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NEPIAHWH

H cupBoAIkr avayvwpion yeyovoTwy ouxXva Bacietal o€ pia BAon yvwong, n oTroia Tre-
PIEXEI KAVOVEG EKPPATHEVOUG O€ AOYIKN TTPWTNG TAENG, KAl XPNOIKOTIOIEITAI YIO TV ava-
YVWPIoON YEYOVOTWVY O€ POEG OEDOUEVWY. TETOIO AOYIKG CUCTAPATA avayvwpiong Yeyo-
VOTWV TTPOCPEPOUV EUPWOTO XPOVIKO CUUTTEPACHO Kal ETTITPETTOUV TNV QUTOPATN KATA-
OKeEUR Kavovwy pe mn xprion Etaywyikou Aoyikou lMpoypaupatiopou. Mapdt o1 uttdp-
Xouoeg pEBODOI yIa TNV EKPABNON OXECIOKWY OOPWY BIEUKOAUVOUV ThV €UPEDN TETOIWV
Kavovwy oe BopuBwdelg poEg dedouévwy, uTToBEToUY OTI Ta dedopéva ekuABnong eival
TTAAPWG ETTIONUEIWPEVA, TIPAYHA TO OTTOIO €ival U PEAANIOTIKO O€ TTPAYUATIKEG EQAPUOYEG.
2€ auTr) TN dI1aTPIPN ETTIXEIPOUME VA AVTIUETWTTIOOUHE TO TIPORANUA TNG KAINOKOUUEVNG Ni-
ETMITTAETTOMEVNG NABNONG VIO avayvwplion YeyovoTwy. NpoTeivoupe dUO KAIVOUPYIEG TEXVI-
KEG VIO VO CUMPTTEPAIVOUUE TIG ATTOUCEG ETTIONUEIWOEIG OTA EQOUEVA EKTTAIOEUONG KAl va
MaBaivoupe kavoveg ekppaouévoug oe Aoyiopo MeyovéTwy. To SPLICE cival éva ouotnua
TO OTTOIO XPNOIYOTIOIEI YPAPOUG YIA VA EEAYEI ETTICNUEIWOEIG VIO TA PUN-ETTICNUEIWUEVA OE-
dopéva pe Baon TIC ATTOOTACEIC TOUG ATTO TA QVTIOTOIXA ETTIOCNUEIWUEVA. TNa va epapuod-
ooupE TN PEBOOO auTr) o€ AoYIKN TTPWTNG TASNG, XPNOIUOTTOIOUKE HIA ATTO0TACH VIO OXE-
O10KEG OOUEG N OTToia PETPAEI TNV aTTéOTACN METAEU Aoyikwv atdépwy. H diadikaoia g
ETMONUEIWONG TWV BEBOUEVWY YiIVETAI O€ £va TTEPACUA PE XPAON VOGS UNXAVIOWOU PVA-
MNG kail Tou Hoeffding bound yia va @iATpdpoupe avTikpoudueva Tapadeiypata. MNMapdia
autd 1o SPLICE, Baciletal onuavTikd oTn YETPIKA TTOU UTTOAOYICEl TIG OTTOOTACEIG JETALU
TWV AOYIKWYV atOuWV. ETTITTAE0V, dEV UTTAPXEI KaUia eyyunaon yia TNV TToIoTNTA TWV AUCEWV
OTOUG TOTTIKOUG YPAPOUG TTOU KATAOKEUAZovTal aTTd TN por] OeOOPEVWV. ZUVETTWG, TTPO-
Teivoupe pia deuTepn pEB0dO, To SPLICE*, n otroia xpnoiyotrolgi pia uBpidikA atréoTacn
TTOU OUVOUACE! pia BeATIOTOTTOINPEVN ATTOOTACN OXECIAKWY OOPWY Kal YIa aTTéoTaon TTOU
Baoiletal 0Tn pada Twv dedopévwy. H TTpwTtn KOBodNnyeiTal atmd pia €TmIAOYr XapaKTnpI-
OTIKWV, €VW N 0eUTEPN OTNV €KTINNON TNG Wala Twv dedopévwy. EmirAéov, To SPLICE*
BEATIWVEI TNV KATOOKEUN TOU YPAPOU HE TO va ATTOBNKEUEI JIa oUVOWn ToU TTAPEABOVTOC
WOTE VA TTETUXEI KAAUTEPEG ETTIONUEIWOEIG OTOUG TOTTIKOUG YPAPOoUG. AZIOAOYOUUE TIG HEBS-
O0UG JaG 0€ EQAPUOYEG OUVOETNG avayvwpIong YEYOVOTWY XPNOIMOTTOIWVTAG €Va GUVOAO
0edOoNEVWV VIO avayvVwEIoH avBpwTTIVWYV dpacTnPIOTATWY, £va YIa avayvwpion VAUTIAIa-
KWV CUMBAVTWY Kal éva yia Tn d1axeipion EUTTOPIKWY OXNUATWV.

OEMATIKH NMEPIOXH: Mnxavikri Maénon, Avayvwpion leyovotwy

AEZEIZ KAEIAIA: Hui-emIRBAETTOMEVN HNXAVIKA HABNOT, S1Gd00N ETTICNUEILCEWY O€ YPAPOUG,
QATTOOTACEIG VI AOYIKA TTPWTNG TAENGS, HABNON JETPIKWY CUVAPTHOEWYV, ATTOOTACEIC HAlag,
Aoyiopdg yeyovoTwY, avayvwpion YEYOVOTWY






ABSTRACT

Symbolic event recognition systems often rely on knowledge bases of event definitions,
expressed in first-order logic, to detect event occurrences over time. Logical frameworks
for representing and reasoning about events provide robust temporal reasoning and en-
able the automated discovery of event rules via Inductive Logic Programming (ILP). Al-
though existing structure learning approaches ease the discovery of such rules in noisy
data streams, they assume the existence of fully-labelled training sequences, which is
unrealistic for most real-life applications. In this thesis we address the issue of scalable
semi-supervised learning for event recognition. We propose two novel techniques for in-
ferring the missing supervision on training sequences and enable learning event rules in
the Event Calculus. First, we propose SPLICE, a framework that employs a graph-based
method to derive labels for unlabelled data, based on their distance to their labelled coun-
terparts. In order to adapt the graph-based method to first-order logic, we use a suitable
structural distance for measuring the distance between sets of logical atoms. The labelling
process is achieved online (single-pass) by means of a caching mechanism and the Ho-
effding bound for filtering contradicting examples. However, SPLICE labelling may be
compromised since its structural measure is agnostic of the feature semantics. Moreover,
there is no guarantee about the quality of the labelling found in the local graphs that are
built as the data stream in. To that end, we also propose SPLICE*, a second method that
improves upon SPLICE by employing a hybrid measure combining an optimised structural
distance, and a data-driven one. The former is guided by feature selection, while the latter
is a mass-based dissimilarity. In addition, SPLICE* improves the graph construction pro-
cess, by storing a synopsis of the past, in order to achieve more informed labelling on the
local graphs. We evaluate our approach on the task of complex event recognition by using
a benchmark dataset for human activity recognition, a dataset for maritime monitoring, as
well as a dataset for fleet management.

SUBJECT AREA: Machine Learning, Event Recognition

KEYWORDS: semi-supervised structure learning, label propagation, first-order logic dis-
tance, metric learning, mass dissimilarity, event calculus, event recognition
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2YNONTIKH NMNAPOYZIAZH THZ AIAAKTOPIKHZ AIATPIBHZ

Ta oupBoAikad cuotriparta Tautotroinong MoTiBwv Z0vOeTwV MeyovoTwy 1 aANIWG, ZUoTh-
MaTta Avayvwplong Zuvletwy Neyovotwy (ZAAlN), déxovTal wg €i00d0 Pia por Xxpovoon-
Maopévwy, attAdwy, deutepoyevwv yeyovotwy (XAADN). Ta XAAIN TTpoKUTITOUV ouvhiBwg
WG TO ATTOTEAECHA €VOG ATTAOU UTTOAOYIOUOU TTAVW OE MIa TTapaTtipnon f METpnon Kai
Oev e€apTWVTAl ATTO AAAQ yeyovoTa. IMNa TTapddelyua, PIa KAPEPO KATAYPAPE! KAl TTAPAYEI
€va yeyovog TTOU ONUATodOTEl TNV Kivnon £vOG UTTOKEINEVOU OE IO CUYKEKPIYEVN XPOVIKI)
oTiyun. Me ta XAAI wg gicodo, Ta ZAAl avayvwpilouv evdiagépovta ZuvBeTa eyovoTa
(ZIN) eAéyxovTag av IkavoTroloUv KATTolo aTrd Ta poTia tmou BpiokovTal otn Bdon yvwong
Toug. Ta 2I" TrupodotouvTtal pévo 6tav cuykekpipgéva XAAlI cuppaivouv KATw atrd XPovi-
KOUG KaI XwpPIKOUG TrepIopiopous. H Bdon yvwong 1Tou xpnoigotroigital atro éva 2AAl yia
TNV avayvwplion Twv I, €ite gival TTpokaBopiopévn atrd EUTTEIPOYVWHOVEG, EITE 1I0AVIKA,
TTPOKUTITEI KOI EVNHEPWVETAI CUVEXWG HE XPNON MNXAVIKAG nddnong.

InpPUT B : RECOGNITION » : OurruT H
DDDD Event OOOO
Streams of SDEs | Recognition | Recognised CEs

..0O0O00 - System OOOO

CE Definitions

2xnua 1:'Eva ZAAl avaAvel Ta XAAI otnv pon e10600u Kal EAEYXEI AV IKAVOTTOIOUV KATTOI0
até Ta potifa otnv Bdon yvwong. H €60do¢g Tou cuoTAUATOG ival pia por) atro [

Ta cupBoAIKG ZAATT UI0BETOUV XPOVIKOUG QOPHAANICHOUG O€ AOYIKAG TTPWTNG TAENG, OTTWG
o N\oyiouég Neyovotwy (AlN), yia va OVTEAOTTOINOOUV Ta ATTOTEAECUATA Kal TN dIGPKEIA TWV
yeyovoTtwy, Kai Bacifovral oTov AOYIKO CUUTTEPACHO VIO VO EKTEAECOUV TNV avayvwpion
YEYOVOTWYV. XpNOIUOTTOIOUV TUTTIKH Kal ONAWTIKA onuaacioAoyia, o€ avTiBeon pe GAAa ZAA
TTOU TTapouaciadouv ATuTrn, SI0BIKAOTIKI) onuacioloyia, n otroia gival IdINITEPA ONUAVTIKA
yIQ TOV EVTOTTIONO, TNV €TMIKUPWON TNG TTPOEAEUONG, OAAG KAl TWV ETITITWOEWY TWV AVO-
yvwpliopévwy 2I. EmmAéov, eMTPETTOUV TN CUAANOYIOTIKN TTAVW O€ TTOAUTTAOKEG OXEOTEIG
METOEU OVTOTATWYV KAl JTTOPOUV VA EKPETAAAEUTOUV TN BACIKA yVWON TTOU TTAPEXETAI ATTO
EMTTEIPOYVWHOVEG, O€ avTiBeon Pe TTPooEYYioeIg TTou O€ Baacidovtal aTn AOYIKN.

Mapadooiakd, oc Eva ZAAlN Ta poTiBa TTpodiaypa®wy TwV CUNPBAVTWY eTTIHEAOUVTAI XEI-



POKIVNTA ATTO EPTTEIPOYVWHOVEG. AedopEVOoU OTI Ta ZIT opilovTal WG OXECIOKEG OOPES TTAVW
O€ UTTOKEIMEVA KAl QVTIKEIMEVA TTOU EUTTAEKOVTAI O€ Eva oUPBAV, N XEIPOKIVNTN TTapaywyn)
TOUG UTTOPEI va gival datravnpr], XPovoRopa Kal emMPPET o€ o@aAuata. ETmimTAéoy, ol
EQAPUOYEG avayvwpiong oUPBAVTWY ouvhBwg Asitoupyouv o BopuBwdelg poég dedo-
MEVWV PE ONUAVTIKO OYKO Kal TaxUTnTa, YEYOVOG TTOU KABIOTA PN PEAAIOTIKA TN oUvBeon
TETOIWV OXECIAKWY EEAPTACEWV. ZUVETTWG, Ol JEBODOI PNXAVIKAG JABNoNG yia TRV auTo-
MaTn KaTaokeur TNG douAG Twv 2N atrd pia por) dedopévwy gival aTTapaiTNTEG.

Av Kal n eKNABNoN AoyIKWY BewpIWVY YIa TV avayvwpion CUPBAVTWY TTAPAPEVEL hia TTPO-
KANOonN, €Xxouv TTPOTABEI HEPIKA CUOTANOTA KAIMAKOUPEVNG OXECIAKNG MNXAVIKAG udBnong
YIO TNV QUTOPATOTTOINUEVN BIANOPPWON TwV TTPOTUTTWY 27 UTTO aBeBaidTNTA, O€ HOPPI) Be-
wpliwv Tou Al' | TIBavoTIKWwy TTapailaywyv. AUTEC Ol TTPOCEYYIOEIC TIPOEPXOVTAI ATTO TOUG
Xwpoug Tou EtTaywyikoU Aoyikou MNpoypauuaTtiopou (EAIT) kal TNG ZTATIOTIKAG ZXECIOKNAG
MdaBnong (ZZM), redia TTou XPNOIYOTIOIOUV TN UNXAVIKI JABnaon, Tov AOYIKO TTpOYyPaUMO-
TIOPO KOl TO YPA@IKA HOVTEAQ, YIa TNV avATITUEN AAYOPIBUWY EKPABNONG AoyIKWV BEwpPIwY
atré oxeolakd, BopuBwdn dedouéva.

INpPUT > C_E DEFINITION CONSTRUCTIQN <« INPUT
DDDD Machine OOOO
Streams of SDEs Learning Annotated CEs
OO0 - - L System J 0000 -

CE Definitions

2xNua 2: To cuoTnUa PNXaviknig padénong karavaAwvel Tnv por atrdé XAAI kabwg kai Tnv
NMI-ETIRBAETTWHEVN por) aTTd 2I, uE OKOTTO VA EVNUEPWOEI T YOTiBa oTnv BAon yvwong.

MapoAo TTou AuTEG o1 TEXVIKEG BIEUKOAUVOUV TNV QuTOMATOTTOINKEVN DIOUOPPWON TTOAU-
OXEOIaKWY £EapTroewv o€ BopuBwdn TTePIBAAOVTA, EVTOUTOIG, OAEG UTTOBETOUY OTI HIa
TTARPWG eTTIONPACUEVN akoAouBia ekTraideuong @Tavel yia eTTeEepyaacia, KATI TTOU QUOIKA
O¢ev gival peaMNIOTIKO. ZuvhBwG, O1 ETTICNUEIWTEIS YivovTal SIaBETINES apald O€ TTPAYMOATIKO
XPOVo, 1 ouvnBECTEPQ, TTAPEXOVTAI OTNV APXI TNG AKOAOUBIag eKTTAIdEUCNG UTTO Th HOPYN
IOTOPIKWY dedOUEVWY. To ZxAua 2 atreikovidel TNV NI-ETTIBAETTOPEVN dladikaoia eKuaon-
ong dopwv Z[N o€ TTPAYHUATIKO XpOvo. To oUoTNUa PNXAvIKAG HdBnong KAaTtavaAwvel TIg
poég Twv XAATR, KaBwg Kal TIG aTeAEIS (NUI-ETTIBAETTOPEVEG) POEG Twv 2T, TTPOKEINEVOU Va
KATAOKEUAOEI KAl va evnuUepwaoel TN BAon yvwong Twv TTPOTUTTWV.

QoT1600, N ekuddnon Bewpiwv Al 1] akOUa Kal ATTAWY AOYIKWV KAVOVWYV TToU ouvOUAlouv
NMI-ETTIBAETTOPEVEG TTpOOEYYioEIG ue EAMN A ZZM, TTapapével pia TTpdkAnon Kal o€ JeEyAAo



BaBuod avegepelvnTn €peuvnTIK TTEPIOXN. H u@IoTAuevn €pguva 0TV NUI-ETTIBAETTONEVN
MABnon utroBETel Katd Baon aplBuNTIKA 1I0TOPIKA dedopéva. ATTO TNV GAAN TTAeupd, uttdp-
XOUV €AAXIOTEG TTPOOEYYIOEIG TTOU TTPOCTIOB0UV va ouvdiudoouv TTAPOAAQYEG TWV NuI-
ETMIPRAETTOPEVWYV PEBOBWYV ouveKTTaIdEUONG Pe cuoThpaTa EAM. Autd Ta cuoTAPATA OUWS
MTTOpOUV va pdBouv povo atrd PIKPA oUVoAa Oedopévwy Kal eV KAIMOKWVOVTAl OTOUG
OYKOUG TWV dedOUEVWV TTOU GUAAEYOVTaI YIa TV avayvwplion 2T

To kivnTpo TTicw atrd TNV Tapouca diaTpIBn cival N avaTrTugn KAIMOKOUPEVWY aAyopiOuwyv
yia TNV NPI-ETTIBAETTOPEVN HABNON TTPOTUTIWYV 2T ATTd XPOVIKA dedouéva, UTTo Tn Jopen
Bewpiwyv Tou Aoyiopou Meyovotwy (AlN), dnAadr Aoyikwyv Kavovwy TTpwTtng Tagns. MNpog
QUTH TNV KaTeUBuvon, TTPOTEIVEI €va KAIJOKOUPEVO OUCTNHA NUI-ETTIBAETTOPEVNG NABNONG
KavOvwy, TO OTTOI0 TTPOCapPOLEl TIG ApIBUNTIKEG NEBODOUG YPAPWYV YIa TOV CUUTTEPACHO
TWV aTTOVTWYV Monueiwoewy o€ Hebrand epunveieg. To TTpoTelvOpEVO TTAQICI0 AsIToupyeEi
og ouvouaoud pe otroladrmrote pEBodo EAM A XM emBAeTTOMEVNG PABNON KAl ETTITPE-
TTEI TNV EKUAONoN poTiBwy ZIN TEAOG, n dlaTpIRr} avadelkvuel Ta 0QPEAN TNG TTPOTEIVOPEVNG
TIPOOEYYIONG MUE MIA TTEIPAUATIKA MEAETN O€ DIAPOPEG TITUXEG TNG, XPNOIMOTIOIWVTAG OU-
VOAQ BeBOUEVWV avayvwpiong CUMBAVTWY atrd TTPAYMATIKEG EQAPHOYEG.

O1 ouvelopopég TNG TTapoucag dIaTpIPNG Eival €v ouvTodia o1 aKOAOUBEG:

* [porteivel pia mpooappoyn TnG TeXVIKAG Aiadoong Emonueiwoswyv (AE) og Aoyikn)
TTPWTNG TAENG, ME TNV AVATITUEN KIAG ATTOOTOONG OXECIOKWY OOMWY YIa OUYKPIOT AO-
YIKWV aTOPWV, N oTroia XpnolihoTrolei Tov aAyopiBuo Kuhn-Munkres yia tn BeATiwon
TNG OKPIBEIOG TOU UTTOAOYIOHUOU TWV ATTOOTACEWY UETALU AOYIKWY TTPOTACEWV.

* [porteivel Eva TTAaioIo epyaciag yia TOV KAIJAKOUUEVO CUUTTEPOCHO TWV ATTOUCWYV
EMOoNUEIWOEWY, PE Eva POVO TTEPACHA TTAVW OTO OUVOAO OedopEVWY, aTToBnKeUOo-
VTaG MIa guvown Tou TTapeABOVTOC TOU YPAPOU WOTE VA TTETUXEI TTOIOTIKOTEPES ETTI-
onuelwoelg otn pory dedopévwy. ETTimTAéov, TTpoTeivel Tn xprion €vog unxaviopou
MVAUNG YIa TIG YVWOTEG ETTICNPEIWOEIG KAl ToUu opiou Hoeffding woTe va QIATpapEl
avTIKpououeva Bopuwdn TTapadeiyuara.

* [porteivel pia uBpIBIKN aTTdoTaon TTOU CUVOUACLEl YIa BEATIOTOTTOINKEVN ATTOOTAON
OXEOIOKWY OOPWV Kal dia arréoTacn Tou Bacifetal otn pada Twv dedopévwy. H
TTPWTN Kabodnyeital atrd pia TIAOY SOUWV PE UWPNASG TTANPOYOPIKO TTEPIEXOMEVO,
EVW n OeuTePN aTTd TNV EKTiPNON TNG MAdag Twv dedopévwy. H uBpIdikni atrdéoTaon
EKMETAAANEUETAI TOOO TIG TTAPOUCEG, OO0 KAl TIG OTTOUCEG ETTICNUEIWOTEIG YIA VA EKTI-
MAO€lI KAAUTEPA TNV ATTOOTACH PETAEU TWV AOYIKWV TTPOTACEWV.

* To TTpwWTO TTARPEG OUCTNUA YIA KAINOKOUUEVN NUI-ETTIBAETTOMEVN HABNON OXECIOKWY
OOMUWYV, TO OTTOI0 OUVOUACLEI TOV CUNTTEPACUO ETTICNUEIWOEWY PE TEXVIKEG EAIT kai
KATOOKEUACLEI KavOveS avayvwpiong 2I.

* TENOG, TTAPEXEI MIO EKTETAUEVN ETTIOKOTINGN TWV ETTINEPOUG TTEDIWV.

H diatpifn xwpiletal o€ dUo0 Bacikd pépn. To TTPWTO ETTIKEVTPWVETAI OTAV AVATITUEN TOU
BaCIKOU KOPPOU TOU CUCTHUATOG, OpPICEl TOV PNXAVIKO KAIMAKOUMEVNG NABnoNG, Kal TTpo-
oapudCel TV TeEXVIKN AE o€ AOYIKEG TTPOTACEIG HECW PIOG KATAAANANG METPIKNG ATTOOTAONG



yia epunveieg Hebrand. To deUTepOo BEATILOVEI TNV TTOIOTATA TWV CUVAYOUEVWYV ETTIONUEIW-
OEWV KOTAOKEUAZOVTAG pIa BEATIWPEVN EKDOXT TOU YPAQPOU OTTOOTACEWYV Kal EVIOXUOVTOG
TN METPIKA ATTOOTOONG WOTE VA AAPBAvel utTtTdwn TNG TO TTANPOPOPIKO TTEPIEXOUEVO TWV
KATNYoPNUATWY atrd Ta OTToia ATTOTEAOUVTAI TA TTAPADEIYUATA EKTTAIOEUONG.

Data Stream/Training Examples

e N

Micro-Batch D;

HappensAt(walking(ID;), 100)
HappensAt(walking(ID,), 100)
OrientationMove(IDy, ID,, 100) -
Close(IDy, IDy, 34, 100) F-
HoldsAt(move(ID;, ID;), 100)

Data
Partitioning

HappensAt(walking(ID;), 150) Label Gaching
HappensAt(walking(ID,), 150) and Filtering
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2xAua 3: H diadikaoia TnG KAIJAKOUPEVNG NUI-ETTIBAETTOPEVNG OXETIOKNG HABNONG.

MNa v TpWTN PJog TTPOoTIABEIa TTPOG TNV KATEUBUVON TNG NUI-ETTIBAETTOMEVNG ndBNOoNGg
TTPOTUTTWYV 2T UTTO TN pop®n Bewpiwv Al uTToBETOUPE OTI N PO £1I00O0U KATAVAAWVETAI
THNMATIKG. Z€ KAOE Bripa, TO CUCTNUA KATAVOAWVEI €va JIKPO TURAPA TNG pOong €106d0u, TO
OTTOIO TTEPIEXEI Eva TTETTEPACHUEVO Kal 0TABEPS o€ PEyEBOC GUVOAO aTTO XPOVIKA OnuEia,
Kal o€ KABE XPOVIKO onueio uTropei va ouppaivouv kavéva r mepioooTepa XAlIA. Kabe Té-
TOIO TUAMA ETTITTAEOV UTTOPEI VA EiVal EITE EVTEAWG ETTICNPEIWPEVO, HEPIKWG ETTIONUEIWPEVO
1 akOun Kal KaBOAou eTTiIonuElwPEVO YE Ta avTioToixa 2. ZTn cuvéxela, amd KABe TETolo
TUAMA, dnuioupyouue Eva TTapadelyua r eppnveia Hebrand yia k&Be 2T, e BAon TG KOIVEG
oTaBepéG TTou uTTdpxouv avapeoa ota 2 kal ota XAl'A €101 woTe KGBe XAlIA oTo TUAUA
va avTioToixnOei o€ éva | TrepioooTepa 2. EAv OAa Ta mrapadeiyparta mmou Ba TTpoKU-
Wouv gival eTTIoNUAcéva, TOTE ATTAA T ATTOBNKEUOUUE YIa JEAAOVTIKA Xpron (o€ KATToIo
TUAMA TNG 10000V TO OTTOI0 &€ Ba £XEI KABOAOU ETTICNUEIWOEIG) KAI TO CUCTNUA KATAVOAW-
VEI TO ETTOPEVO TUAMA TNG 10000V, DIOPOPETIKA KATAOKEUALOUE £V YPAPO ATTOOTACEWV
ME OKOTTO VA CUPTTEPAVOUUE TIG ATTOVTEG ETTICNUEIWOEIG. Ta JOVADIKA ETTICNUACHEVA TTO-
padeiypara amobnkeuovTal oTnv UVAPN yia JEAAOVTIKA Xprion Kal n govadikdtnta Toug



eEAEYXETAI PE XPNON TNG AOYIKNG evoTroinong. ETITTAéov, e OKOTTO va QIATPAPOUNE TUXOV
QVTIKPOUOUEVA TTAPADEIYUATA, T OTTOIA PTTOPET va 00NYyRooUV 0€ AaVBAOUEVES ETTICNUEIW-
o€IG, XpnolpoTtroloupe 1o Oplo Hoeffding, éva oTaTioTIKG €pyaAgio TO OTTOI0 PAG ETTITPETTEI
VO OTTOQACicOUpE TToI0 atTd Ta dUOo €ival TBavoTepo va gival B6pupog. O ypaog arro-
oTaoEwV Kataokeualetal e xprion tng MeTpikng Nienhuys-Cheng yia Tn uétpnon g atroé-
oTaoONG METALU AOYIKWYV ATOUWY KAl TNV TPOTTOTTOIOUNE PE Tov aAyopiBuo Kuhn-Munkres
yla TNV eUpeon TNG BEATIOTNG AVTIOTOIXIOG PETAEU TWV AOYIKWV OTOPWY O€ dUO EPUNVEIES
Hebrand. Mg autd Tov TpOTTO TTPOCAPUOlOUNE TNV KAAOOIKN TTpooéyyion yia AE TTpokKel-
Mévou va AciToupyei TTvw o€ AoyIKEG OOPEG avTi apIBUNTIKWYV dedouévwy. To aTToTEAEOHA
TOU UTTOAOYIOHOU TNG atTd0TaONG OUCIOOTIKA 0pilel Ta BApN TwV AKUWYV Tou Ypa@ou. Té-
Aog, Auvovtag 1o TTPOBANPa BeATioToTToinONG Yo AE ouvAyoupeE TIG ETTICNPEIWTEIS TTOU
Agitrouv. Ta TTANPWG eTIONUEIWHPEVA DEDOUEVA UTTOPOUV OTN CUVEXEIQ va XPNOIUOTTOIN-
Bouv atrd otroladnTToTE KAIYakoUupevn u€BodOo duvatal va Kataokeudoel Bswpieg Al yia Ta
2[ TTOU pag evlIAQEPOUV. 2TN OUYKEKPIPEVN UAOTTOINON XPNOIMOTTOINONKE 0 aAydpIOuog
OLED, o otroiog, YeT@ a1td KABE BANO CUUTTAPWONG TWV ETTIONHEIWCEWY, KATAVAAWVEI
ME T O€Ipd TOU TO ETTICNUOCPEVO TUNAKA TwV dedoPEVWY Kal evnuepwVEl TN Bdon yvwaong
Tou oUOTANATOG. H dladikacia Tou TTPOTEIVOUEVOU CUCTANOTOC ATTEIKOVICETAI OTO ZXAMA 3.

MapbAo 1ToU TO TTPOKUTITOV oUCTAPA OIEUKOAUVEI TNV QUTOUATN KaTAaoKeury Bswpiwv Al
atro NUI-ETTIRBAETTOMEVEG AKOAOUBIEG EKTTAIDEUONG, N PETPNOT ATTOOTACNG TOU XPNOIUOTIOIE
eTnpeddeTal ammo aoxeta XAlA, kabuwg de Aauavel uttdywn 10 TTANPOPOPIAKO TTEPIEXONEVO
TWV KaTnyopnudtwy 1Tou ouvBéTouv Ta dia@opeTikG XAIA. ETiTTAéov, 01 ypd@ol atTooTd-
OEWV TTOU KaTaoKeuAdovTal o€ KABE TUNUA TNG PONG eV TTApEXOUV TNV idIa avaTTapdcTaon,
Kal KAt ouvETTEIQ Ao oTO TTPORANa BeATioTotroinong AE, pe Tov avtioToixo ypda@o 1rou
Ba TTPOEKUTITE ATTO OAOKANPN TN por). MpdyuarTi, KaBwg To HEYEBOG TOU TUAPATOG TNG PONG
TTOU KATaVAAWVETAI € KABE BAMA YiVETAI JIKPOTEPO, OI CUVAYOUTEG ETTIONUEILCEIG TEIVOUV
va eEAPTWVTAI OAO Kal AlyOTEPO ATTO TA PN ETTICNPEIWPEVA TTapadEiyuaTa.

To emméuevo BANG ATAV VO ETTEKTOOEI TO TTPOTEIVOUEVO CUCTNUA WOTE VA AVTIMETWTTICEN TIG
TTapaTTdvw aduUVaieS. Z€ AUTr TNV KATEUBUVON TTPOTEIVOUUE MIa BEATIWUEVN UBPIDIKA WE-
0000 yia TN PETPNON TNG ATTOOTACNG METAEU TwV AoyIKWV TTpoTdoewv. H péBodog auth
ouVvOUACel T DOMIKA METPIKN TOU TTEPIYPAWAME TTAPATIAVW, KE JIa atTrdoTaon Bacifopevn
OTNnV €KTiKNON TNG MAZAG TwV dedouEVWY. AlicONTIKA N atréoTaon Jadag petagu duo Tra-
padelyudTwy BewpeiTal HIKPOTEPN AV Ta TTAPAdEIYUATA QUTE CUVUTTAPYXOUV O€ évav apaid
XWPO dedOPEVWV avTi eVOG TTUKVOU. ETTEIdN 0 XWPOog TTou opieTal aTTd £va OUVOAO KOTn-
YOPNUATWY Eival OUCIOOTIKA £VOG UTTEPKUPBOG, NTTOPOUUE VO OPICOUUE PIA IEPAPXIKT DIapEé-
pI0N TOU XWpou Kataokeualovtag Tuxaia Auadika Aévtpa (AA). Ta dévTpa auTd OUCIOOTIKA
QVOTTAPIOTOUV éva KOUMATI TOU TTAEYUOTOG uTToKaTtdoTaong. Katotriv n améotaon YETagu
OU0 AoYIKWV TTPOTACEWYV, 0pileTal wg To BaBUTEPO OonuEio og KABe OEVTPO, OTO OTTOI0 CUVU-
TTAPXOUV Kal o1 dUO TTPOoTACEIS. KABE TETOIO ONuEio £XEI A JAla TNV OTTOIA EKTIMOUUE ATTO
Ta dedOPEVA, KAl 0 HECOG OpWV TWV PAdWwV yia OAa Ta OEVTPA eKTIUG TNV TTIBAVOTNTA éva
TUXQio TTAPAdEIYHA VO BPIOKETAI O QUTA TNV TTEPIOXT. H TEXVIKA auTh €ival piag popeng pa-
Onong atrooTAcEWY N oTToia OEV ATTAITEI ETTICNUEIWOEIS. ETTITTAéOV, EVIOXUOUNE TTEPAITEPW
TN OOMIKA ATTOOTACN PE MIa HEBOSO ETTIAOYNG KATNYOPNUATWY TTOU €ival BEATIOTOTTOINKEVN
yia Tagivounon pe Baon Toug k-eyyuTtepoug yeitoveg. MNpog autr Tnv KatelBuvon TTpocap-



pMoloupe To aAyopIBusd Large-Margin Nearest Neighbour (LMNN), avadiatutrwvovTtag 10
Baoikd TTPORANua BeATIoTOTTOINONG OV £va TTPORANUa d1adukoU YPauUIKOU TTPOYPAUMO-
TIOPOU yIa TNV €TTIAOYI TWV KATNYOPNHATWY TToU dlaXwpiouv KAAUTEPQ TIG YVWOTEG ETTI-
onPeEIWoEIG. TEAOG, TTPOKEIMEVOU va BEATILOOOUUE TNV TTOIOTNTA TWV AUCEwV TG AE, étav
EQAPPOLETAI O€ TUAMATA TNG €10000U, XPNOIKMOTIOIOUME MIA TEXVIKA TTOU dlaTnPEi Yo OU-
VoW TOU YPA@OU ATTOOTACEWY OTN JVAKN, KAl TNV EVNUEPWVEI JE TN XPON METAOXNUATI-
OPwv star-mesh, o1 0TT0I0I £yYUWVTAI TTWG O TTPOKUTITOV YPAPOGS Ba £XEI TIG iDIEG IDIOTNTEG
ME TOV YPAPO TTOU TTPOKUTITEI aTTO OAOKANPN TNV akoAoubBia. To XxAua 4 atreikovilel Tn
BeATIWPEVN dladikaaia.

Data Stream/Training Examples
f Micro-Batch D, ) L.
HappensAt(walking(ID;), 100) Data Optimised Mass-based
HappensAt (walking(ID,), 100) Partitioning Szl Dissimilarity
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2xnua 4: H BeAtiwpévn dladikaoia KATAOKEURG TOU YPAPOU ATTOOTACEWV.
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Scalable Semi-Supervised Structure Learning for Event Recognition

1. INTRODUCTION

“The only reason for time is so that everything doesn’t happen at once.”
— Albert Einstein

Today’s information systems collect, share and process a significant amount of data that
stream-in from a plethora of sources. Probes and sensors are deployed everywhere,
from large-scale industrial infrastructures to hand-held physical devices, capture all kinds
of information from the environment and monitor for desirable conditions. For instance,
transport vehicles moving on-land and vessels sailing at sea report information about their
location and operational status, using accelerometers, gyroscopes, GPS devices, etc.
Sensitive areas employ surveillance cameras to record video footage for security pur-
poses. More than ever, daily human activities generate huge amounts of media content,
emails, social media posts, and even physiological data’. As time evolves, all these data
flowing quietly across information systems, can be aggregated and correlated in order to
become a source of significant knowledge that may unveil important insights. For exam-
ple, in video surveillance, the recorded video frames may indicate that an accident may
have happened, or in a computer network an abrupt increase in the volume of incoming
network packets may point to a possible distributed denial of service attack. Most of these
data, accompanied by their temporal occurrences, can be represented by events.

An event usually refers to something that happens and constitutes a fundamental concept
for representing temporal pieces of information. It can be anything, from a simple sensor
reading, like a temperature measurement, or a GPS coordinate to structured content like
a financial transaction, a video frame and even complex things like an act of piracy occur-
ring at sea. Events can be instantaneous or durative, persisting over time, and are often
related to other events in several ways, e.g., temporally, spatially, causally, etc. More im-
portantly, these related events tend to define useful patterns. For instance, in a sequence
of video frames, the events that collectively represent some people standing still at the
same time and in a close distance to each other, may altogether capture a situation that
those particular persons are meeting in a public area.

The automatic detection of such event patterns in data streams has been facilitated by
complex event processing[56], a set of methodologies and techniques designed for analy-
sing, filtering and aggregating multiple independent sources of information, in order to
discover and report these interesting events in real-time.

1.1 Symbolic Complex Event Recognition

Symbolic complex event recognition, or “event pattern-matching” [110], is a tool of com-
plex event processing that aims to detect event patterns in temporal data streams. These

"It is estimated that 1.7 MiB of information is created every second by every human being on the planet.
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methods have received increasing attention in a variety of applications, including activity
recognition [168, 145] from video [27, 138] or sensor readings [62], computer network at-
tacks [51], distributed diagnosis of web-services [73], traffic and transport management
[167, 10], fraud detection in online transactions [147], business process management
[120], medical applications, such as recognition of cardiac arrhythmias [31], epidemic
spread [35], patient monitoring [84, 57], maritime monitoring [132, 135], daily assisted
living [158, 91, 109], and the Internet of Things [179].

INPUT > : RECOGNITION » : Outrur B
OO0 - - ; Eoant émoooom
Streams of SDEs | Recognition [ Recognised CEs

.00 --- ; System émoooom

CE Definitions

Figure 1.1: An illustration of the event recognition process. The CER system constantly
monitors the input stream of SDEs for matches of the underlying CE patterns. The output
of the system is a stream of recognised CEs (as per [151]).

Symbolic complex event recognition (CER) systems [39], as depicted in Figure 1.1, con-
sume input sequences of simple derived events (SDEs), match them against a knowledge
base of high-level event patterns — defined on some formal language [71, 72] — and recog-
nise complex events (CEs) of interest. Each SDE usually corresponds to a single time-
stamped observation and their occurrence is assumed not to depend on other events.
Consider, for instance, a video tracking system detecting that a person is walking, by pro-
cessing the raw video frames, and producing a walking SDE per frame. On the contrary,
CEs can only happen when other related events (SDE or CE) have happened under some
specific constraints (e.g., temporal and spatial relations). For example, a number of peo-
ple are moving together. Therefore, CE recognition is associated with the occurrence of
various SDEs and/or other CEs, involving multiple entities, e.g., people, vehicles or other
objects, etc. CEs, are therefore, relational structures over other sub-events, either CE or
SDE. The knowledge base of the CE patterns is either predefined by domain experts or
learned from data and captures knowledge of significant CE for the target application.

E. Michelioudakis 32
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1.2 Motivation

Event recognition systems that adopt a logic-based approach [10], can naturally and com-
pactly represent relational CE structures. They employ first-order temporal logical for-
malisms, such as the Event Calculus [94], to model the effects and duration of event
occurrences and rely on logical inference to perform the event recognition. They utilise
formal and declarative semantics, in contrast to other CER systems that exhibit informal,
procedural semantics, which is crucial in order to trace and validate the origins and effects
of the recognised complex events [130]. Moreover, they enable reasoning over complex
relations among entities and can exploit background knowledge provided by domain ex-
perts, contrary to non-logic-based approaches. Examples of such CER systems include
SAGE [28], ETALIS [5], and RTEC [9].

Typically, in an event recognition system, the event specification patterns are manually
curated by human domain experts. Since CEs are defined as relational structures over
actors and objects involved in an event, their manual derivation can be an expensive, time-
consuming and error prone task [8]. In addition, event recognition applications usually
operate in noisy data streams of significant volume and velocity, see [65] for an overview,
which further renders the synthesis of such relational dependencies unrealistic. To that
end, machine learning methods for automatically constructing the structure of the CEs in
a single pass over a data stream are essential [157, 52, 61].

INPUT > C_E DEFINITION CONSTRUCTIQN <« INPUT
400 - - Machine 0000
Streams of SDEs | Learning | Annotated CEs
--O0O00 - - L System J 0000 -

CE Definitions

Figure 1.2: The online semi-supervised learning process. The machine learning sys-
tem consumes the semi-supervised streams of SDEs (denoted by the grey-out annotation
batches), in order to enhance and update the knowledge base of the CE patterns.

Although learning logical theories for CER remains a challenging task, a couple of online
relational learners have been proposed for the automated curation of CE patterns under
uncertainty [88, 90, 115], in the form of Event Calculus theories [94, 122] or probabilistic
variants [152, 153]. These approaches stem from Inductive Logic Programming (ILP)[126,
140, 60] and Statistical Relational Learning (SRL) [63], fields that employ machine learning

33 E. Michelioudakis
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for logic programming and graphical models in order to provide tools and algorithms for
learning logical theories from relational noisy data.

Although these techniques have facilitated the automated discovery of multi-relational de-
pendencies in noisy environments, nonetheless, all of them assume that a fully labelled
training sequence arrives for processing, which of course is an unrealistic assumption.
Usually, either sparse, infrequent, labels become available on-stream or, more commonly,
they are provided at the beginning of learning in the form of historical data. Figure 1.2 de-
picts the online semi-supervised structure learning process. The machine learning system
consumes the streams of SDEs, as well as, the incomplete (semi-supervised) streams of
CEs, usually in small, time-consecutive batches of data, called micro-batches, in order to
construct and update the knowledge base of the CE patterns.

However, learning Event Calculus theories, or even simpler logical rules, combining semi-
supervised approaches and ILP remains a challenging and unexplored task. Existing work
on semi-supervised learning assumes numerical data that are available at once during
learning [170]. On the other hand, only a couple of approaches have attempted to combine
variations of co-training to ILP systems [155, 106]. These systems are only able to learn
from small datasets and do not scale to the volumes of data collected in event recognition.

Therefore, the motivation behind this thesis is the development of scalable algorithms
for the semi-supervised learning of CE patterns, in the form of Event Calculus theories,
from temporal data. Throughout the thesis we focus on learning CE patterns that are
represented as first-order logic rules, thus, we henceforth refer to them as CE rules.

1.3 Thesis Contribution

In this thesis, we focus on scalable semi-supervised learning methods for the automated
construction of event rules in the form of Event Calculus theories, and present two graph-
based techniques SPLICE and SPLICE* for inferring the missing supervision. To demon-
strate the benefits of our proposed approaches, we present an experimental study on
various aspects of these approaches using real-life event recognition datasets.

1.3.1 Semi-Supervised Online Learning for Complex Event Recognition

In order to address the issue of incomplete supervision, we propose SPLICE, a novel
method for inferring the missing labels, using graph-based techniques [191] and a dis-
tance function for first-order logic. Graph-based methods to semi-supervised learning
essentially derive labels for unlabelled data, by computing their distance to their labelled
counterparts. To that end, we adapt the label propagation approach proposed by [190] to
first-order logic, in order to operate over logical structures instead of numerical data. To
do so, we utilise a structural measure [127], designed to compute the distance between
logical atoms, and modify it using the Kuhn-Munkres algorithm [96], in order to accurately
compute the distance over sets of logical atoms (Herbrand interpretations) that represent
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training examples.

The proposed supervision completion method operates in an online fashion (single-pass),
by means of a caching mechanism that stores previously seen labels for future usage. The
Hoeffding bound [77], a statistical tool that enables approximate globally-optimal decisions
from locally-optimal ones, is used to filter out contradicting labels that may compromise
the labelling accuracy. The completed training data can be subsequently used by any su-
pervised structure learner to learn Event Calculus theories. In summary, the contributions
of SPLICE are the following:

* An online supervision completion method using a caching mechanism to store la-
belled examples for future usage, and the Hoeffding bound to filter-out contradicting
examples that may compromise the overall accuracy.

* An adaptation of the label propagation technique to first-order logic, using a structural
distance for comparing logical atoms, and the Kuhn-Munkres algorithm for improving
the accuracy of the distance calculation.

* The first system for semi-supervised online structure learning, combining online su-
pervision completion and state-of-the-art structure learners, in order to learn Event
Calculus theories for CER applications.

1.3.2 Semi-Supervised Online Learning Combining Structure and
Mass-based Predicate Similarity

Although SPLICE aids the automated discovery of complex event rules in the presence
of incomplete supervision, its distance measure may be compromised by irrelevant fea-
tures or imbalanced supervision, since it is agnostic of the feature information. Moreover,
SPLICE does not provide any guarantee about the labelling computed per micro-batch,
compared to the one that would have been obtained if all examples were available as a
large graph. In fact, as the micro-batch size gets smaller the harmonic solution produces
labels that tend to be less dependent on the unlabelled examples. It is interesting to note
that, in the case of true streaming (one example per micro-batch), the optimisation reduces
to k-nearest neighbour classification ([33], Section 11.6).

To address these issues, we propose an improved hybrid distance measure that com-
bines the structural measure of SPLICE with a mass-based dissimilarity [165], employing
mass estimation theory [164] to quantify the distance between examples of logical atoms.
We further enhance the structural distance by performing feature selection, optimised for
k-nearest neighbour (KNN) classification. To that end, we adapt Large-Margin Nearest
Neighbour (LMNN) [180], a state-of-the-art approach to metric learning, for the selection
of informative logical predicates. Finally, in order to provide guarantees about the online
labelling, we use a technique proposed in [173], which retains a synopsis of the graph in
order to achieve more informed labelling across the incoming micro-batches. Similar to
SPLICE, the completed training data can be subsequently used by any supervised struc-
ture learner. The contributions of SPLICE* are summarised as follows:
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* The SPLICE* online semi-supervised learning system that retains a graph synopsis
of temporally adjacent examples, in order to operate on large training sequences,
and learns explainable composite event rules in the Event Calculus.

» SPLICE* adapts a metric learning technique for feature subset selection over logical
atoms. The adapted technique is used as an informed structural distance which ac-
counts for irrelevant and noisy predicates (features) that may compromise accuracy.

» A hybrid distance measure that combines the informed structural distance with a
mass-based dissimilarity. The hybrid measure exploits both the labelled and unla-
belled data to quantify the distance between examples of logical atoms. The result-
ing measure is a semi-supervised metric learning technique.

1.3.3 Publications

In the course of this doctoral thesis the following articles have been published:

Central Publications:

* Michelioudakis E., Artikis A. and Paliouras G. (2023)
“Online Semi-Supervised Learning of Composite Event Rules by Combining Struc-
ture and Mass-Based Predicate Similarity”
Machine Learning (accepted)

* Michelioudakis E., Artikis A. and Paliouras G. (2019)
“Semi-Supervised Online Structure Learning for Composite Event Recognition”,
Machine Learning, 108(7), pp. 1085-1110

Peripheral Publications:

* Michelioudakis E. et al. (2022)
“Parallel Model Exploration for Tumor Treatment Simulations”,
Computational Intelligence, 38(4), pp. 1379-1401

» Stavropoulos V., Michelioudakis E., Akasiadis C., Artikis A. (2022)
“Resource-Effective Exploration of Tumor Treatments with Multi-scale Simulations”,
Hellenic Conference on Atrtificial Intelligence (SETN), pp. 1-10

» Katzouris N., Michelioudakis E., Artikis A., Paliouras G. (2018)
“Online Learning of Weighted Relational Rules for Complex Event Recognition”,

European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pp. 396-413
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1.4 Thesis Outline

The remainder of this thesis is organised as follows. In Chapter 2 we briefly present the
Event Calculus formalism and the OLED online learner for CER applications. Then, we
provide the necessary background on graph-based methods for semi-supervised learning,
an appropriate distance function for logical structures and a metric learning technique op-
timised for kNN classification. We also review the literature on semi-supervised learning
approaches, distances for first-order logic, metric learning and feature subset selection
methods. In Chapter 3 we present SPLICE, our first proposed approach for online semi-
supervised learning of CE rules, while in Chapter 4 we describe our second improved ap-
proach (SPLICE*) towards more robust supervision completion. In Chapter 5 we present
the experimental evaluation on real datasets for activity recognition, maritime monitoring
and fleet management. Finally, in Chapter 6, we discuss open issues, provide directions
for future research and conclude.
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2. BACKGROUND

“The beginning is the most important part of the work.”
— Plato

This chapter provides the necessary background material for the thesis. We begin by
briefly presenting the Event Calculus formalism, as well as, the basic functionality of the
OLED system for learning CE rules from data streams. Then, in Section 2.2 we present
graph-based semi-supervised learning using Gaussian Random Fields and an online vari-
ant based on a graph synopsis. In Section 2.3 we discuss a simple distance metric for
comparing sets of logical atoms, while in Sections 2.4 and 2.5 we present a metric learn-
ing technique method for kNN classification and a data-driven dissimilarity based on mass
estimation. The chapter concludes with a review of the related work.

2.1 Event Calculus and Structure Learning

One way of representing the CE rules is by using the discrete Event Calculus (DEC) [123].
The ontology of DEC consists of time-points, events and fluents. The underlying time
model is linear and represented by integers. A fluent is a property whose value may
change over time by the occurrence of particular events. DEC includes the core domain-
independent axioms of the Event Calculus, which determine whether a fluent holds or
not at a specific time-point. This axiomatisation incorporates the common sense law of
inertia, according to which fluents persist over time, unless they are affected by an event
occurrence. Event occurrences are denoted by the HappensAt predicates, while HoldsAt
predicates denote whether a fluent holds. The InitiatedAt and TerminatedAt predicates
express the conditions in which a fluent is initiated or terminated, and are triggered by
HappensAt predicates. The core DEC axioms are defined as follows:

HoldsAt(f,t+1) < —HoldsAt(f,t+1) <

InitiatedAt(f,1) (2.1) TerminatedAt(f,t) (2.3)
HoldsAt(f,t+1) < —HoldsAt(f,t+1) <

HoldsAt(f,t) A (2.2) —HoldsAt(f,t) A (2.4)

—TerminatedAt(f,t) —InitiatedAt(f,t)

Variables and functions start with a lower-case letter, while predicates start with an upper-
case letter. Axioms (2.1) and (2.2) express when a fluent holds, while axioms (2.3) and
(2.4) denote the conditions in which a fluent does not hold. In CER, as we have formulated
it here, the truth values of the composite events (CEs) of interest — the ‘query atoms’ —
are expressed by means of the HoldsAt predicate. The incoming ‘simple, derived events’
(SDEs) are represented by means of HappensAt, while any additional contextual infor-
mation is represented by domain-dependent predicates. The SDEs and such contextual
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information constitute the ‘evidence atoms’. This way, CEs may be defined by means of
InitiatedAt and TerminatedAt predicates, stating the conditions in which a CE is initiated
and terminated.

To learn DEC theories, online structure learning methods may be used in order to learn
efficiently from data streams. OLED [88] is an online learner, based on Inductive Logic
Programming [126], constructing CE rules in the Event Calculus, in a single pass over
the data stream. OLED constructs rules by encoding each positive example, arriving
at the input stream, into a so-called bottom rule, i.e., a most specific rule of the form
o<+ 01 AN...Nd,, where o is an InitiatedAt or TerminatedAt atom and §; are relational
features (e.g., SDEs). A bottom rule is typically too restrictive to be useful, thus, OLED
searches the space of all possible rules that #-subsume the bottom rule. To that end,
OLED starts from the most-general rule and gradually specialises that rule, in a top-down
fashion, by adding ¢;’s to its body and using a rule evaluation function to assess the quality
of each constructed specialisation. OLED’s single-pass strategy draws inspiration from the
VFDT algorithm (Very Fast Decision Trees) [49] which is based on the Hoeffding bound, a
statistical tool that allows to approximate the quality of a rule on the entire input using only
a subset of the data. Thus, in order to decide between specialisations, OLED accumulates
observations from the input stream until the difference between the best and the second-
best specialisation satisfies the Hoeffding bound.

Although OLED facilitates the discovery of CE rules, it still is a supervised learner and in
the presence of unlabelled training examples it imposes a closed-world assumption, that
is, it assumes everything not known is false, i.e., a negative example. This assumption
may seriously compromise the learning task or even worse, render it impossible if very
little supervision is available, which is a common scenario in real-life applications.

2.2 Graph-based Semi-Supervised Learning

Graph-based semi-supervised learning techniques [33, 191] construct a graph G, whose
vertices V' represent the labelled and unlabelled examples in a given dataset and the
edges L reflect the pairwise similarities of these examples. Given such a graph, Blum and
Chawla [23] proposed to formulate the learning task as a graph mincut or st-cut problem.
In the binary case, the idea is to remove a minimal set of edges, so that the graph is
cut into two disjoint sets of vertices; one holding positive and the other holding negative
examples.

More formally, consider a training sequence consisting of / labelled instances {(x;, v;)}'_,
and u unlabelled ones {x; éjjﬂ. The labelled instances are pairs of a label y; and a
D-dimensional numerical feature vector x; = (zy, ..., zp) € RP of input values, while
the unlabelled ones are feature vectors with unknown label. Each of these instances
represents either a labelled or an unlabelled vertex of the graph G. These vertices are
then connected by undirected weighted edges that encode their similarity according to a
given distance function. Consequently, the labelled vertices can be used to determine the

labels of the unlabelled ones. Once the graph is built, the task reduces into assigning y
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values to the unlabelled vertices. Thus, the goal is to find a function f(x) € {—1, 1} over
the vertices, where —1 is a negative label and 1 a positive one, such that f(x;) = y; for
labelled instances, and the cut size (the number of removed edges) is minimised in order
for the unlabelled ones to be assigned optimal values.

2.2.1 Harmonic Function Method

The mincut formulation proposed in [23] can be represented as a regularised minimisation
problem, by using an appropriate loss function, forcing the labelled vertices to retain their
values and a regularisation factor controlling the cut size. The cut size is the sum of the
weights w;; corresponding to connected vertices i and j having different labels, and is
computed as follows:

l4u
Yoo wy =Y wy(fx) — £(x7)° (2.5)
i,5: f (%) A S (X5) i,j=1

Equation (2.5) is an appropriate measure of the cut size, since it is affected only by edges
for which f(x;) # f(x;). Note that if x; and x; are not connected, then w;; = 0 by definition,
while if the edge exists and is not cut, then f(x;) — f(x;) = 0. Thus, the cut size is well-
defined even when summing over all vertex pairs. Assuming a loss \ per labelled vertex,
the loss for labelled instances should be zero if f(x;) = y; and X otherwise. Thus, the loss
function is defined as follows:

0, yis f(%i)) = X (i — f(xi)>2 (2.6)

Combining the loss function of Eq. (2.6) and the cut size, as expressed by Eq. (2.5), as a
regularisation factor, the regularised mincut problem is formulated as follows:

l I4u
. 2 2
min A i — (X + Wis X;) — J(X; 2.7
jomin Z (i — £(x))) Z i () = f(x,) (2.7)
Note that Eq. (2.7) is an integer optimisation problem since f is constrained to produce
discrete values. Although efficient polynomial-time algorithms exist to solve the mincut
problem, still the formulation has a particular defect. There could be multiple equally good

solutions; a label may be positive in one of the solutions, and negative in the rest.

An alternative formulation proposed in [190], overcomes these issues, by modelling the
regularisation term of Eq. (2.5), that is the cut-size, as the energy function of a Gaussian
Random Field. The minimisation of the energy function yields a probabilistic label as-
signment instead of discrete values. Moreover, the minimum energy function has been
shown to respect the harmonic property, i.e., the value of f at each unlabelled vertex is
the average of f of the neighbouring vertices. In the context of semi-supervised learning,
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a harmonic function is a function that retains the values of the labelled data and satisfies
the weighted average property on the unlabelled data:

f(xz):yz,z:l,,l

I4u

i—1 Wij ] (X; 2.8
f(xi)zzglijf( j>,i:l—|—1,...,l+u (2.8)
j=1 Wij

The former part of formula (2.8) enforces that the labelled vertices retain their values, while
the latter averages the labels of all neighbouring vertices of a given vertex, according to
the weights of their edges. Therefore, the value assigned to each unlabelled vertex is the
weighted average of its neighbours. The harmonic function leads to the same solution of
the problem as defined in Eq. (2.7), except that f is relaxed to produce real values. The
main benefit of the continuous relaxation is that a unique optimal closed—form solution
exists for f, in terms of the Laplacian matrix of the graph. The drawback of the relaxation
is that the solution is a real value for each unlabelled example and does not directly cor-
respond to a label. This issue can be addressed by thresholding f at zero to produce
discrete labels or by class mass normalisation [190].

2.2.2 Temporal Label Propagation

Traditional graph-based methods to semi-supervised learning [191] are offline, i.e., they
assume that all labelled and unlabelled data are stored in memory and thus are available
during the optimisation that yields the harmonic solution. However, that is an unrealistic
assumption in online processing of data streams.

Temporal Label Propagation (TLP) [173] has been proposed for fast-moving data streams.
TLP stores a synopsis of the full history of the stream in order to retain accumulated knowl-
edge for both labelled and unlabelled examples and incorporate it into subsequent optimi-
sations. To that end, TLP draws inspiration from the connection of label propagation to the
theory of electric networks [190] and, in particular, the idea of the short-circuit operator.
The latter allows for a graph G to be encoded into a smaller (re-weighted) graph, using only
a subset V. of the actual vertices V/, called terminals. The reduced graph G(V;) is called
short-circuit graph and it is known to retain the global properties of G; most importantly,
it preserves the effective weights between every pair of terminal vertices. It is proved in
[173] that the aforementioned property allows for the harmonic solution to be preserved in
the synopsis graph encoded by the terminal vertices.

The Laplacian matrix of G(V;), required to obtain the harmonic solution, is given by the
Schur Complement [50]. Since computing the Shur Complement is as expensive as com-
puting the harmonic solution on the entire graph G, it provides no substantial speed-up for
offline label propagation. However, in order for TLP to operate in a online fashion it com-
putes G(V,) as a sequence of local operations, called star-mesh transforms. The latter
is a direct consequence of the sequential property of Schur complement ([186], Theorem
4.10; [50], Lemma 111.1).
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Definition 2.1. A star-mesh transformation on a vertex v, of a given graph G=(V, E, W) is
defined as follows:

1. Star: Remove v, from G together with its set F, of incident edges (v,,v) € E,.

2. Mesh: For every pair of vertices v,v' € V such that (v,,v) € E, and (v,,v') € E,, add
the edge (v, v’) to E with weight w, ,, = w,, v, w,, . /degree(v,). If (v,v') is already in
E, then add the new weight w, . to its current weight.

The intuition is to apply star-mesh transforms as the data arrive for processing, in order
to continuously update the in-memory graph synopsis and deliver labels for the incoming
unlabelled examples by computing the harmonic solution on the compressed graph. The
star-mesh transforms remove edges by meshing their weights with the remaining graph,
so that the information provided by the removed vertex v, remains encoded. Thus, the
synopsis retains the ability to compute the harmonic solution for the rest of the vertices as
if v, was still in the graph ([173], Theorem 4.1).

More formally, consider a (possibly infinite) data stream {v;}?°, of incoming example ver-
tices that can be either labelled or unlabelled. TLP maintains a graph G(V/,) that stores the
7 more recent unlabelled examples, in addition to a pair of labelled vertex clusters contain-
ing all the labelled examples seen so far. When a new unlabelled example arrives, TLP
appends it to G(V/), connecting it to the other vertices and “evicting” the oldest unlabelled
example by applying the star-mesh transform of Definition 2.1. In the simplest case, where
a labelled example arrives, this process just appends it to the appropriate cluster vertex,
thus always maintaining 7 + 2 vertices. The harmonic solution for each new unlabelled
example is then computed on G(V;) and it is provably equal to the one computed on the
entire training stream seen so far.

2.3 Distance between Herbrand Interpretations

Distance functions constitute an essential component of graph-based methods to semi-
supervised learning and in fact control the quality of the solution. In the case of numerical
data, the Euclidean distance, the Gaussian kernel or Radial Basis Functions are common
choices, as are matching distances for categorical data. However, in the presence of
relational data there is a need for structure-based distances.

A technique proposed in [127] derives a distance for tree structure formalisms and thus
provides a generic and natural approach for syntactic comparison of ground logical atoms
present in a Herbrand interpretation. The distance function is defined on a set of expres-
sions (namely ground atoms and ground terms), motivated by the structure and complexity
of the expression, as well as the symbols used therein. Let £ be the set of all expressions
in a first-order language and R the set of real numbers. The distance d : £ x £ — R over
expressions &, bounded by 1, is defined as follows:
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d(e,e)=0,Ve €&
d(p<817 BRI 8k>7 Q(th BRI tT)) = 17 p 7]? qV k # r (29)
d(p<817 CII) 8k)7 Q(th ey tk’)) = izz‘:l d(8i7 tl)’ pP=4q

The first formula states that the distance of an expression to itself is zero. The second one
states that if predicates p and ¢ are notidentical, either in terms of symbol or arity, then their
distance is one, because they refer to different concepts. We assume that the negation
of a predicate p has always distance 1 from p, and thus, it can be seen as a special case
of the second formula, where ¢ = —p. In case p and ¢ are identical, then their distance is
computed recursively by the distance of the terms therein. The distance d is also used in
[127] over subsets of £, i.e., sets of ground atoms, by means of the Hausdorff metric [76].
Informally, the Hausdorff metric is the greatest distance you can travel between two sets
of points, given for each point in one set the closest point in other set.

The main drawback of the Hausdorff metric is that it does not capture much information
about the two sets as it is completely determined by the most distant elements of the sets
to their nearest neighbour in the other set [140, 141]. Thus, it may not be representative of
the overall dissimilarity of the two sets. Formally, given the sets &, and &,, their Hausdorff
distance is computed as follows:

max{sup inf d(z,y),sup inf d(x,y)}
r€& ye&a yEE, ASTAL

The overall distance for these sets would be represented by one of the pairwise distances,
namely the maximum distance among the minimum ones. Moreover, this approach allows
one element in one set to match with multiple elements in the other set, which is undesir-
able because some elements may have no match and thus may be ignored in the resulting
distance value. As stated in [140], these limitations motivate the introduction of a different
notion of matching between two sets, which associates one element in a set to at most one
other element. Moreover, in [141] a framework for distances over sets of logical atoms is
presented, that uses a given mapping between the elements in the sets to compute the
overall distance among these elements.

2.4 Large Margin Nearest Neighbour Metric Learning

Graph-based semi-supervised learning relies on the cluster assumption, that is, similar
examples should yield the same labelling, and thus the quality of the distance measure is
crucial to the quality of the labels. A common issue with distance measures is that they are
agnostic to the semantics of the input features. As a consequence, their measurements
may suffer in the presence of irrelevant or noisy features.

Large-margin nearest neighbour metric learning (LMNN) [180] is a state-of-the-art tech-
nique that learns a distance pseudo-metric targeted to kNN classification. Intuitively,
LMNN attempts to increase the number of training examples in a neighbourhood that
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share the same label. To that end, it learns a linear transformation of the input space,
on which it uses the Euclidean distance. Euclidean distances can be parametrised by a
matrix T that applies a linear transformation to each data vector x as follows:

dr(%;,%;) = |[T(x; — x;)|I2 (2.10)

Euclidean distances in the transformed space can equivalently be viewed as Mahalanobis
distances in the original space, by introducing a square matrix M = T'T as follows:

dm(Xi, X;) = (X; — X;) TM(X; — X;) (2.11)

where the Euclidean distance can be recovered by setting M = I.

In order to optimise kNN classification, one seeks a linear transformation such that nearest
neighbours computed by the distance in Eq. (2.10) share the same labels. Towards that
goal, LMNN minimises a loss function consisting of two terms, one which pulls target
neighbours closer together, and another which pushes differently labelled examples apart.

The first term penalises large distances between nearby instances that share the same
label and should be nearest neighbours. In terms of the transformation of the input space,
the sum of these squared distances is given by

Eput(M) = > dm(X;, X;), (2.12)

i,jENF

where ¥ denotes the set of target k-nearest neighbours of the instance x;. The target
neighbours of x; are those instances that we desire to be the closest to x;. In the simplest
case, the target neighbours may be all example instances having the same label to x;.

The second term penalises small distances between differently labelled examples, called
impostors. More formally, for an example x; with label y; and target neighbour x;, an
impostor is any example x; with label y; # y; such that:

dm(X;, %) < dm(X;, X;) + 1 (2.13)

In other words, an impostor x; is any differently labelled example that invades the perime-
ter, plus unit margin, defined by any target neighbour x; of the example x;. Therefore, the
second term penalises violations of the above inequality as follows:

Epusn(M) = D > (1= ya) [1+ dm(xi, X;) — dm(X, %))] (2.14)
ijeENE 1

where the indicator variable y;; = 1, if and only if y; = y;, while y;; = 0 otherwise. More-
over, [z],. = max(z,0) denotes the standard hinge loss which monitors the inequality of
Eq. (2.13). If the inequality does not hold (i.e., the input x; lies a safe distance away from
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Figure 2.1: The neighbourhood of x; before/after optimisation. A distance metricis learned
so that: (i) target neighbours (yellow circles) lie within a small radius from x;; (ii) impos-
tors (blue diamond, red square) lie outside this smaller radius by a finite margin. Arrows
indicate pull/push operations (after [180]).

X;), then the hinge loss has a negative argument and makes no contribution to the overall
loss. The combined loss derived from Eq. (2.12) and Eq. (2.14) is as follows:

5(M> - (1 - M) gpull(IVI) + /vbgpush<M) (215)
were the weighting parameter 1. € [0, 1] balances the two goals. Fig. 2.1 illustrates the idea
of LMNN. Before learning, an input x; may have both target neighbours x; and impostors
x; in its local neighbourhood. After optimisation, the impostors are pushed outside the
perimeter established by the target neighbours and a finite margin exists between the
perimeter and the impostors.

A variant of the LMNN technique, proposed in [36], aims to learn a vector m of feature
weights, instead of a distance, by assuming that M is a diagonal matrix with M,,, = m, > 0,
and m,, is the weight of the pth feature. Expanding the loss function depicted in Eq. (2.15):

e(m) = (1—p) Y dm(Xi, X))+

i,jENE

1Y S )L+ (i X5) — den(:30)]

ijeNk 1

(2.16)

The minimisation of the simplified objective function can be represented as a linear opti-
misation problem with linear constraints:
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minimise  (1—4) Y [Im0G—x)[P+p1 D> (1= ya)Si

i,jENF il jENE
subjectto (1) ||m(x; — x;)||> — [[m(x; — x;)|]* > 1 — &5 (2.17)
(2) &0 >0
3ym2>0

The non-negative slack variables ¢,; mimic the effect of the hinge loss. In particular, each
slack variable &;; > 0 is used to measure the amount by which the margin inequality in
Eq. (2.13) is violated. The optimal weight vector m* captures the importance of each input
feature instead of the covariance matrix of the Mahalanobis distance.

2.5 Mass-based Dissimilarity

Supervised learning approaches to feature selection usually require explicit or implicit
computation of the information/importance per feature using the labels available in the
training examples. However, in a semi-supervised learning task, that information may be
inaccurate due the limited number of labels. Therefore, such criteria are not always reliable
and their optimality guarantees suffer from the fact that only very few training examples
are used during the optimisation.

A recently proposed a mass-based dissimilarity [165] employs estimates of the probability
mass to quantify the dissimilarity of two points rather than the classic geometric models.
Geometric approaches, such as the Euclidean distance, depend on the geometric posi-
tions of data points alone to derive a measurement. Instead mass dissimilarity measures
mainly depend on the distribution of the data. The intuition is that the distance of two
points primarily depends on the amount of probability mass in the region of space cover-
ing the two points. Thus, two points in a dense region are less similar to each other than
two points of the same interpoint distance in a sparse region.

More formally, let H denote a hierarchical partitioning of a space R? into a set of non-
overlapping regions that collectively span R?. Moreover, each region in the hierarchy
corresponds to the union of its child regions. Let # (D) denote the set of all such hierar-
chical partitions H that are admissible under a dataset D, such that each non-overlapping
region contains at least one point from D. Then the smallest region covering a pair of
points X,y € RY, with respect to a hierarchical partitioning model H of R?, is defined as:

R(x,y|H) = argmax depth(r; H)

reH s.t.{x,y}er

where depth(r; H) is the depth of region r in the hierarchical model H.

Suppose that a dataset D is sampled from an unknown probability density function F.
Then, the mass-based dissimilarity of x and y w.r.t. D is defined as the expectation of the
probability that a randomly chosen point would lie in the region R(x,y|H):
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m(X,y|D) = Eyp) [ Pr(R(X,y|H; D))]

where the expectation is computed over all possible partitionings (D) of the data. In
practice, however, mass-based dissimilarity can be estimated from a finite number of par-
titioning models H, € H(D), p=1,...,T as follows:

Mq

R(x,y|Hp; D)) (2.18)

1
x D —
,Y|D) =7

p=1

where P(R) = ‘%' > 2ep L(z € R) estimates the probability of the region R by counting
the data points in that region; and 1(-) denotes an indicator function. Thus, the probability
of the data falling into the smallest region containing both x and y, is analogous to the
shortest distance between them measured in the geometric model.

In order to generate partitioning models H, a recursive partitioning scheme is employed
based on an Isolation Forest [108]. An Isolation Forest is essentially an ensemble of
random trees, called /solation Trees. Each Isolation Tree is built independently using a
subset of the data. At each internal node of the tree a random split is made to partition the
data at that node into two non-empty subsets. The process is repeated recursively until
either every data point is isolated or a given maximum tree height is reached.

Subsequently the resulting Isolation Forest can be used to compute the mass-based dis-
similarity of Eq. (2.18). Since each Isolation Tree essentially represents a partitioning H
the mass-based dissimilarity can be defined as:

Z R xu‘)’;H (2.19)

where 'R(xl’gf[”)‘ estimates the probability of region R, as denoted by P(R) in Eq. (2.18).
To compute Eq. (2.19), x and y are passed through each Isolation Tree to find the mass
of the deepest node containing both x and y i.e., . |R(X,y|H,)|. Finally, m is the mean

of these masses over the T trees.

2.6 Related Work

In this section we discuss relevant work from the literature. The discussion is divided
into four parts. In the first part (Section 2.6.1), we overview learning systems, like OLED,
that attempt to learn CE rules in the form of Event Calculus theories. In the second part
(Section 2.6.2), we discuss existing propositional semi-supervised learning methods and
argue against their application for supervised learning of CE rules from data streams. In
the third part (Section 2.6.3) we present existing relational distances that can be potentially
used for graph-based semi-supervised learning, while in the final part (Section 2.6.4), we
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discuss feature selection and metric learning techniques and their applications to semi-
supervised learning.

2.6.1 Learning Complex Event Rules in the Event Calculus

Learning CE rules from sensory input is a challenging task that is receiving increasing
attention in the literature, since it constitutes a limiting factor to CER applications. Some
recent approaches attempt to learn propositional CE rules in the form of a domain-specific
language [112, 121, 30]. However, in order to learn relational CE rules in the form of
Event Calculus (EC) theories, structure learning techniques are employed, stemming from
Inductive Logic Programming (ILP) [139, 43] and probabilistic graphical models (PGM)
[134, 114, 103, 66].

Although several ILP approaches have addressed the problem of learning normal logic
programs, see [86] for an overview, most of them cannot learn EC theories, since they do
not support non-Observational Predicate Learning [124] and restrict the usage of Negation
as Failure. xHAIL[143] is a technique that can learn EC logic programs, but does not scale
to large datasets. Although xHAIL has been extended to ILED [87], which operates in an
incremental way, in order to efficiently learn EC theories from data that arrive over time,
nevertheless, ILED is still inappropriate for real-life CER applications because it cannot
handle noisy data. The ILASP system [100, 101] overcomes the shortcomings of ILED
and learns EC theories from noisy data, by attaching penalties to uncovered examples
and seeking a set of CE rules that minimise the total cost of these examples. However,
in most CER applications data arrive at a high velocity, and thus learning methods should
operate within tight memory and time constraints, while both ILED and ILASP, may require
multiple passes over the training data.

OLED [88], as presented in Section 2.1, overcomes these issues, by employing the Ho-
effding bound [78], to approximate the quality of the learned CE rules using only an avail-
able subset of the data, thus enabling the efficient construction of EC theories in a single
pass over the data stream. Although OLED can efficient learn CE rules from noisy data
streams, it cannot perform probabilistic inference. To that end, OSLahas been proposed
[115], an approach based on Markov Logic Networks (MLN) [144], that learns MLN—EC
[153] theories — a probabilistic variant of DEC — by adapting the procedure of OSL [81].
Although OSL« inherits the probabilistic properties of MLNSs, its structure learning com-
ponent is sub-optimal, i.e., it tends to generate large sets of clauses, many of which have
low heuristic value, and therefore it is much slower than OLED. An in-depth experimental
comparison of these methods can be found in [90].

These techniques have been applied to a variety of CER applications, such as e.g., fraud
management [7], traffic management [116], community detection [12], and natural lan-
guage processing [181]. Nevertheless, they all assume a fully labelled training input to
achieve generalisation, and in the presence of unlabelled training examples they impose
closed-world assumption, that is, they assume everything not known is false, i.e., negative
examples. This assumption can seriously compromise the learning task or even worse
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render it impossible if very few labels are available, which is a common scenario in real-life
applications.

2.6.2 Semi-Supervised Learning

Semi-supervised learning (SSL) methods [191, 170] exploit information provided by the
unlabelled data, instead of relying only on the labelled data, to guide the learning process
and enhance predictive accuracy. SSL algorithms are based on the cluster assumption,
stating that similar examples tend to belong to the same group, and they are distinguished
into inductive and transductive. The former learn a classification model, whereas the latter
are solely concerned with obtaining label predictions for the given unlabelled data.

Self-training techniques [166, 184] learn an inductive base classifier from the labelled data
and then select confident predictions on the unlabelled data, as pseudo-labels, in order to
iteratively re-train the base classifier. If probabilistic predictions are employed to select the
pseudo-labels at each iteration, then self-training is similar to the EM algorithm [46, 64].
Unfortunately, most of these methods extend propositional learners to self-training and
cannot be directly applied to logic-based formalisms. Although there are approaches
based on decision trees [104, 161], which may be used to extend their supervised counter-
parts for relational data [21], they cannot learn Event Calculus theories. More importantly,
self-training is an iterative procedure, that may have convergence issues [41], and thus it
is inappropriate for online learning.

Co-training or multi-view learning [25, 183] is an extension of self-training to multiple clas-
sifiers, which are iteratively trained on the labelled data, adding their most confident pre-
dictions to the labelled dataset of the other classifiers. These methods assume that the
training data can be separated into distinct views, namely disjoint feature sets that provide
complementary, ideally conditionally independent information about each instance, while
each view is sufficient to accurately predict each class. Although the conditional indepen-
dence assumption can be relaxed [2, 15] and heuristics can be devised to automatically
split the data into views [53], there is no guarantee about their efficacy.

Similar approaches, inspired by multi-view learning, employ different classifiers in order
to exploit predictive divergence [68, 188, 178]. For instance, in tri-training [189], three
different classifiers are alternately trained. When two of them agree on their prediction for
a specific example, that example is passed onto the third classifier along with its pseudo-
label. Tri-training has been applied to relational data [106, 107] by using three different
ILP learning systems, namely Aleph [156], kFOIL [99] and nFOIL [98]. The classifiers are
initialised using the labelled data and background knowledge, and then they are refined
by iterating over the unlabelled data. Co-forest [105, 47] is an attempt to extend tri-training
to more than three classifiers, that is, to random forests. The idea is to train each decision
tree independently on the labelled data and then, in each subsequent iteration, each tree
receives pseudo-labelled data based on the joint prediction of all other decision trees.

To that end, a number of semi-supervised boosting approaches have also been proposed
[70, 42, 17] that employ pseudo-labels to train an ensemble of classifiers. These methods
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do not exploit any form of label confidence to decide which unlabelled points should be
used in the next training iteration. Instead they rely on simple sampling techniques and
thus they may suffer from misclassifications. A variation of this approach was proposed in
[111], that makes use of the pairwise distances between labelled and unlabelled examples,
similar to graph-based methods, in order to calculate the confidence of the pseudo-labels.

Most of above wrapper-like approaches rely on intermediate steps and supervised base
learners. However, there are other intrinsically semi-supervised learning methods that
naturally extend inductive supervised learners to include the unlabelled data into the ob-
jective function. An extension to support-vector machines was proposed in [171], that
modifies the objective by minimising also the number of unlabelled data points that violate
the margin, penalised based on their distance to the closest margin boundary. The main
disadvantage is that the optimisation is non-convex and NP-hard to solve. Therefore most
efforts have been focused on efficient approximations [83, 18, 37, 34]. Although SVMs
can be applied to logic programming [125], they cannot learn Event Calculus, since they
are restricted to Horn logic.

There are several other approaches that directly incorporate the unlabelled data into their
objective function, such as Gaussian processes [102], density regularisation [69, 38], and
neural network perturbation-based methods [14, 142, 162, 129, 118]. Although the idea of
penalising the sensitivity of the model to small perturbations of the input data or the model
parameters is interesting, it is not straightforward for relational learning.

Graph-based methods [159] are transductive algorithms, which, unlike inductive ones,
do not produce a predictor, they only yield a set of predictions for the set of unlabelled
data points. These methods, as discussed in Section 2.2, define a graph over all data
points, both labelled and unlabelled, encoding their pairwise similarity using weighted
edges. Then the graph is used to infer the labels of the unlabelled vertices. A hard la-
bel assignment based on graph mincut was proposed in [23]. Since the mincut approach
can easily lead to degenerate cuts, yielding solutions where almost all unlabelled data fall
within the same graph component, normalisation techniques have also been proposed to
overcome the issue [83, 24]. The graph mincut can be relaxed to produce probabilistic la-
bel assignments [190] yielding an efficient closed-form solution. The latter is also strongly
related to random walks [160, 13, 182] and self-training techniques [75].

The probabilistic approaches have two drawbacks. First, since the true labels are fixed
during the optimisation, it cannot handle label noise well. Second, in irregular graphs, the
influence of vertices with high degree is relatively large. An attempt to overcome these
problems was made in [187], where instead of clamping the true labels, their deviation
from their original values is penalised. Moreover, the penalty term for unlabelled data is
regularised by the vertex degree to overcome the latter issue. Class imbalance is also
a common problem in SSL. Imbalance is addressed in [190] by adjusting the decision
threshold such that predicted label proportions correspond to predefined label proportions.
On the other hand, in [176] an optimisation scheme is proposed, that mitigates the problem
by altering the influence of labelled samples based on the label proportions. The same
approach was considered in [177] from a graph max-cut perspective.
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Even though SSL has been extensively studied in static offline environments [54], online
SSL that operates on data streams remains an open challenge [95]. To that end, only
a couple of online graph-based SSL methods have been proposed to date. An inductive
algorithm was proposed in [45], that first performs label propagation on a given training set
of labelled and unlabelled data. Subsequent unlabelled examples are labelled using the
previously learned inductive function. However, subsequent unlabelled examples are not
incorporated into the learned model, neither are the labelled ones potentially arriving on-
stream. Aninductive approach to graph-based SSL is also followed in [80], by updating the
graph adjacency matrix incrementally. Nonetheless, in that method, all incoming data is
stored in memory, leading to a cost that grows linearly with the training data. A transductive
technique that quantises the stream into a small number of clusters was proposed in [169],
using an online k-center algorithm. In that method, the harmonic solution is computed
upon the cluster centers. Finally, in [173], as presented in Section 2.2.2, a graph synopsis
of the stream is stored, to perform label propagation on the compressed graph, yielding a
constant memory cost analogous to graph size.

2.6.3 Distances for Relational Data

Graph construction is one of the most important steps in graph-based methods and the la-
belling solution is sensitive to the distance measure used to interconnect the examples and
capture local similarities. Extensive experiments have been conducted on different graph
construction methods [44, 82]. However, all of them consider propositional measures for
quantifying edge similarities. In order to apply graph-based SSL to logical representations,
distance functions suitable for first-order logic are required.

A substantial amount of work exists in the literature on distance-based methods for learn-
ing from relational data. These approaches mainly originated from instance-based learn-
ing (IBL) [3], which, like SSL, assumes that similar instances belong to the same classes
(e.g. KNN). For instance, a similarity measure was proposed in [19, 20], based on the
structural comparison of logical atoms, to perform conceptual clustering. Also, the RIBL
measure [55] extended IBL to the relational case by using a modified version of the similar-
ity measure proposed by [20], and a kNN classifier. The basic idea of RIBL is to measure
the similarity of two objects based the similarity of their attributes, as well as, the similar-
ity of the objects that are related to them. Although these distance measures have been
used with success in several applications [19, 92, 93], they are limited to function-free Horn
logic, operating only over constants. Therefore, they require flattening of representations
having non-constant terms, and thus cannot be easily applied to nested representations,
such as the Event Calculus. Although RIBL has been improved to allow lists and func-
tion terms in the input representation by employing an edit distance [26, 79], still it is not
sensitive to the depth of the structure.

As discussed in Section 2.3, a simple distance metric for comparing sets of logical atoms
was proposed in [127]. However, the measure is not suited to first-order logic, where it is
possible that two sets of atoms that differ only, but perhaps very strongly, in one atom are
otherwise very similar. A general framework for defining distance functions over sets of
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atoms was also presented in [141], using one-to-one mappings instead of the Haussdorf
metric. Additionally, in [113] distances are defined using the lattice structure of the first-
order terms, whose metric space is isometrically embeddable in a vector space based
on any Minkowski metric. However, in order to generate a common vector space for a
set of clauses, all clauses should be available beforehand, which is not possible in online
processing. Another similarity measure for Horn clauses was proposed in [58], in order to
tackle the problem of indeterminacy, which states that some atoms in one clause can be
possibly mapped to several others onto another clause. However that similarity measure
has increased computational complexity.

An alternative to the structural distances, are the semantic approaches [149, 148], that
aim to compile a knowledge base into a similarity measure. The idea is to learn a set of
rules from the given training data and then use them to map the structural representation of
the examples into a vector space. The resulting numerical vectors capture the semantics
between the input data and the target concept and can be compared using typical propo-
sitional measures, like the Euclidean distance. However, in an SSL task, the induction of
these rules is not very reliable since there are only few labelled data available.

2.6.4 Feature Selection

Although, a number of measures exists for first-order logic, either structural or semantic,
none of them essentially accounts for irrelevant or noisy features and thus their credibility
may be compromised.

Numerous methods have been proposed in order cope with such problems, stemming
either from feature selection [74, 32] or metric learning [97, 174] techniques. Filter meth-
ods to feature selection are a popular candidate since they are fast to compute. Existing
approaches are based on mutual information [172, 29], consistency and constraint scores
[6, 185, 16], and rough set theory [133, 119]. However, these methods usually provide
only a ranking of the features according to a quality criteria. Thus, the user should select
a subset of them based on some hyperparameter, such as, the top & features or use their
respective score as a weight in some underlying distance, which is not always possible.

Metric learning, on the other hand, is an approach that aims to learn a distance measure on
the feature space in order for some given pairs of data points to be pulled as close as pos-
sible, while others be pushed far apart. Popular approaches are either supervised based
on Mahalanobis distance learning [67], or unsupervised ones [146, 163] that achieve di-
mensionality reduction through linear reconstruction. The mass-based dissimilarity [11],
is also a form of unsupervised metric learning (see Section 8 in [165]). In contrast to su-
pervised methods, it derives dissimilarity directly from data by estimating the probability
mass of the region covering the given data points, without any class information. Only a
few attempts exist in combining metric learning with graph-based semi-supervised learn-
ing. The linear neighbourhood propagation (LNP) algorithm, introduced in [175], is a form
of unsupervised metric learning, that constructs a graph such that any data point can be
approximated as a linear combination of its neighbours. A regularised version of LNP
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was propsoed in [85] using a Gaussian kernel and finding the coefficients that minimise
the local reconstruction error between each pair of vertices. Supervised metric learning
methods, based on Mahalanobis distances, have also been applied to graph-based SSL
[128, 137]. However none of them combine supervised metric learning to mass-based
dissimilarity, in order to exploit both labelled and unlabelled data.

2.7 Summary

In this chapter we presented the basics of the Event Calculus formalism and the OLED
system for learning EC theories from annotated data streams. Then, we discussed an
efficient method to graph-based SSL that infers the labels of the unlabelled data by com-
puting their distance to their labelled counterparts, as well as, an online variant that retains
a synopsis graph of the incoming data in order to guarantee high quality labelling. Since
the distance measure is essential for such methods, we argued for the necessity of rela-
tional distances and presented a simple distance to compare sets of logical atoms, and
analysing also its shortcomings. Finally, we presented a metric learning technique opti-
mised for kNN classification that can be adapted for feature weighting and a mass-based
dissimilarity that estimates the distance between examples using the data distribution.

In addition, we discussed related work on online learning of CE rules, briefly pointed out
their benefits and drawbacks, as well as, the fact that all existing approaches assume a
fully supervised training sequence in order to operate. Then we highlighted propositional
techniques for semi-supervised learning, such as, self-training and multi-view training,
boosting and SVM extensions, and discussed their limitations regarding the learning of
CE rules and online processing. We also reviewed related work on graph-based methods
and variants that can operate on data streams. To that end, we pointed out the importance
of graph construction and presented distance measures appropriate for logical represen-
tations, as well as, feature selection and metric learning techniques that are essential for
producing quality measurements, robust to noisy and irrelevant features.
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3. SPLICE: SEMI-SUPERVISED LEARNING FOR COMPLEX EVENT
RECOGNITION

“Analogies, it is true, decide nothing, but they can make one feel more at home.”
— Sigmund Freud

In this chapter we address the problem of effectively applying online structure learning
in the presence of incomplete supervision. Towards that goal, we take advantage of the
structural dependencies underlying a logic-based representation and exploit regularities
in the relational data, in order to correlate given labelled instances to unlabelled ones and
reason about their actual truth values. Structure learning methods attempt to discover
multi-relational dependencies in the input data, by combining appropriate evidence predi-
cates, that possibly explain the given supervision, that is, the labelled ground query atoms
of interest. The underlying assumption is that the sets of ground evidence atoms that ex-
plain particular labelled query atoms are also contiguous to sets of ground evidence atoms
that relate to unlabelled instances.

One promising approach to model such similarities for partially supervised data is to use
graph-based techniques. As mentioned in Section 2.2, such methods attempt to formulate
the task of semi-supervised learning as a cost minimisation problem and then find an
optimal assignment of values for the unlabelled instances given a similarity measure. To
that end, we adapt the approach of [190] to operate on logical interpretations [22] that
arrive over time. The resulting system, SPLICE [117], is designed to infer the missing
labels of the incoming examples and scales well to data volumes that batch graph-based
methods cannot handle.

Figure 3.1 presents the components and procedure of SPLICE, using, for illustration pur-
poses, the human activity recognition domain as formalised in the Event Calculus. In order
to address the online processing requirement, we assume that the training sequence ar-
rives in micro-batches. At each step ¢ of the online procedure, a training micro-batch D;
arrives containing a sequence of ground evidence atoms, e.g. two persons walking indi-
vidually, their distance being less than 34 pixel positions and having the same orientation.
Each micro-batch may be fully labelled, partially labelled, or contain no labels at all. La-
belling is given in terms of the HoldsAt query atoms that essentially represent the CEs of
interest (see Section 2.1). Unlabelled query atoms are prefixed by ‘?’, and are filled in by
imposing a closed-world assumption. For instance, in micro-batch D, there is no labelling
for time-point 150, while time-point 100 expresses a positive label for the move CE activity.

In summary, each micro-batch D, is passed onto the data partitioning component that
groups the training sequence into examples. Each unique labelled example present in
the micro-batch is stored in a cache, in order to be reused in subsequent micro-batches
that may have missing labels. Labelled and unlabelled examples are converted into graph
vertices, linked by edges that represent their structural similarity (see Section 2.3). The
resulting graph is then used to label all unlabelled ground query atoms. Given the fully
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Data Stream/Training Examples

e N

Micro-Batch D;

HappensAt(walking(ID;), 100)
HappensAt(walking(ID,), 100)
OrientationMove(IDy, ID,, 100) -
Close(ID;, ID,, 34, 100) L-
HoldsAt(move(IDy, ID,), 100)

Data
\ Partitioning

HappensAt(walking(ID;), 150) Label Caching
HappensAt(walking(ID,), 150) and Filtering
OrientationMove(IDy, ID,, 150)
Close(IDy, IDy, 34, 150)
?HoldsAt(move(IDy, ID,), 150)

Micro-Batch D,
HappensAt(inactive(ID;),200)
HappensAt(walking(ID,),200)
—OrientationMove(IDs, ID,, 200) Supervision
—Close(IDy, ID,, 34,200) Completion
—HoldsAt(move(ID;, ID,), 200)

HappensAt(inactive(ID;),220)
HappensAt(walking(ID,), 220)

~OrientationMove(ID;, ID;, 220) Structure
—Close(IDy, ID,, 34, 220) Learning
?HoldsAt(move(IDy, ID;), 220)

Figure 3.1: The Semi-Supervised Online Structure Learning (SPLICE) procedure.

labelled training sequence, an online structure learning step refines or enhances the cur-
rent hypothesis of CE rules — and the whole procedure is repeated for the next training
micro-batch D, . For the online structure learning component, OLED may be used (see
Section 2.1). The components of SPLICE are detailed in the following sections. To aid
the presentation, we use examples from activity recognition throughout the thesis.

3.1 Data Partitioning

In a typical semi-supervised learning task, the training sequence consists of both labelled
instances {x;, y;}\_, and unlabelled ones {x;}!_,,, where each label y; corresponds to
a D-dimensional feature vector x; = (z1, ..., xp) € Rp of input values. Given a logic-
based representation of instances, our approach begins by partitioning the given input
data (micro-batch D) into sets of ground evidence atoms, each one connected to a (la-
belled) ground query atom. The resulting sets are treated as training examples. Let

E = {ei, ..., en} be the set of all true evidence ground atoms and Q = {¢1, ..., qn}
the set of all ground query atoms of interest in micro-batch D. Each example should con-
tain exactly one ground query atom ¢; and a proper subset &; € £ : i = {1, ..., N} of

evidence atoms corresponding to ¢;. Given the sets £ and Q, we construct an example
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Example: HoldsAt(move(ID;,ID,),5)

HappensAt(walking(ID;),5)

Training Sequence r g HappensAt(walking(ID;),5)
[ OrientationMove(IDy, ID,,5)
(" Micro-Batch D, ) 3 Close(IDy, ID2, 34,5)
HappensAt(walking(ID;),5) }
HappensAt(walking(ID;),5) !
OrientationMove(IDy, ID,,5) N
Close(IDy, ID,, 34,5)
HoldsAt(move(ID;, IDy),5) Example: —HoldsAt(move(IDy, ID;),20)
HappensAt(exit(IDy),20)
HappensAt(walking(ID,), 20)
—OrientationMove(ID;, IDy,20) H|- - - - - > HappensAt (exit(ID;), 20)
—Close(IDy, ID,, 34, 20) HappensAt(walking(ID,), 20)

—HoldsAt(move(IDy, ID), 20)

HappensAt(walking(ID;),50)
HappensAt(walking(ID,), 50)
OrientationMove(ID;, ID;,50) $H--- -,
Close(IDy, ID,, 34, 50)

?HoldsAt(move(ID;, ID,), 50) Example: ?HoldsAt(move(IDy,ID,),50)

|

|

|

|

!

|

| HappensAt(walking(ID;), 50)

- > HappensAt(walking(ID,), 50)
OrientationMove(IDy, ID,, 50)
Close(IDy, ID,, 34, 50)

Figure 3.2: Data partitioning into examples. Each example contains a ground query atom,
either labelled or unlabelled, as well as a set of true ground evidence atoms that relate to
the query atom through their constants.

for each ground query atom in Q, regardless of whether it is labelled or not. To do so,
we partition the evidence atoms in £ into non-disjoint subsets, by grouping them over the
constants they share directly to the ground query atom ¢; of each example. A constant
is shared if and only if it appears in both atoms and its position in the arguments of both
atoms has the same type. Note that the position of a constant in some evidence atom e
may differ from that in ¢;. We refrained from including longer range dependencies, such
as considering evidence atoms that can be reached through several shared constants, to
favour run-time performance. However, such an extension is straightforward.

Figure 3.2 illustrates the presented procedure. As usual, HoldsAt express query atoms,
while all other predicates express evidence atoms. Unlabelled query atoms are denoted
by the prefix “?’. Data partitioning takes into account only true evidence atoms and con-
cerns only a specific query predicate. Note that each resulting example has aset &; C £
of evidence atoms that comprise only constants relevant to the query atom. For instance,
the ground evidence atom Close(IDy, ID,, 34, 5) appearing only in the top example, shares
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constants ID;, ID, with query atoms of other examples too, but constant 5 is only relevant
to the top example. Constant 34 does not appear in any query atom and thus can be
ignored. Similarly, ground evidence atoms having constants that appear in many query
atoms will appear in all corresponding examples. This is an expected and desirable be-
haviour, because such predicates indeed capture knowledge that may be important to
many query atoms. For instance, consider a ground predicate Person(ID,) stating that
1D, is a person. If such a predicate was included in the evidence of Figure 3.2, it would
appear in every example. Moreover, during partitioning, SPLICE can ignore specific pred-
icates according to a set of given mode declarations [124], using the recall number, i.e., if
the recall number is zero the predicate is ignored.

Algorithm 1 Partition(D, M)
Input: D: a training micro-batch, M: a set of mode declarations
Output: V: a set of vertices

1: Partition D into Q and €.

2. V=0

#cp,...,cq are constants

3: for all ground query atoms ¢(cg1,...,cqn) € Q do

4 E, =10
5: for all true ground evidence atoms e(c,1, ..., cem) € € : recall > 0 do
6
7
8

Ceq={c|ceentype(c,e) € Types(e) N Types(q)}
ifvVe eCeydcj €q:c =cjNtype(c,e) = type(c;, q) then
: E, =& Ue(Cet, -, Cem)
o: V=V U{(qlcq,---.cq), &)}
10: return

We henceforth refer to examples as vertices, since each example is represented by a
vertex in the graph which is subsequently used to infer the missing labels. Algorithm 1
presents the pseudo-code for partitioning the input data into examples representing the
graph vertices. The algorithm requires as input a training micro-batch D and a set of mode
declarations M, and produces a set of vertices V. At line 1 the micro-batch is partitioned
into a set of ground query atoms Q and a set of ground evidence atoms £. Then at line 3
the algorithm iterates over all ground query atoms and for each one it finds all true ground
evidence atoms sharing constants of the same type. The set C. , includes a constant c of
an evidence atom e if and only if the position of c in e has type 7, and 7 is also present in
the query atom ¢. Then, e is added to the vertex of ¢ if all constants of C, , appear in ¢, and
their positions on both e and ¢ have the same type. Function type(c, a), appearing in line
6, gives the type of the position of constant c in atom a, while Types(a) gives all the types
of a. Finally, for each pair of a ground query atom and its corresponding set of relevant
ground evidence atoms, the algorithm creates a vertex and appends it to the vertex set.
The algorithm yields a total runtime complexity of O(|Q||£).

E. Michelioudakis 58



Scalable Semi-Supervised Structure Learning for Event Recognition

3.2 Label Caching

In order to handle real-life applications where labelled examples are infrequent, SPLICE
uses a caching mechanism, storing previously seen labelled examples for future usage.
At each step of the online supervision completion procedure, SPLICE stores all unique
labelled examples that are not present in the cache and then uses the cached examples
to complete the missing labels. For each labelled vertex it creates a clause, using the
label as the head, the true evidence atoms as the body, and replacing all constants with
variables according to a set of given mode declarations [124]. For instance, the second
vertex of Figure 3.2 can be converted to the following clause:

—HoldsAt(move(idy,idz), t) <

3.1
HappensAt(exit(ids), t) A HappensAt(walking(idz), t) (3.1)

For each such clause, SPLICE checks the cache for stored vertices that represent identical
clauses and stores only the unique ones. These unique, cached vertices are then used
as labelled examples in the graph construction process for supervision completion in the
current and subsequent micro-batches.

In any learning task, noise, such as contradicting examples, is a potential risk that may
compromise the accuracy of the learning procedure. In order to make SPLICE tolerant
to noise, we employ the Hoeffding bound [77], a probabilistic estimator of the error of a
model (true expected error), given its empirical error (observed error on a training subset)
[48]. Given a random variable X € [0, 1] and an observed mean X of its values after N
independent observations, the Hoeffding bound states that with probability 1 — § the true
mean 1x of the variable lies in an interval (X —e, X +¢), where ¢ = /In(2/5)/2N. In other
words, the true average can be approximated by the observed one with probability 1 — ¢
given an error margin ¢.

In order to remove noisy examples, we detect contradictions in the cached labelled ver-
tices, using the subset of training data that has been observed so far in the online process.
To do so, we use an idea proposed in [49]. Let ¢ be the clause of a cached vertex v and n,
the number of times that clause has appeared in the data so far. Recall that the clause of
a cached vertex is lifted, i.e. all constants are replaced by variables. Thus lifted clauses
may appear many times in the data. Similarly, let —c be the opposite clause of ¢, that is, a
clause having exactly the same body but a negated head, and n_. its counts. For instance
the opposite clause of (3.1) is:

HoldsAt(move(idy,idy), t) <
HappensAt(exit(ids), t) A HappensAt(walking(ids), t)

The goal is to eventually select only one of the two contradicting clauses. We define a
function p(c) = .—<— with range in [0, 1] that represents the probability of clause c to

appear in the data instead of its opposite clause —c. Then according to the Hoeffding
bound, for the true mean of the probability difference Ap = p(c) — p(—c) it holds that
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Ap — e < Ap, with probability 1 — §. Hence, if Ap > ¢, we accept the hypothesis that c is
indeed the best clause with probability 1 — § and thus v is kept at this point. Similarly, —¢
is the best one if —Ap > . Therefore, in order to select between contradicting labelled
examples, it suffices to accumulate observations until their probability difference exceeds
. Until that point both example vertices are used in the optimisation.

Algorithm 2 CacheUpdateAndFilter(V;, C)

Input: V.. a set of labelled vertices,

C: a cache containing mappings of vertices to their counts

Output: V]/: a set of filtered labelled vertices, C: the updated cache

1: forv;, € V; do

2: if 3 v; € C : canUnify(clause(v;), clause(v;)) then

3: C[Uj] = C[Uj] +1

4: else

5: Clvi] =1

6: Initialise accumulated unique filtered labelled nodes V/ = ()
7: for (v;, n) € C do

8: Generate clause ¢ = clause(v;) and its opposite —¢

o: if 3v; € C : clause(v,;) = —c then

10: Compute total number of appearances N = C[v;] + C[v;]
11 Compute frequencies p, = <l p_, = <l

12: Compute ¢ = %

13: if p. — p-. > ¢ then

14: V]l =V] Uuw;

15: else

16: Vi =V] U

17: return V/, C

Although we use the Hoeffding inequality to make filtering decisions for contradicting ex-
amples, given the data that we have seen so far, the examples are not independent as the
Hoeffding bound requires. Consequently, we allow this filtering decision to change in the
future, given the new examples that stream-in, by keeping frequency counts of the lifted
examples. Furthermore, we assume that the examples stem from a stationary stochastic
process and thus the difference between contradicting example frequencies eventually
converges when a sufficient amount of observations is accumulated. This is not the case
in other applications [49, 1] in which the decision is permanent.

Algorithm 2 presents the pseudo-code for cache update and filtering. The algorithm re-
quires as input the labelled vertices of the current micro-batch and the cached mappings
of vertices to their counts, and produces as output the set of filtered labelled vertices and
the updated cache. If the clause view of a vertex exists in the cache, then the counter of
that vertex is incremented, otherwise the vertex is appended to the cache and its counter
is setto 1 (see lines 1-5). For each vertex in the cache we produce its clause and check if
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the cache contains a vertex representing the opposite clause. In case the opposite clause
exists, the Hoeffding bound is calculated, in order to decide whether one of them can be
filtered out (see lines 6—16). Given an appropriate hash function for the cache data struc-
ture (good distribution of hash keys), all cache query operations take effectively constant
time. Hence, the algorithm yields a total time complexity of O(|Q.|), where |Q| is the
number of labelled query atoms in a micro-batch.

3.3 Graph Construction

Once the example vertices have been constructed, SPLICE assigns truth values to the
unlabelled vertices, by exploiting the information provided by the labelled ones, as well
as, the similarity to other unlabelled vertices. A weighted edge between a particular pair
of vertices v;, v; : i,j € {1,..., N} represents the structural similarity of the underlying
ground evidence atom sets in the two vertices. Recall that the number of vertices is equal
to the number of ground query atoms in Q, that is N. Let w;; be the edge weight, i.e.,
the structural similarity of v; and v;. If w;; is large enough, then the truth values of the
ground query atoms ¢;, ¢; are expected to be identical. Therefore, the similarity measure
essentially controls the quality of the supervision completion solution.

Our approach regarding the computation of the evidence atom similarities is based on a
measure of structural dissimilarity d; : £ x £ — R, over a set of first-order expressions
£. The distance d, does not make any syntactical assumptions about the expressions,
such as function-free predicates, and thus it is applicable to any domain of interest. As
described in Section 2.3, we apply the measure over sets of ground atoms using the Kuhn-
Munkres algorithm, which provides an optimal one-to-one mapping given a cost matrix.
In our case the cost matrix essentially holds the distances between each pair of ground
atoms, computed by Eq. (2.9), present in the sets being compared. In particular, for each
pair of vertices v; = (&;, ¢;), v; = (&;, g;) our approach begins by computing the distance
between each pair of expressions d(e;n,, ejx) : eim € &, e € &; resulting in a matrix C
that represents the costs of the assignment problem:

d(ez‘,la €j,1) d<€z’,17 €j,2) d(ei,la €j,M)
C_ d(ei,% €j,1) d(ei,27 €j,2) d(ei,27 €j,M)
d(ei,M> €j71) d(&',M; 6j,2) d(@',M; €j,M)

This matrix is square M x M, assuming that the sets & and &; are of equal size. In
the general case, of a M x K matrix, where M > K, C is padded using zero values to
complete the smaller dimension and be made square. Intuitively, the zero values in the
smaller set capture the notion of unmatched atoms. Matrix C can then be used as the
input cost matrix for the Kuhn-Munkres algorithm, in order to find the optimal mapping
of evidence atoms. The optimal mapping is denoted here by the function g : V x V
{(m,k): m,k € {1, ..., K}} and is the one that minimises the total cost, i.e., the sum of
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the distances of the mappings. Finally, SPLICE computes the total distance between the
vertices v;, v; as the sum of the distances yielded by the optimal mapping normalised by
the greater dimension, that is M, of the matrix:

1

dviey) = (M= K)+ > Coul (3.2)

(m,k) € g(vi,vj)

The unmatched evidence atoms constitute an important component of the distance, due to
the term M — K, which penalises every unmatched ground atom by the greatest possible
distance, thatis 1. Thus, M — K can be seen as a regularisation term. The need to penalise
unmatched atoms stems from the fact that they may represent important features that
discriminate a positive from a negative example. The distance is turned into a similarity
s(v;,v;) = 1 —d,(vs, v;) and assigned as the weight w;; of the edge connecting the vertices
v;, v;. The measure denoted by the function s is symmetric and is used to calculate the
similarity of all distinct vertex pairs. The process generates a N x N symmetrical adjacency
matrix W comprising the weights of all graph edges. Hence, matrix W is computed using
Eq. (3.2) through function s. To avoid self-loops, i.e., edges that connect a vertex to itself,
we set the diagonal of the W matrix to zero:

0 s(vy, vg) -+ s(v1, vN)
W 5(112-, V1) 0 XX 8(027. vN)
s(vn, v1) s(on, va) - 0

In order to turn the similarity matrix W into a graph, we use a connection heuristic, which
introduces edges only between vertices that are very similar, i.e., they have a high weight.
In the simplest case, we connect the vertices v;, v; if s(v;, v;) > ¢, given some threshold
value € (eNN). Another alternative is to use k£ nearest neighbour (kNN) to choose the edges
that will be kept. According to this approach, for each vertex v; we identify the closest (most
similar) k vertices. Note that if v, is among v;’s k nearest neighbours, the reverse is not
necessarily true. Therefore, as soon as kNN is applied, matrix W is no longer symmetric.
In order to avoid tie-breaking, we modified kNN to select the top £ distinct weights in a
vertex neighbourhood, and then connect all neighbours having such a weight.

3.4 Supervision Completion

Given the weight matrix W, we apply one of the two connection heuristics — thresholding
and kNN — mentioned above to obtain a sparse matrix W', having zeros for unconnected
vertices and some positive similarity value w;; € (0, 1] for the rest. Matrix W’ is then used to
solve a cost minimisation problem and assign truth values to the unlabelled ground query
atoms.

E. Michelioudakis 62



Scalable Semi-Supervised Structure Learning for Event Recognition

Let/+u = N be the number of labelled and unlabelled vertices. The closed-form solution
of the optimisation problem for the harmonic function (see Section 2.2) in matrix notation
is as follows. Let D;; be the weighted degree of vertex i, i.e., the sum of the edge weights
connected toi. Let D be a N x NV diagonal matrix, containing D;; on the diagonal, computed
over the matrix W'. Then the unnormalised graph Laplacian matrix L is defined as follows:

L=D-W

In this case, the Laplacian matrix essentially encodes the extent to which the harmonic
function f (see Eq. (2.8)) differs at a vertex from the values of nearby vertices. Assuming
that vertices are ordered so that the labelled ones are listed first, the Laplacian matrix can
be partitioned into four sub-matrices as follows:

o Lll Llu

The partitioning is useful for visualising the parts of L. Sub-matrices L;,L,;,,L,; and L,,
comprise, respectively, the harmonic function differences between labelled vertices, la-
belled to unlabelled, unlabelled to labelled and unlabelled to unlabelled. Note that L;, and
L., are not symmetric if the kNN connection heuristic has been applied on W.

Letf = (f(x1), ..., f(leru))T be the vector of f values of all vertices and the partitioning
of finto (f;, f,) holds the values of the labelled and unlabelled vertices respectively. Then
by solving the constrained optimisation problem, expressed in Eq. (2.7), using Lagrange
multipliers and matrix algebra, one can formulate the harmonic solution as follows:

fi=y
fu = _L_lLulyl

uu

(3.3)

Note that Eq. (3.3) requires the computation of the inverse of matrix L,, that may be
singular, due to many zero values (sparsity). In order to avoid such situations, we compute
the pseudo-inverse. Since the optimal solution is required to comprise the labels assigned
to unlabelled vertices in [—1, 1], the resulting solution f, is thresholded at zero to produce
binary labels. Alternatively, an adaptive thresholding approach may be used to handle
the possible class imbalance by exploiting the class prior probabilities, such as, the log-
odds threshold approach proposed in [190], called class mass normalisation. However,
in an online learning task, the class prior probabilities are usually unknown, and difficult
to estimate from data, since there are few available labels, which in turn may yield much
worse performance than the harmonic threshold.

Algorithm 3 presents the pseudo-code for connecting the graph vertices and performing
supervision completion. The algorithm requires as input a connection heuristic, a structural
similarity and a set of vertices, and produces as output a set of labels for the unlabelled ver-
tices. First, we compute the similarity between pairs of vertices (see lines 1-4). Note that
Eq. (3.3) only requires L, and L,;, and thus we only compute unlabelled-to-unlabelled
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Algorithm 3 SupervisionCompletion(V, h, s)
Input: V: a set of labelled and unlabelled vertices,
h: a connection heuristic, s: structural similarity
Output: f,: labels for the unlabelled query atoms

1: Initialise matrix W to be the zero matrix 0

2: forv; € V; do

3 forv; € V do

4: w;; = s(v;,v5)

5: Apply the connection heuristic: W = h(W)

6: Compute Laplacian matrix: L=D — W’

7: Compute the harmonic solution: f, = —L_ 'Ly,

# Perform thresholding to acquire binary labels
for f; € f, do

if f; < small value then f; = —1 which represents false
10: else f; = 1 which represents true

11: return f,

© @«

and unlabelled-to-labelled connections. Then, we apply the connection heuristic to the
matrix W holding the similarity values, compute the Laplacian matrix L and solve the op-
timisation problem (see lines 5-7). Finally, for the resulting vector f, holding the values of
the unlabelled vertices, we perform thresholding on each value, yielding binary labels (see
lines 8-10). Since the unlabelled examples are typically many more than the labelled ones
(in a micro-batch), the inversion of the Laplacian matrix, yielding time |Qy|?, is the main
overhead of the algorithm, where |Q/| denotes the number of unlabelled ground query
atoms in a micro-batch. Algorithm 4 presents the complete SPLICE procedure.

Algorithm 4 SPLICE(#, s, §, M)
Input: h: connection heuristic, s: structural similarity,
0: Hoeffding bound confidence, M: Mode declarations

1: Initialise cache containing list of vertices and their counts C = ()
2: for ¢t =1 to I micro-batches do
3: Receive a micro-batch D, = (Q,, &)
# Q, is a set of ground query atoms and &; a set of ground evidence atoms.
Partition data into vertices V' = Partition(D;, M)
Partition V' into labelled V; and unlabelled V;; vertices
V], C = CacheUpdateAndFilter(17,,C)
Union of the unique labelled nodes with unlabelled ones: V'=V] UV},
f. = SupervisionCompletion(V"’, h, z)
Perform a structure learning step using (f;, f,,)

© o N aR
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4. SPLICE*: SEMI-SUPERVISED LEARNING COMBINING
STRUCTURE AND MASS-BASED PREDICATE SIMILARITY

“Information is the resolution of uncertainty.”

— Claude Shannon

In the previous chapter, we presented SPLICE, a technique that aims to effectively learn
the structure of complex event rules in the presence of incomplete supervision. However,
there are a couple of downsides, related to its graph construction process (see Figure 3.1),
that may compromise the online labelling of the unlabelled data. First, the underlying struc-
tural distance may be deluded in the presence of irrelevant or noisy features. Second, the
distance measurements between labelled and unlabelled data, inevitably, are as infor-
mative as the provided labels. For instance, if the given labels are not representative of
the underlying class distribution, so are the measurements. Third, the online labelling in-
ferred from the local graphs built per micro-batch, provides no guarantee with respect to
the global solution obtained if all data where to be accessed at once.

Data Stream/Training Examples

s N

Micro-Batch D,
HappensAt(walking(ID;), 100)
HappensAt(walking(ID,), 100)
OrientationMove(ID;, ID,, 100)

HoldsAt(move(IDy,ID2), 100)

HappensAt(walking(ID;), 150)
HappensAt(walking(ID,), 150)
OrientationMove(ID;, ID,, 150)
Close(IDy, ID,, 34, 150)
?HoldsAt(move(IDy, ID2), 150)

Micro-Batch Di41
HappensAt(inactive(IDy),200)
HappensAt(walking(ID,), 200)
—OrientationMove(ID;, ID,, 200)
~Close(IDy, IDy, 34, 200)
—HoldsAt(move(IDy, IDz), 200)

HappensAt(inactive(ID;),220)
HappensAt(walking(ID,), 220)
—OrientationMove(ID;, ID,, 220)
~Close(ID1, ID,, 34, 220)
?HoldsAt(move(IDy, ID;), 220)

Close(IDy, ID,, 34, 100) -

Data

\ Partitioning

Label Caching
and Filtering

Graph

-

Construction

Supervision
Completion

Structure
Learning

v

Figure 4.1: The SPLICE* procedure.
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In this chapter our goal is to improve the quality of the graph construction, as used by
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SPLICE, leading to a more robust and accurate labelling of the incoming unlabelled data.
Figure 4.1, extending Figure 3.1, presents an overview of these improvements. We pro-
pose a hybrid distance measure composed of two elementary distances, that combined
aim to eliminate the drawbacks of the structural distance alone. The former part of the
distance measure is an enhanced version of Eq. (3.2) that accounts for irrelevant or noisy
features by selecting only a subset of them, that is, the ones optimising kNN classification
on the labelled data. Since such a feature selection is achieved using only the labelled
data, the selected features may not always be representative of the underlying classes.
Therefore, we combine the optimised structural distance with a data-driven mass-based
dissimilarity, adapted for logical structures. The latter employs mass estimation theory to
compute the relative distance between examples, which, intuitively, is measured as the
probability density of their least general generalisation [136].

Moreover, in order to render SPLICE aware of the temporal nature of the data in online
processing and CER, we further alter its strategy for interconnecting graph vertices. We
connect each unlabelled vertex to its k-nearest labelled neighbours, as well as, the tempo-
rally preceding unlabelled vertex. Therefore, we promote interactions between temporally
adjacent unlabelled vertices during label propagation. Finally, similar to [173], we store
a synopsis of the full history of the stream, by means of a short-circuit operator, that pre-
serves the effective distances of labelled and unlabelled example vertices to subsequent
optimisations.

Henceforth, we refer to our enhanced approach as SPLICE*. The proposed improvements
introduced by our method are detailed in the following subsections.

4.1 Large-Margin Feature Selection for Logical Predicates

In order to render the structural distance of Eq. (3.2) aware of irrelevant or noisy features,
we introduce a mechanism for feature selection based on the ideas of LMNN metric learn-
ing. We adapt the idea of feature weighting, as presented in Section 2.4, by learning a
binary vector, instead of real-valued one, that represents the set of selected logical atoms
to be used for computing distances. Towards that goal, we use an approach similar to
propositionalization [192, 4]. More formally, let A be a set of first-order atoms that can
be constructed from a Hebrand base BB and a set of mode declarations M, by replacing
constants with variables. Assuming a strict ordering of atoms in A, let b be a vector of
binary variables, one of each first-order atom a; € A. Thus, each indicator variable b, = 1
if the ith atom is selected, and b, = 0 otherwise. Since each labelled training example is
essentially a clause ¢, it can also be seen as a binary vector x. = [z, ... ,x‘A‘}T, where
each variable z; refers to the presence of the corresponding atom «; from A in the clause
represented by x.. For instance, assuming that 5 contains the ground atoms appearing
in Figure 3.2, we can create an ordered set of atoms as follows:
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A = {HappensAt(walking(X), t), HappensAt(walking(y), t), HappensAt(exit(x), t),
OrientationMove(X, y, t),Close(X, y, 34, t)}

Then, the top example from Figure 3.2 is represented as x;,, = [1, 1,0, 1, 1], then middle
one as X,,;s = [0,1,1,0,0] and the bottom one as x,,; = [1,1,0, 1, 1]. Thus, the distance
between two such examples is essentially a Hamming distance, which is equivalent to the
general Minkowski distance for p = 1. Since the Minkowski distance is a generalisation of
the Euclidean distance, we reformulate the loss function of Eq. (2.16) as follows:

e(b)=(1—p) Y bxi— x|+ Y > (L—ya)[1+blx; —x;| — b|x; — x[] |

- k .. k
JEN] ijeENF 1

where x is the clausal form of an example represented as a binary vector according to a
predetermined strict ordering over A, and b is the vector of indicator variables, denoting
which features in x are selected. Moreover, we drop the first term of the loss function (cor-
responding to ¢,,;), since it has been shown in [154] that the simpler problem often results
in better solutions. Moreover, the simpler loss function no longer depends on the param-
eter . The resulting minimisation problem is an integer linear programming problem and
can be solved using variants of the branch-and-bound or branch-and-cut methods, albeit
less efficiently than the real-valued problem’:

minimise Z Z(l — Yir) i

ijeNF 1
subjectto (1) b|x; — x;| — b|x; —Xx;| > 1—-¢&;;
(2 bx; >1
(3) &iji € N=
@) b e {0, 1}

(4.1)

The intuition of our proposed feature subset selection, called Large-Margin Feature Se-
lection (LMFS), is to keep the minimal set of logical atoms (features) that are necessary to
discriminate the given set of labelled examples. Note that the slack variables that monitor
the hinge loss are integers instead of real values since a hamming distance yields only
integer differences. Moreover, we have added an extra constraint that forces all labelled
examples to have at least one positive atom that is selected. This constraint is necessary
to avoid extremely sparse solutions that remove many atoms yielding empty examples.
As soon as the optimal vector b has been found, we can generalise all example vertices
by removing irrelevant features, that is, features for which b, = 0. Then, the structural
distance can be computed as usual, by applying Eq. (3.2) over the generalised vertices:

"Note that in a semi-supervised problem the labelled examples are very few and sparse, leading to a
very small number of constraints and thus Eq. 4.1 can be solved fast enough.
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d2(vi,v;) = dy(v?, 0?) (4.2)

17 7]

where v;, v; are vertices and v?, v}’ their generalised counterparts, having some first-order
atoms removed. One issue that may arise from selecting features using only the labelled
examples is that some atoms that appear only in unlabelled examples are not consid-
ered during the optimisation. Regarding those atoms, that appear only in the unlabelled
examples, we assume that they are always selected (b = 1) and use them in distance

measurements.

LMNN requires that training examples are accompanied by some form of labelling. Then
the optimisation above would retain the features that are necessary to discriminate be-
tween these labels. However, in a Hamming space distances change quite abruptly be-
cause a single mismatch between two binary vectors always yields a penalty of 1 between
the vectors. In other words, while in an Euclidean space two points can be close or far
in a specific dimension, according to their real-valued difference, in a Hamming space
they are either the same or different in that dimension. Thus, clauses formed from train-
ing examples may appear very different inside the boundaries of a specific class, leading
to very sparse solutions. This is because the optimisation would force them to become
similar by removing atoms that cause mismatches. To avoid such situations, we perform
clustering of the examples of each class and use the clusters as distinct classes to solve
the optimisation problem.

Since we are interested in clustering the examples of each class into cohesive clusters,
we cannot use a distance-based clustering, as it will suffer from the same noisy and irrel-
evant features that we aim to get rid of in the first place. To avoid that pitfall, we employ a
clustering approach based on #-subsumption. Examples in a cluster that are connected
through a #-subsumption relation and have the same label, define a taxonomic hierarchy
containing all examples that are members of a specific concept. For instance, if two ex-
amples of the same class and length only differ in one atom, they cannot subsume each
other and hence cannot be in the same cluster under #-subsumption. Consider the top
and middle examples of Figure 3.2. They should form different unit clusters, since they
belong to opposite classes. If the bottom example was also positive, then it would belong
to the same cluster as the top example since it #-subsumes the top example. Thus, the
resulting set of clusters represents a strict partitioning of the example space into distinct
sub-concepts. Given such a clustering, the optimisation of Eq. (4.1) should select features
that respect that partitioning, identifying which features are necessary for discriminating
each sub-concept.

Algorithm 5 presents the pseudo-code for selecting the first-order predicates that best
discriminate the known labelled vertices into sub-concepts. The algorithm requires as
input a set of labelled examples, a set of mode declarations, and produces a vector of
selected features. It starts by partitioning the given examples into positive and negative
ones (line 1). Then for each of the two sets it finds the example having the most evidence
atoms (ties are broken randomly) and creates unit clusters (lines 2—3). For each of the
remaining examples it either appends it to an existing cluster, if another example exists
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Algorithm 5 FeatureSelection(V;, M)

Input: V;: a set of labelled example vertices, M: a set of mode declarations
Output: b: a vector of binary values corresponding to selected features

1: Partition V7, into positive Vp» and negative V) vertices.

2: Find v7* = argmax,, .y, |v;| and vj** = argmax, .y, [v;l.

3: Form unit clusters C' = {{v**}, {v7**}}.

4: for v; € VL/U;nax,U;lax do

5: force C do

6 if 30" € ¢: clause(v;)8 C clause(v') then

7 c=clwv

8: Solve optimisation of Eq. (4.1) using C as a set of examples.
9: return b

that is f-subsumed by the candidate, or it creates a new unit cluster (lines 4-7). Finally,
it solves the optimisation problem of Eq. (4.1) using the clusters as distinct classes and
returns the vector of selected features (lines 8-9).

4.2 Mass Dissimilarity for Logical Predicates

Supervised learning approaches to feature selection require explicit or implicit computation
of the information/importance of each feature using the labels available in the training
examples. However, in a semi-supervised learning task, the few labels that are often
available are not sufficient for acquiring trustworthy estimation of the feature importance.
Thus, common feature selection criteria are not reliable and their optimality guarantees
suffer from the fact that only a few training examples are available.

In order to address the issue, we combine the optimised structural distance, as presented
in Section 2.6.4, with a data-driven dissimilarity that uses mass estimation to measure
the distance between data points. The intuition of the measure is that two points are
considered to be more similar if they coexist in a sparse space rather than in a dense one.
Unlike the distance estimation presented in Section 4.1, the proposed approach exploits
both labelled and unlabelled data to quantify the distances between examples.

To that end, we adapt the approach presented in Section 2.5 to handle logical structures
by means of the Herbrand base 55 and a set of mode declarations M, the combination
of which generates a set of logical atoms A (see Section 4.1). Since the space of these
logical atoms is a hypercube {0,1}!, we can define a hierarchical partitioning H of the
hypercube by randomly constructing a Half-Space Tree? [164]. In contrast to the approach
in [165], which assumes real-valued features, we can construct the trees beforehand be-
cause each internal node of the tree may only have one possible split, since all logical

2Half-Space Trees are just like Isolation Trees, but instead of random splits they perform median splits.
Thus, in a Hamming Space they are equivalent. However, we chose to use the former term since it implies
a half-space partitioning which is more appropriate for binary features.
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atoms are binary by definition. Algorithm 6 presents the pseudo-code for creating a forest
of such binary random trees.

Algorithm 6 CreateForest(A, T, h)
Input: A: a set of first-order atoms, 7": number of trees, h: maximum tree height
Output: F: a set of Half-Space Trees

1. F=10

2: fori=1to 7T do

3: F = F|JCreateTree(A,0,h)

4: return F

5:

6: function CreateTree(A, d, h) > d is the current depth of the tree
7: ifd > hV|A|l <1then

8: return Node(size < 0, split < 0, left < 0, right < 0)

9: else
10: Randomly select an atom a € A.

11: return Node(size «+ 0, split < a, left < CreateTree(A/a,d+1,h),
12: right <— CreateTree(A/a,d+1,h))

The algorithm requires as input a set of first-order atoms, the required number of trees,
and a maximum height for each tree. We start from an empty set and iteratively generate
random trees (see lines 1-4). Each node in the tree consists of a split atom, a left and right
subtree, as well as, a size variable that stores the number of examples that have matched
the path to this node. Each tree is built recursively by picking an atom at random from the
given set of available atoms and creating two random subtrees on the remaining atoms
(lines 9—11). The process terminates if no atoms are left in the set A or the maximum
height is reached.

Algorithm 7 UpdateForest(F, V)

Input: F: a set of Half-Space trees, V: a set of example vertices
1: fortree ¢ F Av eV do
2: UpdateSize(tree, v)

. function UpdateSize(tree, v)

tree.size « tree.size + 1

if tree.left £ () A tree.split ¢ v then UpdateSize(tree.left, v)

else if tree.right # () A tree.split € v then UpdateSize(tree.right, v /tree.split)

N g hw

Note that during tree creation, each internal node of each tree has zero size. Tree creation
happens before any data are processed. The size of the nodes is updated as more data
stream in. Algorithm 7 describes this update process. The algorithm requires as input a
forest of binary random trees and a set of examples. For each example it updates the
counts of the internal nodes of each tree (lines 1-2). The update procedure is a recursive
process that increments the size of the current node and then proceeds to the update of
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the child node that matches the split criterion of the current node (lines 5-7). Since each
example is a set of atoms the split criterion match is checked by the membership of the
split atom. Thus, the path from the root to the leaf that contains the matched atoms of the
given example increment the counts of its nodes.

-
(5] [2]
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Figure 4.2: Path selected by a random tree from the subsumption lattice.

The intuition behind this relational version of Half-Space Trees is that we estimate the
mass of specific areas of the subsumption lattice generated from a given Herbrand base B
and constrained by the mode declarations M. Figure 4.2 depicts a part of the subsumption
lattice constructed from the atoms appearing in the training sequence of Figure 4.1. The
highlighted part of the lattice presents a possible Half-Space Tree constructed by selecting
one split atom per level, while the numbers represent the node sizes. In this case, the
sizes correspond to the three examples of Figure 3.2. Therefore, each tree essentially
represents only a part of the lattice and estimates the mass of each node from data. Given
two examples, their overlap (set of common atoms) is quantified as the size of the deepest
node in the tree that contains all common atoms along its path from the root. If the size
is small, then these two examples are located in a sparse part of the space and thus
they are considered more similar. Consider for instance the top and middle examples of
Figure 3.2. Their set of common atoms is just the atom HappensAt(walking(x), t), which,
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in the tree appearing in Figure 4.2, is located in the first level of the tree and has size 3.
Therefore, these examples co-exist in a dense part of the tree and they may be considered
less similar.

The resulting Half-Space Forest can be used to compute the mass-based dissimilarity of
Eq. (2.19) for a pair of examples as follows:

[R(vi, ;| H,)
Z D]

where v;,v; are two examples, H, is a binary Half-Space Tree (out of T'), D is the set of
all examples used to update the trees and R, similar to Section 2.5, is the deepest region
covering both examples.

4.3 Robust Graph Construction and Labelling

Given a set of examples, our goal is to connect them by edges representing the similarity
of the underlying evidence atom sets. The resulting graph is used to derive labels for all
unlabelled example vertices in the current data micro-batch. In order to construct the sim-
ilarity graph for label propagation we combine the mass-based dissimilarity, as presented
in Section 4.2, with the optimised structural distance of Eq. (4.2) as follows:

dp (vi, v;) = a dS (v5,05) + (1 = @) m(v;, v))

where « controls the relative importance of each of the two distances. Similar to SPLICE,
the hybrid distance is turned into a similarity as 1 — d?(v;,v;). Fully connecting the ver-
tices generates a N x N symmetrical adjacency matrix W, comprising the weights of all
graph edges. In order to make the graph sparser, we aim to select the stronger edges in
each neighbourhood. To that end, SPLICE* uses a temporal variant of NN that connects
each unlabelled vertex to its k-nearest (most similar) labelled neighbours, as well as to
its temporally adjacent ones. The intuition behind this extension of kNN is that tempo-
rally adjacent vertices should affect the labelling of each other, even if they are not very
similar. In terms of label propagation, temporally adjacent neighbours should exchange
information about their respective labelling, albeit weighted by their similarity.

Moreover, in order to obtain guarantees for the online labelling achieved by label propa-
gation on the local graphs built from the micro-batches, SPLICE* stores a synopsis of the
graph, as presented in Section 2.2.2. Given a memory size parameter 7, the synopsis
removes older vertices from the graph (when memory size is exceeded), in order to make
room for newer ones, by meshing their edges to the rest of the graph using star-mesh
transforms. The harmonic solution computed on the compressed graph is guaranteed to
be equal to the one computed on the entire stream seen so far. Therefore, the synopsis
renders the labelling invariant to different batch sizes. Algorithm 8 presents the graph
construction pseudo-code.
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Algorithm 8 GraphConstruction(F, V)
Input: F: a set of Half-Space Trees, V: a set of example vertices
1: Partition example vertices into labelled and unlabelled V' = (V,, Vi)
UpdateForest(F, V} U V})
if V/ # 0 then
b = FeatureSelection(V;, M)
VT — VL U VU/Vlj
for v, € V, do
for v; € V do
Wy, 0, 1 — dg(vi,vj)
9: V.« V. U V§
10: Apply the connection heuristic: W, = temporal-kNN(W)
11: while |V,| > 7+ |V, | do
12: Find oldest vertex v, < V.. /V.

®Noa R wN

13: for all vertex pairs v # v" in V, do
wU07Uw1;0,1)’

14: Wy ,pr $— Wy + degree(vo)

15: Remove all v, edges from W,,.

16: return W,

The algorithm requires as input a pre-built Half-Space Forest, and a set of examples. The
examples are partitioned into labelled and unlabelled at line 1. Then only the examples
received in the current micro-batch ¢ (labelled V} and unlabelled V}}) are used for updating
the forest counts at line 2. Subsequently, if the micro-batch ¢ contains only unlabelled
examples and labels have been added in V;, since the last time LMFS was run, the optimal
set of features is re-computed (lines 3—4). In lines 5-9 the graph connection process takes
place. Each stored example is connected to the unlabelled examples received at micro-
batch ¢. The set V, of stored examples is composed of all the labelled examples V;, and
the 7 stored unlabelled ones, V; \ V/}, where 7 is the synopsis size. Then, the temporal-
ENN connection heuristic is applied at line 10 to make the graph sparser. As a final step,
while the number of stored unlabelled examples is greater than the given memory size 7,
the algorithm removes the oldest example together with its edges and applies a star-mesh
transform to its neighbours (lines 11-15).
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5. EXPERIMENTAL STUDY

“It doesn’t matter how beautiful your theory is, if it doesn’t agree with experiment, it’s wrong.”
— Richard P. Feynman

In this chapter, we present experimental results for both SPLICE and SPLICE* on the
task of Complex Event Recognition (CER), using OLED [88] for learning complex event
rules in the Event Calculus. For the evaluation, we use a publicly available benchmark
activity recognition dataset of the CAVIAR project’, a publicly available maritime surveil-
lance dataset concerning the area of Brest, France?, and a fleet management dataset,
recording the activity of vehicles around Greece and neighbouring countries®. Part of our
evaluation also compares SPLICE and SPLICE* to simple KNN and a baseline that runs
Iterative Cross-Training [155] combining ILASP [100, 101], a state-of-the-art ILP system
for learning Event Calculus theories and Naive Bayes (ILASP-NB). All experiments were
conducted on a Linux machine having an Intel i7 4790@3.6GHz CPU (4 cores, 8 threads)
and 16GiB of RAM. All presented experiments can be reproduced, following the provided
instructions®.

5.1 Description of Datasets

The activity recognition dataset comprises 28 surveillance videos, where each video frame
is annotated by human experts on two levels. The first level contains SDEs (simple, de-
rived events) that concern instantaneous activities of individual persons, detected on video
frames, such as when a person is walking or staying inactive. In addition, the coordinates
of tracked persons are used to capture qualitative spatial relations, e.g. two persons being
relatively close to each other. The second level contains CEs (composite events), describ-
ing the activities between multiple persons and/or objects, i.e., people meeting and moving
together, leaving an object and fighting. Similar to earlier work [150, 88], we focus on the
meet and move CEs, and from the 28 videos, we extract 19 sequences that contain anno-
tations for these CEs. The rest of the sequences in the dataset are ignored, as they do
not contain positive examples of these two target CEs. Out of the 19 sequences, 8 are an-
notated with both meet and move activities, 9 are annotated only with move and 2 only with
meet. The total length of the extracted sequences is 12,869 video frames. Each frame is
annotated with the (non-)occurrence of a CE and is considered an example instance. The
dataset contains a total of 63,147 SDEs and 12,869 annotated CE instances. Out of those,
there are 6,272 example instances of move and 3,722 instances of meet. Consequently, for
both CEs the number of negatives is significantly larger than the number of positives.

"http://homepages.inf.ed.ac.uk/rbf /CAVIARDATA1
2https://zenodo.org/record/1167595
Shttps://www.vodafoneinnovus.com
“https://users.iit.demokritos.gr/~vagmcs/pub/splice_plus

75 E. Michelioudakis


http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
https://zenodo.org/record/1167595
https://www.vodafoneinnovus.com
https://users.iit.demokritos.gr/~vagmcs/pub/splice_plus

Scalable Semi-Supervised Structure Learning for Event Recognition

The maritime dataset consists of vessel position signals sailing the Atlantic Ocean, around
Brest, France. The SDEs take the form of compressed trajectories, comprising “critical
points”, such as communication gap (a vessel stops transmitting position signals), vessel
speed change, and turn. It has been shown that compressing vessel trajectories allows
for accurate trajectory reconstruction, while at the same time improving stream reasoning
times significantly [131]. We focus on the rendezVous and pilotOps CEs. The former
expresses a potentially illegal activity where two vessels are moving slowly in the open sea
and are close to each other, possibly exchanging commodities, while the latter describes
the activity of piloting a vessel. Since the dataset is unlabelled, we produced synthetic
annotation using the RTEC engine [9] and hand-crafted rules of rendezVous and pilotOps
CEs [135]. The CE annotation is publicly available®. We have extracted 6 sequences for
each CE from the dataset. Regarding rendezVous, the total length of the sequences is
11,930 timestamps, while for pilot0Ops, sequences comprise 6,678 timestamps. There are
1,425 instances in which rendezVous occurs and 769 in which pilotOps occurs.

The fleet management dataset consists of commercial vehicles moving around Greece
and neighbouring countries. The SDEs include information, such as vehicle speed changes,
proximity to points of interest and operational status, such as fuel level. We focus on the
nonEconomicDriving and dangerousDriving CES, since they are the more complex ones.
The former expresses a driving activity where the driver is over-speeding despite having
limited fuel, while the latter describes various dangerous driving behaviours, that is, over-
speeding on ice, abrupt acceleration or braking and cornering other vehicles. Since the
dataset is unlabelled, we produced synthetic annotation similar to the maritime dataset.
We extracted 10 and 12 sequences for nonEconomicDriving and dangerousDriving re-
spectively. The nonEconomicDriving and dangerousDriving CEs, comprise 13,255 and
13,387 timestamps respectively. There are 1,589 instances in which nonEconomicDriving
occurs and 639 in which dangerousDriving occurs.

5.2 Experimental Setup

The evaluation concerns two learning scenarios. In the first scenario, a number of micro-
batches were selected uniformly at random and their labels were hidden from the learner.
We experimented retaining 5%, 10%, 20%, 40% and 80% of the micro-batches labelled.
The micro-batches were selected using stratified sampling in order to retain the original
class proportions in each sample. We repeated the random selection 20 times, leading to
20 runs per supervision level, in order to obtain a good estimate of the performance.

However, in a typical stream learning situation, the assumption of labels arriving randomly
on-stream is unrealistic. A more appropriate assumption is that a fully labelled training
set appears at the beginning of the stream, or stored in a database as historical data,
while the rest of the data stream-in completely unsupervised. Moreover, in contrast to the
random selection scenario, labels sampled only from a specific time frame are less rep-
resentative of the actual distribution of the underlying classes, which makes the problem

Shttps://zenodo.org/record/2557290
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more challenging.
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Figure 5.1: Process of creating labelled sequences from train sets. Purple and gray dots
represent train and test sequences respectively. Green dots represent fully labelled se-
quences, while red dots represent completely unlabelled ones.

Our second evaluation scenario simulates this more realistic setting, using 1, 2 and 4
labelled training sequences (out of 6) for the maritime dataset, and 1, 2, 4 and 8 (out of
19) for the CAVIAR and the fleet management dataset. We considered only sequences
that contain both positive and negative examples and generated 5 test sets. For each test
set we used the remaining sequences for creating the train sets. More precisely, each
of the remaining sequences is used to generate multiple train sets containing a number
of labelled sequences appearing at the beginning of the train set, while the rest of the
train set remains completely unlabelled. For instance a 1-/labelled sequence set contains
one sequence that is fully labelled and appears first in the train set, while every other
sequence in the set remains completely unlabelled. In order to avoid the selection bias,
we exhaustively generated all possible 1-labelled sequence sets for each test set, while
for 2, 4 and 8 we randomly selected some candidate sets. This process led to 40 runs for
the meet and nonEconomicDriving CEs, 72 for the move CE, 60 for the dangerousDriving
CE, and 30 for the pilotOps and rendezVous CEs. Since each sequence contains different
proportions of positive and negative examples, the runs were not stratified.

Throughout the experimental analysis, we used T=100 random trees for computing the
mass-based dissimilarity and set «=0.5 in order to balance the influence of each distance
measure. The accuracy results for both supervision completion and structure learning
were obtained using the Fi-score. All reported statistics are micro-averaged over the
recognised instances of CEs. For the CAVIAR dataset, the reported statistics for structure
learning were collected using 10-fold cross validation over the 19 video sequences, while
complete videos were left out for testing. The same number of folds were also used for
the fleet management dataset. In the maritime dataset, the statistics were collected using
6-fold cross validation over the selected sequences, while complete sequences were left
out for testing.

5.3 Evaluation on Activity Recognition

First, we compare the performance of SPLICE*, SPLICE and ILASP-NB on the activity
recognition dataset for both meet and move CEs. Figure 5.2 depicts the F,-score achieved
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Figure 5.2: F,-score of supervision completion on meet (left) and move (right) as supervi-
sion increases. In the first scenario, supervision arrives uniformly at random (top), while in
the second one is provided only at the beginning of the sequence (bottom). The notation
ds and dP refers to the structural and hybrid distances respectively.

by the supervision completion on both scenarios, without any structure learning. The
results suggest that SPLICE* effectively infers the missing labels and its performance
increases as more supervision is given. More importantly, it significantly outperforms
SPLICE and ILASP-NB in most cases even for high supervision levels (80% uniform su-
pervision or 8 sequences). As expected, the difference is greater in the more realistic
scenario, where labelled data are provided only at the beginning of the training sequence.
ILASP-NB achieves comparable accuracy to SPLICE* on the random supervision sce-
nario for low supervision levels. However, it is worth noting that ILASP-NB is a batch
learning system that requires all data to be available at once and may require multiple
iterations to converge. As a result, ILASP-NB was about 12 times slower than SPLICE* in
the activity recognition dataset.

On the other hand, the improved performance in SPLICE* comes at the cost of a decrease
in runtime compared to SPLICE, i.e., the time to process both the train and test set, as
shown in Figure 5.3. Note that SPLICE* is always slower than SPLICE, since it has to
update the trees for every micro-batch and select appropriate features when required.
However the penalty is tolerable in absolute times, as it does not exceed 15 seconds.
Note that runtime tends to increase between 5% and 20% of random supervision, and then
falls again, as more supervision is given. This is due to fact that SPLICE®*, for efficiency
reasons, performs feature selection only when a labelled micro-batch is followed by an
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Figure 5.3: Runtime performance of supervision completion on meet (left) and move (right)
as supervision increases. The runtime is macro-averaged over all samples. In the first
scenario, supervision arrives uniformly at random (top), while in the second one is provided
only at the beginning of training (bottom). We do not present the runtime of ILASP-NB
here, since it is much higher than SPLICE* (~ 400 seconds) and the scaling does not help
the discussion of the results.

unlabelled one (see Algorithm 8). In the absence of unlabelled micro-batches, we simply
store the incoming labels and perform the costly optimisation task only when necessary,
i.e., in the presence of unlabelled data. In the cases of 20% or 40% supervision, this
situation occurs much more frequently than when 5% or 80% supervision is provided. A
similar pattern is observed in the early supervision setting, where feature selection only
runs once, since all labelled examples arrive at the beginning of training.

79 E. Michelioudakis



Scalable Semi-Supervised Structure Learning for Event Recognition

c e :’;:,:;;"' L
5 0.8} /‘ . 1 0.8/ e
e 206~ 506 /[
5 Loapr oo
cg Sl P - OLED Sl - OLED
o 0.2f —= SPLICE-OLED | 0.2¢ —= SPLICE-OLED |
% —+SPLICE*-OLED —SPLICE*-OLED
i 020 40 60 80 100 %20 40 60 =0 100
% supervision kept % supervision kept
1 1
A
5 08 A=~ 1 0.8] P——
[72] 5 e N _— — -
T o6l B 06y - .
) [} O o
> ~0.4# : ~0.4r A
U; =Y —- OLED ~ —- OLED
E 0.2¢ = SPLICE-OLED || 0.2} = SPLICE-OLED ||
L —-SPLICE*-OLED —-SPLICE*-OLED
O 4 3 19 054 3 19
#supervised sequences #supervised sequences

Figure 5.4: Structure learning using OLED on meet (left) and move (right) as supervision
increases. In the first scenario, supervision arrives uniformly at random (top), while in the
second one it is provided at the beginning of the training sequence (bottom).

Figure 5.4 presents the structure learning results using the OLED system for constructing
CE rules. We compare OLED using SPLICE for supervision completion against OLED
using SPLICE*, and OLED alone without any supervision completion. OLED alone only
uses the supervised portion of each dataset for training, while everything else is ignored.
As expected, SPLICE-OLED and SPLICE*-OLED always outperform OLED, confirming
that our supervision completion approach is indeed very helpful for learning good CE rules
in the presence of missing labels. Comparing SPLICE*-OLED to SPLICE-OLED the only
noticeable difference is in the meet CE, when only limited supervision is available (less than
20% or 2 sequences). In that case, the SPLICE®* labels lead to better structure learning,
in both supervision settings. The same does not seem to hold for the move CE. This is
mainly due to the fact that the move activity can be captured by a single rule and thus it is
easier to learn from a small portion of data, while meet requires several distinct rules.

5.4 Evaluation on Maritime Monitoring

For the maritime monitoring dataset, we performed the same evaluation, as the one pre-
sented for activity recognition, for both the pilotOps and rendezVous CEs. The F;-score
of supervision completion on both scenarios, using the same notation is presented in Fig-
ure 5.5. The results suggest that SPLICE* effectively infers the missing labels, signifi-
cantly outperforms SPLICE in all cases, even for high supervision levels (80% uniform
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supervision or 8 sequences), while the difference is again larger in the second scenario,
where supervision appears only in the beginning of training. Note that ILASP-NB did not
converge after 5 hours of runtime and thus it was excluded from the evaluation.
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Figure 5.5: F;-score of supervision completion on pilotOps (left) and rendezVous (right)
as supervision increases.

An interesting observation is that in the early supervision scenario the F;-score of the
pilotOps CE is very high even for 1 labelled sequence and does not change much as the
supervision increases, which indicates that one sequence has enough labels to efficiently
infer all the missing ones. Note that this performance is not matched by the random super-
vision scenario, even at 80%. However, in the random supervision scenario, in contrast
to the early supervision one, some unlabelled data arrive before all the labelled data have
been collected, which leads to mistakes.
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Figure 5.6: Runtime of supervision completion on pilotOps (left) and rendezVous (right)
as supervision increases. The runtime is macro-averaged over all samples.

As expected, the improved labelling accuracy of SPLICE* comes with a cost in runtime
performance over SPLICE. Recall that SPLICE™ is slower than SPLICE because it needs
to update the trees for each micro-batch and perform feature selection. However, the
computational penalty is still tolerable since it is below 25 seconds, as shown in Figure 5.6.
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Figure 5.7: Structure learning on pilotOps (left) and rendezVous (right) as supervision
increases. In the first scenario, supervision arrives uniformly at random (top), while in the
second one is provided at the beginning of the training sequence (bottom).

In Figure 5.7, we present the structure learning results of SPLICE-OLED against SPLICE™*-
OLED, and OLED alone using the incomplete dataset (OLED alone uses only the labelled
examples). SPLICE*-OLED clearly outperforms both SPLICE-OLED and OLED alone by
a large margin, which indicates the usefulness of the proposed approach. On the other
hand, note that SPLICE-OLED does not always performs better than OLED alone. In
particular, in some cases, such as below 10% supervision or given a single supervised
sequence of data in rendezVous may also yield worse results, which is justified by the
fact that SPLICE makes mistakes that misguide structure learning. However, as soon as,
enough supervision is provided it performs similar to OLED alone or even better.
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5.5 Evaluation on Fleet Management

For the fleet management dataset, the F;-score of supervision completion on both sce-
narios for the nonEconomicDriving and dangerousDriving CEs is depicted in Figure 5.8.
The results appear to be consistent with the previous tasks, since SPLICE* yields the
best overall performance. However, in this dataset the difference with SPLICE is smaller,
due to the fact that fleet management dataset does not contain irrelevant or noisy fea-
tures. Thus, the difference in performance is only due to the graph synopsis, that yields
improved solutions, instead of the hybrid distance that accounts for feature significance.
ILASP-NB, on the other hand, achieves comparable performance only in the random su-

pervision scenario for nonEconomicDriving.
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Figure 5.9: Runtime of supervision completion on nonEconomicDriving (left) and
dangerousDriving (right) as supervision increases. The runtime is macro-averaged over
all samples.

The absolute difference in runtime cost between SPLICE* and SPLICE is similar to that
observed in the activity recognition dataset, as shown in Figure 5.9. Briefly, the compu-
tational penalty is typically below 20 seconds, due to the updates of the trees and feature
selection. ILASP-NB, on the other hand, is 3 times slower than SPLICE?*, since it requires
all the data to be available at once.
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Figure 5.10: Structure learning on nonEconomicDriving (left) and dangerousDriving
(right) as supervision increases. In the first scenario, supervision arrives uniformly at ran-
dom (top), while in the second one, supervision is provided only at the beginning of the
training sequence (bottom).

Finally, in Figure 5.10, we present the structure learning results of SPLICE-OLED against
SPLICE*-OLED, and OLED alone using the incomplete dataset (OLED alone uses only the
labelled examples). SPLICE*-OLED outperforms SPLICE-OLED in only one of the four
subfigures, namely nonEconomicDriving under random supervision. This is in agreement
with the supervision completion results, shown in Figure 5.8.

5.6 Discussion

In this section, we analyze the significance of the hybrid distance measure and the impact
of the batch size on our proposed approaches. First, we present an ablation study over
the distance components of SPLICE* and discuss when each component may or may
not be useful for improving performance. Then, we argue that the batch size does not
significantly impact SPLICE*, due to its robust graph construction, while on the other hand,
it may impact the perfromance of SPLICE.
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5.6.1 Ablation Study

In order to further examine the contribution of each of the proposed improvements over
SPLICE, in Table 5.1 we present the results of an ablation study on the activity recognition
dataset, comparing the different components of SPLICE* against each other. The first im-
portant observation is that the structural distance (d,) performs very well, which indicates
the importance of temporal connectivity. Mass-based dissimilarity alone (m) performs well
enough in meet but rather poorly in move, especially in the early supervision setting. How-
ever, when combined with the structural distance (d;) it always performs better than the
structural distance alone. Another interesting observation is that while feature selection
on the structural distance (d°) does not always achieve better results than the structural
distance alone (d,), it yields a synergistic effect when combined with the mass-based dis-
similarity (d?). For instance, in the random supervision setting, using d?, instead of d;,
increases F;-score from 0.63 to 0.67 for meet (corresponding to 242 errors on average),
while in the early supervision setting, it increases F;-score from 0.65 to 0.7 for meet and
0.7 to 0.73 for move (corresponding to 162 and 136 errors respectively). Therefore, the
proposed hybrid measure achieves the best overall performance.

Random Supervision Early Supervision

CE | Distance 50, 10% 1 2
d 0.62 0.70 0.56 0.69
d® 0.59 0.70 0.64 0.71

meet m 0.65 0.75 0.64 0.70
dy, 0.63 0.76 0.65 0.73
d? 0.67 0.77 0.70 0.76
dg 0.57 0.64 0.67 0.71
d® 0.58 0.67 0.69 0.71

move m 0.56 0.68 0.60 0.54
dy, 0.57 0.69 0.70 0.73
d® 0.58 0.69 0.73 0.75

Table 5.1: Comparison of SPLICE* on meet and move using the simple structural distance
(ds) and the hybrid distance (d®).

Similar to the task of human activity recognition, we analyse in the maritime monitoring
dataset, the contribution of each of the proposed improvements over SPLICE. In Table 5.2
we compare the different components of SPLICE* against each other. First, note that the
structural distance (d,) alone again performs well enough, given enough supervision (10%
or 2 supervised sequences). Mass-based dissimilarity alone (m) seems to perform well
in the pilotOps CE, but yields very poor performance in the rendezVous CE. Similar to
activity recognition, when combined with the structural distance (d;,) a small, but consistent
improvement of the performance is observed. In contrast to activity recognition, feature
selection on the structural distance (d?) does not seem to improve the performance further.
This is due to the synthetic supervision of the maritime dataset, which leads to noise-free
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labels and features. Moreover, there are three irrelevant features in the dataset but only
one of them appears frequently in the positive examples of the CEs, which renders the
measurements of d, quite similar to d°. Feature selection in this context is not expected
to add value.

. Random Supervision Early Supervision
CE Distance 59, 10% 1 o
ds 0.59 0.70 0.69 0.79
d® 0.59 0.70 0.69 0.79
rendezVous m 0.53 0.65 0.53 0.53
dp 0.62 0.75 0.74 0.81
d? 0.62 0.75 0.74 0.81
ds 0.47 0.63 0.78 0.90
d® 0.47 0.63 0.78 0.90
pilotOps m 0.56 0.69 0.94 0.94
dp, 0.56 0.69 0.95 0.96
d? 0.56 0.69 0.95 0.96

Table 5.2: Comparison of SPLICE* on pilotOps and rendezVous, using the simple struc-
tural distance (d,) and the hybrid distance ().

Finally, the results in the fleet management dataset do not provide any insight in the dis-
cussion, since there are no irrelevant or noisy features in the dataset, leading to very
similar distance measurements. As a general conclusion from the ablation studies that
we performed in these datasets, SPLICE* using all of its features, seems to provide the
best performance, irrespective of the supervision setting.

5.6.2 Batch Size Impact

CE | Batch size 1NumberofzsuperV|sed4$equences8
10 0.44/0.69 0.59/0.78 0.73/0.78 0.78/0.93
. 25 0.43/0.69 0.57/0.74 0.72/0.78 0.78/0.93
mee 50 0.42/0.69 0.51/0.77 0.67/0.77 0.77/0.93
100 0.42/0.69 0.56/0.76 0.75/0.80 0.77/0.93
10 0.66/0.73 0.73/0.75 0.71/0.79 0.84/0.94
25 0.66/0.73 0.74/0.74 0.72/0.79 0.84/0.94
move 50 0.66/0.73 0.74/0.78 0.74/0.81 0.84/0.94
100 0.66/0.73 0.73/0.75 0.73/0.80 0.84/0.94

Table 5.3: F,-score as batch size increases for meet and move CEs: SPLICE/SPLICE®.
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Table 5.3 presents the change in performance as the batch size increases on the ac-
tivity recognition dataset. The F;-score of SPLICE tends to fluctuate more than that of
SPLICE*, as the batch size increases. For instance, in the meet CE, when 2 or 4 su-
pervised sequences are provided, the F;-score of SPLICE varies from 0.01 to 0.08, while
SPLICE* varies from 0.01 to 0.04. Corresponding changes are also noticeable when 1 or
8 supervised sequences are given to SPLICE, while SPLICE™* does not vary at all in these
cases. Such variations also appear at a much smaller scale in move. These results sug-
gest that SPLICE* seems to be more robust to different batch sizes than SPLICE, which
indicates the importance of the graph construction process.

Number of supervised sequences

CE Batch size 1 > a
10 0.63/0.96 0.88/0.97 0.92/0.97
Lot 25 0.69/0.96 0.85/0.96 0.91/0.97
p12otUps 50 0.71/0.96 0.88/0.96 0.91/0.97
100 0.61/0.95 0.70/0.96 0.75/0.97
10 0.63/0.74 0.77/0.86 0.87/0.93
- 25 0.58/0.74 0.72//0.86 0.84/0.90
rendezvous 50 0.56/0.74 0.75/0.86 0.83/0.90
100 0.48/0.75 0.61/0.81 0.83/0.92

Table 5.4: F;-score of pilotOps, rendezVous for varying batch sizes: SPLICE/SPLICE*.

In Table 5.4, we present the change in F,-score as the batch size increases for the matitime
monitoring dataset. SPLICE™* is more robust than SPLICE, and this is more apparent in this
dataset, compared to the activity recognition one. On pilotOps, when 1 supervised se-
quence is provided, the F;-score of SPLICE varies from 0.02 to 0.1, while that of SPLICE*
varies only by 0.01. For 2 supervised sequences the variation is even greater, since the
F,-score of SPLICE varies from 0.03 to 0.18, in contrast to that of SPLICE* where the vari-
ation remains at 0.01. The same holds for the rendezVous CE, where for 1 supervised
sequence, SPLICE varies from 0.08 to 0.15, while SPLICE* varies only by 0.01.

5.7 Summary

The experimental results on the three real-life datasets showed that our proposed method
can effectively learn Event Calculus theories even in the presence of irrelevant or noisy
features. In such cases, it outperforms its predecessor (SPLICE), while in the simpler
cases, such as in the fleet management dataset, it yields at least as good performance.
On the other hand, ILASP-NB can achieve comparable accuracy in few cases for limited
supervision but at the cost of significantly increased runtime performance. Although ILASP
is a state-of-the-art ILP learning system that can learn Event Calculus, it is not designed
for semi-supervised learning. Moreover, the co-training procedure of ILASP-NB is not
practical for temporal data and may not converge in real-life datasets.
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6. CONCLUSIONS AND FUTURE WORK

“Science never solves a problem without creating ten more.”
— George Bernard Shaw

In this thesis we focused on scalable semi-supervised learning for complex event recogni-
tion applications and proposed two methods for learning complex event rules from partially
supervised training sequences. In Chapter 1 we briefly presented the basics of symbolic
event recognition and pointed out the main advantages of the logic-based approaches,
such as, the ability for robust temporal reasoning and the availability of machine learning
tools that facilitate the automated discovery of complex event rules from data streams.
Then, we argued that the assumption of a fully-labelled training sequence that arrives for
processing is unrealistic in real-life applications, since usually sparse, infrequent labels
are provided either on-stream or in the form of historical data. In Chapter 2 we briefly in-
troduced the Event Calculus formalism and the OLED system for learning such CE rules
from data streams. Then, we presented the background on graph-based methods to semi-
supervised learning and distance metrics required for this thesis. Finally, we provided an
overview of related approaches and argued that they are not appropriate for learning CE
rules from data streams, either due to scalability issues or due to other assumptions (e.g.,
numerical data). In Chapters 3 and 4 we proposed two scalable approaches for inferring
the missing labels in a partially supervised training sequence, thus enabling any super-
vised learner to operate on the completed training data. In Chapter 5, we presented an
experimental study showing that both of these approaches can efficiently complete the
missing labels and improve the predictive accuracy of the underlying structure learner.
Moreover, the results suggest that they are efficient enough to be used in large tempo-
ral datasets. In what remains we conclude this thesis by summarising the basic traits of
our proposed approaches and the respective experimental results, while we also provide
some directions for future research.

6.1 Conclusions

In Chapter 3, we presented SPLICE, a novel approach to online structure learning of CE
rules that operates on partially supervised training sequences. SPLICE infers the missing
supervision continuously as the data arrive in micro-batches. To that end, it employs a
graph-cut minimisation technique and a distance function for first-order logic to derive
labels for unlabelled data, by computing their distance to their labelled counterparts. As it
processes the input stream, SPLICE caches previously seen labelled examples for future
usage and filters noisy, contradicting labelled examples that may compromise the overall
accuracy of the learning task. Then, each fully-supervised micro-batch can be used by
any online supervised structure learning system, such as OLED, in order to derive new or
enhance existing complex event rules.
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In Chapter 4, we presented SPLICE™*, an improved approach to online structure learn-
ing of CE rules from partially-supervised training sequences. Similar to its predecessor
(SPLICE), the new method infers the missing labels continuously as the data arrive, and
passes them on to an online supervised structure learner that constructs CE rules. In
contrast to SPLICE, SPLICE* employs a hybrid distance measure combining a structural
distance optimised for kNN classification through feature selection, and a data-driven mea-
sure, based on mass estimation. The combined measure exploits the labelled data for
supervised metric learning and the unlabelled data for estimating the distribution of exam-
ples. Moreover, SPLICE* constructs a temporal graph and maintains a synopsis of the
data stream to achieve robust labelling.

In Chapter 5, we presented experimental results in the domain of complex event recogni-
tion, using a benchmark dataset for activity recognition, a real dataset for maritime moni-
toring, and a dataset for fleet management. The results showed that SPLICE can enable
the underlying structure learner to learn good CE rules, even in the presence of very lim-
ited given annotation. On the other hand, SPLICE™* outperforms its predecessor (SPLICE)
in terms of completing the missing labels and improving the predictive accuracy of the un-
derlying structure learner. Moreover, it seems particularly effective when the supervision
is provided only at the beginning of the stream. Finally, the comparison to a batch learning
system combining ILASP and Naive Bayes, to perform a form of co-training, resulted in
inferior results and much higher computational requirements.

6.2 Future Work

There are several interesting directions in which we indend to extend the work presented
in this thesis. The main ones are presented below:

Active Learning

SPLICE* is capable of identifying noisy or irrelevant features using a novel informed dis-
tance measure. However, the proposed approach still may not correctly infer the labels of
rare patterns or emerging classes. To that end, we would like to investigate active learn-
ing techniques [59], in order to select promising example instances or areas of the sample
space and request user information to further enhance the predictions, in the presence of
very noisy labels or concept drift. A straightforward approach of achieving that, similar to
the uncertainty sampling methods [40], is to exploit the real-valued labelling generated by
the harmonic solution (see Section 2.2.1). Label values closer to the decision boundary,
that is closer to zero, can be considered more uncertain and be chosen for investigation.
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Distributed Semi-Supervised Learning

The scalability of the learning systems presented in this work can be further improved,
via parallelizing parts of the learning task and distributing the workload over multiple pro-
cessing cores or computing nodes. Some degree of parallelization already exists in the
methods that we presented in this thesis, e.g., both methods compute the distances be-
tween examples in parallel. However, there are other promising directions that we have
indentified for further improving the performance, such as building and updating the Half-
Space Trees in parallel. Additionally, there are promising ideas for distributing the com-
putation by partitioning the input data over multiple computing nodes, using the ground
query atom constants. For instance, every distinct pair of IDs involved in a query may be
processed by a different computing node. To that end, an efficient data partitioning tech-
nique is necessery, in order to guarantee good load balancing among the nodes, while
maintaining low data redundancy. The resulting distributed version of SPLICE can be
combined with a distributed version of OLED [89] in order to learn CE rules efficiently.
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