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ABSTRACT

This thesis explores the Prophet Inequality Problem within the domains of Optimal Stop-
ping Theory and Mechanism Design, aiming for a comprehensive analysis of its funda-
mental concepts and relevance in contemporary decision-making. Introduced by Krengel
and Sucheston in the 1970s[30], the problem revolves around a gambler encountering
a sequence of items drawn independently from known distributions. Upon the arrival of
each item, its value is realized and the gambler either accepts it and the game ends, or
irrevocably rejects it and continues to the next item. The goal is to maximize the value of
the selected item and compete against the expected maximum value of all items. In this
thesis, we first provide an overview of core concepts of optimal stopping theory, mech-
anism design, price mechanisms and various statistical tools and metrics necessary for
algorithm assessment. Additionally, we present research findings related to both profit
maximization and cost minimization and highlight the challenges of the latter. The explor-
ation extends to various variations of the problem, such as matching, multiple choices, and
matroid prophet inequalities. Notably, emphasis is placed on understanding the Prophet
Secretary problem and scenarios involving variables drawn from unknown distributions.

SUBJECT AREA: Data Structures and Algorithms

KEYWORDS: Online algorithms, Prophet inequality, Mechanism design, Optimal
stopping theory, Game theory



ΠΕΡΙΛΗΨΗ

Αυτή η πτυχιακή διερευνά το Πρόβλημα της Ανισότητας του Προφήτη στα πεδία της Θε-
ωρίας Βέλτιστης Διακοπής και του Σχεδιασμού Μηχανισμών, στοχεύοντας σε μια ολοκλη-
ρωμένη ανάλυση των θεμελιωδών εννοιών και της επιρροής του στη σύγχρονη διαδικασία
λήψης αποφάσεων. Το πρόβλημα παρουσιάστηκε από τους Krengel και Sucheston στη
δεκαετία του 1970[30], και περιστρέφεται γύρω από έναν παίκτη που συναντά μια ακολου-
θία αντικειμένων με αξίες που προκύπτουν ανεξάρτητα από γνωστές κατανομές. Με την
άφιξη του κάθε στοιχείου, η αξία του αποκαλύπτεται και ο παίκτης είτε το αποδέχεται και το
παιχνίδι τελειώνει, είτε το απορρίπτει αμετάκλητα και συνεχίζει στο επόμενο αντικείμενο.
Στόχος είναι η μεγιστοποίηση της αξίας του επιλεγμένου στοιχείου και ο ανταγωνισμός
με την αναμενόμενη μέγιστη τιμή όλων των αντικειμένων. Στην παρούσα πτυχιακή πα-
ρέχουμε αρχικά μια επισκόπηση των βασικών εννοιών της βέλτιστης θεωρίας διακοπής,
του σχεδιασμού μηχανισμών, των μηχανισμών τιμών και των διαφόρων στατιστικών εργα-
λείων και μετρικών που είναι απαραίτητα για την αξιολόγηση αλγορίθμων. Στη συνέχεια,
παρουσιάζουμε τα ευρήματα που σχετίζονται με την μεγιστοποίηση του κέρδους, και την
ελαχιστοποίηση του κόστους, επισημαίνoντας τις δυσκολίες αυτής. Η ανάλυση επεκτεί-
νεται σε διάφορες παραλλαγές του προβλήματος, όπως ταίριασμα, πολλαπλές επιλογές
και μητροειδής ανισότητα του προφήτη. Ειδικότερα, δόθηκε έμφαση στην κατανόηση του
προβλήματος του προφήτη γραμματέα και της περίπτωσης όπου οι αξίες των αντικειμέ-
νων προέρχονται από άγνωστες κατανομές.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δομές Δεδομένων και Αλγόριθμοι

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Online αλγόριθμοι, Ανισότητα του προφήτη, Σχεδιασμός
μηχανισμού, Βέλτιστη θεωρία διακοπής, Θεωρία Παιγνίων
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Prophet Inequality Problem: A Comprehensive Analysis of Research and Findings

1. INTRODUCTION

1.1 Motivation

The motivation for this thesis arises from recognizing the fundamental role prophet in-
equalities play in our daily decision-making. Even though at first glance they may appear
like intricate mathematical problems with no immediate practical relevance, they underpin
virtually every decision we encounter. Let’s illustrate this with an example. Imagine you
have finally gotten your bachelor’s degree and you start preparing for graduate studies.
You embark on a series of interviews to secure the best PhD position in terms of benefits,
salary, and research prospects. After each interview, the benefits of the position are re-
vealed, compelling you to make an immediate, irrevocable decision—accept the current
offer or continue searching for a potentially better option. Ideally, you’d prefer knowing
about offers from top-choice advisors before committing to a second-choice advisor, yet
the sequence of these decisions might not align with your preferences. The prophet in-
equality problem arises when faced with an offer that’s good but not the best encountered.
This dilemma emerges: accept the offer immediately or persist in the hope of finding a su-
perior one later. This scenario reflects the challenge of pinpointing the optimal stopping
point in your search. Waiting too long risks missing the best opportunity, while accept-
ing too soon risks missing a potentially better offer. This highlights the trade-off between
immediate benefits and future, more favorable outcomes—a core aspect of the prophet
inequality problem, not confined solely to PhD hunting but extending to various situations
involving sequential decisions with limited information.

1.2 The purpose of this thesis

The following thesis studies the Prophet Inequality problem, first introduced by Krengel
and Sucheston in the 1970s[30]. Although originating in Optimal Stopping Theory, these
inequalities have become central in market design studies, particularly in relation to pos-
ted price mechanisms prevalent in online sales and mechanism design. The rapid growth
of interest in the Prophet Inequality problem can be attributed to its relevance in optimizing
decision-making processes across diverse fields like economics, computer science, and
operations research. Furthermore , online auctions play a major role in modern markets.
In online markets, information about customers and goods is revealed over time. Irrevoc-
able decisions are made at certain discrete times, such as when a customer arrives to
the market. One of the fundamental and basic tools to model this scenario is the prophet
inequality and its variants. In today’s era of Big Data, as companies and organizations
are extremely reliant on data-driven decision-making, the Prophet Inequality problem of-
fers a framework for making sequential decisions with uncertain information, making it
particularly relevant in modern data-centric contexts.

The rest of the thesis is structured as follows:

• In Chapter 2, we lay the theoretical groundwork, that is necessary in order to under-
stand research papers on the prophet inequality problem and its variations.

• Chapter 3 presents the findings from research papers that focus on profit maximiz-
ation.

E. Liarou 15
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• In Chapter 4, we delve into the intricacies of the cost minimization problem, highlight-
ing its distinct challenges compared to the profit maximization one. We also display
the limited progress that has been made in recent years on this specific variation.

• In Chapter 5, we showcase several variations of the problem, with a particular focus
on the Prophet Secretary and the setting where variables are drawn from unknown
distributions.

• The last Chapter 6 contains the conclusion of this thesis and mentions open prob-
lems for future work.

E. Liarou 16
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2. PRELIMINARIES

2.1 Optimal Stopping Theory

2.1.1 What does optimal stopping theory entail?

The theory of optimal stopping addresses the problem of choosing a time to take a given
action based on sequentially observed random variables to maximize an expected reward
or minimize an expected cost. Problems of this nature can be found in the area of statistics,
where the action may be to test a hypothesis, and in the area of operation research, where
the action may be to buy a machine, hire a new employee, etc. It provides valuable insight
into decision-making under uncertainty and has been used to develop strategies for hiring,
investment, and other real-world situations, where sequential decision-making is involved.

2.1.2 Historical Overview

The theory of optimal stopping can be traced back to the early 20th century when math-
ematicians and statisticians inspired by statistical and decision theory began examining
problems related to sequential decision-making. The concept of optimal stopping gained
more recognition in the 1940s with the publication of Sequential Analysis by Wald in 1945
[37] and of Statistical Decision Functions [38] in 1950, which deal with the sequential ana-
lysis of statistical observations. The Bayesian perspective of this problem was explored
in 1948 by Arrow, Blackwell and Girshick [5]. Snell extended the concept of sequential
analysis to purely stopping problems without statistical structure in 1952. In the 1960’s,
the papers of Chow and Robbins gave impetus to a new interest and rapid growth of the
subject. The book, Great Expectations: The Theory of Optimal Stopping by Chow, Rob-
bins and Siegmund in 1971 [36], summarizes this development. In the 21st century, the
optimal stopping theory has found applications in machine learning, artificial intelligence
and data science, particularly in designing algorithms for online decision-making.

2.1.3 Definition of the Problem

Definition 2.1.1 [21] Stopping rule problems are defined by 2 objects:

1. a sequence of random Variables X1, X2, . . . , Xn, whose joined distribution is as-
sumed to be known,

2. a sequence of real-valued reward functions, y0, y1(x1), y2(x1, x2), . . . .

Given these 2 objects, the associated stopping rule problem can be defind as follows.
You may observe the sequence X1, X2, . . . for as long as you wish. For each n = 1, 2, . . . ,
after observing X1 = x1, X2 = x2, . . . , Xn = xn you may stop and receive the known
reward yn(x1, . . . , xn) or you may continue and observe Xn+1. If you decide to not take
any observations you get the constant reward y0. If you never stop you receive the reward
y∞(x1, x2, . . . ).

Your goal is to choose a time to stop to maximize the expected profit. You are allowed to
use randomized decisions. That is, given that you reach stage n having observed X1 =

E. Liarou 17
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x1, X2 = x2, . . . , Xn = xn, you are to choose a probability of stopping that may depend
on these observations. We denote this probability by ϕn(x1, x2, . . . , xn). A randomized
stopping rule consists of the sequence of these functions, ϕ = (ϕ0, ϕ1(x1), ϕ2(x1, x2), . . . ),
where for all n and x1, x2, . . . , 0 ≤ ϕn(x1, x2, . . . , xn) ≤ 1. The stopping rule is said to be
non-randomized if each ϕn(x1, x2, . . . , xn) is either 0 or 1.

Therefore, ϕ0 represents the probability that you take no observation at all. Given that
you take the first observation and given that you observe X1 = x1, ϕ1(x1) represents the
probability you stop after the first observation, and so on. The stopping rule ϕ and the
sequence of observations X = (X1, X2, . . . ) determined the random time N at which stop-
ping occures, 0 ≤ N ≤ ∞, where if stopping never occurs then N = ∞. The probability
mass function of N given X = x = (x1, x2, . . . ) is denoted by ψ = (ψ0, ψ1, . . . , ψ∞) where
ψn(x1, . . . , xn) = P (N = n|X = x)for n = 0, 1, 2, . . . , ψ∞(x1, x2, . . . ) = P (N =∞|X = x).

This may be related to the stopping rule ϕ as follows:

ψ0 = ϕ0

ψ1(x1) = (1− ϕ0)ϕ1(x1)
...

ψn(x1, x2, . . . , xn) = [
∏n−1

1 (1− ϕj(x1, . . . , xj))]ϕn(x1, . . . , xn)
...

ψ∞(x1, x2, . . . ) = 1−
∑∞

0 ψj(x1, . . . , xj).

ψ∞(x1, x2, . . . ) represents the probability of never stopping given all the observations.

Your problem then is to choose a stopping rule ϕ to maximize the expected return, V (ϕ),
defined as

V (ϕ) = EyN(X1, . . . , Xn) = E
∑=∞

j=0 ψj(X1, . . . , Xj)ψj(X1, . . . , Xj), where the ”=∞” above
the summation sign indicates that the summation is over values of j from 0 to∞. In terms
of the random stopping time N, the stopping rule ϕ may be expressed as

ϕn(X1, X2, . . . , Xn) = P (N = n|N ≥ n,X = x)for n = 0, 1, . . . .

Definition 2.1.1 [2] Optimal ordering for optimal stopping problem. For any given ordering
σ of n random variables X1, . . . , Xn, let Vσ be the expected value at the optimal stopping
time. We define the problem of optimal ordering for optimal stopping as the problem of
choosing an ordering σ that maximizes Vσ i.e., the problem of finding σ∗ = argmaxσVσ.

2.2 Game Theory vs Mechanism Design

2.2.1 What is Mechanism Design?

Mechanism design is a branch of microeconomics that explores how businesses and in-
stitutions can achieve desirable social or economic outcomes given the constraints of
individuals’ self-interest and incomplete information. Mechanism design takes private in-
formation and incentives into account to enhance economists’ comprehension of market
mechanisms and shows how the right incentives can induce participants to reveal their
private information and create an optimal outcome. For example, in bargaining between
a buyer and a seller, the seller would like to act as if the item is very costly thus raising
the price, and the buyer would like to pretend to have a low value for the object to keep
the price down. One question is whether one can design a mechanism through which the
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bargaining occurs (in this application, a bargaining protocol) to induce efficient trade of the
good - so that successful trade occurs whenever the buyer’s valuation exceeds that of the
seller. Another question is whether there exists such a mechanism so that the buyer and
seller voluntarily participate in the mechanism.

The Stanley Reiter Diagram in Figure 2.1 below illustrates a game of mechanism design. It
consists of agents who interact to produce outcomes according to a social choice function
f(Θ). We define mechanism (M, g) consisting of a set of messagesMi for each agent and
an outcome function g:

∏
iMi → X, that assigns an outcome for each profile of messages

received from agents. To accommodate various rules, agents can submit programs to act
as their proxies. Messages represent strategies we’re making available to the agent,
which are then translated into outcomes by g.

In the mechanism, agents select the message mi(θi) they will send based on their indi-
vidual types (θ), resulting in an overall outcome g(m1(θ1), . . . ,mn(θn)). The mechanism
(M, g) implements a social choice function f if, for all profiles of types θ, the outcome we get
under the mechanism equals the outcome we want: g(m1(θ1), . . . ,mn(θn)) = f(θ1, . . . , θn),
for all profiles (θ1, . . . , θn) ∈ Θ =

∏
i Θi.

In simpler words we want the strategies (determined by whatever behavioral theory we
have for each agent) to compose with the outcome function (which we are free to choose,
up to design constraints) to match up with our goal, as shown in the following diagram:

Figure 2.1: Stanley Reiter Diagram

A social choice function f is implementable if some mechanism exists that implements it.
Whether a social choice function is implementable depends on our behavioral theory. If
we think agents choose strategies in Nash equilibrium with each other, we’ll have more
flexiblity in finding a mechanism than if agents need the stronger incentive of a domin-
ant strategy, since more Nash equilibria exist than dominant-strategy equilibria. Rather
than assuming agents choose strategically based on their preferences, perhaps we think
agents are naively honest. In this case, we can trivially implement a social choice rule
by having each agent tell us their full type and simply choosing the corresponding goal
by picking Mi =  Θi and g =  f . Here the interesting question is instead which mechan-
ism can implement f with the minimal amount of communication, either by minimizing the
number of dimensions or bits in each message.
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2.2.2 What is Game Theory?

Game theory is a mathematical and interdisciplinary framework used to study strategic
interactions and decision-making among rational individuals or entities, often referred to
as ”players” or ”agents.” It provides a formal structure for analyzing situations where the
outcome of an individual’s decision depends on the decisions made by others. Moreover,
game theory helps researchers and decision-makers understand and predict behavior in
strategic situations and provides insights into optimal decision-making strategies.

2.2.3 How are Mechanism Design and Game Theory related?

Game theory and mechanism design both deal with interactions among strategic agents.
On the one hand, mechanism design theory studies a scenario by beginning with an out-
come and understanding how entities work together to achieve the particular outcome,
and on the other hand, game theory looks at how entities can potentially influence mul-
tiple outcomes. Because it starts at the end of the game, then goes backwards, Mechan-
ism Design is also called reverse game theory. Game Theory is relevant for mechanism
design because it gives us the skills to analyze a game and start thinking in terms of
players, choices, incentives, and final outcomes.

Figure 2.2: Game Theory(GT) vs Mechanism Design(MD)

2.3 Price Mechanisms

2.3.1 What is a Price Mechanism?

The price mechanism is the cornerstone of modern economic systems, shaping the way
goods and services are bought and sold, resources are allocated, and businesses make
decisions. At its core, the price mechanism is a dynamic force that brings together buyers
and sellers in the marketplace, determining not only the cost of products but also influen-
cing the choices and behaviors of individuals and businesses alike. This intricate system
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of pricing, rooted in the principles of supply and demand, serves as a powerful regulator of
economic activity, promoting efficiency, transparency, and equitable resource allocation.

2.3.2 Real-world example of price mechanisms

An example of a price mechanism uses announced bid and ask prices. Generally speak-
ing, when two parties wish to engage in trade, the purchaser will announce a price he is
willing to pay (the bid price) and the seller will announce a price he is willing to accept
(the ask price). The primary advantage of such a method is that conditions are laid out in
advance, and transactions can proceed with no further permission or authorization from
any participant. When any bid and ask pair are compatible, a transaction occurs.

2.3.3 How price mechanism works

• Supply and Demand: The process begins with the presence of both supply and
demand for a particular product or service.

• Market equilibrium: The price mechanism aims to find an equilibrium price, where
the quantity demanded equals the quantity supplied. This is the price at which the
two curves intersect.

• Price adjustment: If the current market price is not at equilibrium, it creates either
excess demand or excess supply. In excess demand consumers want more of the
product than is available at the current price. This exerts upward pressure on prices.
In Excess Supply: producers are offering more of the product than consumers are
willing to buy at the current price. This puts downward pressure on prices.

• EquilibriumReached: Through this process of price adjustments, the market even-
tually reaches an equilibrium where the quantity demanded equals the quantity sup-
plied. At this point, the market price is set, and transactions occur at that price.

• Market Signals: Prices also serve as signals in the market. When prices rise, it
can indicate increased demand or scarcity, encouraging producers to supply more.
Conversely, falling prices may suggest oversupply, prompting producers to reduce
production.

• Resource Allocation: The price mechanism efficiently allocates resources by guid-
ing producers toward goods and services that are in high demand (higher prices) and
away from those with lower demand (lower prices).

• Flexibility: The price mechanism is flexible and responds to changes in market
conditions, such as shifts in consumer preferences, production costs, or external
shocks.

2.3.4 Posted Price Mechanisms

The posted price mechanism, on the other hand, involves setting fixed, predetermined
prices for goods or services. In this mechanism, sellers determine the prices in advance
and display them publicly for potential buyers to see. Buyers can choose to purchase the
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Figure 2.3: Demand-Supply Curve

product at the posted price or negotiate for a different price, but the initial price is typically
set by the seller. It’s commonly used in various retail settings, where price tags display
the cost of items.

While both mechanisms involve the determination of prices, the key difference lies in how
prices are set:

• In the price mechanism, prices are determined dynamically through the interaction
of supply and demand, and they can change over time.

• In the posted price mechanism, prices are fixed and determined by the seller, with
less flexibility for immediate price adjustments based on market dynamics.

2.3.4.1 How posted price mechanisms work

In posted-price mechanism, the auctioneer announces (i.e., posts) the price π at which
they are willing to sell the good, after which any bidder who indicates that they are willing
to pay the posted price is uniformly eligible to win the good. The winner is then charged
the posted price π, and all others pay nothing.

2.3.4.2 Posted Price Mechanisms and Prophet Inequalities

Algorithms for problems like the Prophet Inequality and its variations correspond to posted
price mechanisms for approximately maximizing social welfare. A parallel line of work has
been to design posted price mechanisms under similar settings for approximate revenue
maximization, taking as benchmark the revenue obtained by Myerson’s mechanism [33].
The connection between (revenue maximizing) PPMs and prophet inequalities was first
studied by Chawla et al.[11] and Hajiaghayi et al. [23].

In the prophet inequality problem there is a gambler, who is faced with a sequence of
random variables and has to pick a stopping time so that the expected value he gets is as
close as possible to the expectation of the maximum of all random variables, interpreted
as what a prophet, who knows the realizations in advance, could get. They implicitly show
that any prophet type inequality can be turned into a PPM with the same approximation
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guarantee. This is obtained by noting that a PPM for revenue maximization can be seen
as a (threshold) stopping rule for the gambler, but on the virtual values space, and later
identify these virtual thresholds with prices. Correa et al. [13] managed to fill a gap in this
area of research by proving the converse of the above result, that any PPM can be turned
into a prophet type inequality with the same approximation guarantee.

Bounds obtained for these variants of the prophet inequality problem can be directly used
as bounds on the total welfare achieved through PPMs relative to offline welfare maxim-
izing auctions.

2.4 Competitive Analysis

2.4.1 Offline Optimization

Offline optimization refers to the process of solving optimization problems, when all the
data is available in advance and decisions can be made non-sequentially so that a certain
objective can be optimized. In offline optimization we have complete knowledge of the
problem, including parameters, constraints, and objectives prior to making any choices.
There can be no better performance than the one computed by the best Offline Algorithm.
However this type of framework is very restrictive in cases where input data become avail-
able over time. It relies on precomputed decisionsmadewithout awareness of the evolving
circumstances, thus giving rise to the need for online optimization.

2.4.2 Online Optimization

Online optimization addresses problems having no or incomplete knowledge of the fu-
ture. The research on online optimization can be distinguished into two caregories: online
problems where multiple decision are made sequentialy based on piece by piece input and
those were a decision is made only once. An online algorithm must satisfy an unpredict-
able sequence of requests, completing each request without being able to see the future.
As it does not know the whole input, an online algorithm is forced to make decisions that
may later turn out not to be optimal, and the study of online algorithms has focused on the
quality of decision-making that is possible in this setting.

2.4.3 Randomized Algorithms

Randomized algorithms are a class of algorithms that use randomness or probability to
make decisions at each step. Unlike deterministic algorithms that output the same result
for a given input, randomized algorithms due to their random nature lead to different out-
comes on different runs, each with a certain probability. This kind of algorithm is typically
used to reduce either the running time, or time complexity; or the memory used, or space
complexity, in a standard algorithm. Also it could help speed up a brute force process by
randomly sampling the input in order to obtain a solution that may not be totally optimal,
but will be good enough for the specified purposes.
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2.4.4 How we assess the performance of an online algorithm

The method used to measure the efficiency of an online algorithm is called competitive
analysis. We assume that the offline algorithm serves as a benchmark because it en-
sures access to all input in advance, making optimal decisions and setting the perform-
ance standard for the online algorithm. The primary metric in competitive analysis is the
competitive ratio. It quantifies how well the online algorithm performs compared to the
offline algorithm. The competitive ratio is typically expressed as a worst-case ratio of
the online algorithm’s cost (e.g., solution quality, resource usage) to the offline algorithm’s
cost. By worst-case we refer to worst possible input sequence, specifically chosen to chal-
lenge the online algorithm. In some cases, competitive analysis extends to randomized
online algorithms. Here, the analysis considers the expected competitive ratio over a ran-
dom sequence of inputs, providing a probabilistic assessment of algorithm performance.
An algorithm will be considered competitive if its competitive ratio is bounded by a con-
stant. In competitive analysis, one imagines an ”adversary” which deliberately chooses
difficult data, to maximize the ratio of the cost of the algorithm being studied and some op-
timal algorithm. When considering a randomized algorithm, one must further distinguish
between an oblivious adversary, which has no knowledge of the random choices made
by the algorithm pitted against it, and an adaptive adversary which has full knowledge of
the algorithm’s internal state at any point during its execution.

Definition 2.3.1 [32] An online algorithm A is c-competitive if there exists a constant c
such that for every input sequence I, the cost of A on I is at most c times the cost of an
optimal offline algorithm (OPT) on I. ALG(I) ≤ C ∗OPT (I)

c-competitive ratio =maxi∈I cost(A)with input i
cost(OPT )with input i

A high competitive ratio, usually greater than 1, indicates that the online algorithm’s per-
formance is significantly worse than that of the optimal offline algorithm in the worst-case
scenario. Thus we aim to design online algorithms that minimize constant c.

Definition 2.3.2 [22] An upper bound on any algorithm’s highest possible competitive
ratio for a given instance will be called hardness of the instance. Saying that a prophet
inequality model is c-hard or has a hardness of c, means that there is a c-hard instance
for that problem, but it does not necessarily mean that c is the lowest hardness possible
amongst all instances for that model.

2.5 Adaptive and Non-Adaptive Algorithms

Adaptive and Non-Adaptive Algorithms are two types of online algorithms, that differ on
the way they approach decision-making based on the available information. Adaptive
algorithms adjust their decision based on the information they have observed or received
so far. They are designed to respond to changing conditions or new data as they become
available. The flexibility of adaptive algorithms is what makes them ideal for dynamic or
uncertain enviroments where real-time updates are essential.

On the other hand, non-adaptive algorithms make decisions based on a plan that is pre-
determined before any information becomes available. They do not take into consider-
ation any new data or adjust their decisions based on new observations. Non-adaptive
algorithms are predictable and deterministic, as they produce the same results for the
same input.
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2.6 Statistical Tools

The distribution D from where the variables will be drawn is characterized by its:

• Cumulative Distribution Function (CDF) F : [0,∞)→ [0, 1], F (x) = PRX∼D[X ≤ x]

• Probability Density Function (PDF) f : [0,∞)→ [0, 1]

Definition 2.6.1 [31] Hazard rate. For a distribution D with cumulative distribution function
F and probability density function f, the hazard rate of D is defined as: h(x) δ

= f(x)
1−F (x)

, for
all x in the support of D. Sometimes it can be found as failure rate and is a necessary tool
for several fields of mathematics and economics.

Definition 2.6.2 [31] Cumulative Hazard rate. It symbolizes the integral H of h: H(x)
δ
=∫ x

0
h(u)du.

Definition 2.6.3 [31] Poiseux Series. We say that a function f : R → R has a Puiseux
series expansion if there exist integers n > 0 and i0 ∈ Z as well as coefficients a1, a2, . . .
where a1 ̸= 0, such that f(x) =

∑∞
i=i0

aix
i
n . Poiseux series are essentially a generalization

of Taylor series because they they allow for fractional exponents in the indeterminate, as
long as they have a bounded denominator. The radius of convergence of a Puiseux series
around 0 is the largest number r geq 0 such that the series converges if x is substituted for
a non-zero real number t ≤ r. A Puiseux series is convergent at a point x if x ≤ r.

Definition 2.6.4 [31] Entire Distribution. A continuous distribution D with support in [0,∞)
and cumulative hazard rate H is called Entire if EX∼D[X] < ∞ and H has a Puiseux
series around 0, H(x) =

∑∞
i=1 a

ixdi , the Puiseux series is not identically zero and is
convergent for every point in the support of D. Some example of such distributions are
uniform, exponential, Gaussian, Weibull, Rayleigh, arcsine, beta and gamma distributions.

Definition 2.6.5 [31] Monotone Hazard Rate Distribution. A distribution D is called a
Monotone Hazard Rate (MHR) distribution if and only if the hazard rate function h of D
is monotonically increasing.

A hardness for a model is said to be tight (or optimal) when it is matched by the competitive
ratio of an algorithm solving it. Similarly, the competitive ratio of an algorithm solving a
model is tight (or optimal) when it is matched by a hardness known for that model. Often,
when determining a hardness or a competitive ratio, numerical computations are involved.
Thus tightness can be used in a broad sense. For two models A and B, we say that A
beats B if the hardness of B is strictly less than the competitive ratio of an algorithm solving
A. When A beats B or B beats A, we say that A and B are separated.

Definition 2.6.6 [2] Two-point Distributions. A random variable Xi with a two-point distri-
bution is defined by three parameters ai, bi, pi, and takes value

Xi =

{
ai w.p. 1− pi
bi w.p. pi

Here, ai ≤ bi are referred to as the left and the right end-point.

Definition 2.6.7 [2] Three-point Distributions. A random variable Xi with a three-point
distribution is defined by five parameters ai,mi, bi, pi, qi, and takes value

Xi =


ai w.p. 1− pi − qi
mi w.p. pi
bi w.p. qi
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Here, ai ≤ mi ≤ bi, are referred to as the left end-point, the middle point, and the right
end-point of the support, respectively.

Definition 2.6.8 [1] m-frequent multiset of distributions. A multiset of independent distribu-
tions {F1, . . . , Fn} is m-frequent if for each distribution Fi in this multiset there are at least
m copies of this distribution in the multiset. Generally, a set of n items is called m-frequent
if for every item i with distribution function Fi there are at least m−1 other items in the set
with the same distribution function as Fi.

Definition 2.6.9 [1] m-partitioned items. A sequence of items with distribution functions
F1, . . . , Fn is m-partitioned if n = mk and the sequence of functions Fik+1, . . . , Fik+k is a
permutation of F1, . . . , Fk for every 0 ≤ i < m.

Definition 2.6.10 NP-hardness. A decision problem H is NP-hard when for every problem
L in NP, there is a polynomial-time many-one reduction from L to H.

Definition 2.6.11 Nash-equilibrium. The Nash equilibrium is the most common way to
define the solution of a non-cooperative game involving two or more players. In a Nash
equilibrium, each player is assumed to know the equilibrium strategies of the other players,
and no one has anything to gain by changing only one’s own strategy.

Definition 2.6.12 [2] Subset Product Problem. Given integers a1, . . . , an with each ai > 1
and a positive integer B, is there a subset T ⊆ N such that

∑
i∈T ai = B?
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3. PROFIT MAXIMIZATION

3.1 Definition of the Problem

In this chapter, we will delve into the Prophet Inequality problem, with the objective of
maximizing our profit. This problem was initially introduced and studied by Krengel and
Sucheston [30] in the 1970s. In this scenario, a gambler encounters a finite sequence of
non-negative independent random variablesX1, . . . , Xn, each with known distributionsDi.
These variables represent the prizes that are drawn iteratively. Upon observing a prize,
the gambler faces a critical decision: either accept the prize and conclude the game or
irrevocably reject the prize and proceed to the next one.

The ultimate goal is to develop a strategy that maximizes the expected value of the ac-
cepted prize. The challenge lies in competing against a prophet who possesses complete
knowledge of the realized prizes in advance and is therefore always capable of selecting
the best prize. The order in which the prizes are presented can be adversarial, random,
or selectively determined. The gambler, who cannot predict the future, aims to maximize
the expected value of their rewards while competing against the prophet’s expectations,
often referred to as the offline maximum. To put it simply, our objective is to maximize the
ratio of the gambler’s expected value to that of the prophet. The expected profit of the
prophet is E[maxiXi].

3.2 Classic Result by Krengel and Sucheston

The classic result for the Prophet Inequality, on which all further research is based on,
is the following: the gambler can always obtain at least half of the expected reward that
a prophet can make who knows the realizations of the prizes beforehand, for any arrival
order of the random variables.
That is, sup{E[Xt] : t stopping rule} ≥ 1

2
E[maxiXi]. Furthemore, Krengel and Sucheston

showed that this bound is the best possible. Samuel-Chan [19] in 1984 indicated that the
bound of 1

2
can be obtained by a simple threshold rule, which stops as soon as a prize is

above a fixed threshold T, such that Pr(maxiXi > T ) = 1
2
.

This bound is tight for predetermined orders.

The classical PI has subsequently been relaxed giving more power to the gambler, which
leads to larger competitive ratios.

3.3 Order Selection vs Random Order

Naturally, an algorithm consists of two parts: selecting the order and setting the thres-
holds. Each step is easy to optimize on its own. Specifically, when the arrival order is fixed,
the optimal thresholds can be calculated through backward induction; when the thresholds
are fixed for each item, we can calculate the expected value of each item conditioning on
that its value exceeds the threshold, and then set the arrival order to be a descending
order of the calculated values.

When the order in which the random variables X1, . . . , Xn are probed is fixed, the optimal
stopping strategy can be found by solving a simple dynamic program. Under this strategy,
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at every step i, the player would compare the realized value of the current random variable
Xi to the expected reward (under the optimal strategy for the remaining subproblem) from
the remaining variables Xi+1, . . . , Xn , and stop if the former is greater than the latter.
The celebrated prophet inequalities compare the expected reward of the optimal stopping
strategy to E[max(X1, X2, . . . , Xn)], where the latter can be interpreted as the expected
reward of a prophet who can foresee the values of all random variables in advance and
therefore always stops at the random variable with maximum value. Unlike this case,
the problem of finding an optimal ordering for optimal stopping cannot be easily solved in
polynomial time by dynamic programming.

The assumption, that the gambler is given an extra power for selecting the arrival order
of each item,is natural in the application of sequential posted pricing mechanisms, as the
mechanism designer plays the role of the gambler.

One difficulty in such a study is that the nature of this problem changes significantly de-
pending on the type of distributions considered. For example, when distributions are
Bernoulli or exponential, the optimal ordering can be found analytically [24], but, the prob-
lem remains nontrivial for uniform distributions and distributions with small support.

The model, in which the gambler selects the arrival order first, and then observes the
values, is known as Order Selection or Free Order. Whereas, if the gambler chooses the
arrival order (uniformly) at random, we obtain the Random Order model.

3.3.1 First appearance of Order Selection setting

T.P. Hill was the first to concern himself with how the order in which variables are presented
to the gambler can affect the outcome of the strategy. Hill in 1983 [25] proved that in
optimal stopping problems with independent random variables where the gambler is free
to choose the order of observation of these variables, the player may do just as well with
a prespecified fixed ordering as he can with order selections which depend sequentially
on past outcomes. He concluded that the decision maker can choose the order in which
to observe the random variables and the time at which to stop the permuted sequence.

To sum up, the aim is now to design a permutation π : [n] → [n] and a stopping rule τ
adapted to the sequence Xπ(1), ..., Xπ(n), such that E[Xτ ] is maximized.

Later, in 1985 Hill and Hordijk [24] provided simple ordering rules for some families of
random variables. This includes the case when every random variable Xi is uniformly
distributed between 0 and some positive number αi, and some very specific cases of two-
point distributions.

3.3.2 Free Order Prophet Inequalities

Definition 3.3.2.1 [6] Free order prophet inequality. For the optimal stopping problem with
order selection, bounds on the ratio between the gambler’s and prophet’s expected values
are known as free order prophet inequalities.

The optimal factor in the free-order prophet inequality is known to be between 0.669 and
0.745, and closing the gap between these two bounds is a major open question.

The gap between the gambler-to-prophet ratios attainable with or without order selection
formalizes, and quantifies, the advantage that a decision maker gains by being able to
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control the order in which decisions are made under uncertainty. But how much control
over the ordering is needed to gain this advantage?

3.3.3 Computational hardness of order selection

3.3.3.1 3-point Distributions

Agrawal et al.[2] showed in 2020 that the optimal ordering problem is NP-hard even under
a special case of 3-point distributions where the highest and lowest points of the support
are the same for all the distributions. More specifically, by making a reduction from the
subset product problem, they proved that the problem of finding an optimal ordering is
NP-hard even when each random variable Xi is restricted to be a 3-point distribution with
support on {0,mi, 1} for some mi ∈ (0, 1), and E[Xi|Xi > 0] = E[Xj|Xj > 0] for all i, j.

However, they provide an FPTAS for the optimal ordering problem for the case when each
random variable Xi,i = 1, . . . , n has a three-point distribution with support on {ai,mi, 1}
for some ai,mi ∈ [0, 1]. The FPTAS they propose is as follows: Given a set of n random
variables X1, . . . , Xn, where each random variable Xi, i = 1, . . . , n has three-point distri-
bution with support on {ai,mi, 1} for some mi ∈ [0, 1] and ai < mi. Then, there exists an
algorithm that runs in time O(n5

ϵ2
)to find an ordering σ such that ALG = Vσ ≥ (1−ϵ)OPT .

Here, OPT := Vσ∗ denotes the optimal expected reward at stopping time under an op-
timal ordering σ∗. To establish the aforementioned result, they employ an FPTAS for the
special case in which both the left and right endpoints are identical for all i. Then they sub-
sequently expand this approach to encompass instances where only the right endpoints
are identical.

The algorithm for same left and right end points is:

Algorithm 1 FPTAS for finding the optimal ordering through optimal partitioning [2]
Input: Ordered sequence of variables X1, . . . , Xn such that E1 ≤ · · · ≤ En, parameters
MAX, ϵ.
Initialize: L0 = {(ϕ, ϕ)}, L1 = · · · = Ln = ϕ
for k = 1 to n do
for all (S, T ) ∈ Lk−1 do
Add two partitions ({Xk, S}, T ) and (S, {Xk, T}) to Lk.

end for
Call Algorithm 2 to reduce the number of partitions in Lk by setting Lk ←
TRIM(Lk, ϵ,MAX).

end for
return Ln

Algorithm 2 TRIM(Lk, ϵ,MAX) [2]
Initialize: ρ := (1− ϵ

2n
),max := max(S,T )∈LV (T ), and J := max{j : ρjmax ≥ ϵ

2n
MAX}

Divide the partitions in L into J + 1 buckets as
Bj := {(S, T ) : jmax < V (T ) ≤ j−1max}, forj = 1, . . . , J
B0 := {(S, T ) : T = ϕ}
Set(Sj, Tj) := argmax(S,T )∈Bj

V (S),for j = 0, 1, . . . , J .
return L := {(Sj, T j)}Jj=0.
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3.3.3.2 2-point Distributions

Whereas, in the case of 2-point distributions they managed to design an effective polyno-
mial time algorithm for finding an optimal ordering. Furthermore, they showed that when
provided with any set of variables characterized by 2-point distributions, the prophet in-
equality holds with a significantly enhanced factor of 1.25 under the optimal ordering,
compared to the factor of 2 for arbitrary orderings. It’s important to note that the prophet
inequality is tight for 2-point distributions. This highlights the significance of the ability to
choose an ordering.

The strategy they proposed for the 2-point distributions is as follows:
Given n variables with two-point distributions, define n orderings as follows: for each i =
1, . . . , n, define σi as any ordering obtained by setting the last variable as Xi, and ordering
the remaining variables in weakly descending order of their right endpoints. Then, at least
one of these n orderings is optimal. This algorithm has complexity O(n2).

Hill and Hordijk gave examples to support their idea that simple rules of thumb-ordering
based on mean or variance; stochastic ordering, assuming the variables are all stochastic-
ally ordered—do not work. The NP-hardness result of Agrawal et al. further suports this
point as they suggest that such heuristic rules are unlikely to be optimal.

3.3.4 Beating the 1− 1
e
bound

The first free order prophet inequality was proven by Yan [39], who showed that the
gambler-to-prophet ratio is always at least 1 − 1

e
= 0.632. This bound was later shown to

be attainable even if the gambler is constrained to observe the values in uniformly-random
order [20] and to use a threshold stopping rule [14]. More about how these bounds are ob-
tained can be found in section 5.4. Furthermore, 1− 1

e
is asymptotically the best possible

ratio attainable by threshold stopping rules (Kleinberg and Kleinberg, 2018), even if the
distributions of X1, . . . , Xn are identical. However, general stopping rules can do strictly
better: the optimal factor in the free-order prophet inequality is known to be between 0.669
and 0.745, and closing the gap between these two bounds is a major open question.

3.3.5 I.I.D. Variables

The case of I.I.D Variables was initially studied by Hill and Kertz [26] in 1985. They proved
the theoretical bound of 1 − 1

e
on the approximation factor by designing complicated re-

cursive functions. Through a computer program that run the algorithm for an input of
n = 1000 distributions, they showed that it can achieve a 0.745-approximation. Finally,
they speculated that the best approximation factor for arbitrarily large n is 1

1+ 1
e

≈ 0.731.

Three decades later Abolhasani et al.[1] presented a threshold-based algorithm for the
prophet inequality with n i.i.d. distributions, which can obtain a 0.738-approximation for
large enough n, beating the bound of 1

1+ 1
e

conjectured by Hill and Kertz. The algorithm is
as follows:
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Algorithm 3 0.738 approximation [1]
Input: n iid items with distribution function F.
Set a to 1.306(rootofcos(a)−sin(a)/a−1).
Set θi = F−1(cos(ai/n)/cos(a(i−1)/n)).
Pick the first item i for which Xi ≥ θi.

For simplicity purposes they have made the following assumptions: X1, . . . , Xn are iid ran-
dom variables with common distribution function F, F is continuous and strictly increasing
on a subinterval of R≥0, τ denotes the stopping time of this algorithm, where τ is n +
1 when the algorithm selects no item and Xn+1 is a zero random variable. Just a brief
reminder from the previous chapter, the approximation factor of an algorithm based on
θ1, . . . , θn is defined as E[Xτ ]/E[maxXi]. This factor captures the ratio between what a
player achieves in expectation by acting based on these thresholds and what a prophet
achieves in expectation by knowing all Xi’s in advance and taking the maximum of them.

In 2017, Correa et al.[12] proved that 0.745 is a tight value. The strategy they proposed is
a variant of the following algorithm:

Algorithm 4 0.745 approximation [12]
Input: Customers i ∈ I with valuation i.i.d. according to F.
Partition the interval [0, 1 ]into intervals Ai = [ai−1, ai], s.t. a0 = 0, an = 1.
Sample qi from Ai with an appropriately chosen distribution.
When the i−th buyer comes, offer price pi =max{F−1(1−qi), v∗},where v∗ is the reserva-
tion price of the optimal auction.

This algorithm can be derandomized using standard techniques. The strategy they de-
signed gives a sequence of thresholds τ1, . . . , τn such that, if we take the first of n i.i.d.
random variables whose value is above the threshold, we obtain a value of at least a
0.745 fraction of the expectation of the maximum of the random variables. This result can
be seen as a follow up on a result by Hill and Kertz[26] on the prophet inequality for i.i.d.
random variables. The lower bound of Correa et al.[12] is in fact known to be tight due
to an impossibility result of Hill and Kertz[26] and Kertz[28] that implies a matching upper
bound.

In general, the problem of the prophet inequality with random ordered i.i.d. variables is
equivalent to the Prophet Secretary that will be discussed in section 5.4, any results that
hold for the latter problem also hold for the former.

3.3.6 Non-I.I.D. Variables

Abolhasani et al. [1] extened their results to cover the case of different distributions, but
they assume that we have several copies of each distribution. This can be reinterpreted
as a large market assumption. They managed to show that by allowing the algorithm to
pick the order of the distributions, there exists a 0.738-approximation algorithm for any
prophet inequality instance on a set of m-frequent distributions, for large enough m. This
can also be achieved even in the random order setting. However, this result cannot be
extened to the worst case order setting.

They showed for the best order and random order of a large market instance that one can
find a sequence of thresholds which in expectation performs as good as the algorithm for
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iid items. Roughly speaking, they designed algorithms that are α-approximation for large
enough m-frequent instances, where α ≈ 0.7388.

To prove the result for best and random order, they provide an algorithm for a specific class
of large market instances, namely partitioned sequences. The algorithm is the following:

Algorithm 5 partitioned sequences for large market instances [1]
Input: An m-partitioned sequence of items with distribution functions F1, . . . , Fn.
Let k=n/m.
Let F (x) =

∏k
i=1 Fi(x).

Let θ1, . . . , θm be the thresholds by Algorithm 3 for m iid items with distribution function
F.
Pick the first item i if Xi ≥ θ⌈ i

k
⌉.

3.3.7 Constrained-Order Prophet Inequalities

Definition 3.3.7.1 [6] A non-empty set of permutations Π ⊆ Sn is said to satisfy a con-
strained -order prophet inequality with factor α if for every n-tuple of distributionsX1, . . . , Xn

supported on the non-negative reals, there is a permutation π ∈ Π and a stopping rule τ
adapted to Xπ(1), Xπ(2), ..., Xπ(n), such that E[Xτ ] ≥ αE[max1≤i≤nXi].

Definition 3.3.7.2 [6] Prophet ratio of Π. The prophet ratio of Π, PR(Π), is the supremum
of all α such that Π satisfies a constrained-order prophet inequality with factor α.
Constrained-order threshold prophet inequalities and the threshold prophet ratio TPR(Π)
are defined similarly, but allowing the gambler to optimize only over threshold stopping
rules rather than all stopping rules.

Up to this point it has been proven that if the gambler utilizes a threshold based stopping
rule then the gambler-to-prophet ratio is at least 1− 1

e
≈ 0.632, whereas if he has to examine

the values in a predetermined order the ratio is bounded by 1
2
. Arsenis et al.[6] were one

of the first that studied a setting that lies between these two extremes. This instance of the
Prophet Inequality problem allow us to gain deeper insight into how and why optimizing
the order of decisions leads to better outcomes for optimal stopping rules.

They examine the scenario where the gambler has a set of predetermined permutations
of the set indexing the random variables, and he is free to choose the order of observation
to be any one of these predefined permutations.

Arsenis et al. [6] concluded that even when only 2 orderings are available to choose from,
the ratio improves to the inverse of the golden ratio ϕ−1 = 1

2
(
√
5− 1) = 0.618. The bound

of ϕ−1 + o(1) cannot be broken with less than O(logn) allowed permutations. Lastly, the
ratio reaches 1− 1

e
−ϵ for a suitably chosen set ofO(poly(ϵ−1)·logn) permutations and does

not exceed 1− 1
e
even when the full set of n! permutations is allowed.

In the extreme cases where Π has only one element or Π is the entire permutation group
Sn, one recovers the definitions of prophet inequality and free-order prophet inequality,
respectively.

Even though it would be ideal to achieve a similarly deep understanding of the minimum
set of permutations required to attain a specific prophet ratio (rather than threshold prophet
ratio), at the moment it still remains an open problem. For the time being, the extent of
their findings lies in the establishment of lower bounds on the prophet ratio PR(Π) for the
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sets of permutations they investigate. This is a direct consequence of the elementary
observation that for any given set Π, PR(Π) ≥ TPR(Π).

3.3.8 Arrival Time Decision Problem

In 2022 Peng and Tang [35], designed a strategy that achieves the optimal 0.745 compet-
itive ratio for the i.i.d. model. Despite the NP-hardness result of Agrawal et al.[2], they
introduce a novel algorithm design framework that translates the discrete order selection
problem into a continuous arrival time design problem. This perspective allows them to
concentrate on arrival time design without the need to address threshold optimization af-
terward. By exploiting the power of order selection they designed a 0.725-competitive
algorithm.

Before we proceed to the algorithm, we need to introduce some assumptions that were
made. We remind that the time horizon is [0, 1] and each item i arrives at time ti ∼
Uniform[0, 1]. However, they start by rescaling the time horizon and fixing the time-
dependent thresholds. More specifically, at any time t, the threshold τ(t) is chosen such
that the maximum value of all items exceeds it with a probability of precisely t. Sub-
sequently, they design an arrival time distribution Fi for each item i, and items arrive at
random times according to Fi. The algorithm draws the arrival time ti of each item inde-
pendently from carefully constructed arrival time distributions Fi, and subjects them to a
common time-dependent threshold function. The items are made to arrive in ascending
order of their arrival times and the algorithm accepts the first item that satisfies vi > τ(ti),
where τ(t) satisfies P [maxvi > τ(t)] = t. This formulation is essentially without loss of gen-
erality, as we can choose deterministic distributions. In this context, optimization focuses
solely on arrival times. Notably, when the distributions Fi are identical, their algorithm can
be applied in the prophet secretary setting. Their algorithm achieves a competitive ratio
of 0.725, which is enhanced to 0.745 in the i.i.d. setting.

Figure 3.1: Summary of results [35]

Peng and Tang’s [35] analysis bridges the i.i.d. setting and the order selection setting, and
suggests that their novel arrival time design perspective to be the right framework.
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3.3.9 Order selection beats random order

In 2023, Bubna and Chiplunkar [10] identified an instance for which Peng and Tang’s
algorithm failed to achieve the claimed ratio of 0.7251. In response, they proposed an
improved strategy. Drawing inspiration from their algorithm, they presented a more gen-
eral algorithm design framework capable of attaining a 0.7258-competitive ratio. Bubna
and Chiplunkar [10] further refined Correa et al.’s [14] 0.732-hardness result (which is
discussed in more detail in section 5.4), demonstrating a heightened hardness of 0.7254
for general algorithms in the random order setting. This holds true even when the gam-
bler has prior knowledge of the arrival order. Consequently, they successfully establish a
distinction between the order selection and random order settings.

Essentialy Bubna et al.[10] extend Peng et al.’s design by proposing amore general frame-
work to design algorithms that use independent arrival times. This framework allows the
algorithm to use a different time-dependent threshold function for each item.

Firstly, Bubna et al.[10] identify a set of distributions for which Peng and Tang’s algorithm
can perform no better than their claimed competitive ratio. This instance is composed of
N IID variables whose maximum is distributed uniformly over [0, 1], and another variable
which is uniformly distributed over the interval [α, α + 1

N
], where α ≃ 0.2109. Using N

calculations, it can be verified that as N approaches ∞, the maximum competitive ratio
that Peng and Tang’s algorithm can achieve for the above instance approaches 0.7251.
The framework utilized by Bubna et al. allows them to choose a set of identity-dependent
threshold functions τi(t) for the items, and they show that they can find a set of thresholds
for which the algorithm generated by the framework guarantees 0.7258.

Bubna et al.’s algorithm differs from Peng et al.’s at the step which defines which items are
accepted. Peng et al. use common threshold function for all items, whereas Bubna et al.
have a separate threshold function for each item. Their contribution in the order selection
problem is not the numerical improvement they prove but rather it is the demonstration
of the fact that Peng and Tang’s ratio can be beaten by relaxing the constraints of their
algorithm and using a more general approach.

3.3.10 Separating random order from order selection

Giambartolomei et al.[22] further improved the hardness of RandomOrder, to the extent of
separating it from the Order Selection setting. In order to establish a hardness for Random
Order it is enough to show a uniform upper bound on the competitive ratio of all stopping
rules, that is an upper bound, holding for some given instance and uniformly for all stopping
rules τ , on EVπτ

EmaxiVi
.This is done by upper-bounding the expected rewardEVπT

of an optimal
stopping rule T, which is a stopping rule (existing by backward induction) maximising the
expected reward. Moreover, they managed to prove a 0.7235-hardness for random order
and thus order selection is separated from random order. More information about the
techniques they used can be found in section 5.4.6.
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4. COST MINIMIZATION

Up to this point, our focus has been solely on studying the Prophet Inequality problem with
the aim of maximizing our profit. However, in this chapter, we will delve into the Prophet
Inequality problem with the objective of minimizing our costs. It’s worth noting that the
problem’s complexity undergoes a significant transformation when the goal shifts from
maximizing rewards tominimizing expenses. These cost-related prophet inequalities have
practical applications in procurement auctions, particularly when a single buyer seeks to
acquire items from multiple sellers.

The cost minimization variant was firsly observed by Esfandiari et al. [20] in 2015 and
most recently by Livanos and Mehta [31]. In the minimization problem, we have to choose
one element from the input and aim to minimize the expected value of the chosen element.

4.1 Definition of the Problem

Let’s consider a real-life example where the cost minimization problem can be applied.
Imagine you are house hunting, trying to decide when to buy a house in the seller’s market.
When a house arrives with its price listed, you have to decide irrevocably the same day
whether to buy it or not. Given that you may have only distributional knowledge of future
house prices, the goal is to devise a buying strategy so that the price paid is minimized.

A more formal definition is as follows: We are given as input n distributions D1, . . . , Dn

supported on [0,∞), and we sequentially observe the realizations of n random costsX1 ∼
D1, . . . , Xn ∼ Dn. We must “stop” at some point and take the last cost seen. In particular,
at any point after observing an Xi, we can irrevocably choose to select or discard it. If we
select Xi, then the process ends and we receive a cost equal to Xi. Otherwise Xi gets
discarded forever and the process continues. Now insert an all-knowning prophet, who
knows all the realizations of the Xi’s in advance and always selects the minimum realized
cost and therefore his expected cost is Offline-OPT = E[miniXi]. Our goal is to design a
stopping strategy that minimizes the expected cost, and is comparable to Offline-OPT.

At this point, we would just like to remind what a-competitive means in the context of cost
minimization: For an α ≥ 1, we say that algorithm ALG achieves an α-factor cost prophet
inequality, or is α-competitive/approximate, if E[ALG] ≤ α·E[miniXi]

4.2 Difference from profit maximization

At first glance, we would expect the two problems to be equivalent. However, due to the
upwards-closed constraints nature of the cost minimization, qualitatively different guar-
antees are required. On the other hand, an algorithm for the profit maximization utilizes
downwards-closed constraints and thus if all Xi’s are negative, the optimal solution is
trivial and the algorithm will not select any Xi and obtain a value of 0. Something similar
is not possible for the cost variant.
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4.3 Not identically distributed variables

4.3.1 Random or adversarial order

Esfandiari et al. [20] observed that for the non-I.I.D. case where the arrival order of the
variables is random or adversarial, no algorithm can achieve any bounded approxima-
tion.Most recently, Livanos andMehta [31] showcased a simplified version of their counter-
example and proved that with adversarial or random order arrival, no algorithm is α-factor
competitive for any bounded α, even when restricted to n = 2 and distributions with support
size at most two.

4.4 I.I.D. variables

The negative results of the above setting serve as a motivation to study the I.I.D. case.

Some useful notation for the algorithms discussed below:
Given an algorithm A, we will symbolise as GA(i) its expected cost when it has observed
i I.I.D random variables drawn from D. So the overall expected cost of A is E[A] = GA(n).
The expected cost of the prophet who has all the information in advance will be denoted
as βn and the competitive ratio of A as RA(n) =

GA(n)
βn

. Lastly, Livanos and Mehta proved
that βn =

∫∞
0
e−nH(u)du

4.4.1 Infeasibility of Online Algorithms with One Exchange

Esfandiari et al. [20] proved that even for the simple case of identical and independent
distributions, there is no 1.11n

6
-competitive online algorithm for the minimization variant of

the prophet inequality problem. Since the input items come from identical distributions,
independently, randomly reordering them does not change the distribution of the items in
the input. Then, they construct an algorithm, which has the power to change its decision
once, it is called online algorithm with one exchange. They proved that for any large num-
ber C there is no C-competitive online algorithm with one exchange for the minimization
variant of the prophet inequality.

4.4.2 Single threshold algorithms

Livanos and Mehta initiated their analysis by questioning whether single threshold al-
gorithms can prove as effective in achieving constant-factor approximations in the cost
setting as they are in the profit-oriented one. The intuition behind this idea was that if n
is very large, one could set a single threshold close to E[miniXi] and with good probab-
ility there will be at least one realization below the threshold. Unfortunately, this intuition
turned out to be wrong as it did not yeald the desired results.
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The single threshold algorithm that utilizes the threshold T is as follows:

Algorithm 6 Single threshold algorithm [31]

set T = Θ(( logn
n
)k)

for i = 1 to n do
let zi be the realization of Xi

if z1, z2, . . . , zi−1 were not selected and zi ≤ T then
select zi and exit

end if
end for

If the algorithmnd reaches Xn then the gambler is forced to pick the realization of Xn,
no matter how high its cost is. Through this strategy they obtain a O (polylog n)-factor
cost prophet inequality. In this instance the power in the poly-logarithmic factor inversely
depends on the smallest degree of the Puiseux series of H. The thershold they chose is:
T = Θ(( logn

n
)k), where the value of k depends on the given distribution.

4.4.2.1 Upper Bound

Let D be an entire distribution on [0,∞) for which the cumulative hazard rate H has Puiseux
series H(x) =

∑∞
i=1 aix

di , where d1 < d2 < . . . . They proved that there exists a single
threshold T=T(n, d1, a1) such that if used for the algorithm described above we achieve a
O((logn)

1
d1 )-competitive ratio compared to βn for a large enough n.

4.4.2.2 Lower Bound

Considering a distribution D for which H(x) = xd for d ≥ 0, there is no o((logn)
1
d )-

competitive single-threshold cost prophet inequality for the single-item setting and I.I.D.
random variables drawn from D. Therefore the upper bound is asymptotically tight.

Their results imply that given X1, . . . , Xn drawn independently from a non-negative Entire
distribution D, there exists a single-threshold algorithm that is O(polylogn)-competitive, for
large enough n. Moreover, this factor is tight, i.e. there exist distributions for which no
single-threshold algorithm is o(polylogn)-competitive.

4.4.3 Multiple threshold algorithms

Their goal was to design algorithms for the CPI setting, which can achieve the smallest
possible α in E[ALG] ≤ α·E[miniXi]. They managed to achieve a (distribution depend-
ent) constant factor CPI for the class of Entire distributions, and a 2-factor CPI for Entire
MHR distributions. Following the steps of the profit setting, they focus on threshold al-
gorithms, where the algorithm in advance chooses n thresholds (τ1, τ2, . . . , τn) only taking
into account the distribution D. These algorithms are also known as oblivious algorithms
because they do not depend on the realizations of the random variables. Also the process
that these algorithms follow is memoryless as the decision at each steps solely depends
on the realization of Xi and the number of the remaining variables.
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4.4.3.1 How optimal thresholds algorithms work

Optimal threshold algorithms have a very natural interpretation: the algorithm should se-
lect the next random variable Xi if and only if its value is smaller than the value it expects
to receive by ignoring Xi and continuing the process. The optimal threshold for the next
random variable when we have k realizations left to examine is exactly the expected cost
incurred by an optimal algorithm when its input is k − 1 I.I.D. random variables. After ana-
lyzing the performance of this strategy, they show it can obtain constant-factor competitive
ratio for the class of Entire distributions.

The algorithm they proposed, which achieves the best possible competitive ratio for CPI
is as follows:

Algorithm 7 Multi-threshold algorithm [31]
set τn ←∞ and τn−1 ← EX∼D[X]
for i = n− 2 to 1 do
τi = F (τi+1)E[X|X ≤ τi+1] + (1− F (τi+1)τi+1)

end for
for i = 1 to n do
let zi be the realization of Xi

if z1, z2, . . . , zi−1 were not selected and zi ≤ τi then
select zi

end if
end for

4.4.3.2 Competitive ratio and Upper and Lower Bounds

Livanos and Mehta proved for the constant factor that: For the I.I.D. setting under any
given non-negative Entire distribution D, for large enough n, there exists a λ(d)-factor cost

prophet inequality, where λ(d) =
(1+ 1

d
)
1
d

Γ(1+ 1
d
)
, d is the smallest degree of the Poiseux series

of H and Γ is the Gamma function. Furthermore, this factor is tight for the distribution
with H(x) = xd. This result it is not good nor bad. As we can obtain a constant-factor
competitive ratio for every fixed distribution, but the constant may be too large.

Upper Bound
Let D be an Entire distribution on [0,∞)with cumulative hazard rate H, which has a Puiseux

series H(x) =
∑∞

i=1 aix
di , where d1 < d2 < . . . , let λ(d1) =

(1+ 1
d1

)
1
d1

Γ(1+ 1
d1

)
. Then the above

algorithm achieves a λ(d1)-competitive ratio with respect to βn, for large n. As for the
expected cost of the algorithm they showed that it is equal to G(n) =

∫ G(n−1)

0
eH(u)du. Also

βn =
Γ(1+ 1

d1
)

(a1n)
1
d1

+o( 1

n
1
d1

). As a result, the competitve ratio R(n) is bounded byR(n) ≤
(1+ 1

d1
)

1
d1

Γ(1+ 1
d1

)
.

Lower Bound
Theymanaged to show that considering the distribution D for whichH(x) = xd for d ≥ 0, for

any ϵ > 0, there is no (1+ 1
d
)
1
d

Γ(1+ 1
d
)
−-competitive cost prophet inequality for the single-item setting

and I.I.D.random variables drawn from D. In simpler words there exist Entire distributions
for which the upper bounds given by λ are tight.
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4.4.3.3 MHR Distributions

Even though the competitive ratio that is achieved by the above algorithm is distribution-
dependent, they proved that for MHR distributions a uniform factor of 2 can be obtained.
This factor is tight.

4.5 CPI and mechanism design

Finally, it’s worth mentioning that, similar to how classical prophet inequalities have ex-
tensive applications in creating simple yet nearly optimal posted-price mechanisms for
selling items, the above-mentioned algorithms and findings for the cost prophet inequal-
ity can also be applied to the design and analysis of posted-price-style mechanisms for
procuring items.

Let’s consider a procurement auction, also known as a reverse auction, where the auc-
tioneer (the buyer) aims to purchase a single item from among n different sellers. In this
scenario, each seller’s valuation for selling the item to the auctioneer, or in simpler terms,
their cost or price, follows an I.I.D. distribution D. If the sellers present themselves in an
online fashion with take-it-or-leave-it offers, such as in a seller’s housing market, then the
standard approach of reducing a posted-price mechanism to a prophet inequality, applies
directly to the cost-based setting when the goal is to minimize the overall social cost.

To minimize the procurement price paid by the buyer (auctioneer), one can simply use
the virtual costs defined as ϕ(c) = c + F (c)

f(c)
. This approach aligns with Myerson’s optimal

auction [33], which can be applied in any single-parameter environment. However, it’s im-
portant to note that this approach is valid only when the distribution D is regular (a category
that includes various distributions, including MHR distributions, among others). For non-
regular D distributions, a slight modification of the social cost function is necessary, similar
to what is done in the traditional profit-oriented setting, followed by a similar process.
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5. OTHER VARIATIONS

5.1 Multiple Choices Prophet Inequality

The first generalization of the classic prophet inequality problem [30] is themultiple-choices
prophet inequality problem([7], [27]), in which either the gambler, the prophet, or both are
given the power to choose more than one element.

Assaf et al.[7] studied the problem of designing k stopping rules τ1 ≤ · · · ≤ τk to optimize
the quantity E(maxi{xτi}). They proved that there exists a sequence of k stopping rules
such that the expected maximum of the k choices is within a factor k+1

k
of the prophet’s

payoff. However, in the auction setting, the natural objective is to maximize the expec-
ted sum of the k choices rather than their expected maximum. Only one more paper by
Kennedy [27] considers this objective. He compares the sum of the k values chosen by
the gambler with a single value chosen by the prophet.

Currently, the best algorithm for the most natural case, in which both the gambler and the
prophet have k > 1 choices is due to Alaei [4], who gave an algorithm with competitive
ratio 1−O(k − 1

2
), which is known to be asymptotically optimal.

5.2 Matroid Prophet Inequality

Kleinberg and Weinberg [29] considered the matroid prophet inequality problem, where
the feasible subsets of random variables are independent sets of a given matroid.

In the matroid prophet inequality, we are given a matroid whose elements have random
weights sampled independently from (not necessarily identical) probability distributions on
R+. We then run an online algorithm with knowledge of the matroid structure and of the
distribution of each element’s weight. The online algorithm must then choose irrevocably
an independent subset of the matroid by observing the sampled value of each element
(in a fixed, prespecified order). The online algorithm’s payoff is defined to be the sum of
the weights of the selected elements. Kleinberg and Weinberg [29] show that for every
matroid, there is an online algorithm whose expected payoff is at least half of the expected
weight of the maximum-weight basis(1

2
-competitive algorithm).

It is interesting to note that the original prophet inequality introduced by Krengel and
Sucheston [30] corresponds to the special case of rank-one matroids.

5.3 Matching Prophet Inequality

The matching prophet inequality is due to Alaei, Hajiaghayi, and Liaghat [3]. They study
the problem of online prophet-inequality matching in bipartite graphs.

We assume there is a static set of bidders and an online stream of items. The interest of
bidders in items is represented by a weighted bipartite graph. Each bidder has a capacity,
i.e., an upper bound on the number of items that can be allocated to him. The weight of a
matching is the total weight of edges matched to the bidders. Upon the arrival of an item,
the online algorithm should either allocate it to a bidder or discard it. The objective is to
maximize the weight of the resulting matching. They generalize the 1

2
-competitive ratio
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of Krengel and Sucheston [30] by designing an algorithm with an approximation ratio of
1− 1√

k+3
, where k is the minimum capacity.

It is worth to mention that the classical prophet inequality is a special case of this model
where we have only one bidder with capacity one, i.e., k = 1 for which they get the same
1
2
-competitive ratio.

5.4 Prophet Secretary

5.4.1 Definition of the Secretary Problem

Until now, we have exclusively discussed the Prophet Inequality problem. Let’s now in-
troduce the Secretary Problem and explore how these two problems can be integrated.

The basic concept of the Secretary Problem is: Imagine that you manage a company, and
you want to hire a secretary from a pool of n applicants. You aim to hire only the best and
brightest. Unfortunately, you cannot tell how good a secretary is until you interview him,
and you must make an irrevocable decision whether or not to make an offer at the time
of the interview. The problem is to design a strategy which maximizes the probability of
hiring the most qualified secretary. For this problem, Dynkin [17] presents a simple but
elegant algorithm that succeeds with probability at least 1

e
; indeed, the success probability

converges from above to 1
e
as n grows large, and 1

e
is the best possible bound (up to lower

order terms) we can achieve for this problem. This bound can be achieved by rejecting
the first t-1 applicants and accepting the first applicant whose qualifications, exceed that
of the first t-1. t is defined as:

∑n
j=t+1

1
j−1
≤ 1 <

∑n
j=t

1
j−1

.

5.4.2 Definition of the Prophet Secretary Problem

Prophet Secretary is a natural combination of the Prophet Inequality and the Secretary
Problem. Let’s describe a real-world example of this variant. Consider a seller that has
an item to sell on the market to a set of arriving customers. The seller knows the types of
customers that may be interested in the item and he has a price distribution for each type:
the price offered by a customer of a type is anticipated to be drawn from the corresponding
distribution. However, the customers arrive in a random order. Upon the arrival of a
customer, the seller makes an irrevocable decision whether to sell the item at the offered
price. We address the question of finding a strategy for selling the item at a high price.

A more formal definition of the problem: We are given a set {D1, D2, . . . , Dn} of distribu-
tions, which are not necessarily identical. A number Xi is drawn from its distribution Di,
and then after applying a random permutation π1, π2, . . . , πn the numbers are presented to
us in an online fashion, for example in step k, we are presented with Xπk

and πk. We can
choose only one number and we must do so irrevocably when the number is revealed.
Our goal is to maximize the expectation of the chosen value, in comparison with the ex-
pectation of the optimum offline solution that knows the drawn values from the start(OPT).

The line of work studying prophet secretary can be viewed as a two-step approach of first
selecting the order, and then designing the thresholds. More accurately, the algorithm
selects the uniform distribution over all permutations and then focuses on designing the
thresholds.

Ιf X1, X2, . . . , Xn are identical then the Prophet Secretary is equivalent to the Prophet
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Inequality problem.

As we have mentioned in Section 3.2 in the classic prophet inequality problem, a tight
competitve ratio of 1

2
can be achieved by choosing the same threshold OPT

2
in every step.

However, in the classic secretary problem, where distributions are not known the optimal
strategy is to let τ1 = · · · = τn

e
= ∞ and τn

e
+1 = · · · = τn = max(Xπ1 , . . . , Xπn

e
), which

leads to the optimal competitive ratio of 1
e
≃ 0.36. Therefore our goal is to beat the 1

2

barrier. Since the order is no longer adversarial, it is natural to expect that algorithms with
competitive ratio larger than 1

2
will exist.

5.4.3 Achieving the 1− 1
e
-competitive ratio

Esfandiari et al. [20] demonstrated that, unlike the prophet inequality in the prophet sec-
retary problem, at least two thresholds are required to surpass the 1

2
barrier. Firstly, they

established that the competitive ratio of an online algorithm employing only one threshold
is bounded by 0.5 + 1

2n
.

Next, they devised an algorithm that utilizes only two thresholds. For the first half of the
steps, they employ one threshold, and for the remaining half, they switch to a different
one. It’s important to note that both thresholds must be proportional to OPT (the optimal
solution value). Initially, they adopt an optimistic approach and set a higher threshold, but
if they fail to pick a value during the first half, they lower the threshold. By implementing
this strategy, they achieve a competitive ratio of approximately 5

9
≃ 0.55.

Finally, they designed an algorithm that attains a 1− 1
e
≃ 0.63-competitive ratio by employ-

ing n distinct thresholds. This algorithm is based on the following idea:

Algorithm 8 0.63-competitive ratio algorithm [20]
Let < τ1, τ2, . . . , τn > be a sequence of thresholds.
for k = 1 to n do
if Xπk

≥ τk then
Let Y = Xπk

and exit the for loop.
end if

end for

The above mentioned thresholds are non-adaptive(the algorithms is oblivious to the his-
tory) and non-increasing. This choice is made intuitively because as we move to the end
of available variables, we should be more pessimistic and lower the thresholds so as to
ensure we select one of the remaining higher values.

Later, Correa et al.[12] proved that the same factor of 1−1
e
can be obtained with a per-

sonalized but nonadaptive sequence of thresholds, that is thresholds τ1, ..., τn such that
whenever variable Vi is shown the gambler stops if its value is above τi. In the case in
which the probability of having two Xi’s being the maximum is zero the algorithm is quite
simple:
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Algorithm 9 1− 1
e
-competitive ratio algorithm [12]

Compute qi = probability that Xi is the maximum.
Discard variable Xi with probability 1− 2

2+(e−2)qi
.

Set threshold τi = F−1
i (1−qi).

Keep first random variable whose realization is at least τi.

In the general situation we apply an arbitrary tie-breaking rule so that
∑
qi = 1.

5.4.4 Surpassing the 1− 1
e
barrier

In 2018 Azar et al. [9] proved that the lower bound of 1− 1
e
that was proposed by Esfan-

diari et al. [20] is not tight. More specifically they showed that there exists an algorithm
for the Prophet Secretary with competitive ratio larger than 1 − 1

e
+ 1

400
. The algorithm

proposed by Esfandiari et al. is oblivious to the probability distributions ofX1, . . . , Xn, only
requires knowledge of E[maxiXi], which it competes against and chooses its thresholds
deterministically. Therefore it is called a deterministic distribution-insensitive algorithm
and as proved by Azar et al. [9] such algorithm cannot have a competitive ratio larger
than 11

15
≃ 0.733. This observation improves the upper bound of 0.746 that was found

by Hill and Hertz [26] for the IID Prophet Inequality, which as we mentioned above if the
variables are IID then the Prophet Inequality is equivalent to the Prophet Secretary.

Azar et al. [9] improved Esfandiari et al.’s algorithm by taking advantage of the fact that
E[maxiXi] =

∫∞
0
Pr[maxiXi ≥ x]dx and that every interval I ⊆ R contributes the value∫

x∈I Pr[maxiXi ≥ x]dx to E[maxiXi]. Their approach involves categorizing Prophet Sec-
retary instances into 3 groups:

1. The first category encompasses instances in which the contribution of the interval
[0, 1− 1

e
] to E[maxiXi] is minimal.

2. In the second category they include instances, in which, in expectation, more than
one Xi’s exceed a certain threshold.

3. The third category, themost pivotal, comprises all remaining instances. They demon-
strate that one of the Xi’s (wlog X1) is larger than the rest with high probability and
possesses a sufficiently high expectation. For these instances, their algorithm ap-
plies the same threshold to all samples. They establish that with high probability, the
algorithm selects a sample after encountering X1. As a result, it extracts most of the
expected value of X1 as its profit. Furthermore, the algorithm typically encounters
roughly half of the other Xi’s before encountering X1 due to the uniformly random
order in which samples arrive. Consequently, even in the unlikely event that one of
the otherXi’s exceeds the threshold, the algorithm still manages to capture its value
with a probability close to 1

2
.

As we can see, the improved algorithm proposed by Azar et al. is sensitive to the distri-
butions of X1, X2, . . . , Xn.
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5.4.5 Utilizing Blind Strategies

Correa et al. [14] introduced a novel class of algorithms known as blind strategies, which
enable them to achieve a competitive ratio of approximately 1 − 1

e
+ 1

27
≃ 0.669 in the

context of the prophet secretary problem. Additionally, their research includes a proof
demonstrating that the upper bound cannot exceed

√
3− 1 ≃ 0.732. This result effectively

distinguishes the prophet secretary problem from the IID prophet inequality, as the upper
bound for the prophet secretary problem is strictly lower than what can be achieved in the
IID case.

Essentialy blind strategies set a nonincreasing sequence of thresholds that depends only
on the distribution of the maximum of the random variables, and the gambler stops the
first time a sample surpasses the threshold of the stage. The algorithms proposed by Cor-
rea et al. exhibit remarkable robustness, constituting a generalization of single-threshold
algorithms into multi-threshold strategies. Their inspiration draws from Ehsani et al.’s pi-
oneering work [18], which initially computed a threshold value, denoted as τ , satisfying the
condition: P (max{V1, V2, . . . , Vn} ≤ τ) = 1

e
. This τ was employed as a single-threshold

strategy, prompting the gambler to stop the moment any observed value exceeded τ .
However, Ehsani et al. noted that this strategy exclusively applied to random variables
with continuous distributions. Nevertheless, by incorporating a degree of randomization,
they extended the strategy to accommodate general random variables. Instead of fixing
a single acceptance probability, they introduced a function α : [0, 1] → [0, 1]. This func-
tion was employed to establish a sequence of thresholds as follows: Given an instance
with n continuous distributions they draw uniformly and independently n random values in
[0, 1], and reorder them as u[1] < · · · < u[n]. Then they set thresholds τ1, . . . , τn such that
P (max{V1, . . . , Vn} ≤ τi) = α(u[i]) and the gambler stops at time i if Vσi

> τi. Notably, if
the function α was nonincreasing, this led to a nonincreasing sequence of thresholds.

The concept of blind strategies originates from the aforementioned algorithm. What dis-
tinguishes these strategies is that, despite decisions being time-dependent, this temporal
reliance solely hinges on the selection of the function α, which remains independent of
the specific instance. From a technical perspective, these strategies leverage Schur con-
vexity [34]. Notably, the algorithms mentioned earlier correspond to a blind strategy with
a(·) = 1

e
. Through their rigorous analysis, Correa et al. establish that the probability of the

gambler obtaining a value exceeding τ is at least as great as the probability of the max-
imum exceeding τ , rescaled by a factor of 1−1

e
. This result draws upon Schur convexity to

deduce that if a value surpasses the threshold τ , the gambler’s probability of selecting it is
no less than 1−1

e
. They extend their analysis to work with more general functions α,which

require precise bounds on the distribution of the stopping time corresponding to a function
α.

They present two lower bounds on the performance of blind strategies:

1. In the first case, they optimize the choice of α by solving an ordinary differential
equation, resulting in a guarantee of 0.665.

2. In the second case, employing a refined analysis, they derive the stated bound of
0.669.

While their general approach may seem to have room for further enhancement, they prove
that blind strategies cannot surpass a factor of 0.675. This is demonstrated by selecting
two specific instances where no blind strategy can excel in both cases.
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Furthermore, they establish an upper bound on the performance of any algorithm. By
constructing a non-i.i.d. instance, they demonstrate that no algorithm can outperform√
3 − 1 ≃ 0.732. This surpasses the previously known best bound of 0.745, which ap-

plies to the i.i.d. case and was proven by Hill and Kertz [26]. Additionally, their result
improves and extends Azar et al.’s recent bound of 11/15 ≈ 0.733 for the more restricted
class of Deterministic distribution-insensitive algorithms. Their work establishes a previ-
ously unknown separation between the prophet secretary problem and the i.i.d. prophet
inequality.

5.4.6 Improving hardness results

More recently, Bubna et al.[10] by utilizing a brute force numerical simulation and increas-
ing the support size of the IID variables improved the hardness result form 0.732 to 0.7254.
Based on this result Giambartolomei et al.[22] used the same idea to show a hardness
of 0.7235, however, this result only applies to the order-unaware setting. To show the
separation result they rely on an innovative asymptotic analysis of the optimal algorithm’s
acceptance thresholds, computed via backward induction, in a random arrival order set-
ting, so as to obtain upper bounds on the competitive ratio of the optimal algorithm.

5.4.7 Trying to beat the online optimal

Up until now, we put the gambler against a prophet who knows all the data in advance
and thus is able to make an optimal decision. More recently Dutting et al. [16] proposed
a different benchmark, the online optimal. This benchmark does not assume any prior
knowledge of the future; the gambler competes against an algorithm that has the same
information as him at every step, but infinite computation power. This new concept enables
us to measure the potential loss that arises due to computational limitations, rather than
quantifying the loss that’s due to the fact that the algorithm has to make decisions online.
Dutting et al. [16] managed to approximate the expected value of the online optimal to
within a factor of 1 − ε, which immediately translates into an algorithm that achieves a
(1−ϵ)-approximation.
Dutting et al. [16] leverage the observation that when you cluster ”similar” variables into
g groups and handle variables in each group uniformly, you can construct a dynamic pro-
gram to monitor the count of variables in each group. However, this approach results in
exponential complexity in g. The key challenge is then to demonstrate the existence of a
concise grouping that achieves a (1−ϵ)-approximation. For the QPTAS, it is adequate to
provide a grouping of size polylog(n), but for the PTAS, it is essential to further reduce this
to O(1).

• QPTAS
Dutting et al. start by addressing a special case, where each random variable has
binary support as follows: variable Xi is either vi or zero, with probabilities pi and
1−pi respectively. Firstly, they scale the values appropriately so that OPT falls into
some small constant interval [c, 1]. Secondly, they show that they don’t lose more
than O(ϵ) if they ignore variables with low value (vi ≤ ϵ) or low expected value
(vipi ≤ ϵ

n
). The remaining variables with high values vi ≥ 1

ϵ2
are compressed by

adjusting their values so that they all have the same value and their probabilities
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fall in a O(poly n) range. Variables with small values (from ϵ to 1
ϵ2
) and probabilities

ranging from ϵ3

n
to 1 are discretized into powers of (1 + ϵ).

This construction can be readily extended to constant-size support cases by treating
high realizations similarly to the single case. To handle support sizes that are not
necessarily constant, an argument is presented for collapsing all high realizations
(above OPT) of a variable into a single point. Combined with discretization for low
realizations (from ϵ to 1), this brings us back to the constant-size support case.

• PTAS
In a manner similar to the QPTAS case, the approach taken for the PTAS involves
considering scenarios where all variables have binary values, which encapsulates
the general strategy. Starting with the discretization techniques from the QPTAS, the
challenge lies in managing variables with individually small realization probabilities
(< poly(ϵ)) that cannot be disregarded since their combined impact on the optimal
reward can be significant. This step is crucial to reduce the number of distinct prob-
abilities to poly(1

ϵ
).

To address this, a novel method called ”frontloading” is introduced. It works like
this: We fix a support value v, and consider the variables of interest (those with
neither high nor low probabilities) with that support. If it is the case that k many of
these variables have a total realization probability that is not very high, then we claim
that imagining these k variables as a single box, with the total realization probability
equal to that of the k boxes, and as an ”outside option” always available through
the interval where these variables arrive, does not affect the reward much. This
innovation significantly reduces the variety of probabilities that must be tracked in
the dynamic program to find the optimal solution.
To extend this approach to variables with support sizes greater than one, it is shown
that a variable with multiple support values can be envisioned as a collection of bin-
ary variables (each of them having one of the support values with its corresponding
probability that is not too high, and the remaining probability on value 0) and an ad-
ditional variable with high probability for each support value that occurs sequentially.
This simplifies the problem back to the binary case, as there are only a limited num-
ber of variable types with higher probabilities on each support value, allowing for
distinct treatment.

5.4.8 Minimization variant of Prophet Secretary

The result mentioned in section 4.4 for the I.I.D. case of the cost minimization prophet
inequality also holds for the for the minimization variant of the prophet secretary problem
as well. Lastly, it was also proved that for any large number C, there is no C-competitive
algorithm for minimization prophet secretary with one exchange.

5.5 Variables drawn from unknown distributions

Up to this point, we have studied the Prophet Inequality problem with the assumption that
we have knowledge of the distributions of the variables. The decision about when to stop
and accept the realization of a variable depends only on the values of the random variables
X1, . . . , Xt and on the distribution D. The case where D is unknown, such that the decision
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may depend only on on the values of the random variables is equally interesting but it has
received little attention.

The primary drive for investigating this issue stems from its relevance in contemporary ap-
plications of prophet inequalities, particularly their role in evaluating posted-price mechan-
isms and reserve pricing in advertising auctions. In these scenarios, it is typical to depict
valuations as samples drawn from an underlying distribution. However, it might not be
feasible to presume that the auctioneer is aware of this distribution. Nonetheless, the
auctioneer may choose to learn the distribution on the fly as opportunities arrive, or may
possess some limited historical information in the form of additional samples.

Despite the obvious appeal of the problem, which was noted by Azar et al.[8], little was
known about this setting up until recently. The latest research on this setting is due to
Correa et al. [15], who considered the prophet problem in which values are drawn inde-
pendently from a single unknown distribution, and asked which approximation guarantees
can be obtained relative to the expected maximum value in hindsight. Unlike the known
distribution setting where an optimal stopping rule can be obtained via backwards induc-
tion, in the unknown distribution setting, there is no clear candidate. The challenges of this
problem stem from the fact that we hope to be able to learn something for future values
from earlier ones.

5.5.1 Sublinear number of samples

For o(n) samples the prophet problem behaves like the secretary porblem.

5.5.1.1 Achieving a 1
e
-bound without samples

Correa et al. [15] achieved a guarantee of 1
e
by employing the optimal stopping rule for

the secretary problem. This rule ensures that it will stop on the maximum value with a
probability of at least 1

e
. As demonstrated in section 5.4, this implies a 1/e-approximation

concerning the expected maximum. To provide a quick recap of the strategy used for the
secretary problem: we discard a 1

e
fraction of the values and then accept the first value

that surpasses the maximum among the discarded values.

This algorithm doesn’t require any samples, is guaranteed to stop at the maximum of the
sequence with a probability of 1

e
, and can also be demonstrated to offer a 1

e
approximation

for our objective. However, this analysis does not consider the fact that all values originate
from the same distribution, thus neglecting any potential learning opportunities.

Finally, the authors prove that no learning of the distribution is feasible, and the straightfor-
ward guarantee of 1

e
is, in fact, the best possible in the prophet setting. In simpler words,

o(n) samples are not enough to improve on the bound of 1
e
.

5.5.2 Linear number of samples

They proceeded to show that there is a sharp phase transition when going from o(n)
samples to Ω(n) samples, by giving an algorithm that uses as few as n−1 samples and
improves the lower bound from 1

e
to 1 − 1

e
≃ 0.632. This bound is tight for two different

classes of algorithms that share certain features of their proposed algorithm.
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5.5.2.1 Obtaining a 1
2
-approximation with n− 1 samples

With the help of the below algorithm they show that if the stopping rule has access to
n−1 samples, then we can simply take the maximum of these samples as a single, non-
adaptive threshold for all random variables to obtain a factor 1

2
-approximation.

Algorithm 10 Fresh-looking samples [15]
Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown dis-
tribution D, sample access to D
Result: Stopping time τ
S1, . . . , Sn−1 ← n−1 independent samples from D
S ← {S1, S2, . . . , Sn−1}
for t = 1 to n do
if Xt ≥ maxS then
return t

else
S ← random subset size n− 1 of {S1, . . . , Sn−1, X1, . . . , Xt}

end if
end for
return n+ 1

In order to gain some intuition they designed an algorithm that samples n − 1 values
S1, . . . , Sn−1 from D , uses the maximum of these as a uniform threshold for all of the
random variables X1, . . . , Xn, and accepts the first random variable that exceeds this
threshold. The expected value that can be collected from any random variable Xt con-
ditioned on stopping at that random variable is at least E[max{X1, . . . , Xn}], since under
this condition Xt is the maximum of at least n i.i.d. random variables. The approximation
guarantee of this algorithm is 1

2
+ 1

4n−2
.

5.5.2.2 Achieving a 1− 1
e
approximation with n− 1 samples

Correa et al. [15] demonstrated that it is feasible to achieve an enhanced bound of
1 −

(
1− 1

n

)n ≥ 1 − 1
e
≈ 0.632 with just n − 1 samples. They accomplished this by re-

fining the naive algorithm mentioned above, by increasing the probability of stopping, all
while maintaining the property that the expected value collected when stopping is at least
E[max{X1, . . . , Xn}].

The stopping rule they use to achieve this bound is as follows: The rule starts by drawing
n−1 samples. Then, when considering the ith random variable for i ≥ 1, it also considers
a random subset of size n−1 drawn uniformly from the n−1 initial samples and the i−1
random variables seen so far. If the ith random variable is greater than the maximum of
that random subset the rule stops, otherwise it continues with the next random variable.
While the stopping rule itself is easy to describe, its analysis relies on an insight that is
somewhat subtle. Indeed, each of the sets of random variables used to set a threshold
for acceptance is distributed like a set of n−1 fresh samples from the distribution. The
expected value collected from each random variable, conditioned on its acceptance, thus
equals the expected maximum value of n independent draws from the distribution, and
the probability of accepting a random variable conditioned on reaching it is exactly 1

n
. The
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approximation guarantee is then equal to the overall probability of stopping, which is at
least 1− 1

e
.

They claim that while an improvement over the bound of 1−1
e
≈ 0.632 remains conceivable

via more complicated stopping rules, such an improvement cannot go beyond ln(2) ≈
0.693.

5.5.3 Superlinear number of samples

Correa et al. [15] also considered the case where we have access to O(n2) samples. With
this larger sample size, it becomes possible to approach the optimal guarantee of approx-
imately 0.745, which is achievable when the distribution is fully known. This is achieved by
mimicking the stopping rule that attains that bound, which uses a decreasing sequence of
thresholds corresponding to conditional acceptance probabilities that increase over time.
However, instead of using the true distribution, they use quantiles from the empirical dis-
tribution. By initially discarding a constant fraction of the values and leveraging the DKW
inequality to demonstrate the simultaneous concentration of all empirical quantiles, they
manage to reduce the required number of samples from O(n4) to O(n2). This is in con-
trast to the more straightforward approach, which potentially stops on any of the values
and relies on Chernoff and union bounds to establish concentration.

5.5.4 Final results

In conclusion, the results they obtained are:

• A straightforward guarantee for the case of α ≥ 1
e
≈ 0.368 can be derived from the

well-known optimal solution to the secretary problem and this bound is actually tight

• The stopping time may depend on a limited number of samples from D, and even
with o(n) samples we get an appoxrimation of α ≤ 1

e
, meaning we cannot improve

on the bound of 1
e
, with just o(n) samples

• If we have access to n samples, the approximation improves significantly: α ≥
1−1

e
≈ 0.632 and α ≤ ln(2) ≈ 0.693

• If we have O(n2) samples, this is equivalent to knowledge of the distribution and we
obtain α ≥ 0.745− ϵ
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6. CONCLUSIONS AND FUTURE WORK

Throughout this thesis, the problem of Prophet Inequality was explored, which at its core
is a combination of online decision-making and stochasticity. One of the most basic eco-
nomic problems is that of eliciting information to make optimal decisions. The prophet
inequality problem is a natural extension of this problem, where the decision-maker is
faced with a sequence of random variables and must decide when to stop and accept the
realization of a random variable.

In Chapter 2, we established foundational theoretical knowledge essential for compre-
hending the prophet inequality and its significance in contemporary decision-making pro-
cesses. Specifically, we outlined the core challenge of optimal stopping theory, which
focuses on determining the ideal timing for taking actions based on sequentially observed
random variables to either maximize rewards or minimize costs. Additionally, we elucid-
ated the distinction between game theory andmechanism design: the former explores how
entities can influencemultiple outcomes, while the latter centers on how to achieve specific
outcomes. Our exploration extended to price mechanisms, particularly highlighting the
connection between posted price mechanisms and the prophet inequality. Furthermore,
we conducted an explanation of competitive analysis, by delineating offline and online op-
timization and introducing the competitive ratio as a crucial metric employed throughout
the thesis to evaluate the efficiency of proposed online algorithms. Finally, we emphasized
the disparity between adaptive and non-adaptive algorithms and presented key statistical
functions and definitions sourced from the problem’s bibliography.

In chapter 3, we explored in depth the Prophet Inequality problem for the reward maxim-
ization setting. We started by presenting the classic algorithm of Krengel and Sucheston
[30], who established a fundamental lower bound wherein the gambler can consistently
secure at least half of the expected prophet’s reward. This lower bound is the founda-
tion of all further research. In section 3.3 we extensively compared the selection between
order types: the gambler’s power to determine the arrival order of each item versus the
random order variant. The latter, when it is employing independent and identically distrib-
uted (iid) variables, aligns with the Prophet Secretary problem and is detailed in section
5.4. As fas as order selection is concerned, we highlighted its NP-hardness even under a
special case of a 3-point distribution, where the highest and lowest points of the support
are the same for all the distributions. At first, the lower bound of the optimal factor was
0.669 and the upper bound 0.745, but as more studies focused on order selection this
gap has began to get smaller. We explained that the bound of 0.632 is the best possible
for both random and free-order prophet inequalities and it is also the best ratio attain-
able for threshold stopping rules. When we have iid variables, we present that the first to
surpass the 1

2
barrier of prophet inequality was a 0.6321-competitive algorithm based on

complicated recursive functions, later an approximate single threshold 0.7380-competitive
algorithm was found, after which the tight optimal competitive ratio of 0.7451 was finally
attained. In the non-iid case we detailed an algorithm that achieves a 0.7380-competitive
ratio when each distribution in the instance occurs m times, for a sufficiently large m. Addi-
tionally, we showcased that offering the gambler a set of predetermined permutations for
indexing the random variables enhanced the competitive ratio to the inverse of the golden
ratio, even with just 2 permutations. However, despite having the choice among the n!
permutations, the ratio could not surpass the bound of 1 − 1

e
. We then demonstrated an

algorithm centered on arrival time design, which improves the competitive ratio of order
selection to 0.725, reaching 0.745 for the iid setting. Finally, we explained how the com-
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petitve ratio for order selection was improved from 0.7251 to 0.7258, and that it can be
more beneficial for the gambler to choose the order as random order was proven to be
bounded by 0.7325.

In chapter 4, we turned our focus on the cost minimization variant. Contrary to our initial
intuition, the cost minimization setting proves to be significantly more challenging than the
maximization one, primarily due to its constraints being upwards-closed in nature. At first,
we mentioned that algorithms fail to achieve any bounded approximation for the non-iid
advarsarial or random order instance. However, in the iid case, it was demonstrated that
the competitive ratio of any online algorithm is bounded by (1.11)n

6
. Following this result,

we presented an algorithm that achieves a O(polylogn)-factor approximation using only
one threshold. Furthermore, we note that when employing multiple threshold algorithms,
it is possible to attain a distribution-dependent constant factor CPI for the class of Entire
distributions, and a 2-factor CPI for Entire MHR distributions.

In chapter 5 we discuss the progress that has been made in various variations of the
original problem. For the multiple choices prophet inequality, the current state-of-the-art
algorithm achieves a competitive ratio of (1− 1√

k+3
). In the matroid prophet inequality it has

been established that there exists an online algorithm whose expected payoff is at least
half of the expected weight of the maximum weight basis. Furthermore, in the context of
the matching prophet inequality, the most effective algorithm discovered to date offers an
approximation that is nearly tight, approaching (1− 1√

k+3
). Additionally, we presented the

prophet secretary problem, which equates to the random order prophet inequality. Initially,
an algorithm was devised establishing a bound of 1 − 1

e
, which defines a nonincreasing

sequence of n thresholds τ1, . . . , τn that only depend on the expectation of the maximum
of the Vi′s and on n. Subsequently, it was proved that the same factor can be obtained
with a personalized but nonadaptive sequence of thresholds and with a single threshold
algorithm(having to randomize to break ties in some situations). However, this bound
was proven to be not tight, as an algorithm that relies on some subtle analysis obtains
1 − 1

e
+ 1

400
. Notably, blind strategies improved upon the previous results by obtaining a

constant of 0.669, but cannot surpass 0.675. Additionally, it was established that no on-
line algorithm could achieve better than

√
3 − 1, marking the first distinction between the

prophet secretary and the iid prophet inequality. Finally, we examined scenarios where a
gambler faces a computer possessing equivalent knowledge but has infinite computational
power. In this setting, it was proven that an algorithm exists with a (1− ϵ) -approximation.
Regarding the minimization variant of the prophet secretary, analogous results to those
presented in section 4.4 of the iid prophet inequality apply. The last variation we studied
was the one where variables are drawn from unknown distributions. A direct guarantee of
0.368 stems from the optimal solution to the secretary problem in this context. Addition-
ally, we examined cases where the stopping time relies on a limited number of samples
from F, demonstrating that even with o(n) samples, α ≤ 1

e
. Conversely, leveraging n

samples yields a notable enhancement: α ≥ 1−1
e
≈ 0.632 and α ≤ ln(2) ≈ 0.693. Finally,

possessing O(n2) samples equates to having knowledge of the distribution, resulting in
α ≥ 0.745−ϵ for any ϵ > 0.

These detailed examinations underscore the multifaceted nature of the Prophet Inequality
Problem, shedding light on its complexities and potential applications. While this research
contributes significantly to understanding and addressing this intricate problem, avenues
for future research remain, including exploring more practical applications and refining
algorithms to achieve tighter competitive ratios.
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ABBREVIATIONS - ACRONYMS

GT Game Theory

MD Mechanism Design

QPTAS Quasi Polynomial Time Approximation Scheme

PTAS Polynomial Time Approximation Scheme

FPTAS Fully Polynomial Time Approximation Scheme

MHRD Monotone Hazard Rate Distribution

CPI Cost Prophet Inequality

PPMs Posted-Price Mechanisms
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