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Περίληψη στην ελληνική

Το θέμα της παρούσας εργασίας είναι μια καινοτόμα τεχνική για τη μετάδοση και εστίαση
ενέργειας στη μικρο- και νανοκλίμακα, ειδικότερα για τη μετάδοση φωτός διαμέσου
οπών ή σχισμών στο βαθύ υποπεριθλαστικό καθεστώς (δηλ. σημαντικά μικρότερων
του μήκους κύματος λειτουργίας). Αυτή η τεχική έχει πολλά σημαντικά πλεονεκτήματα
έναντι των συμβατικών τεχνικών για τον ίδιο σκοπό, και θα μπορούσε να επηρεάσει
θετικά την ανάπτυξη του ευρύτερου κλάδου των νανοφωτονικών εφαρμογών.

Η μετάδοση και εστίαση φωτός στη μικρο- και νανοκλίμακα είναι στον κορμό
πολλών σύγχρονων εφαρμογών : οπτική εγγραφή/αποθήκευση δεδομένων, θερμικά υπο-
βοηθούμενη μαγνητική εγγραφή (HAMR1), νανοεικονοσκόπηση, φασματοσκοπία, αι-
σθητήρες, οπτική ή θερμική νανοσκοπία κοντινού πεδίου, λιθογραφία με πρόμπες θερ-
μικής ανίχνευσης, θερμομετρία νανοκλίμακας, και άλλες όπως αυτές. Σε όλες αυτές τις
εφαρμογές, υπάρχει η απαίτηση να εστιαστεί με υψηλή απόδοση ισχύς ∼ 100 μW σε
μια περιοχή ∼ 10 nm (ή μικρότερη) μιας επίπεδης επιφάνειας. Αυτή είναι μια ένταση
φωτός εξαιρετικά υψηλή, πολλές τάξεις μεγέθους μεγαλύτερη από τη φωτεινή ένταση
που συναντάται στα καθημερινά φυσικά φαινόμενα (π.χ., την ένταση του ηλιακού φωτός
στην επιφάνεια της γης, ή τη φωτεινή ένταση που επιτυγχάνεται με έναν οπτικό φακό).
Η Οπτική θέτει ένα κατώφλι στο φως που μπορεί να μεταδοθεί και να εστιαστεί από
μια οπή δοθείσης διαμέτρου (σχέση του Bethe [22]) ˙ αυτό το κατώφλι καθιστά τις
προαναφερθείσες εφαρμογές πολύ δύσκολο να πραγματοποιηθούν. Η καθιερωμένη
τεχνολογία για την εστίαση του φωτός στη νανονκλίμακα είναι οι κωνικές οπτικές ίνες
με επικάλυψη χρυσού, ευρέως χρησιμοποιούμενες σταΟπτικάΜικροσκόπιαΑνίχνευσης
ΚοντινούΠεδίου (NSOMs2). Η απόδοση της οπτικής μετάδοσης του άκρου μιας NSOM
πρόμπας είναι τυπικά μεταξύ 10−5 - 10−4 (ή μικρότερη). Ακόμη και η επίδοση των lasers
είναι μακριά από την απόδοση της μετάδοσης που απαιτείται εδώ3.

Η προκείμενη προταθείσα τεχνική, καλούμενη APOTUS-HM4, είναι ένας τρόπος
να ξεπεραστεί το κατώφλι που τίθεται από τη σχέση τουBethe. ΗAPOTUS-HMπαρέχει
έναν συντελεστή μετάδοσης ασύγκριτα μεγαλύτερο από άλλες καθιερωμένες τεχνικές,
ο οποίος ιδεατά προσεγγίζει τη μονάδα ˙ ταυτόχρονα η βασική της ιδέα είναι απλή και
αρκετά εύκολο να υλοποιηθεί στην πράξη. Η APOTUS-HM θεμελιώνεται σε τρεις
βασικούς πυλώνες : (i) μονοκατευθυντικότητα στη διάδοση, (ii) προστασία από τη δια-

1 HAMR : Heat-Assisted Magnetic Recording
2 NSOM : Near field Scanning Optical microscope
3 Π.χ., ένα φτηνό laser διόδου 10 mW έχει αποδοτικότητα μετάδοσης ∼ 1% για μια περιοχή d ≥ 200
nm ˙ ωστόσο, αυτή εξακολουθεί είναι μια πολύ μεγάλη διάμετρος για την απαιτούμενη στις περιπτώσεις
που αναφέρθηκαν εδώ.

4 APOTUS-HM: Almost Perfect Optical Transmission through Unstructured Single Hole Method
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σπορά, και (iii) εξαιρετική οπτική μετάδοση (EOT5). Η βασική αρχή της APOTUS-
HM είναι ως ακολούθως. Χρησιμοποιοώντας ειδικά υλικά επιβάλλεται σε ένα κύμα
να διαδοθεί σε έναν κυματοδηγό μόνον έμπροσθεν, μονοκατευθυντικά. Στο τέλος του
κυματοδηγού υπάρχει μια οπή με την κατάλληλη διάμετρο για την εστίαση. Όταν το
κύμα φτάσει στο πέρας του κυματοδηγού, καθώς δεν μπορεί να κινηθεί προς τα πίσω,
εξαναγκάζεται να διέλθει από την οπή, ανεξάρτητα από το πόσο μικρή είναι, και άρα να
εστιαστεί μπροστά της.

Παρά την απλότητα της παραπάνω ιδέας, για να υλοποιηθεί επιτυχώς μια συσκευή
APOTUS-HM υπάρχουν πολλά λεπτά θεωρητικά θέματα που πρέπει να μελετηθούν και
να κατανοηθούν. Στην προκείμενη εργασία γίνεται μια προσπάθεια να παρουσιαστεί
πώς να εφαρμοστούν αποτελεσματικά τα τρία θεμέλια που αναφέρθηκαν παραπάνω και
η βασική θεωρία πίσω από αυτά, δίνοντας με αυτόν τον τρόπο ένα υπόβαθρο για την
καλύτερη κατανόηση και περαιτέρω βελτίωση της τεχνικής ˙ και βέβαια δίνονται λεπτο-
μέρειες αριθμητικών προσομοιώσεων βασικών συσκευών (μοντέλων) για την τεχνική.

Η μονοκατευθυντικότητα και η προστασία της διάδοσης από διασπορά επιτυγχά-
νεται χρησιμοποιώντας τοπολογικά υλικά. Το πρώτο και δεύτερο κεφάλαιο είναι μια
γενική εισαγωγή στα τοπολογικά υλικά και σε μερικές πολύ σημαντικές παραμέτρους
που τα χαρακτηρίζουν. Ειδικότερα, εισάγονται και συζητώνται εκτενώς η φάση Berry
και οι αριθμοί Chern. Παρουσιάζονται εν συντομία μέθοδοι για τον αριθμητικό τους
υπολογισμό. Εισάγεται η ιδέα του τοπολογικού υλικού, και μεταξύ άλλων συζητείται η
σχέση της με τη χρονική συμμετρία και την Αρχή Ανταπόκρισης Όγκου-Ακμής (Bulk-
Edge Correspondence Principle).

Το τρίτο κεφάλαιο είναι μια σύνοψη διαφόρων εφαρμογών – κάποιες εκ των οποίων
πολύ ενδιαφέρουσες – που έχουν τα τοπολογικά υλικά στη Φωτονική. Η APOTUS-HM
θα μπορούσε να βελτιώσει την απόδοση σε πολλές εξ αυτών.

Το τέταρτο κεφάλαιο είναι αφιερωμένο στη εξαιρετική οπτική μετάδοση (EOT). Η
ΕΟΤ είναι ένα κρίσιμο φαινόμενο για την APOTUS-HM καθώς λαμβάνει χώρα εκτενώς
σε αυτή και αυξάνει τον συντελεστή μετάδοσης. Παρόλο που η EOT έχει ερευνηθεί
εκτενώς σε πολλές μελέτες, εν προκειμένω είναι χρήσιμη μια ανασκόπηση των βασικών
της χαρακτηριστικών. Επίσης, αναπαρήχθησαν μερικά αποτελέσματα της EOT για να
αποκτηθεί διαίσθηση και να εκτιμηθεί καλύτερα ο ρόλος της στην APOTUS-HM.

Στο πέμπτο κεφάλαιο τέλος, εισάγεται και μελετάται η APOTUS-HM σε όλες τις
πτυχές της. Παρουσιάζονται οι βασικές της ιδέες, και συζητώνται μοντέλα δομών που
μπορούν να υλοποιηθούν στην πράξη. Καταρχήν, παρουσιάζονται εν συντομία μερικές
ιδιότητες των επιφανειακών μαγνητοπλασμονίων (SMPs6), καθώς τα SMPs είναι άλλο
ένα βασικό συστατικό της προκείμενης τεχνικής και δεν είναι τόσο γνωστά όσο τα
επιφανειακά πλασμονικά πολαριτόνια (SPPs7). Αναπτύσσεται μια υποστηρικτική θεωρία8,
μικρή και απλή, αλλά αρκετά “έξυπνη”, η οποία αφορά τη χρονική σύζευξη των ρυθμών.
Αυτή η θεωρία δείχνει ότι η μετάδοση με την APOTUS-HM είναι επί της αρχής ανεξάρ-
τητη από το πόσο μικρή είναι η οπή (μόνον οι απώλειες και η θέση της οπής παίζουν
ρόλο). Σε μερικές δομές τηςAPOTUS-HMείναι απαραίτητη η χρήση τέλειου μαγνητικού

5 EOT : Extraordinary Optical Transmission
6 SMP : Surface MagnetoPlasmon
7 SPP : Surface Plasmon Polariton
8 Αυτή η μικρή θεωρία είναι ουσιαστικά η θεωρητική θεμελίωση πώς ξεπερνάται το κατώφλι του Bethe.
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αγωγού (PMC9) ως επικάλυψη του κυματοδηγού, σε αντίθεση με τον τέλειο ηλεκτρικό
αγωγό (PEC10) που χρησιμοποιείται συνήθως. Οι PMCs δεν υπάρχουν στη φύση, έχουν
ειδικές ιδιότητες και η υλοποίησή τους δεν είναι τετριμμένη11. Για την πληρότητα του
κειμένου, μια ενότητα αυτού του κεφαλαίου είναι αφιερωμένη στις βασικές ιδιότητες
των PMCs. Παρουσιάζονται προσομοιώσεις δομών που μπορούν να χρησιμοποιηθούν
για την υλοποίηση συσκευών APOTUS-HM και μελετώνται οι βασικές τους ιδιότητες
που αφορούν τη μετάδοση, διάδοση και διασπορά, σε 2D και 3D περιπτώσεις.

Συμπερασματικά, τα αποτελέσματα είναι πολύ ενθαρρυντικά και δείχνουν ότι η
υπέρβαση του κατωφλίου Bethe με την APOTUS-HM είναι εφικτή, και δίχως κανένα
σοβαρό περιορισμό επί της αρχής. Σύμφωνα με την αναπτυχθείσα υποστηρικτική θεωρία,
η μετάδοση μέσω μιας μικρής οπής με την APOTUS-HM δεν εξαρτάται από το πόσο
υποπεριθλαστική είναι η οπή, και έχει έναν συντελεστή μετάδοσης που πλησιάζει ακόμη
και τη μονάδα. Αυτό το αποτέλεσμα είναι αξιοσημείωτο και ως τώρα δεν έχει ποτέ
παρατηρηθεί ή επιτευχθεί στον κλάδο της Φωτονικής, ακόμη και με τις καλύτερες διαθέ-
σιμες τεχνικές (χρήση SPPs και EOT φαινόμενα, κωνικές οπτικές ίνες κλπ) όπου η
μετάδοση στο βαθύ υποπεριθλαστικό καθεστώς είναι πρακτικά αμελητέα12. Συνεπώς,
παρόλο που πολλά απομένει να γίνουν για τηνωριμότητα της τεχνικής, όπως σημειώθηκε
νωρίτερα η APOTUS-HMμπορεί να έχει μια σημαντική επίδραση στον ευρύτερο κλάδο
της Φωτονικής (EOT και τοπολογικοί κυματοδηγοί) και των εφαρμογών της στη μίκρο-
και νανοκλίμακα γενικότερα.

Νοέμβριος 2023, Αθήνα,

Κωνσταντίνος Μπασκουρέλος

9 PMC : Perfect Magneti Conductor
10 PEC : Perfect Electric Conductor
11 Η χρήση των PMCs, οπουδήποτε χρειάζεται, είναι πιθανόν ένα από τα ελάχιστα μειονεκτήματα της
τεχνικής. Ωστόσο, επισημαίνεται ότι σε πολλές από τις εξεταζόμενες δομές η χρήση των PMCs δεν
υφίσταται καν.

12 Για παράδειγμα, με συμβατικές τεχνικές, μετάδοση από οπές ∼ λeff/50 έχει συντελεστή μετάδοσης
της τάξης 10−4 ή μικρότερο.



Abstract

The subject of the herein thesis is a novel technique for the transmission and focusing
energy in micro- and nanoscale, particularly for the transmission of light through holes
or slits in the deep subdiffractional regime (i.e., significantly smaller than the operating
wavelength). This technique has many important advantages versus the conventional
techniques for the same task, and it could affect positive the evolving of the wider field
of the nanophotonic applications.

The transmission and focusing of light in the micro- and nanoscale is in the core of
many contemporary applications : optical data writing/storage, heat-assisted magnetic
recording (HAMR), nanoimaging, spectroscopy, sensing, near-field scanning optical or
thermal nanoscopy, thermal scanning probe lithography, nanoscale thermometry, and
others such these. In all these applications, there is the requirement to focus with high
efficiency ∼ 100 μW of power to a ∼ 10 nm (or less) spot on a planar surface. This is
a light intensity extremely high, many orders of magnitude larger than the light inten-
sity encountered in everyday physical phenomena (e.g., the intensity of sunlight on the
surface of the earth, or the light intensity attained with an optical lens). Optics poses a
threshold to the light that can be transmitted and focused from a hole of given diameter
(Bethe’s relation [22]) ˙ this threshold makes the aforementioned applications very diffi-
cult to realize. The standard technology attaining the focusing of light in the nanoscale
is the gold-coated tapered optical fibers, widely used in Near-field Scanning Optical
Microscopes (NSOMs). The optical transmission efficiency of NSOM probe tips is typi-
cally between 10−5 - 10−4 (or less). Even the performance of lasers is far away from the
transmission performance required here13.

The herein proposed technique, called APOTUS-HM14, is a way to overcome the
threshold posed by Bethe’s relation. APOTUS-HM provides a transmission coefficient
incomparable higher than the other established techniques, that ideally approaches unity;
at the same time its basic idea is simple and quite easy to realize in practice. APOTUS-
HM is founded on three main pillars : (i) unidirectionality in propagation, (ii) immunity
in dispersion, and (iii) extraordinary optical transmission (EOT). The basic principle of
APOTUS-HM is as follows. Using special materials it is imposed to a wave to propagate
in a waveguide only forwards, unidirectionally. At the end of the waveguide there is a
hole with the appropriate diameter for the focusing. When the wave arrives at the end
of the waveguide, as it cannot move backwards, it is forced to pass through the hole, no
matter how small the hole is, and thereby to be focused in front of it.

13 E.g., an inexpensive 10 mW diode laser has transmission efficieny ∼ 1% for a spot of d ≥ 200 nm;
however, this is still a very large diameter for what is required in the cases mentioned here.

14 APOTUS-HM: Almost Perfect Optical Transmission through Unstructured Single Hole Method
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Despite the simplicity of the above idea, to realize successfully an APOTUS-HM
device, there are many subtle theoretical topics that must be studied and understood. In
the herein thesis it is made an attempt to present how to implement efficiently the three
pillars of the technique mentioned above and the basic theory behind them, giving in
this way a background for the better understanding and further improving the efficiency
of the technique; and of course give details of numerical simulations of basic devices
(models) for the technique.

The unidirectionality and immunity of propagation in dispersion is attained using
topological materials. The first and the second chapters are a general introduction to the
topological materials and to some very important parameters characterizing them. In
specific, the Berry phase and the Chern number are introduced and thoroughly discus-
sed. Methods for their arithmetic computation are presented briefly. The concept of the
topological material is introduced, and its relation with the time reversal symmetry and
the bulk-edge correpsondence principle is discussed among others.

The third chapter is somehow a synopsis of many applications – some of them very
intriguing – have the topological materials in the discipline of Photonics. APOTUS-HM
could further improve the efficiency many of them.

The fourth chapter is devoted to the extraordinary optical transmission (EOT). EOT
is a crucial phenomenon for APOTUS-HM since takes place extensively in it and incre-
ases the transmission coefficient. Athough EOT has been investigated quite well inmany
references, here it is very usefull a review of its main aspects. Also, some important
results of EOT have been reproduced to gain intuition and appreciate better its role in
APOTUS-HM.

In chapter five at last, the APOTUS-HM is introduced and studied, in all its aspects.
Its basic ideas are presented, and models of structures that can be realized in practice are
discussed. Firstly, some properties of the surface magnetoplasmons (SMPs) are briefly
presented, as SMPs are another basic component of the herein technique and are not so
well known as the surface plasmon polaritons (SPPs). A supporting theory, small and
simple, but quite neat, concerning the temporal coupling of modes is developed15; this
theory shows that the transmission with APOTUS-HM is in principle independent of
how small the hole is (only the losses and the position of the hole play role). In some
structures of APOTUS-HM it is necessary to use perfect magnetic conductor (PMC) as
coating for the waveguide, in contrast to perfect electric conductor (PEC) as usually.
PMCs do not exist in nature, they have special properties and their realization is not
trivial16. For the integrity of the text, a section of this chapter is devoted to the basic
properties of PMCs. Simulations of structures that can be used to realize APOTUS-
HM devices are presented and their properties concerning transmission, propagation
and dispersion are studied, in 2D and 3D cases.

In conclusive, the results are very ecnouranging and show that overcoming Bethe’s
threshold with APOTUS-HM is feasible, and without any serious limitation in principle.
According to the developed supportive theory, the transmission through a tiny hole with
APOTUS-HM does not depend on how subdiffractional the hole is, and has a transmis-
sion coefficient that can even reach unity. This result is remarkable, never observed or

15 This small theory is in fact the theoretical foundation of how to overcome Bethe’s threshold.
16 The use of PMCs, wherever is needed, is perhaps one of the very few disadvantages of the technique.
However, it is noted that in many of the examined structures the use of PMCs does not exist at all.
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attained until now in the entire area of Photonics, even with the best available techniques
(use of SPPs and EOT phenomena, tapered optical fibers etc) where the transmission in
the deep subdiffractional regime is practically negligible17. Therefore, although much
remains to be done for the maturity of the technique, as noted earlier APOTUS-HM
could have a significant impact on the wider discipline of Photonics (EOT and topolog-
ical waveguides) and its applications in micro- and nanoscale in general.

November 2023, Athens,

Konstantinos Baskourelos.

17 For example, with the competitive techniques, transmission through∼ λeff/50 holes has transmission
coefficient of order 10−4 or less.



3-member Examination Committee
18Kosmas L. Tsakmakidis, Assist. Prof. (main supervisor)
18Nikolaos Stefanou, Prof.
19Tomasz Stefański, Assoc. Prof.

7-member Examination Committee
18Kosmas L. Tsakmakidis, Assist. Prof.
18Nikolaos Stefanou, Prof.
19Tomasz Stefański, Assoc. Prof.,
18Dimosthenis Stamopoulos, Assoc. Prof.,
18Ioannis Lelidis, Assoc. Prof.,
18Dimitrios Frantzeskakis, Prof.
20Maria Kafesaki, Prof.

18 Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University
of Athens, Panepistimioupolis, GR-157 84 Athens, Greece.

19 Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology,
80-233 Gdansk, Poland.

20 Department of Materials Science and Technology, University of Crete, GR-70013 Heraklion, Crete,
Greece.

10



1. Berry phase and Chern number :
rudiments and their significance

1.1 Inroduction

The Berry phase, also referred sometimes as “geometric” or “Pancharatnam” phase, is a
phase angle1 that describes the global phase evolution of a complex vector as it moves
in a path in its vector space. It was intrduced for the first time by Pancharatnam [188]
in 1956 ˙ many years later, at 1980s, Berry and others systematized and popularized
the concept in a series of publications [21, 266]. A quite deep study of Berry phase
can be found in texts on Differential Geometry and Topology in Physics, such as [60],
[68] and [174], where other related topics (fiber bundles, connections, Berry curvatures
etc.) and their relation with Berry phase are also discussed. Berry phase is used in
many branches of Physics : Condensed Matter, Atomic and Molecular Physics, Nuclear
Physics, Classical Optics and Photonics, to name themost prominent. In specific, its role
in the theory of topological band insulators is very important as it is used extensively in
the formalism of adiabatic phases which constitute a keystone in this theory.

1.2 Berry phase and connection, gauge invariance
and parallel transport

As was mentioned above, Berry phase is an angle which indicates how a global phase
accumulates as a complex vector is moving in a path3 in its vector space. In the herein
study, the interest is exclusively in phases; so, for simplicity, the complex vectors are

1 It takes values in the interval [0, 2π).
2 according to the terminology of the Landauer–Büttiker formalism.
3 The case of a closed path is that interest most, and is the most usual.

11

The purpose of this chapter is to introduce in detail the Berry phase and its close
related quantities Berry connection and curvature. Τhe Chern number is also introduced;
this is a crucial topological invariant which defines the open edge-state channels2 of
a topological insulator. Finally, the concept of topological properties of materials is
introduced, and some fundamentals for the arithmetic computation of Berry phase and
Chern number are briefly discussed. The presentation below follows [252].
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considered to be unit vectors, and identified with the ground state wavefunction of a
quantum system. Typical examples is a vector representing the ground state of electrons
in a molecule with fixed nuclear coordinates, a vector representing the spinor in an exter-
nal magnetic field etc. In the aforementioned systems, let consider a gradual variation
of the nuclear coordinates or magnetic field, in a way that the system at the end of the
path returns to its starting point.

For example, consider a triatomic molecule that is almost equilateral; for some
reason a distortion appears and one of the three bonds is shortened slightly and becomes
the strongest; then it frees up and the distortion moves to the next bond. This process
sweeps all the three bonds, one at a time, starts again and continues in this manner indefi-
nitely. The distortion corresponds to the ground state of the molecule, and the requested
is to find the phase evolution of this ground state as it moves cyclically around the bonds.

Figure 1.1: Εvolution of the ground state |u0⟩ of a triatomic molecule as a distor-
tion is carried cyclically around its bonds.

As another example, consider the evolution of the ground state of a spinor (e.g., an
electron or proton) in an external magnetic field as the direction of this field varies in a
closed path on the unit sphere.

Such a cyclic variation is shown schematically in Fig. 1.2, where in the path of
vector are indicated N = 8 states, |u0⟩,...,|u7⟩, with |u8⟩ = |u0⟩. In cases like these, the
Berry phase encodes information about the phase evolution of the ground state along the
path of interest.

Figure 1.2: Evolution of a complex unit vector |u⟩ in a closed path in parameter
space.
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1.2.1 Discrete case

For simplicity, let start the discussion of Berry phase with the case of discrete quantum
states. Consider a system with a status vector |u⟩ that varies in a closed path and its
evolution in this loop is represented byN snapshot vectors, |u0⟩,...,|uN−1⟩. An example
is the triatomic molecule sketched in Fig. 1.1 that has N=3. It is reminded that |uN⟩ =
|u0⟩ and that the vectors are complex and unit. Note also that for a complex number
z = |z0|eiϕ, the expression Im ln z = ϕ discards the magnitude and gives just the phase.
Then, the Berry phase ϕ is defined to be the sum of phases of the inner products of the
state vectors at the successive points on the path. This can be written as

ϕ = −Im ln
[
⟨u0|u1⟩⟨u1|u2⟩...⟨uN−1|u0⟩

]
. (1.1)

The minus sign in (1.1) is just a convention and is not adopted universally. Note that for
this definition the complex nature of the vectors is important; for real vectors the Berry
phase is trivially 0 or π depending on the sign of the product; in contrast, for complex
vectors can accumulate any value in [0, 2π).

As an example, consider the triatomic molecule of Fig. 1.1. Suppose that when the
molecule is undistorted there are two degenarate states |1⟩ and |2⟩, and that the distor-
tion breaks this degeneracy everywhere along the path; furhtermore, suppose that lower
energy of the two states for the snapshots shown in Fig. 1.1 are

|u0⟩ = |u3⟩ =
1√
2

[
1
1

]
, |u1⟩ =

1√
2

[
1

e2πi/3

]
, |u2⟩ =

1√
2

[
1

e4πi/3

]
(1.2)

where the top and bottom elements in the column vectors are respectively the ampli-
tudes of the basis states |1⟩ and |2⟩. For this configuration, the Berry phase is computed
trivially to be

ϕ = −Im ln
[
⟨u0|u1⟩⟨u1|u2⟩⟨u2|u0⟩

]
= −Im ln

[ (eπi/2
2

)3 ]
= −π (1.3)

or equivalently4 ϕ = π.
An important characteristic of the Berry phase is that it is independent of the choices

made for the phases of the individual vectors |uj⟩. Specifically, if a new set of N states
|ũj⟩ is introduced in the form

|ũj⟩ = e−iβj |uj⟩ (1.4)

where βj is real, then the Berry phase remains the same as for the old set |uj⟩. In (1.4)
the old vectors are related to the new ones by a j-dependent phase rotation βj . This
operation is a gauge tranformation in the Berry phase theory5; the Berry phase remains

4 As it is explained below, the Berry phase is well defined only modulo 2π.
5 The name refers to the use of the same term in the theory of Electromagnetism. In all cases, a particular
choice of gaugemay influence the intermediate results of a calculation but does not affect any physically
meaningful prediction.
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the same since any vector used in (1.1) appears once in a ket and once in a bra, so that
the phases e±βj cancel out. The gauge invariance of the Berry phase insinuates strongly
that it may be related with some physically observable phenomena.

Α detail notmentioned in the above discussion is the need to impose a branch choice
on the definition of Im ln z, as by restricting it to the interval −π < ϕ ≤ π. Adopting this
convention, (1.1) always gives a Berry phase lying in this interval, while the ostensibly
equivalent expression6

ϕ = −
N−1∑
j=0

Im ln⟨uj|uj+1⟩ (1.5)

can yield a result that differs by an integer multiple of 2π. From the viewpoint that ϕ is
just a shorthand for a phase angle, only cosϕ and sinϕ matter, and this distinction can
be safely ignored. However, in all practical calculations the phase angles are normally
mapped onto some interval on the real axis, and can be claimed only that the Berry phase
should be gauge-invariant modulo 2π in the context of an expression like that of (1.5).
This subject will be examined extensivelly bellow.

As can be seen from (1.1) and (1.5), the information carried by the Berry phase
is pumped only from the phase of the involved vectors. However, in the same manner
a corresponding function −Re ln

∏N−1
j=0 ⟨uj|uj+1⟩ can be defined for their magnitude7.

This function measures how much the nature of the states varies from point to point
along the path; in contrast, the Berry phase is related only to the relative phases along
the path.

Another remarkable characteristic of the Berry phase is its relation with the parallel
transport of the state vectors in a closed path; in fact, it could alternatively be defined
in this context. Consider a set of states |u0⟩, |u1⟩,...,|uN⟩ without a specific phase rela-
tion between them. Using a concept from Differential Geometry, a new set of “parallel
transported” states |ū0⟩, |ū1⟩,...,|ūN⟩ can be defined as follows. Set |ū0⟩ = |u0⟩. Then
set |ū1⟩ to be |u1⟩ times a phase chosen such that ⟨ū0|ū1⟩ is real and positive. Similarly,
set |ū2⟩ such that ⟨ū1|ū2⟩ is real and positive. Continue in this manner for all the vectors
of the path, imposing the constraint

Im ln⟨ūj|ūj+1⟩ = 0 (1.6)

for the successive vectors. At the end, set |ūN⟩ such that ⟨ūN−1|ūN⟩ is real and positive.
This process is a parallel transport gauge (PT gauge) transformation in the sense of
Berry phase8.

Assume that a set of states9 is given, forming a closed path as in Fig. 1.2. The

6 without a specific choice for the branch of ln.
7 It is reminded that the vectors are unit, so their inner products are smaller or maximally equal to unity.
8 As already noted, the term “parallel transport” comes from Differential Geometry, where it is imple-
mented choosing a local orthonormal basis of vectors at each point along a path on a curved manifold, in
such a way that the basis is “as aligned as possible” with its neighboring vectors everywhere along the
path. Here, the request “as aligned as possible” is interpreted in the sense of phase equality. Evidently,
(1.6) makes the relative phase of the two vectors to be 0 or π making them “parallel”.

9 From now on “states” and “vectors” will mean “state vectors” and will be used alternativelly as an
abbreviation.
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two vetors |u0⟩ and |uN⟩ are identical. Let this set is subjected to a PT gauge as des-
cribed above. Then, the two vectors |ū0⟩ and |ūN⟩ correspond to the same physical
state but they generally differ by a phase. This phase difference between |ū0⟩ and
|ūN⟩ is just the Berry phase. It is easy to prove this. Recall that (1.1) is gauge-inva-
riant; then, instead of the initial vectors, the PT gauge vectors |ū0⟩,...,|ūN−1⟩ can be
used, that is ϕ = −Im ln

[
⟨ū0|u1⟩...⟨ūN−1|ū0⟩

]
. Since |ū0⟩ and |ūN⟩ differ only by

a phase, the |ū0⟩ at the end of the product can be replaced10 by |ūN⟩⟨ūN |ū0⟩ to get
ϕ = −Im ln

[
⟨ū0|u1⟩...⟨ūN−1|ūN⟩⟨ūN |ū0⟩

]
. Then all inner products are real and posi-

tive11 except the last, so

ϕ = −Im ln⟨ūN |ū0⟩ . (1.7)

For example, for the set of states (1.2) it is

|ū0⟩ =
[
1
1

]
, |ū1⟩ =

[
e−πi/3

eπi/3

]
, |ū2⟩ =

[
e−2πi/3

e2πi/3

]
, |ū3⟩ =

[
−1
−1

]
(1.8)

where the irrelevant normalization coefficients have been dropped.
The Berry phase is ϕ = −Im ln

[
⟨ūN |ū0⟩

]
= π as before.

It is point out that the PT gauge is not unique, since the phase of the initial vector
|ū0⟩ can be choosen arbritrarily. The choice of initial phase propagates into |ūN⟩ through
(1.6); however, it does not affect the value of ϕ resulting from (1.7).

For the closed paths studying here, the PT gauge has an annoying disadvantage : it
produces a discontinuity on the vectors at the end of the path where the end and the start-
ing point rejoined. This discontinuity can be smoothed by constructing a twisted parallel
transport (TPT) gauge by starting from the PT gauge and applying phase twists12

|ũj⟩ = e−ijϕ/N |ūj⟩ . (1.9)

This gauge no longer produces discontinuity at the end of the loop. It has the property
that Im ln⟨ũj|ũj+1⟩ has the value −ϕ/N at every point on the loop, in consistency with
(1.5). In fact, what it does is to distribute uniformly the phase evolution along the loop
in such a way as to smooth the gauge discontinuity that otherwise would occur at the
end of the loop.

The TPT gauge seems to be quite restricted; however, it is less restricted than the
simple PT gauge for the following reason. In addition to rotating the phase of the initial
state |ū0⟩ (which results to a global rotation of all phases), now there is the possibility
to replace ϕ by ϕ + 2πm (where m is an integer) in (1.9). For example, taking m = 1
changes all the Im ln⟨ũj|ũj+1⟩ by−2π/N , which for largeN is much less than 2π. This
means that there is freedom to choose different ways to smooth the phase discontinuity

10 If a vector |w⟩ is unit as it happens here, then for a product ⟨a|b⟩ holds ⟨a|b⟩ = ⟨a|w⟩⟨w|b⟩ because
multiplying with |w⟩ does not change the magnitude of the product, and also the phase does not affected
since |w⟩ appears both as a bra and a ket and the phase changes cancel out.

11 Because of the PT gauge, the pairs of new vectors have zero phase differences.
12 The TPT gauge distributes the additional phase ϕ on the vectors of the PT gauge, not to the initial
vectors. That is, first the PT gauge is applied, and then the twisted one.
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such that Im ln⟨ũj|ũj+1⟩ is identical for each pair of successive vectors; each such way is
a different but equivalent TPT gauge. Usually the TPT gauge that makes Im ln⟨ũj|ũj+1⟩
minimum is choosen, but this is only a convenient choice, not a fundamental restriction.
The gauge choice for the vectors (1.2) is also an example of a TPT gauge.

1.2.2 Continuous case and Berry connection

The discrete formulation of Berry phase presented above can reasonably be extended to
the continuous case. The process is shown schematically in Fig. 1.3. The continuous
limit is obtained by increasing unlimitedly the number of points corresponding to states
along a path. The path is parametrized by a real variable λ ∈ [0, 1], and for the most
usual case, a closed path, it is |uλ=0⟩ = |uλ=1⟩ . A state |uλ⟩ is considered to be a smooth
(and hence differentiable as much as desired) function of λ.

Figure 1.3: (a) Εvolution of a state |u0⟩ in N discrete steps on a closed path. (b)
Increasing the number of states on the path to reach the continuous
limit. (c) Continuum limit, where a parameter λ varies in [0, 1] and
|uλ=0⟩ = |uλ=1⟩.

The derivation of the continuous expression of the Berry phase starts with (1.5).
Using Taylor series for |uλ+dλ⟩ and for the ln, it is

ln⟨uλ|uλ+dλ⟩ = ln⟨uλ|
(
|uλ⟩+ dλ

d|uλ⟩
dλ

+ ...

)
= ln

(
1 + dλ ⟨uλ|∂λuλ⟩+ ...

)
= dλ ⟨uλ|∂λuλ⟩+ ... (1.10)

where the relation ln(1+x) ≃ x was used13, and ⟨uλ|uλ⟩ = 1 since the vectors are unit.
∂λ is simply a shorthand for d/dλ and “...” indicates terms of second order and higher in
dλ. Taking the continuum limit of (1.5) and using the above, these terms are discarded,
and is obtained
13 It holds for −1 < x ≤ 1.



Berry phase and connection, gauge invariance and parallel transport 17

ϕ = −Im
˛
⟨uλ|∂λuλ⟩ dλ . (1.11)

But ⟨uλ|∂λuλ⟩ is purely imaginary because

2Re⟨uλ|∂λuλ⟩ = ⟨uλ|∂λuλ⟩+ ⟨∂λuλ|uλ⟩ = ∂λ⟨uλ|uλ⟩ = 0 , (1.12)

hence (1.11) can be written as14

ϕ =

˛
⟨uλ|i∂λuλ⟩ dλ . (1.13)

This is the expression for the Berry phase in the continuous case, as introduced in [21]
and [266]. The integrand of (1.13) is the so called Berry connection, also known as
Berry potential15

A(λ) = ⟨uλ|i∂λuλ⟩ = −Im⟨uλ|∂λuλ⟩ , (1.14)

with which the Berry phase is written as

ϕ =

˛
A(λ) dλ . (1.15)

Below, it will be examined how the Berry phase and connection behave under a
gauge tranformation. In analogy with (1.4), a gauge in the continuous case takes the
form

|ũλ⟩ = e−iβ(λ)|uλ⟩ (1.16)

where β(λ) is a real, continuous function, and β′(λ) = dβ/dλ .
It is find easily that

Ã(λ) = ⟨ũλ|i∂λũλ⟩ = ⟨uλ|eiβ(λ) i∂λ e−iβ(λ)|uλ⟩ = ⟨uλ|i∂λuλ⟩+ β′(λ) . (1.17)

This means that Berry connection is transformed under a gauge change according
to the rule

Ã(λ) = A(λ) + β′(λ) (1.18)

and thus it is not gauge-invariant.

14 When a complex z is purely imaginary, it holds Im(z) = −iz.
15 The term “connection” stems from Differential Geometry, while “potential” indicates an analogy with
the vector potential in Electromagnetism. In the Berry phase sense the names are used interchangeably.
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Concerning the Berry phase, note that for a closed pathmust holds |ũλ=1⟩ = |ũλ=0⟩,
just as it is for |uλ⟩. But then (1.16) implies that

β(1) = β(0) + 2πk (1.19)

where k is an integer. Then
ˆ 1

0

β′(λ) dλ = β(λ = 1)− β(λ = 0) = 2πk . (1.20)

Thus, replacing A(λ) by Ã(λ) in (1.15), and using (1.18), gives

ϕ̃ = ϕ+ 2πk . (1.21)

Thismeans that the Berry phaseϕ is gauge-invariantmodulo 2π, i.e., it is gauge-invariant
when considered as a phase angle.

As in the discrete case, the Berry phase can be regarded to be the residue of phase
that remains after a parallel transport around a closed path. In the continuous case, and
in correspondence with (1.6), a PT gauge is one in which the Berry connection A(λ)
vanishes :

Ã(λ) = ⟨ũλ|i∂λũλ⟩ = 0 . (1.22)

Under such a gauge, the Berry phase is just the phase difference at the end of the closed
path,

ϕ = −Im ln⟨ūλ=1|ūλ=0⟩ , (1.23)

exactly as in the discrete case, (1.7).
A TPT gauge can also be imposed, |ũλ⟩ = e−iϕλ|ũλ⟩, in correspondence with (1.9) ˙
this results the Ã(λ) to be constant on the closed path.

Although not immediately evident, the property that Berry phase is gauge-invariant
modulo 2π is important. The quantum probabilities are proportional to the norm squared
of an amplitude, giving thus a tendency to think that the phase is indifferent. But this is
not true ˙ the phases can lead to interference phenomena that are physically important.
For example, let consider two identical copies of a system are prepared, subjected to
parallel transport along different paths in a parameter space, and then recombined ˙ then
the resulting phase difference can lead to physical and measurable interference effects.

The Berry phase is mainly of interest for the evolution of states along closed paths ˙
however, it has sense and applications for open paths too. Let consider an open path,
like that sketched in Fig. 1.4a. For such an open path, the Berry phase is defined as

ϕ =

ˆ λf

λi

A(λ) dλ (1.24)

where λ is a scalar running from λi to λf determining the evolution along a path in a
higher-dimensional parameter space, labeled as (λx , λy) in the figure.
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Figure 1.4: (a) An open path connecting initial point ‘i’ to final point ‘f’ in a 2D
parameter space. (b) A closed path. (c) A pair of open paths A and B
with common initial and final points, such that A−B (i.e., traverse A,
then traverse the reverse of B) is a closed path.

The Berry phase for an open path is not gauge-inavariance ˙ a gauge like (1.16)
causes a change∆ϕ = βf − βi . The Berry phase is gauge-inavariance modulo 2π only
when the path is closed, as in Fig. 1.4b. However, there is an interesting case, sketched
in Fig. 1.4c. When a system is moving from λi to λf along two different paths A and
B, the change16 in Berry phase ∆ϕ = ϕB − ϕA is also gauge-invariant. This results
trivially : traversing first path B changes the phase by ϕB, then path A in the reverse
direction changes the phase by ϕA, a total change∆ϕ = ϕB−ϕA . But this is equivalent
to circulate around a closed path, for which ∆ϕ is gauge-invariant.

Concerning again closed paths, it is pointed out that the integer k which appears in
(1.19) can be used to classify topologically all possible gauge transformations of type
(1.16). k is a winding number ˙ it indicates how many times e−iβ circulates around the
unit circle in the complex plane as λ circulates on the path.

The gauge changes with k = 0, Fig. 1.5a, are called progressive gauge transfor-
mations ˙ they have the property that the gauge function β(λ) can be deformed homo-
topically to the identity transformation17. In contrary, the gauge changes with k ̸= 0 are
called radical, Fig. 1.5c,d.

It is emphasized that the Berry phase itself is not a quantized quantity and cannot
be used as a topological index. In contrary, the winding number is quantized and can
serve as a topological index for the set of gauge transformations on a closed path.

1.2.3 A simple example of Berry phase computation

As mentioned earlier, a common application of Berry phase is to count the phase that
accumulates during the evolution of the ground state wavefunction of a quantum sy-
stem. In such a case, the ground state |uλ⟩ and the Hamiltonian Ĥλ of the system are

16 i.e., the relative phase between the two points.
17 i.e., β = 0 independent of λ.
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parametrized by λ. A typical example is the ground state of electrons in a molecule,
where λ describes the variation of a coordinate or the component of an external field.
The variation of λ must be such that |uλ⟩ andHλ evolve with time in a continuous way.
In specific, it is adopted the condition that the variation is slow enough that the state
vector is approximated reliably by the static solution |uλ⟩ at the current value of λ, in
all the path. This is the so called adiabatic approximation, and adiabatic evolution.
Essentially, adiabatic approximation means that the variation is continuous.

Figure 1.5: (reprinted from [252]). Possible behaviors of the function β(λ) defin-
ing a gauge transformation via (1.16). (a) “Progressive” gauge tran-
formation. At the end of the loop β returns to itself. (b) “Radical”
gauge tranformation. At the end of the loop β is shifted by a multiple
of 2π. Gray lines indicate 2π-shifted periodic loops. (c), (d) Same as
(a) and (b) but plotted on the surface of a cylinder to signify better
the non-zero winding of the radical gauge transformation in (b).

An illustrative, simple example is a spin-1
2
particle (e.g., an electron), at rest, under

a uniformmagnetic fieldB = Bn̂ along the n̂ direction. The Hamiltonian of this particle
is [178]

Ĥ = −μ · B = µBB σ · n̂ (1.25)

where μ is the magnetic moment, µB is the Bohr magneton and σ = (σx , σy , σz) are
the Pauli matrices. The ground state |uB⟩ is an eigenstate of σ · n̂, with its spin along n̂
direction ˙ therefore, |uB⟩ is dependent only on the direction n̂ of B, not on themagnitude.
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This is emphasized writting |un̂⟩ instead of |uB⟩ from now on. The requested is to find
the Berry phase of |un̂⟩ as n̂ moves on a closed path of a spherical surface, the so called
Bloch sphere18 [12].

Figure 1.6: (reprinted from [252]). (a) Evolution of an applied magnetic field B
along a closed path on a spherical surface (Bloch sphere). (b) Solid
angle traversed during the moving of B in (a).

The answer to this for the general case will be given later. For now, the case of an octant
of the sphere will be examined. Let n̂ initially is directed along ẑ, then it is rotated
successively to x̂, ŷ and at last to ẑ again, forming a closed path. The Berry phase for
this path is given via (1.1) as

ϕ = −Im ln
[
⟨↑ẑ|↑x̂⟩⟨↑x̂|↑ŷ⟩⟨↑ŷ|↑ẑ⟩

]
(1.26)

where |↑n̂⟩ is the spinor, with spin in n̂ direction, and likewise in x̂, ŷ, ẑ.
Such a spinor has the form [12]

|↑n̂⟩ =
[
cos(θ/2)
sin(θ/2)eiϕ

]
(1.27)

where θ is the polar and ϕ the azimuthal angle of n̂. Therefore, the states of the spinor
in (1.26) are

|↑x̂⟩ =
1√
2

[
1
1

]
, |↑ŷ⟩ =

1√
2

[
1
i

]
, |↑ẑ⟩ =

[
1
0

]
. (1.28)

For the Berry phase the normalization factors are indifferent and can be ommitted ˙
thus, (1.26) gives ϕ = −Im ln

[
(1)(1 + i)(1)

]
= −π/4.

18 Practically, this is the unit sphere in spin space.
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This result concerns the octant of the spherical surface and happens to be exact ˙ it
does not change if more intermediate states19 are used. To compute the Berry phase for
a general geometric region on the spherical surface, the concept of Berry curvature must
be introduced ˙ this is done in next section.

1.3 Berry curvature and Chern number

1.3.1 Berry curvature and Berry flux

The concept of Berry connection can easily be generalized in a multi-parameter space ˙
for convenience a two-parameter space will be examined but the generalization to more
is straightforward. Let consider such a space, sketched in Fig. 1.7. The parameter of state
vector |uλ⟩ is a vector itself, λ = (λx, λy), and the definiton (1.14) for Berry connection
becomes

A = ⟨uλ|i∇λuλ⟩ , (1.29)

where A = (Ax, Ay), or in componentwise form :

Aµ = ⟨uλ|i∂µuλ⟩ (1.30)

where ∂µ = ∂/∂λ and µ = x, y. Now, the Berry phase in the definition (1.15) is written
as line integral long the path L, as

ϕ =

˛
L

A · dλ . (1.31)

Figure 1.7: State vector in a two-parameter space. The parameter of state vector
is a vector itself, λ = (λx, λy).

In (1.31) the Berry phase concerns the region S which is bounded by the path L.
The Berry curvature Ω(λ) is simply the Berry phase per unit area in space (λx, λy). If
the region S is discretized in a mesh, as sketched in Fig. 1.7, the Berry curvature is the

19 i.e., a more dense discretization of the path.
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Berry phase around a cell divided by the area of that cell. In the continuum limit, the
Berry curvature becomes the curl of the Berry connection, that is

Ω(λ) = ∇λ × A(λ) . (1.32)

In a two-parameter space, noting that ⟨∂yu|∂xu⟩∗ = ⟨∂xu|∂yu⟩ and cancelling terms of
the form ⟨u|∂x∂yu⟩, this is written as

Ωxy(λ) = ∂xAy − ∂yAx = −2Im⟨∂xu|∂yu⟩ . (1.33)

Since Ω is defined as curl, the Stokes’ theorem is applicable and a quantity reaso-
nable called Berry flux ΦS can be defined through the surface S. In specific, it is20

ΦS =

ˆ
S

Ω(λ) · dS (1.34)

=

˛
L

A · dλ = ϕL .

This means that the Berry flux through the surface equals the Berry phase around its
boundary. When the surface is discretized in a mesh, Stokes’ theorem states that sum-
ming up the circulation of the Berry connectionA along all cells constituting the surface,
this will give the Berry phase around the boundary of the surface21.

Since the Berry curvature is the curl of A, it is almost evident that is gauge-invariant.
A gauge change in 2D parameter space is of the form |ũλ⟩ = e−iβ(λ)|uλ⟩ and (1.18) is
generalized to

Ã(λ) = A(λ) +∇λ β(λ) . (1.35)

But then,∇λ × A(λ) = ∇λ × Ã(λ) and from (1.32) stems than Ω remains the same22.
The definition of Berry curvature in a space with more than two parameters23 is

straightforward. In this case, the parameter λ and Berry connection A are n-component
vectors, that is λ = (λ1, ..., λn), and A = (A1, ..., An). The Berry curvature from (1.33)
becomes

Ωµν = ∂µAν − ∂νAµ = −2Im⟨∂µu|∂νu⟩ (1.36)

and is a second order antisymmetric tensor24.

20 The boundary L is traversed in the positive sense of circulation.
21 The contribution from any internal side of the cells vanishes because the contributions from every two
neighboring cells are cancelled out.

22 It is pointed out the remarkable analogy in gauge-invariance properties between the Berry curvature
and connection, versus the magnetic field and vector potential. From this analogy stems the alternative
name “Berry potential” for the Berry connection.

23 i.e., more than two dimenions.
24 Note that since Ω is antisymmetric tensor, the order of indices µ and ν matters :
changing the order, changes the sign of Ω.
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In this more than two parameters space, the Stokes’ theorem holds for any surface S of
a 2D submanifold, specifically

ϕ =

˛
L

A · dλ =

ˆ
S

Ωµν dSµ ∧ dSν (1.37)

where dSµ∧dSν is the area element of the surface on submanifold and P is the boundary
of S. For this formalism, a 3D parameter space is quite supervisory and familliar. In
this case Berry curvature can be written as Ω = −Im⟨∇λu| × |∇λu⟩ and considered to
be a vector ˙ then Stokes’ theorem takes its known familiar form.

Besides the above formal formulas for the Berry curvature, Berry himself provided
in [21] a formula very convenient for practical use in quantum systems. To derive this
in a 3D parameter space, (1.33) is written for an eigenstate |n⟩ as

Ωj = −Im ϵjkl⟨∂kn|∂ln⟩ . (1.38)

where ϵjkl is the alternating symbol. Using the completeness of the eigenstates of the
Hamiltonian,

∑
i |ni⟩⟨ni| = 1, the unity operator 1 is inserted in (1.38), giving thus

Ω(n) = −Im
∑
n′ ̸=n

⟨∇n|n′⟩ × ⟨n′|∇n⟩ (1.39)

where the superscript (n) indicates the eigenstate of interested |n⟩ that is evolved, and
the subscript λ indicating the parameters is skipped for simplicity in the notation. The
term n′ = n in the sum is omitted because it is zero since the conservation of norm
implies ⟨∇n|n⟩ = −⟨n|∇n⟩ . To calculate ⟨n′|∇n⟩, start from the definition of the
eigenstate |n⟩, act on both sides with∇, and then project onto ⟨n′|. Successively it is :

Ĥ |n⟩ = En |n⟩

(∇Ĥ)|n⟩+ Ĥ |∇n⟩ = (∇En)|n⟩︸ ︷︷ ︸
=0

+En|∇n⟩

⟨n′|∇Ĥ|n⟩+ ⟨n′|Ĥ|∇n⟩ = En⟨n′|∇n⟩ (1.40)

where Ĥ is the Hamiltonian and En the eigenvalues of the system.
Furthermore, act with Ĥ on the left of (1.40), rearrange and substitute into (1.39) ˙
the result finally is

Ω(n) = −Im
∑
n′ ̸=n

⟨n|∇Ĥ|n′⟩ × ⟨n′|∇Ĥ|n⟩
(En − En′)2

. (1.41)

This relation gives the Berry curvature of a quantum system being in eigenstate |n⟩ as
a function of the rest eigenstates. It is evident that Ω(n) is gauge-invariant, as expected.
Also, as can be seen from (1.41), if Ω(n) has monopole sources, these are points of
degeneracy.
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An implication of (1.41), is that the sum of the Berry curvatures of all eigenstates
of a Hamiltonian is zero. Specifically, let a Hamiltonian Ĥ which is discrete along a
closed path in the parameters space. Adding all the phases of the eigenstates gives

∑
n

Ω(n) = −Im
∑
n

∑
n′ ̸=n

⟨n|∇Ĥ|n′⟩ × ⟨n′|∇Ĥ|n⟩
(En − En′)2

= −Im
∑
n

∑
n′<n

1

(En − En′)2

[
⟨n|∇Ĥ|n′⟩ × ⟨n′|∇Ĥ|n⟩

. . . . + ⟨n′|∇Ĥ|n⟩ × ⟨n|∇Ĥ|n′⟩
]
= 0 . (1.42)

The last equality stems from the antisymmetry of the cross product of
any two vectors, a× b = −b× a.

1.3.2 A simple example of Berry curvature computation

The example discussed in §1.2.3 to demonstrate a computation of Berry phase, can also
be used to demonstrate a computation of Berry curvature and flux.
Let consider again the spinor

|↑n̂⟩ =
[
cos(θ/2)
sin(θ/2)eiϕ

]
(1.43)

in the same scenery as in §1.2.3 (uniform magnetic field etc). The requested is to find
the Berry flux of |un̂⟩ after n̂ has completed a full (closed) path on an octant of the Bloch
sphere.

In representation (1.43) there is a gauge implicitly selected ˙ this gauge makes |↑n̂⟩
continuous and smooth in the north pole (θ = 0) of the Bloch sphere25. Very close to
θ = 0, the dependence of |↑n̂⟩ on λ can be considered to be λ = (nx, ny),
with n̂ = (nx, ny,

√
1− n2

x − n2
y) and |↑n̂⟩ is approximately26

|↑n̂⟩ ≃
[

1
(nx + iny)/2

]
, |∂nx↑n̂⟩ =

1

2

[
0
1

]
, |∂ny↑n̂⟩ =

1

2

[
0
i

]
. (1.44)

Setting the above in (1.33) gives Ω = −1
2
, at θ = 0 (i.e., at n̂ = ẑ).

Furthermore, in free space the properties of a spinor are intrinsically isotropic ˙ this
permits to evaluate Ω in any direction n̂ in the above way, using a coordinate system
Ox̂′ŷ′ẑ′ where ẑ′ is aligned to n̂. Therefore, for the herein physical system and the unit
sphere, it holds Ω = −1

2
in any direction.

25 This does not mean that |↑n̂⟩ is smooth everywhere in the sphere. In fact, this gauge choice introduces
a singularity in the south pole (θ = π), where |↑n̂⟩ has singular dependence on ϕ. This issue will be
examined in detail later.

26 first order Taylor expansion.
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Having computed the Berry curvature, it is an easy task to compute the Berry phase
for a path along an octant of the unit sphere. Applying Stokes’ theorem (1.34), for
Ω = −1

2
on an octant, gives easily ϕ = −π/4. This verifies the result found in §1.2.3.

Note that from Stokes’ theorem (1.34), Berry curvature can be defined alternatively
as the Berry phase per unit solid angle at direction n̂ on the Bloch sphere. With this, the
requested for the general case, posed in §1.2.3, can be answered now : the Berry phase
that accumulates a spinor when moves along a closed path on the Bloch sphere, is−1/2
times the solid angle subtended by the path, see Fig. 1.6b. For the special case where
the path is a great (maximal) circle on the sphere, the Berry phase is−π (since the solid
angle subtended by a hemisphere is 2π). This is in consistency with the well known
property of spinors that a 2π rotation changes the sign of the spinor, while to retrieve its
initial state must be rotated by 4π, in contrast to the usual vectors27.

1.3.3 Chern theorem and Chern number

Since the total solid angle subtended by a sphere is 4π, in the above example the Berry
flux through the whole sphere isΦ = −2π. But it is known fromVector Analysis that the
flux of a vector through any a closed surface vanishes,

¸
S
n̂ dS = 0, unless a singularity

(sink or source) is enclosed inside the surface. Therefore, since the Berry flux through
the whole sphere is not zero, the spinor must poses a singularity. Above has already
been mentioned that in the representation (1.43) of the spinor, there is a gauge implicitly
choosen which makes the spinor smooth and continuous in the north pole, θ = 0, of the
sphere. But this is not the case for the whole sphere.

To reveal the singularity let start computing the Berry flux through thewhole sphere,
starting with a section near the north pole and gradually progressing to the south pole.
For convenience, the calculation is done using a dodecahedron (12 pentagons) as amodel
of the sphere, Fig. 1.8.

Figure 1.8: (reprinted from [252]). Calculation of the Berry phase of a spinor, on
a discretized sphere. The Stokes’ theorem is applied (a) on the top
pentagon, (b) on the top six pentagons, (c) on all pentagons except
the bottom one.

27 Also, two spinors are peperdicular when the angle they form is π, not π/2 as the usual vectors.
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Initially, the circulation of Berry connectionA is computed along the top pentagon,
Fig. 1.8a. As this is 1/12 of the whole surface, the Berry flux (hence the circulation of A,
which is the Berry phase) is 1/12 of−2π, that is−π/6. In the same way, the circulation
for a section comprised of six pentagons, Fig. 1.8b, is −π. The last case, Fig. 1.8c, is
more subtle. The calculation of Berry flux through the section of the 11 pentagons results
in −11π/6, as expected. But alternatively, the flux can be computed for the bottom
pentagon taking its boundary to be traced in the opposite sense, or equivalently the unit
normal to point outwards28 ˙ this gives the flux is π/6, a different result. This seems to
be a contradiction – but it is not. The key point is that the Berry phase is well defined
only modulo 2π ˙ in this context −11π/6 and π/6 are the same value. Generalizing, for
any closed surface discretized in cells, the total circulation29 (Berry phase), equivalently
the Berry flux, it is 2π times an integer.

In the continuous regime, this means that the Berry fluxΦS computed on any closed
2D manifold equals 2π times an integer C, that is

ΦS =

˛
S

Ω · dS = 2πC . (1.45)

This is known as the Chern Theorem, and the integer C is the so called Chern number
of the surface, also known as Chern index or TKNN invariant30. Chern number is a
topological invariant which concerns the manifold (regarded as a surface) of the states
|uλ⟩ in the parameter space. It is stressed out that, since the integration in (1.45) involves
implicitly the states |uλ⟩, the Chern number emanates here primarily from the nature of
the states, not from the geometry of the surface31.

The Chern theorem stems mathematically from the gauge-invariance modulo 2π of
the Berry phase. To give a proof of it in the continuous regime, it is necessary to clarify
how this issue is manifested in Stokes’ theorem, (1.34). The left-hand side (lhs) of (1.34)
is the flux of Berry curvature through the surface S ˙ sinceΩ is gauge-invariant, this term
is determined uniquely. The right-hand side (rhs) is the Berry phase along the boundary
L of S, which is gauge-invariant and uniquely defined only modulo 2π. Therefore, the
two sides are not unconditionally equal. To remove the ambiguity, the Stokes’ theorem
(1.34) is interpreted in a conditionally way. Specifically, if the Berry phase is computed
using information for |uλ⟩ only on the curve L, then it is uniquely defined only modulo
2π. This is expressed restating (1.34) as

ΦS =

ˆ
S

Ω · dS :=

˛
L

A · dλ = ϕL . (1.46)

28 Observe that a boundary which is traced anticlockwise in the north hemisphere, as it is expanding and
getting into the south hemisphere, its sence of tracing becomes clockwise but remains positive for the
surface that is expanding from north. In contrast, its complement area in south hemisphere has the same
boundary but it is traced anticlockwise (the unit normal points outwards), which is negative for the area
getting closer from north. That is the case here.

29 From now on “circulation” will mean the “circulation of the Berry connection A”, unless otherwise
stated.

30 after the author names Thouless, Kohomoto, Nightingale, and den Nijs, of the important paper [242].
31 Another topological invariant for a surface is the Euler characteristic χ, well known from Topology. χ
is an integer concerning the topological structure of the surface, and is independent of the nature of any
physical quantities that build the surface. For the affinity of χ with the Chern number see §1.5.
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The symbol := is used here to give a special meaning in the equality : it indicates that
the uniquely defined lhs quantity equals to one of the values of the rhs quantity, which is
uniquely defined modulo 2π. Therefore, the meaning of (1.46) is that the equality holds
if an appropriate gauge is choosen (if this is feasible) for the states |uλ⟩ along the closed
path L, while other gauges produce a difference of an integer multiple of 2π.

The equality in the expression (1.46) holds for a gauge which is smooth and conti-
nuous on the whole S, including its bounday L ˙ for the Berry phase computation in
a closed path, this gauge annihilates the mismatch of integer multiple of 2π. When
regarding |uλ⟩ as a function defined only in the neighborhood of L (i.e., locally), it is
feasible tomake a gauge transformation that shifts ϕL by 2π ˙ unfortunately, such a gauge
change cannot be defined for the whole interior of S (i.e., globally) without a vortex-like
singularity.

With all the above, the Chern theorem (1.45) can be prooved very easily. The proof
is given for a surface topologically equivalent to a aphere, and then it can be generalized
for any orientable 2D surface, for example a torus. These cases (sphere & torus) are the
most common in the applications.

Figure 1.9: Geometry for the proof of Chern theorem.

Let a sphere with its surface divided to two sections, A and B, Fig. 1.9. The closed
path L is the boundary between the two sections ˙ its traversing direction (anticlokwise)
is positive for A and negative for B. Applying Stokes’ theorem to A and B gives respec-
tively

´
A
Ω · dS := ϕL, and −

´
B
Ω · dS := ϕL, where ϕL is the Berry phase along L.

The result for ϕL must be the same for the two sections, but only modulo 2π. Subtraction
of these two equations gives

ˆ
A

Ω · dS+

ˆ
B

Ω · dS =

˛
S

Ω · dS := 0 (1.47)

which is equivalent to (1.45).
The generalization of Chern theorem to any closed, orientable 2D surface, like a

torus, is quite easy, and will be discussed only briefly. The method is to setup an atlas for
the surface, composed of a set of mappings32, and in each map a smooth and continuous
gauge is defined. For each map the Stokes’ is applied, and the equations are summed

32 The terms “atlas” and “map” for a surface (more correctly for a manifold) are defind strictly in the
context of Differential Geometry.
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by members. In one side, the sum is
¸
S
Ω · dS over the whole surface S ˙ on the other

side is the sum of Berry phases along the boundaries of the maps, which are eliminated
modulo 2π. Thus, the conclusion is the same as for the simple sphere examined above,
and the Chern theorem has been prooved33.

1.3.4 A simple example of Chern number computation

Continuing the example with the spinor, in §1.3.2, the Ω = −1
2
n̂ found there gives for

the whole Bloch sphere
¸
S
Ω · dS = −2π, and this implies via (1.45) a Chern number

C = −1. In general, for a spin-s particle it is C = −2s, and since the Chern theorem
demands C to be an integer, it follows that the only allowed spinors are those with half-
integer or integer spin. This is well known from QuantumMechanics, verified also here.
In this way, a spin-1 particle gives C = −2, and a spin-3

2
gives C = −3.

It is streesed out that when the Chern number is non-zero, construction of a gauge
smooth and continuous on the whole surface S is impossible. If such a gauge could
exist, then the Stokes’ theorem could apply directly to the whole surface and result that
the Chern number is zero, contradicting to the intial assumption. This can be demostrated
in the example for the spinor discussed above. Initiallly, let n̂ = +ẑ and define a gauge34
smooth in a neighbourhood of θ = 0. Then, extend smoothly this gauge on the sphere
while increasing gradually θ. This results in a spinor representation like (1.43). But
as discussed in §1.3.3, this representation has a singularity at the south pole, θ = π.
Alternativelly, the inital point could be the south pole, θ = π, with n̂ = −ẑ. This would
result in the spinor representation

|↑n̂⟩ =
[
cos(θ/2)e−iϕ

sin(θ/2)

]
(1.48)

equivalent to (1.43). But now, although this is smooth at θ = π, it has a singularity at
the north pole, θ = 0. In fact, it is impossible to define a gauge which is smooth and
continuous on the whole sphere. This is manifested by the Chern number : a non-zero
Chern number expresses that the topological structure of the manifold does not permit
a gauge that is smooth on the whole manifold [241, 244]. Besides this, even when the
Chern number is zero, to construct a gauge that is smooth at least locally (i.e., the states
to be smooth functions of the parameters in only a neighborhood of the parameter space),
although it is theoretically feasible [234, 267], in practice may be very difficult.

1.3.5 Berry phase and Adiabatic Dynamics

For the most physical systems, especially the quantum ones, the set of states whose
Berry phase is of interest are eigenstates of some Hamiltonian Ĥ(λ). In these systems,

33 A rigorous proof of Chern theorem, in terms of Algebraic Topology and Differential Geometry, can be
found in [60], [68] and [174].

34 in fact a spinor representation, which implies a gauge implicitly chosen.
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the variation of the parameter λ, and the evolution of states |uλ⟩, are supposed to be
adiabatic35, as already explained in §1.2.3. In essence, this means that the variation and
the evolution is continuous ˙ the discussion untill knowwas donewith this condition (i.e.,
adiabatic approximation) adopted silently wherever needed to ensure this continuity. In
the adiabatic approximation regime, the system remains in the same eigenstate during its
moving in the parameter space ˙ only the phase of the eigenstate changes. For quantum
systems it is reasonable to study how this evolution and the accumulation of Berry phase
is related to the evolution of the system as described by the time-dependent Schrodinger
equation.

Let consider the Hamiltonian Ĥ(λ) of a quantum system, with eigenstates |n(λ)⟩,
where n labels the eigenstates. It is adopted that the paramater λ(t) is a slow36 function
of time t. Ιt is well known that the eigenstates of Ĥ , for a given λ, satisfy the equation

Ĥ(λ) |n(λ)⟩ = En(λ) |n(λ)⟩ . (1.49)

Initially (t = 0), the system is considered to be in eigenstate n and its time evolution is
recorded from there on.

When λ is independent of t, the eigenstate exhibits a time dependence as [177]

|ψ(t)⟩ = e−iEnt/} |n(λ)⟩ . (1.50)

Therefore, in a small time interval ∆t the phase accumulates a value e−iEn∆t/}.
But let λ varies slow enough with time to can be considered constant in each interval
∆t. Then, the total phase accumulated for a number of time intervals is∏

e−iEn∆t/h̄ = e−i
∑
En∆t/} . (1.51)

In the contiuum limit, the sum in (1.51) becomes an integral, and the above is written as
e−i

1
}
´ t
0 En(t′)dt′ . Setting

γ(t) =
1

}

ˆ t

0

En(t
′) dt′ , (1.52)

the evolution of the eigenstate, (1.50), becomes |ψ(t)⟩ = e−iγ(t) |n(λ)⟩.
(1.49) concerns stationary states. However, here the eigenstates considered to change
adiabatically. To find the correct variation of their phase, an additional term must be
introduced in (1.50). Therefore, in the regime of adiabatic approximation, instead of
(1.50), it is used the ansatz

|ψ(t)⟩ = c(t) e−iγ(t) |n(t)⟩ (1.53)

35 In §1.2.3 the term “adiabatic evolution” was explained as “slow enough for the static approximation
to be reliable”. This has the meaning that the variation of λ and |uλ⟩ is small compared to a main
characteristic (usually time-like in nature) of the system. For example, in the conductance study of
a material, the variation rate of λ along a path in the parameter space, to be small compared to the
frequencies corresponding to the energy gap of the material.

36 The meaning of “slow” will be clarified below.
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where the factor c(t) takes account the extra phase advance (if there is any) beyond the
formal caught by γ(t).
Also, |n(t)⟩ is simply the eigenstate |n(λ)⟩ of the time-independent problem, evaluated
at λ = λ(t) ˙ i.e., |n(t)⟩ really is |n(λ(t))⟩, where the |n(λ)⟩ is stationary solution and its
time variaton is adiabatic. This ansatz is in fact only the zero-order term in a perturbation
expansion of |ψ(t)⟩ in dλ/dt. The necessity to occasionally include power terms of
higher order will be discussed later.

Setting the ansatz (1.53) in the time-dependent Schrodinger equation

i}∂t|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (1.54)

where ∂t = ∂/∂t, gives after some algebra37

ċ(t) |n(t)⟩+ ċ(t) ∂t|n(t)⟩ = 0 . (1.55)

Multiplying (1.55) on the left with the bra ⟨n(t)| gives

ċ(t) = i c(t)An(t) , (1.56)

where has been set An(t) = ⟨n(t)|i∂tn(t)⟩.
But from (1.14) it is inferred thatAn(t) is a Berry connection, with time as its parameter.
Solving (1.56) gives c(t) = eiϕ(t) with

ϕ(t) =

ˆ t

0

An(t
′) dt′ (1.57)

which evidently is a Berry phase in an open path, with time as parameter.
Furthermore, it is desirable to express the Berry phase (1.57) in its formal form,

with parameter λ instead of the time. Above, |n(t)⟩ was defined to be |n(λ(t))⟩ ˙ thus,
applying the chain rule gives ∂t|n(λ(t))⟩ = λ̇ ∂λ|n(λ)⟩ .
But then it is An(t) = λ̇An(λ), where An(λ) = ⟨n(λ)|i∂λn(λ)⟩ is the Berry connection
in parameter space. Substituting this in (1.57), and using dλ = λ̇dt, results in

ϕ(t) =

ˆ λ(t)

λ(0)

An(λ) dλ . (1.58)

37 It is

∂te
−iγ(t) = − i

∂γ(t)

∂t
e−iγ(t) ,

and differentiating (1.52) gives

∂γ(t)

∂t
=

1

}
En(t) .

The derivative ∂t acts on all the terms of (1.53) and the term ∂te
−iγ(t) is cancelled versus

the Ĥ(t) |n(t)⟩ = En(t) |n(t)⟩, ending in (1.55).
It is reminded that the states |n(t)⟩ are considered to be unitary.
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This result is noteworthy. It means that the Berry phase involved into the time-
dependent wavefunction (1.53) is a function of only the path traversed in the parameter
space, and is independent of the rate of moving on the path38 ˙ this holds under the con-
dition that the parametric evolution is sufficiently slow (adiabatic).

The ansatz (1.53) is correct only if the term c(t) is included, which takes account
the Berry phase. Therefore, in the adiabatic regime, the evolution of the wavefunction
in time is39

|ψ(t)⟩ = eiϕ(λ(t)) e−iγ(t) |n(t)⟩ (1.59)

where the Berry phase eiϕ(λ(t)) is added to the formal dynamic phase e−iγ(t).
It is emphasized again that, in contrast to the conception that “the phase does not

matter”, in some cases the phase can cause interference phenomena with important phy-
sical meaning and uses ˙ thus, it is wrong to naively ignore the phase always.

Also, it is pointed out that if a PT gauge is set for |n(λ)⟩, then by definition is
An(λ) = 0 and ϕ(t) = 0. In this case, the Berry phase term is absent in (1.59) and the
system evolves following this PT gauge.

It was mentioned earlier that (1.53) or (1.59) is only the zero order term in a per-
turbation expansion of |ψ(t)⟩ in dλ/dt, and that in some cases it is necessary to include
power terms of higher order. Such an example is the adiabatic charge transport, which
is important in crystalline systems. A more supervisory, simplified case is an individual
atom or molecule. It is known that the current density for an electron in state |ψ⟩ is [177]

j(r, t) = ie}
2m

(
ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)

)
(1.60)

which vanishes indentically when ψ(r, t) is real. This holds also for the ψ given by
(1.59), since its phase factors are indepented on r. Let apply this in a typical case, e.g.,
for the ground electronic state of a NH3 molecule as one nucleus moves slowly ˙ then
|n(λ)⟩ is indeed real. Adopting ψ given by (1.59) results that the motion of the nucleus
does not produce any flow of electron charge. But this is evidently wrong because ρ(r)
changes with time and thus current flow must be induced.

The obviation of this contradiction is to include higher power terms of λ̇ in the
adiabatic approximation of ψ. In fact, one more term is enough. Thus |ψ(t)⟩ in (1.59)
is expanded as

|ψ(t)⟩ = eiϕ(λ(t)) e−iγ(t)
[
|n(t)⟩+ λ̇|δn(t)⟩

]
(1.61)

where the additional term |δn(t)⟩ must be determined.
Above has been found that (1.61) is the solution to the time-dependent Schrodinger
equation (1.54) at zero order in λ̇. Here it is requested to be a solution at first order

38 This important property also explains the alternative name “geometric phase” for the Berry phase, as
it reminds that this phase depends only on the path in the parameter space and not on the velocity of
moving on it or the representation of the states on the path.

39 It is again pointed out that this is only the main term (zeroth order) of a perturbation expansion of ψ in
dλ/dt.
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too. To this end, (1.61) is put in (1.54), terms higher than first order (λ̈, λ̇2, λ̇∂t|δn(t)⟩
etc) are discarded and the remain is

(En − Ĥλ) |δn⟩ = −i}(∂λ + iAn) |n⟩ . (1.62)

Since it is An(t) = ⟨n(t)|i∂tn(t)⟩, and setting40 Qn = 1− |n⟩⟨n|,
the above is written as

(En − Ĥλ) |δn⟩ = −i}Qn |∂λn⟩ , (1.63)

from which the |δn⟩ can be found.
Specifically, the solution to (1.63) is [252]

|δn⟩ = −i}T 2
n(∂λĤ)|n⟩ (1.64)

where Tn =
∑

m ̸=n
|m⟩⟨m|
Em−En

.
Eventually, (1.64) can be expressed as a sum over the eigenstates |m(λ)⟩, as [252]

|δn⟩ = −i}
∑
m ̸=n

⟨m|(∂λĤ)|n⟩
(Em − En)2

|m⟩ , (1.65)

which was the requested.
It is pointed out that |δn⟩ was found to be independent of time. This means that the

evolution of the wavefunction as seen in (1.61) is mainly due to λ, assisted by the term
with λ̇ 41.

It can be prooved that if (1.61) is used to compute the expectation value of the
current operator (1.60), the correct description for the the charge transport during the
adiabatic evolution is obtained.

All the above study holds in the adiabatic regime, which ensures that the variation
of λ and the eigenstates are continuous. It is purposeful to quantify this condition, even
roughly. The concept is to define the “slowness” by compare the variation rate λ̇ to the
frequencies corresponding to the energy gap ˙ this variation must be small enough so that
the adiabatic approximation holds. To this end, consider the energy levels of a quantum
system and let ∆E be a typical gap between them. For two neighbouring eigenstates
|n⟩, |m⟩ of the system, define λ0 ≡ 1/⟨m|∂λ|n⟩. λ0 can be interpreted as the scale of λ
over which |n⟩ varies significantly. Then, for an estimation to the order of magnitude,
the quantity }λ̇/λ0∆E can be indetified as a dimensionless parameter which quantifies
the “slowness” of the adiabatic evolution. Practically, the evolution is adiabatic if λ̇ is
small compared to ∆E/}, i.e., to the frequency characterizing the quantum behaviour
of the system.

Another interesting feature of the adiabatic regime is that, except the phase infor-
mation recorded in the Berry phase, the time dependent wavefunction has only a “short

40 i.e. Qn is the complement of the projector operator |n⟩⟨n|.
41 See [243] for more on this.
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memory” of the evolution on the path. This means that the evolution in the present time
depends only from a small and very recent part of the past of the history on the path. For
example, keeping terms to first order in λ̇ in the state representation, the state at time t
depends only onHλ at time t and on an infinitesimally time interval prior to t. The more
higher order terms are included, the more the “memory” increases (i.e., the dependence
from greater past time intervals) ˙ however, the general behaviour of the system is that its
evolution does not affected from what happens in earlier times during its moving along
the path.

The adiabatic regime can be successfully adopted for a system which has variables
with very different different variation rates (time scales). A typical example is a system
of an atom or crystalline solid, with its electrons. An electron is many orders of magni-
tude lighter than the nuclei. For the evolution in time of such a system, the coordinates
rj of the nuclei are considered to be classical variables that evolve slowly on a path. But
there is also a back-reaction on the system of nuclei, such that in a quantum treatment
they undergo a “gauge potential” Aj caused the electron(s) system as it follows adiaba-
tically the nuclear one. This potential is in fact the Berry connection Ajm = ⟨ψr|i ∂ψrrjm

⟩,
where ψr is the ground state of electrons at a fixed r. The application of Berry phase
theory to such systems has been prooved very usefull in Molecular Physics42.

1.4 Chern number on electronic energy bands

1.4.1 The foundation of Band-structure Theory

The electronic states in crystalline materials, neglecting their interactions, can be found
from a single-particle (in this case an electron) Hamiltonian Ĥ(k), which is a smooth
function of the wavevector k of the crystal. Specifically, the solutions of the time-
independent Schrodinger equation

Ĥ(k) |ψn,k⟩ = En,k |ψn,k⟩ (1.66)

are the feasible electronic states.
Having adopted a periodic potential for the crystall, the resulting eigenstates |ψn,k⟩ are
modulated plane waves, i.e.,

|ψn,k(r)⟩ = eik·r |un,k(r)⟩ (1.67)

where the modulation function |un,k(r)⟩ has the periodicity rl of the lattice43,
|un,k(r+ rl)⟩ = |un,k(r)⟩ . This result is known as Bloch’s theorem,
and the wavefunctions |ψn,k⟩ and |un,k⟩ are called the Bloch waves or Bloch states of
an electron, where the |un,k⟩ are the cell-periodic ones. The eigenvalues En,k are the
so called energy bands, where n is an index indicating their sequence. It can be proved

42 E.g., see [28].
43 i.e., rl consists of multiples (l1, l2, l3) of the three basis vectors a1, a2, a3 of the real-space lattice.
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[103] that the Bloch waves whose wavevectors differ by a reciprocal lattice vector are
identical, and the energy eigenvalues En,k are a periodic function of the wavevectors44
k of the Bloch waves ˙ these properties stem from the strict periodicity of the lattice
potential and the form (1.67) of the Bloch states.

In the above way, the one-electron states of a periodic potential can be represented
by energy surfaces E = En(k), each one being a periodic function of the wavevector in
the k-space. These energy surfaces all together constitute the electronic band-structure
of the crystal. Since both |ψn,k(r)⟩ and En(k) are periodic in k-space, it is sufficient to
know these functions for k values in only the first Brillouin zone ˙ their values in the
whole k-space can easily be found by a simple periodic expansion.

The bulk properties of the materials are governed mainly by their band-structure.
For example, when the bands occupied by electrons and the empty ones are separated by
an energy gap, Fig. 1.10a, the material is an insulator ˙ if, instead, there are overlapped
bands, Fig. 1.10b, the material is a conductor.

However, categorizing the materials simply by their band-structure, does not catch
all their physical properties. In specific, regarding the geometric scheme45 of the Bloch
states |ψn,k⟩, and mainly its topological characteristics, a whole bunch of material types
arises, in the context of topological classification.

Figure 1.10: Band-structure of (a) an insulator, (b) a conductor.

.

1.4.2 The concept of Topological properties of materials

Many physical parameter spaces have typical geometric schemes, e.g., a cylinder or a
torus. This scheme has physical significance, i.e., expresses physical properties. Typical
example is the Brillouin zone of a 2D lattice representing a solid crystalline material,
where the momentum vectors (kx, ky), (kx+2π, ky), and (kx, ky +2π) are equivalent ˙
its topology is that of a torus and expresses the periodicity of the lattice.

44 In fact, k (or alternative kx, ky , kz) andn are quantum numbers for the eigenstates and the eigenenergies.
45 torus, cylinder, infinite plane etc.
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It is useful to remind briefly the concept of the topological properties in mathema-
tics, so to grasp easier the corresponding concept for the properties of the materials.
Very roughly said, Topology is a kind of geometry without the concept of distance46.
Topology concerns the properties of objects – of spaces in general – which are invariant
under invertible deformations (homeomorphisms47 technically speaking). In contrast to
Geometry, topologically equivalent objects resemble each other in a qualitative sense :
two objects are considered equivalent if they can be deformed continuously one to ano-
ther through bending, twisting, stretching, and shrinking, while avoiding tearing apart
or gluing parts together. Τhe geometric form and size of the objects is indifferent in
Topology (since distance, angle and curvature do not matter) ˙ instead, what matters is,
for example, if the object is connected, or if it has holes. An important, well known
topological property of an object, intuitively related to the number of its holes, is the so
called genus48 [124]. The genus is conserved under smooth deformations of a surface,
and can be used to classify surfaces by their number of holes. The only way to create a
new hole or eliminate an existing one, is by tearing or gluing the surface. The genus is a
topological invariant – a quantized integer that cannot be changed without changing the
topological structure49. In general, ascribing geometric objects to physical properties or
phenomena of the materials50, topological invariants can be extracted for these objects
and then used to identify and classify the materials as to these phenomena – hence the
name “topological phases”.

Considering the properties of the materials emanating from their band-structure,
to define topological phases, it is needed a geometric object on which the topological
properties can be defined. For this purpose, a set of bands B is selected. The most usual
choice for B is to select the occupied subspace51. For each k, the set of states {|un,k⟩}n∈B
span a vector space Vk overC. Assuming that Vk is a smooth function of k and the space
where k itself is defined is a manifold52, this defines a so called fiber bundle.

A simple example of a fiber bundle is given by an 1D vector space defined on a
circle. If the vector space is orthogonal to the plane where the circle lies, the resulting
object is a cylinder, Fig. 1.11a. Alternatively, if the basis vector is rotated gradually as it

46 This is not fully correct since the metric spaces (which do have a metric, i.e., “distance”) are a subset
of the topological spaces (which in general they have not), but is acceptable for a rough description of
what is Topology as a mathematical branch.

47 Continuous invertible transformations, which have continuous inverse too.
48 More precisely, the genus of a surface is an invariant which counts the number of tori or handles consi-
sting the surface (for the orientable case), or the number of twisted pairs or projective planes (for the
non-orientable case) [124]. It is also closely related to the Euler characteristic, mentioned earlier.

49 Very roughly, the “topological structure” of an object is the way its fundamental parts are connected.
50 like the torus expressing the periodicity of a 2D lattice of a solid crystalline, as mentioned above.
51 This is not always possible ˙ an example is the semimetals, where the occupation number varies with
k. In these cases, the N lowest energy bands are selected.

52 A topological manifold is a topological space of Hausdorff type, second countable, and locally homeo-
morphic to Rn. The topology of a manifold is in general different from that of a vector space, and
it cannot be covered by a single coordinate system. Intuitively, a manifold is constructed by pasting
together many pieces of Rn. A differentiable manifold is a topological manifold equipped with a diffe-
rentiable atlas. Differentiable manifolds are a generalisation of surfaces. However, unlike the surfaces,
it is not needed to consider a manifold as being immersed in a higher-dimensional space in order to
study its geometric properties. More on manifolds and their associated stuff can be found in books on
Differential Geometry, e.g. [68].
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marches around the circle, and has been rotated by π when completes exactly one round,
the resulting object is a Mobius strip, Fig. 1.11b. These two objects are topologically
different because they cannot be transformed into each other via an homeomorphism.

Figure 1.11: Fiber bundles. (a) A cylinder, spanned by a vector which does not
rotate as it marches around a circle. (b) A Mobius strip, spanned by
a vector which rotates by π as it marches around a circle.

It is clarified that the topological classification of the materials does not concern
the geometrical shape of the crystal in real space, nor the shape of the Brillouin zone.
Instead, it concerns the way the states change as a function of k in the Brillouin zone. As
it is emphasized below, for the topological consideration of materials, the theory is built
using the periodic Bloch functions |un,k⟩ and a k-dependent Hamiltonian Ĥ(k). In terms
of the kinetic energy operator and the Coulomb potential, the form of the Hamiltonian is
the same for all materials. What differentiates it from case to case it is the division of the
eigenstates to occupied and unoccupied states53. The topological consideration concerns
the topology of the occupied states54 of Ĥ(k) as a function55 of k. The variation of the
eigenvalues and eigenfunctions depends on the details, but no matter how complicated
the problem is, a system can be classified by a topological invariant.

In such a system, the only way the topology can change is an energy bandgap to
vanish (close). The reason is the following. In the Brillouin zone, at the points where
the gap between occupied and unccupied states closes, there are eigenstates of Ĥ(k)
that touch or even overlap, becoming degenerate. Then, the occupied and unoccupied
states can exchange eigenfunctions, changing in this manner the way the set of filled
eigenstates are connected in the Brillouin zone. In an insulator there is a gap between
the filled and the empty bands, and all systems that can be transformed one into another
by varying continuously the Hamiltonian, without a gap closing, are considered to have
the same topology. Transitions between insulating states with different topologies can
take place only if a gap closes.

53 This can be formulated using the matrix elements of Ĥ(k).
54 More explanatory, their grouping and behaviour in the topological sense.
55 The k-dependent Hamiltonian for the Bloch periodic functions |un,k⟩ can be formulated by the usual
Hamiltonian by the relation [252]

Ĥ(k) = e−i k·r Ĥ ei k·r,

such that Ĥ(k) |un,k⟩ = En,k |un,k⟩ .
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1.4.3 The Bulk-Edge Correspondence

Above, it was pointed out that the vector space Vk must be a smooth function of k.
As will be explained right now, this has a great influence on the physical properties of
topological phases.

Even if the Hamiltonian Ĥ(k) is a smooth function of k, this does not necessarily
hold for Vk. The following example is an indicative case. Let the Hamiltonian

Ĥ(k) = − cos(k) |a⟩⟨a|+ cos(k) |b⟩⟨b| (1.68)

where |a⟩, |b⟩ are two arbitrary orhogonal eigenstates.
For k = 0, the eigenvalues of |a⟩ and |b⟩ are repsectively −1 and 1. Let name the
energy band of |a⟩ by 1 and the energy band of |b⟩ by 2, where these are simply indices,
1 indicating the lowest eigenvalue and 2 the next one. As k varies, the eigenvalues
also vary, until k = π/2, where they are equal. At this value, the vector space Vk
switches from being spanned by |a⟩, Vk = span({|un,k⟩}n∈{1}), to being spanned by
|b⟩, Vk = span({|un,k⟩}n∈{2}). Since this switching produces a discontinuity for Vk, this
space does not satisfy the condition for topological classification.

The smoothness of the vector space Vk can break if the order of eigenvalues be-
tween the states which belong to the set B and those which do not, change. This can
be avoided easily if the possible selection of bands B is ristricted in a way that they are
always separated from the other bands by a sufficient energy gap. This means that the
topological properties must be searched and extracted for isolated sets of bands, which
form smooth fiber bundles.

An equivalent way to set this requirement (i.e., defining topological properties only
in isolated energy bands), is by looking for the transformations which can be done to a
material without changing its topological properties. To the requirement that these trans-
formations must change the Hamiltonian definitely smoothly, it is imposed additionally
that the band gap must remain open. This definition for the admissible transformations
of a material leads to a noteworthy physical property of topological phases : at the boun-
daries of topologically non-trivial insulating materials, stable conducting edge states do
form. In specific, at the interface where the Hamiltonian gradually interpolates between
two insulating states with different topologies, the following happens. At some point the
energy gap has to close because otherwise it is impossible for the topological invariant
to change. Therefore, as the gap tends to zero and finally closes, low-energy electronic
states bound to the interface region appear, and these states form bands that propagate
along the interface. This phenomenon is known as the bulk-edge correspondence, and
its variations produce the interesting transport phenomena which take place in many
topological materials [90, 116, 117].

The relation of topology and gapless states appears in many cases in physics, such
as the gradual interpolation between regions described by Dirac Hamiltonians with posi-
tive and negative masses, which can be solved analytically [104, 95]. The most famous
case of bulk-edge correspondence is the edge state in the quantum Hall effect ˙ other
cases are solitons in one dimension at a boundary in the Su-Schrieffer-Heeger (SSH)
model for polyacetalene [238], and Majorana modes at the surface of superconductors,
all of which are closely related to the so called Shockley transition in the bulk and surface
states.
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Despite the significance of the surface states, it is emphasized that the topology is
a property of the states as a function of k in an infinite periodic crystal with no surfaces.
It is the topology arguments that are the most basic because they ensure the robustness
of the results, i.e., the qualitative conclusions will not change due to changes in the
Hamiltonian, as far as the topology does not change and the system remains an insulator
with a gap in its electronic structure.

.

1.4.4 Berry phase and Chern number of the electronic bands

It has already been mentioned the relation (1.41) for the Berry curvature of a quantum
system, given by Berry himself [21]. Besides this, all the theory for the Berry phase and
Chern number, studied in a general context in previous Sections, can be particularized
for the electronic bands of materials. This is done briefly here and in the next Sections.

For reasons that will not be mentioned here, it is strongly emphasized that, con-
cerning the electronic bands, the Berry phase and related quantities must be defined in
terms of the cell-periodic functions |un,k⟩, not in terms of the Bloch functions |ψn,k⟩.
Very briefly speaking, when using |ψn,k⟩, the computation of the inner product integrals
in the Brillouin zone is problematic (gives zero or depends on the cell location). Instead,
this does not happen with |un,k⟩. Furthrmore, using |un,k⟩ brings a deeper, more impor-
tant consequence. All the |un,k⟩ have the same periodic boundary condition; e.g., in an
1D case imposing un,k(x = 0) = un,k(x = a), where a is the lattice constant. There-
fore, all the |un,k⟩ belong to the same Hilbert space. As a result, inner products between
vectors at different k, or derivatives with respect to k, are well defined. This would not
hold if the formalism were based on the Bloch functions |ψn,k⟩.

Also, it is adopted the assumption that in the whole Brillouin zone the electronic
bands are isolated, i.e., a band n is not overlapped with its neighbouring n ± 1 bands.
This restriction is important because such overlappings are common at points of high
symmetry in the Brillouin zone of crystalline materials. These points of degeneracy
introduce a non-analytic depedence of |ψn,k⟩ on k, making problematic the definitions
of Berry connection and curvature. This problem can be amended [252] but the relevant
theory is quite complicated and it will not be considered here.

Adopting the wavenumber k of the lattice of a material as the parameter space, the
Berry phase (1.31) for the electronic bands is defined to be56 [277]

γ
L
= i

˛
L

∑
n∈B

⟨un,k|∇k|un,k⟩ · dk (1.69)

where L is a closed path in the reciprocal space.

56 For the Berry phase on the bands, to differentiate it from the general, the symbol γ is used instead of ϕ.
For conciseness, the total Berry phase (i.e., for all bands) is considered here. The Berry phase can also
be considered for a single band; in that case the sum over bands is dropped.
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In this case, the Berry connection and curvature, (1.29) and (1.32), are respectively

A(k) = i
∑
n∈B

⟨un,k|∇k|un,k⟩ (1.70)

Ω(k) = ∇k × A(k) (1.71)

and the Stoke’s theorem (1.46) is rewritten as

F
S
=

ˆ
S

Ω · dS :=

˛
L

A · dk = γ
L

(1.72)

where F
S
denotes here the Berry flux through a surface S on the reciprocal space of the

latice. The Chern number is given formally by (1.45) as [242]

C =
1

2π

˛
S

Ω(k) · dS . (1.73)

As was discussed thoroughly in §1.3.3, in contrast to common intuition, the Chern
number for a closed surface can be non-zero. For the equality in (1.72) to hold, the
Berry connection A(k) must be smooth. But this is not sufficient to guarantee a zero
Chern number; the inherent nature of states in the parameter space can prohibit a globally
smooth gauge, making the Berry connection non-smooth in the whole surface and giving
it a winding value (i.e., a non-zero Chern number) in a closed path.

As far as the electronic bands concerns, in §1.4.3 it was emphasized that for Vk
spanned by |un,k⟩ to be susceptible to topological classification, Vk must be a smooth
function of k. However, this does not impose the Berry connection for the states to be
definitely smooth; as a result, the Chern number in the reciprocal space of a lattice can
in general take integer, non-zero values.

Furthermore, the Chern number of a band of an insulator is a topological invariant
in the following context. The Hamiltonian describing the system of electrons of the
lattice can be considered to be deformed adiabatically (thus continuously) and maintai-
ning open the energy gaps that separate the nth band from the other bands. In such
a situation, the Berry curvature varies continuously; consequently, its integral over the
Brillouin zone (i.e., the Berry phase), which equals 2π times the Chern number, cannot
change since the Chern number is necessarily an integer; therefore, the Chern number
cannot change. In contrast, if the Hamiltonian is deformed non-adiabatically (hence
non-continuously), then some energy gap separating the nth band from a neighboring
band might close and reopen, and the Chern number might change. In this context, the
Chern number for 2D lattice models is a topological invariant like the winding number
is for the 1D SSH model [7].

Lastly, before examine more practically how to compute the Berry phase and Chern
number in the Brillouin zone, an important subtlety must be mentioned. For the Berry
phase to be well defined, |un,k⟩ must be a smooth function of k in the whole path, open
or closed. For example, consider a loop in an 1D band structure, parametrized by k, with
0 ≤ k ≤ 2π/a. The Bloch function |ψn,k⟩must be smooth across the artificial boundary
point where k returns to 0 from 2π/a.
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This means that ψn,k(x) must satisfy the boundary condition57

ψn,k=2π/a(x) = ψn,k=0(x) . (1.74)

But then, the Bloch functions at the two ends of the interval [0, 2π/a] must be exactly
equal, with definitely the same phase. As the Berry connection must be defined using
the cell-periodic functions |un,k⟩, remembering (1.67), the condition (1.74) is written as

un,k=2π/a(x) = e−i 2πx/a un,k=0(x) . (1.75)

As a result, the functions |un,k=2π/a⟩ and |un,k=0⟩ are not equal ˙ they differ in phasemore
than the expected Berry phase – and in fact by the factor e−i 2πx/a which depends on x.
When calculating the Berry phase using the cell-periodic functions |un,k⟩, this factor
must definitely be taken account. For example, let calculate the Berry phase for a loop
in an 1D Brillouin zone. The loop is discretized inN equal intervals, with kj = 2πj/N ,
j = 0, 1, ..., N − 1, and (1.1) is to be used. But to take account the extra phase for the
functions |un,kj⟩, (1.1) must be used in the slightly modified form

ϕ = −Im ln
[
⟨un,k0 |un,k1⟩⟨un,k1 |un,k2⟩...⟨un,kN−1

|e−i 2πx/a|un,k0⟩
]
. (1.76)

In (1.76) the factor e−i 2πx/a is introduced58 in the last inner product to get the correct
phase difference between59 |un,kN ⟩ and |un,k0⟩ .

1.4.5 Fundamentals of computing Chern number arithmetically
from Berry phase

In §1.4.4, the Berry phase and the Chern number were expressed in terms of the cell-
periodic states |un,k⟩. With small modifications, these formulas can be used to calculate
numerically the Chern number on the Brillouin zone ˙ the fundamentals will be presented
briefly here60. For convenience, a very simple example will be used : let be the surface
S for the calculation is the Brillouin zone k ∈ [0, 1) × [0, 1) of a 2D lattice, where k
is expressed in reduced coordinates, Fig. 1.12a. The technique can be applied to other
closed 2D surfaces in the same way.

57 In fact, (1.74) is the so called periodic gauge condition,

|ψn,k+G⟩ = |ψn,k⟩,
where G is a reciprocal lattice vector, that relates two states at the boundary of cells.
The above is special case of the more general condition

|ψn,k+G⟩ = e−iβ(k) |ψn,k⟩,
which holds for states at the boundary of cells in the Brillouin zone.

58 In general, the factor is e−iG·r, where G is the reciprocal lattice vector of the periodic gauge.
59 The functions |un,ki

⟩ are taken from a process (usually a matrix diagonalization routine) without caring
their phase, thus it is not expected that |un,kN

⟩ and |un,k0
⟩ will satisfy (1.75).

60 These formulas are used in the code package Z2Pack [84].
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Firstly, the surface S is divided in sufficient small patches Si. The integral (1.73)
for the Chern number on the whole surface is given as the sum of integrals on all the
patches,

C =
∑
i

C
Si
, (1.77)

where C
Si
are the integrals on the patches,

C
Si

=
1

2π

ˆ
Si

Ω(k) · dS . (1.78)

Figure 1.12: Computing the Chern number in Brillouin zone, reprensented by a
surface S in k space (in reduced coordinates). (a) The surface is
divided to patches Si. (b) Only the path segments pi, which traverse
the Brillouin zone at constant kx, contribute to the calculation ˙ the
top and bottom ones on boundary of each patch are cancel out.

The parches Si are small enough for the A(k) to can be made locally smooth [234, 267].
Threfore, the Stoke’s theorem can be used and gives

C
Si
. mod. 1 =

1

2π

ˆ
∂Si

A(k) · dk. mod. 1 =
γ

∂Si

2π
. mod. 1 , (1.79)

where the modulus stems from the fact that the Berry phase is uniquely defined only
modulo 2π. Each C

Si
is much smaller than unity61, thus, its value can be determined

uniquely from γ
∂Si

/2π adding an integer that minimizes its absolute value.

61 since k sweeps the unit square and the patches have been imposed to be sufficiently small.
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Furthermore, the top and bottom parts of ∂Si are cancel out due to periodicity62
and the Berry phase eventually is

γ
∂Si

= γpi+1
− γpi (1.80)

where pi+1 and pi are the paths at either side of patch Si, Fig. 1.12b.
Moreover, since each path pi is on fixed kx, the Berry phase can be considered to

be a function of kx. As both γ and kx are periodic, the Berry phase traces a line on a
torus63, Fig 1.14. The Chern number is just the winding number of this line around the
torus [233]. This means that the Chern number can be calculated tracking continuously
the Berry phase on lines of constant kx that traverse the Brillouin zone. In practice,
enforcing this continuity is difficult and special care must be taken to achieve this when
programming the method64.

Figure 1.13: (a) Berry phase γ as a function of kx, in Brillouin zone. The Chern
number here is C = 1. (b) The Chern number as a winding number
(here 1) on the torus geometry of the 2D lattice.

From the above, it is evident that to calculate the Chern number it must in fact to
calculate the Berry phase for closed paths in the Brillouin zone. The methods used for
this are the Wilson loop and the Hybrid Wannier Charge Centers, and will be presented
briefly here.

62 Such a cancelation does not necessarily happens on the path segments pi that cross the Brillouin zone.
63 See also the remark in the start of §1.4.2.
64 For example, the code package Z2Pack [84] has a whole bunch of parameters to control the convergence
due to this continuity task.
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1.4.5.1 Calculating the Berry phase in Brillouin zone with
the method of Wilson Loop

The Wilson loop W(L) [2] is an operator, represented by a matrix, that maps the states
at a starting point k0 along a loop L onto their images after parallel transporting them
along L. The path L is discretized into a set of points {k0, ..., kn−1, kn = k0} and the
Wilson loop is approximated as [84, 2]

W(L) = Mk0, k1 · ... ·Mkn−1, kn (1.81)

where

Mki, kj mn = ⟨um,ki |un,kj⟩ (1.82)

are overlap matrices between Bloch states at different k.
Each eigenvalue λi of theWilson Loop has as argument the rotation angle that is acquired
by an eigenstate of the W(L) as it marches along the path L. Consequently, the total
Berry phase is given via the eigenvalues of the Wilson loop as [146]

γ
L
=
∑
i

argλi . (1.83)

Since the overlap matrices Mki, kj can be computed quite easily, the above consitute a
method for calculating the Chern number numerically. However, the convergence of
the Wilson loop eigenvalues relative to the discretization of L is sensitive and must be
taken into account in programming the method65.

1.4.5.2 Calculating the Berry phase in Brillouin zone with
the method of Hybrid Wannier Charge Centers

TheHybrid Wannier Charge Centers [231, 232] provide another method to calculate the
Berry phase. The foundation of this method is the Wannier orbitals, which are defined
as the Fourier transform of the Bloch states :

|Rn⟩ =
V

(2π)d

ˆ
BZ

e−ik·R|ψn,k⟩ dk (1.84)

where d = 1, 2 or 3 stands for the space dimensionality, V is the unit cell volume, and
the integral is taken over the first Brillouin zone. In contrary to the spreaded nature of the
Bloch waves, the Wannier orbitals are localized. Also, if the Bloch waves change by a
gauge transform applied on them, the Wannier orbitals change too. The choice of gauge

65 This is just an indirect appearance of the difficulty in tracking continuously the Berry phase on lines of
constant kx, which mentioned at the end of §1.4.5.
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has great influence to the properties of Wannier orbitals, especially to their localization
and position in real space [169].

Furthermore, for purposes of calculating topological invariants, the hybridWannier
orbitals are defined [232, 215] ˙ these are simply the Fourier transform of the Bloch states
in only one spatial direction, while in the other directions are untouched and remain
spreaded [84] :

|lx, ky, kz ;n⟩ =
ax
2π

ˆ π/ax

−π/ax
e−ikxlx |ψn,k⟩ dkx (1.85)

where lx ∈ Z and ax is the lattice constant along the x-direction.
An hybrid Wannier orbital is localized in only one direction ˙ its average position is a
function of the non-transformed variables in the reciprocal space :

x̄n(ky, kz) = ⟨0, ky, kz ;n| x̂ |0, ky, kz ;n⟩ . (1.86)

This quantity is the so called hybrid Wannier charge center (HWCC), and is close related
to the Berry phase via the relation

γ
L
=

2π

ax

∑
n

x̄n (1.87)

where L is the path on which the hybrid Wannier orbitals were subjected to the Fourier
transform. It is proved [84, 233] that the Chern number is written in terms of the HWCCs
as

C =
1

ax

[∑
n

x̄n(ky = 2π)−
∑
n

x̄n(ky = 0)

]
. (1.88)

In (1.88) the HWCCs x̄n(ky) are considered to be smooth functions of ky, where ky ∈
[0, 2π]. This condition is satisfied by constructing the HWCCs in the 1D maximally
localized gauge66 [231]. Then, the HWCCs are related to the eigenvalues of the Wilson
loop with the relation [84, 252]

x̄i =
ax
2π

argλi , (1.89)

perhaps up to a reordering.
This close relation between the HWCCs and the Berry phase brings a physical

interpretation of the Chern number. As the momentum (in the present case kx, Fig. 1.14)
varies in the Brillouin zone, the average position of the electrons, in the orthogonal
direction, can change. Because of the periodicity of kx, this average position must return
to the unit cell, but also can ends up to another unit cell, different from the initial one.
This represents a process of pumping charge, where in each cycle of kx the charge moves
by C unit cells, C being the Chern number.

66 It is pointed out however, that the periodicity condition holds only modulo a lattice vector Rx = nax,
n ∈ Z [84].
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1.5 Another view to the Chern number

The Chern number arose in §1.3.3 as the gauge-invariancemodulo 2π of the Berry phase.
But it can also be introduced in a more abstract mathematical way, independently of the
Berry phase ideas. In this Section, the Chern number will be presented and examined
briefly in the frame of Differential Geometry and Topology. This point of view is a
glimpse to the deeper meaning of the Chern number, and enlights better its significance
in mathematical physics.

LetM be a 2D compact manifold, and a map to a 2-sphere, φ :M → S2.
This means that for x ∈M , it is φ(x) = (φx1(x), φx2(x)), with φ2

x1
+ φ2

x2
= 1,

where x = (x1, x2) is a coordinate system onM .
OnM can be defined the quantity Fij = ∂iφj − ∂jφi ,
and from this to define the topological invariant

C1 =
1

2π

ˆ
M

Fx1x2 dx1dx2 . (1.90)

This takes integer values, and it is just the Chern number. Although it seems innocence,
(1.90) is remarkable in many respects. Firstly, Fij looks a lot like a curvature tensor
(hence the name “Berry curvature” in the Berry phase context). Furthermore, (1.90)
reminds strongly the well known Gauss-Bonnet theorem [68, 174] which relates the
Euler characteristic χ of a surface with its gaussian curvatureK, namely67

ˆ
M

KdA = 2πχ(M) . (1.91)

This theorem has quite a few generalizations, including the Riemann-Roch theorem (for
Riemann surfaces) [174], and the Atiyah-Singer index theorem for differential operators
on compact manifolds [174]. The version (1.90) or equivalently (1.91) examined here,
is the 2D-case of the Chern-Gauss-Bonnet theorem that holds for even-dimensional,
compact, boundaryless manifolds. The Euler characteristic is a topological invariant
for compact connected surfaces, and can be used to identify a surface from a triangula-
tion. The Chern number is simply one of the generalizations of the Euler characteristic
encountered in the various versions of Gauss-Bonnet theorem.

It is emphasized that (1.90) holds for compact surfaces. For non-compact surfaces,
(1.90) also holds if the curvature vanishes at large distances, so tο converge the integral
defining the Chern number. For convenience, it is usual to replace 2D non-compact
surfaces by topologically equivalent68 compact surfaces. To accomplish this, a process
known in Topology as compactification can be applied [115]. With compactification,
a non-compact space can be replaced by a compact one. There are two main ways of
compactification; the most easy and common is the so called one-point compactification
[115], in which all points at infinity are mapped to one point and this point is attached
in the initial space, see Fig. 1.14a. For example, using one-point compactification, the

67 Here for a closed orientable surface.
68 In the sense of an homeomorphism, here denoted with ∼ .
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infinite 2D plane M = R2 is mapped with the stereographic projection to a sphere, in
which the sphere’s north pole corresponds to the points at infinity69 [115]. In terms of
Topology it isM ∼ S2, thus the initial mappingφ now can be considered to map spheres
to spheres, φ : S2 → S2.

In this context, the meaning of C1 is that it counts how many times the first sphere
wraps around the second, and its integer values characterize the second homotopy class,
π2(S2).

Figure 1.14: a) The infinite plane is non-compact; however, it can be replaced by
a 2-sphere using one-point compactification. b) The stereographic
projection is used for the mapping.

In physical applications, φ(x) usually represents a point on the Bloch or Poincare
sphere, x1, x2 can be wavevector (momentum) components, and the 2D manifold M
can be a torus T 2 representing a Brillouin zone. Specifically for the case of a Brillouin
zone, C1 is often referred as the TKNN invariant [242], as already mentioned in §1.3.3.
Another famous physical phenomenon of topological character, where C1 appears in-
herently, is the quantum Hall effect.

C1 can also defined to be the integral

C1 =

ˆ
M

ω (1.92)

69 In fact this is the Riemann sphere, known also from Complex Analysis or Differential Geometry.
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where ω = 1/4πFµν dx
µ∧dxν is a 2-form, known as the first Chern class. This integral

is the first of an infinite sequence of Chern numbers defined in even number of dimen-
sions. In specific, the nth Chern number is defined in 2n dimensions by an integral over
the base of a 2n-form with complex fiber, as

Cn =
1

n!

(
1

4π

)n ˆ
eµ1ν1µ2ν2...µnνnFµ1ν1Fµ2ν2 ...Fµnνn dx

µ1 ∧ dxν2 ∧ ... ∧ dxν2n

=
1

n!

ˆ
M

Tr(ωn) (1.93)

where the trace is over the degrees of freedom repesented by the fiber.
eµ1ν1µ2ν2...µnνn is the full antisymmetric tensor, vanishing if any of the indices are equal,
equals +1 for an even permutation of {1, 2, ..., n} and −1 for an odd permutation. The
2n-form integrated is the so called nth Chern class. These higher Chern numbers and
classes are not used in the theory of topological insulators but they are needed in other
disciplines of physics, mainly in Quantum Field Theory.



2. Time Reversal Symmetry
and introduction to
Topological Insulators

2.1 Introduction

Topological insulators (TIs) are a type of electronicmaterials, recently discovered, which
in the context of conductance classification exhibit a quite peculiar behavior. A topolo-
gical insulator, unlike the ordinary insulators and metals, in the bulk of the material
is insulating while at its surface is metallic. This unconventional character of electric
conductance emanates from electronic states which due to topological reasons1 appear
at the surface of the material (or at the edges of the system if it has 2D geometry). These
surface or edge states are protected from perturbations by time-reversal symmetry (TRS),
and are characterized by nonzero Chern numbers. These uncommon properties set apart
topological insulators from conventional insulators and metals.

Pure topological materials are not found in nature but they can be constructed using
crystal synthesis techniques. The first TI discovered experimentally was a 2D quantum
spin-Hall system, created by HgTe quantum-well structures. This system exhibits a Hall
effect different from the classical one, specifically the quantum spin-Hall effect, which
takes place in zero external magnetic field and can be observed through the conducting
edge states forming a so called Kramers doublet. Other topological materials disco-
vered later were strained 3D layers of HgTe, ternary tetradymite compounds (Bi2Te2S,
Bi2Te2Se, Bi2Se2Te), the semiconducting alloy Bi1−xSbx and others. Many theoretical
models of topological materials admit analytical solutions; this is very convenient as it
helps to clearer illustrate important properties of the edge and surface states, like spin
helicity and Dirac-like spectrum, and develops intuition for their behavior.

A very important property of topological materials is the protection of the helicity
of the edge and surface states to the defects of the crystal (disorders, impurities etc) ˙ this
makes them suitable for many intriguing applications such as spintronics, topological
optical computing, topological lasers and others. This protection property stems from
the aforementioned time-reversal symmetry – and in fact many important properties of
TIs are close related to the preserving or breaking this symmetry.

In this chapter the basic concepts of 2D and 3D TIs are presented, mainly with
intuitive arguments. At first, the time-reversal symmetry is examined, and its relation

1 Specifically, due to the bulk-edge correspondence, see §1.4.3.
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with the helical edge states2 and the quantum Hall effect. Then, two types of topological
systems are studied in detail, namely the Chern insulators and the topological insulators,
in the 2D case; their main difference is that the quantum Hall effect without external
magnetic field occurs in Chern insulators with the TRS broken, while in topological in-
sulators occurs with the TRS preserved. These (not so simple) models help to enlight the
topological origin of the helical edge states. It can be shown that the helical edge states
stem from a boundary condition equivalent to a band-gap region barrier that describes
the inversion of the band structure at the edges. Lastly, a short introduction to some
models of 3D TIs and some other ancillary subjects are also presented.

2.2 Rudiments of Time Reversal Symmetry

Time-reversal symmetry (TRS) is the invariance of physical laws under time reversal
transformation3, namely

T̂ : t→ −t . (2.1)

TRS is a fundamental physical property, and for practical systems in many cases has
vivid consequences. Systems exhibit quite different behavior depending on if they are
TR-invariant or not, and both cases induce equally interesting physical phenomena4.

A system is said to conserve the TRS, or to be TR-invariant, if its Hamiltonian
commutes with the TR- operator5,

[Ĥ , T̂ ] = 0 . (2.2)

The application of T̂ to a particle with momentum p, spin S and position r changes these
quantities as

(2.3)r → r , (2.3a)
p → −p , (2.3b)

S → −S , (2.3c)

i.e., it reverses the direction of p and S at its current position.
The Hamiltonian of a TR-invariant system does not change under transformations (2.3).
For a Hamiltonian that is an even function of momentum and is independent of spin,
this holds trivially; e.g., a free non-relativistic particle. A more interesting case of TRS

2 The meaning of helical states is explained later in this chapter.
3 The terminology was first introduced by E. Wigner in 1932.
4 For example, in systems with TRS breaking, reversing the motion of the particles in a magnetic field
Hall voltages can occur. In contrary, in systems with TRS invariance, Hall effects cannot occur but
other topological phenomena like the Z2 topological classification take place.

5 It is reminded fromQuantumMechanics that two operators that commute (here Ĥ and T̂ ) are compatible
(i.e., their observables can be measured simultaneously) and they have the same set of eigenvectors.
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is a Hamiltonian which is odd in both momentum and spin; e.g., the case of a massless
spin-1

2
particle moving with velocity v,

Ĥ = v σ · p =
2v

}
S · p , (2.4)

where the components of σ = (σx , σy , σz) are the Pauli matrices [178].
Most symmetries are represented in Quantum Mechanics by unitary operators;

however, the operator T̂ describing TRS is antiunitary. An antiunitary operator6, like a
unitary one, preserves the norm of a vector |ψ⟩ on which it acts, but is antilinear, i.e.,
for any scalar c it holds T̂ c|ψ⟩ = c∗ T̂ |ψ⟩. The representation of T̂ and the necessity for
its antilinear property, can be found from the transformations (2.3) that must implies.
From (2.3a,b), it is

(2.6)T̂ r T̂−1 = r , (2.6a)

T̂ p T̂−1 = −p . (2.6b)

But it is also7 T̂ [r, p] = [r, T̂ p] = −[r, p], therefore

T̂ [r, p] T̂−1 = −[r, p] T̂−1 = −i} T̂−1 or

T̂ i} T̂−1 = −i} T̂−1 or eventually T̂ i = −i .
Thus, the TR-operator must be proportional to the complex-conjugation operator K̂,
and in general can be written as T̂ = ÛK̂, where Û is unitary.
For spinless particles8 this does not needed, and T̂ is just the complex-conjugation
operator K̂,

T̂ψ(r) = K̂ψ(r) = ψ∗(r) , (2.7)

and it is readily seen that T̂ 2 = 1̂ .
For spinfull particles, additional to (2.6a,b) must hold

T̂ S T̂−1 = −S . (2.6c)

6 An operator is unitary when Û−1 = Û †, i.e., Û Û † = 1̂ . It preserves the inner product,

⟨ā|b̄⟩ = ⟨a|Û † Û |b⟩ = ⟨a|b⟩ .

An operator is antiunitary when Û−1 = −Û †, i.e., Û Û † = −1̂ . It preserves the inner product but
additionally introduces a complex conjugation [210],

⟨ā|b̄⟩ = ⟨a|Û † Û |b⟩ = ⟨a|b⟩∗ = ⟨b|a⟩ . (2.5)

7 Using that [r, p] = i} and the property of commutator [A, BC] = B[A, C] + [A, B]C,
known from Quantum Mechanics [177]. In these relations, p and r in the commutators are considered
to be operators.

8 Although electrons are indeed spinors, there are cases where they are treated as spinless particles, e.g.,
in the Haldane model.
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This action is realized by a rotation by π around some arbitrary axis – and the prevailing
convention is to rotate spin around y-axis. T̂ must implement this rotation, and also
must be proportional to the complex-conjugation operator K̂ as its action on r and p,
(2.6a,b), must still hold regardless of whether the particle has spin or not. It can be shown
[20, 210] that for spinors these requirements are satisfied setting the TR-operator as9

T̂ = iσyK̂ , (2.8)

where σy =
[
0 −i
i −0

]
is the second Pauli matrix.

In this case, and in general for half-integer spin particles, it holds

(2.9)
T̂ 2 = −1̂. and. T̂ −1 = −T̂ . (2.9a,b)

A very important consequence of the TR-invariance is the Kramers theorem :
in a TR-invariant system with half-integer spin particles10, each energy level is at least
two-fold degenerate (i.e., it belongs to at least two different eigenstates). This theorem
is based on the property T̂ 2 = −1̂ and can be proved quite easily. Let consider two
states |u⟩, |v⟩, related to each other by the TR-operator,

|v⟩ = T̂ |u⟩ . (2.10)

As T̂ commutes with the Hamiltonian,
|u⟩ and |v⟩ have the same energy eigenvalue λ because

Ĥ|v⟩ = Ĥ(T̂ |u⟩) = T̂ Ĥ|u⟩ = T̂ λ|u⟩ = λ(T̂ |u⟩) = λ|v⟩ ,
using that λ is real.
Also, from (2.10) it is

⟨v| = ⟨u|T̂ † (2.11)

and
T̂−1|v⟩ = |u⟩ . (2.12)

With all the above, and (2.5), the inner product of |v⟩, |u⟩ gives

⟨v|u⟩ = ⟨u|T̂ † T̂−1|v⟩ = −⟨u|T̂ † T̂ |v⟩ = −⟨u|v⟩∗ = −⟨v|u⟩ , (2.13)

from which follows that ⟨v|u⟩ = 0 identically.
Therefore, |u⟩ and |v⟩ are orthogonal (i.e., independent and different), and have the same
eigenvalue λ. This proves the theorem.

9 The representation (2.8) holds only for spin- 12 particles, not in general for spinfull particles.
10 The system must be composed from an odd number of such particles. The reason has to do with the
total angular momentum under TRS and will not be examined here.
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Kramers theorem has interesting applications to electrons in crystals, where odd-
and even-electron systems exhibit very different behavior. In crystalline systems, it can
be proved [20] that TRS imposes a Bloch eigenfunction |ψn,k⟩ to be degenerate with a
time-reversed corresponding one, according to

T̂ |ψn,k⟩ = eiϕ |ψn,−k⟩ , (2.14)

where the phase ϕ is n and k dependent. This also holds for the cell-periodic Bloch
functions |un,k⟩, while for the k-dependent Hamiltonian11 Ĥ(k) it is

T̂ Ĥ(k) T̂−1 = Ĥ(−k) . (2.15)

At the points where −k = (k. mod. a), a being a reciprocal lattice vector,
−k and k are simply duplicate labels and (2.15) becomes

T̂ Ĥ(k) T̂−1 = Ĥ(k) . (2.16)

Αt these special k-points, the Kramers theorem is applied and gives that there all the
states are doubly degenerate. These special wavevectors are known as TR-Invariant
Momenta (TRIM) and are important for the topological states.

Even more profound consequences has the simultaneous presence of TR and the
parity operator P̂ . The combined operator P̂ T̂ is an antiunitary operator which maps
k to itself at all k. In this case, the Kramers theorem implies that all bands are doubly
degenerate, everywhere in the Brillouin zone. This is the expected from spin degene-
racy in a nonmagnetic system in the absence of spin-orbit coupling; if inversion is also
present, the Kramers theorem implies that the bands remain doubly degenerate even in
the presence of spin-orbit coupling.

More details can be found in [20] and [252], and a more general discussion of the
TR operator is in [210]. In the theory of topological insulators the Kramers theorem
plays an important role as many of their properties can be interpreted with it.

2.3 Broken Time-Reversal Symmetry,
Chiral Edge States and Quantum Hall Effect

Breaking the TRS can induce profound implications. In Fig. 2.1 it is shown an important
case of TRS breaking. It is about a 2D electron gas12 subject to amagnetic fieldB perpen-
dicular to it. Under the influence of the magnetic field (Lorentz force), the electrons
move on trajectories of two types. The first are closed circular orbits in the interior
(bulk) of the system, away from its edges. As these orbits are localized, no net current
flows in the central region; the current vanishes in the bulk.

11 See F/note 55, p. 36.
12 A 2D electron gas (2D-EG) is an electron gas that is free to move in two dimensions, but is strictly
confined in the third. This strict confinement causes quantized energy levels for motion in the third
direction, which in many problems can be ignored. Thus the electrons appear to form a 2D sheet.
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Figure 2.1: A 2D electron gas under a perpendicular magnetic field, and creation
of edge states. (a) Classical intepretation. (b) Quantum interpreta-
tion.

The other type are the trajectories of the electrons at the boundary, which move skip-
ping repeatedly along the edges. These orbits are open, skipping all the way around the
boundary of the system; they constitute specific electronic states that carry the current
and they are formed in a magnetic field. This edge current is unidirectional : it is strictly
right-moving on one edge and left-moving on the opposite edge. The above arguments,
Fig. 2.1a, although classical, is a physical interpretation correct in its essence.

When the magnetic field is strong enough, a full quantum treatment is necessary.
In this case, the skipping motion of the carriers is quantized and the skipping trajectory
becomes an 1D edge channel encircling the interior of the system [92, 162], Fig. 2.1b.
In these edge states, the direction of the momentum p is strictly tied to the orientation of
the magnetic field. This directionality the edge state has, protects it against perturbations
of the material, which in every real system is always present, more or less. Besides the
defects of the crystal (disorders, impurities), the main cause of perturbations13 are the
random fluctuations of the electrostatic potential of the background; these cause elas-
tic scattering, flipping the momentum, p → −p. Neverthless, for the edge state such
backscattering events are strictly prohibited14. The strict directionality of the edge states
is called chirality. Chirality is a manifestation of broken TRS that appears in the quan-
tum Hall effect [129] and explains its dissipationless property.

What follows is a brief description of the Hall effect, giving emphasis in the forma-
tion of the edge states presented above. In the Hall effect, a conductor in which current
I is flowing, is subject to an external static magnetic field B; then, a voltage VH appears
in direction transverse to the flowing current, Fig. 2.2. When the magnetic field is strong
enough, the Hall conductivity σH = I/VH becomes quantized as15

σH =
2e2

h
n , (2.17)

13 Especially at low temperatures.
14 Except only if there is also a counter-directional state in the same edge.
It is also considered that the edge states between opposite edges cannot interact by quantum tunneling.

15 So this is about the (integer) quantum Hall effect [129].
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i.e., in multiples of e2/h, where e is the electron charge, n = 1, 2, ... , and the factor 2
in (2.17) stems from spin degeneracy.

Figure 2.2: The geometry of Hall effect, with the edge states shown at the edges
of the system. The edge states are chiral.

In such a setup, the longitudinal conductivity (i.e., in the direction of the flowing current)
theoretically is zero; in reality it is very small, practically zero. In this quantum status
the electric current does not prodcuce resistive loses. This dissipationless property is
due to the chiral edge states, which carry the electric charge without scattering – hence
without resistance along the edge. The necessary condition for this regime to appear, is
that bulk electric carriers must not exist. Consequently, in a quantum Hall system, the
edge states must appear in the energy gap separating the bulk bands, Fig. 2.3.
Furthermore, if the band structure is continuously deformed but leaving intact the gap
between the bulk bands, then the quantum Hall effect (and the edge states) remains un-
affected, Fig. 2.3b,c ˙ this means that the edge states are robust in such deformations.

Figure 2.3: A schematic example of band structure of a quantum Hall system.
The gray cones are the bulk states, the blue line is the edge state.
(a) Original case. (b), (c) Cases arising by deforming continuously
the (a), without touching the gap and the edge state.



Helical states and the concept of the 2D Topological Insulators 56

2.4 Helical states and the concept of the 2D Topological
Insulators

Besides the quantum Hall effect, the robust edge states is the keystone in the physics
of the 2D topological insulators16 (2D-TIs). As discussed above, in the Hall effect the
edge states appear when there is a magnetic field quite strong to break the TRS and
quantize the Hall conductivity. In contrary, in 2D-TIs the edge states do exist without a
magnetic field, i.e., without breaking the TRS17. This is feasible because of the spin-orbit
coupling in the TI materials. The spin-orbit coupling, in its simplest model for a spin-
1
2
material, can be considered as an intrinsic effective magnetic field Beff , pointing at

opposite directions for the up- and down-spin values. Concerning the 2D-TIs, each case
(spin-up, spin-down) can be considered as a copy of a quantum Hall insulator, having a
gapless edge state with opposite propagation and field directions in each one, Fig. 2.4.
These two subsystems together result in a pair of edge states in a zero magnetic field –
and this is a simple model for a 2D-TI. In 2D-TIs, the defining feature of the edge states
is the locking between the directions of spin and momentum, known as helicity. Two
such edge states constitute aKramers doublet; they have linear dispersion and cross each
other in the gap of the bulk band, at a so called Dirac point, Fig. 2.5.

Figure 2.4: (adapted from [245]). Schematic model of a 2D-TI
as a superposition of two quantum Hall systems.
The edge states are helical.

16 See [116, 117, 18, 19, 133, 134, 207].
17 But if a 2D-TI is subject to a magnetic field strong enough, then the TRS breaks in it too.
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Figure 2.5: Schematic example of band structure of a 2D-TI.
The upper cone corresponds to the conduction band, the bottom to
the valence band. The two helical edge states, corresponding to the
up- and down-spin, are indicated.

In 2D-TIs the edge states do exist for both propagating directions; however, for
scattering potentials of single particles that preserve the TRS, the scattering between
these paired edge states is impossible. A simple explanation is the following. The paired
helical edge states18 |R⟩, |L⟩, can be transformed one to the other by reversing both the
momentnum and spin, Eqs. (2.3b,c). This means the time is reversed, Eq. (2.1), hence the
two edge states are related by the TR-operator as |L⟩ = T̂ |R⟩ . If there is no scattering
between the edge states, then their interaction via the scattering potential V must be null;
in matrix representation this is

⟨L|V̂ |R⟩ = 0 . (2.18)

It will be proved that (2.18) indeed holds.
As the potential V is TR-invariant it satisfies that T̂ V̂ T̂−1 = V̂ or

T̂ V̂ = V̂ T̂ . (2.19)

Also, from |L⟩ = T̂ |R⟩ it is

⟨L| = ⟨R|T̂ †, (2.20)

and

T̂−1|L⟩ = |R⟩ , (2.21)

while it is reminded that for T̂ holds

T̂ −1 = −T̂ † = −T̂ . (2.22)

18 where R, L denotes the right- and left-moving respectively.
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Using (2.5) and all the above, it can be written

⟨L|V̂ |R⟩ = ⟨R|T̂ † V̂ T̂−1|L⟩ = −⟨R|T̂ † V̂ T̂ |L⟩ = −⟨R|T̂ † T̂ V̂ |L⟩

= −⟨R|T̂ † T̂
(
V̂ |L⟩

)
= −⟨R|V̂ |L⟩∗ = −⟨L|V̂ †|R⟩

= −⟨L|V̂ |R⟩ , (2.23)

where V̂ |L⟩ was considered as an intermediate auxiliary ket, and V̂ † = V̂ because V̂ is
taken to be hermitian. From (2.23) it is deduced that (2.18) is true.

The resultant of (2.18) is that the perturbations of the potential background in the
material cannot reverse the propagation direction of the helical edge states. The obstacles
in the background can modify more or less the trajectories of the edge states; however,
the two edge states always remain a “time-reversed pair” satisfying theKramers theorem,
and their conduction capability in the gobal sense is the same as in the ideal case. This is
a manifestation of the key property of topological insulators to preserve invariant their
global characteristics under continuous local deformations19.

Figure 2.6: (adapted from [245]). The robustness of the helical edge states to
the perturbations of the background potential and material defects.

The topological robustness of the helical edge states can be better emphasized by
comparing them with the ordinary 1D conductors in presence of potential perturbations.
In the ordinary conductors, the random perturbations of the potential cause backscat-
tering; the result is all the propagating states to become localized, a phenomenon known
as Anderson localization [6]. This takes place no matter how weak the perturbation or
the disorder is, as long as the system is large enough. But for TIs, because of (2.18),
Anderson localization is impossible, and this is a crucial qualitative difference from the
ordinary conductors.

Due to the spin-momentum locking (aka helicity) in the edges, the electronic state
of the 2D-TIs is also called “quantum spin-Hall state”. It was theoretically predicted for
graphene with spin-orbit coupling [116, 117], and also for semiconductor quantum wells

19 Other topological characterists of TIs is the band inversion and the misc topological numbers [245].
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[18, 19]. The quantum spin-Hall state was observed and investigated experimentally for
first time in HgTe quantum well structures [133, 134, 207].

2.5 The concept of 3D Topological Insulators

The setup and physics of 2D-TIs have a corresponding case in 3D space : it is about the
3D topological insulators20 (3D-TIs). In the surface of a 3D-TI robust electronic states
are formed, topologically protected, while the bulk is insulating. The surface carriers
can move freely in two dimensions; however, as with edge states, their spin is locked in
the direction of the momentum, Fig 2.7.

Figure 2.7: (adapted from [245]). Propagating states on the surface of
a 3D topological insulator, and their dispersion diagram.

The simplest Hamiltonian able to describe surface states with such spin-momentum
locking has already mentioned in (2.4), namely

Ĥ = v σ · p =
2v

}
S · p . (2.4)

In this case, the momentum is a vector on the surface, p = (px, py, 0).
In matrix form this Hamiltonian is written as

Ĥ = v (σxpx + σypy) = v

[
0 px − ipy

px + ipy 0

]
. (2.24)

20 See [95, 198, 69, 70, 173, 99, 100].
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The energyEp of a surface state with momentum p is the solution of the eigenvalue
equation

Ĥψ = v σ · pψ = Ep ψ , (2.25)

where the wavefunction ψ here is a two-component spinor, ψ =

[
ψ↑
ψ↓

]
.

The solution of (2.25) is

Ep = ±v |p| = ±v
√
p2x + p2y . (2.26)

Eq. (2.26) is indeed the dispersion relation for the 3D-TI (for the Hamiltonian (2.4),
adopted in this case). Its graph is a double cone, where the up-cone (+ branch of Ep)
corresponds to the conduction band, and the down-cone (− branch ofEp) corresponds to
the valence band of the surface carriers. This conical energy spectrum reminds strongly
that of an ultra-relativistic electron ˙ due to this similarity, sometimes the surface states
are called “Dirac fermions”.

Figure 2.8: The energy spectrum (2.26), and a pair of surface states on a level
of contant energy. The spin-momentum locking is also indicated.

A quite large number of materials and heterostructures support surface states, thus
being 3D-TIs. For the first time the surface states predicted theoretically at interfaces
between normal and inverted semiconductors (e.g., [257, 189] ). Subsequently, quite a
few materials found to be 3D-TI candidates, the most important of which are :

• the semiconductor alloy Bi1−xSbx [69],
• strained layers of Sn and HgTe [69],
• tetradymite compounds Bi2Se3, Bi2Te3 and Sb2Te3 [280],
• ternary chalcogenites based on Tl (Thalium) : TlBiTe2, TlBiSe2 [272, 152, 58],
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• layered chalcogenites based on Pb [59, 109].

Indeed, the existence of topological surface states was experimentally verified and
investigated for most of the above materials :

• in the semiconductor alloy Bi1−xSbx [99],
• in Bi2Se3 [270] and Bi2Te3 [44],
• in TlBiTe2 [45] and TlBiSe2 [212, 137, 45]
• in strained layers of HgTe [38],
• in Pb(Bi1−xSbx)2Te4 [235] and PbBi2Te4 [139].

It is emphasized that the Dirac cone described by (2.26) is an ideal case, and for
the simplest Hamiltonian for 3D-TIs. In reality, away from the Dirac point (p = 0),
higher order terms of p enter in (2.26) distorting the form of the double cone. These
terms destroy the symmetry of positive and negative branch of Ep (aka particle-hole
symmetry), hence the symmetry between up and down cones, Fig. 2.9a. Moreover, in
tetradymite compounds Bi2Se3, Bi2Te3 and Sb2Te3 hexagonal warping effects take place
[71, 153, 3, 138], causing anisotropy in the surface states, Fig. 2.9b. Another interesting
variation appears in thin films of TI materials, where the topology of the bands is quali-
tatively different; instead of the gapless Dirac-like cone, a semiconductor-like spectrum
with an energy gap at p = 0 is formed [150, 122], Fig. 2.9c. Nevertheless, despite these
variations, the notifying property of 3D-TIs is the Dirac-like dispersion, and their basic
model is the Hamiltonian (2.24) as it causes a pair states, topologically protected and
related to each other by the TR-operator.

Figure 2.9: Variations in energy spectrum graph of surface topological states.
(a) Broken particle-hole symmetry, (b) hexagonal warping,
(c) energy gap.
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2.6 Appendix : The Bulk-Edge Correspondence in
Topological Photonic Structures21

The bulk-edge correspondence, already discussed in §1.4.3, relates the Chern topolo-
gical numbers with the net number of unidirectional states supported at an interface of
the relevant materials. This fundamental principle is perhaps the most consequential
result of topological photonics, as it determines the precise physical manifestations of
nontrivial topological features. Even though the bulk-edge correspondence has been
extensively discussed and used in the literature, it seems that in the general photonic
case with dispersivematerials it has no solidmathematical foundation and is essentially a
conjecture. In this section it is presented rigorous physically-motivated demonstration of
this fundamental principle by showing that the thermal fluctuation-induced light-angular
momentum spectral density in a closed cavity can be expressed in terms of the photonic
gap Chern number, as well as in terms of the net number of unidirectional edge states.
In particular, it is highlighted the rather fundamental connections between topological
numbers in Chern-type photonic insulators and the fluctuation-induced light momentum.

2.6.1 Proof of the Bulk-Edge Correspondence in topological
photonic structures

It can be proved [225] that in a topological system the gap Chern number is linked to the
net number of unidirectional edge states as

C = −
∑
ωm=ω

sm . (2.27)

Thus, the Chern number of the bulk region determines precisely the net number of edge
modes circulating around the lateral “opaque-type” walls of the closed cavity. In par-
ticular, a nontrivial Chern number implies the emergence of unidirectional gapless edge
modes. For a positive (negative) gap Chern number the unidirectional modes propagate
clockwise (anticlockwise) with respect to the z axis.

This result may be further generalized to give the number of edge modes propa-
gating at the interface of two topological materials : the bulk-edge correspondence. To
this end, let be considered the geometry depicted in Fig. 2.10, which shows a cavity half
filled with two photonic insulators (the two materials share a photonic band gap). The
cavity lateral walls are assumed opaque. Let C1 and C2 be the gap Chern numbers for
material 1 and 2, respectively. Eq. (2.27) implies that C1 and C2 determine the number
of modes propagating in the clockwise direction around the cavity walls, see Fig. 2.10.
Hence, the number of modes propagating at the interface of the two materials (along the
+x1 direction) must be precisely C2 − C1, i.e., the gap Chern number difference.

21 In
is reproduced from
this appendix it is presented the bulk-edge correspondence in the context for Topological Photonics;

it [225].
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Figure 2.10: (reprinted from [225]). Illustration of the bulk-edge correspondence
principle. A cavity (terminated with “opaque-type” lateral walls) is
filled with two photonic insulators. The points A and B represent
the two junctions.

The reason why this needs to be so is that otherwise the system would be unstable
and a steady state could not be reached. Indeed, suppose that the net number of unidirec-
tional modes propagating at the interface of the two materials is different from C2−C1.
In this situation, for one of the junction points (let us say point B in Fig. 2.10) the number
of edge modes arriving at the junction is larger than the number of edge modes propa-
gating away from the junction. Since the system response is linear, this implies that it
would be possible to choose the complex amplitudes of the incident waves in such a
way that the edge waves propagating away from the junction are not excited. But then,
since by assumption there is no loss and there are not scattering channels available, the
energy incident in the junction must remain stored in it. Hence, it is impossible to reach
a stationary state for a time-harmonic excitation : the energy stored at the junction grows
linearly with time similar to a lossless LC circuit excited at the resonance. Physically
this is not acceptable, and hence the net number of unidirectional edge modes propagat-
ing at the interface of the two materials must be precisely C2 − C1. This concludes the
proof of the bulk-edge correspondence principle.

To illustrate the application of the developed theory, let consider a 2D photonic
crystal (the condition ∂/∂z = 0 is enforced) formed by square-shaped nonreciprocal
inclusions organized in a square lattice with period a, Fig. 2.11. The inclusions stand in
air and are spaced by d. Furthermore, the analysis is restricted to ΤΜ polarized waves
with nontrivial field components Hz, Ex, Ey. The electric response of the inclusion
is assumed to be gyrotropic with the same dispersion model as a lossless magnetized
plasma [26] (e.g., a magnetized semiconductor [187]), ε̄ = εt1t + εaẑ ⊗ ẑ + iεgẑ × 1
where

εt = 1−
ω2
p

ω2 − ω2
c

, . εt = 1−
ω2
p

ω2
, . εt =

1

ω

ωc ω
2
p

ω2
c − ω2

, (2.28)
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and 1t = x̂⊗ x̂+ ŷ⊗ ŷ. In the above, ωp is the plasma frequency, ωc = −qB0/m
∗ is the

cyclotron frequency (positive when the magnetic field is oriented along +z), q = −e is
the electron charge, andm∗ is the electron effective mass [26].

Figure 2.11: (reprinted from [225]).
(a) Geometry of a 2D photonic crystal formed by square-shaped
gyrotropic-material inclusions organized in a square lattice. For suf-
ficiently low frequencies the photonic crystal may be regarded as a
continuum with a spatial frequency cutoff kmax.
(b) Band structure of material (solid blue lines) and dispersion of
the edge states in the first band gap for (i) a gyrotropic-PEC inter-
face (dot-dashed green line) and (ii) gyrotropic-gyrotropic interface
with the materials biased with magnetic fields oriented in opposite
directions (dot-dashed green line and dashed black line). The band
structure, the edge-state dispersions, and the gap Chern numbers (in-
dicated in the insets) are found using the continuum approximation.

The structural parameters of the photonic crystal are a = (2π/5)(c/ωp) and d =
0.1a. For ω ≪ ωp the air gaps are deeply subwavelength, and hence, in the long-
wavelength limit it seems reasonable to approximate the photonic crystal by a continuum
with the same permittivity as the inclusions, as illustrated in Fig. 2.11a. This approxima-
tion greatly simplifies the calculation of the band structure and of the gapChern numbers.
In order that the electromagnetic continuum is topological, it is necessary to impose a
high frequency spatial cutoff kmax [222]. For the physical reasons discussed in detail in
[223] the spatial cutoff should be taken on the order of kmax ≈ 1/d. The photonic band
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structure obtained with the continuum approximation is depicted in Fig. 2.11b (solid blue
lines) for ωc = ±0.8ωp. As shown, there are two band gaps and the corresponding gap
Chern numbers are indicated in the insets. The Chern number calculation is done as in
[224] and takes into account the contribution of the negative frequency bands (not shown
in Fig. 2.11b).

Next, let consider the low-frequency band gap for which the continuum approxi-
mation is more accurate. Its gap Chern number isCgap,1 = − sgn(B0) = − sgn(ωc), and
thus it is topologically nontrivial. Hence, if the material is paired with a PEC boundary,
the bulk-edge correspondence predicts that there is a single edge state propagating along
the +x direction. To confirm this prediction, it is used the continuum approximation
to compute the edge state’s dispersion. The spatial cutoff kmax is taken into account
using the spatially dispersive model described in [223]. The calculated dispersion (for
a material biased with B0 > 0 and ωc = 0.8ωp). is plotted with a green dotted line in
Fig. 2.11b, and yields the unidirectional gapless edge mode.

It is also interesting to analyze the case in which two topologically distinct plasmas
are paired to form an interface inset of (Fig. 2.11b). In this scenario, the top region
(y > 0) is biased with B0 > 0 (ωc = +0.8ωp) and the bottom region (y < 0) is biased
with B0 < 0 (ωc = −0.8ωp). In this case, the gap Chern number difference is −1 −
1 = −2, and hence the bulk-edge correspondence predicts two modes propagating along
the +x direction. This property is confirmed by the numerical results : the edge-state
dispersion is now formed by two branches. Because of the symmetry of the structure,
one of the branches (with kx > 0) is coincident with the one obtained for the gyrotropic-
PEC interface geometry discussed previously. The second branch has kx < 0 but a
positive group velocity; i.e., it is a backward wave. Thus, in agreement with the bulk-
edge correspondence, both edge modes propagate along the +x direction.

To further validate the analysis and the link between the angular momentum and
the gap Chern numbers, it was used the software CSTMICROWAVE STUDIO to simu-
late the full wave response of a photonic crystal cavity with a geometry analogous to
that of Fig. 2.10. The cavity lateral walls are PEC. The top region (y > 0) is a truncated
photonic crystal with ωc = +0.8ωp, and the bottom region (y < 0) is a truncated pho-
tonic crystal with ωc = −0.8ωp. The structural parameters of the photonic crystals are
as in the previous example. The CST simulations fully take into account the granular
structure of the photonic crystals (the continuum approximation is not used). From the
continuum results (Fig. 2.11), one may expect that for low frequencies this system sup-
ports (i) one unidirectional edge state propagating along the lateral walls, and (ii) two
distinct unidirectional edge state,s propagating along the interface (y = 0) of the two
gyrotropic photonic crystals. To test these ideas, the cavity was excited with a dipole-
type antenna placed in between the two photonic crystals near to the left-hand side lateral
wall. Figs. 2.12a and 2.13a show a time snapshot of the excited magnetic field (Hz) for a
dipole oriented perpendicular (vertical dipole) and parallel (horizontal dipole) to the in-
terface, respectively, with oscillation frequency ω = 0.5ωp. The effect of weak material
loss is taken into account to ensure the convergence of the simulations. The propaga-
tion of edge states at the lateral walls and at the interface of the two photonic crystals is
evident. Furthermore, as can be seen from the Poynting vector lines in Figs. 2.12b and
2.13b, the energy circulates in closed orbits, such that for the top region (with gap Chern
number Cgap,1 = −1), the energy flows in the anticlockwise direction whereas in the
bottom region (with gap Chern number Cgap,1 = +1) it flows in the clockwise direction.
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.

Figure 2.12: (reprinted from [225]). Photonic crystal cavity terminated with PEC
lateral walls. The region y > 0 (top half of the cavity) is biased
with a positive (along +z) magnetic field (ωc = +0.8ωp), and the
region y < 0 (bottom half of the cavity) with a negative (along
−z) magnetic field (ωc = −0.8ωp). The cavity is excited with a
vertical (along +y) short electric dipole placed at the interface of
the two regions near the left-hand side lateral wall. The oscillation
frequency of the dipole is ω = 0.5ωp.
(a) Time snapshot of the magnetic field Hz.
(b) Poynting vector lines showing how the energy circulates in the
cavity.

.

Figure 2.13: (reprinted from [225]). Similar to Fig. 2.12 but for a horizontal
(along +x) electric dipole.
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This result is in agreement with Eq. (2.27), which links the sign of the Chern number
with the direction along which the energy circulates. Interestingly, the time animations
available in the Supplemental Material22 show that the edge state excited at the interface
of the two photonic crystals (y = 0) by the vertical dipole is a forward wave (Fig. 2.12),
whereas the edge state excited by the horizontal dipole is a backward wave (Fig. 2.13).
Hence, in agreement with the dispersion of the edge states obtained with the continuum
approximation (Fig. 2.11b), the interface y = 0 supports two unidirectional edge modes :
a forward wave and a backward wave. Furthermore, as seen in Figs. 2.12 and 2.13,
Hz has even (odd) symmetry with respect to y = 0 for the forward (backward) mode,
respectively. The edgemode profiles obtained with the continuum theory have the same
symmetries, which further reinforces the validity of this approximation.

22 The link for the time animations of Figs. 2.12a and 2.13a is
http://link.aps.org/supplemental/10.1103/PhysRevX.9.011037



3. Elements and applications
of Topological Photonics

3.1 Introduction

It has been shown recently that many topological phenomena concerning the electronic
band structure in solids, have analogues in optical and photonic systems too [161, 121,
126, 184, 89, 214]. The beginning was done by Haldane and Raghu who suggested the
creation of a model of the anomalous quantum Hall effect in optical systems [91, 200].
Since then, it was found that optical systems can support unidirectional topological edge
states, gapped photonic bands with nonzero Chern number, and photonic models of the
quantum spin Hall effect [87, 88]. Based on these models, a plethora of applications was
proposed, some very interesting ones, which will be discussed briefly in this chapter.

Photonic systems differ significantly from the electronic ones, and pose particular
difficulties that must to be overcome. The main such difficulties are the following :

• The Hall effect and many other effects of topological nature require breaking of
time reversal symmetry. But photons have no charge, hence this cannot be done
trivially using magnetic fields as in electronic systems.

• The photons are bosons and tend to cluster to the lowest available energy level,
instead of separating to distinct, well-separated bands.

• In contrast to electrons, photons do not interact directly with each other1.
• Photons propagate at the speed of light, consequently the manipulation of their
properties must either be done very quickly or be distributed spatially over the
propagation path.

• Photons tend to be absorbed or scattered out of the system, hence a constant influx
of new photons in the system is required.

In some cases the last point is advantageous. In an optical system, loss and gain
are non-hermitian processes, and it has been found that non-hermitian processes offer
new capabilities for topological phenomena2, among them topological lasers presented
below.

Besides the aforementioned difficulties, photonic systems have some significant
advantages over the electronic ones. For example, changing the system parameters in

1 However they can be forced to interact indirectly, via nonlinear interactions through a crystal lattice.
2 See [279, 159, 57, 208, 145, 149, 217, 81, 269].

68
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an optical system is generally easier than in a conventional solid-state system. Even
more important, to observe topological phenomena in optical systems does not require
extreme cooling, as is usually necessary in solid-state and atomic systems.

From the discussion in §2.3 it is obvious that the existence of quantum Hall effect
depends on breaking the time reversal symmetry, by applying a magnetic field. Also,
it was found that the the existence of topological phases depends on the presence or
not of charge conjugation symmetry and of chiral symmetry3. Taken account how all
these symmetries define the topological phases, a classification of the topological phases
can be done, which sometimes refered as “the periodic table” of topological insulators
[125, 229].

To achieve the symmetry conditionswhich allow the existence of topological phases
in Photonics, a variety of techniques can be used. For example :

• to break the TRS, the so called Faraday rotators can be used [130],
• to create a chiral symmetry, the light can be directed to two-part optical systems
in which two distinct types of optical components alternate,

• the system can be designed to have some form of periodic driving,
etc. These techniques allow the realization of topological states in quite a few systems ˙
e.g., in coupled resonant oscillator systems, in cold atom optical lattices, and in photonic
quantum walk systems.

In this chapter will be discussed the topological effects occurring in waveguides,
optical resonators, and dielectric photonic crystals. Simple quantum walk systems for
light are discussed as well. The branch of Topological Photonics is growing rapidly and
is quite specialized, so the presentation here is necessarily incomplete – but sufficient
to inform the reader for the main areas of current research. The presentation primarily
concerns quantum systems ˙ however, some of these topological effects can also occur
in classical optical systems [219].

3.2 Photonic crystals, waveguides, and coupled
resonant cavities

3.2.1 Photonic crystals

In 2005 Haldane and Raghu proposed theoretically an analogue of the anomalous quan-
tum Hall effect in optical systems [90, 200]. The system they studied was a photonic
crystal, specifically a gyromagnetic one, where time-reversal symmetry is broken due
to magneto-optical effects. Three years later, the idea was verified by Wang et al., who
provided realistic material designs [262] and experimental observations [263]. These
studies raised a plethora of subsequent investigations, theoretical [87, 64, 120, 160, 228]
and experimental [135, 203, 88].

A photonic crystal [110] is an optical nanostructure in which the electric permitti-
vity, hence the refractive index, change periodically in space. Photonic crystals affect

3 i.e., symmetry under interchanging two distinct types of lattice sites.
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photons the same way atomic lattices of solids (crystal structure) affect conductivity
electrons. Photonic crystals can be constructed in 1D, 2D or 3D versions. 1D ones can
be made of thin film layers deposited on each other. 2D ones can be made by pho-
tolithography, by drilling holes or arrange nanorods periodically in a suitable substrate.
For 3D ones, fabrication methods include stacking multiple 2D layers on top of each
other, drilling at different angles, instigating self-assembly of spheres in a matrix and
dissolving the spheres, and techniques with lasers.

Figure 3.1: Schematics of representative lD, 2D and 3D photonic crystals.

The notifying feature of a photonic crystal is the periodicity of dielectric material
(and thus the refractive index) along one or more axes. When an optical wave encounters
a change in the refractive index of the media where it travels, always undergoes reflec-
tion. In a photonic crystal, the reflected wave interferences with the incident wave,
constructively at some frequencies, and destructively at others. At the frequency ranges
where the intereference is constructive, the wave propagates in the crystal ˙ these are
allowed photonic bands. At the frequency ranges where the intereference is destructive,
the propagation is imposible ˙ these are forbidden bands. The forbidden bands consti-
tute the energy gaps required for the nontrivial topological states4. In conclusion, in
photonic crystals, the periodic change of refractive index results eventually in photonic
bands formation.

A photonic crystal consists of a periodic array of nanostructures (e.g., nanorods
or holes) with high refractive index, embedded in a medium with lower one. The elec-
tromagnetic field tends to concentrate inside the high index structures ˙ therefore, the
nanostructures in the ambient medium act as lattice sites where the field tends to loca-
lize. The hopping amplitudes of this localized field due to evanescent coupling between
the sites, can be changed by changing the distances between the structures and/or their
refractive index. In this way, usual solid-state structures and discrete hopping models
such as an 1D SSH model or a 2D graphene-like honeycomb structure can be set with
photonic crystals.

In the pionneer works [91, 200] it was predicted that could exist 2D photonic cry-
stals with Hamiltonians of nonzero Chern numbers. These systems would have uni-
directional edge states extremely stable and durable, even in high levels of impurities
or disorder ˙ states for propagation in the other direction, permitting scattering of the

4 This requirement has already been mentioned in p. 37,
and also when discussing the quantum Hall effect, in p. 54.
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photons, would not exist. Bringing together two such photonic systems with different
topological phases, then boundary states would be trapped along the interface, between
bulks with different Chern numbers. These predictions were confirmed experimentally
in subsequent studies [262, 263].

Figure 3.2: (reprinted from [161]). (a) Schematic of the experimental setup for
observing the unidirectional edge state between themetal wall and the
gyromagnetic photonic crystal. (b) The band structure of the system.
The unidirectional gapless edge state between the second and third
bands of non-zero Chern numbers is indicated. (c) Simulated field
propagation of the unidirectional mode and its topological protection
against large obstacles. (d) The measured transmission coefficient in
the unidirectional edge of the waveguide.

Specifically in [263], the experiments used a 2D square lattice photonic crystal,
consisting of an array of gyromagnetic ferrite rods confined vertically between two
metallic plates, mimicking the 2D transverse magnetic (TM) modes, Fig. 3.2a. To avoid
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radiation losses into the air, a metallic wall was set at the two sides of the crystal. In
absence of external magnetic field, the band structure of the system has a quadratic point-
degeneracy consisting of a pair of Dirac cones [47] that connect the second and third
TM band. When a uniform static magnetic filed is applied5, then TRS breaks, and in
the magnetic permeability tensor appear anti-symmetric imaginary off-diagonal terms.
The quadratic degeneracy is lifted up and a bandgap is formed between the second and
third bands, both of them having non-zero Chern numbers. In this bandgap, at around
4.5 GHz, an edge state also appears, Fig. 3.2b, which is striclty unidirectional and has
positive group velocities. Numerical simulations confirmed that a source inside this
waveguide emits only forward in the bulk frequency gap, and there is no scattering even
when the wave encounters quite large obstacles, Fig. 3.2c. The measurements of the
trasmission coefficient, Fig. 3.2d, also shows that backward reflection is more than five
orders lower than the forward propagation – and more imortant this low reflection still
holds even after inserting large obstacles in the way of the wave, Fig. 3.2c. In fact, when
the wave creeps on an new interface due to an obstacle, then new unidirectional edge
states are formed, providing a path for light to circumvent the obstacle. Just this is the
topological protection provided by a photonic crystal with non-zero Chern numbers !

It is noted that unidirectional waveguides of other types also exist, for example
based on conventional non-reciprocal materials ˙ however, they lack the robustness of
the topological protected structures like the above. Unfortunately, optical materials have
very weak response in magnetic processes, making the realization of optical topological
structures challenging. This is why topologically protected states were first observed
in microwave frequencies : in this spectral range the magneto-optic effect required for
breaking the TRS is strong – but now have been observed in other frequency ranges too.
A topological insulator without the need for gyromagnetic effect was realized experi-
mentally for first time in [203]. In that study an array of waveguides was used, coupled
evanescently, and arranged in a graphene-like honeycomb pattern. The light propagates
monotonically along the z-axis, thus the z coordinate is considered as an effective time
variable. To break the effective TRS as required, the waveguides had helical shape.

Afterwards, similar topological phenomena observed and realized in a plethora of
other systems [87, 88, 46, 63, 155, 135], mainly in optical cavities, quasicrystals, meta-
materials, and coupled optical oscillators. Also, another class of systems exhibiting
behavior of topological insulators are the optical resonators [88, 171], to be discussed
next.

3.2.2 Optical resonators

Optical resonators [98] are resonant cavities, usually having the form of rings, in which
optical fields can be stored for long times as configurations of resonant standing waves
or circulating waves. Optical resonators can be coupled to each other or to waveguides
by evanescent coupling. Bringing two such cavities close enough, then the evanescent
field from one cavity penetrates a small distance into the other and allows tunneling of
the field into the other cavity ˙ in this way, by evanescent coupling two optical resonators

5 with a strength about 0.25 T.
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can be coupled together or to waveguides. This inter-cavity coupling can be fabricated to
achieve desired values with very high precision. Additionally, ring resonators have the
capability to accept optical excitations that circulate either clockwise or anticlockwise,
allowing to model various two-state systems such as electron spin.

Photons in an array of coupled resonators are similar to electrons in an array of
atoms in solids. The photonic coupling between the resonators can be adjusted to form
topologically non-trivial frequency gaps with robust edge states. Photonic analogues of
the integer quantum Hall effect have been achieved using both static and time-harmonic
couplings that simulate the electron’s behavior in a uniform magnetic field. In these
structures, the TRS breaking can be imposed by accurate time-harmonic modulations ˙
then, unidirectional edge states (waveguiding) immune to disorder can be realized at
optical frequencies.

Figure 3.3: (adapted from [227]). Operation principle of optical ring resonators.
(a) Two optical ring resonators coupled evanescently to each other
and to external waveguides. (b) Same as (a) but here an auxilliary
resonator is used to couple the original two in order to provide more
control. (c) A 2D array of coupled resonators, based on pattern (b).
The circular resonators act as lattice sites, while the elliptical ones
serve as links that can be setup to provide hopping values to simulate
different lattice models. For input and output, waveguides can be
coupled to any of the lattice sites.

In Fig. 3.3 the operation principle of coupled optical resonators is sketched. In
Fig. 3.3a it is shown a pair of resonators, A and B, coupled to each other and to external
waveguides. Due to the evanescent coupling, a hopping phase ϕ occurs as the field
oscillates from A to B and vice versa. In this structure, the phases in each direction are
precisely equal in magnitude and opposite in sign. In Fig. 3.3b it is shown an improved
version. An auxiliary resonator C has been added to provide more control and flexibility.
Shifting C along z direction changes the linkage length between A and B ˙ this introduces
an asymmetry between the hopping phases of the amplitudes for the left-to-right and
right-to-left moving of the wave. In this way, the phase accumulated as the wave moves
along a closed path6, eiϕ = e−i e/hc

¸
A·dl, can simulate an artificial gauge field A, thus

providing a means to break the TRS. Moreover, the tilting of A and B resonators against

6 It is noted that this is the so called Aharonov-Bohm phase [161], not the Berry phase.
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C gives the capability to impose or break the chiral symmetry7. With this flexibility, a
variety of different possible topological systems can be fabricated.

In Fig. 3.3c it is shown a usual 2D structure of coupled resonators. The elliptical
loops are the intermediate links, the circular ones are the main resonators. By adjusting
the hopping amplitudes caused by the links, a plethora of solid-state lattice models can
be simulated optically. An interesting case is to arrange the links in order the phases to
vary from row to row. In a such configuration the phases on the upper and lower halves
of a closed loop do not cancel ˙ this provides an artificial gauge field with nonzero fluxes
inside the areas enclosed by the loops.

It is emphasized that a photon does not interact with magnetic fields, but it also
accumulates a phase change after sweeping a closed loop8. Therefore, the idea to impose
time-harmonic modulations to indirectly create an artificial gauge field corresponding
to the magnetic field, and then use it to break TRS, is crucial for optical resonators9.
The pioneer work on this was done by Hafezi et al. [87, 88], who eventually succeed to
show that certain robustness against particular types of disorder in optical resonators can
still be achieved due to the topological features of the phase arrangements [171]. Fang
et al. [64] proposed theoretically how to break TRS and eliminate backscattering using
spatially-coherent time-domain modulations. Unfortunately, it is challenging to achieve
accurate and coherent time-harmonic modulations of a large number of resonators in op-
tical spectrum. Rechtsman et al. [203] converted the modulation from the time domain
to the spatial domain, succeeding to demonstrate experimentally the photonic analogue
of the quantum Hall effect in optical frequencies. A more detailed and comprehensible
discussion of the above issues, with the corresponding references, can be found in [161].

3.2.3 Waveguides topologically protected

It is remined that the boundaries betweenmaterial domains with different Chern numbers
support surface or edge states, topologically protected and strictly confined very close
to the boundary. “Protection” means that disorder and perturbations (crystal defects,
impurities, abrupt bendings in geometry) do not break the states, and the states do not
undergo dissipation into the bulk region of the materials. Moreover, these states are
unidirectional, that is they allow moving of charge carriers strictly in one direction only.
In the same topological phase, states with opposite directions generally do not exist, thus
the existing states are extremely stable as there is no available channel for a particle to
backscatter into it.

Having these properties, such states are very usefull in Photonics for transport of
light without scattering and losses. High-coherence optical quantum states are generally
fragile and easily perturbed by interactions with the environment. These perturbations

The Berry phase concerns quantum status vectors |u⟩. The Aharonov-Bohm phase concerns
the magnetic potential A and is proportional to the magnetic flux enclosed by the loop [227].

7 i.e., symmetry under interchanging two distinct types of lattice sites.
8 In fact the same phase as the Aharonov-Bohm phase of electrons moving in a uniform magnetic field.
9 The idea to create effective magnetic fields for neutral particles [48] using artificial gauge fields was
first studied in optical lattices [105]. Later on, similar gauge fields were also studied in Optomechanics
[213] and radio-frequency circuits [107].
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can decohere wavefunctions, that is the relative phases in quantum superpositions be-
come random. As a result, quantum effects such as interference and entanglement are
reduced or eliminated. Therefore, waveguides topologically protected are very useful to
transport optical quantum states without decoherence. In Fig. 3.4 is shown a schematic
of an 1D waveguide for optical transport, topologically protected. In the same manner,
topologically protected states on 2D interfaces between 3D bulks can be used to restrict
photons on a plane in order to reproduce physical phenomena in two dimensions.

Figure 3.4: Operation principle of a topologically protected waveguide.
Two materials with different Chern numbers (different topological
phases) are in contact, inducing a state confined on the boundary.
The boundary is used as a waveguide for optical transport, with the
topological protection of the state to prevent degradation from envi-
ronmental perturbations.

Many optical devices like waveguide splitters, signal switches, directional filters,
have also been proposed or realized in topologically protected versions. Besides them,
topologically protected surface states could be used in precision optical measures and
sensing applications.

A basic concept in Quantum Optics, Quantum Information Processing, and other
such disciplines is entanglement. Two- or multi-particle states that are entangled cannot
be factored to a product of single-particle states. Entangled states contain correlations
between the particles which are stronger than any classical correlation [83]. Thus, the
design and realization of waveguides capable to topologically protect entangled states
and quantum correlations is of great importance [27, 261, 172, 204].

3.2.4 Topological lasers

All the devices discussed so far are passive, meaning they operate without requiring
external energy. In contrary, active photonic devices pump energy from an external
source and they are used to amplify signals or produce nonlinear effects. Topological
materials have applications in this case too [183] – and the main case of active photonic
device with topological properties is the topological insulator laser [94, 11].

The basic concept of a topological insulator laser is to use an array of coupled ring
oscillators and to pump the resonators only on the boundary of the array. The system
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is topologically protected, thereby suppressing the loss of the signal in the bulk and
preventing defects from stopping the energy propagation along the boundary.
This was tested in [94, 11] ˙ the result was a high-coherence single-mode laser in which
the ratio of laser intensity to pump intensity, and the output coupling efficiency, were
significanlty higher than comparable nontopological lasers. Specifically, the output gave
a peak near 1550 nm, in the wavelength region used for applications in standard telecom-
munications. The laser process takes place mainly at the boundary of the structure.
Imperfections in the boundary do not influence the output of the topological laser ˙ the
energy flux penetrates into the bulk just to circumvent the defect, without scattering, and
again returns to the boundary. This is not the case in a common (nontopological) laser,
in which the defects cause scattering, thus disrupting the energy flow and the emission
in their vicinity.

Figure 3.5: (reprinted from [11]). A topological insulator laser.
(a) Resonator array, pumped at the boundary. At the upper left lies the
output port. The energy remains near the boundary, without leakage
in the bulk, thus resulting to higher efficiency. (b) Output intensity
of the single-mode topological laser and the maximum output mode
of a comparable trivial laser. The first is greater by a factor five or
more. (c) Output bandwidth of the single-mode topological laser and
the multi-mode of the trivial laser. The first is significantly narrower.

A plethora of topological lasers have been proposed and demonstrated. Of the first
successful attempts was a topological laser based on gyromagnetic photonic crystals
[8]. Many other variations realized after that, like topological vertical cavity surface
emitting lasers, topological quantum cascade lasers etc [278, 4, 230, 157]. Due to their
stability, topological lasers can have arbitrary shapes, and imperfections in their constru-
ction have minimum influence in their performance. More speciallized versions are also
in development ˙ among them are nanocavity topological lasers [183, 93, 190] which
exhibit high speed and low power consumption, and are suitable to be incorporated in
integrated nanophotonic circuits.
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3.3 Photonic walks

Quantum walk (QW) is a powerful technique for creating quantum algorithms, and for
simulation of complex quantum systems. The quantum walk is the quantum version of
the classical random walk, which is based on the “tossing of a coin” to determine the
direction of the next step. According to QuantumMechanics, the evolution of an isolated
quantum system is deterministic : randomness occurs only when the system is measured
and classical information is obtained10. The aforementioned coined model evolves at
discrete time steps on a discrete space, represented by a graph. Two other main versions
of QWs are also available : a coinless version known as staggered model, which uses an
evolution operator defined by partitioning the vertex set, and a continuous-time version
[193]. In this Section, only discrete QWs will be examined, in which a discrete step is
taken at times t = mT , T being fixed.

Quantum walks of photons on discrete lattices [239] is another version, particu-
larly interesting because it is quite simple in experimental realization and can simulate
a plethora of phenomena.

In a classical randomwalk [128], a particle lies on a discrete lattice, which here it is
taken to be 1D for simplicity, and at each multiple of a discrete time T the particle moves
from its current position to one of the adjacent sites, left or right. It can be proved [205]
that the probability of being at lattice site n after m time steps is given by a binomial
distribution. Whenm is large enough, then, according to the central limiting theorem this
probability becomes approximately gaussian. The width of the distribution, measured
by the standard deviation, grows proportionally to the square root of time, σ = O(

√
m).

Such a time dependence occurs in diffusion processes, and it is called diffusive spread.

Figure 3.6: (a) Probability of a classical random walk. The standard deviation
is diffusive, σ = O(

√
m). (b) Probability of a quantum walk. The

standard deviation is ballistic, σ = O(m). For the “coin” operator
and the initial conditions used in this case see [193].
n is the lattice site,m the time step.

10 This is the reason the name “quantum random walk” is rarely used.
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Quantum walks exhibit a very different behavior [1, 118, 255, 259]. In a quantum
walk, instead of a classical particle there is a wavefunction. Speaking of the 1D case,
at each time step the wavefunction spreads in both directions simultaneously (left and
right). After a few steps, an ensemble of paths has been formed that can be swept from
the initial site to other nearby lattice sites ˙ this causes quantum interference between
the different possible paths. The wavefunction amplitudes for moving left or right can
be determined by a random variable named the coin variable. In fact, coin variable is a
two-component vector, with its components concerning the amplitude for leftward and
rightward steps. At each step, the amplitudes for the left and right steps are determined
by a random process (“coin tossing”)11 and vary. To describe the process, the Feynman
path integral method [210] can be used, which gives quantum amplitudes by summing
over ensembles of classical trajectories. Whatever the case is, the amplitudes a(n) for
the particle to be at each site n evolve deterministically over time, and interfere with
each other in a complicated way ˙ thus, the final probability distribution is much more
complex than in the classical random walk. The probability a site n at time m to be
occupied is given as p(m, n) = |a(m, n)|2. An indicative example is shown in Fig. 3.6.
It is evident that the distribution is not gaussian ˙ indeed it tends to be smaller in the
middle and larger at the ends12. Near the ends the probability has a peak that is more
than 10 times larger than the values at the origin. This suggests that the quantum walk
has a ballistic behavior, meaning that the particle can be found away from the origin
as if it is in a uniform rightward motion13. In this case, the standard deviation grows
proportionally to the time, σ = O(m). The asymmetry in the distribution is due to the
choice of coin variable used ˙ with other “coins”, or different initial conditions, more
symmetric walks can be produced.

Due to their ballistic spreading, the quantum walks spread faster than any classical
random walk, and can be used to physically realize fast quantum search algorithms. For
this reason, QWs are of great interest in Quantum Information Processing and Quantum
Computing. An important characteristic in many quantum computation algorithms is
that the superposition principle, interference, and other quantum properties result to the
so called quantum speed-up of algorithms [175, 170] – and quantum walk processes can
be used to model universal quantum computers [5, 193, 254]. Besides these, it is noted
that Berry phase and holonomy have important role in quantum walks [197].

A basic theoretic ingredient in discrete QWs is the time evolution operator Û , which
pushes states one time step forward, |ψ(t)⟩ → |ψ(t + T )⟩ = Û |ψ(t)⟩ . If Û is known,
an effective Hamiltonian can be defined for the walk14, if the type of the system permits
it. For a closed, conservative system the time evolution operator is known to be [177]

Û(t) = exp(−iĤt/}) . (3.1)

11 In practice, this is done with an appropriate operator, for example the so called Hadamard coin [193].
12 Note that after an even number of steps only even positions can be reached (and similarly for odd
positions after odd numbers of steps). The points with zero probability (n odd) are excluded and not
shown in the graph.

13 This reminds a freely propagating classical particle shot from a gun, hence the name.
14 It is noted that in general the process as it is studied in Quantum Mechanics works in the opposite : the
Hamiltonian of the system is known and the effort is to obtain the time operator from it [177].
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Then, an effective Hamitonian for the QW is defined as15

Ĥ =
i}
T
lnÛ . (3.2)

In this case, Û and Ĥ define in fact a Floquet system16, in which the driving period is
the discrete time step T .

Figure 3.7: Operation principle of an optical quantum walk.
The “coin tossing” operation is realized by rotating polarization states
using half-wave plates (orange rectangles), then separating polari-
zation components using birefringent elements (at the splitting points
of the lines). The rotation sizes alternate to create nontrivial topolo-
gical phases. The photons move primarily rightwards, and perfom a
quantum walk in the vertical direction.

It has been shown experimentally [36, 127] that the behavior of Hamiltonians with
nonzero Chern number can be simulated by 1D quantum walks of photons in an optical
system ˙ and that bringing together two such systems with different Chern number, topo-
logically protected optical boundary states can be formed, as expected from the theory
of the topological insulators. This was achieved using 2D arrays of beam splitters and
phase plates, with the photons moving along one axis and performing an 1D quantum
walk along the perpendicular axis, Fig. 3.7. In fact, this is a Floquet system – and indeed
one in which spatial variations in the z direction are used to drive periodically the system.
In this case, the spatial variation is realized using a so called split-step walk, in which
each step of the walk consists of two separate substeps with different translation and
“coin tossing” processes [36, 127]. Another technique to accomplish similar effects in
an 1D optical structure has also been proposed in [226].

15 It is remined that the exponentials and logarithms of operators are defined through their power series
expansions.

16 Floquet systems are those in which the Hamiltonian is periodically driven, for example by varying
periodically in time the parameters of the system. Often, if the particles being described are moving
monotonically in some direction (for example the z-axis), then this direction can be used as a substitute
for time, and the driving can be accomplished by a periodic spatial variation of the system. This trick
is sometimes used in photonic crystals and optical resonators for breaking the TRS.



4. Extraordinary Optical Trasmission
through subwavelength apertures

4.1 Introduction

Optical elements and structures are generally bigger than electronic ones. For example,
nowadays fabricating transistors smaller than 20 nm is common place, but to construct
optical devices smaller than 50 nm is very difficult. The main factor preventing the
shrinkage is the diffraction limit of light, which roughly states that light cannot be guided
or stored in structures smaller than half of its wavelength. Although this is a funda-
mental principle for the wave phenomena, over the past twenty years a number of ways
have been found to circumvent it – a prominent one of them being the main subject
of this text1. A milestone to this problem was the discovery of Extraordinary Optical
Trasmission (EOT) by Ebbesen et al. in 1998 [55]. They demonstrated that light can
pass through holes with dimensions much smaller than the operating wavelength of light
using excitations of plasmonic waves in the nanometer range. Τhis opened up a road for
new applications and construction of optical devices much smaller than the operating
wavelength of light.

Due to its significance for applications, the passage of light through subwavelength
holes in an opaque screen has been a topic of intense research for over a century. There
is a wealth of important works studying single holes or arrays of holes, the earliest of
which date back to Rayleigh’s interpretation of diffraction in metal gratings [202]. The
unusual EOT phenomena were observed for first time experimentally in hole arrays on
metallic films, where the holes were significantly smaller than the operatingwavelengths
[55]. These first studies gave impetus to an extensive investigation of the transmission
properties in a wide variety of cases, namely various shapes of holes, arrays of holes
in various formations, holes surrounded by periodic structures etc. All these concern
mainly nanostructures, as the mechanisms of EOT are in the nanoscale and practical
requested is the construction of optical devices in nanoscale.

Despite the extensive research, the exact mechanism of EOT is not understood in
all its details, and is still a topic of debate [77, 49]. In this chapter the basics of EOT
will be discussed, using the most generally accepted interpretations. The enhancement
of transmission in a single hole, and also in hole arrays is examined, and then how dire-
ctional control of the transmitted light can be achieved using corrugations around the
holes. A variety of cases are presented, and the role of SPPs and LSPs in these pheno-

1 It will be examined exhaustively in a later chapter.
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mena is discussed. All these give a background to better understand and appreciate the
innovative method to overcome the subwalength transmission limit, presented in a later
chapter.

4.2 Elements of Diffraction by subwavelength apertures

Because of its wave nature, when light passes through an aperture induces diffraction.
Even for the simplest geometries this is a complex phenomenon, and can be described
by various approximations provided by the classical Diffraction Theory [106, 33]. A
very common case, studied extensively due to its theoretical tractability, is a circular
aperture in a thin metallic film, Fig. 4.1. For an aperture with radius much larger than
the operating wavelength, r ≫ λ, the problem is treated by the scalar diffraction theory
of Kirchhoff [106]. This theory is based on the scalar wave equation, so the polarization
of light does not taken into account. In the far field, the transmited intensity2 of a plane
wave impinging normally on the film, is given by the relation3 [80]

I(θ) = I0
(kr)2

π

∣∣∣∣J1(kr sin θ)kr sin θ

∣∣∣∣2 . (4.1)

In (4.1), I0 is the total incident intensity illuminating exactly the hole area πr2, k = 2π/λ
is the wavenumber of the incident wave, θ is the angle between the hole axis and the
direction of exiting radiation, and J1 is the Bessel function of first kind.

Figure 4.1: (a) Diffraction of light through circular hole in an infinitely thin metal
film. (b) Typical transmission coefficient (Bethe’s theory).

2 The intensity I can be defined to be either a radiometric or a photometric quantity.
As a radiometric quantity, I is the radiant intensity : it concerns radiation per unit solid angle in a given
direction, measured in W/sr. As a photometric quantity, I it is the luminus intensity : it concerns visible
light flow from a light source per unit solid angle in a given direction, measured in cd (candelas).
It is 1 cd = 1 lm/sr, and 1 W = 683 lm (lumen) of monochrome light at 555 nm.

3 This is known as the limit of Fraunhofer diffraction.
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Eq. (4.1) describes the well known Airy pattern4, appearing when diffraction takes
place from such circular holes : a central bright spot, surrounded by concentric rings, of
decreasing intensity away from the center. The alternating of bright rings with dark ones
is due to the constructive and destructive interference of light exiting from the aperture.
Similar patterns appear in apertures with other schemes (rectangular, single slit, double
slit) [80]. Among others, an important quantity is the transmission coefficient, defined
as the ratio of total transmitted intensity to I0,

T =

´
I(θ) dΩ

I0
. (4.2)

In the examined case it is5

T =
1

π

∣∣∣∣J1(kr sin θ)sin θ

∣∣∣∣2 ∝ ∣∣∣ rλ ∣∣∣2 . (4.3)

For apertures with radius much larger than the operating wavelength, r ≫ λ, more
accurate calculations result in relations like (4.3), in which the transmission coefficient
tends to unity, T ≈ 1.

In the other extreme case, namely subwavelength apertures with r ≪ λ, a correct
treatment, even rough, requires the Maxwell’s equations. The reason is the following.
Kirchhoff’s theory is based on the condition that the electromagnetic field in the aperture
is the same as if the opaque film was not present; this does not satisfies the boundary
condition the tangential field to be zero on the (conducting) film. For large apertures, this
crucial violation is acceptable because the diffracted field is relatively small compared
to the field transmitted directly. But for subwavelength apertures, this approximation is
insufficient, even in a rough treatment of the problem.

For the transmission of light through a subwalength circular hole, an exact analy-
tical solution was derived by Bethe and Bouwkamp [22, 31, 32, 52]. In Bethe’s theory,
it is assumed that the film is perfect conductor (PEC) and infinitely thin, and the light
intensity I0 over the hole is constant. For normal incidence, the hole behaves like a small
magnetic dipole and the transmission coefficient is found to be

T =
64

27π2
(kr)4 ∝

(
r

λ

)4

. (4.4)

This equation holds for both TE and TM polarization, but for normal incidence of the
wave. If the wave impinges on the hole at an angle, to describe correctly the transmission
an electric dipole is additionally required [22]. .

4 Not to be confused with the Airy function.
5 It is reminded that

J1(x) =
x

2
− x3
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Eq. (4.3) given by Kirchhoff’s theory holds for r ≫ λ, and the dependence of T
with (r/λ) is quadratic. In comparison, (4.4) by Bethe’s theory holds for r ≪ λ, and
the attenuation of T with (r/λ) is biquadratic6. The transmission through the subwave-
length hole is very weak, as expected. As the wavelength of the impinging light becomes
larger than the hole radius, the transmission through the hole is decreased very rapidly,
Fig. 4.1b. Thus, the description of the phenomenon by (4.4) is intuitive and reasonable.
However, Bethe’s theory is based on two crucial approximations, already mentioned
above : the metallic film is perfect conductor (PEC), and is infinitely thin. But a real
metallic film does not fulfill these two requirements. The consequences are dramatic;
the real transmission behavior is very different from that predicted by (4.4) – and in any
case does not diminish monotonically with decreasing the kr.

Figure 4.2: (a) Passing of light through a subwavelength hole on a real metallic
film (thickness and conductivity are finite). The hole is characterized
by a radius and a thickness, resembling a cylindrical waveguide.
(b) The transmission has a cutoff wavelength that defines two diffe-
rent propagating regimes.

A real metallic film has finite conductivity and thickness, and an aperture on it has
a definite radius and depth, Fig. 4.2a. Hence the aperture behaves as a waveguide : the
electromagnetic wave is confined within the aperture space, and the dispersion relation
is defined by the radius and the depth. Also, as in waveguides, the lateral dimensions of
the aperture define a cutoff wavelength λc . When the operating wavelength is smaller
than λc, the impinging wave propagates through the hole; when it is larger, the wave
attenuates exponentially, Fig. 4.2b. In real films, increasing the operating wavelength
there is a gradual transition from the propagating to the evanescent regime, thus the
cutoff wavelength does not have a sharply defined value [191].

6 Also, the dependence T ∝ λ−4 agrees with the Rayleigh’s theory of scattering by small objects [29].
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4.3 Rudiments of EOT phenomena

The transmission of light through a subwavelength hole that on principle is very weak
or not allowed at all, can be greatly improved by forming the screen with appropriate
periodic structures (gratings or hole arrays). Keystone of this enhancement is the exci-
tation of SPPs7 and LSPs on the screen, and their coupling with these formations, leading
to enhancing the light field near the hole. The SPPs perform tunneling through the hole
and convey the energy of the field to the other side of the hole, where it propagates to
the far field.

The coupling of SPPs with the periodic grating on the screen is imposed by a phase-
matching condition, a well known process for exciting SPPs. The resulting transmission
coefficient T (λ) has peaks at the wavelengths where the SPPs are excited. At these
wavelengths it is possible to be T > 1, meaning that more light can pass through the
hole than the incident on the hole area; the reason is that light impinging on the metal
screen near the hole is channeled through the hole via SPPs. This is an extraordinary
transmission phenomenon, fisrt observed by Ebbesen et al. for a square lattice of circular
holes on a thin silver film [55].

As a first example, in Fig. 4.3a is shown the transmission spectrum of a structure
having EOT features [151]. The structure is a square lattice of circular holes, with dia-
meter 200 nm for each hole and period 600 nm for the lattice, perforated on a gold film
with thickness 100 nm. As can be seen, the transmission coefficient has peaks, indicating
that more light passes from a hole in the presence of all the holes, than what is expected
from a single hole on the film. The transmission spectrum has some remarkable features,
discussed below, that are a manifestation of EOT.

For the propagating modes, a cutoff wavelength at ∼ 340 nm is expected. But
in contrary, above the expected cutoff value the transmission becomes stronger ! The
trasmission coefficient has peaks at wavelengths longer than the cutoff value – and the
highest peak is at 745 nm, more than twice the expected cutoff value. Also, each peak
has a minimum value nearby, deeper at higher wavelengths. The transmission coeffi-
cient to have peaks that become stronger as the wavelength increases is a noteworthy
characteristic of EOT.

Another important feature shown in Fig. 4.3a is the significant transmission effi-
ciency. The values here are normalized to the intensity of the impinging wave on the
surface and the units are arbitrary (a.u.), but in fact they are much greater than the values
predicted by Eq. (4.4) of Bethe’s theory [196].

A third feature of the EOT is the enhancement of the near-field on the irradiated
surface. In Fig. 4.3b is presented a plot of the electric field intensity for the examined
structure. As shown, the holes capture incident energy beyond their area and confine
it in a small volume near them and near to the surface; this facilitates and increases
the tunneling through the holes. At the entrance and exit edges of the holes significant
enhancement of the local field takes place.

7 For a reminder of what is the SPP see F/note 4, p. 115.
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Figure 4.3: EOT through an array of circular holes on a gold film [151].
(a) Transmission spectrum for a normally incident plane wave.
(b) Electric near-field distribution and Poynting vector calculated
at a resonance wavelength of 742 nm.

Summarizing, the transmission of light in the aforementioned structure exhibits the
following noteworthy characteristics :

• longer resonance wavelengths than the cutoff wavelength,
• enhanced transmission efficiency,
• near-field enhancement in a very small volume.

The phenomena associated with these characteristics constitute the EOT. Although
the EOT is not understood in all its details, many interpretations have been given based
mainly on the excitation and propagation of SPPs on the irradiated surface [77, 49].

The crucial role of SPPs in EOT is revealed from the dependence of the peak posi-
tions of T on both the incidence angle of light and the lattice period. It is well known
that coupling incindent light on a grating surface and exciting SPPs obeys the following
phase-matching condition [163] :

kSPP = kin sin θ ± n
2π

ax
x̂±m

2π

ay
ŷ . (4.5)
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In (4.5), kSPP is the wavevector of the excited SPP, kin that of incident light,
ax is the grating lattice constant and x̂ the unit vector along x-direction,
and likewise for the ay and ŷ. Obviously, θ is the incidence angle and n,m are integers
denoting multiples of the grating period Gi = 2π/ai , i = {x, y} along x̂ and ŷ.
Often the lattice is square, then it is ax = ay ≡ a0 and Gx = Gy .

For phase-matching in a square grating lattice and normally incident light (θ = 0),
the transmission maxima occur at wavelengths given by the relation [79]

λSPP (n,m) =
a0√

n2 +m2

√
εm εd
εm + εd

. (4.6)

Eq. (4.6) also holds for a lattice array of square holes.
In the above, εm and εd are the relative permittivities of the metallic and dielectric media
respectively, and a0 is the lattice constant of the grating or the hole array. Eq. (4.6) con-
cerns a metal-dielectric interface, where SPPs can be excited and propagate, a structure
well studied in Plasmonics. εm and εd are generally complex, thus λSPP results complex
too. The real part of λSPP concerns the resonance wavelengths, whereas the negative
imaginary part concerns the non-radiative damping (due to absorption of the SPP into
the metal). In practice, the experimental results differ somewhat from the predicted
by (4.6). The deviations are due to scattering losses, differences between the property
values in reality and those adopted in simulations etc. However, (4.6) is a good first
approximation.

Furthermore, there is another effect that contributes to EOT. It is well known from
Plasmonics that light at frequenciesω greater than the plasmonic frequencyωp of ametal,
can penetrate the metal. Ideally, if the permitivity is purely real, the metal is transparent
to the incident light. In reality, for ω > ωp the imaginary part is small and the real part
of the permitivity dominates strongly. Then the electric field can penetrate the metal at
least to the order of the skin depth8. In these cases, the field penetration results in the
hole to appear larger than its real size; the cutoff wavelength also appears longer and can
be estimated by [82]

λc =
πl
√
εd

arctan
√

|εm/εd|
, (4.7)

where l is the length of the hole or the thickness of the metallic film.
Eq. (4.7) means that the cutoff wavelength becomes longer (redshifts) due to the pene-
tration of the electric field into the metal surface. For example, for a hole of diameter
270 nm on a silver film, irradiated by light at 750 nm, it is reported an increase ∼14% .
The cutoff wavelength will increase even more, reaching up to ∼ 40% , if the coupling
of SPPs is taken into account [82]. For the correct normalization of the transmission
coefficient, the increase in the effective diameter of the hole must be taken into account,
especially when studying holes with a diameter just below the cutoff diameter for a PEC
screen.
8 As it is pointed out in §4.6, in fact this happens due to local surface plasmons (LSPs) excited at the rim
of the hole.
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4.4 Transmission through hole arrays

The transmission spectrum of a hole array differs significantly from that of an isolated
single hole. The transmission exhibits resonances only at specific discrete wavelengths
[77]. In Fig. 4.4 it is shown a typical example : the transmission spectrum of a square
array of circular holes vs that of a single hole, perforated on a gold film [151]. As can be
seen, in the hole array, the transmission has much higher maximas, and there are sharp
peaks and drops, indicating resonances. In contrary, in the isolated hole, the transmission
is quite lower, it is smooth, and does not fluctuates. Evidently, the spectrum in the two
cases is very different.

The transmission spectrum in a hole array is in general complex. The interpretation
of the features exhibited involves the contribution of both the enhancing and suppres-
sing effects [211]. An analytical model given indicates that the basic mechanism is the
tunneling mediated by SPPs [166].

Figure 4.4: Transmission through an array of circular holes [151].
(a) Geometry and coordinate system used.
(b) Transmission spectrum of an isolated single hole, and of a square
array of holes. The incident wave is parallel polarized. The geometric
characteristics are : d = 200 nm, P = 600 nm, t = 100 nm.

4.4.1 Influence of the number of holes, diameter and film thickness

In a hole array, the collective response is crucial factor for the EOT. As the number
of holes increases the transmittance increases, until a saturation value is reached [211,
196]. The number of holes required to reach this value depends on the diameter of the
holes : the larger the diameter, the faster the saturation is reached [196]. The maximum
saturation value is related to the propagation length of SPPs, which is determined by the
size of the holes [211].
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The film thickness also influences the transmittance. It has been found that for
quite thin films (a few tens nm or less) the transmittance varies differently than for a
corresponding film relatively thick. In Fig. 4.5 it is shown an indicative study [151]. The
incidence is normal, and three different cases are examined for the holes diameter (200,
275 and 300 nm). As it is seen, increasing the diameter the peaks are getting higher and
they are shifted slightly to longer wavelengths, in overal enhancing the transmittance. As
mentioned above, the complex behavior exhibited is due to a combination of enhancing
and suppressing effects caused by the interaction and the tunneling of SPPs.

Figure 4.5: Transmission spectrum of a hole array [151].
Film thickness is t = 20 nm and lattice periodicity P = 200 nm.
Three different diameters for the holes are examined : d = 200 nm,
d = 275 nm, d = 300 nm. The curves 2 and 3 have been shifted in
the transmittance axis for clarity. The dotted curves correspond to a
single isolated hole and are plotted for comparison.

The ratio of film thickness to the holes diameter also influences the transmittance
[77]. In Fig. 4.6 it is shown the transmission spectrum of a hole array on a PEC, for a
variety of ratios film thickness to holes diameter [151]. The results were obtained using
the FDTD. As can be seen, for ratios less than 0.5 the curves have two maxima and in
asymmetrical positions, and the transmission reaches a 100% . In this case the thickness
is close to the skin depth (a few times larger), hence the metallic film is optically opaque.
For ratios greater than 0.5 the curves have a maximum which still tends to 100% . For
extreme ratios the transmission maximum still exists but it is quite low. In general,
decreasing gradually the holes diameter while keeping constant the film thickness, there
is a gradual transition from the two distinct peaks to a single peak; reducing the diameter
of holes even more, this single maximum is attenuated. This behavior is reasonable as
the smaller and sparser are the holes, the more difficult is for the light to pass through
them.
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Figure 4.6: Transmission spectrum of a hole array on a PEC, for a variety of ratios
film thickness to holes diameter.
The thickness h varies, the holes diameter d remains constant.
Diameter of holes is d = 0.4 μm and lattice periodicity P = 1 μm.
The wavelength interval is 900÷ 1200 nm.

.

4.4.2 Influence of the polarization, the shape and size of the holes

It is known from Plasmonics that the size and shape of metallic particles influence
strongly their optical response. In a similar manner, the geometric shape of a hole affects
the characteristics of the transmission [131]. In arrays of rectangular holes, the transmis-
sion is also affected by the polarization of the incident wave. The influence the shape
and size of the holes, and also the polarization of the wave, have on the transmission
through hole arrays has been studied in a wide spectral range [112, 253]. Some results
are presented below.

In Fig. 4.7 it is shown the transmission through a hole array for a variety of rectan-
gular holes, and two cases of polarization; specifically, perpendicular (y-polarization)
and parallel (x-polarization) to the long axis of the holes [253]. Evidently, the polariza-
tion of the incident wave affects the transmission significantly (note the different scale
in the two graphs).

Fig. 4.7a concerns the case for an incident wave y-polarized. Increasing the aspect
ratio of the holes, the peak located initially at∼ 720 nmgrows and broadens significantly,
and subject to redshift. Another peak, initially at∼ 600 nm, also grows and redshifts but
not so much.

In Fig. 4.7b the case of x-polarized light is examined. Now as the aspect ratio
of the holes increases, the peak of the resonance wavelength decreases and subject to
blueshift. Compared to Fig. 4.7a, the scale of the y axis is much smaller, indicating
that the aspect ratio of the holes plays a crucial role in the transmission magnitude and
clearly induces polarization anisotropy. In general, in a hole array with elongated holes,
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the transmission behavior is determined by both the localized effects due to the single
hole and the collective effects caused by the periodic holes arrangement.

Figure 4.7: Transmission in hole arrays for two cases of polarization and misc
aspect ratios of the holes dimensions (hole area remains constant)
[253]. The array is contructed on a gold film of thickness 200 nm and
periodicity 425 nm. (a) y-polarization : increasing the aspect ratio the
transmittance increases and the light redshifts. (b) x-polarization :
increasing the aspect ratio the transmittance decreases and the light
blueshifts.

Fig. 4.8 concerns the influence that has to the transmission the shape and area of
holes of an array [131]. Three types of hole arrays are examined : onewith circular holes,
and two with rectangular ones, of different area. The circular holes have a diameter of
190 nm. In all cases the holes are arranged in a square lattice of periodicity 425 nm. The
results are normalized by the area occupied by the array holes.

In all the three considered cases the holes exhibit EOT behavior. The rectangu-
lar holes give peaks much more higher than the circular ones, even in the case of the
rectangular holes 75× 225 nm2 which have quite smaller area than the circular holes.
Evidently, the diameter of the holes determines both the transmission magnitude and the
resonance wavelength. Observe also that as the rectangle deviates more from a square
(here the third case), the maxima and the redshift of the peaks become greater.

In Fig. 4.9 it is shown the energy density inside a hole of a hole array [151]. The
details are not of much importance; informationally it is reported that the geometry pa-
rameters of the array are : thickness 100 nm, period 300 nm, and slit width 50 nm. The
imporant observation is that the graph indicates resonance for the SPPs on both sides
of the array. In such a case, pairs of intensity spots are concentrated around the holes,
resulting to high and localized intensity gradient on the external surface, mainly near the
holes, thus enhancing locally the field. A similar case of near-field enhancement was
also presented in Fig. 4.3b. If both sides of the holes in the metal film are surrounded
symmetrically by an appropriate medium and have the same dielectric constant, then it is
easy to achieve resonance for the transmission between the two sides because the SPPs
on the two interfaces coincide due to symmetry [136].
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As seen in Fig. 4.9, the intensity of the field is confined very close to the interface
between the metal-dielectric, and decreases very rapidly with the distance from the inter-
face. Inside the hole the field is very high, indicating that the incident energy is tunneled
through the hole. Other studies indicate that to the EOT of hole arrays, besides the SPPs,
contribute also the evanescent waves and normal guided modes [256]. The exact way
all these factors contribute to the EOT is still under investigation.

Figure 4.8: Transmission spectrum for hole arrays with different hole shape and
area [131]. In each case the holes are perforated on a gold film with
thickness 200 nm deposited on glass, in a square lattice with perio-
dicity 425 nm.

Figure 4.9: Normalized energy density inside a hole of a hole array
(the scale is logarithmic).
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4.4.3 Influence of the type of metal

It is well known from Plasmonics that the properties of metals9 determine their optical
response and the behavior of SPPs on them. As SPPs is the basic mechanism of EOT,
it is expected the type of metal used for the film to affect the transmission. Indeed, in
the optical regime, only noble metals such as Au, Ag and Cu enhance significantly the
transmission; metals like W that cannot sustain surface plasmons transmit very weakly.

In Fig. 4.10 it is shown the transmission spectrum of hole arrays for some common
metals. The important observation is that the peaks of the curves correspond to the
excitation wavelengths of SPPs at the metal-air and metal-glass interfaces. The peaks
of lowest transmittance concern modes in the glass substrate.

Figure 4.10: Transmission spectra of hole arrays on misc metallic films.

9 Primarily their electronic structure, as all the other properties come directly or indirectly from it.
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From Fig. 4.10 it is apparent that the influence has the type of metal on the transmit-
tance is significant. For Au, Ag, Cu and other such metals the transmittance is greater
than that of Ni and Cr, greater even than that in the PEC case [206]. The simulation
results are in good agreement with the experimental measurements [195].

The difference in performance of miscelaneous metals in the transmission through
hole arrays, is attributed to their different optical properties and response, mainly the
plasmonic frequency, absorption and skin depth. These factors differentiate the metal’s
capability to excite and sustain SPPs. Regarding Fig. 4.10, Au, Ag and Cu exhibit a quite
large penetration depth for the electromagnetic field; this enlarges the effective area of
holes facilitating the tunneling10. In contrary, Ni and Cr absorb quite a lot, therefore
weaken significantly the transmission resonance effect. Similar is the interpretation for
the transmission behavior of other metals too.

Especially for the Al, Fig. 4.10a shows that at short optical wavelengths exhibits
a PEC behavior. However, at wavelengths longer than ∼ 700 nm absorption dominates
and the transmission resonance is eliminated. The same holds for Ni and Cr, but they
have quite lower transmittance peaks. For W (not shown here), the transmittance peaks
are even lower [206] and the transmission resonance even weaker; its effectiveness to
transmission is much worse than Ni and Cr. Moreover, the position of the transmittance
peaks, and their FWHM, depend on the metal too [206, 195].

In general, the influence of metal type to the transmission is of the same importance
as the geometric characteristics, and the metal to be used must be selected appropriately
to the application in mind.

4.4.4 Representing hole arrays by anisotropic media

When the characteristic size dimension of a nanostructure is much smaller than thewave-
length of the waves involved, then the nanostructure can be regarded as an effective
medium. Then an effective dielectric permittivity can be attributed to the nanostructure,
corresponding to it as a whole. The same holds for the magnetic permeability. With
these effective constants the wave-propagating properties of the device are determined
[113], avoiding the cumbersome handling of its structural details. This technique also
applies to hole arrays; in this manner, a hole array on a metallic film can be represented
by an anisotropic homogeneous material. In this case, the effective optical properties of
the holey film are determined by the geometric parameters of the holes [114].

The technique has been applied for an 1D slit array and for an array with square
holes; these two cases will be briefly presented here. The geometry is shown in Fig. 4.11.
The incident wave excites many waveguide modes inside the holes; however, due to
the condition of the small diameter size limit, only the fundamental mode dominates,
whereas the modes of higher order are evanescent [166]. Under this condition, for the
slit array shown in Fig. 4.11a, the effective optical constants (relative values) are [114]

(4.8)εx =
d

a sin c2(kxa/2)
≈ d

a
, (4.8a)

.
10 This phenomenon was already discussed at the end of §4.3.
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µy = µz =
a sin c2(kxa/2)

d
≈ a

d
, (4.8b)

µy = 1, (4.8c)

where a and d are geometric parameters, shown in Fig. 4.11a.

Figure 4.11: Schematics of hole arrays on metallic films.
(a) Array of infinite-length slits. (b) Array of square holes.
The incident wave is p-polarized with parallel momentum kx .

In the case of the array with the square holes, Fig. 4.11b, the dielectric permittivity
and magnetic permeability tensors must be symmetric, that is εx = εy, and µx = µy .
Moreover, the waveguide mode inside the holes exhibits no dispersion for the parallel
momentum; this implies the additional requirement εz = µz = ∞. Under the condition
of small size limit, d ≪ λ, the effective optical constants (relative values) are found to
be [114]

(4.9)εx = εy =
d2π2

8a2εh

(
1− ω2

c

ω2
) , (4.9a)

µx = µy =
8a2

d2π2
. (4.9b)
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In (4.9), εh is the permittivity of the dielectric medium inside the hole,
and ωc = πc/(a

√
εh) the cutoff frequency11 of the hole regarded as a waveguide.

Summarizing, themetallic holey films of the above forms can be treated as homoge-
neous metallic media, having the simple effective optical constants given by (4.8) and
(4.9) [114]. Adapting appropriately the geometric parameters of the hole arrays, it is
possible to create artificial media in a wide range of desired (effective) optical properties.
Furthermore, the technique can even be applied to create media with negative refractive
index [41]. Although this possibility is still under investigation, studies indicate that this
feasible [165].

4.5 Transmission through a hole surrounded
by corrugations

In all the above it was mentioned several times the crucial role that SPPs play in the
transmission through subwavelength hole arrays. Their contribution is due to the phase-
matching of the incident radiation to the SPPs and the tunneling they are subject through
the holes. But similar effects also occur for a single isolated hole when surrounded by
an array of opaque surface corrugations12. Moreover, an appropriate arrangement of
corrugations on the exit surface can shape a wave beam with very small deviation angle
and be used to control the directionality of the transmitted light. Some such important
cases of transmission through single a hole, assisted by corrugations, will be presented
below.

4.5.1 Slit surrounded by periodic corrugations

In Fig. 4.12 it is shown the geometry of a slit aperture surrounded by an array of parallel
grooves. As a general remark, for apertures allowing a propagating mode, such as an
essentially 1D slit structure, where the fundamental TEMmode does not exhibit a cutoff
width, the transmission is a very complex process : in this case, the transmission can be
modulated via resonances of the fundamental waveguide mode of slit [192], controlled
by the thickness13 of the metal film.

In Fig. 4.13a it is shown the transmission spectrum of a slit type of Fig. 4.12 for
a variety number of grooves on the film. The case of a slit without grooves is also
included for comparison reasons. For the slit without grooves the transmittance exhibits

11 ωc can be considered as the effective plasmon frequency of the anisotropic holey film.
12 In specific, transmission through a hole on a surface regularly engraved takes place via tunneling, resul-
ting to an approximately exponential dependence of the transmitted intensity on the thickness of the
metal film. However, if the thickness is of the order of the skin depth, and the adjacent dielectric media
at the front and back interface are the same, then coupling between SPPs at the two surfaces takes place,
enabling phase-matching [163].

13 For this reason, in some studies the wavelength λ is measured in units of the thickness d of the film.
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two peaks, quite high. The maxima in this wavelength range are due to Fabry-Pérot
resonances14 inside the space of the single slit [167].

Figure 4.12: Schematic of a single slit surrounded by periodic grooves on the
front surface of a metallic film.

Figure 4.13: Normalized-to-area transmittance T (λ), as a function of the number
of grooves in (a) front side and (b) back side configurations [74].
Geometrical parameters used in both graphs are a = 40 nm, d = 500
nm, h = 350 nm, and the depth of the grooves w = 100 nm.
Notation [NI ,NO] means 2NI grooves in the input surface and
2NO grooves in the output surface. In all surfaces, the grooves are
located symmetrically around the slit, according to Fig. 4.12.
Inset in panel (b) shows T (λ) for [10, 0] and [10, 10] patterns.
In all cases the incident radiation is p-polarized.

.
14 In optics, a Fabry–Pérot interferometer or etalon is an optical cavity made from two parallel reflecting
surfaces (thin mirrors). Optical waves can pass through the optical cavity only when they are in reso-
nance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899.
Etalon comes from the French étalon, meaning “measuring gauge” or “standard”. (from Wikipedia)
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When there are grooves around the slit, additional peaks occur and the transmission
is in overall enhanced, Fig. 4.13a. This enhancement is due to coupled cavity modes that
are excited because of the grooves [75]. On the front surface, increasing the number of
grooves, the existing peaks are getting higher, and a new strong peak also occurs; in
general the transmission is improved. For a noteworthy enhancement, a small bunch of
grooves (about 10 to 15) is enough. This seems to be a saturation limit; more than this
does not further improve the transmission.

The above results concern the front surface, where the wave impinges. A similar
patterning only on the back surface, has no effect in the transmission, Fig. 4.13b.

By having grooves on the back surface in addition to the front, the enhancement is
practically negligible, as the inset in Fig. 4.13b indicates. Only the new peak becomes
a bit higher. The conclusion is that to obtain EOT characteristics from a single slit, a
small array of a grooves around the slit, in the front surface, is enough.

At this point an important remark about the polarization must be done. The reso-
nant transmission through a hole is close related to localized SPPs that are excited on
corrugated metallic surfaces [167, 97]. The SPPs are naturally p-polarized, thus only the
p-polarized component of the impinging wave can benefit from the SPPs and be tran-
smitted resonantly through subwavelength holes and slits; the s-polarized component is
suppressed. This limitation can be overcome setting a dielectric layer on the surface of
the metallic film; then, dielectric waveguide modes with s-polarization are supported
too. If the corrugations are covered by a dielectric layer, then the structure with the slit
exhibits the EOT features for both p- and s-polarizations. In this way, a dielectric slab
on the metallic film can change profoundly the diffraction and the transmission behavior
of an incident plane wave [168, 176].

Figure 4.14: Real images of a single slit on a metallic film, surrounded by peri-
odic corrugations.
(a) The filmwith the 1D slit, symmetrically flanked by grooves [77].
(b) Detail of the film cross section (taken using focused-ion-beam
milling) [74].

.
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4.5.2 Directional emission using corrugations

As discussed above, corrugations engraved on the back (exiting) surface of the film
have no influence to the transmission spectra. Nevertheless, an array of grooves on the
back surface narrows the angle of the exiting radiation [176], thus affecting the directio-
nality. In this manner, hole structures with apropriate patterns in both the front and back
surfaces, Fig. 4.15, exhibit not only enhanced transmission but also directional control
on the emission.

Figure 4.15: Schematic of a single slit surrounded by 2M grooves on the front
(entrance) surface and by 2N grooves on the back (exit) surface [75].
The grooves are symmetrically engraved on either side of the slit.

In Fig. 4.16 it is demonstrated the influence has on the directionality of transmitted
radiation an array of grooves on the exiting surface of a film [75]. The film with the
slit and the grooves has the form of Fig. 4.15, with grooves on both the front and back
surfaces. Specifically, in Fig. 4.16a it is shown the intensity profile of the electric field
exiting from the slit. There is an evidently collimated beam, with small deviation. The
beam also exhibits an elongated focus depth, caused by the collimation. This focusing
phenomenon of the electric field takes place in the transitional region between the near-
and far-field. The narrow shape of the beam is also shown in Fig. 4.16b, where a variety
number of grooves on the exiting surface is tested. In conclusion, patterns on the exiting
surface can provide elongated focusing and narrow deviation, giving in this manner quite
control on the directionality of the transmitted beam.
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Figure 4.16: Influence of grooves on the exiting surface to the directionality [75].
(a) Electric near-field intensity, (b) cross intensity along z = 46.3
μm in (a). The film is of form Fig. 4.15, with geometric parameters
N = 10, a = 40 nm, h = 83.5 nm, d = 50 nm. The resonance
wavelength is 532 nm. In (b) there is a bunch of curves, correspon-
ding to a set of (a, h) parameters.

.

4.5.3 Circular hole surrounded by concentric corrugations

Another interesting case is a circular hole flanked by concentric corrugations15, on both
surfaces of the film. In Fig. 4.17b it is shown the transmission spectrum of such a stru-
cture [77], where the focusing of the transmitted radiation it is evident. As in case of the
slit discussed above, the resonance wavelength and the transmissionmaximum are deter-
mined by the coupling condition of the pattern on the front (entrance) surface, whereas
the width and the directionality of the exiting radiation are controlled by the patterns on
the back (exit) surface of the film.

In Fig. 4.17b it is clear that the resonance wavelength is indeed independent from
the measure angles, exhibiting only a slight deviation of the exiting radiation. More spe-
cific, at FWHM the deviation of the beam is about 5°, a satisfactory result that provides
good control on the intensity amplitude. It is reported [77] that the light emitted from
the exiting surface at the resonant wavelength is focused on a circular area with radius
1 μm or less. In general, this aperture structure has two noteworthy features [151] :

• The focus length and the shape of the exiting beam are independent of the incident
angle. This means that the aperture structure can focus the light from a broad solid
angle into an invarying spot.

• The focusing effect occurs in a resonant condition, in which only a narrow band
around the resonant wavelength can be focused.

15 This arrangement is also known as bull’s eye geometry.
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Figure 4.17: (a) Real image of a bull’s eye structure.
(b) Transmission spectrum for a variety of measure angles [77].
A 250 nm diameter cylindrical hole is milled into a 300 nm thick
silver film. It is surrounded by five circular trenches with depths of
60 nm and the groove periodicity is 600 nm. The exiting beam is
clearly focused. The tail above 800 nm is due to experimental noise.

The transmission spectrum of a hole surrounded by periodic corrugations is deter-
mined mainly by the corrugations and the hole depth (or the film thickness)16. It was
found experimentally that the transmission intensity and the resonancewavelengths have
an exponential dependence on the hole depth and the corrugation period [50]. Also, the
transmitted radiation exhibits frequency shifting because the corrugations change the ef-
fective dielectric permittivity17. To this modified effective permittivity corresponds an
SPP with wavelength roughly equal to the corrugation period. The SPPs excited by the
concentric corrugations dominate versus the waveguide modes arising inside the hole,
and contribute to the transmission enhancing much more. A quantity to compare the
transmission enhancement caused by the grooves is18

η =

´
I(θ) dΩ´
IN(θ) dΩ

, (4.10)

where I(θ) is the intensity as a function of the polar angle θ and the integration is over
a total solid angle Ω. The denominator in (4.10) is simply a normalization factor, where
the integral is over the same region and IN(θ) is the same as I(θ) but for the hole without
the surrounding corrugations. A name for η is not universally established but it could be
called transmission enhancement coefficient.

16 See also F/note 12, p. 94.
17 Frequency shifting (redshift or blueshift) takes place also in single holes without corrugations (see the
discussion of Eq. (4.7), p. 85) and in hole arrays (see Fig. 4.7, p. 89) but it is due to other causes.

18 Originally defined in [275]. Not to be confused with the usual transmission coefficient defined in (4.2).
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An interpretation of the directionality and the focusing effects of a cirular hole can
be given by the Huygens-Fresnel theory; in this frame, the transmitted intensity at the far
field comes from the interference of the direct transmitted wave and the scattered wave
from the corrugations [50, 275].

Figure 4.18: (a) Normalized enhancement factor, (b) angle of the FWHM lobe
as functions of the number of grooves, in p- and s-polarization for
the incident wave.

In Fig. 4.18a,b it is shown η and FWHM as functions of the number of grooves
in a bull’s eye structure, under p- and s-polarization of the impinging wave [275]. It is
evident that η increases gradually with the number of grooves, and even more when the
wave is s-polarized. The FWHM drops very rapidly with only a few grooves, that is the
beam becomes narrower (more directional), as discussed above.

Figure 4.19: Far field transmission intensity (normalized) as a function of polar
angle, and under p- and s-polarization for the impinging wave.
(a) Experimentally measured. (b) Theoretically calculated.
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Also, as shown in Fig. 4.19 [275], the intensity distribution I(θ) in the far field has
a complex shape with many lobes, not a single localized spot. It also depends strongly on
the polarization : p-polarization gives much higher intensity peaks than s-polarization19.
The experimental results agree with the Huygens-Fresnel theory, and indicate that the
number of grooves and their periodicity, together with the polarization, are crucial for
the directionality properties – at least for this hole structure [50].

4.5.4 Arrays of annular holes and other geometries

From all the above it is concluded that the transmission enhancement and the EOT beha-
vior of hole arrays comes mainly from :

• the elongation of cutoff wavelength of the single hole,
• the waveguide modes arising inside the hole,
• the resonant coupling of SPPs between the holes and their elements
(entrance-excit of holes, grooves),

• the SPPs arising on the dielectric-metal interface.

The wave modes arising in these procedures are sensitive to the geometric parame-
ters of the structure, like the diameter and depth of the holes, the density (periodicity) of
the hole array etc. Additionally, another factor of great importance for the transmission
spectrum and EOT is the shape of the hole. This is reasonable because regarding the hole
as a tiny waveguide, its cross section defines the regime of the waveguide modes propa-
gating inside it. Apart from the circular and rectangular holes, other less usual shapes
can be used for transmittance enhancement and EOT. Such a case is annular (coaxial
ring) holes, to be discussed briefly here.

Figure 4.20: Schematic of an annular hole. It can be the cell of an array of such
holes.

19 The reason is that the excited SPPs are naturally p-polarized. See the remark about this issue in p. 96.
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In Fig. 4.20 it is shown the geometry of an annular hole. This can be a cell on array
of such holes, each one characterized by the inner and outer diameters of the hole, the
periodicity of the array and the film thickness (or hole depth). Compared to the holes
discussed so far, the transmission mechanism in this hole differs in a crucial way : a
special type of surface plasmon is excited on the metal-dielectric interfaces inside the
hole, called cylidrical surface plasmon (CSP), which creeps on the walls of the hole. The
transmission enhancement and the EOT are mainly due to resonances of CSPs, which
act independently from the resonances of the other surface plasmons [275].

Figure 4.21: Two films with annular holes. The first film is plane. The second
one has grooves surrounding the hole in both the front and back
surface.

In Figs. 4.21 and 4.22 it is shown two films with a single annular hole, and their
transmission spectra [40]. The first film is plane, the second one has circular grooves
around the hole on both the front and back surface. As shown in Fig. 4.22, the tran-
smission spectrum has two peaks, one is strong, the other is low but distinct and visible.
The first peak, higher and broader, is located at a longer wavelength, at the positions
of CSP resonances and is attributed to them. The second peak, lower and narrower, is
located at a shorter wavelength. Decreasing of the annulus width, redshifts the peaks to
longer wavelength and makes more apparent the transmission enhancement. In general,
the decreasing of annulus width makes the coupling of CSPs stronger and more efficient
[40]. It has been found that near the infrared wavelengths, the arrays of annular holes
give an intensity up to five times that of the same array with circular holes [180, 181,
182]. Also, as shown in Fig. 4.22b, the grooves on the back side broadens the high peak,
and redshifts and raises the second one.
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Figure 4.22: The transmission spectra of the two annular holes in Fig. 4.21 [40].
(a) Simple annular hole. (b) Annular hole with surrounding grooves.

Beside the annular holes, a plethora of holes with more unusual shapes were also
proposed or tested experimentally, all of them providing enhancement to the transmis-
sion intensity. Among them are :

• diamond shaped holes and triangles [123],
• H-shaped holes [236],
• cruciform-shaped holes [43],
• hybrid structure of circular holes and cross-dipole shape [43].

Also, arrays of double holes which are slightly overlappedwere investigated. It was
found that, compared to usual strucures, at the narrowest spots these structures provide
much higher field enhancement. This additional localized enhancement is attributed to
nonlinear enhancing effects [274, 148]. All this variety in the available shapes for the
holes, together with the geometric parameters of the array, give freedom and versality
to the control of the transmission enancement.

4.6 Transmission through a single hole

Concerning a single isolated hole (subwavelength), the transmission can also exhibit
EOT behavior, and the factors influencing it are similar as in a hole array; however, the
basic component of the process is a bit different. Here the local surface plasmons (LSPs)
contribute significantly to the transmission, such as the SPPs. This topic will be briefly
examined below. It is reminded that Bethe’s theory, developed for the light transmis-
sion through a subwavelength hole, is inadequate to describe the EOT phenomena, due
to two reasons20 : it considers the film to be PEC and infinitely thin. As discussed in
§4.2, these conditions are unrealistic, leading Bethe’s theory to wrong predictions for
the transmission behavior as really takes place in subwavelength holes.

20 See p. 82.
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The presence of LSPs at such a hole, among others induce a noteworthy effect
affecting the transmission21 : the effective diameter of the hole is increased, with all that
entails. This phenomenon was already mentioned in §4.3, see Eq. (4.7), and will not be
discussed further here.

From the theory of Plasmonics22 it is expected that the shape and dimensions of
the hole will have an important role in the transmission23; indeed, they determine the
resonance wevelengths in the transmission spectrum. At the rim of the hole occurs a
significant field enhancement, resulting in increasing the transmission at the wavelength
where the LSP is excited. Below, this behavior will be demonstrated in specific cases
and some important results will be presented.

4.6.1 Transmission behavior of a single circular hole

A circular hole is the simplest case for investigating the transmission behavior of single
holes. In Fig. 4.23a it is shown the geometry of an indicating case. The film is made of
gold and is deposited on a dielectric substrate (here glass), whereas its other surface is
free (air). Using FDTD, the transmission spectrum is obtained for some thickness values
of the film, Fig. 4.23b.

Figure 4.23: (reprinted from [151]). (a) Geometry of a single hole in a metal film.
(b) Transmission spectrum for such a hole for misc values of film
thickness. The diameter of the holes is 200 nm, and the film is gold,
deposited on a glass substrate. FDTD was used.

21 Also, in the case of a circular hole on a metal film with by a free-electron dielectric function similar
to that of Drude-Sommerfeld model, it has been found theoretically that below the plasma frequency a
propagating mode exists, even for a hole arbitrary small [220, 264]. The influence of this mode to the
transmission through subwavelength circular holes remains to be investigated experimentally.

22 More specific for metal nanoparticles and nanovoids, see [163].
23 It is reminded that the shape and size of the hole are also important for the transmission spectrum in a
hole array, see the discussion of Fig. 4.8 in p. 90.
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As shown in the results, in contrast to a hole array, the transmission exhibits only one a
peak24. Increasing the film thickness, the peak slightly blueshifts and the transmission
in general decreases.

The electric field distribution on the surface of the film, and around the hole too,
is in accordance with the polarization of the incident field; the cyclic symmetry of the
hole is immaterial to this. On the rim of the hole the electric field exhibits two strong
peaks25. These peaks are caused by opposite charges accumulated on the rim due to
the polarization of the incident field, Fig. 4.24. At the edge of the hole the incident
field excites an LSP which attenuates rapidly away from the hole [51, 194] and plays
important role in the transmission. The electric dipole due to the charges on the edge
also radiates (but weaker) and contributes to the local enhancing of the electromagnetic
field [42, 191].

Figure 4.24: Density plot of charge at the rim of the hole. These accumulated
charges induce two strong peaks of the electric field on the rim.

In Fig. 4.25a it is shown the electric field distribution, time-averaged, on a plane
above the surface of a metal film with a hole. The profile of the field in a section with
the hole is displayed in Fig. 4.25b; for comparison, the field is also shown in the same
section but without the hole, Fig. 4.25c. Details for the simulation are in [42]. The peaks
of the field intensity, shown as concentric rings around the hole, roughly agree with the
periodicity of an SPPs excited on the surface. These fringes are caused by constructive
and destructive interference of the SPPs with the directly incident field on the surface.
In the case of the film without hole, the rings also exist but weaker, and are caused by
SPPs excited on the surface [42].

24 See also the comparative Fig. 4.4 in p. 86.
25 Sometimes this is known as the edge effect.
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Figure 4.25: (reprinted from [40]). (a) Time-averaged electric field for an iso-
lated nanohole, on the xy plane, z = 4 nm. (b) Electric field on xz
plane, y = 0. (c) The same as (b) but without a hole.

As mentioned earlier26, the cutoff wavelength λc of a single hole in a metal film can
differ significantly from the case of a hole on a PEC. The reason is that the skin depth is
nonlegligible for some metals in the visible spectrum [51] causing the effective diameter
of the hole to increase. Increasing the film thickness (hole depth), the intensity of the
peaks at the resonant wavelengths decreases rapidly. Also, beyond λc the transmission
decays exponentially as the operating wavelength increases27.

4.6.2 Transmission behavior of a single rectangular hole

The behavior of a rectangular single hole is somehow different from a circular one; now
due to the lack of circular symmetry, the role of polarization of the incident light to the
transmission is important. Here will be discussed an indicative case.

In Fig. 4.26 it is shown the geometry of a single rectangular hole on a metal film,
illuminating by a p-polarized wave [76]. Fig. 4.27a displays the transmmission spectra
for a variety of ratios ay/ax of the hole sides, the film thickness being constant to ay/3 in
all the trials. The intensity is normalized to the hole’s area, the wavelength is measured
in units of the cutoff wavelength. The azithum angle of the polarization28 is measured
with respect to the y-axis of the structure.

As it is seen, for ay/ax < 1, and for a square hole, the transmission at resonance
is vely low. Increasing the ay/ax, the transmission peak increases and becomes nar-
rower. Above the cutoff wavelength the transmission decreases very quickly because
the wave inside the hole becomes evanescent and decays very rapidly [76]. In the inset
of Fig. 4.27a the transmission spectrum for a square and a circular hole are also pre-
sented for comparison; this graph agrees quite a lot with the graph of Fig. 4.2b obtained

26 See the discussion of Eq. (4.7) in p. 85.
27 See also the discussion of Fig. 4.2b in p. 82.
28 It is noted that θ is the incident angle of the wave, not the azimuth angle of the polarization.
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by Bethe’s theory.

Figure 4.26: Geometry of a rectangular hole on a metal film. A p-polarized wave
impinges on the hole.

.

Figure 4.27: (a) Transmission spectra for a variety of ratios ay/ax of the hole in
Fig. 4.26. For comparison, the inset shows the transmission for a
rectangular and a cirular hole.
(b) Transmission spectra of a rectangular hole with ay/ax = 10 and
different values of permittivity inside the hole. The inset displays
the intensity enhancement of the electric field for these cases.

A rectangular hole exhibits two resonancemodes : a longintudinal and a transversal
mode, at the wavelength with the peak of lower and higher energy respectively [51].
These resonant peaks are attributed to the excitation of LSPs at the rim of the hole, as in
the case of the circular hole discussed previously.

It is remarkable that decreasing the side of a rectangular hole, the normalized peak
intesity increases – in contrast to what expected. The same happens for a circular hole
too. This counter-intuitive effect indicates that the space of the hole plays a crucial role
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in tunneling or coupling of the evanescent waves between the entrance and exiting sides
of the hole.

In the subwavelength limit, i.e. when ax, ay ≪ λ, the maximum transmission at
the resonance wavelength λr, for normal incidence, equals approximately to [76]

Tr ≈
3

4π

λ2r
axay

, (4.11)

where λr is the resonance wavelength of the rectangular hole. Although (4.11) derived
for rectangular holes, the same expression holds for circular holes [147], with the term
axay replaced by the area of the circular hole. For the resonance wavelength at the cutoff
wavelength λr = 2ay, (4.11) becomes approximately [76]

Tr ≈
3

π

ay
ax

. (4.12)

Eq. (4.12) indicates that at the cutoff wavelength, themaximum value of the transmission
is approximately proportional to the side length ratio ay/ax . This linear result is in good
agreement with the results diplayed in Fig. 4.27b. Thus, for the polarization chosen,
and for wavelengths near to the cutoff wavelength, the total transmitted light from a
rectangular hole depends on the length ratio of the sides.

Also, the propagation constant of the fundamantal TE mode is found to be [76, 77]

kz =

√
εd k2 −

( π
ay

)2 , (4.13)

where εd is the permittivity of the surroundingmedium and k = 2π/λ is the wavenumber
of the incident wave. Eq. (4.13) indicates that the resonance wavelength depends on
the permittivity εd of the surrounding medium; this results to an approximate relation
between the transmission wavelength and εd. Therefore, the transmittance at resonance
is estimated by Eq. (4.12), but filling the hole with a different dielectric the spectral
position of the resonant wavelengths can be shifted according to the relation [76]

λc = 2ay
√
εd . (4.14)

Cosequently, maintaining fixed the ratio ay/ax, Eqs. (4.13) and (4.14) imply that the
maximum transmission can be increased further by filling the hole with a medium with
appropriate dielectric constant, and this will also increase the cutoff wavelength. Such an
example is shown in Fig. 4.27b. The side length ratio is ay/ax = 10 and the thickness
is h = ay/3; as evidently seen, increasing the permittivity of the filling media, the
transmission and the correpsonding resonance wavelengths are increased. The technique
to fill the hole with different media to increase the transmission is valid and can be used
for circular holes too.

In the above discussion concerning the transmission through a rectangle hole with
varying side ratios ay/ax, it is important to point out that the study was done arithmeti-
cally and the metal film was modeled as a PEC. Therefore, in contrast to experimental
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works like [51], excitation of LSPs along the rim of the hole does not take place, they
are excluded by the boundary conditions. The effects and the enhancement observed in
the transmission are due to a resonance which however it is reported to be not of surface
plasmon nature [163, 76].

4.7 General conclusions for the design
of EOT structures

The EOT phenomenon was reported and studied for first time in 1998 by T. W. Ebbesen
[55]. Before Ebbesen’s landmark paper, subwavelength apertures were regarded to
have unavoidably low transmission and strong diffraction. A typical application of sub-
walength apertures, in which this defect is very troublesome, is the Near-Field Scanning
Optical Microscope (NSOM). In NSOMs a subwalength aperture provides the required
resolution but with the price of very low signal intensity29. The newcome understand-
ing that EM fields can be enhanced strongly at the holes in the metal film, revised and
opened new roads for the applications of the subwalength holes. The high performance30
provided by such structures, together with the capability to adjust their critical proper-
ties by sculpting the metal surface, increased furthermore the interest for a wide study of
the EOT phenomenon and its potential applications. The main EOT-related disciplines
that have been studied the most, are various stand-alone photonic devices and molecular
spectroscopy and detection. However, to construct an aperture structure for a given EOT
application, many considerations must be taken into account for its structural parameters
and the materials, so that the aperture structure to be EOT-optimized for the application.
As largely31 presented in this chapter, the parameters affecting EOT are quite many,
and their effect complicated and in combination between them; therefore, designing
an optimal EOT structure is not a trivial task. Next, they are summarized roughly the
most important results on EOT research, obtained during the last two decades, that have
significant implications on possible applications of the EOT phenomenon.

Metal films with holes are robust and can be constructed easily by standard techni-
ques such as focused-ion beam lithography. As the SPPs play a crucial role in EOT, at
the operating wavelength the necessary condition must hold for their presence; that is,
εm ′
r < 0 and |εm ′

r | > |εi ′r |, where εm ′
r and εi ′r is the real part of the dielectric constant

of the metal and the dielectric material in contact with the metal respectively. Further-
more, the imaginary part of the SPP wavenumber32 must be the smallest possible, so to
minimize the damping of SPP by absorption.

29 Bethe’s theory is used to explain this low performance [23].
30 Meaning high transmission and practically zero diffraction.
31 but even not exhaustively !
32 For a plane surface it is given by the relation

k̃SPP =
ω

c

√
ε̃ir ε̃

m
r

ε̃ir + ε̃mr
,

where the tilde indicates complex values.
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According to their electronic structure, the misc metals support SPPs in different
regions of the EM spectrum. For example, Au is suitable only for wavelengths longer
than about 550 nm33, while Ag can be used in VIS and near-IR region of the spectrum34.
For the UV, Al is a good choice. The roughness of the metal surface is also important;
the surface must be as smooth as possible to minimize scattering by the anomalies. The
film must be opaque at the operation wavelength; practically, its thickness must be on
the order of ten skin depths.

Adjusting the resonant wavelengths (and hence the transmission intensity) can be
achieved quite easily by varying the geometric parameters of the structure. In specific,
for hole arrays the periodicity, the ratio of film thickness to the holes diameter (Fig. 4.6),
the aspect ratio of hole dimensions (Fig. 4.7), and the area of the holes (Fig. 4.8); simi-
larly, for single isolated holes varying the film thickenss (Fig. 4.23), the aspect ratio of
hole dimensions and the dielectric inside the hole (Fig. 4.27), as discussed in previous
sections.

Generally, if high absolute transmission is required, larger holes should be used –
but with the price the resonance will become broader. For sensing or nonlinear effects,
high surface filled intensities are required; then the dimensions of the hole relative to
the array should be near or below the cutoff of the aperture. Holes like slits can induce
Fabry-Perot resonances, enriching the spectrum of the transmission.

Surrounding single holes by periodic grooves is an additional way to enhance and
control the transmission. To obtain optimal transmission, besides the aforementioned
geometric characterists of the holes, the width, depth or height, and the number of the
grooves should be adjusted too. Also, the distance of the periodic grooves from the
aperture will influence the outgoing wave through a phase shift.

The metallic film supports SPPs on its both sides, hence the transmission becomes
maximumwhen the SPPs on the two sides are in resonance and the energies of these SPPs
coincide. This happens when the refractive indices of the dielectric medium covering the
metal are the same on both sides. Simultaneously, the SPPs can couple with the holes in
the array, inducing new mode energies and broadening the wavelength operation region.
Increasing the film thickness (hence the hole depth) decreases this coupling. To improve
the adherence of the SPPs on the metallic film, a thin layer of another metal (usually Cr
or Ti) can be paved between the film and its dielectric substrate. In such a structure,
if the binding metal has a high imaginary dielectric constant, the SPPs can be entirely
damped on this interface.

The finite size of the hole array can also affect the intensity and the peak width of
the transmission. For optimal transmission, the array must be definitively larger than
the propagation length of the SPPs creeping on the array. This SPP propagation length
is much smaller than on a flat film; for example, in the VIS it is smaller about one order
of magnitude.

In many cases, it is important to have directionality in the outgoing wave; this can
be achieved using a single isolated hole with grooves around it, on the front surface (and
maybe on the back one) of the film. Sometimes, for example to characterize the optical
properties of a given sample, it is usefull to use a collimated beam on the front surface.
This results in a wave with a well-defined wavevector, facilitating the interpretation of

33 i.e., longer than its interband transitions.
34 VIS, IR and UV denote the visible, infrared and ultraviolet region of the EM spectrum repsectively.
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the transmissionwhen the spectrum or the dispersion curve of the structure is determined.

4.8 A synopsis on the interpretation of EOT

For reference purposes it is useful to give the interpretation of EOT as can be summarized
from the phenomena discussed in this chapter [164]. The result of EOT is the enhance-
ment of light transmission through an array of subwavelength holes in a metallic film.
Impinging on the film, the incident wave is scattered; its scattering on the hole boun-
daries creates waves in all directions around, and mainly SPPs along the front surface
of the film. When the periodicity of the hole array matches to the resonance condition
of SPP excitation, (i.e., it is in agreement with the grating equation), the SPP wave is
enhanced significantly; this creates a local field enhancement on the metal surface. This
enhancement induces a resonant excitation of the fundamental waveguide mode inside
each hole, because the transmission coefficient for its excitation has a resonance that cor-
responds to the SPP on the interface35. At normal incidence, the SPP forms a standing
wave on the front interface; then, from across the border of each hole, the electromag-
netic energy flows towards the hole, somehow as if the incident power is gathered inside
the hole, Fig. 4.28. Besides the flowing SPP, in each hole a radiated field is generated;
a part of it propagates along grazing directions to the surface, and can reach the nearby
holes and enhances the field there [142, 154].

Figure 4.28: Flow of the Poynting vector on the front interface and in the vicinity
of the hole entrance, in metal film [164].

35 Note here that the propagation constant of the SPP is modified by the interaction.
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The basis of the phenomenon is that the fundamental mode is resonantly enhanced
in this process; this is the reason the field transmitted by the mode is not negligible at the
exit side, even if the hole has small cross-section and an evanescent mode is expected
from it. At the exit side, the mode excites both an SPP and a radiated field, and the
radiation from each hole interferes to form the transmitted wave of the main (zeroth)
diffracted order. If the structure is symmetrical (i.e., both sides have identical substrate,
cladding, and corrugations), the resonant conditions for excitation of the SPP on the
entry interface are the same as for a resonant emission of the SPP on the exit interface
into the zeroth transmission order; this enhances the transmission even more.

In the case that the periodicity is not suitable to excite the SPP on the entry side,
then, when a SPP is excited on the exit side, another resonance can take place [164]. The
waveguide mode inside the holes acts to enhance the tunneling of wave from the entry
to the exit surface. When the grating period is suitably chosen, the periodicity can add
in phase the SPP generated on each exit hole, thus enhancing the SPP. In addition, the
same periodicity also enhances the radiation of the SPP into the substrate36.

Many other factors can modify the system response and contribute to the quanti-
tative understanding of EOT. For example, the shape of the hole, the type of metal, the
film thickness etc. The effect of quite a few of these factors was discussed earlier in this
chapter.

36 This explains the existence of the transmission peak close to 1.4 μm in the famous experiment of Ebbe-
sen et al.



5. The APOTUS Hole1 Method

5.1 Introduction

The EOT phenomenon through periodic arrays of subwavelength holes, or through a sin-
gle subwavelength hole with proper configuration (grooves, geometry etc), has received
tremendous attention since its discovery in 1998 by Ebbesen and his coworkers [55]. In
EOT, the transmitted fraction of the incident light, for certain wavelengths, is generally
larger to quite larger than the conventionally expected from the available area of the open
holes. This phenomenon, sometimes also been called enhanced or resonant transmis-
sion, exhibits similarities to the transmission behavior of frequency selective surfaces
for frequencies in the range from the near IR to the microwaves [268, 265]. The large
transmission gives the opportunity for many applications ˙ for example, in molecular
absorption, fluorescence, vibrational spectroscopy (IR and Raman2), photonic devices
etc [77], some of them being very intriguing. Furthermore, the underlying mechanism
of the EOT is complicated and deserves scientific attention for itself.

However, despite the great improvement that EOT brings to the transmission, with
whatever this implies for practical applications, there is a plethora of important appli-
cations that require light transmission and concentration in a magnitude completely not
achievable with EOT or other conventional methods. These are mainly photonic appli-
cations relying on nanofocusing, such as :

• all-optical data writing/storage,
• heat-assisted magnetic recording (HAMR),
• near-field scanning optical or thermal nanoscopy,
• nanoimaging, spectroscopy,
• thermal scanning probe lithography,
• nanoscale thermometry,

and others. In all these cases, it is required to focus with high efficiency ∼100 μW of
energy to a ∼10 nm (or less) spot on a planar surface [163, 179, 249, 24, 25]. This is an
extremely large light intensity, hundreds of millions of times larger than, for example,
the intensity of sunlight on the surface of the earth. This power density is ∼1000x the
throughput of gold-coated tapered optical fibers used in Near-field Scanning Optical

1 APOTUS Hole : Almost Perfect Optical Tansmission Through Unstructured Single Hole
2 The inelastic scattering of light in and around the visible region is known either as Raman scattering,
or, when the interaction is with acoustic waves, as Brillouin scattering.
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Microscopes (NSOMs), which is the incumbent technology allowing the focus of light
on the nanoscale [163, 179]. Typical optical transmission efficiencies of NSOM probe
tips are between 10−4 - 10−5, while the minimum optical throughput efficiency required
for commercial applications to be powered by inexpensive 10 mW diode lasers is∼1%.
Conventionally, focusing of light is performed in the far-field with lenses. The shortest
wavelength light source (among those that could potentially be mass produced), a 400
nm laser diode, offers a∼200 nm minimum diameter spot in the far-field in air (with an
infinite aperture). To reach a ∼10 nm (or less) spot in the far-field, it would require an
index of refraction larger than 7, which is not available with typical natural materials.
A similar limitation is usually found with guided modes in dielectric waveguides, with
them too yielding a spot size much larger than the required ∼10 nm (or less) spot size
[163, 179, 249, 24, 25].

Nevertheless, the above apparently fundamental limitations can be overcome by
far using an idea surprisingly simple, and quite easy to implement in practice – at least
in comparison with the so far used methods. The idea in its essence is to direct the
light to a hole with the required dimensions for focusing, just in front of the desired
spot, without permitting back-propagation or backscattering, and force the light to pass
through the hole; in this way the hole acts simply as a focusing lens. This technique for
nanofocusing has many advantages in comparison with the as far used techniques, and
above all exhibites a very large transmittance, in the order of magnitude required for
the aforementioned applications. In specific, even in a not ideal case, the transmission
coefficient is of the order of unity, i.e., the transmission is almost perfect; this is an
incredible achievement for focusing in the deep subdiffraction limit (remember that in
conventional methods it is of the order 10−4 - 10−5 as mentioned above). The technique
is reasonably named APOTUS Hole Method or APOTUS-HM, meaning Almost Perfect
Optical Transmission Through Unstructured Single hole.

The key issue in APOTUS-HM is to eliminate back-propagation and backscattering
as the wave moves towards the hole and when impinges on it; this means that the wave
propagation must be strictly unidirectional. This can be accomplished using a special
kind of materials or structures, having the property to break the time reciprocity in the
wave propagation [108, 248, 250, 251, 260]. In fact, two types of structures3 can be used
to achieve unidirectionality in wave motion : either a unidirectional but non-topological,
or a unidirectional but also truly topological structure. Using appropriate configuration,
a special type of wave, namely a surface magnetoplasmon (SMP), propagates along the
structure in only one way, reaches the hole and is forced to pass through it and focus on
the spot in front of it.

In this chapter the APOTUS-HMwill be fully discussed. Although its basic idea is
very simple, the physics of its best version relies on the topological materials and their
properties, and as a technique that surpasses fundamental limitations of Optics has its
own scientific interesting. A relation for the transmission coefficient is derived, which
essentially includes all the physics of the technique, and is discussed in detail. Results
are presented, indicating its performance in practice. Lastly, its advantages are indicated
compared to the conventional transmission techniques, and some issues crucial for its
practical implementation are pointed out.

3 As it is explained below, this is not a simple material but rather a combination of two materials, and the
wave to be focused propagates on their separating interface.
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5.2 Rudiments of Surface Magneto Plasmons (SMPs)

Surface plasmon polaritons (SPPs) are a special type of electromagnetic waves that are
confined and propagate along the surface of a conductor, typically a metal or a semi-
conductor [13]. SPPs are due to the resonant oscillations of the free electrons in the
conductor with an incident electromagnetic wave4. This resonant oscillation is charac-
terized by a frequency ωp called plasma frequency, which defines the magnitude of the
free electrons response to time-varying perturbations [199]. Because SPPs depend on the
free electron motions, an external magnetic field will affect the SPPs, due to the Lorentz
force which can change the response of the charge carriers. In this case, another chara-
cteristic frequency ωc called cyclotron frequency is often used, which is a function of the
effective mass of the charge carriers and the intensity of the applied magnetic field [186].
An important consequence of magnetizing the plasmons is that the polarizability of the
medium becomes highly anisotropic (that is the permittivity of the conductor becomes a
tensor), even though the medium is isotropic when the magnetic field is absent. As a re-
sult, SPPs exhibit different properties when they are propagating subject to an magnetic
field. In this case, they are reasonably called surface magnetoplasmons (SMPs) [34].

SMPs, according to the direction of the applied magnetic field B, their wavevector
k (i.e., the propagation direction of the surface wave), and the direction of the surface,
can have three main configurations :

• perpendicular geometry,
in which B is perpendicular to both the surface and k,

• Faraday geometry,
in which B is parallel to the surface and k,

• Voigt geometry,
in which B is parallel to the surface and perpendicular to k.

Compared to the traditional SPPs, SMPs have some remarkable properties. For example,
SMPs in perpendicular geometry and Faraday geometry can support pseudo-surface
waves; this means they attenuate on only one side of the surface [35, 258]. SMPs in
Voigt configuration support the nonreciprocal effect, which means the SMP dispersions
are different when they propagate along two opposite directions. Also, unlike SPPs that
only have one propagating frequency band which is below the plasma frequency [199],
SMPs support two propagating bands (cf. Fig. 5.2).

4 The plasmon is a quantum of plasma, i.e., an oscillation quantum of the charge density. The plasmons
can be in the bulk of a material or on its surface; in this case they are called surface plasmons (SPs).
Plasmons can interact with the electromagnetic waves, whose quantum is the photon. The coupling
of a plasmon with a photon is a semiparticle named polariton. When this coupling concerns a surface
plasmon, this semiparticle is called surface plasmon polariton (SPP).
It is clarified that the SP concerns only the charge oscillations, whereas the SPP concerns both the
oscillations and the electromagnetic wave with which they are coupled, as a whole.
Also, roughly speaking, a quasiparticle is a “dressed” particle formed from a bare particle by absorbing
correlations from a field [85]. Then, a “bare” particle in a strongly correlated field behaves as if it were
a different non-interacting particle in free space. The quasiparticle concept is important since it is one
of the few known systematic ways to simplify a quantum-mechanical many-body problem.
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In the last years, due to the interest arised by EOT through holes in the nanoscale,
a plethora of plasmonic devices have been proposed theoretically and experimentally
realized in the visible frequencies [13, 185]. These devices have been mainly concern5
the subwavelength confinement of electromagnetic (EM) waves [56]. For example, in
the metal-insulator-metal structures [140] or slot waveguides [53], EM waves can be
confined in a space of the order 0.1λ. Inspired by these structures, some SMP devices
made by metals were proposed [15, 111, 276, 86, 144, 119]. However, all these SMP
structures are difficult to realize because they require unreachable magnetic fields. The
reason is that in order to observe the effect of an external magnetic field, it is required
ωp, ωc and the incident angular frequency ω to be comparable. But for a metal in the
visible frequencies, ωp and ω are usually in the order of 1016 and 1015 Hz respectively.
Therefore, a magnetic field with intensity ∼ 103 T is required, which is impossible to
realize, even in laboratories. So far, there are two ways to overcome this limitation. The
first way is to use ferromagnetic materials in nanostructures, such as Ni and Co [66, 54,
240, 246, 282, 16, 67, 30]. In this manner, the required intensity of the applied magnetic
field can be decreased to the scale of μT. But this introduces high losses. The second
way is to use semiconductors instead of metals in THz range to decrease both ωp and ω.
The ωp of a doped semiconductor can be decreased to an order of 1013 Hz. Therefore,
the required external magnetic field can be less than 2 T 6. In the last years, such SMP
devices, consisting of semiconductors, have been proposed [143, 132, 101, 156, 158].

In general, though less known, SMPs are of the same importance as the SPPs, and
have applications equally intriguing. The above notes are enough to appreciate their
role in APOTUS-HM. A quite complete review of their theory can be found in [141].
Closing this basic introduction, it is purposeful to discuss the dispersion equation of
SMPs of Voigt configuration on a plane surface, as this is the case in APOTUS-HM.

5.2.1 Dispersion of SMPs on a plane surface
(Voigt configuration)

In Fig. 5.1 it is shown the geometry of an SMP of Voigt configuration, propagating along
the surface of a conductor, along z-axis. With this orientation, the electric permittivity
of the conductor (metal or semiconductor) is the tensor [102] :

ε̄ =

 εxx 0 εxz.

0 εyy 0.

−εxz 0 εxx.

 . (5.1)

The components of ε̄ in (5.1) are

(5.2)

5 Especially in comparison with studies of SPPs before the year 2000.
6 This is the case for the APOTUS-HM considered here.
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εxx = ε∞

[
1−

ω2
p (ω + iν)

ω
[
(ω + iν)2 − ω2

c

]] , (5.2a)

εxz = −iε∞
ωc ω

2
p

ω
[
(ω + iν)2 − ω2

c

] , (5.2b)

εyy = ε∞

[
1−

ω2
p

ω (ω + iν)

]
. (5.2c)

In the above, ω is the angular operational frequency7, ωp is the plasma frequency of
the conductor, ε∞ is the permittivity of infinite frequency8, and ωc = eB/m∗ is the
cyclotron frequency. Also, B is the intensity of the applied magnetic field, e andm∗ are
the charge and the effective mass of electron respectively, and ν is the attenuation factor
(aka loss factor).

Figure 5.1: Schematic of an SMP of Voigt configuration, propagating on the
surface of a conductor.

The wave equation, derived from Maxwell equations, is

∇× (∇× E)− k20 ε̄ · E = 0 , (5.3)

where k0 is the wavenumber in vacuum, and ε̄ is the electric permittivity tensor9, in the
examined case given by (5.1).

7 That is the frequency of the incident wave exciting the SMP.
8 ε∞ is also called optical dielectric constant. It is the permittivity in very high (idealy infinite) frequency,
and takes values in the range 1 ≤ ε∞ ≤ 10. The role of ε∞ is to take account the influence of the
background lattice of the material in the dielectric model; specifically, it is the value of ε deduced from
the refraction of electromagnetic waves with frequencies high compared to lattice vibrations (phonons).
Values of ε∞ can be found in catalogs with properties of materials. Indicatively, for the isotropic plasma
it is ε∞ ≈ 1, for water ε∞ ≈ 4.25 (at 0 - 20 ℃), for Au ε∞ ≈ 6.5 - 10, for Ag ε∞ ≈ 3.7 - 4.5 etc.

9 The factor ε̄ · E is the dot product of the 2nd order tensor ε̄ with the vector E, resulting in a vector.
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Let the material in the region x > 0 has permittivity εd, and the SMP is TM polarized,
as shown in Fig. 5.1. In this configuration, the EM field in the dielectric and in the
conductor is

E =

{
(E1x, 0, E1z)e

α0xei(βz−ωt) , x ≥ 0

(Ex, 0, Ez)eαxei(βz−ωt) , x < 0
(5.4)

where β is the phase constant of the SMP, and α0, α attenuation constants.
Using (5.4) and (5.1), the wave equation (5.3) has a nontrivial solution only when the
these two relations hold :

α2
0 = β2 − ω2

c2
εd , (5.5)

α2 = β2 − ω2

c2
εV , (5.6)

where εV = εxx + ε2xz/εxx is the so called Voigt dielectric constant.
Considering the confinement of the mode on the surface, and the continuity of Hy and
Ez on the surface, the dispersion equation is eventually obtained :

εd

√
β2 − ω2

c2
εV + εV

√
β2 − ω2

c2
εd + iβ εd

εxz
εxx

= 0 . (5.7)

It can be seen immediately that the values β > 0 and β < 0 are not equivalent in
(5.7), namely the dispersion is non-reciprocal with respect to the propagation direction.
Eq. (5.7) can be solved numerically.

In Fig. 5.2 it is shown the dispersion curves of an SMP on a plane surface, as
obtained by solving (5.7). The conductor is InSb assuming no losses (ν = 0), with
ωc = 0.5ωp , whereas the dielectric is air, εd = 1. The rest parameters was taken to be
[34]m∗ = 0.014m0wherem0 is the free electronmass, ωp = 12.6THz and ε∞ = 15.68.
The non-reciprocity of the dispersion is evident in this diagram too. The noticeable fea-
ture of the dispersion curve is that for either β > 0 or β < 0 the curve has two branches,
that is two bands of propagation exist, in contrast to the traditional SPPs. The two cases
β > 0 and β < 0 are discussed below.

case β > 0

The lower branch starts from the origin, moves at the right (that is below) of the light
curve α0 = 0, and eventually terminates reaching the dispersion curve α = 0 of the bulk
magnetoplasmons.
The higher branch starts from the curve εxx = 0 and tends to the asymptotic frequency
for non-retarded magnetoplasmons, εd+ εxx− iεxz = 0. The phase constant β at which
the higher brach starts, is given in reduced form by the relation [102] :

ζ2s =

(
cβ

ωp

)2

=
1 + Ω2

c

1− (εd/ε∞)2 (1 + Ωc)2/Ω2
c

, (5.8)
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where Ωc = ωc/ωp .
For the ζs to be positive and finite, it must hold εd/ε∞ > ωH/ωc , where
ωH =

√
ω2
p + ω2

c . In the examined case, for InSb and air it is Ωc ≥ 0.0064,
hence, the magnetic field must be B ≥ 0.064 T for the higher band to exist.

case β < 0

The branches have similar behavior as in the case β > 0. Here, the lower branch starts
from the origin, moves at the right (below) of the light curve α0 = 0, and eventually
approaches asymptotically the curve εd + εxx + iεxz = 0.
The higher branch starts from the curve εxx = 1 and eventually terminates reaching the
higher dispersion curve α = 0 of the bulk magnetoplasmons.

Figure 5.2: (reprinted from [102]). Dispersion diagram of an SMP at the interface
of InSb - air in Voigt configuration (solid lines). The ωc = 0.5ωp,
ξ = ω/ωp, ζ = βc/ωp are the normalized angular frequencies and
phase constant respectively.
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Figure 5.3: (reprinted from [102]). The Voigt dielectric constant εV as a function
of the normalized angular frequency ξ = ω/ωp .

The existence of the two propagating bands (instead of one as in traditional SPPs),
can be explained inspecting Fig. 5.3. In this diagram, the Voigt dielectric constant εV is
sketched as a function of the normalized angular frequency ξ = ω/ωp . As it is seen,
when ωc = 0.5ωp, there are two curves, and each one has a part where εV < 0. But εV
is the “total” electric permittivity of a structure for SMP propagating. Since SMPs can
propagate on the surface of a material with only negative permittivity, SMPs exhibit two
propagation bands on a plane surface.
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5.3 Configurations and mechanism of APOTUS-HM

As mentioned in §5.1, the APOTUS-HM is based on the unidirectional propagation of
the light wave to be focused. Unidirectionality can be achieved with either two configu-
rations : the first (and simpler) is a non-reciprocal but non-topological (NRNT) structure,
while the second (and more complicated) is non-reciprocal but also truly topological
(NRTT). Concerning the APOTUS-HM, the operating principle of these two structures
is practically identical, but they differ in some important characteristics, as it is examined
below.

5.3.1 Non-reciprocal, non-topological (NRNT) structure

In Fig. 5.4 it is shown the operational principle of the NRNT structure. The structure
is comprised by a two-compοnent material, surrounded by a PEC (here Ag). The one
is InSb which is a magnetically biased gyroelectric semiconductor, the other is Si. The
one end of the structure is bounded by the PEC, but it has a hole for the wave to pass
through and be focused. For computational reasons, the configuration considered here
is 2D, thus the materials are extending infinitely along the y-axis and the hole is a slit;
however, this not an essential limitation : the structure can be 3D (cylindrical) with the
cross section being a circle or rectangle. The hole can be as small as required for the
applications, typically in the deep subdiffractional range of the wave.

Figure 5.4: Operational principle of the non-reciprocal, non-topological structure
for the APOTUS-HM (longitudinal cross section).

Somewhere inside the structure there is a source exciting SPPs. These waves con-
tain the energy that is desired to be transferred and focused on a (subwalength) spot. The
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whole structure is subject to an appopriate magnetic field; this means that the SPPs are
in fact SMPs and exhibit the properties mentioned in §5.2. In specific, the Voigt geome-
try10 is applied for the SMPs, as this configuration supports the nonreciprocal effect.
Under the magnetic field, the gyroelectric character of InSb is manifested : its electric
permittivity becomes a tensor of the form (5.1) and causes the unidirectional propagation
of the wave in the structure.

The SMP travels unidirectionally on the interface between the InSb-Si until it reach
the end of the waveguide, where there is the hole with the appropriate dimensions for the
focusing. Due to the strictly unidirectional propagation, the wave cannot be reflected
and travel backwards; thus, it is obliged to pass through the hole (and then focus in
front of it), even if the hole is very small. Therefore, in the frequency band ∆ω where
the propagation is unidirectional, the transmission coefficient is expected roughly to be
unity. This is the basic operational principle ot the APOTUS-HM.

Figure 5.5: Schematic of the Complete Unidirectional Propagation (CUP) band,
and the transmission, reflection and absorption coefficients for the
the APOTUS-HM structures.

The effectiveness of the APOTUS-HM is founded theoretically on the formula of
transmission coefficient through the hole, that is

T =
2γT

2γT + γ0
, (5.9)

where γT is the tunneling rate of the wave11 through the hole (in the forward direction),
and γ0 is the decay rate of the wave due to dissipative losses. This relation is extracted
by Temporal Coupled Mode Theory, see §5.7 and (5.30), and it is very important be-
cause it incorporates most of the physics of the transmission phenomena in the device.
Next, the physical meaning of (5.9) is thoroughly discussed.

10 i.e., the magnetic field B is parallel to the surface and perpendicular to k.
11 More precisely, the word “wave” means in fact a mode.
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In (5.9) two factors are involved, namely γ0 and γT . The inverses of these factors
are times; in specific, they are defined as
. γ0 = 1/τinc , where τinc is the incident wave lifetime,
. γT = 1/τtun , where τtun is the tunneling time.

As it seems in (5.9), T depends only on γ0 and γT ; and it is immediately evident that
when γ0 → 0, that is the material is lossless, or γ0 is sufficiently small in comparison
to γT , then the transmission coefficient T tends to unity. Therefore, at least in theory,
APOTUS-HM provides the maximum transmission coefficient (i.e., power focusing),
no matter how small the hole is compared to the wavelength of the transmitted wave.
This is a very important result.

In conclusion, the physical meaning of (5.9) and the factors γ0 and γT is as follows.
When the losses of the material are zero or sufficiently small, then the wave near the hole
survives for long enough tο tunnel and pass through the hole. Therefore, in contrast
to other conventional methods, ideally there is no limit in principle for the maximum
transmission, no matter how small the hole is.

In practice there are some issues that decrease the transmission from its ideal value,
but even so it remains very high compared to the the maximum transmission feasible by
other merhods. Some of these issues will be discussed below.

Figure 5.6: Dispersion diagram of the SMPs for the NRNT structure.
It is evident the nonreciprocal effect that causes the unidirectional
propagation and the CUP band. Some bulk SMP modes are also
sketched. The applied magnetic field is 0.2 T.

In Figs. 5.6 and 5.7 it is shown the dispersion diagram for the NRNT structure. As
can be seen clearly in Fig. 5.7, when the magnetic field is absent, the dispersion has two
symmetric branches, this is the trivial case; but when a magnetic field is applied, then
the two branches become asymmetric and a Complete Unidirectional Propagation (CUP)
band opens. In the CUP zone the propagation is strictly unidirectional since there is only
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the branch corresponding to forward propagation. The wide of CUP band is given by

∆ω =
eB0

m∗ , (5.10)

where e is the electron charge, B0 the magnitude of the applied magnetic field and m∗

the effective mass of the electron. This relation can be extracted by the study in [218].

Figure 5.7: Dispersion diagram of the SMPs for the NRNT structure
in a real case. The applied magnetic field is 0.25 T.

Note that the use of InSb, besides its gyroelectric property, makes possible to use
low values for the applied magnetic field12 which can be realized in practice quite easily.
In general, a magnetic field less than 0.3 T is sufficient to open an operational CUP band.

5.3.2 Non-reciprocal, truly-topological (NRTT) structure

The nonreciprocity is not on its own always sufficient to ensure genuinely unidirectional
surface modes. The problem is that in most cases the nonlocal effects (i.e., the spatial
dispersion) in the plasmonic material cannot be neglected; such a case is the tight light
localization and focusing, taking place in the NRNT structure discussed above. As a
result, the CUP band may close, destroying the desired unidirectional propagation and
making the operation of the structure unstable. To overcome the detrimental role of
nonlocality, truly topological (rather than simply unidirectional) structures are required,
such as the NRTT discussed here.

In Fig. 5.8 it is shown a schematic of the NRTT structure for the APOTUS-HM. It
is much the same as the NRNT device of Fig. 5.4, but it has two crucial differences :

• the Si layer has been removed, and the semi-infinite InSb layer directly touches
the plasmonic (Ag) upper cladding,

12 See the discussion in p. 116.
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• the two-component material is now surrounded by a perfect magnetic conductor
(PMC), not a PEC as previously.

The first modification aims to induce topological properties on the structure, thus
making the unidirectional propagation stable; the second is related to the geometry of
the SMP that is created after replacing the Si layer by the plasmonic material (Ag).

Figure 5.8: Schematic of the non-reciprocal, truly topological (NRTT) structure
for the APOTUS-HM (longitudinal cross section).

Thus, in the case of NRTT structure the unidirectionality is due to twomechanisms.
The one is the nonreciprocity the InSb exhibits under the magnetic field. The other
is the pairing of InSb with the Ag, resulting in a structure with topological properties
that, among others, provides robust directionality for the modes propagating in the sepa-
rating surface of the two media. The unidirectionality imposed to SPPs or SMPs in
topological structures is a very complicated phenomenon and its origin is still under
investigation (e.g., cf. [65, 72]); here it will be taken for grant, but roughly speaking it
is close related with the opening of a bulk-mode bandgap and the Chern number of the
topological material13 (here the pair InSb-Ag).

It is reminded that the Chern number is an integer and can be regarded as the number
of windings for a state evolution in the momentum space14; in the herein case the state
is a mode. Chern number is a topological invariant related to the bulk excitations, and
is conserved under continuous deformations that do not close the bandgap15 [251]. As
thoroughly discussed in §1.3, after a full evolution in momentum space, a mode does not
in general return back exactly to its initial form; instead, may acquire an additional phase
term, the Berry phase, equal to 2πC, where C is the aforementioned Chern number for
the given mode. Very crucially, this winding owing to the modal evolution is completely
immune to perturbations that are not large enough to destroy the bandgap16. As a result,
when two media sharing the same bandgap, but having different topological properties,
are brought together, the aforementioned bandgap will necessarily close at the separating

13 Here “material” means the InSb and the Ag together (as a pair), which results in a structure with topo-
logical properties. This is the case for the topological materials in general.

14 See p. 26 and the discussion in p. 39.
15 See the discussion in §1.4.3 for the bulk-edge correspondence.
16 since it is (the winding, i.e., the Chern number) a topological invariant and does not change as long as
the bandgap does not close.
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interface in order to facilitate the change in the topological invariants of the two media;
this gives rise to truly topological, unidirectional SMPs at that interface. These waves
are immune to even nonlocal plasmonic effects, and their dispersion extends over the full
bandgap [251, 65, 72]. Furthermore, the bulk-edge correspondence principle17 ensures
that the total number of unidirectional surfacewaves at the separating interface of the two
media is equal to the difference between the “gap Chern” numbers of the two media18.
For the herein structure, formed by the interface between a magnetized plasma and an
impenetrable material, the difference between the two gap Chern numbers is exactly
equal to unity; as a result, exactly one unidirectional surface wave extends across (closes)
the bandgap [72], ideal for the requirement of the APOTUS-HM.

Figure 5.9: Dispersion graphs (qualitative) for the NRNT and NRTT structures.
For the NRNT the β = F (ω) is unbounded, whereas for NRTT is
not.

In Fig. 5.9 it is clearly seen the effect that the topological character causes on the
dispersion of the SMPs. Concerning the NRNT structure, which is unidirectional but
not topological, the propagation constant β as a function of the operational frequency is
unbounded; this means that β can become large in comparison to spatial inhomogeneities
and fluctuations; as a result, the SMP undergoes spatial dispersion. In contrast, in the

17 See §1.4.3.
18 The gap Chern number is the summation of the Chern numbers of all the modes below the bandgap.
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case of NRTT structure which additionally is topological, β is bounded; thereby, as it
is shown in [72] it is unaffected by nonlocal effects and does not suffer from spatial
dispersion.

Figure 5.10: Effective refractive index of the SMPs for the NRTT structure in a
real case. The applied magnetic field is −0.25 T and the CUP band
∆f = 2.06 - 2.2 THz.

In Fig. 5.10 it is shown the effective refractive index, neff = β/k0 , for the NRTT
structure from the simulation of a realistic case. The CUP band is
. ∆f = 1.03ωp - 1.1ωp = 2.06 - 2.2 THz, ωp = 4π·1012 rad/s,
and is the only frequency region shown in the figure.
In the spotted frequency ω0 = 1.05ωp = 2.1 THz it is neff = 1.3525 − i 0.0478 .
Note that in this case the applied magnetic field is −0.25 T (has negative sign) because
now the layer above InSb possesses a negative permittivity. In fact Fig. 5.10 is essentially
the dispersion diagram. In this contex, it can be seen that the form of the curve is in
agreement with the corresponding curve in Fig. 5.9; the same is also true for diagram in
Fig. 5.7 for the NRNT structure.

5.4 Computational results in the 2D case

To test the APOTUS-HM, full-wave simulations were done using COMSOL, and some
indicative results are presented here. As mentioned earlier, the permittivity of InSb is a
tensor of the form (5.1); in specific, it is

ε̄InSb = ε0 ε∞

 ε1 0 iε2.

0 ε3 0.

−iε2 0 ε1.

 , (5.11)
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where

(5.12)ε1 = 1−
ω2
p (ω + iν)

ω
[
(ω + iν)2 − ω2

c

] , (5.12a)
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ωc ω
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[
(ω + iν)2 − ω2

c

] , (5.12b)

ε3 = 1−
ω2
p

ω (ω + iν)
. (5.12c)

Unless otherwise stated, in all cases below it is set ε∞ = 15.6,
plasma frequency ωp = 4π·1012 rad/s, cyclotron frequency ωc = 0.25ωp,
and loss factor ν = 5 · 10−3ωp .

NRNT structure

In Fig. 5.11 it is shown the transmission coefficient as a function of the slit offset,
in the NRNT structure. The operational frequency19 is f = 1.4 THz.
For slit widthw = 2 μm= λ0/100 ≃ λeff/20, where λeff is the effective wavelength20
for the excited guided mode, the maximum transmission through the slit is T ≃ 23%,
and is observed at a vertical offset ∼ 3.75 μm.
For slit width w = 1 μm= λ0/200 ≃ λeff/40, the transmission reaches T ≃ 18% (not
shown). As is usually done in EOT studies [163, 179], this transmission is equivalent
to normalized (to the incident in-the-slit-only power) transmission greater than unity,
namely Nt ≃1.14, i.e., it is a truly “extraordinary” transmission [163].
The dependence of the transmission on both the slit width and offset it is presented in
Fig. 5.12.

Figure 5.11: Transmission coefficient for the NRNT structure as a function of slit
offset (vertical distance from the separating interface of InSb-Ag).

19 that is, the frequency of the incident SMP.
20 where λeff = λ0/neff .
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Figure 5.12: Transmission coefficient for the NRNT structure as a function
of both the slit width and offset.

.NRTT structure

Similarly, in Fig. 5.13 it is shown the transmission coefficient as a function of the
slit offset, for the NRTT structure. The operational frequency is f = 2.1 THz.
For slit width w = 1 μm = λ0/142 ≃ λeff/74, the maximum transmission through the
slit is T ≃ 25%, and is observed at a vertical offset ∼ − 0.4 μm (black curve).
For slit width w = 2 μm = λ0/71 ≃ λeff/37, the transmission reaches T ≃ 28.5%, at
a vertical offset ∼ 0 μm (red curve).

Figure 5.13: Transmission coefficient as a function of slit offset, for the NRΤT
structure.

In Fig. 5.14 it is presented the transmission, reflection and absorption coefficients,
inside and near the CUP band, for a slit width w = 2 μm of the NRNT and NRTT struc-
tures. Note that in both cases the reflection coefficient inside the CUP band is virtually
zero, as expected from the theory. Since the materials are not perfectly lossless21, there
is some absorption, but the transmission coefficient continues to have high values.

21 It is reminded that the loss factor ν is not zero, see p. 128.
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It can be seen that the topological structure has in general better performance : in the
NRTT structure the transmission coefficient retains high values in all the CUP band,
whereas in the NRNT structure decreases tending to zero.
In the examined case, for the more robust NRTT structure, the transmission through the
slit reaches 33% at the frequency of 2.18 THz (cf. Fig. 5.14d); for this value the nor-
malized (to the incident in-the-slit-only power) transmission is Nt ≃1.52, namely it is
“extraordinary”.

Figure 5.14: Transmission, reflection and absorption coefficients, inside and near
the CUP band, for a 2 μm slit of the NRNT and NRTT structures,
for the optimum respective slit positions in both cases.

Note that in all these simulations, Figs. 5.11 - 5.14, the nonlocal effects are not
considered; thus, it is to be understood that robust performance as described by the theory
is ultimately attained only by the NRTT structure, which is inherently topological.
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It is strongly emphasized that these slit widths are in the deep subdiffractional
regime (e.g., the slit dimensions are λ0/100 or smaller) and the transmission coefficients
attained are incredibly high compared to the other as far known methods.

Figure 5.15: Power profile distributions for the NRNT and NRTT structures,
in front of the slit. The data used are the same as in the cases of
Figs. 5.11 and 5.13 respectively.

In Fig. 5.15 it is presented how the power of the guided mode is distributed to the
media consisting the structure. It is reminded that the device (the waveguide) is consisted
by a two-layer media. What is shown in Fig. 5.15 is how the power of the incident SMP
is distributed to each layer, in front of the slit. The discontinuity in the graphs is due
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to the different material on either side of the separating interface. As can be seen, for
the NRNT structure the maximum power is at right side, which correpsonds to Si; for
the NRTT structure is at left, that is in InSb. The importance of this diagram is that it
indicates where the slit for the wave to pass should be opened. The slit should be opened
to the material in which the power concentration is maximum, so that outgoing power
is the maximum possible. In this case, for the NRNT structure it must be opened on the
top layer, while for the NRTT at the bottom.

5.5 Computational results in the 3D case

All the previous results for APOTUS-HM concern 2D case studies; this means that
the structures discussed have the geometry of a parallel-plate waveguide (extending in-
finitely along y-direction), and the hole is in fact an 1D slit22. However, the principles of
APOTUS-HM presented earlier do not depend on the dimension of the structure, which
means that all the crucial conclusions for realizing such a device remain untouched23.
In this section, are presented simulation results for NRNT and NRTT structures in their
3D version, using the software COMSOL, mainly on the terahertz regime. As will be
seen, all the beneficial properties of these structures continue to hold in their 3D version
(and even better than their 2D counterparts !), making such devices useful for diverse
applications in the broader field of Photonics. It is emphasized that achieving truly topo-
logically unidirectional EM-based EOT in this range is challenging due to the presence
of nonlocal effects [72, 73, 39]; this is a crucial issue that is thoroughly examined and
addressed herein24. To gain a better picture on the improvement of transmission charac-
teristics bringing by the 3D APOTUS-HM devices, their corresponding 2D versions are

22 Although an 1D slit has a width with a deep subwavelength scale (i.e., it is very “thin”), its fundamental
mode is not cut off, which means the transmission channel is not closed and EOT can take place with
no need for unidirectional surface modes. However, in such a case, nothing prevents the wave to be
reflected and travel backwards, away from the hole; thus, at the hole can take place backscattering,
causing significant losses. This cannot happened in unidirectional structures used in APOTUS-HM.
Striclty speaking, it is not fair to compare the transmission efficiency of an 1D slit with that of the
Bethe’s hole or NSOM probe tip, because the waveguide mode is cutoff in these typical structures
whereas in an 1D slit is not; even so, the fact that the transmission through the tiny slit or hole does not
depend any more on how subdiffractional they are (as long as there is transmission or tunneling through
them), is a remarkable result, never before observed or attained in the entire field of EOT where the
transmission through, e.g., ∼ λeff/50 holes or slits is negligible, even with the use of SPPs.

23 Note that the analytic, Temporal Coupled Mode Theory (TCMT) developed in §5.7 has no assumptions
for the dimension of its formalism. Thus, TCMT, especially the conclusive Eq. (5.30), holds in the same
way for 2D and 3D structures, suggesting that in such unidirectional devices the transmission through
a tiny hole or slit is the maximum possible, no matter of the dimension of the model.
Note also that the extension to 3D of parallel-plate-like waveguide structures is quite straightforward
and has been reported many times in the literature. For example, YIG-based 2D unidirectional wave-
guides, cladded with PEC metals on the upper and lower xz-planes of the guide, give rise to TE modes,
where (if x is the direction of propagation) the three components of a mode are Ez , Hx and Hy . The
z-direction electric field component makes it possible to cover the structure with a PEC metal on the
two xy planes too, thereby making the structure 3D, with no influence at all on its one-way properties
because the electric field component remains perpendicular to the PEC boundaries on the xy-planes.

24 In contrast, in §5.4 nonlocality was not taken acnount in the simulations.
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also examined and compared to them.

Figure 5.16: Schematic diagrams and snaptshots from simulations of three dif-
ferent structures with a 2 μm hole at the end.
(a) Si-InSb, (b) OM-InSb, (c) InSb-InSb.
Arrows in the snaptshots indicate the average power flow, which
varies in direction based on the negative effective permittivity
[247, 216].
(d) Schematic diagram and snapshots from simulations of 3D EOT,
with all other parameters the same as in Fig. 5.17.

The 2D and 3D structrures to be considered are shown in Fig. 5.16. Firstly, two
classic heterostructures are studied : one composed of InSb and a dielectric material
(silicon here), and the other composed of InSb and an opaque material25 (OM) with a
plasma frequency larger than InSb’s (e.g., ωpm = 2ωp) [72]. As shown in Figs. 5.17a,
b, both structures exhibit a unidirectional band due to the breaking of time-reversal
symmetry. In particular, the Si-InSb structure exhibits a unidirectional band, charac-
teristic of asymptotic frequencies (AFs), while the OM-InSb structure features, first, a
nonreciprocal AF-type unidirectional band, and, second, a truly topological unidirec-
tional band26 with the surface modes having finite wavenumbers, insulating them from

25 This must be a plasmonic material (ε < 0).
26 It is possible for a material or structure to exhibit many bands, some nontopological and some truly
topological. The character in each band can be different; a topοlogical material does not necessarily
exhibit topological character in all of its bands. In the case of Fig. 5.17b the structure exhibits two bands;
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nonlocal effects [72].
The OM-InSb structure, in the upper boundary is surrounded by PEC, whereas in

the lower boundary is surrounded by PMC; this is required for preserving the unidirec-
tional band27. Indeed, the zoomed-in panel in Fig. 5.17b shows the dispersion curve if
PEC is set instead of PMC in the lower boundary : then the topological unidirectional
band is closed and the propagation is two-way.

Figure 5.17: Dispersion and schematic diagrams of
(a) the Si-InSb structure with ωc = 0.25ωp, d1 = 0.08λp
and d2 = 0.12λp,
(b) the opaque material (OM)-InSb structure with ωc = −0.25ωp
and d1 = d2 = 0.2λp,
(c) the InSb-InSb structure with ωc = 0.8ωp and d1 = d2 = 0.03λp.
The dielectric constants used are εSi = 11.68 and ε∞ = 15.6.
Red lines indicate the topological surface modes that are immune to
nonlocal effects; black dotted lines represent nonreciprocal modes
propagating in only one direction in the local case.

The opaque material of the second structure is an “idealized” material, in the sense
that it has the simple Drude model28. For the third examined structure, the opaque ma-
terial has been replaced by unmagnetized InSb; also, both the upper and the lower cover
of the structure is PEC. In Fig. 5.17c it is shown the corresponding dispersion diagram.
As can be seen there are three nonreciprocal bands; only the upper one (yellowish color)

in the first, the Chern numbers are zero, hence it is simply a nonreciprocal band (nontopological); in
the second, the Chern numbers are nonzero, hence the character of the structure is truly topological in
this frequency range. In such cases the name “NRTT” (non-reciprocal, truly topological) will concern
the structure when it works in the topological band.

27 The usage of PMC in the lower boundary is necessary for the structure to exploit the topological cha-
racter. If PEC is used instead of PMC, then the the topological band vanishes, as can be seen in the
zoomed-in panel of Fig. 5.17b. Whether PEC or PMC must be put, is found by trials because it is
difficult to find a priori which of them gives the desired result. Which of the two is appropriate has to
do with the orientation of the field components.

28 It does not matter what exactly the material is, but only that it has the simple Drude model.
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is useful. This band is unidirectional, and also protected from nonlocal effects. In fact, it
can be seen that just on the upper end of the band the wavenumber (red line) takes a finite
number; then it becomes asymptotically infinite – but just outside of the band ! Thus,
this band supports surface modes with finite wavenumber, which are therefore expected
to be robust against nonlocal effects29. Specifically, the calculations show that the sur-
face modes in this upper unidirectional band (yellowish color) have finite wavenumbers,
with |k| < 10kp , where kp = ωp/c.

Next, the impact of nonlocal effects in the afforementioned InSb-based structures is
investigated. To include the nonlocality, the hydrodynamic model is used, which arises
from the presence of spatial currents J [72, 39, 201]. In the hydrodynamic model the
currents are described by the following equation30 :

β2∇(∇ · J) + ω (ω + iγ)J = iω (ω2
p ε0ε∞E+ J× ωcẑ) , (5.13)

where β is the nonlocal parameter, γ represents the damping rate, and ωc = eB/m∗ is
the cyclotron frequency related to the external magnetic field; also, B is the intensity
of the applied magnetic field, and e and m∗ are the charge and the effective mass of
electron respectively. In the limit of β = 0, Eq. (5.13) reduces to the classical Drude
model, which implies that the current J at a point is determined solely by the EM field
at that point. Since Maxwell’s equations require that J has the same wavenumber as the
electric and magnetic fields, the nonlocal effect is expected to have little impact on EM
waves with wavenumbers satisfying the condition

k ≪ ω/β . (5.14)

In this study, the value of β is set to31 β = 1.07 · 106 m/s for n-type InSb. For ω =
ωp, the condition (5.14) reduces to |k̄| ≪ c/β ≈ 280, where k̄ = k/kp . This indicates
that, as discussed above, in the structure of Fig. 5.17c the SMPs of interest should be
almost immune to nonlocal effects, regardless of the presence of SMPs with large k at
higher frequencies (beyond the unidirectional band), near the resonance frequency ωs of
the bulk modes.

To investigate the impact of nonlocality on the propagation of SMPs in the studied
structures, their properties are analysed using the software COMSOL with a nonzero
nonlocal parameter (β ̸= 0). For each structure of Fig. 5.17, the propagation of a pulse
is examined in two cases : one with the classical Drude model, and another one with the
hydrodynamic model with the aforementioned value for β. The simulations are done
with the Finite Element Method. The results are shown in Fig. 5.18.

29 In this case it is indifferent if the structure is topological or not; since k is finite, the surface modes are
certainly protected against the nonlocal effects.

30 Roughly speaking, in the hydrodynamic model the electrons are regarded as a fluid; equations of fluids
are used to setup this model. The hydrodynamic model introduces nonlocality, which is the desired in
this case.

31 This is a typical value for β, taken from other studies in the literature involving the hydrodynamic
model, e.g. [72].
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Figure 5.18: The magnetic field distribution obtained from FEM simulations of
three different structures :
(a) Si-InSb, (b) OM-InSb, and (c) InSb-InSb.
The simulations were performed at three different frequencies :
0.8fp, 1.05fp, and 1.1fp , where fp is the plasma frequency.
The damping rate γ was set to γ = 5 · 10−3ωp , and the nonlocal
parameter β was set to β = 1.07 · 106 m/s.
(d) Snapshots of the magnetic field distribution in the three struc-
tures under local conditions (inside the blue rectangle) and nonlocal
conditions (inside the red rectangle).

Fig. 5.18 shows that, as expected, in the first Si-InSb structure the magnetic field
distribution exhibits significant spatial dispersion, resulting in backward modes within
the nonreciprocal unidirectional band limited by AFs. In the remaining structures, the
SMPs maintain their unidirectional character, and the magnetic fields exhibit negligible
differences between the local and nonlocal cases. As a result, it is concluded that the
Si-InSb structure is susceptible to realistic nonlocal effects because of the presence of
large wavenumber k in the unidirectional band (see Fig. 5.17a).
In contrast, the OM-InSb and InSb-InSb structures sustain robust SMPs, as they have
relatively small k values (k < 10) within their respective unidirectional bands, making
them essentially immune to nonlocality.
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Next, the transmission efficiency of the 2D and 3D structures of Fig. 5.16 is studied.
Two cases are examined : in the first the diameter of hole is dhole = 2 μm ≃ λ0/100,
whereas in the second it is dhole = 1 μm ≃ λ0/200. The results are shown in Figs. 5.19
and 5.20.

Figure 5.19: The transmission coefficient T , the normalized transmission coeffi-
cientNt , and the incident energy ratio IER, as functions of the hole
offset, for the three structures of Fig. 5.16.
The hole has a diameter dhole = 2 μm ≃ λ0/100 , where λ0 is the
vacuum wavelength.
Note that the climax for the 2D and the 3D version of the structures
are different (left and right sides of the diagrams.)

In Fig. 5.19 it is shown the transmission coefficient T , the normalized transmission
coefficient Nt , and the incident energy ratio32 IER, plotted as functions of the hole-
offset, for the three structures of Fig. 5.16, in both the 2D and 3D versions.

Concerning the 2D versions, in agreement with a previous study [14], the Si-InSb
structure exhibits a quite low transmission efficiency33 (Tmax < 12%; see upper panels
in Fig. 5.19). In contrast, the OM-InSb and InSb-InSb structures exhibits significantly
higher transmission efficiencies, with Tmax ≈ 45% and Tmax ≈ 65%, respectively.
This difference in transmission efficiency can be attributed to the effective refractive

32 See Eq. (5.15) in p. 138.
33 Of course it is very high in comparison with the conventional methods.
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indices34 of the structures, which are neff ≈ 5.7 (with f = 0.8fp and k ≈ 4.56kp),
neff ≈ 1.35 (with f = 1.05fp and k ≈ 1.42kp), and neff ≈ 2.31 (with f = 1.1fp and
k ≈ 2.54kp) for the Si-InSb, OM-InSb, and InSb-InSb structures, respectively.

Indeed, physically, a wave with a large effective refractive index, such as the one
analyzed in Fig. 5.16a, cannot efficiently coupled with the evanescent wave in the air
(n = 1) surrounding the hole, due to the larger refractive index difference.
To examine the presence or not of EOT, the normalized transmission coefficient35 Nt

is also calculated; it was found (see Fig. 5.19, middle panels) Nmax
t ≈ 1.25 (Si-InSb),

Nmax
t ≈ 5 (OM-InSb), and Nmax

t ≈ 18 (InSb-InSb).
Next, it is analyzed the topological or nonreciprocal EOT in the 3D structures. In

the InSb-based unidirectional waveguide, the guiding modes are transverse-magnetic
(TM) modes. Therefore, the presence of lateral PMC walls [9] in the xy-plane do not
destroy the topological character, nor the EOT phenomenon36.
The configuration of the examined 3D structures and the position of the hole is shown
in Fig. 5.16d and Fig. 5.17 (regarded as 3D in this case). The thicknesses of the 3D
structures are h = 12 μm ≃ 0.064λ0 ≃ 0.36λeff , h = 5 μm ≃ 0.035λ0 ≃ 0.047λeff ,
and h = 4.5 μm ≃ 0.033λ0 ≃ 0.015λeff , respectively. Finite element simulations
were done on these deep subwavelength structures, and verified the preservance of the
unidirectional propagation.
For a hole with dhole = 2 μm, and for no hole offset, it was found 3D EOT with Nt ≈ 2
in the Si-InSb structure under the present conditions (see Fig. 5.19a, middle panel).

Furthermore, it is crucial to also study how the waveguide parameters, particularly
the hole offset, affect the 2D and 3D topological/nonreciprocal EOT, as optimizing these
parameters can lead to dramatically improved throughput performance37. To investigate
this, it was performed a series of simulations on InSb-based structures with different hole
offsets, in both the 2D and 3D configurations. Here, it is useful to define the incident
energy ratio IER to characterize the energy distribution in the present magneto-optical
structures. Specifically, IER is defined as the ratio of the incident energy over the hole
region Ehole to the total incident energy Etotal, that is

IER =
Ehole
Etotal

. (5.15)

This parameter is used to emphasize the significance of the energy distribution in the
structures. The value of Nt can then also be calculated using the following equation :

Nt =
T

IER
. (5.16)

It is evident from (5.16) that EOT can occur in cases with low IER and/or high T . Ide-
ally, it is required relatively high T and low IER, which would make these structures
excellent candidates for building sensitive optical devices, including NSOM operation –

34 It is reminded that neff = β/k0 and λeff = λ0/neff .
35 Defined as the ratio of transmitted power to the power that incidents only on the slit or hole.
36 Because of the orientation of the field components, the presence of PMC does not affect the field
(there is a normal field component which remains unaffected from PMC).

37 Remember Fig. 5.12 in p. 129.
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only that here, being inherently unidirectional, the devices do not require elongated ta-
pering, thereby avoiding unnecessary propagation losses, and leading to much enhanced
throughput.

As already mentioned, for the structures with dhole = 2 μm ≃ λ0/100, the results
are presented in Fig. 5.19. For the 2D Si-InSb structure, the calculations shown in
Fig. 5.19a reveal that most of the energy is concentrated in the Si layer, as the IER at
a positive hole offset (> 0 μm) is typically larger than that in the region of negative
hole offset (< 0 μm). However, due to a lack of momentum matching, only a small part
of the energy can successfully escape to the air. When the hole is located in the lower
InSb layer, Nt can become greater than 1, with a maximum of 1.25, but for T < 5%.
Interestingly, for no hole offset, the 3D structure actually outperforms its 2D counterpart.
Specifically, as shown in Fig. 5.19a, it achieves Nt > 3 with T > 30%.

For the 2D OM-InSb structure, Fig. 5.19b shows that the energy in the opaque ma-
terial layer is lower than that in the InSb layer. Unlike the Si-InSb case, 2D EOT with
Nt ≈ 5 can occur at relatively high T (T ≈ 45%), while in the 3D case it is Nt ≈ 3
(T ≈ 75%).

Remarkably, for the third structure (InSb-InSb), Fig. 5.19c shows extremely high
EOT in both the 2D and 3D cases. For the 2D structure the transmission coefficient is
Tmax ≈ 65% and for the 3D one Tmax ≈ 95%; the normalized values are Nmax

t ≈ 20
and Nmax

t ≈ 40, respectively. The calculation of IER indicates that the energy distri-
bution is similar to that in Fig. 5.19a, but here the attained transmission is substantially
higher.

Figure 5.20: The same as Fig. 5.19 but here the diameter of the hole is
dhole = 1 μm ≃ λ0/200 , where λ0 is the vacuum wavelength.
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Another parameter that is expected to affect the transmission is the diameter of the
hole. As mentioned earlier, the case for a hole with smaller diameter was also examined
for all the 2D and 3D structures. Specifically, all the study of Fig. 5.19 was repeated,
setting the diameter of the hole to dhole = 1 μm ≃ λ0/200. The results are shown in
Fig. 5.20. For the Si-InSb structure, it is observed that when dhole = 1 μm, waves cannot
easily out-coupled to air in the 2D structure, resulting in a Tmax < 10%. However, for
the 3D version, it was found that Tmax > 50%. Also it is observed that the energy ratios
IER are almost the same between the 2D and 3D structures. Thus, due to the relatively
larger T in the 3D case, higher values of Nt are achieved in the 3D structure compared
to the 2D one, with the Nmax

t reaching 4.88 for a hole offset ≈ 0.25 μm. Note from
Fig. 5.20a that the 3D Si-InSb structure typically exhibits very low T or Nt for hole
offsets different than the central (= 0 μm) value; thus, in this case it is performance-wise
to have a hole with zero offset.

For the OM-InSb structure, as shown in Fig. 5.20b, the transmission efficiencies in
both the 2D and 3D configurations are not strongly affected by the change in dhole . The
maximum values of T and Nt are nearly the same as with the previous (dhole = 2 μm,
Fig. 5.19b) case. Specifically, for the 2D case it is Nmax

t ≈ 7 and Tmax ≈ 50%; for the
3D case it is Nmax

t ≈ 3 and Tmax ≈ 75%.
Finally, for the InSb-InSb structure, it is found that the maximum Nt reaches very

large values : for the 2D structure it isNmax
t ≈ 41 (for a Tmax ≈ 49%), while for the 3D

structure it isNmax
t ≈ 17 (for a Tmax ≈ 36%). In other words, the robust nonreciprocal

nature of this device (immune to nonlocal effects, as discussed above) and the absence
of back-reflections, lead to excellent 3D EOT performance (through a single hole), even
in the deep subwavelength scale, where dhole ≪ λ0. Also, note that for the Si/OM-InSb
structures the maximum Nt is always achieved when the hole offset is anywhere in the
range (−d/2, d/2), but in the InSb-InSb structure the maximum Nt is attained when the
hole is located entirely within the lower layer. This is because, in this case, the incident
wave can efficiently couple into the air while IER remains small.

the transmission coefficient in the unidirectional band

In the above studies (Figs. 5.19 and 5.20) the transmission coefficient was calcu-
lated for a specific operational frequency, within the unidirectional propagation band. It
is reminded here that the transmission coefficient is given by the formula

T =
2γT

2γT + γ0
, (5.9)

extracted with the Temporal Coupled Mode Theory, see §5.7 and (5.30). The physical
meaning of (5.9) has been discussed thoroughly in §5.3.1. Eq. (5.9) seems very sim-
ple, but this is somewhat deceivable. As T depends only on γ0 and γT , at first sight it
would be expected that T is constant within the unidirectional band, as shown in Fig. 5.5.
However, in reality this is not the case; γ0 is the decay rate of the wave due to dissi-
pative losses, and depends on the frequency of the wave propagating in the medium;
these losses are imposed by the model of medium (Drude model or whichever) and are
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a function of frequency38. Furthermore, the spatial profile of the field also varies with
frequency; this affects indirectly the tunneling rate γT of the wave. Thereby, γ0 and γT ,
and thus T , vary with frequency in the unidirectional band; therefore, in contrast to what
naively expected, T is not constant in the unidirectional band.

Also, note that the geometry of the hole (and in specific the hole offset) is indirectly
but definitely incorporated in (5.9) through γT : the more “convenient” the geometry is
for tunneling, the larger the γT (and thus the T ) is. This is the reason for optimizing the
position of the hole offset in the configurations above.

These considerations were tested and confirmed for the three herein structures. In
Fig. 5.21 is shown the normalized transmission coefficientNt as a function of frequency,
in the unidirectional band. In all cases,Nt is quite high, having values that agree in order
with the values observed in Fig. 5.19 and 5.20, but it is not constant. As shown, in the
Si-InSb and OM-InSb structures, 3D EOT is achieved within a portion of the respective
unidirectional bands; in the InSb-InSb structure (which has the most practicality) 3D
EOT is achieved throughout the entire unidirectional band.

The influence of the hole offset was also investigated; as can be seen in case of
InSb-InSb structure, its role can be crucial for achieving intense EOT and high values
of T .

These results also verify that although T andNt may have significant fluctuations,
they retain the broadband behavior; that is, the structures remain broadband in a large
portion (or even in all) the unidirectional band.

In conclusive, clear 3D EOT was observed in these structures, at different frequen-
cies, even when the hole position was kept unchanged for all cases. This represents
a stringent condition given the complex relationship between the operating frequency,
hole offset, hole size, and the maximum normalized transmission. Thus, by appropriate
choice of the structural (device) parameters, it is possible to achieve 3D EOT throughout
an entire (broadband) unidirectional band.

Figure 5.21: Normalized transmission coefficient as a function of operating fre-
quency in the corresponding unidirectional band. The configuration
of the structures is 3D.

38 except if the medium has a constant ε, like Si.
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5.6 Summary of the 3D results and general conclusions

Summarizing, it was introduced and then studied in some detail three different types of
3D structures capable of attaining robust (nonreciprocal or topological) EOT through
single holes : PEC-Si-InSb-PEC (nonreciprocal), PEC-OM-InSb-PMC (topological),
and PEC-InSb-InSb-PEC (robustly nonreciprocal, immune to nonlocal effects). Using
finite element simulations, it was confirmed the existence of nonreciprocal/topological
(one-way) waves in the proposed structures. The unidirectional surface waves sustained
by the InSb-InSb device have relatively small wavenumbers (k < 10kp), making them
essentially immune to nonlocal effects. Because of the absence of back-reflections and
the avoidance of the need for elongated tapering, the proposed structures exhibit nonre-
ciprocal/topological 3D EOT with high absolute (T ) and normalized (Nt) transmissions,
even in the deep subdiffractional regime, and in a large portion or even in the entire uni-
directional band (that is being broadband).

Specifically, for a hole surface of just Shole ≈ 4.8 · 10−4λ20 (≈ 2.6 · 10−3λ2eff ), it
was found that the 3D InSb-InSb structure allows for near-perfect absolute transmission
through the hole (T ≈ 95%) and for normalized T far exceeding unity (Nt ≈ 40, EOT
regime; see Fig. 5.19c).

The main advantages of the APOTUS-HM can be summarized as following :
• Very high transmission coefficient in comparison to other techniques, especially
in the deep subdiffractional regime; e.g., in holes d ≤ λ0/100 :
. gold-coated tapered optical fibers used in NSOM : T ≤ ∼ 10−4% ,
. APOTUS-HM : T ≥ ∼ 30% ,

• Does not require perfect lossless material to achieve high transmission,
• Permits 3D isotropic effective refractive indices,
• It is immune to spatial dispersion, structural imperfections/inhomogeneities,
and surface roughness (the propagation is robust and stable),

• Its implementation is easier in comparison to other techniques.

Although lacking yet the experience of construction and testing a real APOTUS-
HM device, the limitations of the method as seems from the theoretical study and the
simulations are very little and non-critical. In specific, the main difficulties are the fol-
lowing :

• Practically, the transmission coefficient is less than 100% due to losses in the
material and to the impedance matching at the exit,

• The maximum output power is limited by heating in the neighborhood of the hole,
• High-precision numerical study is difficult due to the “exploding” of the field in
the very close neighborhood of the hole.

Of the above, the potential heating in the neighborhood of the hole is the most
serious problem; if the tunneling time is large (small γT ) and the power of the wave to
be focused high, the device could be burnt. For this reason, the possibility of a cooling
mechanism could be examined.
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The exaggeration of the field very close to the hole poses a significant difficulty to
the simulation of tunneling. Just in front of the hole, before tunneling, the magnitude of
the field increases abruptly two to three orders (or evenmore), see Fig.5.22; this demands
a very dense computational mesh to catch correctly the evolution and tunnelling of the
wave, in most cases in the limit of the available computational resources.

Figure 5.22: The problem of “exploding field” in front of the hole.

However, these difficulties are not limitations in principle and can be overcome
more or less easily. Thus, the proposed structures may form an entirely new platform
for high performance micro-/nanoscopy, heat-assisted magnetic recording, sensing, de-
tection, enhancement of spontaneous emission and photoluminescence, and integrated
photonic communication applications where there is a dire need for efficiently bringing
light and electromagnetic waves to deep subwavelength scales.
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5.7 Temporal Coupled Mode Theory and
transmission coefficient

Temporal CoupledMode Theory (TCMT) is an approximation technique concerning the
coupling of modes in resonant systems. It is essentially a perturbation analysis and, since
the resonance phenomenon can take many forms, TCMT can be used in many physical
systems where resonance is involved. Among others, it can be used to treat optical
nonlinearities, the interaction between optical and acoustic waves, etc. In the case of
APOTUS-HM, it is used to obtain the transmission coefficient of the NRNT and NRTT
structures. TCMT will not be presented here but only some fragments just necessary
to obtain the transmission coefficient. A quite detailed presentation of TCMT for some
systems is discussed in [96].

TheNRNT andNRTT structures can be considered as cavities with in-/out-coupling
channels, where power waves pass and resonate inside the cavity. The phenomenon in-
side them is regarded as the incidence of a waveguide wave on a resonator and time evo-
lution of the amplitude of an excitation in the resonator [96]; in this regime the TCMT
can be applied. In general, such a system (optical or not) is constrained by energy con-
servation, time-reversal symmetry, and reciprocity – and these are the principles that are
used in TCMT.

Let be considered a cavity of n ports (in-/out-coupling channels), where km and dm
are the in- and out-coupling coefficients respectively, (m being an integer ∈ [0, n]);
also, let |sm+|2, |sm−|2 be the in-/out-going wave powers; ω0 the resonance frequency,
and γ the total decay rate of the excited mode of amplitude a, with |a|2 beeing the ener-
gy of that mode39. It can be prooved [96] that the evolution of the excited mode in the
cavity is governed by the equation

da

dt
= (iω0 − γ)a+ kT s+ , (5.17)

where k and s+ are column vectors with the km and sm+ factors mentioned above.
The out-coupled waves are governed by the relation

s− = Cs+ + da , (5.18)

where C is the matrix for direct reflection process (pathway), and d the vector with the
aforementioned dm coefficients.
From the conservation of energy40 in this system it is [96, 221, 281]

d|a|2

dt
= |s+|2 − |s−|2 . (5.19)

Without harming the generality it can be set s+ = 0;

39 All these are notations usually adopted in TCMT.
40 Or using Poynting’s theorem.
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then, substituting (5.17) to (5.19) gives41

(−iω0 − γ)a∗a+ a∗(iω0 − γ)a = −a∗d∗da , (5.20)

which, since a ̸= 0, immediately results in

d∗d = 2γ . (5.21)

In this stage, the time evolution process described by (5.17) is reversed;
that is, the following replacements are done : a→ ã, s+ → s̃+, −γ → γ, kT → k̃T.
For an incident wave s̃+ = d∗ã of (positive) frequency iω0 in-coupled to the mode a it
holds

dã

dt
= (iω0 + γ)ã . (5.22)

Inserting this in (5.17) gives

(iω0 + γ)ã = (iω0 − γ)ã+ k̃Td∗ã , (5.23)

which immediately results in42

k̃Td∗ = 2γ. or. (k̃T)∗ d = 2γ . (5.24)

Comparing (5.21) and (5.24) it is

k̃ = d . (5.25)

Concerning the NRNT and NRTT structures, these are two-port systems. Assume
now, that the incident SMP pulse carries power |s0|2; then, the amplitude aq of an excited
q mode within the complete unidirectional propagation (CUP) band, localized at the
terminating interface, will vary with time as

daq
dt

= iωqaq − (γR + γT + γ0)aq + κs0 , (5.26)

where
. γR is the decay rate of the mode in the backwards direction
. . (where the SMP is coming from),
. γT is the tunneling rate of the mode through the slit (in the forward direction),
. γ0 is the decay rate of the mode because of dissipative losses,
. κ is the in-coupling coefficient.

41 a∗ means the complex conjugate of a, and similarly for the rest symbols.
42 It is reminded that γ is real.
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In other words, in (5.17) it is set γ = γR + γT + γ0 ,
and kT to κ since this is a two-port system.
Setting γR = 0 (i.e., no back-reflections) as is the case in broken time-reversal symmetry,
and d = (di = 0, dj), where di is the (zero) decay of themode in the backwards direction,
then, for a lossless (γ0 = 0) hot spot at the end (5.24) and (5.25) give43

dj =
√
2γT = κ . (5.27)

Using (5.27) and the above assumptions in (5.18), for the transmitted through the slit
field (in free space), eventually it is obtained

sT = tD s0 +
√

2γT aq e
iϕ, (5.28)

where tD is the direct (small, for deep subwavelength slits) transmission coefficient of
the SMP through the slit, and ϕ the phase difference between the in-coupling and out-
coupling processes of the resonant mode. As a result, in general, the power transmission
through the slit contributed by this mode at ω = ωq is

Taq =
|sT |2

|s0|2
=

∣∣∣∣tD +

√
2γT κe

iϕ

γR + γT + γ0

∣∣∣∣2 , (5.29)

where tD is the direct transmission coefficient of the SMP through the slit.
After some manipulations, the contribution of the aq mode44 to the transmission through
the deep subdiffractional slit is eventually obtained :

Taq ≃
2γT

2γT + γ0
. (5.30)

In deriving the above relation, it was assumed that the direct transmission coefficient tD
through the deep subdiffraction slit is negligible (as is the case), that is tD ≃ 0.

43 It is reminded that dj and κ are complex.
44 at ω = ωq ∈ ∆ω, where∆ω is the CUP band.
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5.8 Perfect Magnetic Conductor (PMC) realization

5.8.1 Introductory remarks on PMCs and likewise materials

An issue that passed unnoticed in the above discussion of APOTUS-HM, but of crucial
importance for the construction of the NRTT structure in reality, is the realization of
the perfect magnetic conductor (PMC). It is reminded that in the NRNT structure the
termination wall with the tunneling hole is a PEC, whereas in the case of NRTT is a PMC
(see Fig. 5.9). The use of PEC or PMC is imposed from the configuration exhibiting
the SMP wave in the two structures respectively45. Any good metal can be considered
approximately as PEC, but the case of PMC is not trivial as PMCs do not exist in nature
at all. In this section it will be discussed very briefly the realization and properties of
PMCs.

Like an electric conductor, a magnetic conductor is a material that when it is sub-
jected to an EM field, in its interrior both the electric and magnetic fields vanish. Con-
cerning the boundary conditions, it is reminded that on the surface between two different
materials it holds in general :

(5.31)
−n̂× (E2 − E1) = MS , (5.31a)

n̂× (H2 −H1) = JS , (5.31b)

n̂ · (D2 − D1) = qeS , (5.31c)

n̂ · (B2 − B1) = qmS , (5.31d)

where qeS and qmS is respectively the surface electric and magnetic charge, and the rest
of the notation is shown in Fig. 5.23.

Figure 5.23: Notation used in the general boundary conditions for EM field on
the surface of two materials.

45 Note that in NRNT the upper layer (Sb) has ε > 0, whereas in NRTT the upper layer is plasmonic and
has ε < 0.
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Let consider the medium 1 to be a PMC; then it holds E1 = H1 = 0, JS = 0,
qeS = 0, and the relations (5.31) become

(5.32)−n̂× E2 = MS , (5.32a)

n̂×H2 = 0 , (5.32b)

n̂ · D2 = 0 , (5.32c)

n̂ · B2 = qmS . (5.32d)

Eq. (5.32b) means that in a PMC the tangential magnetic components of the field
vanish next to the surface; Eq. (5.32c) means that the normal electric field component
vanishes too46. Also, Eqs. (5.32a, d) mean that the magnetic charge goes to the surface
of the PMC, thus creating a magnetic current density that resides on a very thin layer at
the surface.

PMCs do not exist in nature; however, they are often used hypothetically to cre-
ate electromagnetic systems equivalent to the originals (i.e., they give the same results)
and are more easy to handle. Materials behaving approximately as PMCs over a limi-
ted frequency band can be constructed artificially. PMCs belong to a wide family of
structures known as Photonic Band-Gap (PBG) structures; these are periodic structures
(in one, two or three dimensions), dielectric and conductive, which have the ability to
control the electromagnetic radiation so as to prevent propagation in specific frequency
bands (band gaps). PBG designation originally referred to structures for applications in
Optics (and at optical frequencies) [271, 37], but gradually was greatly expanded and
now includes Electromagnetic Band-Gap (EBG) structures, Frequency Selective Sur-
faces (FSS), High Impedance Surfaces (HIS), Artificial Magnetic Conductors (AMC),
Perfect Magnetic Conductors (PMC), etc. Of all these designations, perhaps the most
important are the EBG structures; a comprehensive list of various EBG structures and
references, can be found in [273]. In [209] the EBG designation was introduced as a
more wide classification to include the others.

All these are in fact artificial impedance surfaces, and can be used to manipu-
late the propagation of surface waves, control the frequency band (stop, pass, and band
gaps), change the surface impedance, control the scattering properties, design tunable
impedance surfaces to be used as steerable reflectors or steerable leaky-wave antennas,
and many others. This is achieved by modifying the texture or the geometry of the
surface, and/or adding other layers; in this way the surface waves and/or the phase of
the reflection coefficient of the surface can be manipulated. Concerning the reflection
coefficient, the modification of the surface characteristics affects mainly its phase; its
magnitude is also affected but less. In specific, a PEC surface causes a 180◦ shift in
the phase of tangential electric component (hence it clearly reflects the field), whereas
a PMC lets the phase intact (0◦ shift); an EBG surface is the most versatile as can vary
the phase of the reflected field from −180◦ to 180◦.

Despite their attractive characteristics per case, PEC, PMC and EBG surfaces also
exhibit drawbacks when electromagnetic elements that radiate are attached on them; the
drawbacks concern the aerodynamic, stealth and conformal properties of the surface. A
typical example is the attachment of an electric element on a PEC or a PMC surface.

46 It is reminded that this is the opposite to a PEC material, in which the tangential electric components
vanish, and the normal magnetic component vanishes.
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In the PEC case, attaching the element vertically, its image enhances its radiation and
thus the efficiency of the system; however, this configuration has not low profile, some-
thing completely undesirable. If this electric element is placed horizontally on the PEC
surface to retain low profile, its radiation efficiency decreases significantly because its
image introduces a 180◦ shift and cancels the radiation of the actual element. In the
case of a PMC surface, the attachment of an electric element horizontally not only has
low profile geometry but also enhances the radiation because its image leaves the phase
intact (0◦ shift). In general, the behavior of electric elements when attached vertically
and horizontally on PEC and PMC surfaces is determined by Image Theory [10].

The behavior of EBGs and PMCs when radiating elements are attached on them
is similar; however, EBGs have additionally the ability to suppress the surface waves
in low profile antennas; microstrip arrays is the most common case47. This can reduce
the beam scanning capabilities of the microstrip arrays, and in the most extreme case
surface waves and coupling may even result to scan blindness.

An EBG surface emulates a PMC surface and suppresses surface waves only over
a frequency range; thus, it is usually referred to as a band-gap structure. In general, the
frequency band (band-gap) in which an EBG structure operates more efficiently depends
upon the application. In next section it is presented how EBG structures, when properly
tuned, can be used as PMCs.

5.8.2 PMC realization

Although PMCs do not exist physically, due to their benefits in important applications,
it is required to fabricate them artificially; the NRTT structure in the APOTUS-HM is
a case where the use of PMCs is indispensable. The last years, PMC surfaces have
been synthesized and constructed successfully, and exhibit PMC-type behavior over a
frequency range; these surfaces are often called band-gap or band-limited surfaces. The
variety of such surfaces is quite large, and even to simply list them is out of scope of
the present text48. Next it will be discussed briefly such a surface that can emulate the
behavior of PMC. The presentation here is based on [9, 10].

A PMC surface, one of the first fabricated and nowwidely used, is shown Fig. 5.24.
This surface is an array of periodic patches with misc shapes (hexagons here), placed
above a very thin substrate (which can be air) and connected to the ground plane; if a
non-air substrate is utilized, the connection to the ground plane is done by posts through
vias49, as in usual board circuits. The thickness h of the substrate must be significantly
smaller than the operational wavelength λ; usually it is h < λ/10. The vias are necessary
to suppress surface waves within the substrate.

47 In microstrip arrays appear surface waves, which mainly propagate inside the substrate and cause cou-
pling between the array elements.

48 The interested reader can consult the references on them listed in ch. 8 of [10].
49 A via is an electrical connection between copper layers in a printed circuit board. Essentially a via is
a small drilled hole that goes through two or more adjacent layers; the hole is plated with copper that
forms electrical connection through the insulation that separates the copper layers (from Wikipedia).
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Figure 5.24: (reprinted from [9]). Perspective and side view of a mushroom
synthesized surface that can emulate a PMC.

This is an engineered textured surface and belongs to the EBG, PBG and AMC
structures mentioned above, and usually it is referred as such. Due to the directional
behavior of EBG and PBG structures, when antenna elements are integrated with such
structures they can exhibit some remarkable properties [271, 37, 237]. The mushroom
EBG surface of Fig. 5.24 can be investigated with a semi-empirical model [9].

Figure 5.25: (a) Unit cell and (b) equivalent circuit ofmushroom textured surface.

In Fig. 5.25a it is shown a unit cell of the EBG structure of Fig. 5.24. An incident
wave to an array of such unit cells induces electric fields across the gap of the unit cells;
these fields can be represented by an effective capacitance C. Also, the incident waves
induce currents that circulate between adjacent unit cells, in paths through the neigh-
boring walls or vias; the effects of these currents can be represented by an equivalent
inductanceL. Consequently, a model for the unit of Fig. 5.25a is a capacitanceC parallel
connected with an inductance L, shown in Fig. 5.25b.
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With this model, the response of the mushroom surface can be studied. The unit
cell of Fig. 5.25b has surface impedance

ZS = i
ωL

1− ω2LC
, (5.33)

with resonant frequency

ω0 =
1√
LC

. (5.34)

In practice, the desired resonant frequency is defined by the sheet capacity CS and the
inductance LS . In their turn, sheet capacity and inductance are defined by the geometry
of the individual unit cells and also their arrangement [9]. As can be seen from (5.33), the
surface of the unit cell is inductive below the resonant frequency and capacitive above
it; near the resonant frequency it becomes very high, and infinity on it. The capacitive
or inductive character of the surface impedance defines the type of waves that can be
supported : inductive surfaces support TM surface waves, whereas capacitive surfaces
support TE surface waves [10]. As reported in [9], this behavior has also been verified
experimentally.

Figure 5.26: (reprinted from [10]). Hexagons in triangular arragement
(not shown here), attached on a grounded substrate.

With appropriate choice of geometry and arrangement of the unit cells, the above
mushroom surface can exhibit PMC behavior. In Fig. 5.26 it is shown an indicative case.
The unit cells (metallic hexagons) are arranged in a triangular lattice, and are attached
on the surface of a grounded substrate with electric permitivity 2.2. For the wave exci-
tation, a pair of coaxial probes is placed near the surface; the orientation of these probes
controls the excitation of TE or TM modes. In Fig. 5.27 it is shown the amplitude of
the transmission between the probes, and also the phase for normal incidence of a plane
wave on this surface.

It can be seen in Fig. 5.27a that the herein surface exhibits high impedance in the
range about 11-16 GHz (band-gap); below and above the band gap it supports respec-
tively TM surface waves (inductive behavior) and TE surface waves (capacitive beha-
vior).
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Concerning the phase response of the surface in the normal incidence of a plane wave, it
is evident that the band gap occurs in the range where the phase varies about from−90◦
to 90◦, and it is zero at resonance.

For a textured surface of high impedance like the herein example, the behavior
shown in Fig. 5.27 is typical; however, other types or surfaces – and especially those
without vertical vias – may exhibit different response characteristics. For the the design
of these surfaces (and hence PMCs) a semi-empirical method is discussed in [10].

Figure 5.27: (reprinted from [9]). (a) Amplitude of TM (solid) and TE (dashed)
modes, and (b) Transmission and phase of a mushroom textured
surface with the geometry of Fig. 5.26.

A case where the use of textured surface of high impedance as a PMC can be seen
more clearly, is an aperture antenna [9], Fig. 5.28. This antenna has an aperture on a
ground plane (reflector) which is of high impedance; here, this surface aims to improve
the symmetry of the radiation pattern. The reflector and the unit cells are squares with
side length 12.7 cm and 3.7 mm respectively; the antenna is design to work at 12–18
GHz (Ku band). Αn identical aperture antenna with a metal reflector (i.e., a PEC) is also
used for comparison. The radiation patterns for the PEC and the high-impedance surface
were measured at 13 GHz, which is within the designed gap; the results are shown in
Fig. 5.29. In general, the radiation pattern is affected by the shape and size of the aperture
but it is determined mainly by the geometry and texture of the surrounding ground plane
(reflector), and the electromagnetic boundary condition of this surface. For the three
cases examined here the results are as follows :

(a) Fig. 5.29a. When the ground plane is a conventional metal (PEC), E-plane is
usually broader than the H-plane, because for the E-plane its vertical polarized fields are
retained by the PEC ground plane, whereas for the H-plane its horizontally polarized
fields are, ideally, vanish.

(b) Fig. 5.29b. When the aperture is attached on a textured high-impedance surface
and operates within its band gap (here at 13 GHz), its patterns in both the E- and H-
planes, are about the same and symmetrical, because the textured surface suppresses
both the TM and TE surface waves near the resonant frequency.
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(c) Fig. 5.29c. Lastly, when the aperture is attached on the textured surface but
operates at the leading edge of the TE band where TM waves are suppressed, then the
H-plane pattern is broader than the E-plane; this is the opposite result to Fig. 5.29a con-
cerning the PEC ground plane. This means that the textured ground plane acts as a PMC
(ideally eliminates the tangential magnetic fields), which is the opposite of that for the
PEC. Therefore, in this case the textured surface emulates a magnetic conductor (PMC).

There is a plethora of applications where textured high-impedance surfaces like
the above can be used to control the radiation behavior of the devices; e.g., low-profile
antennas, reflective beam steering, leaky wave beam steering, microwave holography
are some of them. This functionality is achieved using textured high-impedance surfaces
to control, and even eliminate, the surface waves over the band gap and/or the phase of
the reflection coefficient – and even make it zero (that is emulate a PMC surface !). For
a discussion of the properties EBG surfaces and their applications the reader is referred
to [273].

Figure 5.28: (reprinted from [9]). Aperture antenna with a texured surface
of high impedance.
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Figure 5.29: (reprinted from [9]). Radiation patterns of an aperture antenna
with (a) a conventional ground plane (PEC), (b) a surface of high
impedance, (c) a surface of high impedance near the edge of the TE
band (PMC).

.
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