two successive phytomers is constant. This process can also be stochastic, as random events can

disrupt the development and architecture of the plants. In the context of this study, it is assumed

deterministic, and the stochastic case is left for future developments.

2.1.1 Tomato automaton

Tomato’s plant construction can be described utilizing four main organs (Dong et al. (2008),Zhang

et al. (2009)), including blade ("b") (i.e. leaves), petiole ("p") (the part that connects the blade to the main

stem), internode ("e") (the intermediate section that links the end and the start of a phytomer) and fruit

("f"). Flowers are assumed fruits from their first inflorescence.

In the usual practice of single-stem, pruned cultivars grown in greenhouses, seven to eleven

phytomers without a flower are developed before the first inflorescence. In our case after the seed

cycle, the plant is assumed to grow 8 phytomers with one internode, one petiole and one blade. From

that stage on and every third phytomer a truss appears. Figure 3.1 illustrates this procedure. Trusses

are assumed to generate 3 flowers, that all bud, representing the average number of fruits per crop

cycle.

2.1.2 Biomass production

Starting from the initial biomass of the seed, denoted Q(0) = Q0, at each time step t, the newly

accumulated biomass Q(t) will refer to the total biomass produced. A typical relation, derived by the

Beer-Lambert law (Monteith, 1977) is:

Q(t) = RUE · E(t) · Sp ·
(

1− exp
(
−k

S f (t)
Sp

))
(3.2)
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where E is the environmental parameters (i.e., ET, PAR, or sometimes water), depending on the

choice of the growth driving factor, k is analogous to the extinction coefficient of Beer-Lambert’s

Law. In the case of tomato plants, a value of 0.8 has been proposed (Zhang et al., 2009)) to evade

identifiability issues. S f denotes the total plant leaf surface area, which is a function of the total

biomass of the leaves, also referred to as the green biomass of the plant, and the specific leaf area (SLA),

a quantity which represents the size of leaf area a plant builds with a given amount of leaf biomass, Sp

is the theoretical projection surface of the individual plant and is a parameter under estimation, and

RUE the Radiation Use Efficiency (RUE).

2.1.3 Allocation

The biomass ascribed to every organ, spread from the common pool, is set proportional to its sink

strength. Sink strength adjusts during the period of organ expansion, following the same form of sink

function for all organs of the same type o ∈ {b, p, e, f } in a cohort. A cohort is a set of organs of the

same nature, created simultaneously by the parallel functioning of meristems.

If To stands for the expansion duration of an organ of type (o) and t stands for its chronological

age (days or CDs) , then the sink strength is modeled by the function:

Po(t) = po · fo

(
t

To

)
, 0 ≤ t ≤ To, (3.3)

where po is its relative sink strength (with respect to the blade’s one), fo (·) is the variation function

of the sink related to its development. The GreenLab model defines the sink function according to a

discretized beta law function:

fo

(
t

To

)
=

1
M

(
t

To

)(ao−1) (
1− t

To

)(bo−1)

, 0 ≤ t ≤ To, (3.4)

where parameters ao and bo, verifying the constrain ao, bo ≥ 1, drive the curve shape, and M is the

normalization constant.

The sum of the sink strength of all organs is the Demand D(t) at a given time t:

D(t) = ∑
o

t

∑
u=1

No(t− u + 1)Po(u), (3.5)

where No(t− u + 1) is the total number of organs of type o at time t that appeared at time u. The

biomass growth of an organ o varies on the value of its sink and the ratio supply produced to the

previous cycle Q(t− 1) (3.2) by the present demand D(t) (3.5). The expansion of the organ of type o
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appearing in cycle u when the plant is at cycle t > u is written:

∆qo(u, t) = Po(t− u + 1)
Q(t− 1)

D(t)
, (3.6)

and the weight of the organ that appeared in cycle u when the plant is at age t is then:

Qo(u, t) =
t

∑
j=u

∆qo(u, j) (3.7)

A code that can simulate GreenLab, as described above, in R language, can be found in the Appendix.

The code is broken into two parts. The first simulates the automaton of tomato, and the second one

brings all the pieces together.

2.1.4 Senescence

Pruning is a common agricultural practice which aims to prevent plants from allocating biomass to

mature leaves. In some cases, pruning is applied before the senescence of the green biomass. As a

result, instead of a function to describe senescence, we introduce a simple function:

Qs(t) = d1{Prune}(t),

which subtracts d grams (g) of biomass every time leaves are pruned.

2.1.5 Modifications

Various modifications can be applied to the aforementioned modeling, primarily to reduce the param-

eter space dimensions and/or improve convergence properties. In our context, all the modifications

we will utilize involve different versions of the sink function 3.4. Two of these modifications concern

the normalization constant M, and three of them pertain to the parameters (ao),(bo), o ∈ {b, p, e, f }.

In total, we will explore six distinct modifications.

Normalizing the sink function (3.4) can be done either by the maximum (Zhang et al., 2009) or by

the sum (Dong et al., 2008) with respect to 0 ≤ t ≤ To.

Regarding the parameters (ao), (bo), o ∈ {b, p, e, f }, the simplest assumption is to treat them as free

variables. This approach will be referred to as the beta sink. To reduce dimensionality, one constraint

can be applied by assuming two distinct (ao) values for phytomers with (atr) or without truss (antr)

(Zhang et al., 2009). This modification called beta sink 2, reduces the parameter space dimension by 2.
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Lastly, Dong et al. (2008) proposed the constraint ao + bo = 5, specifically for tomato plants, which

naturally results in a 4-unit reduction in parameter space dimension.

The AIC (Bozdogan, 1987) and BIC (Schwarz, 1978) criteria were utilized to select the best modifi-

cation.

2.2 Link to Water Consumption

Howell and Musick (1985) demonstrated that transpiration and biomass production are proportional.

Environmental conditions in one of the experiments they present, discussed in Howell et al. (1984),

are similar to the conditions of the experiment under discussion, Table 5.1. In our greenhouse setting,

evaporation is assumed to be negligible, so transpiration could in turn be considered proportional to

water consumption (Food and Agriculture Organization of the United Nations, 1998) thus rendering

the latter linearly related to dry matter production. Disregarding evaporation is not a particularly far-

fetched premise within the framework of hydroponic greenhouses. These greenhouses are designed

to reduce evaporation to a minimum, utilizing substrates wrapped in white sacks that offer a minimal

surface area for water to evaporate from (Resh, 2022).

Adding normally distributed homoskedastic errors, we obtain the following initial model:

Wc(t) = µ0 ·Q(t) + εt, where εt ∼ N
(
0, σ2) , (3.8)

µ0 is a positive proportionality constant and σ2 is a variance parameter.

As Wc measurements were conducted daily, but the GreenLab model runs on Cycles of develop-

ment (CD), we need to map CDs on days. Elapsed days between two successive leaf developments

(phyllochron) can vary from 1.5 (summer) to 3 (autumn) days according to the genotype, and the

climatic conditions (Pivetta et al. (2007),Schmidt et al. (2017)). We assume that the phyllochron is stable

and equal to 2 days, as we measured a mean value of 10 oCd with a base temperature of 12oC. To

aggregate the two separate measurements into one CD, a weighted average is utilized with a weight

proportional to the fraction of the Solar radiation of each day.

2.2.1 Log-Likelihood of the model

Given the model we described in the last paragraph, we yield the following log-likelihood:

l(θ) = −n
2

log(2π)− n log(σ)−
n

∑
i=1

(xi − µ0 ·Q(ti))
2

2 σ2
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for xi water consumption observations at time ti. For maximization, a bounded version of the quasi-

Newton algorithm was utilized (Byrd et al., 1995).

2.2.2 A comment on Water Use Efficiency

Generally, agronomists have a unique name for the fraction of Biomass over Transpiration (Q/T).

This quantity is called Water Use Efficiency (WUE) in the bibliography. This quantity is known to

vary according to environmental conditions, genotype, or even cultural practices (Monteith, 1977).

Such a variation can be observed also in Figure 3 of Lanoue et al. (2017). A natural question that arises

from these observations is: How such a major proportionality assumption between Transpiration and

Biomass production will affect the results of this thesis?

We return to Figure 3 of Lanoue et al. (2017) to investigate this question. From this figure, we can

extract information about the WUE and Transpiration profiles. A first observation is that values of

WUE, for winter months, range between 5 µmolsCO2/mmolsH2O to 15 µmolsCO2/mmolsH2O. This

translates to 4 · 10−3g/L to 1 · 10−2g/L. Using the following relation:

Q = WUE · T

= E[WUE] · T + (WUE−E[WUE]) · T (3.9)

where Q represents the produced biomass in grams g, over a m2/d, T the transpiration in L over a

m2/d.

From the previous relation, we can deduce:

|Q−E[WUE] · T| = |(WUE−E[WUE]) · T|

As we already discussed, the term in parenthesis, on the right-hand side, can take a maximum value of

0.01g/L. On the other hand, the Transpiration, by the same reference, can take a, very loosely chosen

maximum value of 24 mmols H2O/(m2 · s), which translates to 86.4 moles H2O/(m2 · d). To convert

this to L we divide by 55.5, an approximation of the number of moles in 1 L of H2O. The result we

yield is 1.56 L/(m2 · d). Returning to equation 3.9:

|Q−E[WUE] · T| / 0.01 · 1.56

= 0.016 g/(m2 · d).

Even if we arbitrarily double the maximum value of WUE, to account for the difference in season,

this value can go up to 0.032 g/(m2 · d). As we will see in the forthcoming analysis, this value is by
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one (1) order of magnitude smaller than the estimated standard deviation of the model 3.8 for all the

different choices of the biomass modeling. The claim we make here is that the fluctuations of WUE

among days are incorporated into the error term we already included in the model 3.8.

2.3 Identifiability issues and compartmental simplification of the GreenLab model

In our realistic setting where no plant data is available, estimating the parameters of the complete

Greenlab, model is unrealistic: identifiability problems will necessarily be encountered. For example,

a plant with considerable internodes and negligible petioles could have the same measured Water

Consumption as one with reversed features while maintaining equal total biomass.

Adopting a general dimensionality reduction strategy for non-identifiability issues—outlined in

(Hastie et al., 2009)—we analyzed a simplified version of the model. We trade precision in representing

the biological model for enhanced identifiability within the parameter space. In this version, we

combined all the biomass of petioles (p), internodes (e), and fruits ( f ) into a single representative

referred to as body.

Parameters requiring estimation thus comprise:

θ = (ab, bb, pbody, abody, bbody, Sp, Λ, SLA, µ0, σ, Q0) (3.10)

We will refer to this specific parametrization as comp1.

To explore the identifiability of parameters, we simulate data from the comp1 model, initialize

5000 starting points, and record the solutions obtained from the minimization of the negative log-

likelihood of the model via the similar bounded version of a quasi-Newton algorithm, also used for

the maximization of the log-Likelihood (Byrd et al., 1995), with a 10−3 tolerance threshold.

To present the identifiability issue at hand, we could choose many of the possible subsets of the

parameter space to stabilize. If non-identifiability is present in such a context, the general case with

the full parameter space is inapproachable (Hastie et al., 2009). For the sake of simplicity, we chose

to present two emblematic cases only: in the first one, we set SLA, the specific leaf area, and Q0, the

initial biomass of the seed, that can typically be measured, along with Sp and Λ as we incorporated

the µ0 parameter in the model 3.8. For the second case, we stabilize Pbody, the sink strength of the

’body’ compartment. All stabilized values are chosen to be the ones of their respective ’true’ parameter

value. Our rationale behind the choice of those cases is their relevance in a realistic setting. The first

one can be practically applied, as both SLA and Q0 can be measured. The second one is practically

irrelevant, as there is no procedure to measure Pbody. All stabilized values are chosen to be the ones of

their respective ’true’ parameter value.
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Separating those two cases can give us insights into this methodology’s applicability level. If the

first case is feasible, then the results obtained from it could potentially be relevant, whereas if not

the method is infeasible. In the second case, positive results of the test could showcase the ability to

identify some of the parameters, under some heavy assumptions.

2.4 Two model versions for water consumption timeseries based on the recurrence equa-

tion of GreenLab

As shown in Letort et al. (2009), the GreenLab model can be synthesized into a single recurrence

equation that, for the sake of simplicity, we chose here to formulate as:

Q(t) = RUE · E(t) · Sp

(
1− exp

(
− k · SLA

Sp

t−1

∑
n=0

r(n)Q(n)

))
,

where r(n) represents the proportion of green biomass from the totally produced biomass Q(n),

quantities that, in the case of the GreenLab model, are functions of the parameters of the model. To

show this claim, consider this: by the BL law 3.2 and the total biomass allocated to blades, equation

3.7, we have:

Q(t) = RUE · E(t) · Sp ·
(

1− exp
(
−k

S f (t)
Sp

))
= RUE · E(t) · Sp ·

(
1− exp

(
− k · SLA

Sp

t

∑
n=1

Qb(n, t)

))

= RUE · E(t) · Sp ·
(

1− exp

(
− k · SLA

Sp

t

∑
n=1

t

∑
u=n

∆b(n, u)

))
.

In the last equation, we also made use of the assumption that at each CD, we only have only one leaf

for these tomato plants under this pruning strategy. If this did not hold, we would need to include the

total number of leaves that appeared on the same CD. We now substitute 3.6 to the final equation to

get:

Q(t) = RUE · E(t) · Sp ·
(

1− exp

(
− k · SLA

Sp

t

∑
n=1

t

∑
u=n

Pb(u− n + 1)
Q(u− 1)

D(u)

))
.

Now, we change the order of the sums:

Q(t) = RUE · E(t) · Sp ·
(

1− exp

(
− k · SLA

Sp

t

∑
u=1

u

∑
n=1

Pb(u− n + 1)
Q(u− 1)

D(u)

))
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and set r(u− 1) = ∑u
n=1

Pb(u−n+1)
D(u) , for u = 1, . . . , t. By properly adjusting the index, we yield the

claim:

Q(t) = RUE · E(t) · Sp ·
(

1− exp

(
− k · SLA

Sp

t−1

∑
n=0

r(n) Q(n)

))
.

For simplicity, we avoided to include senescence, but the analysis would have been similar.

Assuming proportionality (with constant µ0) between biomass production and water consumption

and no leaf senescence, we obtain a general model form for water consumption:

Wc(t) = θ1 · E(t) ·
(

1− exp

{
−θ2

t−1

∑
n=0

r(n)Wc(n)

})
, (3.11)

where θ1 = RUE Sp µ0 and θ2 = k·SLA
µ0·Sp

are estimated. This model will be referred to as GreenLab exp.

To account for the obviously existing differences between the tomato plants in Dong et al. (2008)

and our plants, we extend this version by introducing a parametric model of the series

r(t) =
ta

I(a)
, where I(a) =

∫ tmax

0
ta dt =

ta+1
max

a + 1

corresponds to a normalization constant with respect to a, a parameter under estimation, and the

maximum time of observation tmax, derived by the experimental design. This model will be referred

to as exp + rate.

3 Stochastic Segmentation of input Energy models (SSiE)

Building upon the prior discussion, we now focus on a novel aspect that broadens the model formu-

lation. Here, we aim to represent biomass production at time t, as the cumulative byproduct of a

composite stochastic experiment, which consists of many independent individual experiments, each

one deciding whether elementary radiative inputs will be absorbed by the plant or not. We thus derive

a family of models, which we name ’Stochastic Segmentation of input Energy’ models (SSiE).

3.1 Formulation of the water consumption series from a stochastic model of light inter-

ception

In this section, we discuss the intuition behind a probabilistic interpretation of biomass production,

and we formalize this intuition with tools from theoretical probability. Recall that at each time t, a total

radiative input E(t) is channeled into the system per m2. Assume that this input is equally quantized

into very small elementary quantities {Ei(t)}n
i=1 in such a way that either they are completely absorbed
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by the plant and converted into biomass by the enlightened parts of the plant or they exit the system

without affecting it. In this case, Ei(t) = E(t)/n where n represents the number of “elementary” units.

If no other specific details are known, one could assume that the individual events of absorption, say

Ai(t), are independent with identical probability of occurrence p(t). With this interpretation and if

1Ai(t) stands for the indicator function of the corresponding event, each elementary radiative input

Ei(t) is associated with a random variable

Qi(t) = RUE · Sp · Ei(t) · 1Ai(t), (3.12)

which records its produced biomass, either 0 if the event Ai(t) is not realised, either RUE SpEi(t) if the

event is realised, and thus it is totally transformed. The total biomass produced by the plant at time t

can thus be expressed as follows:

Q(n)(t) =
n

∑
i=1

Qi(t) = RUE Sp E(t)
∑n

i=1 1Ai(t)

n
. (3.13)

Clearly, the last factor of the above expression corresponds to the sample mean of independent and

identically distributed random variables and in particular Bernoulli random variables with common

probability p(t). Intuitively, one should expect by the strong law of large numbers that the sample

mean value should be very near to their common probability of absorption, that is p(t). These

arguments give an intuitive interpretation of the fact that the following approximations should be

plausible:

Q(t) ≈ Q(n)(t) ≈ RUE SpE(t) p(t). (3.14)

However, despite the seemingly sound arguments underlying these approximations, a theoretical

justification of their validity is more complex. An obvious theoretical caveat regarding the validity

of these approximations is that we cannot conceptualize a countably infinite sequence of events of

common probability that play the role of the elementary events of biomass absorption, or equivalently

the total radiative input cannot be partitioned into a countably infinite number of positive parts

potentially transformed into biomass. The only possibility for justifying the above approximations

would be to resort to an uncountable number of stochastic experiments. This approach could still be

intuitive but surely involves more mathematical intricacies.

Let us now try to justify the rationale. The radiative input E(t) could be mapped to the interval

[0, E(t)] representing an uncountable number of points potentially available for biomass production.

At each point u of the interval, one could attach a Bernoulli random variable, say Xu(t), deciding

whether the point u will enter the system or not. If it enters the system, then it brings an infinitesimal
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contribution to biomass production; otherwise, it is rejected and exits the system. One could still keep

the independence assumption and assume that there is a common probability p(t) of the radiative

points entering the system, but there is a price to pay. If we assume that the radiative input is a

realization of the stochastic process {Zu(t)}E(t)
u=0, where the sample (observed) paths would be an

interval of points consisting of 0′s and 1′s, then it can be proved with tools from probability theory that

the resulting processes are not measurable. To give an interpretation of this nonmeasurability concept,

it roughly corresponds to the idea that it would be impossible to associate the usual notion of length

to the set of points that entered the system and the set of points that exited the system in this ideally

conceptualized experiment. Luckily enough, there is still a solution, and it gives a formal justification

for our intuitive approximations. It resides in the disintegration theorem (Chang and Pollard, 1997), a

result of measure and probability theory. In fact, this theorem gives very powerful tools and a more

intuitive approach to the definition of conditional probability and conditional expectation than the

one that is usually presented in standard probability textbooks. A formal description of this theorem

and related conditions for its validity would be out of the scope of this paper, and we refer to Chang

and Pollard (1997). However, we describe the basic ingredients and the result we need in our context.

Instead of selecting points from the interval [0, E(t)], one could think that the same interval is

actually a bundle of Bernoulli experiments, where each one of them is realised when the point u is

“activated”. Formally, one needs a measure space which consists of the set Yt := [0, E(t)]× {0, 1},

an appropriate measure µ and a function π : Yt → [0, E(t)] (usually the projection function) which

disintegrates the measure µ into a family of measures {µu}0≤u≤E(t), such that for a measurable A

µu(A) = µu

(
A ∩

(
{(u, 0), (u, 1)}

))
(3.15)

and induces the measure ν = µ ◦ π−1 on [0, E(t)]. In our case, the choices are rather simple. Each

µu is “living” (has its support) on the fiber {u} × {0, 1} and behaves as a Bernoulli measure, while

the induced measure ν should be the Lebesgue measure restricted on [0, E(t)]. In this way, the

disintegration theorem justifies the following way of computing the measure of a measurable set A:

µ(A) =
∫ E(t)

0
µu(A) du, (3.16)

where µu(A) is given by (3.15) and the integral should be understood in the Lebesgue sense. We are

now ready to make the correspondence with the computation of the totally produced biomass at time

t. Since the set B = [0, E(t)]× {1} corresponds to the set of all active points, in order to assess the
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totally absorbed radiative input, we just have to compute

µ(B) =
∫ E(t)

0
µu(B) du = E(t)p(t), (3.17)

since B ∩ {(u, 0), (u, 1)} = {(u, 1)} and µu({(u, 1)}) = P(Au(t)) = p(t). Multiplying by RUE Sp to

transform into biomass we get the expected approximation result given by (3.14). It is also interesting

to notice that the constant probability p(t) is actually playing the role of a constant flow (with respect

to the incoming radiation) of biomass production.

The next step is to appropriately model the probability of absorption p(t), which can classically be

done through a parametric family of continuous distribution functions. For each time t, let {Zu(t)}E(t)
u=0

represent the Bernoulli experiments of absorption of the radiative input for all possible u ranging

from 0 to E(t). If we denote by LIS(t) the Light Interception Surface at time t, then, assuming that

the maximum available soil surface is Sp, one could construct a new family of random variables

{Uu(t)}E(t)
u=0 uniformly distributed on [0, Sp] which concretize the above experiments. In particular, the

interval [0, Sp] is partitioned into two subintervals [0, LIS(t)] and (LIS(t), Sp]. Then, the absorption

events can be written as

Au(t) := {Zu(t) = 1} = {Uu(t) ≤ LIS(t)}, 0 ≤ u ≤ E(t). (3.18)

In probability theory, such a family exists; loosely speaking, this reinterpretation of the absorption

events corresponds to a collection of idealized experiments where an elementary radiative input enters

the system if it intersects with the green part of the plant. Now, notice that p(t) corresponds exactly to

the probability of the event given by (3.18), which is related to the Light Interception Surface LIS(t)

at time t. However, LIS(t) is not directly observable, but only indirectly via the cumulated water

consumption prior to time t, denoted by SWc(t−) (itself proportional to the cumulated produced

biomass). A novelty of this study consists in making a link between LIS(t) and SWc(t−) through

an increasing (non-decreasing) function g : R+ −→ R+, that is, LIS(t) = g(SWc(t−)). By the above

argument, Eq. (3.18) and the fact that Uu(t) ∼ Unif(0, Sp) we get that all the following equalities hold:

p(t) = P
(
Uu(t) ≤ LIS(t)

)
= P(Uu(t) ≤ g(SWc(t−))) =

g(SWc(t−))
Sp

=
LIS(t)

Sp
=: LIR(t),

where the last term stands for the Light Interception Ratio. Now, also notice that if U ∼ Unif(0, Sp) is

a copy from the family {Uu(t)}E(t)
u=0 and g is invertible, then the third term above can be rewritten as

LIR(t) = P
(

g−1(U) ≤ SWc(t−)
)
= P

(
X ≤ SWc(t−)

)
= FX(SWc(t−)), (3.19)
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where we set X = g−1(U). In fact, since g is assumed to be an increasing function, its inverse

exists at least in a generalized form (generalized inverse), and the above equations still hold. The

problem is then to define the relationship between LIR(t) (or LIS(t)) and SWc(t−) without having

any information on the plant itself, and in the next section we discuss several such possibilities.

3.2 Different options for the distribution of X

The determination of a mechanistic functional relationship between LIR(t) and SWc(t−) is unrealistic.

Biologically speaking, the underlying processes are complex and involve, among others, the patterns

of biomass allocation to blades and their arrangement in space. An approach to this objective is,

however, feasible and a selected number of possible distribution families could be used to compete for

their fitting quality and their predictive ability. By introducing additive errors as in Section 2.2, we can

derive a model directly applicable to the Water Consumption variable

Wc(t) ∼ N
(

θ1 · E(t) · FX
(
SWc(t−)), σ2

)
, (3.20)

thereby eliminating the requirement for biomass as an intermediary variable. Each model is deter-

mined by specifying FX in one of the following parametric family of distributions.

Exponential distribution. The exponential distribution is one of the most fundamental supposi-

tions that one can make when faced with an undetermined distribution since it corresponds to

the maximum entropy solution for a given expected value on the positive line (Jaynes, 1957).

Besides, in our setting, it leads to a Beer-Lambert-like model. By (3.19) and the assumption of an

exponential model we get:

LIR(t; k) = 1− exp
(
− k · SWc(t−)

)
, t ≥ 0. (3.21)

Gamma distribution The gamma distribution is a generalization of the exponential distribution.

This provides a logical progression from our initial assumption of an exponential distribution.

By (3.19) and the assumption of a gamma model, we get:

LIR(t; k, aγ) =
∫ SWc(t−)

0

kaγ

Γ(aγ)
saγ−1 e−k·s ds, t ≥ 0. (3.22)

Mittag-Leffler distribution

Mittag-Leffler introduced the function bearing his name in 1903 (Bateman, 1953). Different

properties of the distribution generated by the Mittag-Leffler function were explored in Pillai
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(1990). The concept of generalizing the Beer-Lambert law with the use of the Mittag-Leffler

function was proposed by Casasanta and Garra (2018). Following their work, we incorporate

this generalization into our analysis, leading to the following LIR term:

LIR(t; k, aML) = 1− EaML

(
− (k · SWc(t−))aML

)
, t ≥ 0, (3.23)

where EaML is the Mittag-Leffler function:

EaML(x) =
∞

∑
j=0

xj

Γ(j · aML + 1)
, x ∈ R, (3.24)

with aML ∈ (0, 1] the tail parameter and k > 0 the rate parameter. For aML = 1 the above

formulation reduces to the exponential distribution with rate parameter k.

Log-normal distribution

The log-normal distribution is commonly employed to model growth rates Our reasoning for

incorporating this distribution in our analysis stems from the presumption that the elementary

events (Ai)
n
i=1 are influenced by the incremental growth of smaller plant elements. This growth

is contingent on their size. For the density function, we proceed by adopting the ensuing

parametrization:

LIR(t; µlog, σlog) =
∫ SWc(t−)

0

1
s · σlog ·

√
2π

exp

(
−
(

log(s)− µlog
)2

2σ2
log

)
ds, t > 0. (3.25)

Pareto distribution The last distribution we explore is Pareto. Following (Van der Zande et al.,

2010) (mainly the results depicted in Figures 2 and 3), we observe that the percentage of the

biomass responsible for most of the energy interception follows a similar law to the Pareto 80/20

rule (Juran and De Feo, 2010). The formulation of the distribution function that we adopt is as

follows:

LIR(t; θ, η) = 1−
(

η

SWc(t−)

)θ

, SWc(t−) > η. (3.26)
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Chapter 4

Results

Between May 10 and July 2, 2021, an extensive study was conducted in a hydroponic greenhouse

near Therma village, within the Nigrita-Serres region (40.91, 23.55), Greece, to examine the tomato

plant’s (cv. ecstasis) water consumption patterns. A drip irrigation system was used to ensure precise

irrigation for each individual plant. Rockwool, a product of basalt, was used as a substrate-growing

medium in keeping with common practices in the region. Plants’ density is reported as 5 stems per m2

(one stem per plant).

Indoor measurements were performed using an Efento Logger. Additionally, meteorological data

were collected using a Davis Vantage Pro 2 (Plus) weather station close to the greenhouse. Moreover,

daily runoff measurements were conducted and subsequently converted into water consumption data

following the methodology outlined at the beginning of Chapter 3. A comprehensive overview of the

measured quantities, including Solar Radiation, Temperature, Humidity, and Air pressure, averaged

on a daily level, is presented in Table 5.1 (N = 54). This chapter presents the findings of this research

and provides an analysis of the obtained results.

It is essential to note that the potential evapotranspiration (ETpot) was not directly measured during

the course of the study. Instead, ETpot was calculated using the method (2.4) described in Chapter 2.

This chapter focuses on the results obtained from the analysis of the data collected during the study.

1 Linear models

Results of two selection procedures (backward elimination and forward selection), applied on the

whole dataset, are presented in table 4.1. The BIC criterion determines each step of the stepwises

processes (2.2). Solar radiation measurements have been standardized to prevent influence as a result

of magnitude. The resulting BIC values are reported as -47.62 and -32.11 respectively. Both the BIC

criterion and the R2-adjusted indicate that the model chosen by the backward elimination procedure

should be preferred.
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TABLE 4.1: Estimated linear models of Water Consumption. Each step of the stepwise
procedure is determined by the BIC criterion. The left column presents the final model
selected by the backward elimination procedure, while the resulting model of the for-
ward selection procedure is presented in the second column. Solar radiation has been

standardized to avoid influence as a result of magnitude.

Wc (L)

(backward elimination) (forward selection)

Max ET (mm) 0.032∗

(0.016)

Thermal time (oCd) 2.872∗∗∗

(0.720)

Avg Temp (oC) −2.654∗∗∗

(0.712)

Max Temp (oC) −0.162∗∗∗

(0.021)

Max Hum (%) 19.251∗∗

(7.724)

Avg VPD (kPa) 0.219∗∗

(0.096)

Min VPD (kPa) 10.264∗∗

(4.788)

Cut leaves (Indicator) −0.162∗∗

(0.067)

past wc (L) 0.265∗∗∗ 0.515∗∗∗

(0.085) (0.100)

Solar Radiation (stand.) 0.737∗∗∗ 0.724∗∗∗

(0.160) (0.159)

time (t) 0.014∗∗∗

(0.003)

Constant (L) 15.008∗∗ −0.491∗∗∗

(5.620) (0.141)

Observations 53 53
R2 0.963 0.915
Adjusted R2 0.954 0.909
Residual Std. Error 0.108 (df = 40) 0.152 (df = 47)
F Statistic 104.834∗∗∗ (df = 10; 40) 167.652∗∗∗ (df = 3; 47)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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TABLE 4.2: Reported Root Mean Square Prediction Error (RMSPE) of the two stepwise
procedures under investigation.

RMSPE

(backward elimination) (forward selection)

0.137 0.165

In terms of forecasting, a sequential methodology is employed. From the original dataset, we

initially extract the first 55% days (days 39 to 68) for training and predict the next day’s water

consumption (day 69). Subsequently, we increase the size of the training set by one additional day

at each step, continuing to predict the following day until we reach the end of the time series. The

parameters are re-estimated at each step of the procedure. Root Mean Square Prediction Error is used

for the comparison of the two models. In table 4.2, the RMSPE error is reported on the two models.

Again, the model constructed by the backward elimination process seems to be preferred.

Even though all the criteria we examined suggest that the model derived by the backward elimi-

nation method behaves in a more proper manner, we have to comment that all the values used for

the prediction are the measured ones. For most of them, except maybe past_wc and Cut_leaves, an

additional predictive model should be incorporated to use such values in a practical predictive setting.

In light of this observation, and considering that such hierarchical models would introduce more

variability to the prediction, we suggest, between these two, the second model, the one derived by

the forward selection method, as the only variable of that model which needs caution in a predictive

setting is the Solar radiation variable. This model combines simplicity and predictive accuracy.

2 Validating of GreenLab function

To ensure the validity of the results and maintain the integrity of the analysis, the GreenLab function,

as described in the Appendix, was fitted to an already researched dataset by minimizing the following

loss function:

L(s; x) = ∑
o∈{b,p,e, f }

√
∑(si−xi)2

n
∑(xi−x̄)2

n−1

where, x = (xi)1:n are the observed values, and s = (si)1:n the simulated ones. The dataset used for

this fitting process was previously published in (Zhang et al., 2009). The results of this fitting can be

found in Figure 4.1.
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FIGURE 4.1: GreenLab model fit applied to distinct phytomers using the dataset from
(Zhang et al., 2009). Data points represent the observed values, while the red and blue
lines correspond to the model fit for the two different parameterizations (Beta sink and

Beta sink 2, respectively).

The Beta sink and Beta sink 2 functions represent distinct parameterizations of the Beta sink

function, as described in Equation 3.4. The primary difference between these two parameterizations

lies in the estimation of ao and bo, o ∈ {b, p, e, f }. The parameters of Beta sink function, ao and bo are

estimated individually for each organ. Conversely, the Beta sink 2 function employs two distinct types

of ao parameters, differentiating between phytomers with and without truss.

An additional contrast between the two parameterizations should be emphasized. As evident

in Fig 1 of (Zhang et al., 2009), the Beta sink 2 parameterization generates spikes that provide a
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more accurate fit to the data. However, in our study, this improved fitting is not observed. The

discrepancy arises due to our lack of access to the environmental data from the original publication,

which necessitates the assumption of a constant ET value of 1 for all observations, an assumption that

can be though of as constant environmental conditions along the evolution of the phenomenon.

3 GreenLab model

In this section, we present the findings of our investigation into the various methodologies outlined

in Sections 2.1.5 and 2.3. A comparison using the criteria of AIC and BIC is provided in Table 4.3.

Notably, the sink method with ‘ao + bo = 5‘ appears to be the most effective, primarily due to its

reduced parameter space dimension and the penalties applied by both criteria proportional to the

dimension. These methods seem to under-perform in contrast with the results presented in section 1

of the current Chapter.

TABLE 4.3: Comparison results over different simplification of the GreenLab model.

normalization sink likelihood df AIC BIC
method method value

1 max a_o b_o free 14.268 18 30.684 66.486
2 a_o+b_o=5 11.465 14 23.121 50.967
3 beta sink 2 14.207 16 26.693 58.516
4 sum a_o b_o free 13.698 18 30.766 66.567
5 a_o+b_o=5 11.984 14 23.033 50.879
6 beta sink 2 14.702 16 26.624 58.448

FIGURE 4.2: Boxplots on solutions with similar likelihood values for two stabilization
cases and each combination of dots a solution. Each dot represents a parameter value.
The sink strength of the body compartment (Pbody) is normalized by its maximum for
scaling reasons. (Left) Stabilized parameters: SLA, Sp, RUE, Q0. (Right) Stabilized

parameters: SLA, Sp, RUE, Q0, Pbody.
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Another aspect we already discussed in section 2.3, refers to the identifiability of the parameters.

Following the procedure described in the aforementioned section, we get the results presented in

Figure 4.2. This figure features box-plots of solutions with proximate likelihood values (distance

< 10−3), for two test cases: (i) in the first one, all parameters are set to their reference values except Bb,

Bbody, µ0, Pbody, and σ that are estimated; (ii) in the second one, the parameter Pbody is also set. Each

point represents an estimated parameter value, and specific combinations of these points correspond to

the estimated solutions of the maximization problem. For scaling purposes, Pbody has been normalized

by its maximum value. The plots reveal that many distinct solutions yield the same likelihood value.

As can be seen by comparing the variation ranges of the estimated parameters between Figure 4.2(left)

and 4.2 (right), the implications of this issue diminish as we stabilize more parameters but never

disappear. Even with only four estimated parameters, we observe compensation effects between

Bb and Bbody, as their estimation vary. These results indicate that this modeling approach does not

produce satisfactory results under our current dataset and methodology, so we do not proceed to a

prediction evaluation.

However, a noteworthy outcome of this analysis is that the parameters µ0 and σ are identifiable, at

least locally, around the chosen reference values. This observation is significant as these particular

parameters also find utility in the stochastic framework elaborated upon in section 3.

4 SSiE

4.1 Estimation

The outcomes derived from the estimation of SSiE models’ parameters are detailed in Tables 4.4 and

4.5. It can be observed that the lognormal and pareto models demonstrate superior performance in

terms of both the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). A

straightforward application of Equation 3.11 by introducing estimation of the green biomass by an

already fitted model (Dong et al., 2008), however, does not appear to be highly promising, as it results

in lower values in these criteria. Similar behavior is present in the Beer-Lambert-like approach of the

exponential distribution 3.21. A notable result is the estimation of aML ' 0.5, as can be observed in

table 4.4. For aML = 0.5 the Mittag-Leffler function (3.24) reduces to (Haubold et al., 2011):

E1/2(x) = ex2
(

1− 2√
π

∫ x

0
e−s2

ds
)

,

where 2√
π

∫ x
0 e−s2

ds, also known as the Gauss error function, is a quantity which expresses the

probability of a typical Gaussian distribution to be found in the interval [−x, x] for x ≥ 0. In our case,
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it translates to:

LIR(t) ' 1− exp
(
−k SWc(t−)

)
P
(
|Z| >

{
k SWc(t−))

}1/2
)

,

for t ≥ 0, and Z ∼ N(0, 1).

TABLE 4.4: Estimated parameters according to 3.11 and 3.20 formulations. The reader
can refer to 3.2 for the utilized formulations of distributions. To enhance the clarity of our
presentation, the pair (θ2, k) has been aligned in the same column due to their similar
placement in their respective equations, as seen in 3.11 and the different formulations
of 3.20 discussed in 3.2. Similarly, note that the a parameter means the a exponent in,

respectively, the gamma (agam), MLF (aMLF) and exp+rate models.

Version θ1 σ k or θ2 a µlog σlog θ η

lognorm 0.011 0.165 - - 3.958 3.273 - -
Pareto 370.112 0.165 - - - - 3.02 · 10−6 0.403

mlf 0.01 0.166 0.017 0.501 - - - -
gamma 0.007 0.169 0.01 0.386 - - - -

exp + rate 0.007 0.172 2.037 −0.834 - - - -
GreenLab exp 0.005 0.208 0.559 - - - - -

exp 0.005 0.211 0.133 - - - - -

Another noteworthy finding pertains to the Pareto model, specifically the parameter η. As

delineated in Table 4.4, η is estimated at 0.403. This value signifies the initial cumulative water

consumption (SWc(t)) up to the first observation time, equating to approximately 400 ml over 38 days,

or 10.6 ml per day, a value similar to the calculated coefficient of the ‘time‘ variable presented in table

4.1, which represents an increase of 14 ml per day.

TABLE 4.5: Comparison of different distribution choices regarding 3.11 and 3.20 formu-
lations. The table presents the different methods, the calculated log-likelihood value
(log_lik_val), RMSE, the total number of parameters, and BIC and AIC criteria. The

arrangement of methods is done according to the BIC criterion.

Version log_lik_val RMSE # param BIC AIC

1 lognorm 20.45 0.16 4 -25.02 -32.9
2 Pareto 20.39 0.16 4 -24.9 -32.78
3 mlf 19.85 0.17 4 -23.82 -31.7
4 gamma 19.12 0.17 4 -22.36 -30.24
5 exp + rate 18.15 0.17 4 -20.42 -28.3
6 GreenLab exp 8.14 0.21 3 -4.37 -10.28
7 exp 7.25 0.21 3 -2.59 -8.5

Figure 4.3 showcases the computed LIR time-course in relation to the various methodologies

discussed in 3.2. Specifically, the pairs exp-GreenLab exp, and gamma-exp + rate exhibit similar trends.
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This similarity is even more visible when the LIR is normalized by its maximal value and displayed

with respect to SWc, as shown in Supplementary Material (Appendix 5.1). As the optimization

procedure revealed, there is a compensation effect between θ1 and LIR scaling, thus the interest also of

the normalized representation in appendix 3. However, the Pareto and mlf methodologies demonstrate

distinct trends that can be clearly differentiated from the others.

FIGURE 4.3: The estimation of the LIR as a function of the accumulated water usage, as
drawn from the suggested models (3.2), is depicted in the provided graph. A second axis
was included for the values of pareto distribution. exp and GreenLab exp are overlapped

as are gamma and exp + rate.

The unique trend of pareto methodology is also evident in Figure 4.4, where it manages to track the

initial and final trends concurrently during the observation period - a feat unattainable by the other

methods, which are only capable of capturing either the beginning or the end trend, but not both

simultaneously. Another notable result, concerns the grouping of the best performed methodologies

according to the BIC criterion (Figure 4.5), with their position below the remaining ones, depicted at

figure 4.3.

4.2 Prediction

Table 4.6 encapsulates the outcomes of our predictive analysis. Compared with the results in Table 4.2,

our study revealed that the Pareto, lognormal, and mlf models along with the linear models present
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FIGURE 4.4: Final fit of the models (solid lines) on the real data (dashed line). Time
(days), represented on the x-axis, runs over the days of observation, with t = 1 being the
day the seed was planted. The left y-axis represents the Water Consumption at time t, in
liters. The right y-axis represents values of Avg Solar radiation (W/m2). The evolution

of Solar radiation is plotted at the top of the graph, with a dark orange color.
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equivalent results under the known Solar Radiation setting, indicating their relative effectiveness

within the context of our investigation. However, it is crucial to acknowledge the underperformance

of the exp, GreenLab exp and exp + rate models, which implement a methodology similar to the Beer-

Lambert law. Compared to other models, these models’ inferior performance underscores that specific

methodologies might not always be optimal.

TABLE 4.6: Prediction summary among the different suggested methods discussed in
formulations 3.11 and 3.20. Solar Radiation is assumed to be known. Methods are
compared using the RMSPE. The arrangement is performed under the evaluation of the

mentioned criterion.

Version RMSPE

1 Pareto 0.194
2 lognorm 0.217
3 mlf 0.226
4 gamma 0.234
5 GreenLab exp 0.282
6 exp 0.296
7 exp + rate 0.341
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Chapter 5

Conclusion

During this thesis, we investigated ways to predict Water Consumption of tomato plants (c.v. ecstasis).

Our initial goal was to make some heuristic and empirical approaches, currently used by greenhouse

producers more rigorous in the mathematical sense. To achieve that, different models were inves-

tigated. Among the investigated models, classical linear models (Chapter 1) under a Data-driven

scheme and Functional and Structural models (Chapter 3), mainly the GreenLab model, under a

Knowledge-driven scope, were investigated. This investigation gave, as a result, the introduction of

another family of models, namely the Stochastic Segmentation of input Energy (SSiE), discussed in

section 3. This modeling approach combines elements of both approaches. Even though linear models

lack biological representation, and the GreenLab model was deemed unidentifiable in our setting (Sec-

tion 2.3), the SSiE models presented optimistic results (Section 4.2) in prediction, providing also some

biological representation for the interception of light (Figure 4.3), and specifically a vague description

of Light Interception Ratio (LIR). Unfortunately, our shortage of more informative data, which ideally

would include light interception measurements, condemned our work as mainly theoretical. We hope

our work will motivate research in the field and applications of the presented methodology in more

practical schemes.

1 Summary of our main findings

Our current method, employing Pareto and mlk, yielded comparable predictive outcomes (RMSPE

0.19-0.23). Even lower results were found by the application of the linear models (Table 4.2), even

though there is a lack of biological interpretation for this approach, and the assumption of knowledge

of the values for a big set of the variables, especially in the model chosen by the backward elimination,

could have influenced these results. We believe that even under these limitations, studying the results

of these simple models, and especially the ones found in Table 4.1, can give sounder intuition on the

phenomenon under observation.
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In the context of our problem formulation, which involves one measurement of Water Consumption

per day and relies solely on climatic data, this RMSPE translates to an error in the range of 150-

250ml per day. This level of accuracy can contribute to the sustainability of agricultural practices by

optimizing water usage. Importantly, the Pareto and mlf models are feasible for application in a scheme

of one measurement per day. However, both of them have disadvantages. The Pareto model presents

some identifiability issues among the µ0 and θ parameters, which warrants further investigation. On

the other hand, the mlf is computationally heavy, a disadvantage that can be minimal in a scenario

with only one measurement and only one day to predict. Despite these challenges, the models remain

viable choices for real-world applications. Within this context, when the primary objective is focused

on prediction, linear models (Table 4.1) offer a marginal benefit. Even though exp + rate and gamma

models do not present equivalent results as the aforementioned, the LIR estimated by these methods

(Figure 4.3), approximately 80%, are similar to the results reported in Wilson et al. (1992) and Ohashi

et al. (2022). Measurements at 7 farms showed that in the summer season, the light interception was

on average 90%, with values varying between 86% and 96%" in Heuvelink et al. (2004), with reported

densities of 2.3 and 3.4 stems per m2, in contrast to our case, where the reported density is 5 stems per

m2

Our work can be considered as a methodological proposition for determining the LIR profile

with only a subset of the variables routinely measured by professional growers, in a hydroponic

setting, variables which are discussed in Chapter 2. Interestingly, the profiles of LIR, Figure 4.3, we

obtain are consistent with those reported in the literature ((Duursma et al., 2012), Ohashi et al. (2022)).

Selecting the model with the best predictive performances seems a reasonable strategy. Nonetheless,

this approach warrants further empirical validation. Future research could focus on quantifying the

diffusion of light in relation to distinct plant attributes and may include virtual experiments (as in

(Duursma et al., 2012)).

2 Limitations of the work

Our work presents important limitations that must be acknowledged. First, our modeling approach

relies on strong physiological simplifications, e.g., neglecting soil evaporation and respiration of

existing organs, constant radiation use efficiency, proportionality between water consumption and

biomass production, constant SLA, proportionality between light intercepted and photosynthesis (a

more refined model here would have been to consider Farquhar’s photosynthesis model, for instance

Farquhar et al. (1980)). All these simplifications were required with respect to our objectives and our

context of using only routinely recorded variables. They can, however, be considered applicable when
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describing the average growth of plants in standard conditions, and most of them are also laid in other

models (Ma et al. (2022),Winn et al. (2023)).

An additional underlying assumption that deserves to be highlighted is that the g function

(discussed in paragraph 3.1) is time-independent. In reality, g aggregates the effects of blade spatial

arrangement, which determines the probability of intercepting a radiation ray, the senescence of

the leaves, and the fraction of biomass allocated to the blades. This fraction decreases with time,

especially due to the progressive appearance of fruits, whose demand competes with that of blades,

a phenomenon that our SSiE models do not account for. However, in our case, because the time of

observation is at a very later stage than the initial planting, this fraction is, in fact, nearly constant,

taking values in the range (0.21-0.24), as simulated using GreenLab (Zhang et al., 2009). This explains

why the models exp and GreenLab exp behave similarly.

Lastly, we must acknowledge the limitations of our data, which prevent us from drawing strong

conclusions from our results. Measuring and estimating the mean value of water consumption among

three plants could potentially introduce some errors because of the variance within them. Nevertheless,

we believe that our work can be considered a proof-of-concept for our proposed methodology and

that the SSiE model appears promising for modeling Water Consumption.

3 Perspectives

In light of this, future research could aim to further apply and investigate the utility of the SSiE models

in predicting such quantities. The choice of distribution might be crop-dependent, an idea that could

be researched in the future. We hope these initial findings can be validated with more extensive and

informative data and deepen our understanding of crop Water Consumption patterns.

Our current formulation is particularly adapted for Bayesian methods, which will allow for an

easy way to quantify uncertainty and use the Bayesian predictive distribution for forecasting purposes.

An online Bayesian method with sequential Monte-Carlo may be particularly relevant, and MCMC

methods could also be applied for more efficient estimation, as in (Logothetis et al., 2022). The

comparison of MCMC with sequential Monte-Carlo for MLE was done in Trevezas et al. (2014).

We anticipate that this method could have repeated applications within the same crop type and its

application to other crops and settings. These possibilities present exciting avenues for future work

and could have far-reaching impacts on sustainable agriculture and food security.
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Appendix A: R code

Simulate a cycle function for the simulation of the tomato automaton on greenlab model

# p.cyc: prob of a cycle to be realized

# p.fr: probability of a flower to become a fruit

# fl_1st: 1st cycle that a flower blossoms

Sim.cyc_fun <- function(N, p.cyc = 1, p.fr = 1, fl_1st = 9, organs = c("b","

p","e","f")){

# standard tomato cycle (b,p,e)

s.cyc <- c(1,1,1,0); s.cyc

# Number maximum Cycles of development

N <- N

# Number of realized cycles

N.cyc <- rbinom(1,N,p.cyc); N.cyc

# simulate cycles

Sim.cyc <- matrix(s.cyc , ncol = 4, nrow = N.cyc , byrow = T,

dimnames = list(cycle = paste0("c_" ,1:N.cyc),

comp = organs)); Sim.cyc

# cycle of 1st flower

fl_1st <- 9

# every third cycle it flowers

suppressWarnings(a <- fl_1st:N.cyc*c(T,F,F)); a <- a[a!=0]; a

# actual fruits developed under p.fr

Sim.cyc[a,4] <- rbinom(length(a) ,5,p.fr); Sim.cyc

Sim.cyc

}
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GreenLab function

library(vctrs) # rep_vec_each function

# Simulate a cycle function

source("./source/simulate a cycle function.R")

# Parameters

par = list( phi = 2, # Phyllochron

k = 0.8, # Beer -Lambert coef of light extinction

bt = 12, # base temperature

GDD =10.16 , # mean GDD per day

To = 30 # maximum expansion time

)

# Calculate Thermal Time from Calendar Time

thermal.time = function(t, par = par) {

par$GDD * t

}

# Cycle of development

# t: time in days

# temp: data of temp at day(s) t

# p

CD <- function(t, par = par){

one_CD <- par$phi * par$GDD # on cycle of development

floor(thermal.time(t, par)/one_CD)

}

# Beer - Lambert Law

# variables
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# qleaf: vector with biomass of leaf

beer.lambert = function(qleaf , ET , theta) {

q = unname( ET * theta["Sp"] / ( theta["r1"]) * (1 - exp( - par$k* sum(

qleaf)/( theta["Sp"] * theta["e"]))) )

q

}

# Demand of organ o (b:blade , p: petiole , e: internode , f:fruit)

# variables

# j: time since initiation of organ o

# B: parameter of Beta(a-1,b-1) B=a/(a+b), a+b=5

# P: sink strength of organ o

# D: Total plant demand at time t

# Beta law

g <- function(j, A, B, To){

a <- A

b <- B

(j-1/2)^(a-1)*(To - j + 1/2)^(b-1)

}

# sink variation function

f <- function(j, A, B, To){

(g(j, A, B,To)/sum(g(1:To , A, B,To)))*I(j<=To)

}

# Greenlab

# t: time in days

# theta: parameter under estimation

# ET: evapotranspiration (or if adjusted accordingly other environmental

parameter (i.e. Solar radiation)

greenlab <- function(t, theta , par , ET){
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organs <- c("b","p","e","f") # organ o (b:blade , p: petiole , e: internode ,

f: fruit)

# simulate until CD(t)

Sim.cyc <- as.data.frame(Sim.cyc_fun(CD(t, par), organs = organs)); Sim.

cyc

# list with indexes

ind <- list(N = nrow(Sim.cyc)+1) # +1 for the "seed" cycle

for (o in organs) {

ind[paste0("n_",o)] <- list(sum(Sim.cyc[,o]))

}

## Initialize ##

# Note: extra variables only for better Latex presentation

# otherwise they are defined immediately in x

# total biomass

q <- unname(rep(theta["q0"], times=ind$N))

# total demand

D <- rep(0, times=ind$N)

# demand per compartment

d <- list(b = matrix(0, nrow=ind$N, ncol=ind$n_b,

dimnames = list(cycle = paste0("cyc",

1:ind$N),

compartment = paste0("comp",

1:ind$n_b))),

p = matrix(0, nrow=ind$N, ncol=ind$n_p),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp",

1:ind$n_p)),

e = matrix(0, nrow=ind$N, ncol=ind$n_e),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp",

1:ind$n_e)),

f= matrix(0, nrow=ind$N, ncol=ind$n_f),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp",

1:ind$n_f)))

# dry matter allocation
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dq_o <- list(b = matrix(0, nrow=ind$N, ncol=ind$n_b,

dimnames = list(cycle = paste0("cyc",

1:ind$N),

compartment = paste0("comp",

1:ind$n_b)

)),

p = matrix(0, nrow=ind$N, ncol=ind$n_p),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_p)),

e = matrix(0, nrow=ind$N, ncol=ind$n_e),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_e)),

f= matrix(0, nrow=ind$N, ncol=ind$n_f),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_f)

))

# biomass per compartment

q_o <- list(b = matrix(0, nrow=ind$N, ncol=ind$n_b,

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp",

1:ind$n_b))),

p = matrix(0, nrow=ind$N, ncol=ind$n_p),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_p)),

e = matrix(0, nrow=ind$N, ncol=ind$n_e),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_e)),

f= matrix(0, nrow=ind$N, ncol=ind$n_f),

dimnames = list(cycle = paste0("cyc", 1:ind$N),

compartment = paste0("comp", 1:ind$n_f)))

# total list for export

x = list(q = q, # repeat initial biomass

D = D,

d = d,

dq_o = dq_o,

q_o = q_o,

t = 1:t,CD = 1:CD(t,par), ind = ind)
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# start simulating from the first cycle

for (n in 1:(ind$N-1)){

# current cycle

age <- n:1; age

curr.cyc <- cbind(Sim.cyc[1:n,],age); curr.cyc # keep info till current

cycle

Demand <- 0

for (o in organs) {

# calculate sink function (here To is assumed equal everywhere , can be

replace by T[o] for general)

curr.cyc[,"Fo"] <- f(age ,theta[paste0("A",o)],theta[paste0("B",o)],

par$To); curr.cyc

curr.n_o <- sum(curr.cyc[,o]); curr.n_o # current number of organ

zero.demand <- rep(0,ind[[ paste0("n_",o)]]-curr.n_o); zero.demand #

demand of organs not elapsed yet

# calculate demand of each compartment

if (curr.n_o == 0){

x$d[[o]][n,] <- 0

} else {

Fo <- vec_rep_each(curr.cyc[curr.cyc[,o]>0,c("Fo")], times = curr.

cyc[curr.cyc[,o]>0,o]); Fo[is.nan(Fo)] <- 0; Fo

dem <- theta[paste0("P",o)]*Fo; dem

x$d[[o]][n,] <- c(dem ,zero.demand)

}

Demand <- Demand + sum(x$d[[o]][n,]) # Total demand

}

x$D[n] <- Demand

if (!is.na(Demand) && Demand > 0){

for (o in organs) {

# Dry matter allocation for each compartment

x$dq_o[[o]][(n+1) ,] <- x$d[[o]][n,]/Demand*x$q[n]

# new biomass for each compartment
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x$q_o[[o]][(n+1) ,] <- x$q_o[[o]][n,] + x$dq_o[[o]][(n+1) ,]

}

}

# Beer lambert for new biomass

x$q[n+1] = beer.lambert(qleaf=x$q_o[["b"]][n,], ET = ET[n+1], theta)

}

x

}
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Appendix B: Main Dataset

TABLE 5.1: Summary of all the measured quantities. All quantities refer to a statistic
measured on a day span. In the first column, the name of the quantity can be found
along with the units. Columns 2 to 6 present statistics of the quantities along the span of

the study (54 days).

Statistic N Mean St. Dev. Min Max

time (t) 54 31.412 15.292 6 57
Max_Solar (W/m2) 54 1,025.431 132.998 571 1,329
Avg_ET (mm/m2) 54 4.608 0.990 2.350 7.490
Max_ET (mm/m2) 54 8.216 1.591 4 12
Min_ET (mm/m2) 54 1.098 0.781 0 4
Avg_Air_pressure (hPa) 54 1,013.817 3.477 1,007.120 1,022.720
GDDs (oCd) 54 10.156 2.668 5.030 16.630
Avg_Temp (oC) 54 22.156 2.675 17.060 28.630
Max_Temp (oC) 54 29.292 3.145 23.100 37.800
Min_Temp (oC) 54 15.927 3.235 9.400 22.000
Avg_Hum (%) 54 0.843 0.103 0.618 0.976
Max_Hum (%) 54 0.986 0.030 0.840 1.000
Min_Hum (%) 54 0.597 0.156 0.230 0.860
Avg_VPD (kPa) 54 0.547 0.385 0.090 1.370
Max_VPD (kPa) 54 1.671 0.900 0.540 3.960
Min_VPD (kPa) 54 0.022 0.046 0.000 0.260
Water_Consumption (L) 54 1.141 0.503 0.090 2.250
Cut_leaves (Indicator) 54 0.176 0.385 0 1
past_wc (L) 53 1.096 0.497 0.090 1.850
past_wc_2days (L) 52 1.064 0.499 0.090 1.850
Solar Radiation (standardize) 54 0.865 0.136 0.360 1.000
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Supplementary figure: normalized LIR

w.r.t. cumulated water uptake

FIGURE 5.1: The estimation of the normalized LIR as a function of the accumulated
water usage, as drawn from the suggested models (3.2).
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