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Περίληψη

Πρόβλεψη των φαινολογικών σταδίων καλαμποκιού με χρήση τυχαίων δασών και δεδομένων

μεγάλης κλίμακας - Η ζώνη καλαμποκιού των ΗΠΑ

Αυτή η διπλωματική εργασία στοχεύει να αντιμετωπίσει ένα πρόβλημα από τις γεωργικές επιστήμες, δηλαδή,

την πρόβλεψη των ποσοστών των φαινολογικών σταδίων του καλαμποκιού χρησιμοποιώντας δεδομένα μεγάλης

κλίμακας. Σύγχρονη έρευνα γύρω από το πρόβλημα περιλαμβάνει τα Κρυμμένα Μαρκοβιανά Μοντέλα και

τα Γενικευμένα Γραμμικά Μοντέλα Τυχαίων Επιδράσεων. Σε αυτή τη διπλωματική εργασία, το πρόβλημα

αντιμετωπίζεται από τη σκοπιά της μηχανικής μάθησης. Συγκεκριμένα, διερευνούμε πώς ο αλγόριθμος

των Τυχαίων Δασών (ΤΔ) καθώς και ορισμένες από τις παραλλαγές του μπορούν να εφαρμοστούν στην

περίπτωσή μας.

Αρχικά περιγράφουμε το υπό μελέτη πρόβλημα και το εντάσσουμε στο πλαίσιο της μηχανικής μάθησης.

Στη συνέχεια, μελετάμε την κατασκευή των δέντρων απόφασης, των δομικών στοιχείων των ΤΔ, τόσο

για τη μονομεταβλητή όσο και για την πολυμεταβλητή περίπτωση. Επιπλέον, περιγράφουμε τον αλγόριθμο

των Τυχαίων Δασών και παρουσιάζουμε διαφορές επιλογές για τη δειγματοληψία, τον διαχωρισμό και τη

συνάθροιση, συμπεριλαμβανομένου του bootstrapping σε επίπεδο υποκειμένων, τα ΄Ακρως Τυχαία Δέν-

τρα και τα Ιστορικά Τυχαία Δάση. Τέλος, συγκρίνουμε τα αποτελέσματά τους μεταξύ τους ως προς την

ικανότητα πρόβλεψης των ποσοστών φαινολογικού σταδίων των καλλιεργειών καλαμποκιού στις ΗΠΑ και,

πιο συγκεκριμένα, στην πολιτεία της Νεμπράσκα.
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Introduction

People have always considered it necessary to be able to both make accurate predictions and extract

knowledge from data. This twofold objective was most often either a result of the desire to improve

the quality of life or practical, daily life issues. In recent years, the field of machine learning has in-

creasingly met this need. The term machine learning was first introduced in 1959 by Arthur Samuel,

an IBM employee and pioneer in the field of computer gaming and artificial intelligence. Today,

machine learning is considered a branch of artificial intelligence encompassing various techniques

and algorithms that leverage sample data to generate precise predictions in a computationally effi-

cient manner, without the need for explicit programming. Consequently, machine learning methods

have witnessed a notable surge in their application across diverse domains, including meteorology,

medicine, economics, agriculture, and others.

In agriculture, during the last few years, there has been an upward trend in the use of machine

learning methods in the field of precision agriculture (PA). PA is a farm management approach that

uses information technology (IT) to ensure that crops and soil receive exactly what they need for

optimum health and productivity. Specifically, it aims to fully record the state of the arable land

under study to better distribute fertilizers, improve the irrigation system and therefore minimize

production costs and maximize net profit. To achieve this, remote sensing (RS) is used. RS is the

acquisition of information about an object or phenomenon without making physical contact with it,

in contrast to in-situ or on-site observation. Currently, the term generally refers to using satellite - or

aircraft-based sensor technologies to detect and classify objects on Earth (Remote Sensing).

This thesis is highly motivated by the need to address a problem from the agricultural sciences,

namely the prediction of the crop phenological stage percentages using large-scale data. From now

on, this problem will be referred to as the Crop Phenological Stage Percentages Prediction (CPSPP)

problem. It is worth noting that this problem has already been studied by Shen et al. (2013) who used

a non-homogeneous hidden Markov model to predict the phenological stages. This approach was

later improved by Ghamghami et al. (2020) who posed the problem within the Bayesian framework

and more recently, by Oikonomidis and Trevezas (2023) who used Generalized Linear Mixed-Effects

Models (GLMEMs). The aim of this thesis is to study the previous problem from the point of view

of machine learning, and examine which of the various approaches discussed in this thesis is more
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suitable in this context.
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Chapter 1

Corn Phenological Stage Percentages

Prediction Problem

1.1 Corn

Since this dissertation deals with the problem of predicting the percentages of phenological stages

in maize crops, we consider it necessary to first present some basic facts about the physiology of the

plant as well as to point out the reasons why today’s maize crops (and so the study of these) is of

utmost importance.

Corn stands as one of the most extensively cultivated plants on a global scale. In recent years,

there has been a notable increase in the annual production of maize worldwide, reaching a record

of 1.2 billion tons in 2021 (Grain Market Report). Maize holds the distinction of being the predomi-

nant grain crop across the Americas, with the United States alone producing 384 million metric tons

in 2021 (Maize). As per the Food and Agriculture Organization (FAO), the United States held the

position of the largest corn producer globally in 2020, contributing 31% to the total production, fol-

lowed by China at 22.4%. Within the United States, Iowa is the top producing state with Illinois and

Nebraska following (World Population Review).

It comes as no surprise that corn holds such significance, given its multifaceted role in the daily

lives of people and its versatile applications. Primarily, corn serves as a vital source of animal feed.

Additionally, a considerable portion of corn is consumed directly by humans or in the form of its

derivatives such as corn oil and corn flour. The notable utilization of corn extends to the production

of bio-fuels for automotive purposes, contributing to a more environmentally friendly alternative

compared to conventional plastics. These factors collectively contribute to the remarkable position

and value of corn as a globally significant crop (Farm Progress).



14 Chapter 1. Corn Phenological Stage Percentages Prediction Problem

FIGURE 1.1: Corn growth stages from emergence to maturity.

1.1.1 Corn phenology

Based on the above, the need to study corn crops in order to achieve the best management of available

resources and improve the production process should have become clear. Management strategies for

improving corn yield, though, are most effective when one can identify the growth stage in which

potential yield is affected. For example, the effects of fertilization, frost or hail, moisture stress, plant

diseases, insect injury, and pesticide application on yield will be determined by the growth stage in

which these events occur.

Corn growth stages are classified as vegetative (V) or reproductive (R). The leaf collar method

is a method used to stage corn while it is in vegetative stages. With this method, the vegetative

stages are based on the number of visible leaf collars. Staging begins at emergence (VE), and each

new leaf with a fully developed leaf collar is called stage V(n). For instance, the stage in which the

plant has 3 visible collar leaves is the V3 stage. Vegetative leaf staging for corn plants ends when the

corn develops a tassel (VT); once the plant has silks visible outside of the husks it has reached the

first reproductive stage (R1). In total, there exist 6 reproductive stages, namely silk (R1), blister (R2),

milk (R3), dough (R4), dent (R5), and maturity (R6) (Abendroth et al., 2011). Figure 1.1 depicts the

stages of corn development. These stages along with a brief description of them (as given in Nutrien

Ekonomics) are given below.

Pre-Season

The Pre-Season stage is not an actual corn phenological stage, but in most applications is added arti-

ficially. It represents the time period from the beginning of data recordings until corn seed planting

takes place. Hence, the introduction of this stage allows for the synchronization of data recordings

from different growing seasons.
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Planted

Planting time can vary depending on the climate and the weather, but generally in the United States

will begin in the early Mid-April and will continue until mid to late May.

Emerged (VE)

FIGURE 1.2: VE

Emergence happens when the first leaf or the spike leaf appears

above the ground. The seed absorbs water and oxygen for fermen-

tation. The radicle root emerges from the tip of the kernel. Soil tem-

perature should be 50-55 degrees Fahrenheit with moisture present

for optimal emergence. Planting depth is critical for this stage—too

deep can delay emergence and too shallow can create a weak plant.

Silking (R1)

FIGURE 1.3: Silking Stage

During this stage, flowering begins and silk is visible on the outside of the

husks. The first silks are attached to potential kernels near the base of the

ear. Maximum plant height is achieved, pollination is occurring and the

potential number of kernels is being determined. Nutrient needs are high

for fertilization.

Blister (R2)

FIGURE 1.4: Blister stage

At this stage, silks darken and are drying out. Kernels are about 85% mois-

ture and will soon fill with starch. Environmental stress can reduce yield

potential and final grain count.

Milk (R3)

FIGURE 1.5: Milk stage

Silks are dried out. The kernels are turning yellow and a milk-like fluid can

be squeezed out of the kernels. Any stress at this point will cause kernel

abortion at the tip of the ear.

Dough (R4)

FIGURE 1.6: Dough stage

Starch materials inside the kernels have a dough-like consistency. Nutri-

ents and starch are accumulating with kernels being at 70% moisture. En-

vironmental stress at this point can cause reduced yield by reducing kernel

size and cause kernels to be shallow or chaffy. The impact of frost on grain

quality can be severe with a 25-40% yield.
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Dent (R5)

FIGURE 1.7: Dented stage

At this stage, most of the kernels are dented. Moisture is declining to about

55%. Stress will reduce kernel weight. Many growers will harvest for silage

soon.

Maturity (R6)

FIGURE 1.8: Maturity
stage

At maturity, a black layer forms at the bottom of the kernel, blocking any

movement of dry matter and nutrients from the plant to the kernel. Kernels

will be around 30-35% moisture and are physiologically mature. At this

stage, grain is not ready for storage, but maximum dry weight has been

attained. Disease and pests can result in physical damage and grain loss.

Scouting is suggested for ear drops from pest damage.

Harvested

While not strictly a stage of grain development, harvest maturity is often defined as that grain mois-

ture content where the harvest can occur with minimal kernel damage and mechanical harvest loss.

1.1.2 Crop Progress Reports

Our study concerns corn crops in America and specifically in the State of Nebraska. In order to

monitor the condition of the crops, the National Agricultural Statistics Service (NASS) of the United

States Department of Agriculture (USDA) conducts crop progress surveys throughout the growing

season, namely from the beginning of April until late December. In particular, every week NASS

assigns its staff to visit the cultivated areas and record what percentage of the plants are at or beyond

each phenological stage. These reports are called Crop Progress Reports (CPR) and include the stages

planted, emerged, silking, dough, dented, mature, and harvested.

Our data covers growing seasons 2002-2021. For each season the starting date ranges from week

12 to week 15 of the calendar year. Regardless of the starting date, for each season our data tracks

CPR values for 38 consecutive weeks, hence the ending week of the study for each season varies

from 49 to 52 (see Table 1.1). The CPR data is freely available through the Quick Stats Database. The

Weeks Seasons

12-49 2012, 2015, 2021
13-50 2002, 2006, 2007, 2011, 2016, 2017, 2018, 2019
14-51 2003, 2004, 2005, 2008, 2010, 2013, 2014, 2020
15-52 2009

TABLE 1.1: Weeks of the calendar year studied for each growing season.
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Quick Stats Database is the most comprehensive tool for accessing agricultural data published by

NASS and contains officially published aggregate estimates related to U.S. agricultural production,

available at the county, state, or country level.

FIGURE 1.9: CPR data for the growing season 2002

In Figure 1.9 we can see the evolution of the CPR statistics for the growing season of 2002. For the

first week of the study, planting has not yet started, thus we can see that 100% of the crops occupy the

"Preseason" stage. The Preseason percentages decrease in time, giving their place to the "Planting"

stage. As weeks pass by, we can see that each stage’s percentages increase, as more and more plants

reach that specified stage, and then decrease, as the plants move on to the next one. In the final weeks

of the study, the crops are absorbed in the "Harvested" stage.

The CPR percentages are the core of the problem we have to solve since what we would like is to

build a mathematical model that can predict for a specific future week what percentage of the plants

of the cultivated area we are studying occupy each phenological stage of those included in the CPRs.

To achieve this, we must take into account environmental and non-environmental factors prevailing

at the given time in the area of interest. These factors are presented in the following sections.

1.2 Environmental factors

In this section, we present the environmental factors used in our study to predict the CPR percent-

ages. Data for all of the following environmental factors are obtained through Daymet, a research

product of the Environmental Sciences Division at Oak Ridge National Laboratory (ORLN). Daymet

provides long-term, continuous, gridded estimates of daily weather and climatology variables by

interpolating and extrapolating ground-based observations through statistical modeling techniques.
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Daymet weather variables include daily minimum and maximum temperature, precipitation, vapor

pressure, shortwave radiation, snow water equivalent, and day length produced on a 1 km x 1 km

gridded surface over continental North America and Hawaii from 1980 and over Puerto Rico from

1950 through the end of the most recent full calendar year.

1.2.1 Thermal Time

Temperature is a primary factor affecting the rate of plant development as the latter is dependent

upon the temperature of the air surrounding the plant. In particular, plants can only develop within

a certain range of temperatures and, thus, each species has a specific range of temperatures repre-

sented by a base (Tb), a ceiling (Tc), and an optimum (To) temperature. Temperature extremes, that

is temperatures above the ceiling or below the base temperatures, may harm plant growth. For in-

stance, research has shown that the major impact of warmer temperatures was during the reproduc-

tive stages of development, and grain yield in corn was significantly reduced by as much as 80%-90%

from a normal temperature regime (Hatfield and Prueger, 2015).

To take into account the dependence of plants on the ambient air temperature in applications,

Growing Degree Days (GDD) are used. GDD is a measure of heat accumulation used in agriculture and

biology to predict plant and animal development rates such as the date that a crop will reach maturity

or an insect will emerge from dormancy. In agriculture, GDD in fact represents the amount of heat

absorbed by the plant in a single day. If we sum the GDD for a time interval we get the Accumulated

Growing Degree Days (AGDD), a measure that expresses the total amount of heat absorbed by the

plant in that interval. A more formal definition of GDD and AGDD is the following:

Definition 1.1 (GDD - AGDD). If Tb is the base temperature, Tc the ceiling temperature, Tmin(t) and

Tmax(t) the minimum and the maximum temperature at day t, then

1. The average truncated temperature of day t is defined as

T∗
av(t) :=

T∗
max(t) + T∗

min(t)
2

− Tb, (1.1)

where

T∗
max(t) = max{min{Tmax(t), Tc}, Tb}

T∗
min(t) = min{max{Tmin(t), Tc}, Tc}

2. The Growing Degree Days at day t, denoted by GDD(t) are defined as

GDD(t) := To − |T∗
av(t)− To|, (1.2)
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3. The Accumulated Growing Degree Days until day t, denoted by AGDD(t) are defined as

AGDD(t) :=
t

∑
i=1

GDD(i). (1.3)

For corn, the base and ceiling temperatures used in practice are Tb = 10◦C and Tc = 50◦, while

the optimum temperature is To = 30◦C (Cross and Zuber, 1972).

1.2.2 Precipitation

In meteorology, precipitation refers to the amount, usually expressed in millimeters or inches of

liquid water depth, of the water substance that has fallen at a given point over a specified period of

time (American Meteorological Society). The main form of precipitation is rain but it also includes

drizzle, sleet, snow, ice pellets, graupel, and hail.

Plant development heavily depends on the amount of precipitation as well as on its intraseasonal

distribution. Limitations in water availability are frequently a restrictive factor in plant development,

and water is essential for the maintenance of physiological and chemical processes within the plant,

acting as an energy exchanger and carrier of nutrient food supply in solution (Geneti, 2019). On

the other hand, excessive precipitation can severely hinder development or even destroy the crops

(Kunkel et al., 1992), since high levels of soil moisture favor the growth of microorganisms such as

fungi and bacteria which can be absorbed by the plant.

For corn, precipitation levels are crucial for crop development. In particular, the interaction ef-

fects of soil water, precipitation, and plant population on final yield are determined by the level of

soil water at the beginning of the rapid growth period and by the amount and distribution of pre-

cipitation during this period (Holt et al., 1964; Holt and Timmons, 1968). Therefore, knowledge of

the precipitation levels may be useful information for the CPSPP. Again, we accumulate the daily

precipitation data obtained from Daymet getting the following definition:

Definition 1.2 (Accumulated Precipitation). If P(t) is the precipitation of day t, then the Accumu-

lated Precipitation until day t, denoted by AP(t), is defined as:

AP(t) :=
t

∑
i=1

AP(i). (1.4)

1.2.3 Vapor pressure

Partial vapor pressure, which refers to the pressure exerted by the water vapor in the air, can signifi-

cantly affect plant growth. Partial vapor pressure affects the rate at which plants lose water through
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transpiration. If the partial vapor pressure is low, the rate of transpiration decreases, and plants may

struggle to take up enough water to support their growth. Conversely, if the partial vapor pressure

is high, the rate of transpiration increases, and plants may lose water faster than they can take it up,

leading to wilting and other symptoms of water stress. In addition, partial vapor pressure can also

affect the ability of plants to take up nutrients from the soil. When the air is dry and the partial vapor

pressure is low, the concentration of mineral nutrients in the soil solution may become more concen-

trated due to reduced water availability. This can lead to an increase in salinity and other problems

that can limit nutrient uptake by the plants (Grossiord et al., 2020; Ding et al., 2022).

For corn, vapor pressure plays a crucial role in determining the amount of water that is available

to the plant. High vapor pressure can cause high levels of transpiration, which in turn can lead to

water stress and reduced yield. High vapor pressure can also contribute to heat stress in corn plants.

At the same time, high humidity levels can prevent plants from cooling themselves through transpi-

ration, leading to overheating and reduced growth. Vapor pressure can also impact the success of

corn pollination. High vapor pressure can reduce the effectiveness of pollinators, such as bees, and

interfere with pollen movement. This can lead to reduced seed set and yield (Ray et al., 2002; Hsiao

et al., 2019).

Definition 1.3 (Accumulated Vapor Pressure). If VP(t) is the partial vapor pressure of day t, then

the Accumulated Vapor Pressure until day t, denoted by AVP(t), is defined as:

AVP(t) :=
t

∑
i=1

AVP(i). (1.5)

1.2.4 Day length

Day length, also known as photoperiod, is an important environmental factor that affects plant

growth and development. Plants have evolved to sense changes in day length, which helps them

coordinate important physiological processes such as flowering, leaf production, and root growth.

The effect of day length on plant growth depends on the specific plant species and its photoperiodic

response. Plants can be classified as short-day, long-day, or day-neutral based on their response to

changes in day length. Short-day plants require a certain amount of darkness each day to trigger

flowering (typically less than 12 hours of light per day). Long-day plants require more than 12 hours

(typically 14 to 16 hours) of light per day to flower. Day-neutral plants do not require a specific day

length to initiate flowering. They will flower regardless of day length as long as they have reached a

certain level of maturity.
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For corn, experts debate whether it should be classified as a long-day, short-day, or day-neutral

plant (Karl, 2000). Some specific corn varieties may be classified as long-day while others as short-

day (or day-neutral) and growing conditions do affect this classification (Chen et al., 2015).

During the early vegetative stage, corn plants undergo rapid leaf and stem growth, and longer

day lengths can help stimulate this growth (Chang, 1981). However, if the day length is too long,

it can cause excessive vegetative growth and delay reproductive development, ultimately reducing

yield potential. As corn plants enter the reproductive stage, day length becomes even more critical.

This is because corn plants require a specific amount of daylight hours to initiate the reproductive

process, which involves the formation of tassels and ears. In particular, if the day length is too short,

it can delay or inhibit the formation of tassels and ears, resulting in reduced yield potential. On the

other hand, if the day length is too long, it can cause tassels and ears to form prematurely, leading to

poor pollination and reduced yields (Hunter et al., 1974; Birch et al., 1998). In addition to affecting

the timing of reproductive development, day length can also affect the number of leaves and the size

of the ear. Studies have shown that corn plants grown under longer day lengths tend to produce

more leaves and larger ears, while plants grown under shorter day lengths tend to produce fewer

leaves and smaller ears (Warrington and Kanemasu, 1983).

Definition 1.4 (Accumulated Day Length). If DL(t) is the day length of day t, then the Accumulated

Day Length until day t, denoted by AVP(t), is defined as:

ADL(t) :=
t

∑
i=1

DL(i). (1.6)

1.3 Non-Environmental factors

1.3.1 Normalized Difference Vegetation Index

Scientists have been using satellite RS to monitor fluctuation in vegetation at the Earth’s surface

since the 1960s. Since then, various indices that quantify how healthy a plant or arable land is using

data from satellite images have been introduced. These indices are called Vegetation Indices (VIs) and

in fact, are single values calculated by transforming the observations from multiple spectral bands.

They are used to enhance the presence of green, vegetation features and thus help to distinguish

them from the other objects present in the image (Hi-Phen).

This is done by carefully measuring the wavelengths and intensity of visible and near-infrared

light reflected by the land surface back up into space. More specifically, when sunlight strikes objects,

certain wavelengths of this spectrum are absorbed and other wavelengths are reflected.
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FIGURE 1.10: Raw corn field image (left) vs its NDVI counterpart (right) (Smart AKIS)

The pigment in plant leaves, chlorophyll, strongly absorbs visible light (from 0.4 to 0.7 μm) for use

in photosynthesis. The cell structure of the leaves, on the other hand, strongly reflects near-infrared

light (from 0.7 to 1.1 μm). If there is much more reflected radiation in near-infrared wavelengths

than in visible wavelengths, then the vegetation in that pixel is likely to be dense and may contain

some type of forest. If there is very little difference in the intensity of visible and near-infrared wave-

lengths reflected, then the vegetation is probably sparse and may consist of grassland, tundra, or

desert. Nearly all satellite VIs employ this difference formula to quantify the density of plant growth

on Earth — near-infrared radiation minus visible radiation divided by near-infrared radiation plus

visible radiation (ESA). The most common one is the Normalized Difference Vegetation Index (NDVI)

which is defined as follows:

Definition 1.5 (NDVI). Let ρRED and ρNIR represent the surface reflectances averaged over ranges

of wavelengths in the visible red (0.7 − 0.9µm) and near-infrared (0.5 − 0.7µm) regions of spectrum,

respectively. Then, the Normalized Difference Vegetation Index (NDVI) is given by:

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(1.7)

As we can see from equation 1.7, NDVI takes values within the interval [−1, 1]. In view of the

foregoing discussion, we see that healthy vegetation will have large ρNIR and small ρRED values,

while the situation is reversed for the case of unhealthy vegetation (see Figure 1.11).

Although NDVI is quite interpretable by definition, its value calculation turns out to be sensitive

to several perturbing factors. The most common ones are clouds. Deep (optically thick) clouds may

be quite noticeable in satellite imagery and yield characteristic NDVI values that ease their screening.

However, thin clouds (such as the ubiquitous cirrus), or small clouds with typical linear dimensions

smaller than the diameter of the area actually sampled by the sensors, can significantly contaminate

the measurements. Similarly, cloud shadows in areas that appear clear can affect NDVI values and

lead to misinterpretations. Another influential factor is the actual composition of the atmosphere (in

particular concerning water vapor and aerosols) as it can significantly affect the measurements made
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FIGURE 1.11: Healthy (left) vs Unhealthy (right) vegetation reflectances (EOS)

in space. Hence, the latter may be misinterpreted if these effects are not properly taken into account

(as is the case when the NDVI is calculated directly based on raw measurements). Other factors that

might affect the calculation of the NDVI value include soil, anisotropic and spectral effects (NDVI).

Several solutions have been proposed in the literature to address these limitations. Most of them

belong to the pre-processing stage and help us make the most of NDVI as a predictive tool for the

crop phenological stages estimation problem. The raw NDVI data used in this thesis is taken from

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and, unlike CPR percentages, are

daily resulting in 38 × 7 = 266 days for each growing season. All the pre-processing steps applied

to this data along with a detailed description of them can be found in Ioannis Oikonomidis’ thesis

(Oikonomidis, 2020).

1.3.2 Calendar time

Since past CPR percentages are available on a weekly basis, the week on which we want to make pre-

dictions may itself be quite informative for both the prevailing factors in the area of interest and the

percentage of plants occupying each phenological stage at this time point of the growing season. For

instance, suppose we want to predict the CPR percentages for week 48, which typically corresponds

to late November/early December, that is, to the end of the growing season for corn. Therefore, what

we would expect for the CPR percentages are high values for the harvested stage and low values for

all other phenological stages.
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Chapter 2

The Machine Learning Framework

This chapter introduces the basic principles of Machine Learning and establishes a framework upon

which the algorithms and methodology used in this analysis can be presented in a comprehensive

way in the following chapters. In addition, performance evaluation measures are introduced that

allow for comparison between the various approaches to the problem at hand.

2.1 Learning from data

The problem presented in Chapter 1 belongs to the wide family of supervised learning tasks. In particu-

lar, we want to construct a model that predicts the value of one or more variables of interest when the

values of some other variables are known. In Machine Learning the variables of interest are called

target, response, or output variables, while the variables whose observations are used in order to

make a prediction for the value(s) of the output variable(s) are called input variables, predictors or

features.

2.1.1 Terminology

To make it more formal, suppose that we have S output and p input variables. Each one of the input

variables is denoted by Xk, their observed values by xk, and their domains by Xk (for k = 1, 2, . . . , p).

Together, the input variables constitute a p - dimensional variable X = (X1, X2, . . . , Xp)′ taking values

x = (x1, x2, . . . , xp)′, also known as input vectors, from the input space X = X1 × X2 × · · · × Xp.

Accordingly, each target variable is denoted by Ys, the corresponding observed values by ys, and their

domains by Ys (for s = 1, 2, . . . S). The S - dimensional output variable Y = (Y1, Y2, . . . YS)
′ formed

by them takes values denoted by y = (y1, y2, . . . , yS)
′ from the output space Y = Y1 ×Y2 × · · · × YS.

The input values x along with their corresponding output values y form vectors (x, y) which are

usually referred to as samples, instances or cases. We assume that both the input and output spaces

contain all possible values for the input and output variables respectively.
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A basic distinction concerns the type of variables used in the analysis, which are two, namely

numerical and categorical. These two types of variables are defined as follows:

Definition 2.1 (Numerical variable). A variable Xk is ordered if Xk is a totally ordered set. Especially,

if Xk = R, then Xk is called numerical.

Definition 2.2 (Categorical variable). A variable Xk is categorical if Xk is a finite set of values, without

any natural order.

In a supervised learning task, we summarize the past observations in our possession in a data set,

called learning set. It consists of a number of observed input vectors along with their corresponding

output vector. A more formal definition is the following:

Definition 2.3. A learning set L is a set of n pairs of input and output vectors (x1, y1) (x2, y2),

. . . (xn, yn), where xi ∈ X and yi ∈ Y .

For the sake of brevity, we may also denote the learning set by

L = (X, Y), (2.1)

where X is a n × p matrix and Y is a n × S matrix.

Each row of these matrices refers to one of the n observed vectors and each column to one of the

input or output variables. For S = 1, Y becomes a vector which we may denote by y.

Under this formulation, the supervised learning task can be restated as an attempt to use a learn-

ing set L to construct a function ϕ : X → Y whose predictions ϕ(x), also denoted by Ŷ, are as good

as possible. In section 2.2 we quantify what "good" means by introducing performance evaluation

criteria.

Most often, ϕ is built according to an algorithm A, which describes the construction details of ϕ.

A may be quite simple producing functions ϕ in a trivial manner or more complex involving many

steps and calculations. Chapters 3 and 4 present the implementation details of the decision tree and

random forest algorithms respectively.

We now distinguish between two types of supervised learning tasks according to the type of

output variables. In particular, when each coordinate of the S - dimensional variable Y is categor-

ical, then the supervised learning task is a multi-output or multivariate classification problem, when

it consists entirely of numerical variables we have a multi-output or multivariate regression problem

and when both numerical and categorical constitute Y, we have a mixed multi-output or multivariate

problem. The corresponding models are defined as follows:
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Definition 2.4. A classifier or classification rule is a function ϕ : X → Y , where Y = Y1 × Y2 ×

· · · × YS and each Ys is a finite set of labels, denoted by {c1, c2, . . . cJs}.

Definition 2.5. A regressor is a function ϕ : X → Y , where Y = RS.

As discussed in chapter 5, the problem presented in chapter 1 constitutes a regression problem,

thus, we will not get into detail about the classification task in the rest of this thesis.

2.1.2 Repeated measurement data

In real-world applications the general form of a learning set presented in 2.1 may receive more par-

ticular forms. One such example is that of repeated measurement data. Repeated measurement data

typically occur in studies in which the response variables are measured at multiple time points.

More formally, assume that there exist N subjects and for each of them S output and p input

variables are measured over ni time points tni (for i = 1, 2, . . . , N). This results in a total of n =

∑N
i=1 ni observations. The general form of a repeated measurement learning set is summarized in the

following table. Here each row of the learning set is of the form zij = (tij, xij, yij)
′ for i = 1, 2, . . . , N

Subject Time Predictors Responses
1 t11 x111 · · · x11p y111 · · · y11S
1 t12 x121 · · · x12p y121 · · · y12S

· · · . . . · · . . . ·
1 t1n1 x1n11 · · · x1n1 p y1n11 · · · y1n1S
...

...
...

...
...

...
...

N tN1 xN11 · · · xN1p yN11 · · · yN1S
N tN2 xN21 · · · xN2p yN21 · · · yN2S

· · · . . . · · . . . ·
N tNnN xNnN1 · · · xNnN p yNnN1 · · · yNnNS

TABLE 2.1: General structure of repeated measure data

and j = 1, 2, . . . , ni. Therefore, a repeated measurement learning set L may be summarized in the

following form:

L =
{

zij|zij = (tij, xij, yij)
′, i = 1, 2, . . . , N, j = 1, 2, . . . , ni

}
. (2.2)

Vectors xij, yij refer to the observed input and output vectors respectively for the i-th subject at the

j-th observation time tij.

Remark 2.1. For the sake of clarity regarding the introduced notation, we note that:

– When dealing with a repeated measurement learning set L, we will be referring to each row

of L using subscripts i, j (for i = 1, 2, . . . , N and j = 1, 2, . . . , ni), to emphasize that each row is

subject- and time-dependent.
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– On the contrary, when we make no assumptions about the form of L (i.e. when L is of the

general form 2.1), we may denote each row of it by using subscript i (for i = 1, 2, . . . , n).

Note that a predictor may be constant or time-varying within the observation time interval in the

context of repeated measurement data. In the latter case, the predictor may require special treatment

in order to adequately model its behavior. What is more, observations in a repeated measurement

learning set may be regularly or irregularly distributed within time. For instance, a researcher may

track health outcomes of individuals with a chronic disease at the time of their initial diagnosis, and

thereafter at irregular intervals based on when relapses occur or according to a fixed schedule (e.g.

every month’s first).

Analyzing repeated measurement data is not an easy task. Repeated measurements from the

same subject are likely to be correlated, while inter-subject variability may induce clustering effects

to the problem. A proper statistical analysis should take into account both inter-subject variability

and inter-subject correlation. For a comprehensive study on statistical methods for repeated mea-

surement data see Davis (2002).

2.2 Performance evaluation

In this section, we specify what creating a model ϕL with accurate predictions means in the context

of machine learning. In particular, we define the generalization error and we describe methods to

estimate it.

2.2.1 Generalization Error

From a statistical perspective, X = (X1, X2, . . . , Xp)′ and Y = (Y1, Y2, . . . , YS)
′ are random vectors tak-

ing their values (x, y) from X × Y according to a joint probability distribution P(X, Y). Recall now

that our goal in a supervised learning task is to use a learning set L to construct a model ϕL which

accurately predicts the output value for a specific input vector x. In fact, what we really want for the

constructed model ϕL is not to make the most accurate predictions over the given learning set L. In

such a scenario, our model may capture the irrelevant information present in L, leading to a phe-

nomenon called overfitting. Rather, what we want is our model to be accurate over all possible data.

In other words, we seek a model that generalizes well, that is a model which has small generalization

error, which is defined as follows:
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Definition 2.6 (Generalization Error, Geurts (2002)). Let ϕL be a model built using a learning set L.

Then, the generalization error or expected prediction error of ϕL is defined as

Err(ϕL) = EX,Y [L (Y, ϕL (X))] , (2.3)

where L is a loss function measuring the discrepancy between its two arguments.

We note that for regression problems, the most common loss function is the squared loss.

Definition 2.7 (Squared Loss). Let ϕL(X) be the prediction of a regressor ϕL built using a learning

set L on an input variable X and Y a numerical output variable. The squared loss function of ϕL(X)

with respect to Y is defined as:

L (Y, ϕL (X)) = (Y − ϕL (X))′ (Y − ϕL (X)) , (2.4)

which for the univariate case (S = 1) simplifies to L (Y, ϕL (X)) = (Y − ϕL (X))2.

Note that squared loss function attains high values when the difference between the two arguments

is large and small when the predicted value is close to the true one.

From equation 2.3 we see that in order to calculate the generalization error we need to know the

joint probability distribution P(X, Y). In practice, though, this is rarely the case. Actually, we cannot

even estimate the Err(ϕL) empirically, since in most cases we are not able to draw additional data.

A similar, yet easier to be estimated in practical settings (Hastie et al., 2009b), quantity is the

expected generalization error defined as follows:

Definition 2.8. The expected generalization error, for a model ϕL built using a learning set L is

defined as:

EGE (ϕL) := EL [Err (ϕL)] . (2.5)

Note that equation 2.5 averages over everything which is random, including the randomness in

the learning set L. As a result, this quantity measures the performance of the model ϕL over all

possible learning sets L. Section 2.2.2 describes methods for estimating the Generalization Error.

2.2.2 Estimating the Generalization Error

In this section, we discuss different ways to estimate the Generalization Error for a given model ϕL.

We first give the following definition:
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Definition 2.9 (Average Prediction Error). Let ϕL be a model built using a learning set L. The average

prediction error of ϕL over a learning set L′ (which may be different from the learning set L) is

denoted by Ē (ϕL,L′) and defined as:

Ē
(
ϕL,L′) = 1

n′ ∑
(x′i ,y

′
i)∈L′

L
(
y′

i, ϕL
(
x′i
))

, (2.6)

where n′ is the size of the learning set L′.

A related quantity often used in univariate regression problems is the Root Mean Square Error or

Root Mean Square Prediction Error (RMSPE) which is given by the following definition:

Definition 2.10 (RMSPE). Let ϕL be a model built using a learning set L. The root mean square

prediction error of ϕL over a learning set L′, denoted by RMSPE (ϕL,L′), is the square root of the

corresponding average prediction error:

RMSPE
(
ϕL,L′) = √Ē (ϕL,L′), (2.7)

where for the calculation of Ē (ϕL,L′) the squared loss function is used.

A simple, yet poor, estimate of the generalization error is the resubstitution estimate or training

sample estimate which consists in evaluating the performance of the model ϕL on the same data used

to be built and is defined as:

Definition 2.11. Let ϕL be a model built using a learning set L. The resubstitution estimate or

training sample estimate, denoted by Êrr
train

(ϕL), is given by the following equation:

Êrr
train

(ϕL) = Ē (ϕL,L) (2.8)

Using learning set L for both learning ϕL and estimating Err(ϕL), as equation 2.8 proposes, is un-

desirable since most machine learning algorithms during the learning process seek the minimization

of Êrr
train

(ϕL). As a result, the latter quantity underestimates the generalization error and this fact

stresses the need to find a more reliable method to estimate Err(ϕL). In this direction, we give the

following definition:

Definition 2.12. Let {Ltrain,Ltest} be a partition of a given learning set L 1 and ϕL be a model. The

set Ltrain is referred to as the training set, used to learn the model ϕL and the set Ltest is referred to

1Non-empty disjoint sets covering L
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as the test set, used to estimate the generalization error of ϕL. The test sample estimate or hold-

out estimate of the generalization error Err(ϕL), denoted by Êrr
test

(ϕL), is given as the average

prediction error of the model ϕLtrain , built on Ltrain, over the set Ltest:

Êrr
test

(ϕL) = Ē (ϕLtrain ,Ltest) . (2.9)

In practice, the size of Ltrain is taken to be approximately the 70% of the size of the original learning

set L and the size of Ltest the remaining 30%. Furthermore, we usually split L at random to guarantee

that the samples in Ltrain are independent of those in Ltest (Joseph, 2022).

Contrary to the resubstitution estimate, the test sample estimate uses different learning sets for

the construction and the performance evaluation of ϕL. Yet, it also has some drawbacks. First and

foremost, using only a percentage of the original data set L reduces the effective sample size used to

learn the model ϕLtrain . This results in a high variance among the test sample estimates and, thus, the

true generalization error of the model might not be approximated well, especially when L is small.

What is more, when we are interested in estimating the expected generalization error, this strategy

might not be appropriate as it does not take into account the variability of the different training sets.

When the size of the original learning set L is small, we usually prefer the K-fold cross-validation

estimate, which is defined as follows:

Definition 2.13. Let L be a learning set, {L1,L2, . . . ,LK} a partition of L and ϕL a model built using

L. The K-fold cross validation estimate of the generalization error Err(ϕL), denoted by Êrr
CV

(ϕL),

is defined as the average prediction error over the folds Lk of the models ϕL\Lk
learned from the

remaining data:

Êrr
CV

(ϕL) =
1
K

K

∑
k=1

Ē(ϕL\Lk
,Lk). (2.10)

The appealing feature of the K-fold cross-validation estimate is that the entire learning set L is

used for estimating Err(ϕL). In particular, contrary to setting aside a relatively large portion of the

original data set as test data, each model ϕL\Lk
is now built using almost the entire L, resulting in

estimates that are all close to Err(ϕL). At the same time, each sample is used both for training and

testing. This, along with the final averaging step, reduce the variance introduced during the split

into training and test sets.

Another way to improve the test sample estimate is to repeatedly split the given learning set into

training and testing sets, calculate for each partition the test sample estimate and average to obtain a

single estimate (Burman, 1989). This method is known as Monte-Carlo Cross Validation (MCCV) and

is formally defined as follows:
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Definition 2.14. Let
{
Lm

train,Lm
test
}M

m=1 be M partitions of a learning set L and ϕL a model built us-

ing L. The monte-carlo cross validation estimate of the generalization error Err(ϕL), denoted by

Êrr
MC

(ϕL), is given by the following equation:

Êrr
MC

(ϕL) =
1
M

M

∑
m=1

Ē
(

ϕLm
train

,Lm
test

)
. (2.11)

Comparing the K-fold cross-validation estimate with the MCCV one, we see that the former is

less biased since, as we have already mentioned, each model ϕL\Lk
is close to ϕL. However, the

latter allows for a better exploration of the possible partitions of L. More specifically, in K-fold cross-

validation the number of partitions tested is exactly K, which, in practice, is usually taken to be 10

or 20 (Kohavi, 1995). In MCCV, though, we can test M out of the ( n
ntrain

) possible partitions, where

n, ntrain are the sizes of the learning sets L,Ltrain respectively. It is clear that the number of possible

partitions increases rapidly with n; hence, we can increase M as much as we want in order to test

our model on a considerable number of different partitions and get a less variant estimate of the

generalization error. Of course, increasing M comes with a computational cost, since a new model

must be built for each partition. Nevertheless, Zhang (1993) has shown that using M = n2 yields

results similar to those taken when testing all the ( n
ntrain

) possible partitions. We should note, though,

that even n2 may be computationally infeasible, so in many cases values from 50 to 500 are chosen

for the value of M.

We should note that in all 4 equations 2.8, 2.9, 2.10, 2.11 we can replace the average prediction

error with the RMSPE. Yet, the resulting quantities estimate
√

Err(ϕL) rather than Err(ϕL).

2.2.3 Bayes Model

As foretold, in real-world applications the underlying probability distribution P(X, Y) is in general

unknown. When this probability distribution is known, as is the case with simulated data, we can

find the best possible model with respect to the generalization error. This model is known as the

Bayes model and its generalization error as residual error.

Definition 2.15. A model ϕB is a Bayes model, if for any model ϕ built from any learning set L, we

have that Err(ϕB) ≤ Err(ϕL). Its generalization error, Err(ϕB), is called residual error.

By definition, residual error represents a lower bound for the generalization error of any model

and, as such, can serve as a reference point to see how well a model ϕL performs, that is, how close

Err(ϕL) is to Err(ϕB).

To illustrate how knowledge of P(X, Y) allows for an explicit calculation of the Bayes model,

we recall equation 2.3. In particular, by conditioning on X, we get the following expression for the
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generalization error of the Bayes model:

EX,Y [L (Y, ϕB (X))] = EX
[
EY|X [L (Y, ϕB (X))]

]
(2.12)

Minimizing the expression above is equivalent to minimizing EY|X [L (Y, ϕB (X))] point-wise, so, in

general, the Bayes model takes the following form:

ϕB(x) = arg min
y∈Y

EY|X=x [L (Y, y)] (2.13)

In a regression setting, where the squared error loss function is used, the Bayes model coincides with

the regression function of Y on X:

ϕB(x) = arg min
y∈Y

EY|X=x
[
(Y − y)′ (Y − y)

]
= EY|X=x [Y]

In other words, when the joint probability P(X, Y) is known, the best possible model is the one that

predicts the average value of Y given that X = x.

Despite its use for measuring the effectiveness of a model on simulated data, Bayes model can also

be used to assess the theoretical properties of an algorithm. In particular, when using an algorithm

A to produce models ϕL, it is desirable that the generalization errors of these models get arbitrarily

close to the lowest possible generalization error Err(ϕB), as the size of L gets large. This property,

known as consistency, is formally defined as follows (Devroye et al., 1996):

Definition 2.16 (Weakly consistent algorithm). A learning algorithm A is said to be weakly consis-

tent for a certain probability distribution P(X, Y) if

EL [Err (ϕL)] → Err(ϕB),

as the size n of the learning set L used to build ϕL using A tends to infinity.

Definition 2.17 (Strongly consistent algorithm). A learning algorithm A is said to be strongly con-

sistent for a certain probability distribution P(X, Y) if

Err (ϕL)
a.s.−→ Err(ϕB),

as the size n of the learning set L used to build ϕL using A tends to infinity.
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It is clear from the definitions above that a learning algorithm A may be consistent for some

distributions and not for others. If A is consistent for any distribution P(X, Y), then it is said to be

universally (strongly) consistent.
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Chapter 3

Decision Trees

We have already stressed the need for creating accurate models and the role that machine learning has

in meeting this need. The rapid development experienced by this field in recent decades has created

fertile ground for the rise of a wide family of algorithms, known as tree-based methods. While the

first attempts for the construction of tree-based models date back to the 1970s (Morgan and Sonquist,

1963), it took some years before decision trees receive the form we know today. Breiman et al. (1984)

in their famous book Classification and Regression Trees (CART) proposed a unified framework for the

induction of decision trees. Their work was later complemented by that of Quinlan (1986, 1993) who

introduced two successful decision tree algorithms, namely ID3 and C4.5. Since their introduction,

these algorithms have become a powerful tool in the machine learning field and several variants have

been built upon these. The reason for this success is the fact that the resulting decision trees are:

• easily understandable even by non-experts, yielding interpretable results,

• non-parametric, making no assumptions about the relation between the inputs and the outputs,

• robust to outliers, irrelevant features, and data noise,

• able to deal well with missing data, and

• capable of handling both ordered and categorical data (or even a mix of them).

Despite the aforementioned advantages, decision trees suffer from high variability, that is, even small

changes in the given learning set may result in large discrepancies in the final model. As will be

demonstrated later, this variability is the main reason why decision trees serve as the building block

of well-known ensemble methods, such as random forests (see chapter 4) and boosting (Freund and

Schapire, 1997). Hence, being aware of the constructing details of decision trees is a prerequisite to

better understanding these algorithms and making the most of their learning capabilities.
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3.1 Tree-based framework

The theoretical background (and, thus, the algorithmic details) of decision trees can be explained

geometrically. The principle idea behind decision trees is to recursively split the input space X into

subspaces to obtain a close approximation of the Bayes model. To better illustrate this idea, we need

to give the following definitions:

Definition 3.1. A graph is an ordered pair G = (V, E) comprising:

• V, a set of vertices (also referred to as nodes) and

• E ⊆ {{x, y} |x, y ∈ V and x ̸= y}, a set of edges which are unordered pairs of vertices.

Definition 3.2. A tree is a graph G = (V, E), which consists of a set of nodes V and edges E, in which

any two branches or nodes are connected by exactly one path.

Definition 3.3. A directed graph is an ordered pair G = (V, E) comprising:

• V, a set of nodes and

• E ⊆
{
(x, y) | (x, y) ∈ V2 and x ̸= y

}
, a set of edges which are ordered pairs of nodes.

Definition 3.4. Let G = (V, E) be a directed graph.

– If t1, t2 ∈ V are two nodes and there exists an edge e = (t1, t2) ∈ E, then node t1 is said to be

the parent node of t2 and t2 is said to be the child node of t1.

– If for a node t0 ∈ V there exist no parent nodes, then t0 is called root node and G is a rooted

tree.

– If a node t ∈ V has one or more children, then t is called internal

– If a node t ∈ V has no children, then t is called terminal or leaf.

Given these definitions, we can formally define decision trees as follows:

Definition 3.5. A decision tree is a model ϕ : X → Y represented by a rooted tree G = (V, E),

where every node t ∈ V representes a subspace Xt ⊆ X of the input space, with the root node t0

corresponding to X itself.

Definition 3.6. Let ϕ be a decision tree and G = (V, E) the corresponding rooted tree. Let also t ∈ V

be a node corresponding to a subset Xt of the input space X . Then, a split s of node t is a rule taken

from a set of questions (or tests) Q, which divides t into m (m ≥ 2) children tl (for l = 1, 2, . . . m).

For m = 2, split st is further referred to as binary, whilst for m > 2, st is called multiway.
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Remark 3.1. Note that given the equivalence between nodes t and subsets Xt, a split s is also a rule

partitioning Xt into m (m ≥ 2) subsets Xtl (for l = 1, 2, . . . m).

Regarding the above formulation, we can now briefly describe the decision tree algorithm for the

case where only binary splits are used. In particular, given a learning set L, we start by partitioning

the observations of the root node t0 according to a split s taken from a set of questions Q. Most

often, these questions have the form "Does x ∈ XA?", where XA ⊂ X . As a result, we get a partition

of t0 consisting of two subsets of L; one containing the observations that do belong to XA and one

containing the observations that do not. We then repeat this process for each of the resulting nodes.

That is, for each node t we divide the corresponding subspace Xt into two subspaces XtL = Xt ∩ XA

and XtR = Xt ∩ (X \ XA). This loop is halted once a stopping criterion is met and, as an output, we

get a set of terminal nodes, which corresponds to a partition of the input space X . The last step of

the construction procedure consists in assigning a prediction ŷt at each terminal node.

Algorithm 3.1. Prediction for a new instance x
1: function PREDICT(ϕ, x)

2: t = t0

3: while t is not a terminal node do

4: t = the child node t′ of t such that x ∈ Xt′

5: end while

6: return ŷt

7: end function

Once the decision tree is constructed, it is ready to be used to predict the output value of a new

instance x. To do this, we start from the root node, as Algorithm 3.1 indicates, and we propagate x

down the tree until it reaches a terminal node. We then use as a prediction for the output value of x,

the value assigned to that node during the construction of the tree.

To better understand the context described so far, we will use a toy regression problem. Figure

3.1 presents the decision tree built over the artificially produced learning set L of Table 3.1, which

consists of two numerical features X1, X2 taking values from the input space X = [0, 10] × [0, 10]

and one output variable Y taking values from Y = [20, 140]. We see that the resulting tree consists

of 5 nodes; the root node, an internal node and 3 terminal nodes. Terminal nodes are denoted by

rectangles, while the root and the internal nodes are denoted by circles. As foretold, the construction

starts from the root node, which in this case is split according to X2. The splitting rule for that node

is "Does x ∈ XA?", where XA = [0, 10]× [0, 5.75]. This results in two child nodes; t1, for which the

stopping criterion is met and t2, which is further split to give the nodes t3 and t4. The corresponding

partition produced by this tree, as well as the assigned values to each terminal node, can be shown

in Figure 3.2. Suppose, now, that we want to predict the output value for a new instance x = (6, 6)′.
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FIGURE 3.1: The binary decision tree ϕ built using the data of Table 3.1. The root fol-
lowed by x = (6, 6)′ when propagated through ϕ, is marked with red color.

Implementing Algorithm 3.1, we see that x follows the root denoted by red in Figure 3.1 ending up

in node t3 and, hence, the prediction for it is 65.

The next sections of this chapter are devoted to answering the following questions that may have

arisen so far:

• How do we choose which feature will be used to split each node?

• Once we have found that feature, how do we choose the cut-off point?

• What are the stopping criteria used to halt the construction process?

• How do we choose the value assigned to each terminal node?

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Xi1 6.0 3.0 1.0 2.5 9.5 4.2 8.0 1.5 9.0 7.0 5.0 4.6 6.5 4.0 5.4 4.5
Xi2 4.0 4.0 3.0 2.0 1.0 2.9 3.0 1.5 3.5 4.5 4.5 3.8 2.0 4.5 2.7 8.0
Yi 20 20 25 25 25 25 30 30 30 30 35 35 40 40 40 50
i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Xi1 1.5 5.0 2.5 4.3 4.0 1.5 3.5 3.0 2.0 8.5 9.0 8.8 8.3 9.5 8.0 9.6
Xi2 9.5 9.0 9.0 9.3 7.0 8.5 8.5 8.2 8.0 7.0 9.0 8.3 9.1 9.5 8.0 7.5
Yi 50 60 60 65 70 70 70 75 80 115 125 125 130 135 140 140

TABLE 3.1: The data used in the toy regression example

3.2 Induction of decision trees

Learning an ideal decision tree consists in finding a partition that best captures the true relationship

between the inputs and the outputs. Since in most cases this is unknown, decision trees are content

with finding a model that partitions the given learning set as well as possible. We should note,
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FIGURE 3.2: The partition of the input space X = [0, 10]× [0, 10] induced by the tree of
Figure 3.1. Points are plotted with respect to their output value, that is smaller points

indicate small output values.

though, that for computational and interpretability reasons small trees are preferred over large ones.

Therefore, among all trees that may explain the learning set equally best, we want our decision tree

algorithm to find the smallest one.

Unfortunately, Hyafil and Rivest (1976) have proven that the task of finding an optimal tree is

an NP-complete problem, and as such, it has no computationally efficient solution. That is why,

most popular decision tree algorithms such as CART and C4.5 seek near-optimal decision trees us-

ing heuristics. We should point out that research towards finding globally optimal trees has been

conducted as well. In particular, Bennett (1995) used an iterative linear programming algorithm to

find globally optimal classification trees , while more recent studies formulated the objective of find-

ing optimal trees as a mixed-integer programming problem which in many cases is computationally

tractable (Bertsimas and Dunn, 2017; Bertsimas et al., 2021). Nevertheless, despite their high predic-

tive performance and the rapid increase of computational power in recent years, scalability to large

datasets is still the most salient obstacle with globally optimal trees.

This thesis follows the framework of the more traditional algorithms CART, C4.5, and ID3, ac-

cording to which the heuristic used to reach near-optimal partitions consists in splitting each node in

such a way that the offspring nodes are more homogeneous or purer with respect to the outputs. To
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quantify how pure a node is we give the following definition:

Definition 3.7 (Impurity measure). Let ϕ : X → Y be a decision tree and G = (V, E) its associated

rooted tree. An impurity measure is a function i : V → R, which measures the goodness of a node

t ∈ V.

Under this definition, a pure node t is one with small values of i(t) and, correspondingly, a good

split is one that either guarantees that the overall impurity of the child nodes will be as small as possible

or, equivalently, maximizes the impurity decrease.

Definition 3.8. Let ϕ : X → Y be a decision tree, G = (V, E) its associated rooted tree, and s ∈ Q a

binary split dividing a node t into a left node tL and a right node tR. Let also pL (respectively pR) be

the proportion
ntL

nt
(respectively

ntR

nt
) of learning samples from Lt going to tL (respectively from Lt to

tR) and nt be the size of Lt. Then, the overall impurity of the offspring nodes for s is:

D(s, t) = pLi(tL) + pRi(tR). (3.1)

Accordingly, the impurity decrease of s is:

∆i(s, t) = i(t)−D(s, t). (3.2)

Remark 3.2. Given a node t, it is obvious from equations 3.1,3.2 that finding a split s∗ that minimizes

the overall impurity is equivalent to finding the split that maximizes the impurity decrease:

s∗ = arg min
s∈Q

D(s, t) = arg max
s∈Q

∆i(s, t).

It is clear that a decision tree with terminal nodes that can not be made purer leads to accurate

prediction over the learning set. It is also clear that by iteratively choosing the split that maximizes

equation 3.2 at each node, the greedy assumption of making that decision tree as small as possible is

satisfied. As we will see in section 3.5, forcing terminal nodes to be pure might lead to overfitting,

and halting the construction earlier might be a better strategy.

In Algorithm 3.2 the greedy induction of a decision tree with binary splits is formally presented.

Note, however, that this algorithm can be naturally expanded to the case of multiway splits. The rest

of this chapter explores specific parts of this algorithm in more detail.
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Algorithm 3.2. Greedy induction of a binary decision tree

1: function BUILDDECISIONTREE(L)
2: Create a decision tree ϕ with root node t0
3: Create an empty list S of open nodes (t,L)
4: Append (t0,L) to S
5: while S is not empty do
6: (t,L) = the last appended element of S
7: if the stopping criterion is met for t then
8: ŷt = some constant value
9: else

10: Find the split on Lt that maximizes impurity decrease

s∗ = arg max
s∈Q

∆i(s, t)

11: Partition Lt into LtL ∪ LtR according to s∗

12: Create the left child node tL of t
13: Create the right child node tR of t
14: Append (tR,LtR) to S
15: Append (tL,LtL) to S
16: end if
17: end while
18: return ϕ
19: end function

3.3 Assignment rules

In this section, we discuss line 8 of Algorithm 3.2. More specifically, once a node t has been declared

as terminal, we have to label it with a constant prediction ŷt. As already mentioned, ŷt will be used as

a prediction for the output value for every instance x falls in t after propagated down tree ϕ. In other

words, each node t constitutes a naive model defined locally on Xt ×Y with constant predictions ŷt.

This division of ϕ into simpler models facilitates the minimization of the generalization error since

this task is mostly reduced to the minimization of the individual simpler models. To illustrate this

point, let T ⊆ V denote the set of terminal nodes in ϕ. Then:

Err(ϕ) = EX,Y [L (Y, ϕ (X))] = ∑
t∈T

P(X ∈ Xt)EX,Y|t [L (Y, ŷt)] (3.3)

From equation 3.3 we see that minimizing the local generalization error EX,Y|t [L (Y, ŷt)] separately

for each t, results in minimization of Err(ϕ) as well.

For regression, where the squared error loss function is used, we have:

ŷ∗
t = arg min

ŷt∈Y
EX,Y|t

[
(Y − ŷt)

′ (Y − ŷt)
]
= EX,Y|t [Y] (3.4)
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Without knowledge of the theoretical probability distribution P(X, Y), solving equation 3.4 explicitly

is infeasible, and, thus, we approximate its solution using estimates of the local generalization error:

ŷt = arg min
ŷ∈Y

1
nt

∑
(x,y)∈Lt

(y − ŷt)
′(y − ŷt) =

1
nt

∑
(x,y)∈Lt

y (3.5)

We should make clear that by approximating P(X ∈ Xt) and EX,Y|t [L (Y, ŷt)] with their empiri-

cal estimates p(t) :=
nt

n
and

1
nt

∑(x,y)∈Lt
(y − ŷt)′(y − ŷt) respectively, equation 3.3 coincides with

Êrr
train

(ϕ) and, hence, equation 3.5, which is also referred to as assignment rule, minimizes the train-

ing error rather than the generalization error.

Proposition 3.1. For any non-empty split of a terminal node t ∈ T into tL and tR, resulting in a new

tree ϕ′ with set of terminal nodes T ′ where ŷtL and ŷtR are assigned with rule 3.5, it holds that:

Êrr
train

(ϕ) ≥ Êrr
train

(ϕ′) (3.6)

with equality if ŷtL = ŷtR = ŷt.

Proof. In order to prove 3.6 we will start from it and we will end up with something that necessarily

holds.

Êrr
train

(ϕ) ≥ Êrr
train

(ϕ′)

∑
t∈T

p(t)

(
1
nt

∑
(x,y)∈Lt

(y − ŷt)
′ (y − ŷt)

)
≥ ∑

t∈T ′
p(t)

(
1
nt

∑
(x,y)∈Lt

(y − ŷt)
′ (y − ŷt)

)

∑
(x,y)∈Lt

(y − ŷt)
′ (y − ŷt) ≥ ∑

(x,y)∈LtL

(y − ŷtL)
′ (y − ŷtL) + ∑

(x,y)∈LtR

(y − ŷtR)
′ (y − ŷtR)

Using that

ŷt =
1
nt

∑
(x,y)∈Lt

y, ŷtL =
1

ntL
∑

(x,y)∈LtL

y, ŷtR =
1

ntR
∑

(x,y)∈LtR

y,

the last inequality is equivalent to

��
����∑

(x,y)∈Lt

y′y − ntŷ′
tŷt ≥

��
����∑

(x,y)∈LtL

y′y − ntL ŷ′
tL

ŷtL +

��
����∑

(x,y)∈LtR

y′y − ntR ŷ′
tR

ŷtR

(3.7)

Let us now define for a node t the following vector:

st := ∑
(x,y)∈Lt

y = ntŷt
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Then, using that by definition st = stL + stR , we get the following:

s′tst

nt
≤

s′tL
stL

ntL

+
s′tR

stR

ntR

(stL + stR)
′ (stL + stR)

ntL + ntR

≤
s′tL

stL

ntL

+
s′tR

stR

ntR

With some simple calculus, we get:

ntR (ntL + ntR) s′tL
stL + ntL (ntL + ntR) s′tR

stR − ntL ntR

(
s′tL

stL + s′tR
stL + s′tL

stR + s′tR
stR

)
ntL ntR (ntL + ntR)

≥ 0

ntR (ntL + ntR) s′tL
stL + ntL (ntL + ntR) s′tR

stR − ntL ntR

(
s′tL

stL + s′tR
stL + s′tL

stR + s′tR
stR

)
≥ 0

ntL ntR s′tL
stR − n2

tR
s′tL

stL + ntL ntR s′tR
stL − n2

tL
s′tR

stR ≥ 0

(ntR stL − ntL stR)
′ (ntR stL − ntL stR) ≥ 0

The latter inequality is true since the left-hand of the last inequality is a sum of squares. Equality

holds if ntR stL = ntL stR , which is equivalent to ŷtL = ŷtR . This concludes the proof.

Proposition 3.1 indicates that growing a decision tree as much as possible is a good strategy for

minimizing its training error. However, this does not mean that the generalization error will be small

as well. In fact, minimizing the training error is more likely to lead to large generalization error

values and, thus, it is necessary to find a good compromise between a decision tree that is neither too

shallow nor too deep. In this direction, halting the constructing procedure earlier is an option and

the most common ways to achieve this are presented in section 3.5.

3.4 Splitting rules

In this section, we discuss line 10 of Algorithm 3.2. In other words, assuming that the stopping

criterion is not met for node t, we want to find the best split s∗. Notwithstanding that research has

been conducted towards decision trees with multiway splits (Biggs et al., 1991; Fulton et al., 1995;

Kim and Loh, 2001; Liu et al., 2020), binary splits are often preferred in practice. Indeed, although

using multiway splits might yield decision trees that are smaller and more interpretable than the

conventional ones built using binary splits, in many cases finding multiple cut-off points at once is

computationally intractable. For this reason, the most common decision tree algorithms focus on

binary splits and so will this thesis.

Hence, following the discussion of section 3.2, the best split s∗ for a node t is the one that maxi-

mizes equation 3.2. Let us now denote by S the set of possible splits s. It is clear that as soon as Xt

is infinitely large, then S is infinitely large as well, indicating that we have to choose the best split
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s∗ from an infinite set of values. To address this issue, we usually assume that s∗ - or at least a good

enough approximation - lives in a family Q ⊂ S of candidate splits of restricted structure.

3.4.1 Ordered variables

For a set {X1, . . . , Xp} of ordered variables, we distinguish between two different choices for Q.

Axis-parallel split

The first and most common choice contains the class of axis-parallel splits like those constructed in

the toy regression example of section 3.1 (see Figure 3.2). More formally, let us denote by Q(Xk) the

set of non-crossing axis-parallel partitions on Xk:

Q(Xk) =
{

sv
k =

{
{x|xk ≤ v} , {x|xk > v}

}
|v ∈ Xk

}
. (3.8)

Then, for a node t the best split s∗ is sought in Q, where

Q =

{
s|s ∈

p⋃
k=1

Q(Xk),LtL ̸= ∅,LtR ̸= ∅

}
.

In other words, for a node t we choose the best split s∗ by finding the best split s∗k for each variable

Xk and selecting the best among them:

s∗ = arg max
s∗k

k=1,...,p

∆i(s∗k , t) (3.9)

s∗k = arg max
s∈Q(Xk)
LtL ,LtR ̸=∅

∆i(s, t) (3.10)

Therefore, finding the best axis-parallel split simplifies finding the threshold v∗ that results in a par-

tition that maximizes the impurity decrease.

If we denote by Xk|t = {xk|(x, y) ∈ Lt} the unique values of Xk within the nodes samples in node

t, then there exist |Xk|t| − 1 possible binary partitions of Lt into two non-empty sets LtL ,LtR , where:

LtL = {(x, y)|(x, y) ∈ Lt, xk ≤ v}

LtR = {(x, y)|(x, y) ∈ Lt, xk > v} .

That is because for each v ∈ Xk|t we get a different partition of Lt, except for the largest value of Xk|t,

which leads to an invalid partition, since in that case, it holds that LtR = ∅.
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We should note that if vm, vm+1 are two immediately consecutive values in Xk|t, then the partition

of Lt produced by each value v ∈ [vm, vm+1) is the same in the sense that both LtL and LtR remain

unchanged in that interval. Thus, all these values attain the same impurity decrease ∆i. However, in

terms of generalization error, all these thresholds are different, since they do not produce the same

partition of Xt.

In order to find which partition maximizes the impurity decrease among the |Xk|t| − 1 possible

ones, we arbitrarily choose a representative threshold v′m for each interval [vm, vm+1). Two commonly

used choices are the following:

• Breiman (2001) in the original random forest algorithm suggests choosing as the interval rep-

resentative the mid-cut-point v′m = vm+vm+1
2 (see also Figure 3.2). This choice is implemented in

the randomForest package (Liaw et al., 2002) in R (R Core Team, 2023).

• An alternate consists in using as a representative the first value of the interval, that is, v′m = vm.

This choice is implemented in the randomForestSRC package (Ishwaran et al., 2021b).

Regardless of which method is followed, the |Xk|t| − 1 representatives are then compared in terms of

impurity decrease, and the best one is chosen.

Oblique splits

An alternate to axis-parallel splits is the oblique or hyperplane splits. As their name indicates, contrary

to axis-parallel splits, this approach results in partitions of the input space consisting of hyperplanes

rather than hyperrectangles. To illustrate the latter, let us recall the regression problem of section

3.2. Figure 3.3 depicts the partition induced by an oblique tree. Mathematically, a hyperplane can be

expressed by equations of the form: ∑
p
j=1 wjXj = v. Therefore, the set of oblique splits from which

the best split s∗ is chosen is the following:

Q =
{

sv,w =
{{

x|w′x ≤ v
}

,
{

x|w′x > v
}}

|w ∈ Rp, v ∈ R
}

. (3.11)

Thus, finding s∗ consists in specifying the weight vector w and constant v. Unfortunately, in most

cases, the size of Q is extremely large and, hence, highly prohibitive to exhaustively explore. For this

reason, existing approaches focus on finding a near-optimal oblique split rather than the best one.

The first one, called CART-LC, was introduced by Breiman et al. (1984) who suggested a deter-

ministic hill-climbing approach that sequentially updates the coefficients of the split until a local op-

timum is reached. To escape local optima, Heath et al. (1993) propose a simulated annealing heuristic

that perturbs the hyperplane parameters one at a time. In their algorithm called OC1, Murthy et al.
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FIGURE 3.3: A partition derived from oblique splits for the data of Table 3.1.

(Murthy et al., 1993, 1994; Murthy, 1996) improve Breiman’s hill climbing approach by introducing

randomization techniques with the goal of avoiding premature convergence.

Other strategies for finding oblique splits are based on meta-heuristics such as simulated an-

nealing, genetic algorithms or evolutionary algorithms (Cantu-Paz and Kamath, 2003) or algorithms

based on logistic regression (Mola and Siciliano, 2002; Truong, 2009), linear discriminants (Loh and

Shih, 1997; Li et al., 2003; Siciliano et al., 2008; López-Chau et al., 2013) or Householder transforma-

tions (Wickramarachchi et al., 2016). Recently, also mathematical optimization approaches have been

proposed for inducing oblique decision trees that neglect the recursive partitioning scheme (Bertsi-

mas and Dunn, 2017; Blanquero et al., 2020). More recently, Bollwein and Westphal (2022) proposed

a cross-entropy optimization method for finding oblique splits.

We should note that although the idea of oblique splits is applicable in both classification and

regression tasks, little research has been conducted for the latter case.

3.4.2 Categorical variables

For a set {X1, . . . , Xp} of categorical variables where each variable Xj takes values from Xk = {bk1 , . . . bkL},

then the set Q(Xk) of binary splits on Xk is the set of all binary non-empty partitions of Xk:

Q(Xk) =
{{

{x|xk ∈ B} ,
{

x|xk ∈ B
}}

|B ⊂ {bk1 , . . . , bkL}
}

,
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where B = {bk1 , . . . , bkL} \ B is the complementary set of B.

We see that if a categorical variable has L classes, then the number of possible partitions is 2L−1 − 1

which even for small values of L may be infeasible to exhaustively explore. Fortunately, Breiman

et al. (1984) showed that for a class of impurity measures the search of the optimal split for any

categorical variable can be reduced to L − 1 possible partitions. In particular, categorical predictors

are first converted into ordered variables, which are then used to form axis-parallel or oblique splits

as described in section 3.4.1.

Axis-parallel splits

When we use axis-parallel splits to build a regression tree, categorical features are most often con-

verted into ordered ones by replacing values bl with the mean output value at bl , say b̃l :

b̃l = ∑
(x,y)∈Lt

xk=bl

y (3.12)

Once input variables are converted, we use equation 3.10 to find the best threshold b̃∗ which, under

the equivalence between b̃l and bl , corresponds to a particular partition of their input space.

To make things clearer, let us consider the following example. Suppose that Xj is a categorical

variable with input space Xk = {b1, b2, b3, b4, b5}. Furthermore, assume that for the corresponding

ordered values of Xk holds that:

b̃5 ≤ b̃2 ≤ b̃4 ≤ b̃3 ≤ b̃1

and that b̃4 = b̃∗. Then, if Xj is eventually the chosen variable to be used to split node t, the resulting

child nodes are the following:

LtL = {(x, y)|(x, y) ∈ Lt, xk ∈ B}

LtR =
{
(x, y)|(x, y) ∈ Lt, xk ∈ B

}
,

where B = {b5, b2, b4}.

Oblique splits

For decision trees built using hyperplane splits, we note that incorporating categorical features in

oblique splits has not been explored to any great extent. Nevertheless, we point out that the QUEST

algorithm presented by Loh and Shih (1997) is capable of finding oblique splits using both ordered

and categorical features. This algorithm was also used later by Wickramarachchi et al. (2016) and
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consists in using Pearson’s chi-square test to calculate the association between the target and any of

the categorical features.

To conclude, in order to find the best split on a set including both ordered and categorical vari-

ables, we first convert the latter into ordered ones and we proceed as in section 3.4.1 for the new set

of ordered variables.

3.4.3 Regression impurity measures

In this subsection we present different impurity measures to calculate the impurity decrease of a

candidate binary split (see equation 3.2).

Univariate regression

For univariate regression problems the local resubstitution error is used as an evaluation criterion:

Definition 3.9. In univariate regression, the impurity function iR(t) based on the local resubstitution

estimate defined on the squared error loss is:

iR(t) =
1
nt

nt

∑
i=1

(yi − ŷt)
2 . (3.13)

Considering the discussion of section 3.3 we see that equation 3.13 corresponds to the within node

variance of node t, since ŷt is replaced by ȳt. Accordingly, s∗ is the split that maximizes the reduction

of variance ∆i(s, t) in the child nodes.

Multivariate regression

In some cases, we may want to use an input x to simultaneously predict more than one output

variables. In order to construct a decision tree that accurately predicts all output variables, we need

to introduce an impurity criterion that somehow takes into account the total variability of the node

with respect to all output variables

In this direction, a natural extension of criterion 3.13 is to use the sum of the within node variances

for each of the output variables (De’Ath, 2002).

Definition 3.10. In multivariate regression, the impurity function iMR(t) based on the total variance

of node t is:

iMR(t) =
1
nt

S

∑
s=1

nt

∑
i=1

(yis − ŷt,s)
2 , (3.14)

where ŷt,s is the assignment rule used to predict the value of the s-th response coordinate in node t.
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Again, we use the assignment rule 3.5, that is, ŷt,s =
1
nt

∑nt
i=1 yis, s = 1, . . . , S and, thus, the right hand

of equation 3.14 corresponds to the sum of the within node variances.

A more sophisticated approach is the one that uses the Mahalanobis distance to exploit any correla-

tion between the output variables. This idea was first used by Segal (1992) for the case of longitudinal

data and was later expanded to construct multivariate random forests (Segal and Xiao, 2011). We start

by defining Mahalanobis distance (Mahalanobis, 2018):

Definition 3.11 (Mahalanobis distance). Let Y be a S - dimensional variable with mean µY and co-

variance ΣY. Then, the (squared) Mahalanobis distance of Y to its mean is defined as follows:

DM(Y) = (Y − µY)
′Σ−1

Y (Y − µY). (3.15)

FIGURE 3.4: Illustration of Mahalanobis distance

Contrary to the commonly used Euclidean distance, the use of ΣY in equation 3.15, guarantees

that the correlation between the coordinates of Y is also taken into account. To better illustrate this,

Figure 3.4 depicts a simulated data set generated from a bivariate normal distribution. According

to the Euclidean distance, the green and red points are equidistant from the black point in the mid-

dle. This is not the case, though, when Mahalanobis distance is used. In particular, the red points
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have larger Mahalanobis distance values than the green ones, since they do not coincide with the

covariance structure of the rest points.

Remark 3.3. Given a learning set Lt, the Mahalanobis distance of a particular observation y is cal-

culated by replacing the theoretical mean µ and covariance matrix Σ with their sample estimates.

Yet, in practice when the size nt of Lt becomes small, as is usually the case when growing a decision

tree, Σ may be singular. A way to overcome this obstacle is to replace Σ−1 with its generalized inverse

(Penrose, 1955), which always exists. This is the approach followed by Ishwaran et al. (2021d) in the

randomForestSRC package. The generalized inverse, also known as the Moore-Penrose inverse, is

defined as follows:

Definition 3.12. For any matrix A ∈ Rn×p the generalized inverse of A is the unique matrix A+ ∈

Rp×n satisfying:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)
T
= AA+.

Note that if A is non-singular, then A+ = A−1.

The following theorem shows that the derivation of the Moore-Penrose inverse is based on the

singular value decomposition of A which is defined as follows:

Definition 3.13 (Singular value decomposition). Let A ∈ Rn×p matrix with rank r ≤ min(n, p) where

n ≥ p. The singular value decomposition of A is

A = UDV′,

where U ∈ Rn×p is an orthonormal matrix (U′U = Ip), V ∈ Rp×p is an orthogonal matrix (V′V =

VV′ = Ip) and D ∈ Rp×p is a diagonal matrix containing the singular values {d1, . . . , dp}. Without

loss of generality, we assume that these are ordered such that

d1 ≥ d2 ≥ · · · ≥ dr > 0, dr+1 = · · · = dp = 0.

Notice that dj > 0 for j = 1, . . . , p if A has full column rank (r = p).

Theorem 3.1. The generalized inverse for a matrix A ∈ Rn×p where n ≥ p with singular value

decomposition A = UDVT and rank(A) = r is:

A+ = VD+UT,
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where D+ is the generalized inverse of D defined as the p × p diagonal matrix with entries 1/dk for

k = 1, . . . , r and 0 for k = r + 1, . . . , p .

If n < p then transpose A so that the above result applies and transpose the resulting inverse, that is

A+ =
((

AT)+)T
.

In practice, we are interested in symmetric square matrices of the form Q = L′L. The generalized

inverse for Σ is then easily obtained by Theorem 3.1 by setting A = Q. Since the number of rows

equals the number of columns in Q, the first part of the theorem applies in this case.

Definition 3.14 (Mahalanobis splitting rule). Let t denote a node which we want to split, L∗
t the

corresponding nt × S matrix containing the centered outcome values1, that is:

L∗
t =


(y1 − ȳt)

T

...

(ynt − ȳt)
T


and s a binary split dividing t into two child nodes tL and tR. Then, the sample covariance matrix for

Lt is Q∗
t /nt, where Q∗

t = (L∗
t )

′ L∗
t , and the overall impurity of tL and tR is:

D(s, t) =
ntL

nt

ntL

∑
i=1

(yi − ŷtL)
′ (Q∗

t )
+ (yi − ŷtL) (3.16)

+
ntR

nt

ntR

∑
i=1

(yi − ŷtR)
′ (Q∗

t )
+ (yi − ŷtR) , (3.17)

where, once again, the assignment rule 3.5 is used for ŷtL , ŷtR .

We should note that the incorporation of the correlations among the response variables in the splitting

procedure comes with a toll, since the calculation of the generalized inverse as described above,

significantly increases computational costs.

3.5 Stopping criteria

In this section, we discuss line 7 of Algorithm 3.2. As we have shown through proposition 3.6,

splitting a node in any way reduces the training error of the tree it belongs to. However, growing

deep trees with accurate predictions over the given learning set does not necessarily mean that the

prediction over a new instance will be accurate too. To prevent this phenomenon, there have been

proposed various strategies in the literature. One strategy, known as pre-pruning, consists in using

1We use * notation to emphasize that the matrix is centered
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stopping criteria to halt the recursive partition early and limit the size of the tree, while an alternate

referred to as post-pruning, is to first fully develop the tree and then prune the branches that degrade

the generalization error. For a comprehensive study on pre-and post-pruning see also Shamrat et al.

(2021).

While post-pruning, in general, yields better results than pre-pruning in the context of single de-

cision trees, when building ensembles (see chapter 4) pre-pruning is most of the time adequate to

produce accurate predictions. Therefore, we will focus our discussion on pre-pruning and, in par-

ticular, the stopping criteria used to stop the tree induction early. We distinguish between stopping

criteria that are data driven and, thus, inherent to the iterative partition procedure, and stopping cri-

teria that are user defined and induced to prevent overfitting:

• Data driven: A node t is inevitably set as terminal when Lt can no longer be split, which

happens in the following cases:

– When t is pure, that is, if y = y′ for all (x, y), (x′, y′) ∈ Lt.

– When each input variable Xk is locally constant in Lt, that is, if xk = x′k for all (x, y), (x′, y′) ∈

Lt.

• User defined: To avoid overfitting, we usually force node t be terminal in the following cases:

– When t contains less than Nmin samples.

– When the depth of t, dt, is greater or equal to a threashold dmax.

– When the best split s∗ results in a total impurity decrease p(t)∆(s∗, t) less than a threashold

β.

– When there is no split of t such that both tL and tR count at least Nlea f samples.

In practice, the values Nmin, dmax, β, Nlea f are hyper-parameters that have to be tuned in order to build

a tree that adequately captures the underlying structure of the data and generalizes fairly well.
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Chapter 4

Random Forests

4.1 Ensemble learning

This section introduces the ensemble learning framework upon which the Random Forest algorithm

presented in section 4.3 is built. Ensemble methods is a machine learning technique that combines

several base models to produce one optimal predictive model. More formally, suppose that we have a

learning set L and an algorithm A according to which we want to construct a model ϕ. Most machine

learning algorithms contain a hyper-parameter θ controlling the execution of A. If A includes some

stochastic steps, then we further assume that θ contains a parameter, usually referred to as random

seed, determining the execution of these steps. As such, distinct random seeds may result in models

that are more or less different from one another. From now on and without loss of generality, we

assume that θ only controls the randomness of A. Hence, when we refer to θ, we will actually be

referring to the random seed parameter. The role that random seed has in the construction of a

model ϕ will be made clearer in section 4.3.1.

Definition 4.1. Let A be an algorithm including a stochastic procedure, θ be a random seed con-

trolling the execution of A, and L be a learning set. Then, the model ϕL,θ constructed using L and

following the implementation details of A is called randomized model.

Now, let us assume that we have a set of M randomized models {ϕL,θm}M
m=1 each built from a

different random seed θm but all learned on the same data L. From a statistical perspective, θm, m =

1, . . . , M are thought to be iid random variables. Ensemble methods combine the predictions of these

models into a new one, ψL,θ1,...,θM with the intention of reducing the expected generalization error of

the individual models. In general, the way the predictions of the base models are aggregated is task

and case-dependent.

A generic formulation for the prediction of the ensemble for a new instance x∗ is the following:

ψL,θ1,...,θM(x
∗) =

∑M
m=1 wm(x∗)ϕL,θm(x

∗)

∑M
m=1 wm(x∗)

, (4.1)
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where wm(x) corresponds to the weight assigned to the m-th randomized model for the prediction

of x. For regression the most common choice for the weights is setting equal weights to each model,

that is, wm(x) = 1, m = 1, . . . , M. In this case, equation 4.1 simplifies to:

ψL,θ1,...,θM(x) =
1
M

M

∑
m=1

ϕL,θm(x). (4.2)

An alternate choice for wm(x) is presented in section 4.4.

The idea of combining models to improve accuracy has been explored since the 1970s when Tukey

et al. (1977) presented an ensemble of two linear regression models. Two years later, Dasarathy

and Sheela (1979) suggested the composition of a classifier system using two or more classifiers of

different categories. Hansen and Salamon (1990) showed for the first time that the generalization

error of neural networks could be reduced when invoking ensembles of neural networks. Around

the same time, Schapire (1990) described how combining weak models may outperform one strong

model. The next section will provide a more formal explanation of this result.

4.2 Decomposition of generalization error

In this section, we show why combining several weak models may significantly improve predictive

accuracy. Let us first recall the expected prediction error of a model ϕL with respect to a loss function

L, that is equation 2.3:

Err(ϕL) = EX,Y [L (Y, ϕL (X))] .

Accordingly, the expected prediction error of ϕL at a given point X = x is:

Err (ϕL (x)) = EY|X=x [L (Y, ϕL (x))] .

For the rest of this section and for the sake of simplicity, we restrict ourselves to the case of the

univariate regression where we assign equal weights to each tree as in equation 4.2.

4.2.1 Bias-variance decomposition of a model

We start by presenting the bias-variance decomposition for an arbitrary model ϕL.

Theorem 4.1 (Geman et al. (1992)). For the squared error loss, the bias-variance decomposition of the

expected generalization error EL [Err (ϕL (x))] at X = x is

EL [Err (ϕL (x))] = noise(x) + bias2(x) + var(x), (4.3)
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where

noise(x) = Err (ϕB (x))

bias2(x) = (ϕB (x)− EL [ϕL (x)])2

var(x) = EL
[
(ϕL (x)− EL [ϕL (x)])2

]
Proof. Let us first show how the expected prediction error of a model ϕL at a given point X = x can

be rewritten in terms of the Bayes error:

Err (ϕL (x)) = EY|X=x

[
(Y − ϕL (x))2

]
= EY|X=x

[
(Y − ϕB(x) + ϕB(x) + ϕL (x))2

]
= EY|X=x

[
(Y − ϕB(x))

2
]
+ EY|X=x

[
(ϕB(x)− ϕL(x))

2
]

+ EY|X=x [2 (Y − ϕB(x)) (ϕB(x)− ϕL(x))]

= EY|X=x

[
(Y − ϕB(x))

2
]
+ EY|X=x

[
(ϕB(x)− ϕL(x))

2
]

= Err (ϕB (x)) + (ϕB(x)− ϕL(x))
2 , (4.4)

since EY|X=x [Y − ϕB(x)] = EY|X=x [Y]− ϕB(x) = 0 by definition of the Bayes model. Notice that the

first term of equation 4.4 corresponds to the Bayes error at X = x, while the second term represents

the discrepancy of ϕL from the Bayes model.

Now assuming that the leaning set L is itself a random variable, we get from equation 4.4 that:

EL [Err (ϕL(x))] = Err (ϕB (x))︸ ︷︷ ︸
noise(x)

+EL
[
(ϕB(x)− ϕL(x))

2
]

(4.5)

The second term can be decomposed as follows:

EL
[
(ϕB(x)− ϕL(x))

2
]
= EL

[(
ϕB(x)− EL [ϕL (x)] + EL [ϕL (x)]− ϕL(x)

)2
]

= EL
[(

ϕB(x)− EL [ϕL (x)]
)2
]
+ EL

[(
EL [ϕL (x)]− ϕL(x)

)2
]

+ EL
[
2
(
ϕB(x)− EL [ϕL (x)]

)(
EL [ϕL (x)]− ϕL(x)

)]
= EL

[(
ϕB(x)− EL [ϕL (x)]

)2
]
+ EL

[(
EL [ϕL (x)]− ϕL(x)

)2
]

=
(
ϕB(x)− EL [ϕL (x)]

)2︸ ︷︷ ︸
bias2(x)

+EL
[(

EL [ϕL (x)]− ϕL(x)
)2
]

︸ ︷︷ ︸
var(x)

,

since EL [EL [ϕL (x)]− ϕL(x)] = EL [ϕL (x)]− EL [ϕL (x)] = 0.
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Remark 4.1. Let us now give an interpretation for each term in theorem 4.1.

• noise(x): the residual error. This term is independent of both the learning algorithm and the

learning set and provides for any model a theoretical lower bound on its generalization error.

• bias2(x): a measure of discrepancy between the average prediction and the prediction of the

Bayes model.

• var(x): a measure of the variability of the predictions at X = x due to the variability of the

models built using different learning sets.

4.2.2 Bias-variance decomposition of an ensemble

From theorem 4.1 we see that the generalization error of a model decomposes into three terms. There-

fore, reducing one of them while keeping the others stable, will result in an improvement in terms

of predictive accuracy. That is exactly what ensemble methods do. In particular, as shown below,

they combine several randomized models to reduce the variance term in a way that the bias term

remains (almost) the same. The noise term remains the same as well, since it is independent of both

the learning set and the learning algorithm.

For the sake of simplicity, we denote by µL,θm(x) the mean prediction at X = x of an individual

randomized model ϕL,θm and by σ2
L,θm

(x) its respective variance, that is:

µL,θm(x) = EL,θm [ϕL,θm(x)] , σ2
L,θm

(x) = VL,θm [ϕL,θm(x)] .

Notice that now the expectations are taken with respect to both L and θm, as random seeds are

seen as random variables. In this context, theorem 4.1 can be naturally extended to the expected

generalization error EL,θ [Err (ϕL,θ(x))] by replacing the expectations EL [·] with EL,θ [·]. Therefore,

the bias-variance decomposition, in that case, is as follows:

EL,θ [Err (ϕL (x))] = noise(x) + bias2(x) + var(x),

where

noise(x) = Err (ϕB (x))

bias2(x) = (ϕB (x)− EL,θ [ϕL,θ (x)])
2

var(x) = EL,θ

[
(ϕL (x)− EL,θ [ϕL,θ (x)])

2
]
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Lemma 4.1. Let ρ(x) be the correlation coefficient between the prediction of two randomized models

ϕL,θ1 , ϕL,θ2 built on the same learning set L, but by using different random seeds, θ1 and θ2. Then, it

holds that:

EL,θ1,θ2 [ϕL,θ1 (x) ϕL,θ2 (x)] = ρ(x)σ2
L,θ(x) + µ2

L,θ(x). (4.6)

Proof. By definition of Pearson’s correlation coefficient, we get:

ρ(x) =
EL,θ1,θ2 [(ϕL,θ1 (x)− µL,θ1(x)) (ϕL,θ2 (x)− µL,θ2(x))]

σL,θ1(x)σL,θ2(x)

=
EL,θ1,θ2 [ϕL,θ1 (x) ϕL,θ2 (x)− ϕL,θ1 (x) µL,θ2(x)− ϕL,θ2 (x) µL,θ1(x) + µL,θ1(x)µL,θ2(x)]

σ2
L,θ(x)

=
EL,θ1,θ2 [ϕL,θ1 (x) ϕL,θ2 (x)]− µ2

L,θ(x)

σ2
L,θ(x)

,

and the result is then straightforward. Lemma 4.1 will be used to prove the following theorem, which

explains why combining several randomized may result in a degradation of the generalization error.

Theorem 4.2. For the squared error loss, the bias-variance decomposition of the expected general-

ization error EL,θ1,...,θM [Err (ψL,θ1,...,θM(x))] at X = x of an ensemble of M randomized models ϕL,θm

is

EL,θ1,...,θM [Err (ψL,θ1,...,θM(x))] = noise(x) + bias2(x) + var(x), (4.7)

where

noise(x) = Err (ϕB (x))

bias2(x) = (ϕB (x)− EL,θ [ϕL,θ (x)])
2

var(x) = ρ(x)σ2
L,θ(x) +

1 − ρ(x)
M

σ2
L,θ(x).

Proof. We first calculate the mean value of the ensemble’s prediction:

EL,θ1,...,θM [ψL,θ1,...,θM(x)] = EL,θ1,...,θM

[
1
M

M

∑
m=1

ϕL,θm(x)

]

=
1
M

M

∑
m=1

EL,θm [ϕL,θm(x)]

= µL,θ(x)

Therefore, the bias of an ensemble is equal to the one obtained for any of the individual models:

bias2(x) = (ϕB (x)− µL,θ (x))
2 (4.8)
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For the variance, we have that

var(x) = VL,θ1,...,θM [ψL,θ1,...,θM(x)] = VL,θ1,...,θM

[
1
M

M

∑
m=1

ϕL,θm(x)

]

=
1

M2

EL,θ1,...,θM

( M

∑
m=1

ϕL,θm(x)

)2
− EL,θ1,...,θM

[
M

∑
m=1

ϕL,θm(x)

]2


=
1

M2

{
EL,θi ,θj

[
∑
i,j

ϕL,θi(x)ϕL,θj(x)

]
− (MµL,θ(x))

2

}

=
1

M2

{
∑
i,j

EL,θi ,θj

[
ϕL,θi(x)ϕL,θj(x)− M2µ2

L,θ(x)
]}

=
1

M2

{
MEL,θ

[
ϕL,θ(x)2]+ (M2 − M

)
EL,θ1,θ2 [ϕL,θ1 (x) ϕL,θ2 (x)]− M2µL,θ(x)2}

=
1

M2

{
M
(
σ2
L,θ(x) + µL,θ(x)2)+ (M2 − M

) (
ρ(x)σ2

L,θ(x) + µL,θ(x)2)− M2µL,θ(x)2}
=

σ2
L,θ(x)

M
+ ρ(x)σ2

L,θ(x)− ρ(x)
σ2
L,θ(x)

M

= ρ(x)σ2
L,θ(x) +

1 − ρ(x)
M

σ2
L,θ(x).

Remark 4.2. Theorem 4.2 shows exactly how the reduction of the expected generalization error is

achieved. To begin with, let us first note that ρ(x), in fact, represents the effect that the random

perturbations introduced in the learning algorithm have on the predictions. In particular, when

ρ(x) → 1, this means that the predictions of the models are correlated and, in that case, var(x) →

σ2
L,θ(x), indicating that building an ensemble brings no benefit. On the other hand, when ρ(x) → 0,

the random perturbations are strong enough and var(x) → σ2
L,θ(x)

M . The last term can be further

driven to 0 by increasing the size M of the ensemble. Therefore, in order to get a model with a

small generalization error, we combine a large number of trees each built according to a randomized

procedure capable to produce trees that are sufficiently different one from another. Such randomized

procedures are discussed in the next section.

4.3 Random forest algorithms

In this section we present the standard Random Forest algorithm proposed by Breiman (2001), the

Extremely Randomized Trees algorithm proposed by Geurts et al. (2006), the Historical Random For-

est algorithm proposed by Sexton and Laake (2018), as well as some implementation issues. In brief,

random forests are ensembles of randomized trees, where each tree is built upon a randomly drawn

replicate of the given learning set. More specifically, we start by giving the following definition:
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Definition 4.2 (Bootstrap sample). Let L be a learning set of size n. Then, the bootstrap sample of L,

denoted by L̃, is a sample of size b drawn with replacement from L.

Although the definition above suggests that the sample of the bootstrap replicate may differ from

that of the ininial learning set, for the rest we assume that, unless otherwise stated, b = n. Note

also that when b = n, approximately 37% of the cases (x, y) present in L will be missing from the

bootstrap sample L̃. Indeed, for each case (x, y) the probability of not have been selected after n

draws is:

(1 − 1
n
)n ≃ 1

e
≃ 0.368, when n is large.

Remark 4.3. Note that when the learning set L contains repeated measurements for different subjects

it may be undesirable to expose the construction of each individual tree to all subjects of L, since this

may contaminate predictions, especially when the intra-subject correlation and inter-subject vari-

ability are high. To address this problem, Karpievitch et al. (2009) proposes bootstrapping at the

subject-level.

Definition 4.3 (Subject-level bootstrap). Let L be a learning set consisting of repeated measurements

over N subjects, that is, L is of the form

L =
{

zij|zij = (tij, xij, yij)
′, i = 1, 2, . . . , N, j = 1, 2, . . . , ni

}
.

If N = {1, 2, . . . , N} is the set of subject indices and Ñ a bootstrap replicate of N , then the subject-

level bootstrap sample of L, denoted by L̃, is

L̃ =
{

zij|zij = (tij, xij, yij)
′, i ∈ Ñ , j = 1, 2, . . . , ni

}
. (4.9)

As shown by definition 4.3, subject-level bootstrapping consists in bootstrapping subjects instead

of observations, that is, if subject i is included in the bootstrap replicate Ñ , then all of its ni associated

observations are included in L̃ (see also Figure 4.1).
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FIGURE 4.1: Standard bootstrapping (left) vs subject-level bootstrapping (right) (source:
Hu and Szymczak, 2023)

4.3.1 Random Forest algorithm

Algorithm 4.1. Induction of a Random Forest
1: function BUILDRANDOMFOREST(L, K, Nmin)

2: for m = 1, 2, . . . , M do

3: Create a bootstrap replicate L̃m of L.

4: Learn a tree ϕL̃m using a random subset of K out of the p total features at each node.

5: end for

6: return
{

ϕL̃m
}M

m=1

7: end function

As already mentioned in chapter 3, decision trees suffer from high variability in the sense that even

small changes in the given learning set may result in totally different decision trees. Now following

the discussion of remark 4.2, it becomes clear why decision trees constitute an ideal option to serve

as base models of an ensemble; their predictions can be decorrelated easily. At the same time, they

are unbiased which is important considering that the bias of the ensemble equals the bias of the

individual models.

Throughout the last decades, there have been proposed several ways to decorrelate the predic-

tions of the individual trees in an ensemble through randomization. Breiman (1994) proposed build-

ing M decision trees, each on a different bootstrap sample L̃m of L, and aggregating their predictions.

This approach, known as Bagging1, not only achieves good predictive performance, but can also be

extended to any type of models. Dietterich and Kong (1995) proposed building an ensemble of trees,

but for the construction of each tree we do not seek the best split. Rather, we randomly choose

among the best 20 splits for each node t. The approach of using sub-optimal splits in each tree was

also adopted by Amit et al. (1997) who suggested at each node t choosing at random K out of the p

(K ≤ p) features and selecting the best split among these features.

1Bagging stands for Bootstrap aggregating
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Algorithm 4.2. Splitting a node t in RF
1: function SPLITRF(Lt, K)

2: Randomly select K of the p features {X1, X2, . . . XK}.

3: for k = 1, 2, . . . , K do

4: Solve equation 3.10:

s∗k = arg max
s∈Q(Xk)

LtL ,LtR ̸=∅

∆i(s, t),

5: end for

6: Solve equation 3.9:

s∗ = arg max
s∗k

k=1,...,K

∆i(s∗k , t)

7: return s∗

8: end function

The Random Forest algorithm2 proposed by Breiman (2001) combines Bagging with the random-

ized variable selection approach of Amit et al. (1997). More specifically, in order to build a random

forest we first create M bootstrap samples from L, as in Bagging, and then, we use each of them to

build a decision tree. The stopping criterion used for each decision tree is setting a node t as terminal

if it contains less than Nmin samples. To split each node in the forest, we first sample K features and

the best of them is chosen to be used as a split variable. These steps are summarized in Algorithms

4.1, 4.2.

Remark 4.4. As we have already presented the most common ways to induce randomness in the

construction of a decision tree, we can now better explain the role of the random seed parameter θ.

For instance, in the context of Bagging, different random seeds θm, θn will result in different bootstrap

samples L̃m, L̃n and, consequently, in different decision trees. Therefore, in this context and for the

sake of simplicity in the notation, we may replace ϕL,θm with ϕL̃m . In the context of Random Forest,

though, θ is in addition responsible for the random sub-sampling of the K features in each node.

Since this study focuses on the original Random Forest algorithm, we can once again replace for the

rest of this thesis ϕL,θm with ϕL̃m , keeping in mind the additional level of randomness.

Today, Random Forest is considered one of the most successful machine learning algorithms ca-

pable of achieving state-of-the-art performance both in terms of exploration and prediction in various

tasks and settings. That is why several variants have been built upon it since its introduction. One of

these variants, namely the Extremely Randomized Trees (ETs) proposed by Geurts et al. (2006), has been

widely used in applications and it has been well-known for its computational efficiency. In addition

2In general the term random forest, without capitals, refers to any ensemble of randomized trees. To distinguish the stan-
dard random forest algorithm from the other tree-based ensembles we will be using capitals, that is, henceforth, Random
Forest will be referred to the original algorithm proposed by Breiman (2001).
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to reducing computational time, in many cases, ETs achieve better predictive performance compared

to the standard random forest algorithm.

4.3.2 Extremely Randomized Trees

The Extremely Randomized Trees algorithm is based on an empirical investigation of Geurts (2002)

who showed that the cut-point variance appears to be responsible for a significant part of the gen-

eralization error of decision trees. As a way to smoothen the decision boundary, Geurts et al. (2006)

induce a further level of randomness in the split selection procedure. In particular, just as in the

Random Forest algorithm, each decision tree in the ETs algorithm is built on a bootstrap replicate of

L and for each node t the best split is found on a randomly chosen subsample of K features. The

difference between RF and ETs lies in that in ETs we do not seek the best threshold v, that is, we do

not solve equation 3.10. Rather, for each candidate feature Xk we randomly choose a single threshold

v from Xk|t, we calculate the impurity decrease ∆i(sv
k , t) of that threshold and we solve equation 3.9.

Algorithm 4.3. Splitting a node t in ETs
1: function SPLITETS(Lt, K, Nsplit)

2: Randomly select K of the p features {X1, X2, . . . XK}.

3: for k = 1, 2, . . . , K do

4: Draw uniformly at random Nsplit thresholds V k =
{

vk
1, . . . , vk

Nsplit

}
from Xk|t.

5: Solve equation 3.10:

s∗k = arg max
s∈Q(Xk)

LtL ,LtR ̸=∅

∆i(s, t),

using

Q(Xk) =
{

sv
k = {{xi |xik ≤ v} , {xi |xik > v}} |v ∈ V k

}
.

6: end for

7: Solve equation 3.9:

s∗ = arg max
s∗k

k=1,...,K

∆i(s∗k , t)

8: return s∗

9: end function

It is clear that this approach is computationally faster than the original Random Forest algorithm

since it does not require explicitly solving equation 3.10, that is, calculating |Xk|t| − 1 impurity de-

creases in each node of a decision tree and finding the best among them. Of course, this results in

individual decision trees that have a larger prediction bias than the ones produced by the RF algo-

rithm. A compromise is to extend ETs by randomly picking a subset of Nsplit candidate thresholds

v, instead of picking a single one. In that case, equation 3.10 is solved for each feature over the
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candidate subset, thus producing individual trees with a smaller bias. Again, computational time

decreases but to a smaller extent compared to the standard ETs (Nsplit = 1). The splitting procedure

of ETs is summarized in algorithm 4.3.

4.3.3 Historical Random Forests

All previous random forests assume that observations in the available data set are independent. As

already discussed, though, when handling repeated measurement data, this is rarely the case. In

most cases, within-subject observations are serially correlated and incorporating this correlation in

the model construction may improve predictive performance.

One way to do so is proposed by Sexton and Laake (2018). To account for the inter-subject vari-

ability, they propose constructing each tree in a subsample of the initial learning set L, where sub-

sampling refers to subjects and all associated observations are included in the resulting subsample.

At the same time, to account for the within-subject correlation, they modify the splitting procedure

used for time-varying features by augmenting the set over which the best split is sought in every

node. On the contrary, the split for time-invariant features is performed as in the standard Random

Forest. The resulting algorithm is referred to as Historical Random Forest (HRF) and is described in

this section.

In particular, let L be a learning set of repeated measurements as in equation 2.2 and N =

{1, 2, . . . , N} the set of subject indices in L. If N m a randomly drawn (without replacement) sub-

set of N , then the m-th decision tree is built using

Lm =
{

zij|zij = (tij, xij, yij)
′, i ∈ N m, j = 1, 2, . . . , ni

}
(4.10)

Concerning the splitting procedure, for each feature Xk, apart from the splits of the form 3.8, we

also consider splits that take into account preceding values of Xk as well. This is done, by using a

summary function g summarizing the covariate history of Xk within a specific time interval of δ time

units, where δ belongs to a set of candidate lags D. Therefore, in order to split a node t in an HRF,

apart from the axis-parallel splits used in the standard Random Forest algorithm:

Q(Xk) =
{

sv
k =

{{
xij|xijk ≤ v

}
,
{

xij|xijk > v
}}

|v ∈ Xk
}

,

we also seek the best split in the following set:

H(Xk;D, g) =

{
sv

k =
{{

xij
∣∣g(x̄ijk; δ

)
≤ v

}
,
{

xij
∣∣g(x̄ijk; δ

)
> v

}}∣∣∣v ∈ g
(
Xk; δ

)
, δ ∈ D

}
, (4.11)
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where x̄ijk =
{

xihk|tih < tij
}

is the covariate history of Xk up to (but not including) observation time

tij and g(Xk; δ) =
{

g
(
x̄ijk; δ

)
|xijk ∈ Xk

}
. Overall, searching in the union of Q(Xk) and H(Xk;D, g)

guarantees that both historical information (if available) and current values of Xk are used for mod-

eling.

The splitting procedure in the HRF algorithm is summarized in the following algorithm:

Algorithm 4.4. Splitting a node t in HRF
1: function SPLITHRF(Lt, K, g, D)

2: Randomly select K of the p features {X1, X2, . . . XK}.

3: Get the sets I ,V of time-invariant and time-varying predictors respectively.

4: for k = 1, 2, . . . , K do

5: if Xk ∈ V then

s∗k = arg max
s∈Q(Xk)∪H(Xk ;D,g)

LtL ,LtR ̸=∅

∆i(s, t),

6: else

s∗k = arg max
s∈Q(Xk)

LtL ,LtR ̸=∅

∆i(s, t).

7: end if

8: end for

9: Solve equation 3.9:

s∗ = arg max
s∗k

k=1,...,K

∆i(s∗k , t)

10: return s∗

11: end function

One exemplary summary function is the mean summary function, which is defined as follows:

Definition 4.4 (Mean summary function). Let L be a repeated measurement learning set, δ ∈ R, tij

the j-th observation time for subject i and x̄ijk =
{

xihk|tih < tij
}

the set of values on the k-th feature for

i that were observed before tij. Then, the mean summary function for i at tij averages the observed

values of x̄ijk within the time interval [tij − δ, tij):

g(x̄ijk; δ) = ∑
h:tij−δ≤tih<tij

xijk

nij(δ)
, (4.12)

where nij(δ) denotes the size of x̄ijk
3. In the special case where nij(δ) = 0, we set g(x̄ijk; δ) = 0.

Remark 4.5.
3We assume that for each subject i and each time moment tij, we have observations on every feature, that is no missing

data is present on L. Therefore, nij(δ) is independent of k.
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– The mean summary function presented above is not the only summary function that can be

used to summarize the history of a feature Xk. Other summary functions such as

g(x̄ijk; δ, c) = ∑
h:tij−δ≤tih<tij

I(xihk < c), g(x̄ijk; δ, c) = ∑
h:tij−δ≤tih<tij

I(xihk < c)
nij(δ)

(4.13)

may be used as well. What is more, in many real-world applications it might be desirable

to consider a specific interval of the covariate history, in order to split a node. Therefore, win-

dowed versions of the summary functions- where instead of [tij − δ, tij), sums in equations 4.12,

4.13 are taken over [tij − δ1, tij − δ2)- are also available. Note, however, that adding parameters

in the summary function, further increases the computational expenses of the algorithm. In any

case, the summary function used should be invertible in the sense that knowledge of g(x̄ijk; ·) is

equivalent to knowledge of the covariate history x̄ijk (Sexton, 2018).

– Note that in an HRF it is also feasible to incorporate the response history in the model con-

struction. This can be done by treating response variables Ys (s = 1, 2, . . . , S) as additional

time-invariant predictors. In that case, however, the best split on Ys is found by maximizing

∆i(s, t) over H(Ys;D, g) rather than Q(Ys) ∪H(Ys;D, g), since we assume that yij is unknown

at observation time tij.

4.3.4 Implementation considerations

In algorithm 4.1 there exist 3 parameters affecting the performance of the Random Forest algorithm,

namely the size M of the ensemble, the number K of randomly drawn candidate variables in each

node and the minimum number Nmin allowed in a node to be further split. In R programming lan-

guage (R Core Team, 2023), in almost every random forest package, these parameters are referred

to as ntree, mtry and nodesize respectively. While different Random Forest variants may introduce

more parameters (e.g. the Nsplit parameter in ETs), we restrict the parameter discussion to these 3

parameters, which are present in almost every tree-based ensemble.

The decomposition of theorem 4.2 implies that ensemble learners achieve better performance

when the individual predictors are accurate, yet adequately different from one another. To find a

good compromise tuning of mtry and nodesize is crucial. In general, the choice of hyperparameters

should be guided by the purposes of the statistical analysis. This means that the choice of optimal

parameters may be different when Random Forest is used for exploration than when it is used for

prediction. Below, we discuss each of these 3 parameters separately.
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ntree

In remark 4.2 we argued that increasing ntree results in reducing the variance term of theorem 4.2.

At the same time, Random Forest products, such as OOB-error estimates and proximity measures

(see sections 4.5.1 and 4.5.2 respectively), are more accurate, since asymptotic properties are valid for

large ntree values. However, as pointed out by Hastie et al. (2009a) increasing ntree too much may

overfit the data. Probst and Boulesteix (2017) investigated under which circumstances increasing

ntree does not come with a decrease in error. They showed that these non-monotonous behaviors

are related to the choice of the impurity measure and concluded that for regression tasks when the

squared error is used, larger values of ntree bring better results. Therefore, when this is the case,

ntree is not a parameter that has to be tuned and fixing it to the largest computationally affordable

value is a good strategy.

mtry

According to Probst et al. (2019b), among all the parameters that may be present in a random forest

algorithm, mtry is the most influential. Lower values of mtry increase the variance among the in-

dividual trees, hence producing better results when aggregating. What is more, forests constructed

using low mtry values tend to better exploit variables with moderate effect on the response variable

that would be masked by variables with strong effect if those had been candidates for splitting. How-

ever, decreasing mtry too much may result in an increase in bias, since in this case sub-optimal splits

are more frequent.

Apart from the bias-variance trade-off above, more factors should be taken into consideration be-

fore choosing mtry. The first one concerns the fraction of relevant variables. When the total number

of variables p is large, but this fraction is small, then random forests tend to perform poorly, because

the chance of splitting on a relevant variable is small. The second factor concerns the available com-

putational power, as testing more variables requires more computing time. In particular, Wright and

Ziegler (2017) argue that computation time decreases approximately linearly with lower mtry values.

The default choice for regression tasks in most statistical software is setting mtry to p/3.

nodesize

Since nodesize specifies the minimum number of observations in a terminal node, small values will

lead to trees of larger depth. In the context of single decision trees, small values of nodesize may lead

to overfitting. As with mtry, the presence of noisy variables and computational power may affect the
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choice of this parameter. In particular, Segal (2004) showed that a larger number of irrelevant vari-

ables results in a larger optimal nodesize. What is more, Probst et al. (2019b) argue that computation

time decreases approximately exponentially with increasing nodesize. While the default value for

nodesize for regression is 5, some authors (e.g. Hastie et al., 2009a) suggest fully growing decision

trees (i.e. setting nodesize = 1), so that this parameter need not be tuned. Probst et al. (2019a) show

experimentally that tuning nodesize brings minor improvements in terms of prediction error.

4.4 Aggregation schemes

Regardless of the method followed to construct the decision trees in a random forest algorithm, once

the ensemble has been constructed, we need to aggregate the predictions of the individual decision

trees to obtain a single prediction for our random forest algorithm. However, the aggregation can

be done in different ways. This thesis concerns two different aggregation methods; a scaled and an

unscaled approach. Let us recall equation 4.1:

ψL(x∗) =
∑M

m=1 wm(x∗)ϕL̃m(x∗)

∑M
m=1 wm(x∗)

FIGURE 4.2: Random Forest prediction for a new instance x∗
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The difference between the two methods actually lies in the way the weights wm(x∗) are chosen.

The random forest prediction for an observation x∗ is summarized as shown in Figure 4.2.

4.4.1 Scaled approach

This is the commonly used approach proposed by Breiman (2001) and puts equal weights to the

predictions of each individual tree, that is wm(x∗) = 1, for m = 1, . . . , M. The prediction of the

ensemble in this case is simply the mean value of the predictions of the trees:

ψL(x∗) =
∑M

m=1 ϕL̃m(x∗)
M

.

4.4.2 Unscaled approach

Contrary to the scaled approach, where each individual tree is weighted equally during the aggrega-

tion step, the unscaled approach weighs each tree according to the size of the terminal node in which

instance x∗ lands once propagated down the forest. More formally, let L = {(xi, yi), i = 1, 2, . . . , n}

be a learning set of size n which is used to construct a random forest ψL and {L̃m}M
m=1 the bootstrap

samples of L used to construct the M decision trees of ψL. We now introduce the following notation:

• Nm(x∗): the indices of the samples in L sharing the same terminal node with x⋆ in the m - th

tree, that is:

Nm(x∗) = {i : (xi, yi) is in the same terminal node as x∗, i = 1, 2 . . . , n},

• bm(i): the number of times case (xi, yi) of L appears in the m-th bootstrap sample L̃m.

Following this notation, the weights used in the unscaled approach are:

wm(x∗) = ∑
i∈Nm(x∗)

bm(i), m = 1, 2, . . . , M. (4.14)

Note that equation 4.14 in fact represents the size of the terminal node of m-th decision tree in which

x∗ lands. Hence, decision trees with larger terminal nodes have a greater impact on the prediction of

the random forest.

Remark 4.6. The unscaled aggregation approach is equivalent to pooling, which consists in combining

the terminal nodes containing x∗ in a larger one called pool and using as a prediction for x∗ the mean

response value of the pool. To illustrate this point, let us first note that when propagating x∗ down
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FIGURE 4.3: Scaled vs Unscaled aggregation approach. t1 and t2 are the terminal nodes
at which x∗ lands once propagated down the forest.

the m-th tree, the assignment rule 3.5 can be reexpressed in terms of the notation introduced above

as follows:

ϕL,θm(x
∗) =

∑i∈Nm(x∗) bm(i)yi

∑i∈Nm(x∗) bm(i)
. (4.15)

Using equations 4.14 and 4.15, we get:

ψL(x∗) =
∑M

m=1 wm(x∗)ϕL̃m(x∗)

∑M
m=1 wm(x∗)

=

∑M
m=1 wm(x∗)

∑i∈Nm(x∗) bm(i)yi

∑i∈Nm(x∗) bm(i)

∑M
m=1 wm(x∗)

=

∑M
m=1((((((((∑i∈Nm(x∗) bm(i)

∑i∈Nm(x∗) bm(i)yi

((((((((∑i∈Nm(x∗) bm(i)

∑M
m=1 ∑i∈Nm(x∗) bm(i)

=
∑M

m=1 ∑i∈Nm(x∗) bm(i)yi

∑M
m=1 ∑i∈Nm(x∗) bm(i)

. (4.16)

Equation 4.16 represents the mean output value of the instances in the pool. In Figure 4.3 we illustrate

pooling through a simple example of a random forest of 2 decision trees. In this example t1, t2 denote
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the terminal nodes of each tree at which the new observation x∗ lands.

Another way to see this approach is that instead of assigning different weights to each individual

tree, we assign different weights to the instances of L (Sage, 2018). Indeed, continuing equation 4.16,

we get:

ψL(x∗) =
∑M

m=1 ∑i∈Nm(x∗) bm(i)yi

∑M
m=1 ∑i∈Nm(x∗) bm(i)

=
∑M

m=1 ∑n
i=1 bm(i)1{i∈ Nm(x∗)}yi

∑M
m=1 ∑n

i=1 bm(i)1{i∈ Nm(x∗)}

=
∑n

i=1 ∑M
m=1 bm(i)1{i∈ Nm(x∗)}yi

∑n
i=1 ∑M

m=1 bm(i)1{i∈ Nm(x∗)}

=
n

∑
i=1

pi(x∗)yi, (4.17)

where

pi(x∗) =
∑M

m=1 bm(i)1{i∈ Nm(x∗)}

∑n
i=1 ∑M

m=1 bm(i)1{i∈ Nm(x∗)}
(4.18)

represents the percentage of the observations that (xi, yi) occupies in the pool of x∗. That is, obser-

vations of L that share the same terminal node with x∗ are thought to be similar to that observation

and, hence assigning larger weights to them is reasonable. The similarity between observation in the

context of random forests is further discussed in section 4.5.2.

4.5 Properties and features

4.5.1 Out-of-bag estimate

In section 2.2.2 we highlighted that using different learning sets for constructing and evaluating a

model is essential to produce unbiased estimates of the generalization error. An appealing feature of

ensemble methods that construct models on bootstrap samples, such as random forests, is the built-

in possibility of using the left-out observations to estimate the generalization error. Let us first give

the following definition:

Definition 4.5. Let L be a learning set and L̃ a bootstrap replicate of L. Then, the out-of-bag set

LOOB of L̃ is the set of samples of L that do not appear in L̃, that is:

LOOB = {(xi, yi) ∈ L : b(i) = 0} .
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The observations belonging to the out-of-bag set are called out-of-bag observations and, correspond-

ingly, the observations that are included in the bootstrap sample L̃ are called in-bag observations.

The out-of-bag set of an individual tree can serve as a test set to calculate the average prediction

error of that tree (see definition 2.9) and averaging over all trees of the forest one can estimate the

generalization error of the ensemble. More formally:

Definition 4.6 (Out-of-bag estimate). Let L be a learning set,
{
L̃m
}M

m=1
a collection of M bootstrap

replicates of L and
{
Lm

OOB
}M

m=1 the respective out-of-bag sets. If ψL is an ensemble consisting of the

individual models
{

ϕL̃m

}M
m=1, then the out-of-bag estimate of Err(ψL) is defined as follows:

Êrr
OOB

(ψL) =
1
M

M

∑
m=1

Êrr
OOB
m , (4.19)

where Êrr
OOB
m = Ē

(
ϕL̃m ,Lm

OOB
)

denotes the out-of-bag error of tree m.

The out-of-bag estimate constitutes a beautifully simple way of estimating the generalization er-

ror of an ensemble. At the same time, it is computationally cheaper compared to the K-fold cross-

validation or the MCCV methods presented in section 2.2.2, since it demands the construction of a

single model to produce an estimate for the generalization error.

Despite its aforementioned advantages, the out-of-bag estimate is sometimes biased. More specif-

ically, as pointed out by Louppe and Geurts (2012), the randomness induced by the bootstrapping

process may result in a decrease in the model’s accuracy, especially in cases where the sample size

is small relatively to the number of the input variables (Matthew et al., 2011; Janitza and Hornung,

2018).

4.5.2 Proximity measures

Another interesting built-in feature of tree-based ensemble methods is the proximity measures. These

measures are, in fact, measures of similarity between any two observations of a learning set. The

random forest proximity was first introduced by Breiman (2002). Formally, we have the following

definition:

Definition 4.7 (Original random forest proximity). In a random forest, the proximity between two

cases (xi, yi) and (xj, yj) is defined as the proportion of trees in which these two cases reside in the

same terminal node, that is:

pOr(xi, xj) =
1
M

M

∑
m=1

1{j∈Nm(xi)} (4.20)
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Note that definition 4.7 does not take into account an observation’s bootstrap status (whether or not

the observation was used during the construction of any particular tree) in the proximity calculation:

both in-bag and out-of-bag samples are used.

An alternate is to calculate the proximity between two observations assuming that both of them

are out-of-bag samples in the m-th tree (Hastie et al., 2009a). In particular:

Definition 4.8 (OOB proximity). The OOB proximity between two observations (xi, yi) and (xj, yj) is

defined as the proportion of trees in which these observations reside in the same terminal node, both

being out-of-bag, that is:

pOOB(xi, xj) =
∑M

m=1 1{bm(i)+bm(j)=0}1{j∈Nm(xi)}

∑M
m=1 1{bm(i)+bm(j)=0}

. (4.21)

In definition 4.8, the condition bm(i)+ bm(j) = 0 preserves that both (xi, yi) and (xj, yj) are out-of-bag

for the m-th tree, since in general bm(k) ≥ 0.

Rhodes et al. (2022) argue that both the original and the OOB definitions do not preserve the

geometry learned from the data. In contrast, they propose a new random forest proximity definition

that exactly characterizes the random forest performance on both in-bag and out-of-bag samples. In

particular, according to their definition, training examples (in-bag observations) are used to construct

the proximity values to unseen (out-of-bag) observations, thus mimicking the typical scenario of

constructing a model on a learning set and subsequently testing it on a validation set of previously

unseen observations.

Definition 4.9 (Random forest-geometry and accuracy-preserving proximity). Let Bm =
{

i : (xi, yi) ∈ L̃m
}

be the multiset of (potentially repeated) indices of in-bag observations in the m-th tree of a random

forest. If (xi, yi), (xj, yj) (i ̸= j) are two cases, then we can define the following:

• Jm(xi) = Bm ∩ Nm(xi) is the set of indices of in-bag observations which share the terminal

node with (xi, yi) in tree m

• S(xi) = {m : bm(i) = 0} is the set of tree indices in which observation (xi, yi) is out-of-bag.

Following the notation introduced above, the random forest-geometry and accuracy-preserving

proximity between (xi, yi) and (xj, yj) is the average proportion of in-bag observations in the shared

terminal node of (xi, yi) and (xj, yj) over all trees where (xi, yi) is out of bag and (xj, yj) is in bag, that

is:

pGAP(xi, xj) =
1

|S(xi)| ∑
m∈S(xi)

1{j∈Jm(xi)}
|Jm(xi)|

. (4.22)
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For the sake of simplicity, we often formulate proximity using a n × n matrix P = (pij)1≤i,j≤n,

where pij is the proximity between observations xi, xj calculated using any of the three definitions

introduced so far.

A common aspect within all three proximity measures introduced so far is that they are defined

as proportions of trees in which the two observations reside in the same terminal node. The idea is

that these proportions give an indication of how close the observations are in the eyes of the random

forest. In particular, proximity values close to 1 indicate that the observations reach the same terminal

node and thus are similar according to the forest. On the contrary, when proximity is close to 0,

observations reach different terminal nodes suggesting that the samples are structurally different

from each other.

This interpretation of proximity measures has made them a powerful tool that can be used in a

variety of tasks such as clustering, data visualization, imputation of missing values (see also section

4.5.4), and outlier detection.

4.5.3 Variable importance

Variable selection is a crucial issue in many applied classification and regression problems. It is of

interest for statistical analysis as well as for modelization or prediction purposes to remove irrelevant

variables, select all important ones or determine a sufficient subset for prediction. These main differ-

ent objectives from a statistical learning perspective involve variable selection to simplify statistical

problems, to help with diagnosis and interpretation, and to speed up data processing. An appeal-

ing feature of tree-based ensemble methods is that they offer the possibility to assess the variable

importance of the included predictors.

Breiman (2002) proposed to evaluate the importance of an input variable Xk for predicting Y

by adding up the weighted impurity decreases for all nodes where Xk is used as a split variable,

averaged over all trees. Formally, we have the following definition:

Definition 4.10 (Mean decrease impurity importance). Let ψL be an ensemble of M trees {ϕL̃m
}M

m=1.

Then, the mean decrease impurity (MDI) importance of an input variable Xk is defined as follows:

Imp(Xk) =
1
M

M

∑
m=1

∑
t∈ϕL̃m

1{kt=j} [p(t)∆i(st, t)] , (4.23)

where p(t) is the proportion
nt

n
of samples reaching node t and kt is an identifier of the variable used

to split node t.
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Since its introduction, MDI importance has been widely used in many applications and, during

the last years, its theoretical properties have been studied as well (Louppe et al., 2013; Sutera et al.,

2016; Scornet, 2023).

In addition to MDI importance, Breiman and Cutler (2003) proposed another way to assess the

importance. In particular, in order to calculate the importance of a single variable, they proposed

shuffling its entries in the OOB set and computing the difference between the out-of-bag error on

the permuted and the original OOB set. This importance measure known as mean decrease accuracy

(MDA) or permutation importance is defined as follows:

Definition 4.11 (Permutation importance). Let ψL be an ensemble of M trees {ϕL̃m
}M

m=1 with re-

spective out-of-bag sets {Lm
OOB}M

m=1. Let, also x̃(k)i denote the i-th input vector of L, where the k-th

coordinate is permuted. Then, the permutation importance of an input variable Xk is:

Imp(Xk) =
1
M

M

∑
m=1

(
Ẽrr

OOB
m − Êrr

OOB
m

)
, (4.24)

where Ẽrr
OOB
m denotes the OOB error of tree m calculated using a permuted OOB set rather than

LOOB
m , that is, a set containing the input vectors x̃(k)i rather than the original ones xi.

The rationale of permutation importance is that if Xk is important, that is, associated with the

output variable Y, then permuting its values should come with a substantial increase of error. In

other words, if permuting the values does not harm predictive performance, then Xk is considered

unimportant. On the contrary, if prediction accuracy decreases substantially when values of Xk are

permuted, this indicates that Xk is an important predictor.

4.5.4 Missing values

Missing data is a problem often encountered in real-world applications. This can happen due to

practical limitations, physical constraints or privacy reasons. Yet, data that is missing is problematic,

since most machine learning algorithms assume an ideal scenario in which given data are known for

all input variables. This forces researchers to choose between imputing data or discarding missing

values. However, simply discarding missing data is not a reasonable practice, as valuable informa-

tion may be lost. Therefore, imputing missing data in such settings is a more reasonable and practical

way to proceed. Random forests offer several ways to deal with the task of imputing missing values

(Tang and Ishwaran, 2017).
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Rough imputation

We first begin by presenting a naive imputation method that is not based on the random forest al-

gorithm. Nevertheless, this algorithm is computationally fast, and that is why it is often used to

initialize some of the RF-based imputation algorithms presented later. When performing a rough

imputation, the missing values of a random variable Xk are imputed as follows:

• If Xk is numerical, then its missing values are imputed using the median (or mean) value of the

non-missing ones.

• If Xk is categorical, then its missing values are imputed by taking the mode over the non-

missing ones (ties are broken at random).

Proximity imputation

In section 4.5.2 we saw that proximity values indicate how close two observations are in the eyes of a

random forest. Therefore, it is reasonable to use these values to fill the missing data. This algorithm

starts by imputing the missing values using a rough imputation. Then, a random forest is constructed

using this imputed data and the resulting proximity matrix is used to re-impute the original missing

values. In particular:

• If Xk is numerical, then its missing values are imputed using the proximity-weighted average

of non-missing data.

• If Xk is categorical, then a proximity-weighted vote is taken using the responses of all observed

cases and the category receiving a plurality is taken as the imputed value.

The updated data is used to construct a new random forest and the process is iterated. Breiman and

Cutler (2003) suggest performing at most six iterations.

On-the-fly imputation

A drawback of the weighted proximity imputation method is that estimates for OOB error obtained

by this imputation method are biased (Breiman and Cutler, 2003). As such, measures based on OOB

error, such as permutation importance, may be biased as well. What is more, this approach is unable

to handle test data containing missing values on coordinates that are used for splitting. To deal with

these issues, Ishwaran et al. (2008) propose imputing missing values as the forest is grown.

In particular, to calculate the impurity of each node only non-missing data is used. When assign-

ing an instance to child nodes, if the variable used to split the node contains missing values, these
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values are imputed by drawing a random value from the in-bag non-missing data of that node. Once

the split is performed, imputed data are reset to missing and the process is repeated until terminal

nodes are reached. Again, after the terminal node assignment, missing data are reset back to missing.

In other words, these random imputations are performed only to assign cases to child nodes, since

the resulting forest still contains missing data up to this point. To impute the missing terminal node

data, we use the OOB terminal node data of all trees in the forest; for numerical variables, we use

their mean value, while their mode is used for categorical variables.

Ishwaran et al. (2008) argue that performing this process repeatedly improves the accuracy of the

imputed values. Note that in the second and subsequent iterations, missing values are imputed by

randomly drawing from observed values of cases in the same terminal node as the case for which

imputation is performed, using the forest grown in the previous iteration. A random draw is made

from each tree in the forest and new values are imputed by averaging or using a weighted vote.

As already mentioned, this method works even when the task is making predictions for test cases

containing missing values. More specifically, the missing values of such instances are again imputed

by randomly drawing from non-missing in-bag data and then reset to missing until these cases reach

a terminal node.

missForest

Stekhoven and Bühlmann (2012) propose imputing missing values of Xk by predicting them using a

random forest grown on the other variables. First, a rough imputation is performed on all variables.

Then, a random forest is constructed in which Xk serves as the output variable. Cases with non-

missing Xk values are used for constructing the random forest. Cases with Xk missing are then

predicted and the prediction is used as the imputed value. This is done for each predictor variable

sequentially and the process is iterated until the change in the imputed values becomes sufficiently

small.

Note that the former approach requires the construction of p random forests at each iteration.

Therefore, in situations where p is large, it might be computationally expensive. Tang and Ishwaran

(2017) suggest a computationally faster version of missForest, referred to as mForest, which consists

in randomly dividing the p input variables into mutually exclusive groups of approximate size αp,

where 0 < α < 1 (these groups are approximately 1/α in total). Then, each of these groups serves

as a multivariate response variable to be predicted from the remaining variables. Again, complete

multivariate response cases are used to construct a forest using a multivariate splitting rule and the

cases containing missing values are predicted using the grown forest. This process is cycled over the

approximately 1/α groups and this completes one iteration.
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Unsupervised imputation

The unsupervised imputation method is actually similar to the on-the-fly method except that now

we assume that no response variable is available and, hence, a multivariate unsupervised splitting

(Ishwaran et al., 2021c) is used. More specifically, in the original random forest algorithm, a set of

mtry input variables are selected as potential splitting variables. However, since there is no output

variable, for each of the mtry variables, we randomly choose ytry of the remaining input variables to

serve as the multivariate response. Again, a multivariate splitting rule calculated over non-missing

data only is used and, among the mtry candidate variables, the one leading to the best split is chosen.

As with the on-the-fly method, if the split variable contains missing data, these values are imputed

using the non-missing in-bag data, and after the split are reset back to missing. Once again, the

missing data in terminal nodes are imputed using the OOB data.
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Chapter 5

Results

In this chapter, we illustrate how the methodology presented in previous chapters can be applied

in the CPSPP presented in chapter 1. Let us first note that the Random Forest algorithm, as well as

many of its variants, have already been applied in the agriculture field to estimate crop yield using

environmental and remote sensing data, as well as for exploratory purposes, such as the identifica-

tion of the most informative variables (to cite a few Adam et al., 2014; Wang et al., 2019; Zhang et al.,

2019; Sakamoto, 2020). In this section, we aim to deal with the two-fold objective of identifying the

most informative factors in predicting the CPR percentages and building a model that can accurately

generalize over incoming growing seasons.

5.1 Evaluation setting

Before we present the results of our analysis, it is necessary to pose the CPSPP within the machine

learning framework presented in chapter 2. To begin with, we mention that CPSPP constitutes a

multivariate regression with S = 8 output variables (one for each phenological stage) and 6 input

features, the environmental and non-environmental factors presented in sections 1.2, 1.3. Each out-

put variable tracks the percentage of the plants in the area of interest occupying the corresponding

phenological stage at each observation time. Let us note that since the Pre-Season stage is added

artificially, our models do not predict the percentages of this particular phenological stage. Instead,

we predict the percentages for the remaining 7 phenological stages and we then normalize the per-

centages so that they sum up to 1.

As stated in chapter 1, our data covers 20 growing seasons, from 2002 to 2021. Each growing

season may start at a different week of the calendar year. In any case, once the growing season has

started, data are, thereafter, recorded every 7 days for W = 38 consecutive weeks. As a result, the set

of weeks Wi for which we have observations may be different for each growing season i. For instance,
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based on the Table 1.1, for season 2002 we have that W1 = {13, 14, . . . , 50}, while for growing season

2009 we have W8 = {15, 16, . . . , 52}.

Based on the above, our data form a repeated measurement data set as shown in Table 2.2. Here

different growing seasons are treated as subjects, hence the set of subjects is N = {1, 2, . . . , 20} 1 and

the total number of subjects is N = 20. For each season, we have the same number of observations,

which means that ni = 38 = W for all i ∈ N . Observation tij refers to the week of the calendar

year on which the j-th observation for season i corresponds, that is Wi = {ti1, . . . , tiW}. What is

more, observations are regularly spaced within time, since ti,j+1 − ti,j = 1 for all i ∈ N and j =

1, 2, . . . , W − 1.

5.1.1 Generalization error estimation method

We can now describe the method followed to compare the different approaches applied in the CPSPP.

Since our target is to predict the CPR percentages for an unobserved growing season based on the

available CPR percentages from past seasons and the concurrent values of input variables, we esti-

mate the RMSPE for each approach using Monte-Carlo cross-validation, where splitting is performed

at the season level. In particular, in each iteration of the MCCV, we randomly choose the training sea-

sons Ntrain ⊂ N and we include in the learning set Ltrain used to train our model all the observations

from L associated with these seasons. The observations of L associated with the remaining seasons

N \ Ntrain serve as the learning set used to evaluate the model performance2. The model ϕLtrain is

then used to predict the instances in Ltest, and the RMSPE for each stage and each week is calculated.

We repeat this process for a large number of times M as MCCV procedure suggests (see also section

2.2.2) and we average the errors for each stage and week. The preceding procedure is summarized

in the following algorithm:

1subject 1 refers to growing season 2002, subject 2 to 2003 etc.
2Note that this splitting procedure is similar to the subject-level bootstrap discussed in section 4.3 but this time sampling

from the initial learning set L is done without replacement.
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Algorithm 5.1. Monte-Carlo Cross Validation
1: function CROSSVAL(Ntrain, M)

2: for m = 1, 2, . . . , M do

3: Split N into Nm
train and Nm

test with respective sizes Ntrain and Ntest = N − Ntrain.

4: Get the corresponding partition {Lm
train,Lm

test}.

5: Learn ψLm
train

and obtain predictions ŷij for i ∈ Nm
test.

6: Calculate the RMSPE for each stage s = 1, 2, . . . , S and each week w ∈ ⋃i∈Nm
test

Wi :

RMSPEm
ws =

√
∑i∈Nm

test
(yijs − ŷijs)2

Ntest
.

7: end for

8: Calculate the average RMSPE for each stage and each week and the average cumulative RMSPE:

RMSPEws =
1
M

M

∑
m=1

RMSPEm
ws, ARMSPE =

∑W
w=1 ∑S

s=1 RMSPEws∣∣∣⋃M
m=1

(⋃
i∈Nm

test
Wi

)∣∣∣ .

9: return {RMSPEws} for s = 1, 2, . . . , S and w ∈ ⋃M
m=1

(⋃
i∈Nm

test
Wi

)
and the ARMSPE

10: end function

Remark 5.1. In line 6 of the preceding algorithm
⋃

i∈Nm
test

Wi denotes the set of weeks at which

the model is tested in the m-th iteration of the MCCV. For instance, if Ntest includes seasons 2003,

2004, 2005, 2008 and 2010, then according to Table 1.1, the RMSPE is calculated only for weeks

{14, 15, . . . , 51}. Correspondingly,
⋃M

m=1

(⋃
i∈Nm

test
Wi

)
denotes the set of weeks for which RMSPE is

calculated once the MCCV algorithm is implemented. It is clear that a sufficiently large M guarantees

that the RMSPE is calculated for all weeks of the study, that is
⋃M

m=1

(⋃
i∈Nm

test
Wi

)
= {12, 13, . . . , 52}.

In our case, we choose M = 500 for the number of different splits for the MCCV algorithm. In

addition, we invest Ntrain = 15 out of the total 20 growing seasons on training and the remaining 5

in testing, yielding a 75-25% split ratio. Finally, in line 5 of algorithm 5.1, we build 500 decision trees

for each ensemble ψLm
train

.

5.1.2 Optimizing hyperparameters

As already discussed in section 4.3.4, tuning mtry and nodesize parameters in a random forest al-

gorithm, may be crucial for its predictive performance. In our analysis, we conducted a grid search

over the sets {1, 2, . . . , p} (where p denotes the variables included in the model construction) and

{1, 2, . . . , 10} for choosing the mtry and nodesize parameters respectively, thus resulting in a total

of 10 · p possible pairs. What is more, since performance is evaluated with algorithm 5.1, hyperpa-

rameter selection should be guided by a similar procedure. Ideally, in order to choose the optimal

(in terms of MCCV error) hyperparameter combination for a single approach, one should implement
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algorithm 5.1 for each possible pair of mtry and nodesize parameters and pick the one with the best

performance in terms of RMSPE. However, this idea is computationally infeasible for our problem.

To reduce computational time, we seek near-optimal hyperparameters by fitting a single forest of

500 trees for each combination of hyperparameters and selecting the combination with the smallest

forest OOB error. To guarantee that the OOB error of each forest is close to the ARMSPE obtained

from the MCCV, we grow each forest using subject-level subsampling. Each subsample used to grow

the individual trees consists of data from 15 growing seasons while data from the remaining seasons

are out-of-bag, again resulting in a 75-25% split ratio.

For the CPSPP, we implemented both multivariate and univariate random forests. Their perfor-

mance is compared in the following sections.

5.2 Multivariate Random Forest

In this section we discuss two multivariate approaches applied to the CPSPP. Both of them are imple-

mented using the randomForestSRC package of R (Ishwaran et al., 2021b). Another common aspect

of them is that they assume all output variables are related with the features according to a function

f , which they seek to estimate:

Y = f (X) + ϵ. (5.1)

The main discrimination between the two approaches followed concerns the impurity criterion used

to split each node.

5.2.1 Indepedent MRF

The first approach presented is the independent Multivariate Random Forest (iMRF). This approach

trains a single multivariate random forest for all phenological stages simultaneously and assumes

that the response variables are independent one from another. Therefore the impurity criterion used

for each split is the one given by equation 3.14. Therefore, this approach assumes no dependence

among the response variables.

Feature extraction

In the first stage of our analysis, we identified the most important features for predicting the CPR

statistics. We did that by building an iMRF using the standard bootstrap scheme and the scaled

aggregation approach. In Table 5.1 we see the permutation variable importance of each variable
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Planted Emerged Silking Dough Dented Mature Harvested
TIME 8.097 8.916 13.753 11.033 9.660 7.270 4.117
AGDD 0.341 0.385 0.662 0.356 0.257 0.238 1.428
ADL 0.325 0.318 0.567 0.768 0.885 0.757 0.761
AP 0.018 0.008 -0.002 -0.002 -0.002 0.002 0.0004
AVP 0.021 0.014 0.018 0.006 0.003 0.003 0.015
NDVI 0.039 0.181 0.043 0.062 0.754 3.767 5.347

TABLE 5.1: Permutation importance of variables for each phenological stage

for each phenological stage. Note that since the Pre-Season stage is added artificially, we are not

interested in identifying the most informative variables for predicting the CPR statistics of this stage.

The results indicate that calendar time is by far the most important variable. Thermal time and

photoperiod are important variables for all phenological stages, while NDVI is mostly important for

Emerged, Dented, Mature and Harvested stages. This is reasonable because NDVI is sensitive to

changes in the chlorophyll levels of the vegetation, so we expect it to be highly influential for the

last phenological stages. Furthermore, Emerged is the first phenological stage at which chlorophyll

is visible from the satellite sensors and this explains why NDVI’s importance for this stage is slightly

larger. On the other hand, precipitation and vapor pressure do not appear to be significant factors in

predicting the CPR statistics for any of the phenological stages, so we excluded these input variables

from the rest of our analysis.
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FIGURE 5.1: Hypertuning for iMRF. The optimal combination of mtry and nodesize
parameters is denoted by X.

Independent MRF results

Implementing algorithm 5.1 for iMRF using the remaining 4 covariates, the standard bootstrapping

scheme and the scaled aggregation approach, gives the results shown in Figures 5.1, 5.2. More specif-

ically, in Figure 5.1 the results from the hypertuning procedure are presented. In general, large values

for mtry and small values for nodesize parameters yielded smaller OOB errors, suggesting that learn-

ing the training data adequately is a good strategy for fine generalization performance. The optimal

combination for this approach is mtry = 4 and nodesize = 2.
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FIGURE 5.2: Cumulative RMSPE across phenological stages for each week of the study.

In Figure 5.2 we see the cumulative RMSPE across the stages for each week, that is ∑S
s=1 RMSPEws.

For instance, for week 20 the total RMSPE across all stages is approximately 0.2 (≃ 0.12 for Planted,

0.08 for Preseason and 0 for all other stages). We also see that there exist some periods with low RM-

SPEs and others with large ones. This is because, for some weeks of almost every growing season,

all plants occupy the same phenological stage. For instance, for all growing seasons of our study, the

majority of plants occupy the Emerged phenological stage at week 25, which typically corresponds

to late June (see also Figure 1.9). Hence, for these time periods, the inter-season variance of the CPR

statistics is small and that explains the low prediction errors. On the contrary, at periods when plants

occupy many different phenological stages, there is ambiguity regarding the percentage of plants

occupying each phenological stage and that is why prediction error at these periods is larger.

What is more, the large prediction errors during the last week of the growing season can be ex-

plained by the lack of available data for this week. As already shown in Table 1.1, data for week

52 come exclusively from season 2009. Therefore, if season 2009 is not included in N m
train, then the

random forest is not trained in this week at all and the corresponding prediction is poor. A similar

argument holds for weeks 50 and 51 for which we have available data from 9 and 17 seasons respec-

tively, but to a smaller extent than week 52. At this point, we should make clear that such pathogenic

situations should be accounted for and caution is needed especially when performing extrapolation.
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FIGURE 5.3: Standard vs Subject-Level-Bootstrap for iMRF. The ARMSPEs are 10.25%
and 10.53% respectively.

Bootstrap selection

In Figure 5.3 the two different bootstrap schemes are compared. We see that the use of subject-level

bootstrap brings no improvement for most weeks of the study. On the contrary, for the last weeks of

the study, the standard bootstrap scheme performs better in terms of prediction error. These results

can be explained by the fact that the subject-level bootstrap exploits the inter-subject variability to

induce a further level of randomness. In other words, building each tree without using observations

from all subjects, preserves the variability between the subjects within each bootstrap replicate and

guarantees that the decorrelation effect of theorem 4.2 will be substantial.
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FIGURE 5.4: Evolution of the CPR statistics and covariates for the first 5 growing sea-
sons.

In our case, however, inter-growing season variability is small. The evolution of the CPR statistics

shown in Figure 1.9 is similar for all growing seasons and the same holds for the evolution of the

covariates. This is illustrated in Figure 5.4. For the sake of readability, only the Emerged stage and

the first 5 growing seasons are considered.

FIGURE 5.5: Scaled vs Unscaled aggregation for iMRF. The corresponding ARMSPEs
are 10.25% and 9.62%
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Aggregation scheme selection

In Figure 5.5, we compare the aggregation approaches for the iMRF. For the sake of comparison,

we use the same hyperparameters and the same bootstrap protocol, namely the standard bootstrap

scheme. In general, the two aggregation approaches gave similar results for most weeks of the study.

This result is in line with the findings of Sage et al. (2020), who pointed out that for regression prob-

lems, the two approaches have similar performance. However, for the last weeks of the study, the

unscaled approach clearly outperforms the scaled one, suggesting that even if a season is not in-

cluded in many of the decision trees in a random forest, information for predicting it is extracted

from decision trees that include that season.

FIGURE 5.6: iMRF vs iMRF - ET. The ARMSPEs are 9.62% and 9.49% respectively.

Randomization effect

We also considered implementing the Extremely Randomized Trees for the case of iMRF. The re-

sulting model is denoted by iMRF-ET. We used the default option of randomForestSRC package in

R for choosing the value of Nsplit which corresponds to choosing 10 random candidate thresholds

(Ishwaran et al., 2021a). The results are shown in Figure 5.6. We notice that introducing random-

ization in the splitting procedure not only reduces computational costs but also improves predictive

performance for several weeks.
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5.2.2 Correlated MRF

As already mentioned, the iMRF approach uses equation 3.14 to split each node. However, incorpo-

rating the correlations among the output variables into the splitting procedure, may yield random

forests with better predictive performance, especially when these correlations are substantial. There-

fore, another approach we consider is replacing impurity criterion 3.14 with 3.16. Once again, we

use standard bootstrap and the scaled aggregation approach. The resulting approach is denoted by

cMRF. For our data, the correlation matrix is shown in Table 5.2. As expected, the CPR percentages

for each stage are highly correlated with the CPR percentages of the immediately preceding and

upcoming stages.

FIGURE 5.7: cMRF (9.75%) vs cMRF-ET (9.55%).

Planted Emerged Silking Dough Dented Mature Harvested
Planted 1.000 0.937 0.547 0.470 0.414 0.339 0.266
Emerged 0.937 1.000 0.647 0.555 0.489 0.401 0.314
Silking 0.547 0.647 1.000 0.922 0.819 0.671 0.526
Dough 0.470 0.555 0.922 1.000 0.954 0.800 0.628
Dented 0.414 0.489 0.819 0.954 1.000 0.907 0.720
Mature 0.339 0.401 0.671 0.800 0.907 1.000 0.876
Harvested 0.266 0.314 0.526 0.628 0.720 0.876 1.000

TABLE 5.2: The correlation matrix for the response variables.



90 Chapter 5. Results

Randomization effect

In Figure 5.7 we examine the impact of randomizing the splitting procedure for the case of cMRF.

As with iMRF, we notice that Extremely Randomized Trees seem to work better for most weeks of

the study. Note that for both cMRF and cMRF-ET we used standard bootstrap and the unscaled

aggregation approach.

FIGURE 5.8: iMRF-ET (9.49%) vs cMRF-ET (9.55%).

Correlation effect

In Figure 5.8 we compare iMRF-ET with cMRF-ET. We see that incorporating the correlations of the

response variables into the splitting procedure does not systematically produce lower errors.

In conclusion, regarding the multivariate approaches, we saw that using Extremely Randomized

Trees yields better results in terms of both generalization and computational performance. What is

more, concerning the correlated approaches (cMRF, cMRF-ET), we would say that their predictive

performance does not compensate for the additional computational cost introduced by the use of the

generalized inverse matrix at each split. Therefore, iMRF-ET seems to be the best choice overall, so

this will be the multivariate approach to be compared with the stage random forests in the following

section.
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5.3 Stage Random Forest

All approaches presented so far simultaneously construct a single random forest for all phenological

stages. Therefore, for all stages, all 4 covariates (calendar time, thermal time, day length and NDVI)

are used to predict their CPR percentages. In this section, we present two additional approaches to

the CPSPP. Both of them construct a univariate random forest for each phenological stage separately.

In other words, here we assume that the percentages of each phenological stage are related with the

features with a function fs, which may differ from one stage to another.

Doing so provides flexibility in the choice of both the covariates used for predicting the CPR

percentages for each stage and the hyperparameters used for each of the random forests. This is

desirable, since, as already shown in Table 5.1, the impact of each predictive feature in predicting the

CPR percentages changes throughout the growing season. Therefore, in a stage random forest we

may replace X with Xs in equation 5.1:

Ys = fs(Xs) + ϵs, s = 2, 3, . . . , 8, (5.2)

with the hope of improving predicting performance. What is more, hypertuning can now be per-

formed for each random forest separately, allowing for more personalization.

5.3.1 Standard Random Forest

The first stage approach trains a standard Random Forest for each phenological stage. We use stan-

dard bootstrap and the scaled aggregation scheme. The resulting approach is denoted by SRF.

Like the methods presented in the previous section, this approach is also implemented using the

randomForestSRC package. To exploit the advantage of using a distinct set of covariates for each

stage, we use NDVI only for the prediction of the phenological stages that seems to be associated

with (as shown in Table 5.1, namely the Emerged, Dented, Mature and Harvested stages.
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Randomization effect

FIGURE 5.9: SRF (9.66%) vs SRF-ET (9.33%).

In Figure 5.9, we investigate whether using Extremely Randomized Trees improve results. Once

again, we notice that ETs do improve results for most weeks of the growing season, yielding a lower

ARMSPE by 0.33%.
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Stage vs Multivariate Random Forest

FIGURE 5.10: SRF-ET (9.33%) vs iMRF-ET (9.49%).

In Figure 5.10 we compare the SRF-ET with iMRF-ET, that is, the best-performing approaches of stage

and multivariate random forests respectively. We observe that, indeed calibrating the covariates

and the hyperparameters used for each phenological stage separately, improves predictions. Yet,

there is still room for improvement before we say that stage random forests clearly outperform the

multivariate ones.

5.3.2 Historical Random Forest

As a last approach to the CPSPP we considered constructing a historical random forest for each phe-

nological stage. We denote this approach by HRF. The splitting procedure followed for this approach

is the one described in section 4.3.3. HRF is implemented using the htree package of R (Sexton, 2018).

Note that, as opposed to the randomForestSRC package, htree does not provide any options regard-

ing the choice of the bootstrap scheme and aggregation approach. Concerning the former, htree

package uses subject-level subsampling, so each tree is built on a random subsample of size α drawn

without replacement from the initial learning set. As for the latter, the scaled aggregation approach is

used.
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FIGURE 5.11: Time interval during which the average CPR percentages for Emerged
stage exceed a threshold p0.

Choice of lags

For the choice of lags used in equation 4.11, we use 3 different options. The first is to look at the

immediately preceding value of each covariate. The second one is to look back as many days as

the number of days that the average percentage of each phenological stage exceeds a pre-specified

threshold p0 (see also Figure 5.11) and the third is to look at the entire history from the beginning of

the growing season. In other words, we use a different set of lags Ds for the different random forests

applied for each phenological stage. In particular, for a given time moment tij we use:

Ds = {δ1, δs
2, δ3},

where

δ1 = 1, δs
2 =

∣∣∣∣∣
{

j : ∑
i∈Ntrain

yijs

Ntrain
> p0

}∣∣∣∣∣ , δ3 = tij − ti1

In our study, we set p0 = 0.1. However, any value in the interval [0, 0.15] yielded similar results in

our analysis.
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Standard vs Historical Random Forest

FIGURE 5.12: SRF-ET (9,33%) vs HRF (9.21%)

Figure 5.12 presents a comparative analysis between the historical stage random forest (HRF) and

the standard random forest (SRF-ET). The observed performance of HRF surpasses that of SRF-ET

in numerous weeks. Although there are instances where SRF-ET outperforms HRF, the ARMSPE of

HRF is 0.11% lower. It is strongly hypothesized that this reduction would have been more significant

if the restrictions pertaining to bootstrap selection and aggregation schemes were not in place.
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Chapter 6

Conclusions

This thesis aimed to provide an efficient solution to the CPSPP along with a comprehensive presen-

tation of the methodology used. To this end, we posed our problem within the machine learning

framework, we studied the induction of decision trees and random forests and discussed different

approaches regarding bootstrapping, splitting and aggregation. The different options were com-

pared on their performance on the CPSPP using both stage and multivariate random forests.

Concerning the sampling strategy, we saw that subject-level bootstrap did not outperform the

standard one, due to the small variability between the growing seasons. Regarding aggregation, we

observed minor differences between the scaled and the unscaled approaches for most weeks of the

growing season. However, the latter performed clearly better in weeks when there was an absence

of data. Contrary to the bootstrap scheme and aggregation approach, randomizing the choice of

the cut-point during splitting, turned out to be more influential, improving both computational and

predictive performance in all cases.

Comparing the multivariate random forest with the stage ones, we saw that the flexibility invoked

by using a distinct set of covariates and hyperparameters improved to some extent the results of the

MRF. Implementing the historical splitting, further improved results, achieving the best predictive

performance among all the RF-based approaches discussed so far. It is our belief though, that a

software implementation that allows users to choose the sampling and aggregation schemes would

improve the results of HRF. Yet, creating one such statistical software is beyond the scope of this

thesis.

In the near future, we are going to implement more RF-based approaches to the CPSPP that are

appropriate to deal with repeated measurements. One such approach is the Repeated Measurements

Random Forest (RMRF) proposed by Calhoun et al. (2021), which uses a hypothesis test to split

each node following the idea of Hothorn et al. (2006) for more statistically oriented random forests.

Other approaches are the Generalized Mixed-Effects Random Forest (GMERF) proposed by Pellagatti

et al. (2021) or the so-called DynForest (DRF) approach recently proposed by Devaux et al. (2023). A
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common aspect within all these approaches is that they involve the training of a GLM or a GLMEM

either to split each node (RMRF, DRF) or to estimate the residuals in equations 5.1, 5.2 (GMERF).
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