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ABSTRACT

Context-free grammars (CFGs) are a major field in programming, and their use cases, es-
pecially in compilers, are a cornerstone of information technology. In contrast, logic pro-
gramming, considering its equivalence to any programming language, is an underrated
and generally under-represented area of programming. Grammars and logic program-
ming are two very different constructs but, in retrospect, they seem similar in their syntax.
Currently in the scientific world, a transformation of context-free grammars to logic pro-
grams has been introduced that examines the nuanced relationship between these two.
The extensions of CFGs proposed by Okhotin, conjunctive grammars which add the con-
junction operation to CFGs, and Boolean grammars which extend conjunctive grammars
with negation, are a significant step in formal language theory. In this thesis, a natural ex-
tension of the aforementioned transformation is proposed so as to handle conjunctive and
Boolean grammars. A clear mathematical definition of the transformation is introduced
that is implemented through a simple CFG parser which produces an Abstract Syntax
Tree. In the nodes of the tree which correspond to grammar rules, the transformation is
applied and a Datalog clause is produced. The end product is a Datalog program which
possibly contains negation. For that reason, the well-founded semantics for negation are
used to determine the existence of a string in the language created by the provided gram-
mar. The transformation that we propose enhances the bridging between grammars and
logic programming, and is an interesting extension which adds to our intuition into the
similarities of these two worlds.

SUBJECT AREA: Formal Language Theory

KEYWORDS: Context-free grammars, Conjunctive grammars, Boolean grammars,
Datalog



ΠΕΡΙΛΗΨΗ

Οι γραμματικές χωρίς συμφραζόμενα (CFGs) αποτελούν σημαντικό πεδίο στην πληρο-
φορική και η χρήση τους, ειδικά σε μεταγλωττιστές, αποτελεί ακρογωνιαίο λίθο των τε-
χνολογιών πληροφορίας. Αντίθετα, ο λογικός προγραμματισμός, λαμβάνοντας υπόψη την
ισοδυναμία του με οποιαδήποτε γλώσσα προγραμματισμού, είναι ένας υποτιμημένος και
γενικά υποεκπροσωπούμενος τομέας προγραμματισμού. Οι γραμματικές και ο λογικός
προγραμματισμός είναι δύο πολύ διαφορετικές κατασκευές, όμως, φαίνονται όμοιες στο
συντακτικό τους. Στον επιστημονικό κόσμο, έχει εισαχθεί μια μετατροπή των CFGs σε
ένα λογικό πρόγραμμα, η οποία εξετάζει την περίπλοκη σχέση μεταξύ αυτών των δύο.
Οι επεκτάσεις των CFGs που προτείνονται από τον Okhotin, οι συζευκτικές γραμματικές
που προσθέτουν την πράξη της σύζευξης στις CFGs και οι γραμματικές Boolean που
επεκτείνουν τις συζευκτικές γραμματικές με την πράξη της άρνησης, είναι ένα σημαντικό
βήμα στην θεωρία τυπικών γλωσσών. Σε αυτή τη πτυχιακή, προτείνεται μια επέκταση της
προαναφερθείσας μετατροπής ώστε να χειρίζεται συζευκτικές και Boolean γραμματικές.
Εισάγεται ένας σαφής μαθηματικός ορισμός της μετατροπής, ο οποίος υλοποιείται μέσω
ενός απλού CFG parser που παράγει ένα Αφηρημένο Συντακτικό Δέντρο. Στους κόμβους
του δέντρου που αντιστοιχούν σε κανόνες γραμματικής, εφαρμόζεται η μετατροπή και πα-
ράγεται ένας κανόνας Datalog. Το τελικό προϊόν είναι ένα πρόγραμμα Datalog που πιθα-
νώς περιέχει άρνηση. Για το λόγο αυτό, η καλώς θεμελιωμένη σημασιολογία για την άρ-
νηση χρησιμοποιούνται για να προσδιοριστεί, εν τέλει, η ύπαρξη μιας συμβολοσειράς στη
γλώσσα που δημιουργήθηκε από την παρεχόμενη γραμματική. Η μετατροπή που προτεί-
νουμε ενισχύει τη γεφύρωση μεταξύ γραμματικών και λογικού προγραμματισμού και είναι
μια ενδιαφέρουσα επέκταση που ενισχύει τη διαίσθησή μας για τις ομοιότητες αυτών των
δύο κόσμων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Θεωρία Τυπικών Γλωσσών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Γραμματικές χωρίς συμφραζόμενα, Συζευκτικές γραμματικές,
Boolean γραμματικές, Datalog
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Transforming Boolean grammars to Datalog

1. INTRODUCTION

1.1 Formal Grammars

Formal grammars are fundamental constructs within the realm of formal language the-
ory, providing a systematic and mathematical framework for describing the syntax of
languages. Developed by linguist Noam Chomsky in the 1950s, formal grammars are
rule-based systems that define the structure and composition of strings in a language.
They consist of a set of production rules that dictate how symbols, both terminal and non-
terminal, can be combined to generate valid strings conforming to the language’s syntax.
These grammars are classified into various types, such as regular grammars, context-
free grammars, and context-sensitive grammars, each possessing different expressive
power. Formal grammars find extensive applications in computer science, especially in
the design and analysis of programming languages, compilers, and natural language pro-
cessing systems. They serve as the backbone for understanding the syntactic structures
of languages and play a pivotal role in parsing and language recognition algorithms.

1.2 Logic Programming

Logic programming is a paradigm in computer science that revolves around the use of
mathematical logic for expressing and executing programs. At its core is the program-
ming language Prolog (and its subset Datalog), where computation is framed as a set of
logical relationships and rules. In logic programming, a set of facts and rules is defined
by using a formal logic known as Horn clauses. The program’s execution involves the
automated resolution of queries against these rules and facts, allowing for a declarative
style of programming where the emphasis is on specifying what needs to be achieved
rather than how to achieve it. Prolog and Datalog, with their inference engines, excel
in tasks that involve symbolic reasoning, knowledge representation, and rule-based sys-
tems. Logic programming has found applications in various domains, including artificial
intelligence, natural language processing, and expert systems, showcasing its versatility
in tackling problems characterized by complex relationships and inferential reasoning.

1.3 Converting Grammars to Logic Programs

At a first glance, the aforementioned areas seem very distant from each other. Prolog and
logic programming in general have a large amount of use cases as they are equivalent
to a Turing machine. In essence, Prolog has the same abilities as any imperative pro-
gramming language like C and Java. On the other hand, formal grammars are tools for
expressing languages and their usage is small in other fields of computer science. Their
limited expressibility hinders them from solving a large amount of problems and makes
them inherently ”weaker” than programming languages. However, intuitively the syntax
of both seems very similar. A simple example rule of a formal grammar is the following
statement:

S → A

D. Konstantinidis 14
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Whereas a simple logic clause is:

p← q

This similarity can be further explored by defining a conversion between these two. Al-
though converting logic programs into formal grammars is impossible as there are prob-
lems which cannot be solved by any kind of grammar (with the exception of general gram-
mars which are out of the scope of this thesis), transforming a formal grammar into a
logic program is something that has been introduced in the scientific world [7]. In this
thesis we enhance this transformation to accept two supersets of CFGs, conjunctive and
Boolean grammars. These grammars serve as natural extensions of CFGs as they add
the conjunction and negation operations respectively to the grammar rules.

D. Konstantinidis 15
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2. BACKGROUND AND RELATED WORK

2.1 Context-Free Grammars

2.1.1 Introduction

Context-free grammars (CFGs) are a fundamental concept in formal language theory and
computer science. They provide a robust mathematical framework for precisely describ-
ing the syntax of programming languages, natural languages, and many other formal lan-
guages. At the core of their significance lies the ability to reliably define the hierarchical
structure of languages. Unlike regular expressions, context-free grammars introduce non-
terminals, symbols that serve as placeholders to be replaced by sequences of symbols,
providing a level of abstraction essential for representing complex syntactic structures.
This inherent flexibility allows CFGs to encapsulate the syntax of a broad spectrum of
languages, ranging from the rigid rules found in programming languages to the nuanced
intricacies of natural languages.

2.1.2 Definition

As defined in [6], a context-free grammar is a quadruple G = (Σ, N, P, S) where:

• Σ is a finite non-empty set of symbols that form the strings of the language produced
by the grammar, we call this alphabet “terminals”.

• N is a finite non-empty set of variables or “non-terminals”, each of these represents
a language (i.e. a set of strings).

• P is a finite set of rules, each defined as an ordered pair (A,B), where A ∈ N and
B ∈ (Σ ∪ N)∗, that represent the definition of the language produced by G. Each
rule is written as:

A→ B

• S ∈ N is the starting symbol that defines the language produced by G.

2.1.3 Examples

Consider a context-free grammar for the language L = {wcwR : w ∈ {a, b}∗}. This lan-
guage consists of palindrome strings with c as the middle point surrounded by the char-
acters a and b.

S → aSa

S → bSb

S → c

In the above example: Σ = {a, b, c}, N = {S}, P = {(S, aSa), (S, bSb), (S, c)} and S is the
starting symbol.

D. Konstantinidis 16
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Figure 2.1: CFG Syntax Tree

2.1.4 Derivations and Syntax Trees

The elegance of context-free grammars reveals itself in their ability to articulate the step-
by-step process of string generation through derivations. Each derivation, an application
of the production rules P , unveils the evolution of a string from its non-terminal form to the
final composition of terminals. Complementing derivations, syntax trees (often mentioned
as ”parse trees”) provide a visual representation of the syntactic hierarchy encoded within
a string, offering insights into the structural relationships between its constituent elements.

For instance, in the aforementioned grammar, the string aabcbaa can be derived from the
starting symbol S with the following derivation:

1. aSa (from rule 1.S → aSa)

2. aaSaa (from rule 1.S → aSa)

3. aabSbaa (from rule 2.S → bSb)

4. aabcbaa (from rule 1.S → c)

The corresponding syntax tree is shown in Figure 2.1:

D. Konstantinidis 17
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2.1.5 Chomsky Normal Form

In formal language theory, a context-free grammar, G, is said to be in Chomsky normal
form (first described by Noam Chomsky)[3] if all of its production rules are of the form:

A→ BC

A→ a

S → ϵ

where A,B are non-terminals, a is a terminal symbol, S is the starting symbol (thus a
non-terminal as well) and ϵ denotes the empty string.

2.1.6 Parsing

The parsing problem, checking whether a given word belongs to the language provided by
a context-free grammar, is decidable. The process of parsing involves navigating through
the grammar’s production rules, making decisions at each step based on the current input
and the rules of the grammar. Successful parsing results in the construction of the syntax
tree. There are different parsing techniques employed for context-free grammars, with the
two primary methods being top-down parsing and bottom-up parsing.

In top-down parsing, the process starts from the top of the parse tree (the start symbol)
and proceeds downward, recursively expanding non-terminals to match the input string.
One of the most common top-down parsing methods is recursive descent parsing, where
each non-terminal in the grammar corresponds to a parsing function. These functions
are invoked recursively, and each function attempts to match a portion of the input string
with the production rules associated with the corresponding non-terminal. The choice of
which production to apply is typically determined by examining the next k tokens of input.
However, not all grammars are eligible for this method as the problems of ambiguity and
left recursion raise difficulties in the parsing process. The grammars without these issues
belong in the LL(k) class where k is the amount of tokens after the input that will be con-
sumed. LL stands for ”Left-to-right, Leftmost derivation”. Recursive descent parsers are
relatively easy to implement and understand, providing a clear correspondence between
grammar rules and parsing functions. The grammar provided in the above examples is
an LL(1) grammar.

Bottom-up parsing is a technique employed to analyze the syntactic structure of an input
string according to a context-free grammar. Unlike top-down parsing, bottom-up pars-
ing starts from the input string and works upward, aiming to reduce portions of the input
to non-terminals until the start symbol is reached. LR parsing (”Left-to-right, Rightmost
derivation”), a popular variant of bottom-up parsing, employs a deterministic finite automa-
ton (DFA) and a stack to guide the parsing process. The parser shifts input symbols onto
the stack until a viable right-hand side of a grammar rule is identified, at which point a
reduction operation is performed. This reduction replaces the right-hand side with the
corresponding non-terminal, mimicking the construction of the parse tree in a bottom-up
fashion. LR parsers are efficient and capable of handling a broad class of grammars, with
LR(1) and LALR(1) (”Look-ahead LR”) being widely used variants. Although bottom-up
parsers are not limited by the problems of ambiguity and left recursion, they are consider-
ably harder to implement than top-down parsers.

D. Konstantinidis 18
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Other common parsing algorithms for CFGs include:

• Earley Parser: Introduced in [5] and named after its creator Jay Earley, is a gen-
eral parsing algorithm known for its versatility and ability to handle a broad class
of grammars, including those with left recursion and ambiguity. Operating on the
principles of dynamic programming, the Earley parser builds a chart or table to store
partial parsing results. It processes the input string incrementally, maintaining a set
of states that represent possible positions within the grammar. The algorithm pro-
gresses by predicting, scanning, completing, and combining states, ultimately pro-
ducing a set of valid parse items. The Earley parser’s strength lies in its flexibility,
making it particularly suitable for natural language processing applications where
grammars can be intricate and ambiguous. Despite its generality, its worst-case
time complexity is O(n3), limiting its efficiency for extremely large inputs or gram-
mars. Nonetheless, the Earley parser remains a valuable tool in the parsing toolkit,
especially when dealing with grammars that other parsing algorithms may find chal-
lenging.

• CYK: Published in [13] and re-introduced in [4], operates by constructing a table
to store partial parsing results. The table is filled by considering all possible com-
binations of non-terminals that can generate substrings of the input. This process
of bottom-up table filling allows the CYK algorithm to efficiently identify valid parse
trees for the input string. One notable feature is its versatility in handling ambiguous
grammars. At this point, we must note that the grammar must be in CNF. The CYK
algorithm has found applications in various fields, including natural language pro-
cessing and computational linguistics, showcasing its significance in parsing tasks
where the underlying grammatical structure is well-defined and suitable for CNF rep-
resentation. The worst case performance of the algorithm is O(n3 · |G|) where |G| is
the size of the CNF-grammar G.

2.1.7 CFGs in the Chomsky Hierarchy

The Chomsky Hierarchy [3], [2], proposed by linguist and cognitive scientist Noam Chom-
sky, is a classification system that categorizes formal grammars into distinct classes based
on their generative power. This hierarchy comprises four levels: Type 3 (Regular), Type
2 (Context-Free), Type 1 (Context-Sensitive), and Type 0 (Unrestricted). At the bottom of
the hierarchy are Type 3 grammars, or regular grammars, which are equivalent to finite
automata. Moving up, Type 2 grammars, or context-free grammars, find extensive use
in defining the syntax of programming languages. Type 1 grammars, or context-sensitive
grammars, have rules that are sensitive to the context of the symbols, allowing for greater
expressive power. At the pinnacle of the hierarchy are Type 0 grammars, or unrestricted
grammars, which have no restrictions on their production rules. The Chomsky Hierarchy
provides a theoretical framework to understand the relationships and limitations among
different classes of formal languages, offering insights into the computational complexi-
ties inherent in language recognition and generation.

2.1.8 Pumping Lemma for Context-Free Languages

Introduced in [9], the Pumping Lemma for Context-Free Languages is a fundamental con-
cept in formal language theory that provides a tool for demonstrating the non-context-

D. Konstantinidis 19
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Figure 2.2: Chomsky Hierarchy

freeness of certain languages. It serves as a proof by contradiction: if a language violates
the conditions, it cannot be context-free. This lemma provides a powerful tool for estab-
lishing the limitations of context-free grammars and identifying languages that fall outside
this class. The lemma states that if a language L is context-free, then there exists some
integer p ≥ 1 such that every string s ∈ L (where |s| ≥ p) can be written as:

s = uvwxy

Where:

• |vx| ≥ 1

• |vwx| ≤ p

• uvnwxny ∈ L, ∀n ≥ 0

The integer p is called the “pumping length” of the language L.

Example: Consider the language L = {anbncn : n ≥ 0}. First we assume that L is context-
free. The string s = apbpcp can be written as uvwxy such that |vx| ≥ 1 and |vwx| ≤ p where
p ≥ 1 and p ∈ N.

For vwx there are 5 possibilities:

• vwx = ai, i ≤ p

• vwx = bi, i ≤ p

• vwx = ci, i ≤ p

• vwx = aibj, i+ j ≤ p

• vwx = bicj, i+ j ≤ p

Note that vwx = aibjck, i + j + k ≤ p is impossible as we have defined s as apbpcp and
|vwx| ≤ p. For all the aforementioned possibilities, the string uvnwxny /∈ L, therefore
-through proof by contradiction- the language L is not context-free.

In a similar way the language L = {wcw : w ∈ {a, b}∗} can be proven to be not context-
free.

D. Konstantinidis 20
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2.1.9 Closure Properties

The closure properties of context-free grammars refer to the preservation of certain lan-
guage properties under various operations. One fundamental closure property is closure
under union, meaning that if two languages can be generated by CFGs, their union can
also be generated by a CFG. This property highlights the composability of context-free
languages. Another crucial closure property is closure under concatenation, asserting
that the concatenation of two languages generated by CFGs is itself generated by a CFG.
Additionally, context-free grammars exhibit closure under the Kleene star operation, im-
plying that the repetition of a language generated by a CFG can also be generated by a
CFG.

On the other hand, CFGs are not closed under conjunction and negation. Consider the
languages L1 = {anbncm : n ≥ 0,m ≥ 0} and L2 = {ambncn : n ≥ 0,m ≥ 0}. Both of these
languages are context-free. Despite that, their intersection is the language L = {anbncn :
n ≥ 0} for which we proved its non-context-freeness. Hence the intersection of two or
more context-free languages need not necessarily belong to the context-free family. The
case is similar for the complement operation.

For that reason, we will be looking into two extensions of CFGs, conjunctive grammars and
Boolean grammars. The first allows the conjunction/intersection operation (hence closed
under intersection) and the latter allows the negation/complement operation (closed under
complement).

2.1.10 Limitations and Extensions

While context-free grammars offer a potent framework for language description, they are
not without limitations, as shown by the two languages provided above. Certain language
constructs elude concise representation within traditional context-free grammars. Con-
junctive grammars and Boolean grammars (both of which will be explored further in this
thesis) emerge as extensions, overcoming some of these limitations and expanding the
expressive power of formal language representation.

2.2 Conjunctive Grammars

2.2.1 Introduction

Conjunctive grammars are a type of formal grammar introduced by Alexander Okhotin
in [10], primarily in the context of parsing and recognizing languages. Unlike traditional
context-free grammars, which use rules to replace non-terminal symbols with strings of
terminals and non-terminals, conjunctive grammars employ a more intricate set of rules.
In a conjunctive grammar, productions involve the intersection of languages, allowing the
combination of multiple languages simultaneously. This intersection operation introduces
a new layer of expressiveness and complexity, making conjunctive grammars a powerful
tool for describing a wide range of languages and structures.

The intersection operation enables the specification of conditions that involve multiple as-
pects of a string, allowing for more nuanced language definitions. This expressive capa-
bility makes conjunctive grammars particularly well-suited for applications where complex
relationships between components of a language need to be articulated.
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2.2.2 Definition

As defined in [10], a conjunctive grammar is a quadruple G = (Σ, N, P, S) where:

• Σ is a finite non-empty set of symbols called “terminals”.

• N is a finite non-empty set called “non-terminals”.

• P is a finite set of rules, each defined as an ordered pair (A, {a1, a2, ..., an}), where
A ∈ N , ai ∈ (Σ ∪N)∗ and 1 ≤ i ≤ n. Each rule is written as:

A→ a1& a2& ...& an

• S ∈ N is the starting symbol.

The following notation will be used for the rules of a single non-terminal:

A→ a11& ...& a1n | ... | am1& ...& amk

2.2.3 Examples

Consider the language L = {anbncn : n ≥ 0. Earlier, we proved that this language is not
context-free. However, the addition of the intersection operation allows us to express this
language easily through the following conjunctive grammar.

S → AB&DC

A→ aA | ϵ

B → bBc | ϵ

C → cC | ϵ

D → aDb | ϵ

Σ = {a, b, c}, N = {S,A,B,C,D}, P = {(S, {AB,DC}), (A, {aA}), (A, {ϵ}), ...} and S is
the starting symbol.

Also, for another language that is not context-free, L = {wcw : w ∈ {a, b}∗}, a conjunctive
grammar that produces it is the following.

S → C&D

C → aCa | aCb | bCa | bCb | c

D → aA&aD | bB&bD | cE

A→ aAa | aAb | bAa | bAb | cEa

B → aBa | aBb | bBa | bBb | cEb

E → aE | bE | ϵ
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Figure 2.3: Conjunctive Grammar Syntax Tree

2.2.4 Derivations and Syntax Trees

The process of string generation through derivations is similar to CFGs. The only differ-
ence is that whenever an intersection is found, the derivation process splits into two parts.
Assuming both reach the same result, then the process is a success. It is important to
acknowledge that the branching parts can be computed in parallel.

For instance, for the grammar L = {anbncn : n ≥ 0}, the string abc can be derived from the
starting symbol S with the following process:

1. AB&DC

2. (aA)B& (aDb)C

3. (a())(bBc)& (a()b)(cC)

4. (a)(b()c)& (ab)(c())

5. a(bc)& ab(c)

6. abc& abc

7. abc

The corresponding branching syntax tree can be seen in Figure 2.3

2.2.5 Binary Normal Form

Okhotin in [10] proposes a normal form that naturally extends Chomsky Normal Form [3]
for the case of conjunctive grammars.

A conjunctive grammar G = (Σ, N, P, S) is said to be in binary normal form, if each rule in
P is in the form:

• A→ B1C1& ...&BmCm, where m ≥ 1 and A,Bi, Ci ∈ N .
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• A→ a, where A ∈ N and a ∈ Σ.

• S → ϵ only if S does not appear in right parts (after the→ symbol) of rules.

2.2.6 Parsing

In the same paper that they were introduced [10], Okhotin also proposes an algorithm for
parsing conjunctive grammars. Assuming the grammar is in BNF, they can be parsed by a
variation of the CYK algorithm. Like in the context-free case, a so-called recognition matrix
is defined, an upper-triangular matrix of sets of nonterminals that derive the substrings of
the input string. Once the string is recognized, all of its derivation treesmay be constructed
by analyzing the recognition matrix in a way similar to the context-free case.

The difference between the proposed algorithm and the original CYK algorithm is that in
the case of conjunctive grammars one has to accumulate all the pairs from the different
factorizations of the current substring, and only the full set of such pairs can be used to
determine the membership of nonterminals.

It is important to note that the extension for conjunctive grammars does not increase the
complexity of the algorithm.

2.2.7 Limitations and Extensions

Let us consider another language L = {ww : w ∈ {a, b}∗}. At a first glance, it seems
almost identical to the grammar from Example 2, however in this case the center marker c
is missing. The grammar fromExample 2 essentially uses the center marker, and therefore
this method cannot be applied to writing a conjunctive grammar for a language without
the marker. So far, no conjunctive grammar that describes the language L = {ww :
w ∈ {a, b}∗} has been discovered yet. Also, no method to prove non-conjunctiveness of
a given language has been developed. Although the aforementioned language is a big
problem in the area of conjunctive grammars, Boolean grammars (which will be explored
next) provide a simple and elegant solution for it.

2.2.8 Closure Properties

It is easily established that the family of conjunctive languages is closed under union, in-
tersection, concatenation and Kleene star, because each of these operations is explicitly
included in the grammar formalism. However, it remains an open problem whether the
family of conjunctive languages is closed under complement. In contrast, Boolean gram-
mars that we examine in the next section are closed under complement.

2.3 Boolean Grammars

2.3.1 Introduction

Boolean grammars are another type of formal grammar introduced by Alexander Okhotin
in [11], primarily in the context of parsing and recognizing languages. They are a natural
extension of conjunctive grammars as they allow the usage of the complement operation.
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The complement operation enables another degree of expressiveness in the language,
thus allowing us to express even more intricate languages, with more nuanced definitions.
Also, the complement operation is the final (and the most nuanced) logical operation that
can be applied to grammars. Hence, Boolean grammars can solve the aforementioned
problems that CFGs and conjunctive grammars face.

However, the addition of the complement operation, introduces risks which arise from the
existence of negation. Negation-as-failure has been a very troublesome concept in the
area of programming. This can be seen by the massive difference between the semantics
of positive and negative logic programming, which will be explored later in this thesis.

2.3.2 Definition

As defined in [11], a Boolean grammar is a quadruple G = (Σ, N, P, S) where:

• Σ is a finite non-empty set of symbols called “terminals”.

• N is a finite non-empty set called “non-terminals”.

• P is a finite set of rules, each defined as an ordered triple (A, {a1, a2, ..., an}, {b1, b2, ..., bm}),
where A ∈ N , ai, bj ∈ (Σ ∪N)∗ and 0 ≤ i ≤ n, 0 ≤ j ≤ m.Each rule is written as:

A→ a1& ...& an&¬b1& ...&¬bm
• S ∈ N is the starting symbol.

The following notation will be used for the rules of a single non-terminal:

A→ a11& ...&¬b1n | ... | am1& ...&¬bmk

2.3.3 Examples

Consider the language L = {ww : w ∈ {a, b}∗} (for which no conjunctive grammar has
been found yet). A Boolean grammar that produces this language is the following.

S → ¬AB&¬BA&C

A→ XAX | a
B → XBX | b
C → XXC | ϵ
X → a | b

Σ = {a, b}, N = {S,A,B,C,X}, P = {(S, {C}{AB,BA}), (A, {XAX}, ∅), (A, {a}, ∅), ...}
and S is the starting symbol.

Also consider the language L = a2
n
, n ∈ N. A Boolean grammar that produces it is the

following.

S → A&¬aA | aB&¬B | aC&¬C
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A→ aBB

B → ¬CC

C → ¬EE

E → ¬A

2.3.4 Semantics

In contrast to CFGs and conjunctive grammars, whose semantics are trivial and mostly
self-explanatory, the existence of the complement operation complicates semantics for
Boolean grammars. Consider the following statements.

P → ¬Q

Q→ ¬P

In this Boolean grammar the existence of any string in the language it produces is unclear.

There have been many proposals, but the following three are the most important to cover:

Basic Semantics are the most simple attempt at producing meaning from Boolean gram-
mars. Proposed intuitively by Okhotin in [11], the semantics claim that assuming a gram-
mar G = (Σ, N, P, S) which consists of the following rules for the non-terminal X:

• X1 → a11& ...&¬b11& ...

• X2 → a21& ...&¬b21& ...

...

• Xm → am1& ...&¬bm1& ...

The solution for a single rule Xk is Ak ∩ Bk where

Ak =
∩
i

aki

Bk =
∩
j

¬bkj

And the generalized equation for the whole non-terminal X is

X =
∪
k

Xk

For the simple grammar:
S → A& ¬B
A→ aaA | aa

B → aaaaB | aaaa
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The basic semantics for S would be:

S = A ∩ ¬B

where:
A = aaA ∪ aa

B = aaaaB ∪ aaaa

The above grammar produces the language L = {a2n, n > 0, n%2 = 1}.

This simplistic definition faces severe problems on specific grammars which by intuition
should produce the same language but their solution produced by these semantics is
different.

Consider the following grammars (with Σ = {0, 1}) G1 and G2 respectively:

A→ ¬A&¬B

B → 0& 1

A→ ¬A&¬B
B → 0& 1 | B

Both of the language these grammars produce seem identical. However, when the basic
semantics are applied to them, the grammar G1 has no solution, whereas the solution of
G2 is (A,B) = (∅,Σ∗). This is only due to the addition of the rule B → B.

Naturally Reachable Solution Semantics are the second proposal of Okhotin in [11]
aiming to tackle the weaknesses of the previous semantics. Covering them in full is out
of the scope of this thesis but, in short, consider a sequence of interpretations. Each
interpretation “builds” the solution from the bottom-up from each rule. If the sequence
converges in finite steps we call it a naturally reachable solution. However, the NRS
semantics are also problematic, especially in the case where a negation circle exists in
the grammar. Consider the following grammar G:

A→ ¬B |D

B → ¬C |D

C → ¬A |D

D → aD | ϵ

Despite the fact that the solution for G is clearly

(A,B,C,D) = (a∗, a∗, a∗, a∗)

The NRS semantics produce an undefined solution as they never converge.

Well-Founded Semantics for Boolean Grammars, which were proposed in [8], succes-
fully solve these problems through the inclusion of three-valued logic.

Let Σ be an alphabet (a finite non-empty set of symbols), a three-valued language over Σ
is a function from Σ∗ to the set {0, 1

2
, 1}
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The value 1
2
indicates undecidability over the existence of a given string in a language.

Consider the aforementioned example where:

P → ¬Q

Q→ ¬P

The two rules produce two languages. The existence of any string in either P or Q is
undecidable as they both exist in a negation circle. For that reason, both P and Q are
evaluated to produce the language that answers 1

2
over any queried string.

Compared to other proposed semantics, the well-founded semantics allow us to evalu-
ate grammars which contain negation circles. In the previous example (where the NRS
semantics failed to produce a solution):

A→ ¬B |D

B → ¬C |D

C → ¬A |D

D → aD | ϵ

Regarding the rules A → ¬B, B → ¬C and C → ¬A the WF semantics decide that the
language they produce is L = 1

2
. This allows us to focus on the rules A→ D, B → D and

C → D. The non-terminal D clearly produces the language Σ∗ (where Σ = {a}). Thus,
through the WF semantics, the evaluation of the non-terminals (A,B,C,D) is that they
produce the language L = Σ∗ which is the most intuitive solution.

2.3.5 Binary Normal Form

The essence of Chomsky Normal Form for context-free grammars and Binary Normal
Form for conjunctive grammars is extended for Boolean grammars as well. In the paper
where WF semantics were defined [8], a definition for a Binary Normal Form for Boolean
grammars is provided:

A Boolean grammar G = (Σ, N ∪ {U, T}, P, S) is said to be in binary normal form if P
contains the rules U → ¬U and T → ¬ϵ , where U and T are two special symbols not in
N , and every other rule in P is of the form:

• A→ B1C1& ...&BmCm&¬D1E1& ...&¬DnEn&TT [&U ]

• A→ a[&U ]

• S → ϵ[&U ], only if S does not appear in right-hand sides of rules (after the →
symbol)

2.3.6 Parsing

Regarding parsing we shall only look into algorithms for WF semantics. In the same paper
that WF semantics were introduced [8], an algorithm is given for the membership of a
string in the language defined by a grammar G (which is in Binary Normal Form). The
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inner workings of this algorithm are out of the scope of this thesis, but, in short, it is an
algorithm which evaluates at first simple rules such as A → a. Based on these simple
evaluations, the information for the more complex rules is built in a bottom-up manner.
The algorithm runs in O(n3) time and the correctness of the algorithm is also proved in the
paper.

2.3.7 Closure Properties

As we have established, Boolean grammars naturally extend conjunctive grammars, for
which we know that they are closed under union, concatenation, Kleene Star and inter-
section but not under negation (for which we are unaware). In this case, they inherit the
closure properties of conjunctive grammars while also being closed under complement
as the existence of negation exists in their core formalism. Thus, Boolean grammars are
closed under union, concatenation, Kleene Star, intersection and negation.

2.4 Datalog

2.4.1 Introduction

Datalog is a declarative query language designed for expressing and querying deductive
databases. Developed in the 1970s, Datalog has its roots in Prolog and logic program-
ming. The language is specifically tailored for expressing rules and queries over sets of
facts and rules, making it particularly suitable for knowledge representation and manipu-
lation. Datalog is often used as a query language for deductive databases and it has been
applied to problems in data integration, networking, program analysis, and more.

The fundamental building blocks of Datalog are facts, rules, and queries. Facts represent
ground truths about the domain, rules define relationships and derivations based on exist-
ing facts, and queries seek information by asking questions about the data. Datalog rules
adhere to Horn clause form, consisting of a head (conclusion) and a body (premise) con-
nected by implication. The rules are used to infer new facts from existing ones, creating a
transitive closure that allows for the exploration of complex relationships within the data.

2.4.2 Examples

Example of facts in Datalog (statements that are held to be true):

parent(josephine, eugene).
parent(eugene, carolina).

These two statements hold the information that Josephine is the parent of Eugene and
Eugene is the parent of Carolina.

Example of rules in Datalog (constructs to deduce new facts from known facts)

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
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The meaning of a program is defined to be the set of all of the facts that can be deduced
using the initial facts and the rules. This program’s meaning is given by the following facts:

parent(josephine, eugene).
parent(eugene, carolina).
ancestor(josephine, eugene).
ancestor(eugene, carolina).
ancestor(josephine, carolina).

When the following query is asked:

? - ancestor(josephine, X).

X will be matched with eugene and carolina.

2.4.3 Differences with Prolog

Prolog and Datalog share a common ancestry and are both declarative programming lan-
guages used for expressing and querying logical relationships. However, there are no-
table differences between the two. Prolog is a general-purpose programming language
with a broader scope, allowing for the definition of procedures and the execution of algo-
rithms beyond database querying. In contrast, Datalog is a specialized query language
specifically designed for deductive databases. While Prolog supports backtracking and
the ability to express procedural logic, Datalog focuses primarily on expressing rules and
queries in a more restricted form. Datalog’s syntax is often more concise and tailored
for expressing relationships in databases, making it particularly suited for applications in
knowledge representation and database querying. Specifically, Datalog does not allow
the usage of compound terms. The following clause would be invalid in Datalog:

p(s(x)) :- p(s(s(x)).

The specialized nature of Datalog makes it more efficient for certain types of tasks related
to querying and manipulating data, whereas Prolog’s versatility extends to a wider range
of programming applications. The benefits that Prolog offers are not needed for the task
of this thesis, hence Datalog will be used.

2.4.4 Semantics of Datalog

The bottom-up evaluation, or bottom-up computation, in Datalog is a key aspect of its
deductive reasoning process. In Datalog, the evaluation strategy is often referred to as
”bottom-up” because it starts with the known facts (base or ground facts) and then applies
rules to iteratively derive new facts until no more derivations are possible. This approach
is also known as fixpoint computation.

During bottom-up evaluation, the system begins with the initial set of facts stored in the
database. It then repeatedly applies the rules of the Datalog program to derive new facts.
Each iteration adds more derived facts to the set, contributing to a transitive closure of the
logical relationships defined by the rules. The process continues until reaching a fixpoint,
where no further derivations are possible, and the system stabilizes.
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Bottom-up evaluation in Datalog takes advantage of monotonicity, a key property of the
language. Monotonicity ensures that the addition of new rules or facts can only lead to the
derivation of more true facts without invalidating existing ones. This property simplifies the
reasoning process and contributes to the efficiency of bottom-up evaluation in Datalog.

2.4.5 Semantics for Negation

As was the case in Boolean grammars, the existence of negation complicates matters in
the same way. The aforementioned ’bottom-up’ evaluation lacks the ability to fully grasp
the difficulties of negation-as-failure. There have been many proposals but we will delve
only into the Well-Founded Semantics.

Well Founded Semantics for Logic Programs were defined in [15] and [14]. In Pro-
log/Datalog, programs often involve rules and recursion, which can lead to cyclic depen-
dencies or the potential for contradictory conclusions. Other semantics that have been
proposed like Stratified [12] or Locally Stratified [1] succesfully handle negation but they
have an inherent limit to their expressiveness. Specifically, negation circles are not evalu-
ated at all. The well-founded semantics introduces the concept of a ”well-founded model”
to address these issues. The idea is to construct a consistent and minimal interpretation
of the program by avoiding the introduction of contradictory loops.

One key element of the well-founded semantics is the introduction of the concept of ”un-
founded sets.” These sets identify situations where cyclic dependencies or contradictions
may arise. By carefully handling these cases, the well-founded semantics provides amore
reliable and intuitive interpretation of Prolog programs, ensuring that the reasoning pro-
cess remains sound and coherent even in the presence of complex rules and recursion.

Consider the following program:

p :- not q.
q :- not p.

Stratified and locally stratified semantics would fail -by design- to evaluate the values
of both p and q. On the other hand, WF semantics (as is the case for WF semantics in
Boolean grammars) use 3-valued logic. They introduce the 1

2
value -indicating uncertainty-

alongside the usual true and false values. In this case both p and q are evaluated as
unknown, hence they are assigned the value of 1

2
.

In general, as logic programs are parsed and evaluated, each fact is given a value which
is determined by other facts in the program. Starting off with facts such as:

t.

The term t would be assigned the value of true. Through that, more and more complex
clauses are evaluated. Negation works in the same way when no circles exist. If the
following clause was added to the program:

f :- not t.

The value of f would resolve to false.
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Eventually, all terms converge to either true or false except from the ones that contain/are
contained in a negation circle. The evaluation of these diverges, thus they are assigned
the value of 1

2
. However, evaluation does not stop there. Terms who contain undefined

facts still need to be assigned a value and that value is not necessarily 1
2
. The value for p

in the following program:

p.
p :- not p.

Should be true. This is done in accordance with the following truth tables for 3-valued
logic.

Intersection

& true 1
2

false
1
2

1
2

1
2

false

Union

| true 1
2

false
1
2

true 1
2

1
2

While for negation: ¬1
2
= 1

2
.

As a final example, consider the following program:

t.
k :- not p, t.
p :- not q.
q :- not z.
z :- not p.

The terms p, q and z would be evaluated to 1
2
. The term t is true and k = (¬1

2
)& true = 1

2

2.5 Related Work

In the current scientific world, a transformation of CFGs to datalog has been introduced in
[7]. In this paper, an example of this is provided. The example is the following CFG:

S → NP V P

V P → V NP

V → V Conj V

NP → Det N

NP → John

V → found

V → caught

Conj → and
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Det→ a

N → unicorn

This CFG produces a language, this language contains the string John found a unicorn. In
the paper it is stated that determining whether the string belongs in the language produced
by the CFG is equivalent to deciding whether the following Datalog program:

s(i, j) :- np(i, k), vp(k, j).
vp(i, j) :- v(i, k), np(k, j).
v(i, j) :- v(i, k), conj(k, l), v(l, j).
np(i, j) :- det(i, k), n(k, j).
np(i, j) :- john(i, j).
v(i, j) :- found(i, j).
v(i, j) :- caught(i, j).
conj(i, j) :- and(i, j).
det(i, j) :- a(i, j).
n(i, j) :- unicorn(i, j).

Alongside the following data:

john(0, 1).
found(1, 2).
a(2, 3).
unicorn(3, 4).

Can derive the following query:

? - s(0, 4).

Something noteworthy from the above transformation is that the inherent order that CFGs
contain through their rules is expressed in Datalog by the usage of terms which resem-
ble indices of a string. For the rule V P , the corresponding Datalog clause contains 2
predicates that contain ordered indices in them. In this case, it is stated that the first non-
terminal V has the same starting index as V P and the last non-terminal NP has the same
ending index as V P . The connection between V and NP is that the first’s ending index
is the latter’s starting index. This start-end ”chain” can be further examined for the rule V
where the conj predicate contains neither i nor j, thus being dependent on the evaluation
of the two v predicates.

This example is not accompanied by a formal definition due to the fact that the paper
focuses on showing that a similar transformation to Datalog is possible for more power-
ful grammar formalisms with context-free derivations, such as tree-adjoining grammars,
IO macro grammars and (parallel) multiple context-free grammars. Futhermore, an aug-
mentation of CFGs is proposed where the left-hand side of each rule is annotated with a
λ-term that tells how the meaning of the left-hand side is composed from the meanings of
the right-hand side nonterminals. For these CFLGs (context-free λ-term grammars) an ex-
tended transformation is given. The correction of this transformation is proven. Also, the
computational complexity of the transformation alongside the Datalog evaluation is stated.
Finally, it is established that a magic-set rewriting of the resulting program coincides with
the deduction system for Earley parsing.
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3. TRANSFORMATION OF BOOLEAN GRAMMARS TO DATALOG

3.1 Parsing of Boolean grammar into AST

As stated earlier, Boolean grammars are represented through a finite set of rules which
contain terminal and non-terminal symbols. Each rule is of the following format:

Head→ Tail

Head is a single non-terminal symbol and Tail is a tuple of conjuncts. Conjuncts are or-
dered sets of terminal/non-terminal symbols and are separated by the& character. These
symbols may possibly contain the ¬ character before them to denote negation. Usually
non-terminal characters begin with an uppercase letter, whereas terminal characters be-
gin with lowercase.

Grammars are most of the time written as a set of these rules instead of using their for-
mal definitions. These rules are separated by new lines and the information regarding
terminals and non-terminals exists in the rules themselves. This is done either by the up-
percase/lowercase distinction, or by simply considering that all non-terminals need to be
included at least once in the head of a rule. Hence, all terms not found in the head of a
rule are terminals. Finally, the S symbol is traditionally used as the starting symbol.

Following this expression of grammars, it is important to note that the set of all grammars
that fall under a category (CFG, conjunctive, Boolean) is essentially a language and can
be described through a context-free grammar.

In the case of CFGs which are sets of rules with only one conjunct, a CFG that describes
them is the following:

S → RuleList

RuleList→ Rule RuleList

RuleList→ ϵ

Rule→ Head right_arrow Tail

Head→ string

Tail → StringList

StringList→ string StringList

StringList→ string

Where right_arrow is the → character and string = [a − zA − Z][a − zA − Z0 − 9]∗ in
regular expression terms.

Similarly, conjunctive grammars share almost all of the above rules with the exception of
a different Tail rule and the addition of a Conjunct and a Tail2 rule:

...

Tail → Conjunct Tail2

Tail2→ amperscand Conjunct Tail2
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Tail2→ ϵ

Conjunct→ StringList

...

The amperscand terminal is the & character.

Finally, Boolean grammars modify the StringList and add the NegString rules to allow
negative terminals/non-terminals:

...

StringList→ NegString StringList

StringList→ NegString

NegString → string

NegString → complement string

...

Where complement is the ¬ character.

In the aforementioned formalism, CFGs are a proper subset of conjunctive grammars and
conjunctive grammars are a proper subset of Boolean grammars. Hence, from now on
we will be considering that every grammar falls under the Boolean class.

The CFG of Boolean grammars provided above allows us to create a simple and efficient
parsing algorithm to reduce any grammar into an AST. Considering that the CFG is in
LL(1) form, the algorithm is very simple to be created but its creation is out of the scope
of this thesis. Also, all aforementioned existing algorithms like CYK and Earley Parsing
can be used.

3.2 Conversion of AST to Datalog

An abstract syntax tree, as mentioned earlier, is a tree-like structure used to represent the
structure of a program. In our case, the AST’s root node has all the grammar rules as
children nodes. Each of these rule-nodes will be converted into a Datalog clause.

Grammars inherently contain the essence of order in their conjuncts, this is a key point that
we need to represent in our Datalog transformation. A simple approach is to add indices
as terms/variables in the Datalog predicates. Considering a simple rule S → a b c d, the
positions of a, b, c, d are essentially one after another with a as the starting point. Hence,
these positions could be expressed as follows (assuming they are terminals of length 1):

s :- a(0), b(1), c(2), d(3).

a is in the 1st position, b is in the 2nd, etc.

The above program would answer true in a query for S if and only if the facts a(0), b(1),
c(2), d(3) would be added as ”data” in our program.

Although this apporach seems elegant, we run into a problemwhen facing rules containing
non-terminals. Regarding non-terminals, their position is unclear and the only information
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we have about them is which terminals/non-terminals exist before or after them. Hence,
we need to include an ending index for all predicates. Also, non-terminals cannot be
expressed through simple numeric literals. For that reason we need to add variables/terms
to our Datalog clause to encapsulate this uncertainty. Consider the rule S → a S a. The
first a starts at the beginning of the non-terminal, the second a finishes at the end of it and
S is somewhere in the middle. A simple clause for this rule is the following:

s(start, end) :- a(start, i), s(i, j), a(j, end).

An important thing to note is that, by definition, start ≤ i ≤ j ≤ end (the only case where≤
occurs instead of< is if the empty string ϵ exists inside the rule, either directly or indirectly).
The inclusion of ϵ is something we should also consider but we will do so later.

Having established the process for a rule containing both terminals and non-terminals, a
definition for the transformation is the following.

Given a rule S → a1 a2 ... an, we define a transformation to a Datalog clause as a set
of ordered predicates with a1 and an starting and ending at the start and end variables
respectively, with in-between indices added to accomodate for the other predicates:

s(Start, End) :- a1(Start, I2), a2(I2, I3), ..., aN(IN, End).

Where ai (and the respective predicate) can be either referring to terminal or non-terminal
nodes.

In the case where a rule is of the form S → ϵ, the corresponding transformation would
result in the following fact (the ϵ character denotes the empty string):

s(I, I).

The explanation for the above clause is that S begins and ends at the same index, thus
being the empty string.

When this transformation is applied to all the rules of the grammar, the query should follow
similar rules: Each character/symbol of the query string needs to be stated as ”data” with
its corresponding start & end indices. Finally, the actual query should be over the starting
symbol S from 0 to the length of the query. Formally, given a string x of lengthN+1 where
x = {x0, x1, x2, ..., xn} (each xi is a symbol), the data needs to be formatted in the following
way:

x0(0, 1).
x1(1, 2).
x2(2, 3).
...
xN(N, N + 1).

The query will be

?- s(0, N + 1).
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As an example, the corresponding CFG of the language L = {wcwR : w ∈ {a, b}∗} is:

S → aSa

S → bSb

S → c

The CFG would be converted into the following Datalog program:

s(Start, End) :- a(Start, I2), s(I2, I3), a(I3, End).
s(Start, End) :- b(Start, I2), s(I2, I3), b(I3, End).
s(Start, End) :- c(Start, End).

Assuming we would like to query the string bacab, the data would have the form:

b(0, 1).
a(1, 2).
c(2, 3).
a(3, 4).
b(4, 5).

And the final query would be

?- s(0, 5).

In this case, the query would resolve to true.

Currently we have only seen the case where each rule has a single conjunct (i.e. CFGs)
which is essentially what the Kanazawa paper [7] introduces. In order to extend this, we
need to add logic for conjunction. Thankfully, a Datalog clause is evaluated to true when
all predicates are evaluated to true, thus inherently containing the conjunction operation.
Simply put, for every conjunct, we just need to add its start-end chain as a list of predicates
in the same clause.
Given a rule in the following form:

S → a11 ... a1n & ... & am1 ... amk

The resulting clause would be:

s(Start, End) :- a11(Start, I12), ..., a1N(I1N, End),
...,
aM1(Start, IM2), ..., aMN(IMK, End).

It is important to note that the in-between indices (Ixy) are -by necessity- different between
conjuncts so as they are evaluated independently. The query/data clause-generation part
remains the same.

As an example, the corresponding conjunctive grammar of the language L = {anbncn :
n ≥ 0} is:
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S → XY&WZ

X → aX | ϵ

Y → bY c | ϵ

Z → cZ | ϵ

W → aWb | ϵ

The resulting Datalog program after the transformation is:

s(Start, End) :- x(Start, I12), y(I12, End), w(Start, I22), z(I22, End).

x(Start, End) :- a(Start, I12), x(I12, End).
x(I, I).

y(Start, End) :- b(Start, I12), y(I12, I13), c(I13, End).
y(I, I).

z(Start, End) :- c(Start, I12), z(I12, End).
z(I, I).

w(Start, End) :- a(Start, I12), w(I12, I13), b(I13, End).
w(I, I).

Finally, we are ready to complete the final step: adding negation. Up until now we were
dealing with positive Datalog whose evaluation is simple. Now the usage of negation is
necessary. Syntax-wise we will use the not predicate for this thesis but most Datalog
engines have a different syntax for negation.

Simply, the not predicate can be added for every negative terminal/non-terminal in the
AST. The only condition where problems may arise is when negation is applied to more
than one symbols.

Considering the following rule:

A→ ¬(B C) ¬D

This is something that needs to be addressed as some Datalog engines do not allow
multiple predicates inside the not predicate. A simple solution is to create intermediate
rules for these occasions. For the above example, a new rule for B and C would be
created and it would take their place in the tail of rule A.

A→ ¬X ¬D

X → B C

As an example, the corresponding Boolean grammar of the language L = {ww : w ∈
{a, b}∗} is:

S → ¬XY&¬Y X&Z
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X → TXT | a

Y → TY T | b

Z → TTZ | ϵ

T → a | b

For this grammar, the complement character in ¬XY and ¬Y X encapsulates both sym-
bols hence we would have to write intermediate clauses converting the XY and Y X se-
quences into a single conjunct which is negated in the original rule (S) like so:

S → ¬K & ¬L & Z

K → X Y

L→ Y X

...

Accounting for this minor conversion, the resulting program is:

s(Start, End) :- not(k(Start, End)), not(l(Start, End)), z(Start, End).

k(Start, End) :- x(Start, I2), y(I2, End).
l(Start, End) :- y(Start, I2), x(I2, End).

x(Start, End) :- t(Start, I2), x(I2, I3), t(I3, End).
x(Start, End) :- a(Start, End).

y(Start, End) :- t(Start, I2), y(I2, I3), t(I3, End).
y(Start, End) :- b(Start, End).

z(Start, End) :- t(Start, I2), t(I2, I3), z(I3, End).
z(I, I).

t(Start, End) :- a(Start, End).
t(Start, End) :- b(Start, End).

The addition of negation to the transformation allows us to express Boolean grammars as
well. The transformation rules are clearly backwards compatible concerning the subsets of
Boolean grammars. Thus, we now have converted any grammar into a Datalog program
which is ready to be evaluated through an engine.

3.3 Datalog Evaluation

We mentioned earlier that the Boolean grammars we use in this transformation follow
the well-founded semantics. These semantics, in short, ensure that negation circles do
not break the grammar, rather they evaluate that these rules produce the language that
returns an undefined value for any queried string. Equivalently, the Datalog program that
is produced also uses its own well-founded semantics that we covered previously. This
happens because the negation circles that exist in a Boolean grammar carry over to the
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Datalog transformation, hence any other form of logic programming semantics would have
invalid evaluations in some cases.

Consider the simple Boolean grammar G which consists only of the following rule:

S → ¬S

Through the well-founded semantics for Boolean grammars, S would be evaluated to pro-
duce the language that for every queried string, its membership in the language produces
1
2
or undefined. The produced Datalog program using our transformation is:

s(Start, End) :- not(s(Start, End)).

The evaluation of this logic clause into 1
2
for every query can only be achieved through the

well-founded semantics. Other negative-logic-programming semantics like Stratified [12]
or Locally Stratified [1] semantics do not apply in the aforementioned condition (as S in
both cases belongs in the same stratum).
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4. CONCLUSIONS AND FUTURE WORK

In this thesis we have provided an extension to the transformation of CFG to Datalog intro-
duced in the Kanazawa paper [7]. Our transformation is extended to include two powerful
formal grammars, conjunctive and Boolean grammars. These grammars were introduced
by Okhotin in [10] and [11] respectively. Conjunctive grammars add the conjunction oper-
ation to CFGs, thus achieving the fact that they are closed under conjunction, in contrast
to CFGs. Boolean grammars add the negation operation to conjunctive grammars, thus
being closed under complement, which is something we are unaware whether is true or
not regarding conjunctive grammars. In order to achieve this transformation, we delved
into the Well-Founded semantics for Boolean grammars in order to encapsulate their ex-
pressiveness in full. Equivalently we used the Well-Founded semantics for logic programs
as other proposals for semantics were lacking in terms of handling negation circles.

The work on this thesis can be clearly expanded by creating a similar transformation for
other grammar formalisms like context-sensitive grammars or regular grammars. Further-
more, a compelling thought would be proving that the aforementioned transformation of a
boolean grammar alongside the evaluation of the resulting logic program through the WF
semantics is equivalent to evaluating the grammar by using the respective WF semantics
for Boolean grammars. Finally, we have not added any segment regarding either time or
space complexity of the transformation alongside the evaluation, something which would
also be an interesting topic.

Grammars and logic programming, although having many differences, they have similar
syntax. Our transformation enhances our intuition on the connection between logic pro-
grams and formal grammars, bringing these two worlds closer and giving us an insight
regarding their nuanced relationship.
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