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Abstract

Renewable Energy has been the main global focus of the last two decades, as the

energy industry searches for ways to steadily replace fossil fuels with greener energy

sources. This transition paved the way to new concepts and techniques for controlling the

power production and distribution in renewable energy parks. For improved efficiency,

the controller in the Smart Grid concept often acts proactively, where it predicts events

in the near future and prepares the underlying infrastructure for the upcoming event.

In the case of photovoltaic parks, a smart system makes short-term weather forecasts

about the global horizontal irradiance and the cloud cover in the park’s area of interest.

This thesis introduces a neural network as a solution to the short-term weather forecasting

problem. The proposed model is an image regression recurrent neural network in the form

of a spatio-temporal encoder/decoder. The basis of the structure is the Xception layer,

which utilizes depwthwise and pointwise convolutions to infer data. The Xception layer is

combined with long short-term memory cells to create a recurrent neural network with

improved forecasting capabilities. The proposed model is optimized for inference on the

edge and is evaluated on the Archon - Athens, Greece dataset.

Keywords: deep learning; ConvLSTM; irradiance forecasting; edge computing; photo-

voltaic parks; ground-based sky images





Περίληψη

Η παγκόσμια τάση των τελευταίων δύο δεκαετιών για ανεξαρτητοποίηση από κάυσιμες

πηγές ενέργειας έχει οδηγήσει τη βιομηχανία ενέργειας προς την αξιοποίηση ανανεώσημων

πηγών ενέργειας. Η μετάβαση σε πιο πράσινη ενέργεια αποτελεί έμπνευση ιδέων και πρακ-

τικών που αποσκοπούν στον έλεγχο της παραγωγής και διανομής ενέργειας στα πάρκα

ενέργειας. Για μεγαλύτερη αποδοτικότητα, αυτοματοποιημένοι ελεγχτές στα έξυπνα δικτύα

ισχύος δύναται να δρουν προληπτικά με σκοπό την πρόβλεψη απερχόμενων συμβάντων και

την προετοιμασία της υποκείμενης υποδομής για την αντιμετώπιση αυτών.

Στην περίπτωση των φωτοβολταϊκών πάρκων, το έξυπνο σύστημα ελέγχου ενός πάρκου

εκτελεί προβλέψεις μικρού ορίζοντα για την ολική ηλιακή ακτινοβολία στο οριζόντιο επίπεδο

και την νεφοκάλυψη στην ευρύτερη περιοχή του πάρκου. Η παρούσα εργασία παρουσιάζει

ένα νευρωνικό δίκτυο ως λύση για το πρόβλημα της πρόβλεψης καιρού μικρού ορίζοντα.

Το προτεινόμενο μοντέλο είναι ένα επαναλαμβανόμενο νευρωνικό δίκτυο για παλινδρόμηση

εικόνων σε μορφή κωδικοποιητή-αποκωδικοποιητή χώρου-χρόνου. Η βάση του μοντέλου

είναι το επίπεδο Xception, το οποίο αξιοποιεί κατά βάθος και κατά σημείο συνελίξεις για να

εξάγει προβλέψεις. Το επίπεδο Xception συνδυάζεται με κύτταρα μακράς βραχυπρόθεσμής

μνήμης για τη δημιουργία ενός επαναλαμβανόμενου νευρωνικού δικτύου με βελτιωμένες

ικανότητες πρόβλεψης. Το προτεινόμενο μοντέλο έχει βελτιστοποιηθεί για ακροδικτυακή

υπολογιστική και έχει αξιολογηθεί στο σύνολο δεδομένων ΑΡΧΩΝ - Αθήνα, Ελλάδα.

Λέξεις κλειδιά: βαθιά μηχανική μάθηση; συνελικτικά αναδρομικά νευρωνικά δίκτυα;

πρόβλεψη ακτινοβολίας; ακροδικτυακή υπολογιστική; φωτοβολταϊκά πάρκα; επίγειες εικόνες

ουράνιου θόλου





Contents

1 Introduction 1

2 Related Work 3

3 Problem Definition 5

3.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Xception Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.2 ConvLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.3 Xception-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.4 Sequence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.5 Spatiotemporal Encoders/Decoders . . . . . . . . . . . . . . . . . 11

3.1.6 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Input Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1.1 Binary Sunmask . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Ouput Irradiace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Results 17

4.1 Training Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Timing Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions 23

Abbreviations 24

Bibliography 27





List of Figures

3.1 Depthwise separable convolution breakdown. . . . . . . . . . . . . . . . . 6

3.2 Structure of the implemented Xception Layer in its a) direct and b) trans-

posed form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Sequence Model Categories. . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Spatiotemporal Encoder/Decoder. . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Spatial Encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Spatial Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 The Archon – Athens, Greece Dataset. . . . . . . . . . . . . . . . . . . . 13

3.8 Samples of the input image sequences. The calculated sunmasks that

highlight the solar area in clear sky conditions appear as orange filters. . 15

4.1 Training scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Timing reports for inference on low-cost, edge computing devices. . . . . 22





List of Tables

4.1 Overview of spatio-temporal models’ number of parameters and operations

and the training time per epoch for an input sequence of five 128× 128× 4

images and an output sequence of fifteen irradiance values. . . . . . . . 18

4.2 The hyperparameters that were examined and chosen for the benchmark. 19

4.3 Evaluation results of the models in Table 4.1 for the horizons of 1, 5, 15

min and the average for the first 15 min. The best models for each metric

and horizon are bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20





Acknowledgements

I would like to thank the Digital Systems Team leader and my supervisor, Professor
Dionysios Reisis, as well as the Inaccess Networks for funding and supporting this re-
search with the necessary equipment, and for giving me the opportunity to participate
in the Archon Project. This research has been co-financed by the European Regional
Development Fund of the European Union and Greek national funds through the Op-
erational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH—CREATE—INNOVATE (project name “ARCHON” and project code:
T2EDK-00864). The results of this thesis were published on 18 November 2023 in an
open access article in Information

I would also like to express my deepest gratitude and love to my parents and sisters
for their continuous support and guidance in my decision to pursue my master’s degree.
Finally, I’m deeply indepted to my brothers from another mother, Chris, Alex, Kostas
and Alex Jr, for helping me become a better version of myself and for showing me that
life is too short to worry about things I can’t change.

http://archonproject.eu/
https://www.mdpi.com/2078-2489/14/11/617




Chapter 1

Introduction

The overall increasing need for sustainable energy has led researchers and the energy
industry in search for new tools to better manage energy resources. Such tools often
include controllers and sensors to monitor the energy production infrastructure and detect
any worrisome activity. However, real-time systems may not be flexible enough to react to
the environment’s changes and detect a problem in a short notice to minimize its effects.
Thus, a different approach is considered, where all sensor measurements from the near
past are collected and provided to the system’s controller. The controller can then make
predictions about the near future and take actions proactively, or be prepared for an
issue it has predicted to occur. Such smart systems are mostly logically and physically
centralised, since predicting the state of a system can be computationally intense and
decision making is heavily dependent on it.

In energy parks, predicting the power output can help balance the main grid’s power
and achieve an overall better power management and energy storage. By doing so, the
power distributor and the photovoltaic (PV) park manager benefit from less stressed
infrastructure and energy losses, but also from providing smoother services to their
corresponding clients. The Smart Grid (SG) concept relies on controllers that can
both proactively and reactively make decisions about the power distribution and the
configuration of the infrastructure in their scope. This configuration refers to controlling
the characteristics of nearby devices. For example, when a gust is expected within the
next few minutes, the SG controller informs the nearby wind turbine, working as a
secondary and more stable power source, to slowly increase the moment of inertia, so that
the frequency of the produced alternating current (AC) would not be heavily disrupted.
Short-term weather forecasting is a mission critical task for the PV park controller to
base its proactive decisions. There are analytical solutions for weather forecasting, but
researchers usually avoid these solutions because of the heavy computational needs and
time constraints they set. Machine Learning (ML) based solutions are considered instead,
since their execution times and computational complexity best suit the problem. In both
cases, the solutions are statistical and a dataset is needed to correlate the forecasts to the
ground truth. The Earth’s atmosphere is highly unstable; developing a forecasting NN for
a system with uncountably many parameters and dependencies (known and unknown)
may not be as promising as it sounds. We present in this work that NN-based solutions
offer a tempting alternative for short-term weather forecasting and that they can be
tailored for both centralized and edge computing applications.
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The purpose of this thesis is to provide a method in order for these SG controllers to
predict the future state of the systems they monitor. In this thesis, a camera is considered
as a sensor that captures the sky dome of a PV park. By parsing the images of the
past few minutes with the help of Neural Networks (NN), we can make forecasts about
meteorological parameters that directly influence power production outage. We will focus
our research on global horizontal irradiance (GHI).

This thesis focuses on image regression based ML techniques that exploit Sequence-
to-Sequence (Seq2Seq) recurrent neural networks (RNN) in the form of spatio-temporal
encoders/decoders [1]. Specifically, we explore convolutional neural networks (CNN) and
their depthwise separable counterparts, the depthwise separable convolutions (DWSC) in
order to significantly improve the training effort, as well as the inference execution time
and the evaluation results of the proposed model. Also, we study the Xception Layer
(XL) [2] as a state-of-the-art layer for deep learning (DL) based applications and combine
it with long short-term memory (LSTM) cell, formally named XceptionLSTM. Finally, we
introduce the proposed model, a spatio-temporal model that utilizes XLs to form a spatial
encoder, XceptionLSTM cells for the temporal ecoders and decoders and a multilayer
perseptron (MLP) for the spatial decoder.

The work is presented as follows. First, Chapter 2 presents the recent works in the
scope of weather forecasting for RES park controlling. Chapter 3 is an overview of the
techniques used throughout this work. It also introduces the dataset used for the training
and the evaluation of the tested models. Chapter 4 follows with the training scheme
and the presentation of the evaluation results for a set of spatio-temporal models we
benchmarked. Chapter 5 concludes the thesis with a discussion of the results and future
work.
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Chapter 2

Related Work

Researchers and engineers in the renewable energy field are keen for solutions to the
short-term irradiance forecasting problem [3]. Especially in the last two decades, they
focus on Computer Vision and ML-based systems, which often include image processing
for satellite imagery [4, 5, 6, 7]. Given that the satellite images cover a vast area of the
Earth’s and, measuring the GHI in different areas of an image may provide significantly
different values. The alternative is the ground-based imagery [8, 9, 10], which clearly
depicts the current weather conditions in the area of interest with a notable application
example the case of large PV parks. The PV park controllers use multiple ground-based
sensors and they can yield more accurate results [11].

As Ziyabari et al. [1] suggest, researchers often consider spatio-temporal architectures
as a solid base for their models because the dimensionality of the input data does not
constrain considerably the final structure of their models. This holds whether the input
data is multiple time-series of environmental measurements from multiple sensors that are
spread in a wide area or, as in this article, a time-series of images from a single sky camera.
ConvLSTM-based solutions are reported in image regression related techniques that
target irradiance forecasting [12, 13, 14]. This is because CLs are effective in modelling
the complex dynamics of the environmental variables, such as the cloud and the wind
movement. Moreover, as the name suggests, ConvLSTMs can capture the long-term
evolution of the irradiance values. More accurately, ConvLSTMs excel in modeling the
long-term dependencies of the target data and extract the correlation among the input
data [10]. It is quite common for researchers to utilize image segmentation for cloud cover
estimations as a means to enhance the results of ML-based forecasting models [15, 16].

Zhang et al. [17] compare the results of MLP, CNN and LSTM models that are
trained to predict PV power differences by using PV power data and sky images. They
conclude that a hybrid model using both PV power data and images has a better-balanced
performance across different types of weather conditions. Sun et al. [18] present the
SUNSET, a deep CNN architecture that accepts an image sequence and other data
produced by the PV park and it outputs PV power and Clear Sky Index (CSI) predictions.
The input image sequence is in the form of a single hyperspectral image. Ajith et al.
[19] developed a multi-modal fusion network for ultra-short irradiance forecasting using
infrared images and past irradiance data. They explain that infrared images of the sky can
better capture the cloud dynamics in the small horizon of 15 seconds. Kumari et al. [10]
discuss the advantages and drawbacks of using LSTMs, Gated Reccurrent Units (GRU),
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CNNs, Deep Belief Networks (DBN), RNNs and Hybrid Artificial Neural Networks (ANN)
for solar irradiance forecasting. Basmile et al. [20] review and compare eight different AI
models for horizons of a minute, an hour and for daily average forecasts of GHI, DHI and
DNI values. Nie et al. [14] explore training tactics for heterogeneous datasets and how
transfer learning contributes to reducing the training effort and improving the results of a
model. Lyu et al. [21] use deep reinforcement learning (DRL) in order to dynamically
change between optimal features of a model by recognising weather patterns.
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Chapter 3

Problem Definition

For the purposes of this work, we assume that the state of the target system solely
depends on the recent history of the system. Based on this assumption, we can make
forecasts about the next state of the target system if we have records of the system’s
states from the near past. In this work, we aim to predict GHI values in the near future.
A sequence of images captured consecutively with a constant time interval (referred to as
horizon from now on) is forwarded to a NN. The model outputs a new sequence of values
corresponding to consecutive GHI values with the same horizon as the input sequence.
The input and output sequence length, as well as the horizon used for the prediction are
some of the model’s hyperparameters, and can be fine-tuned to achieve the best possible
outcome. Other hyperparameters are the model’s structure, the training schemes and any
data preprocessing.

3.1 Model Structure

A NN need to be complex enough to be able to simulate the system it is trained
to describe. Therefore, in highly complex systems such as the Earth’s atmosphere, the
traditional models that can respond to such fast-changing parameters need a great number
of parameters and they are time consuming to train and infer results. This calls for
state-of-the-art ML algorithms and techniques that provide sufficient complexity without
the intense computational resources their predecessors would need for the same task.

3.1.1 Xception Layer

The proposed model utilises Xception Layers [2], a type of Convolutional NN that com-
bines the characteristics of Inception Modules [22] and Depthwise Separable Convolutions
(DWSC) [2, 23]. A DWSC extracts the parallelism of a traditional convolutional layer
(CL) by partitioning the operation in two, simpler operations, a depthwise convolution
(DWC) and a pointwise convolution (PWC). The former is a convolution in each frame
of the channels of the input tensor, while the latter is a convolution in each pixel of the
input tensor. Combining the DWC and PWC sequentially results in a CL with the same
result-producing capabilities, but much more lightweight in terms of total number of
parameters and computational intensity. The computational graph of a DWSC is depicted
in Figure 3.1. We note here that for every CL there are two unique and equivalent DWSC
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Figure 3.1: Depthwise separable convolution breakdown.

modules, specifically one module that starts with a DWC and ends with a PWC and one
more that starts with a PWC and ends with a DWC. Also, the execution order of the
PWC and DWC does not affect the result of a DWSC, but may affect the computational
complexity, the backpropagation during training and the time and memory overhead of
the layer.

An Inception Module consists of nested CL, where all nested layers process the same
input in parallel, and all results are concatenated, added or in general reduced to a new
output tensor. By parallelising layers, we can achieve a higher level of parallelism, there is
a greater degree of data usage and, thus, less memory communication overhead. Inception
Modules also help to alleviate the vanishing gradient problem [24], in which gradient
becomes insignificant in the first layers of a model during backpropagation when training
models with a great number of sequentially connected layers.

The combination of DWSC and Inception Modules results in Xception Layers (XL),
where depthwise operations such as DWC or pooling operations are executed in parallel
and then their results are concatenated and forwarded to a PWC. We can also consider
the transposed XL, where the result of a PWC is split into chunks that are then forwarded
to depthwise operations. This scheme exploits two forms of parallelism, the inter-task
parallelism (parallel execution of nested layers in Inception Module) and intra-task
parallelism (parallel execution of convolutions in every channel of the input tensor in a
Depthwise Convolution.) Although intra-task parallelism is already present in CL, due to
the independence of the operations between the kernels of a CL (inter-kernel parallelism,)
a greater degree of intra-task parallelism can be achieved with XL and DWCs. This is
because the DWCs operate on all channels independently, and intra-task parallelism is
achieved by executing the convolutions of each channel in parallel.
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The clear advantage of XL in favour of the traditional CL,
when compared based on NNs with similar characteristics, is
better data management, less overhead in terms of memory access
and less number of total parameters and operations. All these
advantages can be even further improved by partitioning DWC
in two asymmetrical DWC, one for each dimension of the frame,
meaning convolutions with kernel size 1×N and N×1 [25], where
N ×N the kernel size of the traditional CL. Although it is easily
applicable, we note that splitting a CL in its three dimensions is
out of scope for this work, since its benefits are more apparent
in kernels of larger sizes.

The structures of the XL that are considered throughout this
work are shown in Figure 3.2a. It consists of four nested layers,
two of which are DWCs with kernel size 3 and 5, a Max pooling
layer and the identity function. The identity function is ultimately
used as a PWC of the XL’s input tensor. Also, using the identity
function helps with gradient descent; the gradient is broadcasted
to and propagates through all four nested layers, but is unaffected
by the identity function. The gradients of all nested layers are
then added and (back)propagated to the previous layer. As a
result, the gradient of a XL is mostly affected by the PWC and
less affected by the nested depthwise operations (they can be
viewed as small adjustments in the output gradient.) Thus, layers
in the later stages of backpropagation are less likely to experience
the vanishing gradient descent problem.

The mathematical equivalent of the XL depicted in Figure 3.2a
is the set of Equations (3.1) to (3.5). All three depthwise oper-
ations (Equations (3.1) to (3.3)) are padded with a stride of 1
and produce a tensor of the same size as the input tensor. Equa-
tion (3.4) is the reduction of the depthwise operations, which, in
this work, is the concatenation of their results. Equation (3.5)
describes the PWC of the reduced tensor.

A transposed version of the XL is depicted in Figure 3.2b. Al-
though equivalent, choosing between the direct and the transposed
version of XL has an impact in the total number of computa-
tions during inference. Backpropagation is also affected when
choosing between the two forms, but further analysis is needed to
determine the advantages and drawbacks in terms of forecasting
performance and inference and training time.

3.1.2 ConvLSTM

Convolutional Long-Short Memory (ConvLSTM) Cells [26] are Recurrent NN (RNN)
structures that utilize convolutions and operate on tensors, in contrast to LSTMs [27],
which operate on vectors. LSTM cells are mainly used when a sequence of data is being
processed or generated, and can be found in Deep Learning (DL) based Natural Language
Processing (NLP) applications [28] and Time-Series Predictions [29, 30]. ConvLSTM Cells
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xconv3ijk = bconv3k +

1∑
i′,j′=−1

pad(x)
i+i′,j+j′,k ×Wconv3i′j′k (3.1)

xconv5ijk = bconv5k +

2∑
i′,j′=−2

pad(x)
i+i′,j+j′,k ×Wconv5i′j′k (3.2)

xmax3ijk =
1

max
i′,j′=−1

pad(x)
i+i′,j+j′,k (3.3)

xextijk =


x

ijk′ , k′ = k ∈ [0, kmax)

xconv3ijk′ , k′ = k − kmax ∈ [0, kmax)

xconv5ijk′ , k′ = k − 2kmax ∈ [0, kmax)

xmax3ijk′ , k′ = k − 3kmax ∈ [0, kmax)

(3.4)

yijk = bconv1k +
∑
k′

xextijk′ ×Wconv1k′k (3.5)

are able to process more complex tasks, such as Next Frame Prediction [31] and other
Time-Series Predictions with feature extraction [32]. ConvLSTM Cells can be described
by Equations (3.6) to (3.15):

x = Concat(Xt, Ht−1) (3.6)

ic = x⊛Wci + bci (3.7)

fc = x⊛Wcf + bcf (3.8)

cc = x⊛Wcc + bcc (3.9)

oc = x⊛Wco + bco (3.10)

ig = σ (ic + Ct−1 ⊙Whi) (3.11)

fg = σ (fc + Ct−1 ⊙Whf ) (3.12)

og = σ (oc + Ct−1 ⊙Who) (3.13)

Ct = fg ⊙ Ct−1 + ig ⊙ act (cc) (3.14)

Ht = og ⊙ act (Ct) , (3.15)

where the new input and the hidden state of the previous inference of the cell are
concatenated (Equation (3.6)) and forwarded to four convolutions (input, forget, cell and
output convolutions, Equations (3.7) to (3.10)). The input, forget and output gates are
calculated by summing the results of the corresponding convolutions with the Hadamard
products of the cell state of the previous inference (Ct−1) with their corresponding
parameters. The new cell state (Ct) is a combination of the previous cell state, the input
and forget gate and the cell convolution. The new hidden state (Ht) is the Hadamard
product of the output state with the new cell state. Equations (3.11) to (3.13) are called
gates because the values they contain range from 0 to 1, and act as a means for features
to prevail over other, less beneficial features when calculating the new hidden and cell
states. The hidden state of a cell represents the output feature map of the cell, given the
current cell state. The cell state carries information of a single cell alongside the temporal
dimension (often seen as one because sequences can be easily interpreted as time series.)

The difference between ConvLSTM and common LSTM (also referred to as Fully
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Connected LSTM – FC-LSTM) is the operations chosen in Equations (3.7) to (3.10); Fully
Connected layers are implemented instead of convolutional layers. In fact, the operation
used in these four equations greatly impacts the overall behaviour of the LSTM cells.

A NN may contain more than one LSTM cells; it is often the case that cells are stacked
such that the input of one layer is the hidden state of the previous layer, while each
cell updates its cell and hidden state in every recurrence [27]. Stacking cells allows for
better adaptability of the model in more complex datasets. This is because, as multilayer
perceptrons (MLP) have better convergence than linear models, models with multiple
layers can describe more complex relationships between the features of the input data.
One more way to utilize LSTM cells is by parsing the sequence in both natural and
reverse order [27]. Due to the forget gate, elements at the start of a sequence have a lower
influence in the result of a RNN than the elements at the end of the sequence. Therefore,
parsing a sequence both forwards and backwards can greatly improve a model’s response
when the nature of the problem it is used for dictates that elements of the input sequence
equally influence the output state. Bidirectional LSTMs are extensively used in NLP,
where a sentence is parsed in both directions in order for the final state of the model not
to favour any of the edges of the sentence and have a more balanced understanding of the
context the text.

3.1.3 Xception-LSTM

The proposed model utilises XL [2] as a substitute for convolutions in ConvLSTM cells.
The XL used in the LSTM cell is shown in Figure 3.2a.

As explained in Section 3.1.2, the operation implemented in Equations (3.7) to (3.10)
greatly affects the prediction capabilities of an RNN. Combining XL and ConvLSTMs
can have significant benefits; the final structure is a lightweight RNN that processes the
input feature map in more than one ways in the same layer. By doing so, there is better
data extraction and the information contained in the cell states is more representative of
the input sequence compared to other, straightforward implementations of ConvLSTMs.

3.1.4 Sequence Models

It is often the case that data appear in sequences such as text sequences and time series.
Depending on the problem, a model may be classified in one of the following categories:

I. Sequence-to-1 (Seq2One): an input sequence produces a single output element
(Figure 3.3a),

II. 1-to-Sequence (One2Seq): a single input element produces an output sequence
(Figure 3.3b),

III. Sequence-to-Sequence (Seq2Seq): an input sequence produces an output sequence
(Figure 3.3c), and

IV. Sequence-to-Sequence with Encoder/Decoder: an input sequence produces an output
sequence using an encoder-decoder structure (Figure 3.3d).

The main difference between Figure 3.3c with Figure 3.3d is the use of 2 separate
modules in the same model when working with encoders – decoders, instead of a single
module switching from accepting an input sequence to generating an output sequence.

9
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Figure 3.3: Sequence Model Categories.

The encoder/decoder model utilizes a Sequence–to–1 module to parse the input sequence
to a state (or set of states if Stacked LSTM is used) and is often referred to as an encoder.
The model further utilizes an 1–to–Sequence module to generate the output sequence,
based on the state produced by the encoder. The latter module is also referred to as a
decoder. Its input, excluding the state initialization with the encoder’s state, may be:

I. either the final element of the input series (when continuity between the input and
output sequence is expected,)

II. the first element of the input sequence (eg. generating an enriched version of the
input sequence,)

III. the encoder’s state again (decoding an encoded state,) or

IV. a default input, independent of the input tensor, usually zero or a parameterized
tensor (often implemented as such in NLP.)

In NLP, models are usually based on an encoder/decoder architecture and the input
sequence is initiated with a default element, which is also used as the input element of
the decoder. RNN-based translators make use of that in order to signal the start of a new
sentence and generate text in another language. This signaling also appears in natural
languages such as the use of ¿ and ¡ in Spanish.

As for Time-Series data, the output sequence is seen as the logical cοntinuation of the
input sequence. Since the decoder accepts the previous prediction and produces a new
prediction in each step, and all output elements are timestamped, we can easily conclude
that the input element of the decoder should be the start of the output sequence. Due
to the expected continuity of the input and output sequence, the input element of the
decoder should be no other than the end of the input sequence. The proposed model is
operating on Time-Series, so the input element of the decoder is the last element of the
input sequence, as shown in Figure 3.3d.
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3.1.5 Spatiotemporal Encoders/Decoders

The proposed model accepts an input sequence of images and produces an output
sequence of arithmetic data. The conflict between data types makes using simple Seq2Seq
models complicated; a feedback module would be necessary in order to fit the RNN output
to its input. That feedback module would need to create a tensor from a single scalar
value. One can guess that such module would not produce satisfactory results.

Instead of using a single RNN module as a model, the proposed model consist of three
discrete modules:

I. Spatial Encoder: a CNN-based module that compresses an input image to an abstract
tensor that can be seen as an encoded state of the image,

II. Temporal Encoder/Decoder: a Seq2Seq RNN module based on XceptionLSTM that
accepts and produces encoded states and

III. Spatial Decoder: a MLP-based module that decodes an encoded state to a scalar
value prediction.

Spatial encoders and decoders transform elements of a sequence, while temporal
encoders and decoders transform sequences. Temporal encoders and decoders operate on
inputs and outputs of the same data types and shapes. This way, no feedback module
is necessary for recurrence, thus making the module much simpler. Another advantage
is that the module learns to produce tensors with the same characteristics as the ones
it accepts. That means the output of the model is potentially closer to tensors that
would produce realistic results. The structure of the proposed model is based on the
following thought; if the spatial encoder and decoder were combined sequentially, then
the input image would be transformed into a scalar value of the same timestamp. We
can hypothesize that the encoded state produced by the spatial encoder represents the
state for this particular timestamp. It is also given that the proposed model outputs
Time-Series. Therefore, we can logically conclude that temporal decoders should only shift
the encoded state by a constant time delta (also called horizon,) meaning that temporal
decoders emulate the behaviour of the spatial encoders when given an image captured a
horizon after the image that is currently being processed.

Since the elements of input and output sequences consist of different types of data, the
proposed model utilizes a CNN based module to process input images and a MLP for

Imgt-N+1 ... Imgt

Spatial

Encoder
... Spatial

Encoder

Temporal

Encoder

Temporal

Decoder

Spatial

Decoder
... Spatial

Decoder

Îrrt
... ̂Irrt+M

time

Figure 3.4: Spatiotemporal Encoder/Decoder.
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generating scalar values. For the purpose of evaluating Xception-LSTMs, the encoded
states are chosen to be 3-dimensional tensors. Before the encoded states are processed by
the spatial decoder, the encoded state is flattened to a vector.

3.1.6 Proposed Model

The proposed model is a spatio-temporal encoder/decoder with an XL-based spatial
encoder, an XceptionLSTM temporal encoder and decoder and a MLP as the spatial
decoder. The structure of spatial encoder and decoder is depicted in Figures 3.5 and 3.6
respectively. The spatial encoder consists of 6 layers; Two input XLs are used to extract
data from the input image. Two middle, residual layers are used for refining data. Each
middle, residual layer consists of a nested sequential model of two XLs. The layer’s output
is the sum of the nested module’s output and its input. Especially for the second residual
layer, the sum is instead calculated with the result of a 1 × 1 convolution of the input
in order to match the number of channels between the input and the desired output
tensor. The nested module can be interpreted as an input corrector, thus refining the
input tensor’s data. Two output XLs are used to compress data to an encoded state.
The encoded state is normalized before exiting the spatial encoder. The spatial decoder
consists of three Linear Layers. An encoded state produced by the temporal decoder is
first reduced to a fixed sized tensor with Adaptive Average Pooling and flattened to a
vector. The vector is then normalized and finally forwarded to a 3-layer MLP.

All layers are followed by an activation function. In this work, LeakyReLU is used with
a negative slope of 0.1125. ReLU is used as the output activation function in inference,
but LeakyReLU is used during training with a near-zero negative slope (10−3) to allow
backpropagation when a negative value is produced in the early stages of training. The
proposed model accepts any image of frame size of at least 64×64 pixels. In this work, the
proposed model has been optimized for images with a frame size of 128× 128, as all tested
models during development showed improved results for this particular configuration.
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3.2 Dataset

The proposed model has been trained and evaluated on a dataset that, to this day, is
being developed for the purposes of the Archon Project [33]. The said dataset consists
of sky images with a horizon of one minute and GHI values of the athenian sky from
October 25th 2022 till today. Samples of the dataset are provided in Figure 3.7. We
use the months January, April and July 2023 for testing and the rest of the dataset for
training and validation. We chose these three months because each one represents distinct
characteristics in terms of meteorological phenomena and energy yields:

• January has short days with low energy yields and frequent weather changes. It is
mostly cloudy with overcast conditions.

• April has balanced day and night hours with average energy yields and frequent
weather changes. It is mostly sunny with partly-cloudy conditions.

• July has long days with high energy yields and infrequent weather changes. It is
mostly sunny with clear sky conditions.

3.2.1 Input Images

The proposed model accepts images as inputs. It is often the case that images contain
redundancy; even with the human eye, shrinking significantly the size of an image won’t
affect as much our ability to recognize structures in the image. In the world of computer,
an image may be shrunk down to just 25% of its original size in bytes. Observing the
images of Figure 3.7, we can say that the colours in a sky image do not vary much, as blue,
yellow, grey, white and a short range of their intensity usually appear. Therefore, sky
images tend to have a lot of redundancy, and thus, reducing their size won’t significantly
affect the information we are interested in.

The sky imager – the camera that captures the Athenian sky dome for the purpose of
creating the dataset – captures images of size 1536 × 1536 with three channels (RGB)

2022-11-15 12:05:00

GHI = 443 W m−2
2022-12-15 10:09:00

GHI = 173 W m−2
2023-01-15 14:32:00

GHI = 144 W m−2
2023-02-15 07:14:00

GHI = 30 W m−2
2023-03-15 07:38:00

GHI = 577 W m−2

2023-04-15 11:20:00

GHI = 951 W m−2
2023-05-15 05:00:00

GHI = 157 W m−2
2023-06-15 16:07:00

GHI = 146 W m−2
2023-07-15 12:00:00

GHI = 879 W m−2
2023-08-07 09:02:00

GHI = 886 W m−2

Figure 3.7: The Archon – Athens, Greece Dataset.
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of 8-bit integers. The proposed model has been optimised in images of size 128 × 128
of single floats, which corresponds to a memory allocation for the input equal to 2.77%
of the original image during inference. The vast difference in memory allocation during
inference also positively affects the time performance of the model and its portability,
meaning it would be easier for an edge device to infer data.

3.2.1.1 Binary Sunmask

To increase the model’s performance, an extra channel is added to each image. The
added frame is a binary sunmask, a mask of true or false values, later converted to single
floats, that highlights the sun disk in an image in clear sky conditions. The introduction
of this binary mask is one way to provide the models with useful data related to the image.
Such data include the solar azimuth and the solar elevation and by using this binary mask
they can be easily correlated with the image. It also hints that the highlighted areas are
the region in the image expected to correspond to the sky fragments providing the larger
fraction of GHI. Finding the sun’s position in an image is not a trivial task; in this work,
this problem is partitioned in two separate problems with known solutions:

• locating the sun in a sky dome given the time and coordinates of the observer, and

• projecting a point of a hemisphere to a flat surface.

Combining the two solutions results in the pinpointing the centre of the sun in an
image, given its timestamp, the location and orientation of the camera and the intrinsic
characteristics of the camera.

Locating Sun in a Sky Dome: This work utilizes astronomy equations for the
calculation of the centre of the sun in a sky dome. Specifically, all necessary functions are
implemented in pvlib python [34], a Python package for simulating the performance of
photovoltaic energy systems. Based on the location of the camera and the timestamp, the
solar elevation and solar azimuth can be calculated with the help of the pvlib package.
The solar azimuth is corrected in order to account for the orientation of the camera.

Projecting a Point of a Hemisphere: This problem originates from the way the
camera collects light from its environment and creates an image. The projection of a
point is dependent to the intrinsic characteristics of the camera [35]. A camera can be
described by a camera matrix and distortion coefficients. A calibration of the camera may
be done by capturing an image of a chess board, but this is not always possible since the
camera, like in this case, is in a remote place. Instead, mapping functions are defined [36]
for fisheye distortion. These functions are radial and are based on usual ways fisheye lens
are being implemented. The following mapping functions are implemented:

Rectilinear: r = f tan θ
Stereographic: r = 2f tan θ/2

Equidistant: r = f θ
Equisolid: r = 2f sin θ/2

Orthographic: r = f sin θ

where r is the distance of the projected point from the centre of the image, f is the focal
length of the camera and θ is the solar zenith (zero is the centre of the sky dome and 90◦ is
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the horizon.) Since distance in images is counted in pixels, the focal length is normalized
and is equal to

fn =
1

Radius(px)
× focal length (mm)

pixel size (mm/px)
. (3.16)

The normalized distance is then adjusted to the size of the image and transformed into
cartesian coordinates on the image. The start of the cartesian axi is the pixel (0,0),
which differs from the start of the polar axi (R/2,R/2). Therefore, the centre of the sun is
calculated by Equation (3.17)[

i
j

]
=

[
ic
jc

]
+ rn R

(
cosϕ sinϕ
− sinϕ cosϕ

)[
0
1

]
, (3.17)

which corresponds to a clockwise rotation starting from the North, scaling the vector to
the size of the distance of the point from the sky dome’s centre and adding an offset to the
vector, or equivalently shifting the start of the axi from the centre of the dome to the first
pixel of the image. For this dataset, the characteristics of the camera are unknown. The
most accurate masks are produced with the equisolid mapping function and a normalized
focal length of 0.695. Examples of the binary mask application in samples of the input
image sequences are shown in Figure 3.8.

Figure 3.8: Samples of the input image sequences. The calculated sunmasks that

highlight the solar area in clear sky conditions appear as orange filters.

15



3.2.2 Ouput Irradiace

The proposed model outputs irradiance values as single floats. The target values are
integers and range from zero to around 1460Wm−2. The model is tasked with predicting
values in the same range, which is 4 orders of degree between the lowest and highest
possible value.

3.3 Metrics

Metrics are used in order to quantify the performance of a model when evaluated
in a dataset rather than visually comparing the predictions and targets. The literature
provides a variety of metrics for evaluating solar forecasts, which are envisaged from
different perspectives [3]. In this work, we evaluate the results of the tested models with
mean bias error (MBE), mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and forecast skill (FS) shown in Equations (3.18)
to (3.22):

Mean bias error: MBE =
1

N

N∑
i=1

(ŷi − yi) , (3.18)

Mean absolute error: MAE =
1

N

N∑
i=1

∥ŷi − yi∥ , (3.19)

Mean absolute percentage error: MAPE =
1

N

N∑
i=1

∥∥∥∥ ŷi − yi
yi

∥∥∥∥ , (3.20)

Root mean square error: RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2, (3.21)

Forecast skill: FS = 1− RMSE

RMSEpers

, (3.22)

where N is the size of the test dataset, ŷi is the forecast and yi is the target value for a
horizon H. The MBE highlights whether a model shows bias when forecasting and hence,
whether the results tend to consistently under- or overestimate the target value. The MAE
and RMSE show the measured deviation of the results in respect to the target values.
We can interpret the former as the expected deviation in the lower range of the GHI
values, whereas the latter refers to the expected deviation in the upper range of the GHI
values. The FS provides a more dataset-independent way to evaluate models [37]. This is
accomplished by comparing the models to the Persistence Model, which forecasts that no
change will occur to the target value after a horizon. The Persistence Model is a baseline
model that often appears in short- and ultra short-term irradiance forecasting solutions,
where the forecast horizon ranges from 15 s to 2 min. The MAPE metric indicates the
normalized deviation of the forecasts from the target values, which also helps in assessing
the models’ performance more comprehensively.
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Chapter 4

Results

This section presents the evaluation results of the proposed model for the task of
short-term irradiance forecasting. Moreover, it presents the results of the study on the
performance of models with various temporal encoders/decoders and it compares their
results to that of the proposed model. The comparison models include ConvLSTMs,
stacked ConvLSTMs, bidirectional ConvLSTMs and their respective depthwise separable
(DWSConvLSTM) and Xception versions. The presented benchmark also compares the
temporal encoders and decoders that are based on convolutional gated recurrent Units
(ConvGRU) [38], an RNN initially intended for spatio-temporal feature learning from
videos. We note here that bidirectionality only applies to the temporal encoder, as it is
the only module that accepts a sequence as an input, and the results of the forward and
backward pass of the input sequence are summed and forwarded to the temporal decoder.
All layers of the tested temporal models accept and generate tensors of size 8× 8× 128.
Table 4.1 is an overview of the models evaluated in this work. All hyperparameters are
listed in Table 4.2.

All the models are trained and evaluated in a Linux workstation with an Intel(R)
Core(TM) i7-9700K CPU @ 3.60GHz and a NVIDIA GeForce RTX 3080 GPU. We deploy
a Raspberry Pi 4 Model B 8 GB and a Raspberry Pi Zero 2W for time performance tests as
devices on the edge, configured as a Linux workstation with a quad core Cortex-A72 (ARM
v8) 64-bit SoC @ 1.5GHz for the former and as a Linux workstation with a quad-core
Arm Cortex-A53 64-bit SoC @ 1GHz for the latter device. We use Python 3.9.13 and
Pytorch 2.0.0+cuda11.7 for the development of the evaluated models.

4.1 Training Scheme

In order to reduce the total training time of all models that are evaluated in this article,
we used transfer learning and partitioned the models’ training in two stages, as shown in
Figure 4.1. In the first stage, we trained the spatial encoder and decoder in the training
dataset for the problem of irradiance estimation. Specifically, the spatial model accepts
an image and estimates the GHI value for this particular image. This stage is common to
all the models we tested; therefore, the spatial encoder and decoder were trained only
once. We train the second stage’s spatio-temporal model using as initial weights: (a) for
the spatial encoder and decoder those resulting of the first stage and (b) for the temporal
encoder and decoder arbitrary weights. This scheme allows us to test whether the spatial
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Table 4.1: Overview of spatio-temporal models’ number of parameters and

operations and the training time per epoch for an input sequence of five

128× 128× 4 images and an output sequence of fifteen irradiance values.

Param. OPs (MAC) Param. OPs (MAC)

Spatial Encoder - - - 833 K 1.03 G

Spatial Decoder - - - 658 K 0.66 M

3 1.79 M 1.13 G 3.90 M 6.27 G 19.16

5 4.93 M 3.15 G 7.05 M 8.28 G 20.54

3 2.43 M 1.51 G 4.94 M 6.65 G 19.33

5 6.62 M 4.19 G 9.13 M 9.33 G 20.79

3 4.85 M 1.89 G 6.80 M 7.02 G 20.89

5 13.2 M 5.24 G 15.8 M 10.4 G 21.68

3, 3 6.06 M 3.02 G 8.57 M 8.16 G 21.67

3, 5 12.3 M 5.71 G 14.9 M 10.8 G 23.54

5, 5 16.5 M 8.39 G 19.1 M 13.5 G 25.45

3 334 K 172 M 2.85 M 5.31 G 19.66

5 342 K 177 M 2.85 M 5.31 G 19.73

3 668 K 215 M 3.18 M 5.35 G 20.13

5 684 K 221 M 3.20 M 5.36 G 20.23

3, 3 826 K 343 M 3.34 M 5.48 G 20.64

3, 5 839 K 349 M 3.35 M 5.49 G 20.75

5, 5 847 K 354 M 3.36 M 5.49 G 20.87

XceptionLSTM XL 871 K 516 M 3.38 M 5.65 G 19.63

bi-XceptionLSTM XL 1.74 M 645 M 4.25 M 5.78 G 19.75

2×XL 2.17 M 1.03 G 4.68 M 6.17 G 20.79

Temporal Model
Kernel

Size

Temporal

Encoder / Decoder

Spatio-Temporal

Encoder / Decoder
Training

Time per

Epoch (min)

3.26

ConvGRU

ConvLSTM

bi-ConvLSTM

Stacked

ConvLSTM

DWSConvLSTM

bi-DWSConvLSTM

Stacked

DWSConvLSTM

Stacked

XceptionLSTM

encoder and decoder can effectively forecast GHI values. In order to reduce the total
training time of all models that are evaluated in this article, we used transfer learning
and partitioned the models’ training in two stages, as shown in Figure 4.1. In the first
stage, we trained the spatial encoder and decoder in the training dataset for the problem
of irradiance estimation. Specifically, the spatial model accepts an image and estimates
the GHI value for this particular image. This stage is common to all the models we tested,
therefore the spatial encoder and decoder were trained only once. We train the second
stage’s spatio-temporal model using as initial weights: a) for the spatial encoder and
decoder those resulting of the first stage and b) for the temporal encoder and decoder
arbitrary weights. This scheme allows us to test whether the spatial encoder and decoder
can effectively forecast GHI values.

For the first stage, we used RMSProp with decay of 0.9 and ϵ = 1.0. We used a learning
rate of 0.001 decaying every epoch using an exponential rate of 0.94 and the MSELoss as
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Figure 4.1: Training scheme.

Table 4.2: The hyperparameters that were examined and chosen for the benchmark.

Hyperparameter Tested Options Final

Input Sequence Length {5, 10, 15} 5

Output Sequence Length {5, 10, 15} 15

Image Frame Size {64, 128, 256} 128

Concatenate Sunmask {True, False} True

Removed Foreign Objects {True, False} True

Encoded State’s Channels {16, 32, 64, 128, 256} 128

Optimizer {Adam, RMSProp} RMSProp

Scheduler Exponential

Learning Rate

Loss Function MSE Loss

Batch Size {8, 12, 16, 20, 24} 16

{
ReduceOnPlateau,

Exponential, Step

}
{

5 · 10−2, 10−3, 5 · 10−4,

10−4, 5 · 10−5, 10−5

}
1st Stage : 10−3

2nd Stage : 5 · 10−5{
L1, SmoothL1

Huber, MSE

}

the criterion for calculating the loss. The spatial model was trained for 29 epochs and
achieved a RMSE of 35.3Wm−2 for the solar irradiance estimation. For the second stage,
we used the same scheduler, optimizer and loss function with an initial learning rate of
5 · 10−5. With this training scheme we were able to reduce the total epochs from 15-30
to just 3-6 epochs for the spatio-temporal models. Moreover, all the models achieved
better metrics when they were trained with this scheme compared to training the whole
spatio-temporal model without any transfer learning.
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Table 4.3: Evaluation results of the models in Table 4.1 for the horizons of 1, 5, 15

min and the average for the first 15 min. The best models for each metric and

horizon are bolded.

1min 5min 15min Mean 1min 5min 15min Mean 1min 5min

Persistence – ¡0.025 -0.0841 0.1795 ¡0.001 20.61 44.1 74.8 52.9 6.21 15.89

3 -3.19 9.63 9.09 8.83 34.6 47.2 59.6 50.4 24.66 32.5

5 -1.508 7.86 8.17 7.52 33.0 46.2 59.0 49.7 22.72 29.34

3 -0.686 5.68 3.82 3.60 33.1 47.0 59.6 49.9 21.41 27.73

5 2.080 1.898 -1.321 0.1465 33.0 47.1 60.9 50.8 21.73 27.87

3 3.02 2.520 ¡0.025 0.1741 34.1 49.2 63.3 53.5 19.89 26.69

5 -4.24 -5.07 -7.30 -6.10 34.3 47.4 60.0 50.8 19.91 24.87

3, 3 3.10 3.26 1.304 1.741 33.5 47.3 59.5 50.3 22.08 29.31

3, 5 0.2465 0.313 -4.12 -1.500 33.0 47.0 60.0 50.4 21.49 27.68

5, 5 -2.170 -1.474 -4.08 -2.824 35.0 47.7 59.9 51.0 19.76 26.35

3 -14.13 -5.37 -2.234 -4.49 35.5 46.6 59.8 50.3 22.11 27.69

5 -11.49 -5.97 -3.01 -4.75 34.8 46.3 59.0 49.8 21.56 26.20

3 -15.90 -5.63 0.988 -3.94 37.0 46.0 58.5 49.5 22.71 26.88

5 3.54 3.81 -4.48 1.335 34.5 46.6 60.1 50.1 23.07 28.81

3, 3 -6.38 0.678 2.481 1.022 35.0 46.4 58.5 49.6 23.14 29.92

3, 5 -8.51 -3.71 1.160 -1.831 34.7 45.4 58.3 49.0 20.60 26.18

5, 5 1.994 0.452 -6.07 -1.518 34.5 46.7 59.6 50.1 23.01 28.48

XceptionLSTM XL -3.01 1.139 -4.87 -0.924 32.5 46.1 59.9 49.7 20.46 24.43

bi-XceptionLSTM XL -7.03 -2.992 -8.16 -4.52 32.7 45.7 59.0 49.2 19.57 22.98

2×XL -2.650 -0.963 -3.35 -1.657 33.0 45.8 60.4 49.9 19.38 23.27

1min 5min 15min Mean 1min 5min 15min Mean 15min Mean

Persistence – 75.2 113.3 146.6 122.4 – – – – 38.5 30.7

3 69.4 94.8 113.1 99.9 7.70 16.37 22.88 17.77 38.5 30.7

5 68.3 95.4 114.6 100.0 9.12 15.77 21.83 17.74 36.8 31.4

3 69.5 95.5 114.5 100.0 7.50 15.69 21.92 17.67 38.5 30.7

5 70.0 98.2 116.2 102.1 6.94 13.34 20.75 15.93 37.2 30.5

3 70.2 96.5 115.5 101.3 6.61 14.85 21.22 16.58 33.2 28.38

5 70.1 95.9 115.6 100.9 6.79 15.36 21.13 16.94 31.1 26.53

3, 3 69.7 96.3 115.1 100.7 7.27 15.06 21.47 17.09 36.7 31.0

3, 5 70.2 97.8 116.5 102.2 6.67 13.66 20.52 15.87 34.3 29.43

5, 5 70.7 96.5 115.0 101.1 5.93 14.88 21.56 16.72 31.9 27.64

3 72.2 96.7 117.0 101.7 3.96 14.65 20.17 16.15 37.6 30.5

5 71.4 95.2 115.2 100.3 5.02 15.97 21.39 17.31 34.9 28.99

3 72.3 95.0 115.1 100.0 3.79 16.14 21.50 17.51 35.7 29.55

5 71.0 95.7 114.8 100.2 5.57 15.57 21.71 17.37 38.8 31.6

3, 3 73.3 95.9 113.7 100.3 2.51 15.38 22.43 17.16 36.7 31.8

3, 5 72.1 95.2 114.3 100.0 4.09 16.01 22.01 17.55 35.2 28.72

5, 5 71.1 95.5 114.4 100.2 5.41 15.71 21.99 17.42 39.4 31.4

XceptionLSTM XL 68.8 94.6 116.0 99.8 8.53 16.52 20.88 17.85 32.3 27.09

bi-XceptionLSTM XL 68.7 94.5 117.3 100.3 8.52 16.57 20.01 17.52 28.91 24.50

2×XL 69.2 94.4 115.8 99.8 7.94 16.69 21.04 17.85 31.3 25.66

Model
Kernel

Size
MBE (Wm−2) MAE (Wm−2) MAPE(%)

ConvGRU

ConvLSTM

bi-ConvLSTM

Stacked

ConvLSTM

DWSConvLSTM

bi-DWSConvLSTM

Stacked

DWSConvLSTM

Stacked

XceptionLSTM

RMSE (Wm−2) FS (%) MAPE (%)

ConvGRU

ConvLSTM

bi-ConvLSTM

Stacked

ConvLSTM

DWSConvLSTM

bi-DWSConvLSTM

Stacked

DWSConvLSTM

Stacked

XceptionLSTM

20



4.2 Model Evaluation

Table 4.1 presents the implementation details of the models evaluated in this work:
the ConvLSTM, the DWSConvLSTM and the XceptionLSTM-based models in their
single-cell, bidirectional and double-stacked versions and the ConvGRU-based models.
Table 4.3 presents the evaluation results of the metrics for the tested models. All the
models considered for this comparison infer a sequence of five images with a horizon of 1
min and output 15 GHI values that correspond from 1 to 15-min forecasts. Note here
that the XceptionLSTM cell in the three versions we examined prevails with respect to
the RMSE and FS scores. Specifically, the single XceptionLSTM cell scores 68.8 W m−2,
94.6 W m−2 and 116 W m−2 RMSE for the horizons of 1, 5, 15 min with a mean score of
99.8 W m−2 and the double-stacked XceptionLSTM scores 69.2 W m−2, 94.4 W m−2 and
115.8 W m−2 RMSE with a mean score of 99.8 W m−2. Moreover, the proposed cell in
its bidirectional form scores 68.7 W m−2, 94.5 W m−2 and 117.3 W m−2 in the RMSE
metric for the same horizons and reports a mean score of 100.3 W m−2. The bidirectional
XceptionLSTM is the best-performing model based on the MAPE metric, achieving a
mean score of 24.5% across the examined horizons. Furthermore, the XceptionLSTM cell
achieves low MAE scores for the 1 min horizon, but the stacked DWSConvLSTM cells
report lower MAE metrics in all the other horizons.

The MBE metric reports no noticable bias for ConvLSTM and XceptionLSTM-based
spatio-temporal models, which means that these two kinds of models have no tendency to
over- or underestimate forecasts. On the other hand, most DWSConvLSTM-based models
tend to systematically underestimate the forecasts of the first few horizons. The same
tendency appears in the bidirectional versions of all models. In contrast to the above,
the ConvGRU based models tend to overestimate forecasts. Moreover, the models with
bidirectional temporal encoders appear to forecast more accurately for greater horizons
when compared to their unidirectional counterparts, but less accurately when one more
layer is added to the unidirectional models. As we can conclude by the metrics of Table 4.3,
the increased accuracy of the models with stacked temporal encoders and decoders seems
to be more intense in the cells that use depthwise operations. In addition, given that
all the benchmarked models score RMSE and MAE values within 4.6 W m−2 from one
another, we conclude that the structure of the temporal encoder and decoder does not
significantly change the reported metric scores.

4.3 Timing Reports

Figure 4.2 is a diagram of the mean execution time of the evaluated models on the
edge devices. The proposed model, in its three benchmarked versions, executes as a single
cell in 2.69 s and 7.54 s, as a bidirectional cell in 2.91 s and 7.99 s and as a double-stacked
cell 3.31 s and 8.78 s for the Raspberry Pi 4 Model B and the Raspberry Pi Zero 2W. We
notice that the inference time of all models are within 10% of the slowest recorded time on
both edge devices, which corresponds to the model that includes stacked XceptionLSTMs
in its temporal encoder and decoder. This is because a major fraction of the complexity
derives from the repeated execution of the spatial encoder and decoder, that is, once per
element of the input and output sequences. The graph also shows the expected behavior
for the models that are based on the same LSTM cells, a fact deducing that the model
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Figure 4.2: Timing reports for inference on low-cost, edge computing devices.

with less parameters executes faster. That behaviour is not true for cells of different
structure; despite the great difference in the amount of parameters and total operations,
XceptionLSTM cells appear to have comparable execution times with ConvLSTM cells
due to the optimizations that the Pytorch library performs in convolutions. We believe
that the reason behind this is that the operation of concatenating the channels of the
results of all the nested depthwise operations in an XL to form a single tensor for the
pointwise convolution to process causes the reported execution time overhead. One way
to cope with this is to avoid concatenation by executing the pointwise operation first,
then splitting the intermediate tensor and finally, forwarding the chunks to the nested
depthwise operations. These modifications improve the reported execution times but they
result in degraded metrics. During the evaluation of the inference times, both devices
reported a constant power consumption measured at 5.1W for the Raspberry Pi 4 Model
B and 0.7W for the Raspberry Pi Zero 2W.
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Chapter 5

Conclusions

The proposed model targets implementations for short-term irradiance forecasting on
low-power devices. In this article, we presented a benchmarking of known ConvLSTM
based spatio-temporal models [26, 10, 1] for the latter task with the evaluation of the
models in terms of metric scores and execution times. The proposed XceptionLSTM
cell and spatio-temporal model show notable performance for horizons over 10 minutes
and improved forecasting skills for smaller horizons. We noticed that, when taking into
account the evaluation results of other related works [13, 39], the proposed model exhibit
a lower drop of forecasting skill as the horizon increases. This means that our model
constitutes a very attractive solution for short-term irradiance forecasting; moreover it can
be integrated in SG systems that are based on ultra short-term forecasts. Furthermore,
the proposed RNN is significantly lightweight when compared to traditional RNNs and
models from the bibliography [13, 14], as it requires half of the memory that the weights
of the ConvLSTM-based spatio-temporal models need.

Focusing on the edge devices, the proposed model is optimized for inference on low-
power devices and can process up to 22.27 sequences per minute in the low power device
Raspberry Pi 4 Model B and up to 7.81 sequences per minute in the ultra low-power
device Raspberry Pi Zero 2W. Hence, less powerful IoT devices suffice for the execution
of forecasting tasks that were once considered power intensive and computationally
demanding. Considering that the number of PV parks added to the power grids constantly
increases and that low-end devices are easy to maintain and cost-effective, the proposed
model offers a very tempting alternative to the high performance and high cost controllers.
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Abbreviations

The following abbreviations are used in this thesis:

AI Artificial intelligence
ANN Artificial neural network
CC Cloud cover
CL Convolutional layer
CNN Convolutional neural network
ConvLSTM Convolutional long short-term memory
ConvGRU Convolutional gated recurrent unit
CPU Central processing unit
CSI Clear sky index
DBN Deep belief network
DL Deep learning
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DRL Deep reinforcement learning
DWSC Depthwise separable convolution
DWSConvLSTM Depthwise separable convolutional long short-term memory
FC-LSTM Fully connected long short-term memory
FPGA Field programmable gate array
FS Forecast skill
GHI Global horizontal irradiance
GPU Graphics processing unit
GRU Gated recurrent unit
IFS Irradiance forecasting system
IoT Internet of Things
LeakyReLU Leaky rectified linear unit
LSTM Long short-term memory
MAE Mean absolute error
MBE Mean bias error
ML Machine learning
MLP Multilayer perceptron
NLP Natural language processing
NN Neural network
PV Photovoltaic
ReLU Rectified linear unit
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RES Renewable energy source
RGB Red green blue
RMSE Root mean square error
RNN Recurrent neural network
Seq2Seq Sequence-to-sequence
SG Smart grid
SoC System-on-chip
VLSI Very large-scale integration
XceptionLSTM Xception long short-term memory
XL Xception layer
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