
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Anomaly Detection and Prediction on Kubernetes
Resources

Vyron-Georgios I. Anemogiannis

Supervisor: Stathes Hadjiefthymiades, Professor

ATHENS

FEBRUARY 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Ανίχνευση και Πρόβλεψη ανωμαλιών σε πόρους του
Κυβερνήτη

Βύρων-Γεώργιος Ι. Ανεμογιάννης

Επιβλέπων: Ευστάθιος Χατζηευθυμιάδης, Καθηγητής

ΑΘΗΝΑ

ΦΕΒΡΟΥΑΡΙΟΣ 2023

BSc THESIS

Anomaly Detection and Prediction on Kubernetes Resources

Vyron-Georgios I. Anemogiannis
S.N.: 1115202000008

SUPERVISOR: Stathes Hadjiefthymiades, Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Ανίχνευση και Πρόβλεψη ανωμαλιών σε πόρους του Κυβερνήτη

Βύρων-Γεώργιος Ι. Ανεμογιάννης
Α.Μ.: 1115202000008

ΕΠΙΒΛΕΠΩΝ: Ευστάθιος Χατζηευθυμιάδης, Καθηγητής

ABSTRACT

In recent years, the deployment of software projects on cloud infrastructure managed
through Kubernetes has become commonplace. This trend has led to the management
of numerous components spread across nodes, each one with its unique specifications.
Effectively overseeing and ensuring the smooth operation of such infrastructures poses a
challenging and resource-intensive task.

This thesis, a part of the EO4EU project, seeks to streamline monitoring resources by
employing machine learning techniques. To achieve this objective, we initially constructed
a parallel representation of the Kubernetes cluster using a Graph Database, regularly
maintained and kept up-to-date. By monitoring the graph and leveraging its structure
to highlight interconnections among components, we gained insights into the cluster’s
behavior.

Utilizing unsupervisedmachine learningmodels, we categorized our observations as either
anomalous or not. Subsequently, we employed these labeled observations to train a su-
pervised machine learning model. This model facilitates the updating of the graph with an
anomaly score assigned to each component. While the project is still in its early stages,
preliminary tests have demonstrated promising results, even though real-world data has
not yet been incorporated.

SUBJECT AREA: Anomaly Detection on Kubernetes

KEYWORDS: Cloud Computing, Kubernetes, Supervised Machine Learning, Unsu-
pervised Machine Learning, Infrastructure Management, Graph Data-
bases, Anomaly Detection, Prediction, Monitoring

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, ο προγραμματισμός έργων λογισμικού σε υποδομές στον νέφος που
διαχειρίζονται μέσω του Kubernetes έχει γίνει συνηθισμένος. Αυτή η τάση έχει οδηγήσει
στη διαχείριση πληθώρας στοιχείων που διασκορπίζονται σε κόμβους, καθένας με τις δικές
του μοναδικές προδιαγραφές. Η αποτελεσματική επίβλεψη και εξασφάλιση της ομαλής
λειτουργίας τέτοιων υποδομών αποτελεί μια προκλητική και πόρο-επιβαρυντική εργασία.

Αυτή η διατριβή, η οποία αποτελεί μέρος του έργου EO4EU, έχει ως στόχο τον ευθυ-
γράμμιση των πόρων παρακολούθησης με τη χρήση τεχνικών μηχανικής μάθησης. Για
να επιτευχθεί αυτός ο στόχος, κατασκευάσαμε αρχικά μια παράλληλη αναπαράσταση του
συστήματος Kubernetes χρησιμοποιώντας μία Γραφική Βάση Δεδομένων, το οποίο συ-
ντηρούνται και ενημερωνόνται τακτικά. Μέσω της παρακολούθησης του γραφήματος και
της αξιοποίησης της δομής του για να επισημαίνουμε τις αλληλεπιδράσεις μεταξύ των
στοιχείων, αποκτήσαμε εισηγήσεις σχετικά με τη συμπεριφορά του συστήματος.

Χρησιμοποιώντας μοντέλα μη υποβλητικής μάθησης, κατηγοριοποιήσαμε τις παρατηρή-
σεις μας ως ανομαλίες ή μη. Στη συνέχεια, χρησιμοποιήσαμε αυτές τις επισημειωμένες
παρατηρήσεις για να εκπαιδεύσουμε ένα μοντέλο υποβλητικής μάθησης. Αυτό το μοντέλο
διευκολύνει την ενημέρωση του γραφήματος με ένα βαθμό ανομαλίας που αντιστοιχεί σε
κάθε στοιχείο. Ενώ το έργο βρίσκεται ακόμη στα αρχικά του στάδια, πρόχειρες δοκιμές
έχουν επιδείξει ελπιδοφόρα αποτελέσματα, αν και δεν έχει ενσωματωθεί ακόμη πραγμα-
τικά δεδομένα από τον πραγματικό κόσμο.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανίχνευση Ανωμαλιών στο Κυβερνήτη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Υπολογιστικό Νέφος, Kubernetes, Μηχανική Μάθηση, Διαχείριση
Υποδομής, Γραφικές Βάσεις Δεδομένων, Εντοπισμός Ανωμαλιών,
Παρακολούθηση, Έργο EO4EU, Μοντέλα Μη Υποβλητικής
Μάθησης, Μοντέλα Υποβλητικής Μάθησης, Παράλληλη
Αναπαράσταση, Τακτική Συντήρηση, Αλληλεπιδράσεις Στοιχείων,
Προκαταρκτικές Δοκιμές, Δεδομένα Πραγματικού Κόσμου

This thesis is dedicated to the people who support and love me, providing unwavering
encouragement and strength that fueled my journey to completion.

ACKNOWLEDGEMENTS

I extend my deepest gratitude to Professor Stathes Hadjiefthymiades for his continuous
guidance and the opportunity to be part of his research team since my undergraduate
years. I am also thankful to Dr. Kakia Panagidi and Babis Andreou for their unwavering
support and insightful comments throughout the thesis writing process. Finally, a special
thanks to my colleagues in the I9 office for their camaraderie and support, turning our
workspace into an environment where both dedication and goofiness coexist. Their col-
lective influence has profoundly shaped this thesis and my academic journey, and I am
truly appreciative of their contributions.

CONTENTS

1. INTRODUCTION 15

2. INFRASTRUCTURE AS A SERVICE 16

2.1 Cloud Computing . 16
2.1.1 What is Cloud Computing . 16
2.1.2 Key Elements of Cloud Computing . 16
2.1.3 Advantages of Cloud Computing . 17
2.1.4 Cloud Service Tiers . 17

2.1.4.1 Software as a Service (SaaS) . 17
2.1.4.2 Platform as a Service (PaaS) . 18
2.1.4.3 Infrastructure as a Service (IaaS) . 18

2.2 Microservices . 18
2.2.1 What are Microservices . 18
2.2.2 Characteristics of Microservices . 19

2.2.2.1 Independent Development . 19
2.2.2.2 Independent Deployment and Scaling 19
2.2.2.3 Loose Coupling . 19
2.2.2.4 High Availability . 19

2.3 Containers . 20
2.3.1 What are Containers . 20
2.3.2 How Containers Work . 20
2.3.3 Containers and Traditional Virtualization . 20

2.3.3.1 Traditional Virtualization . 20
2.3.3.2 Container Virtualization . 20

2.3.4 Advantages of Containerization . 21
2.3.4.1 Efficiency . 21
2.3.4.2 Portability . 21
2.3.4.3 Security . 21
2.3.4.4 Management . 22

2.3.5 Containerization and Microservices . 22

2.4 Container Management with Kubernetes . 22
2.4.1 Capabilities of Kubernetes . 22

2.4.1.1 Automation and Load Balancing . 22
2.4.1.2 Service Discovery and Load Balancing 23
2.4.1.3 Storage Orchestration and Configuration Management 23
2.4.1.4 Self-Healing and Horizontal Scaling . 23

2.4.2 Architecture of Kubernetes . 23
2.4.2.1 Master Node . 23
2.4.2.2 Worker Nodes . 24
2.4.2.3 Kubernetes Cluster . 24

2.5 Resource Registry . 25

2.5.1 Namespace . 25
2.5.1.1 Description . 25
2.5.1.2 Interaction With Other Components . 25

2.5.2 Config Map and Secret . 26
2.5.2.1 Description . 26
2.5.2.2 Interaction With Other Components . 26

2.5.3 Persistent Volume and Persistent Volume Claim 26
2.5.3.1 Description . 26
2.5.3.2 Interaction With Other Components . 26

2.5.4 Deployment and Replica Set . 26
2.5.4.1 Description . 26
2.5.4.2 Interaction With Other Components . 26

2.5.5 Pod and Container . 27
2.5.5.1 Description . 27
2.5.5.2 Interaction With Other Components . 27

2.5.6 Stateful Set, Daemon Set, Job and CronJob . 27
2.5.6.1 Description . 27
2.5.6.2 Interaction With Other Components . 27
2.5.6.3 Stateful Set . 27

Description . 27
Interaction With Other Components 28

2.5.7 Daemon Set, Job, and CronJob . 28
2.5.7.1 Description . 28
2.5.7.2 Interaction With Other Components . 28

2.5.8 Service . 28
2.5.8.1 Description . 28
2.5.8.2 Interaction With Other Components . 28

2.5.9 Ingress . 29
2.5.9.1 Description . 29
2.5.9.2 Interaction With Other Components . 29

2.5.10 Node . 29
2.5.10.1 Description . 29
2.5.10.2 Interaction With Other Components . 29

2.6 Neo4j . 30
2.6.1 Architecture . 30
2.6.2 What Neo4j offers . 31

2.6.2.1 Transaction Management . 31
2.6.2.2 High Availability . 31
2.6.2.3 Cypher Query Language . 31
2.6.2.4 Efficiency for Relation-Centric Databases 31
2.6.2.5 Schema-Free . 31

2.6.3 Use Case: Modeling Kubernetes Resources with Neo4j 31

3. MACHINE LEARNING 33

3.1 Introduction to Machine Learning . 33
3.1.1 What is Machine Learning . 33
3.1.2 Basic Concepts in ML . 33

3.1.2.1 Features and Labels . 33
3.1.2.2 Training, Validation and Test Data . 34

3.1.2.3 Parameters and HyperParameters . 34
3.1.2.4 Learning Process . 34
3.1.2.5 Model Evaluation . 36

3.1.3 Overfitting and Underfitting . 36

3.2 Machine Learning Algorithms . 37
3.2.1 Approaches in Machine Learning algorithms . 37

3.2.1.1 Gradient-Based Algorithms . 37
3.2.1.2 Hyperplane-Based Algorithms . 38
3.2.1.3 Tree Based Algorithms . 39

3.2.2 Supervised Learning . 39
3.2.2.1 Introduction to Supervised Learning . 39
3.2.2.2 Logistic Regression . 40
3.2.2.3 Support Vector Machines (SVMs) . 40
3.2.2.4 Decision Trees . 41

3.2.3 Unsupervised Learning . 42
3.2.3.1 Introduction to Unsupervised Learning 42
3.2.3.2 Isolation Forests . 42
3.2.3.3 One-Class Support Vector Machines (SVMs) 43

3.2.4 Scikit-learn . 44

3.3 Hyper Parameter Optimization . 44
3.3.1 What is Hyper Parameter Optimization . 44
3.3.2 Search Algorithms For Hyper Parameter Optimization 45

3.3.2.1 Grid Search . 45
3.3.2.2 Random Search . 45
3.3.2.3 Bayesian Optimization . 46
3.3.2.4 Tree Parzen Estimators (TPE) . 46

3.3.3 Optuna . 46

4. Related Work 48

4.1 Resource Management . 48
4.1.1 Reference Net-Based Performance and Management Model for Kubernetes 48
4.1.2 Detection of Cluster Anomalies using ML Techniques - Kubernetes Anomaly Detector . 49
4.1.3 Anomaly Detection and Diagnosis for Container-based Microservices with Performance

Monitoring . 50

4.2 Detection of Events in Cloud Infrastructure . 51
4.2.1 Learning State Machines to Monitor and Detect Anomalies on a Kubernetes Cluster . . 51
4.2.2 KubAnomaly: Anomaly detection for the Docker orchestration platform with neural net-

work approaches . 52

4.3 Commercial Offerings . 53
4.3.1 Service Now . 53
4.3.2 Edge Impulse . 53

5. ANOMALY DETECTION AND PREDICTIVE CLASSIFICATION IN KUBER-
NETES ENVIRONMENTS 54

5.1 Problem Description . 54

5.1.1 Dynamic Workflow Execution . 54
5.1.2 Dynamic Workflow Graphical Representation . 55
5.1.3 Management of Kubernetes Components . 55
5.1.4 Anomaly Detection and Monitoring Strategy . 56

5.2 Proposed Solution . 57
5.2.1 Hierarchical Anomaly Detection Strategy . 57
5.2.2 Anomaly Detection and Classification Process . 58

5.2.2.1 Unsupervised Part . 58
5.2.2.2 Supervised Part . 58

5.3 Anomaly Detection and Prediction Workflow . 59
5.3.1 Update Models . 59
5.3.2 Update Graph . 59

5.3.2.1 Components with Models . 59
5.3.2.2 Aggregation Components . 60

5.3.3 Configurability and Adaptability . 60

6. Model Selection and Experiments 61

6.1 Contextualizing Testing within the EO4EU Project 61

6.2 Experiment Definition . 61

6.3 Data Gathering . 61

6.4 Unsupervised Model Tuning and Selection . 62
6.4.1 Unsupervised Model Evaluation . 62
6.4.2 Unsupervised Model Tuning . 62

6.4.2.1 Isolation Forest Tuning . 62
6.4.2.2 One-Class SVM Tuning . 63

6.4.3 Unsupervised Model Selection . 65

6.5 Supervised Model Tuning and Selection . 65
6.5.1 Supervised Model Evaluation . 65
6.5.2 Supervised Model Tuning . 66

6.5.2.1 Logistic Regression Tuning . 66
6.5.2.2 Support Vector Machines Tuning . 67
6.5.2.3 Decision Tree Tuning . 68

6.5.3 Supervised Model Selection . 70

6.6 Anomaly Detection . 70

7. Conclusion and Future Work 73

ABBREVIATIONS - ACRONYMS 74

REFERENCES 77

LIST OF FIGURES

2.1 IaaS vs PaaS vs SaaS [17] . 17
2.2 Monolithic vs Microservices Architecture . 18
2.3 Virtualization Comparison . 21
2.4 Kubernetes Components . 25
2.5 Resource Registry . 30
2.6 Using Neo4J to Represent Figure 2.5 . 32

3.1 Learning Process . 35
3.2 Goal of Training . 35
3.3 Underfitting, Derired and Overfitting . 37
3.4 Relationship between train-data and error 37
3.5 Margin With Bias . 39
3.6 (a) Non-Linear Separable Problem, (b) Linearly Separable using a Polyno-

mial Kernel of second degree . 41
3.7 Decision Tree . 42
3.8 Partitions required to isolate normal point xi in contrast to anomaly x0 . . . 43

4.1 Model of the life cycle of a Container [28] 49
4.2 Sequence Diagram of Anomaly Based Error Detection 50
4.3 Simplified Architecture of KAD . 50
4.4 Merge Operation Performed in the State Machine [15] 52

5.1 Visualization of Workflow Components in Kubernetes 55
5.2 Part of the Information the Node component of the graph contains 56
5.3 Anomaly Score Given to a Node in the Graph 57
5.4 Anomaly Detection and Prediction Component Architecture 60

6.1 Parallel Coordinate Plot for Isolation Forest 63
6.2 Hyper Parameter Importance for Isolation Forest 63
6.3 Parallel Coordinate Plot for One-Class SVM 64
6.4 Hyper Parameter Importance for One-Class SVM 65
6.5 Parallel Coordinate Plot for Logistic Regression 67
6.6 Hyper Parameter Importance for Logistic Regression 67
6.7 Parallel Coordinate Plot for SVM . 68
6.8 Hyper Parameter Importance for SVM . 68
6.9 Parallel Coordinate Plot for Decision Tree 69
6.10 Hyper Parameter Importance for Decision Tree 70
6.11 Replica Set designated as Anomalous . 71
6.12 Replica Set designated as Normality . 71
6.13 Deployment designated as Anomalous . 71
6.14 Namespace designated as Anomalous . 72

LIST OF TABLES

6.1 Model Comparison Results . 65
6.2 Model Comparison Results . 70

Anomaly Detection and Prediction on Kubernetes Resources

1. INTRODUCTION

In today’s dynamic technological landscape, the deployment of applications on cloud in-
frastructure has become increasingly synonymous with efficiency, scalability, and adapt-
ability. Central to this paradigm shift is the ubiquitous adoption of Kubernetes, a powerful
container orchestration system that has redefined the way applications are managed and
scaled. Kubernetes provides a robust framework for automating the deployment, scaling,
and operation of application containers, thereby revolutionizing the landscape of cloud-
native computing.

The widespread adoption of Kubernetes has ushered in a new era of agility and respons-
iveness in deploying and managing complex applications. However, with the growing
complexity of these distributed systems, there arises an imperative need to ensure their
seamless operation, performance, and security. As organizations embrace the scalability
benefits of Kubernetes, they are confronted with the challenge of effectively monitoring
and safeguarding the health and performance of their resources.

This thesis, created in the context of the EO4EU project, endeavors to address this critical
challenge by delving into the realm of anomaly detection and prediction for Kubernetes
resources. Anomalies, deviations from the expected behavior of the system, can be indic-
ative of potential issues and inefficiencies. By harnessing machine learning techniques,
this research aims to develop a framework capable of detecting what constitutes as anom-
alous behavior within Kubernetes and be able to predict such behavior on new monitoring
observations.

In the pursuit of enhancing the operational resilience of Kubernetes environments, this
thesis unfolds with a structured exploration across six chapters, each contributing uniquely
to the overarching research agenda. Chapter 1 serves as the introduction, laying the
groundwork for the subsequent chapters. Building upon this foundation, Chapter 2 delves
into the intricate landscape of Infrastructure as a Service, encompassing the evolution of
cloud computing, the significance of containers, the central role of Kubernetes, and the
integration of Neo4j as a graph database to optimize data representation.

Chapter 3 unfolds as an educational voyage into the principles of machine learning (ML),
distinguishing between supervised and unsupervised learning, and introducing critical ML
algorithms. A special emphasis is placed on hyperparameter optimization, setting the
stage for the subsequent chapters. Chapter 4 meticulously conducts a comprehensive
review of related work, critically analyzing existing literature and methodologies related to
anomaly detection in Kubernetes environments.

The central core of the thesis, Chapter 5, addresses the problem landscape within Kuber-
netes environments, unveiling our proposed solution for anomaly detection and prediction.
A detailed workflow description sheds light on the integration of infrastructure, machine
learning, and graph database technologies. The synergy between these components
forms the backbone of our innovative approach.

Chapter 6, orchestrates the model selection process and experiments. We bring forward
the criteria for selecting ML models, our hyperparameter optimization strategy, and the
design of experiments to evaluate the efficacy of our proposed solution. Results, analyses,
and lessons learned contribute to the robustness and applicability of our anomaly detection
framework, thereby marking the culmination of our contributions to the field. Chapter 7,
concludes the thesis and describes the future work.

V.-G. Anemogiannis 15

Anomaly Detection and Prediction on Kubernetes Resources

2. INFRASTRUCTURE AS A SERVICE

2.1 Cloud Computing

2.1.1 What is Cloud Computing

As the demand for computational resources continues to grow [30], many individuals and
organizations are turning to cloud computing to fulfill their requirements. Cloud computing
eliminates the need for physical infrastructure by providing IT resources over the Internet.
These resources include computing power in the form of Nodes, storage, and networking
capabilities. The services offered encompass both applications and the underlying hard-
ware infrastructure, leading to the emergence of Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS) [3].

2.1.2 Key Elements of Cloud Computing

At the core of Cloud Computing lies the key concept of Virtualization [21], i.e. the cloud
provides a parallel and distributed service, employing virtual computers to deliver compu-
tational resources tailored to the dynamic needs of both cloud computing providers and
consumers. Unlike traditional one-time purchases or flat fees, consumers are billed based
on their usage of these Virtual Machines (VMs).

Virtualization operates by maintaining a pool of elastic computing and storage resources,
allocating them to cloud service providers and users only when required to execute a work-
load. This approach facilitates load balancing and optimal resource assignment. Further-
more, running applications on VMs enables seamless migration between different VMs
and hosts without disrupting ongoing processes. The flexibility arises from the ability to
replicate and run the VM specification on various hosts, ensuring the uninterrupted func-
tionality of the application.

The distributed and parallel nature of cloud computing allows services to be extended
across various geographical regions with minimal latency penalties. This is achieved by
creating VMs for applications in diverse data centers. Cloud computing encompasses
three primary deployment models:

1. Private Cloud: In a private cloud deployment, a single organization establishes or
rents cloud infrastructure exclusively for their use. This ensures heightened privacy
and security.

2. Public Cloud: Public cloud deployment opens access to VMs for a fee, enabling
anyone to run their applications. This model prioritizes flexibility, catering to a broad
user base.

3. Hybrid Cloud: As the name suggests, the hybrid cloud is a fusion of private and
public clouds, combining the advantages of both models. This approach offers a
versatile solution tailored to diverse needs.

V.-G. Anemogiannis 16

Anomaly Detection and Prediction on Kubernetes Resources

2.1.3 Advantages of Cloud Computing

The scaling and dynamic nature offered by virtualization, offers many advantages both
to the users and the cloud providers. The resource management becomes easy thanks
to the abstraction and isolation of the underlying hardware and networking resources. It
allows for on demand scaling of the applications, simply by increasing or decreasing the
VM copies for a given application, giving much flexibility to the users. It provides security
since the configuration for a VM can be scanned for malware and allows for snapshot
taking at any time. It allows for copies of the application to exist in multiple data centers,
providing low latency for the users of the application, no matter where they are so long as
they have a good internet connection. It allows for dynamic payment plans so users can
pay their fair share as they use the services instead of a flat fee, no matter their use, as
well as, it removes the cost of the hardware acquisition, maintenance and upgrade from
the user by splitting it between all of them. It is eco friendly, since it reduces the need
for individual hardware, consolidating the computing needs in big data centers while also
decreasing the idle time of the computers thanks to dynamic scheduling of workloads.

2.1.4 Cloud Service Tiers

Figure 2.1: IaaS vs PaaS vs SaaS [17]

2.1.4.1 Software as a Service (SaaS)

SaaS allows end users to access application software through the cloud via a web browser,
eliminating the need for dedicated hardware. The SaaS provider manages all aspects of
the application, from maintenance to updates. Examples of SaaS applications include
widely-used social media platforms, such as Facebook and Twitter. Moreover, traditional
applications that were once installed on individual devices, like Microsoft’s Office 365,
have transitioned to online services, enabling users to utilize productivity tools seamlessly
over the internet, while facilitating collaborative and flexible work environments.

V.-G. Anemogiannis 17

Anomaly Detection and Prediction on Kubernetes Resources

2.1.4.2 Platform as a Service (PaaS)

PaaS caters to both application developers and end-users. It provides a cloud-based
platform for application development and management, along with an end-user portal.
Cloud service providers furnish the necessary resources for development and applica-
tion execution, including servers, operating systems, storage, networking, databases, and
frameworks. PaaS also offers an interface for development teams to code, test, deliver,
and deploy applications. Notable examples of PaaS include Microsoft Windows Azure,
Google App Engine, and AWS Elastic Beanstalk.

2.1.4.3 Infrastructure as a Service (IaaS)

IaaS allows customers to subscribe and gain on-demand access to networking, storage,
and servers via the Internet. Users can configure the hardware as if it were on-premises;
however, instead of physical hardware, these resources exist in a data center. This means
that users have the flexibility to choose the operating system, programming language,
frameworks, and resource allocation according to their specific requirements. Examples
of IaaS providers include Microsoft Azure, Google Cloud, and AWS.

2.2 Microservices

2.2.1 What are Microservices

Microservices represent an architectural style for application development, characterized
by the creation of multiple independently developed, tested, and deployed services. Each
service is assigned a single business responsibility. This stands in contrast to the tradi-
tional Monolithic Architecture, where all the application’s modules are included in a single
code base, as shown in 2.2. Microservices are often employed in conjunction with cloud
computing to leverage the scalability, flexibility, and distributed nature of cloud environ-
ments. [26, 6, 8]

Figure 2.2: Monolithic vs Microservices Architecture

V.-G. Anemogiannis 18

Anomaly Detection and Prediction on Kubernetes Resources

2.2.2 Characteristics of Microservices

2.2.2.1 Independent Development

Developers identify standalone functions within the application, and each identified ser-
vice can be developed independently. Each developer can focus on their assigned service
without being constrained by the progress of other services. Communication between ser-
vices occurs through APIs, enabling developers to test individual components without de-
pendence on preceding or subsequent components. This distribution of workload among
developers enhances the efficiency of the development process.

2.2.2.2 Independent Deployment and Scaling

As each microservice functions as its own small application, it can be deployed independ-
ently of others and made production-ready in isolation. Utilizing Containers as presented
in section 2.3, developers can package code and its dependencies into a fully functioning
application. This independence allows each microservice to have its own resources that
can be scaled based on demand, regardless of other application components. This flex-
ibility, compared to traditional architectures where resources would need to scale for the
entire application, enables efficient scaling and concurrent operations for tasks without
data consistency requirements. Microservices’ scalability is a significant advantage, and
updates to a specific part of the application do not necessitate redeployment of all com-
ponents, simplifying fixes and enhancing flexibility.

2.2.2.3 Loose Coupling

In the Microservices Architecture, the concept of loose coupling extends to both runtime
and design-time scenarios.

The architecture minimizes runtime coupling by allowing each service to independently
complete its assigned tasks asynchronously. This is made possible by the self-contained
design of services, which listen for API calls, avoiding direct communication that might
create dependencies until a response is received.

While runtime coupling is effectively minimized, design-time coupling—pertaining to the
need for simultaneous modifications to multiple services (e.g., API changes)—is also ad-
dressed. This occurs as components communicate via API calls, necessitating updates
to both components when there are changes to the API.

2.2.2.4 High Availability

Microservices Architecture enhances availability by facilitating quick recovery in case of
host failure. Application components are distributed across various servers from differ-
ent service providers, often with multiple replicas to distribute the load and serve diverse
geographical areas. When a server fails, tasks can be redirected to other components on
different servers until the downed server is operational. Additionally, containers provide a
lightweight, full runtime environment, allowing components to be rapidly deployed on new
servers. The Microservices Architecture delivers high availability through its distributed
and resilient nature.

V.-G. Anemogiannis 19

Anomaly Detection and Prediction on Kubernetes Resources

2.3 Containers

2.3.1 What are Containers

Containers fundamentally leverage virtualization technology. They encapsulate code,
files, and dependencies of a service into a single package, forming a deployable stan-
dalone unit. Once created, containers can be executed on various hardware infrastruc-
tures, both physical and virtual. Beyond hardware independence, containers offer com-
patibility with diverse operating systems.

2.3.2 How Containers Work

Containers provide a virtual environment for executing container images. These images,
specified by the Open Container Initiative Image Specification, include all essential inform-
ation for running a container. The images encompass the application’s code, provided
files, and dependencies. The container stack consists of the Infrastructure (bare metal
server), the Operating System (OS), the Container Engine (runtime), and the Application
with its dependencies. The Container Engine takes the container image, creates the con-
tainer, and serves as a liaison between the OS and the Container, scheduling necessary
resources for execution.

2.3.3 Containers and Traditional Virtualization

Virtualization involves an abstraction layer over the base system, providing virtual re-
sources that are independent execution units. Traditional Virtualization, utilizing a hypervisor-
based approach, employs a Virtual Machine Monitor as a hardware abstraction layer.
Each virtual machine (VM) has its own OS and execution context. Figure 2.3 presents
a comparison between the two virtualization schemas, i.e. Traditional and Container Vir-
tualization.

2.3.3.1 Traditional Virtualization

In the hypervisor-based Traditional Virtualization, a Virtual Machine Monitor sits atop the
original system’s OS, offering complete abstraction for VMs. Each VM operates with its
own OS and execution context, benefiting from a dedicated hardware abstraction layer.

2.3.3.2 Container Virtualization

Container Virtualization, or OS-level Virtualization, distributes the host machine’s resources
to VMs that share the same host OS and run on the same kernel. Despite sharing the
kernel, VMs remain isolated from each other. This approach is more lightweight than tra-
ditional virtualization, as it eliminates the need for a complete OS on each virtual instance.
Containers provide an abstraction layer through a system call - ABI layer.

V.-G. Anemogiannis 20

Anomaly Detection and Prediction on Kubernetes Resources

Hardware Hardware Hardware

OS OS OS

Binaries and Libraries

App App

Hypervisor Container Runtime

VM VM Cont.Cont.

VM Container

Binaries and Libraries

App

OS

Binaries and Libraries

App App

System without
Virtualization

System with
Hypervisor based

Virtualization

System with
Container based

Virtualization

Figure 2.3: Virtualization Comparison

2.3.4 Advantages of Containerization

Containerization offers several advantages that make it a preferred approach in modern
software development. According to industry experts, containerization provides a stream-
lined and efficient solution for software deployment, with benefits spanning efficiency, port-
ability, security, and management processes [5].

2.3.4.1 Efficiency

Containers, being devoid of an entire operating system, boast lightweight characteristics
compared to their hypervisor counterparts. This absence of an OS, and the subsequent
elimination of its initialization process, results in quicker startup times and, by extension,
accelerated scaling. Freed-up resources can be redirected for deploying additional con-
tainers or supporting more resource-intensive applications.

2.3.4.2 Portability

Containerization enhances portability, as container deployment is platform-independent,
applicable to bare metal servers or virtual infrastructures. This flexibility empowers de-
velopers and users to run containers anywhere by simply creating a container image.

2.3.4.3 Security

Containerization ensures security by isolating applications from both the host OS and other
containers. Additionally, system administrators can scan container images for potential
threats before deployment, fortifying the security posture.

V.-G. Anemogiannis 21

Anomaly Detection and Prediction on Kubernetes Resources

2.3.4.4 Management

Containers benefit from efficient management through container management software.
Platforms like Kubernetes offer built-in capabilities for installation, upgrades, and rollback
processes of containers, streamlining administrative tasks.

2.3.5 Containerization and Microservices

The Microservices architecture, characterized by loosely coupled small services, aligns
seamlessly with containerization. Each container can host a single service, providing its
runtime and file systemwhile isolating it from other services, with communication occurring
exclusively through APIs. Container scaling enables the application to adjust the number
of service instances dynamically, optimizing resource utilization. Leveraging containers
allows for easy deployment of application components across various geographical re-
gions to serve a broader customer base, while remaining adaptable to server switches in
emergency scenarios.

2.4 Container Management with Kubernetes

In the Microservices Architecture, where the application is segmented into smaller, self-
contained services, each running on a container, the need for efficient container manage-
ment becomes apparent. Enter Kubernetes, often abbreviated as K8s, a powerful plat-
form designed for the management of containerized applications. Originally developed
by Google, Kubernetes was open-sourced in 2014 [35]. Operating at the container level,
Kubernetes provides users with the freedom to construct their development platform and
is capable of supporting any application type that can run on a container, according to the
Kubernetes documentation [9].

2.4.1 Capabilities of Kubernetes

Kubernetes (K8s) boasts a rich set of features that make it a robust platform for container
orchestration. From seamless automation to efficient load balancing and self-healing,
Kubernetes excels in providing a comprehensive solution for managing containerized ap-
plications.

2.4.1.1 Automation and Load Balancing

K8s excels in automation by effortlessly creating and deploying containers within desig-
nated nodes. It intelligently considers CPU and memory requirements, ensuring optimal
resource utilization. At the controller level, K8s achieves the user’s desired container
state through automated processes, seamlessly replacing old containers during Rollouts
or Rollbacks.

V.-G. Anemogiannis 22

Anomaly Detection and Prediction on Kubernetes Resources

2.4.1.2 Service Discovery and Load Balancing

K8s facilitates container communication within the cluster and with the external world
through Ingress, serving as a proficient service discovery tool. Additionally, it acts as a
load balancer, evenly distributing traffic among containers during periods of high demand.

2.4.1.3 Storage Orchestration and Configuration Management

Kubernetes empowers users to mount diverse storage systems, whether local or from
public cloud providers like AWS. It simplifies application configuration through configura-
tion maps and secrets, storing critical information such as credentials or SSH keys. In the
event of changes, redeployment is unnecessary; the user can efficiently update the config
map or secret with the new information.

2.4.1.4 Self-Healing and Horizontal Scaling

Ensuring the continuous operation of workloads, Kubernetes employs self-healing mech-
anisms, automatically restarting containers that fail health checks defined by the user.
Moreover, based on predefined metrics, Kubernetes dynamically scales applications by
adding or removing containers. This ensures optimal resource consumption, allowing the
application to efficiently handle the load or scale down to conserve resources as needed.

2.4.2 Architecture of Kubernetes

2.4.2.1 Master Node

The Master Node serves as the management hub for the Kubernetes Cluster, oversee-
ing various controlling processes. It is equipped with essential components, including
the API Server, Controller Manager, Scheduler, and ETCD. In production environments,
the Master Node is often distributed across multiple machines for redundancy and high
availability.

The API Server facilitates communication between users and the cluster, executing tasks
through the kubectl command. Kubectl enables actions such as deploying applications,
managing cluster resources, and viewing logs.

The Controller Manager supervises cluster controllers in a unified process. Notable con-
trollers include Node controllers, responding to node failures, EndpointSlice controllers,
linking services and pods, and the ServiceAccount controller, creating service accounts
for new namespaces. Cloud controllers establish connections between the cluster and
the cloud provider’s API.

The Scheduler assigns newly created Pods to nodes, considering factors like resource
requirements, availability, locality, and deadlines.

The ETCD serves as a swift and accessible storage solution for all cluster data.

V.-G. Anemogiannis 23

Anomaly Detection and Prediction on Kubernetes Resources

2.4.2.2 Worker Nodes

Worker Nodes, or simply Nodes, host Pods that encapsulate containers constituting the
application. Three integral components ensure proper Node functionality:

The Kubelet ensures adherence to container specifications, overseeing the creation and
health of containers initiated by Kubernetes.

The Kube-proxy functions as a network proxy, managing packet forwarding for Pods. It
maintains network rules on nodes to enable communication between Pods and external
entities.

The Container Runtime facilitates container creation, managing their life cycle within the
cluster. Kubernetes supports various container runtimes, including containerd and any
other implementation adhering to the Container Runtime Interface.

2.4.2.3 Kubernetes Cluster

The culmination of Kubernetes architecture results in the establishment of a Kubernetes
Cluster when deploying applications. This cluster seamlessly integrates the Control Plane,
represented by the Master Node, and one or more Worker Nodes. An visual representa-
tion can also be found in figure 2.4.

The Control Plane, distributed across multiple machines for enhanced reliability, orches-
trates the cluster’s holistic functionality. It encompasses crucial components, including the
API Server, Controller Manager, Scheduler, and ETCD.

Complementing the Control Plane, the Worker Nodes, or simply Nodes, serve as the
operational backbone. They host Pods, which encapsulate the application’s containers,
working in tandem with components like the Kubelet, Kube-proxy, and Container Runtime
to ensure optimal performance.

The management of this cohesive Kubernetes Cluster is facilitated through the kubectl
command-line tool. This robust interface empowers users to manipulate various API ob-
jects, such as Pods and Namespaces, streamlining the orchestration of containerized
applications.

V.-G. Anemogiannis 24

Anomaly Detection and Prediction on Kubernetes Resources

Figure 2.4: Kubernetes Components

2.5 Resource Registry

Within the Kubernetes Cluster, a harmonious interplay of various components brings the
application to life. Each component contributes distinct functionalities crucial for the cluster’s
seamless operation. Central to this orchestration is the Resource Registry, a compre-
hensive repository that encapsulates a representation of every object deployed within the
cluster at any given moment. Each entry in the resource registry comprises the compon-
ent’s type, a unique identifier, and information detailing the behavior of the component. In
figure 2.5 one can find a graph represention of all the components interacting with each
other.

2.5.1 Namespace

2.5.1.1 Description

The Namespace serves as an isolation technique for resource groups within the cluster.
By default, all components are deployed in the default namespace. Namespaces are use-
ful when a specific scope is required for names of namespaced objects like Deployments.
Each namespace can only have a single instance of a given name, facilitating resource
division between users through quotas.

2.5.1.2 Interaction With Other Components

The namespace encompasses various namespaced components. In the Resource Re-
gistry, the namespace is connected to all components except the non-namespaced ones,
such as Persistent Volumes and Nodes that do not belong to any namespace.

V.-G. Anemogiannis 25

Anomaly Detection and Prediction on Kubernetes Resources

2.5.2 Config Map and Secret

2.5.2.1 Description

ConfigMaps andSecrets enable the portability of container images by removing the need
to store environment-specific configuration information within them. They consist of key-
value pairs designed not to hold large amounts of data. Config Maps hold non-confidential
configuration data, whereas Secrets store sensitive information.

2.5.2.2 Interaction With Other Components

Config Maps and Secrets are always contained within a namespace and can be mounted
by Pods of the same namespace for use by their containers.

2.5.3 Persistent Volume and Persistent Volume Claim

2.5.3.1 Description

Apart from Nodes, the cluster includes storage. A Persistent Volume is a storage class
that can be mounted to Pods. When a Pod ceases to exist, the Persistent Volume remains
unaffected and available. The Pod can mount a Persistent Volume using a Persistent
Volume Claim, specifying the needed storage and access modes. Pods can also have
Ephemeral Volumes whose lifecycle matches the Pod’s.

2.5.3.2 Interaction With Other Components

Persistent Volumes are independent entities not connected to Nodes or Namespaces.
They only connect to Persistent Volume Claims, which are namespaced and can bemoun-
ted by Pods for use by their containers.

2.5.4 Deployment and Replica Set

2.5.4.1 Description

Replica Sets ensure that Pods are running at any given time according to their specifica-
tions. The term ”set” indicates that it manages one or more Pods, all with the same spe-
cification. Deployments provide an easy way to manage Replica Sets and their Pods.
Users can describe the desired state of their app, and the deployment creates the neces-
sary Replica Sets.

2.5.4.2 Interaction With Other Components

Both Deployments and Replica Sets belong to a namespace. Deployments manage Rep-
lica Sets, and Replica Sets are connected to the Pods they manage.

V.-G. Anemogiannis 26

Anomaly Detection and Prediction on Kubernetes Resources

2.5.5 Pod and Container

2.5.5.1 Description

The Pod is the smallest deployable unit in the Kubernetes cluster, grouping one or more
Containers. Containers within the same Pod are co-managed and run in a shared context.
Pods can be managed by various components and are namespaced. They connect to
Services for communication and can mount different types of Volumes.

2.5.5.2 Interaction With Other Components

Pods can be managed by Replica Sets, Jobs, Stateful Sets, and Daemon Sets. They
are namespaced and can connect to Services for communication within the Cluster and
externally. Pods can mount various types of Volumes, and Containers within Pods can
mount a subset of these Volumes.

2.5.6 Stateful Set, Daemon Set, Job and CronJob

2.5.6.1 Description

Like replica Sets all of the above components directly manage Pods. Each one of them
has its unique characteristics that differentiate them from Deployments.
Stateful Sets are used to run stateful applications like MySQL that need to keep track of
their data stored inside them. They manage this by giving a unique identifier to their Pods
and in the case of replacement, the new Pod inherits the old ones id and state - data.
Daemon Sets are used when the user wants to run some Pods in all Nodes of the Cluster.
This means that a Daemon set is automatically deployed in any new Node and deleted as
the Node ceases to exist.
Jobs and CronJobs create a set of Pods that are executed until a specified number of
them succeed. In case of failure the Pod is rescheduled. Cron Jobs differentiate by being
triggered at specific time inter voles to complete tasks like backups.

2.5.6.2 Interaction With Other Components

All the above components are namespaced meaning they are connected to a namespace.
They also manage Pods so they are also connected to the Pods they manage.

2.5.6.3 Stateful Set

Description The Stateful Set is a crucial Kubernetes component designed for man-
aging stateful applications within the cluster. Unlike stateless applications, stateful applic-
ations, such as databases (e.g., MySQL), require persistent storage and unique network
identities. Stateful Sets provide a solution by assigning a unique identifier (hostname) to
each Pod they manage. This identifier remains consistent even during replacement or
rescheduling, ensuring data consistency across the application’s lifecycle. Stateful Sets
play a vital role in maintaining the order and reliability of stateful applications within the
dynamic Kubernetes environment.

V.-G. Anemogiannis 27

Anomaly Detection and Prediction on Kubernetes Resources

Interaction With Other Components Similar to other components, Stateful Sets are
namespaced, linking them to a specific namespace within the cluster. Additionally, Stateful
Sets directly manage Pods, maintaining a one-to-one relationship between Stateful Sets
and the Pods they control. This close association allows Stateful Sets to preserve the
state and identity of stateful applications, ensuring a seamless and reliable operation.

2.5.7 Daemon Set, Job, and CronJob

2.5.7.1 Description

Daemon Sets, Jobs, and CronJobs are Kubernetes components, each with unique char-
acteristics in managing Pods.

Daemon Sets ensure that a copy of a Pod runs on all Nodes in the Cluster. This is
particularly useful for scenarios where a specific task or service should be deployed on
every Node, ensuring comprehensive coverage across the entire cluster.

Jobs and CronJobs are designed for specific task execution. Jobs create Pods to per-
form a task, completing the execution upon success. In contrast, CronJobs provide a
scheduled approach, triggering tasks at specific time intervals, such as periodic backups
or maintenance operations.

2.5.7.2 Interaction With Other Components

These components are namespaced, associating them with a specific namespace within
the cluster. As they directly manage Pods, they are connected to the Pods they create and
oversee. This direct interaction enables precise control over task execution and resource
allocation, contributing to the efficient orchestration of Kubernetes workloads.

2.5.8 Service

2.5.8.1 Description

Services in Kubernetes provide a dynamic abstraction layer for networking between Pods
within the cluster, acting as a robust decoupling mechanism. They offer a stable endpoint
(Cluster IP or external IP) that abstracts the underlying Pods, allowing for a consistent
entry point for communication. Services use label selectors in their specifications, enabling
them to intelligently connect to any Pods inside the namespace that match the specified
criteria.

One of the key features of Services is their support for load balancing, which enhances
scalability and availability by efficiently distributing incoming traffic across multiple Pods.
This load balancing capability ensures optimal utilization of resources and seamless op-
eration, especially in dynamic and evolving environments.

2.5.8.2 Interaction With Other Components

Services are namespaced components, associating themwith a specific namespacewithin
the cluster. They connect directly to the Pods and Containers they service, serving as a

V.-G. Anemogiannis 28

Anomaly Detection and Prediction on Kubernetes Resources

crucial bridge for intra-cluster communication. Additionally, Services have a connection to
Ingresses, which act as entry points to the Cluster for external network access. Ingresses
often use Services as their backends, exposing HTTP and HTTPS routes to the Services
within the cluster.

2.5.9 Ingress

2.5.9.1 Description

Ingress serves as a vital component when a Service requires network access outside the
Cluster. Ingresses act as entry points, enabling the exposure of HTTP and HTTPS routes
to the Services within the Cluster. They provide a gateway for external traffic, facilitating
efficient communication between the Cluster and the broader network.

2.5.9.2 Interaction With Other Components

Ingresses are namespaced components, associating them with a specific namespace
within the cluster. They play a critical role in facilitating external access by utilizing Ser-
vices as their backends. Ingresses leverage Services to route and manage incoming
traffic, serving as a key element in enabling external connectivity for applications deployed
within the Cluster.

2.5.10 Node

2.5.10.1 Description

For the successful functioning of a Kubernetes Cluster, Nodes are indispensable. Nodes
serve as the deployment locations for Pods, constituting the fundamental infrastructure
of the Cluster. Each Node is equipped with essential components, including the kubelet,
Container Runtime, and Kube Proxy, collectively forming the backbone of the Kubernetes
environment.

2.5.10.2 Interaction With Other Components

Nodes are unique in that they are not namespaced components; rather, they are stan-
dalone entities in the Kubernetes architecture [9]. Nodes establish a direct connection
with the Pods assigned to them, providing the physical or virtual environment for the exe-
cution of containerized workloads. This direct association emphasizes the Node’s role as
the underlying infrastructure that supports and hosts the deployed Pods.

V.-G. Anemogiannis 29

Anomaly Detection and Prediction on Kubernetes Resources

Figure 2.5: Resource Registry

2.6 Neo4j

Neo4j is an open-source database falling under the NoSQL (Not Only SQL) category,
distinguishing itself by employing the Cypher query language instead of traditional SQL,
commonly associated with relational models. [27, 33, 32]

2.6.1 Architecture

Graphs in Neo4j are composed of nodes and relationships, referred to as vertices and
edges, respectively. Traversal of the graph involves navigating through edges between
vertices. Neo4j, as a Graph Database, deviates from traditional table structures, rep-
resenting entities as vertices and relationships as edges within the graph. Nodes and
relationships are labeled to denote their groupings, similar to an Heterogeneous graph,
and can store key-value pairs as properties. Relationships are directional, connecting
nodes in a flexible schema-less structure dynamically built with each addition of nodes
and relationships.

V.-G. Anemogiannis 30

Anomaly Detection and Prediction on Kubernetes Resources

2.6.2 What Neo4j offers

2.6.2.1 Transaction Management

Neo4j upholds data integrity through transaction management, supporting ACID (Atom-
icity, Consistency, Isolation, Durability). This level of transactional consistency is a feature
relatively uncommon in many NoSQL databases.

2.6.2.2 High Availability

Implemented with a Master-Worker architecture, Neo4j ensures high availability. The
Master manages write operations, serving as a centralized controller, while Workers in
the cluster maintain copies of the database, enhancing fault tolerance in case of a Node
failure.

2.6.2.3 Cypher Query Language

Neo4j employs the Cypher query language tailored for graph data. Cypher offers users a
concise and straightforward method to perform Create, Read, Update, and Delete (CRUD)
operations by utilizing ASCII-Art to represent patterns, enhancing readability and simpli-
city.

2.6.2.4 Efficiency for Relation-Centric Databases

Neo4j’s graph structure alleviates the need for complex Join operations, making traversal
of relationships efficient. This characteristic makes it particularly suitable for databases
with numerous relationships, resulting in low latency even with large datasets.

2.6.2.5 Schema-Free

Dispensing with a fixed schema, Neo4j provides flexibility and scalability. Users can ex-
tend the database by seamlessly adding nodes and relationships, including those not
previously defined, offering adaptability to evolving data needs.

2.6.3 Use Case: Modeling Kubernetes Resources with Neo4j

Neo4j’s capabilities extend to modeling Kubernetes resources, enhancing various aspects
of resourcemanagement within a cluster. In figure 2.6 we used Neo4j to recreate the graph
of figure 2.5.

1. Resource Registry Management: Neo4j forms the foundation for creating a robust
Resource Registry, efficiently tracking and managing Kubernetes objects.

2. Dependency Visualization: Facilitates clear visualization of dependencies between
Kubernetes resources, aiding in understanding complex relationships.

V.-G. Anemogiannis 31

Anomaly Detection and Prediction on Kubernetes Resources

3. Dynamic Schema Evolution: Accommodates the dynamic nature of Kubernetes
environments, allowing for organic addition of nodes and relationships.

4. Cluster Performance Analysis: Enables performance analysis by modeling re-
source utilization, communication patterns, and dependencies.

By leveraging Neo4j’s graph database capabilities, administrators gain a powerful tool
for effectively modeling, managing, and optimizing the complex relationships inherent in
Kubernetes resource orchestration.

Figure 2.6: Using Neo4J to Represent Figure 2.5

V.-G. Anemogiannis 32

Anomaly Detection and Prediction on Kubernetes Resources

3. MACHINE LEARNING

3.1 Introduction to Machine Learning

3.1.1 What is Machine Learning

Machine Learning (ML), a focal subset of Artificial Intelligence, encompasses a soph-
isticated set of algorithms and statistical models designed to discern intricate patterns
and glean insights from data. In essence, ML empowers systems to recognize patterns,
cluster information, classify data, and make predictions, all driven by the inherent ability
to learn and adapt without explicit programming. This dynamic capability positions ML as
a transformative force, enabling intelligent decision-making based on the analysis of vast
datasets. [7, 12]

Machine Learning provides a rich toolbox of algorithms and techniques for various tasks,
each with its own set of strengths, weaknesses, and specific requirements. The respons-
ibility falls on the scientist to select a model that optimizes entropy, ensuring effective task
performance with sufficient accuracy, all the while striving to keep things straightforward
and minimize complexity. In essence, the scientist’s role is akin to finding the right balance
between maximizing accuracy and keeping things manageable.

3.1.2 Basic Concepts in ML

3.1.2.1 Features and Labels

In Machine Learning, models learn from data, which is split into two parts: features and
labels. Not all datasets have both features and labels. There is a big subsection of ML
that delves into datasets without labels.

Features serve as the input to the model and encapsulate the descriptive elements of a
given state. For instance, in the context of a grayscale image, the input would manifest as
a matrix representing the image’s pixel dimensions. Alternatively, for a computer, features
might include CPU usage, memory allocation, and network activity.

Labels in contrast with features, articulate the desired output anticipated by the user. They
play an important role in refining the model. As the model learns from the provided data,
labels act as a guide, enabling the model to make informed predictions when confronted
with new, unseen data. Drawing on our earlier examples, consider a scenario where the
model is trained on images. The labels in this context could represent the digits (0 to 9)
corresponding to what the image portrays. Similarly, in the case of monitoring a computer,
the label might signify whether the computer experienced a crash or not. This exemplifies
how labels provide the necessary context for the model to generalize its understanding
and make accurate predictions.

Features and labels are commonly represented in mathematical notation. Adopting a
slightly modified notation from the book [12], the dataset, denoted as X , consists of N

ordered pairs of features and labels. The features are represented as a vector x =


x1

x2
...
xk

,
V.-G. Anemogiannis 33

Anomaly Detection and Prediction on Kubernetes Resources

where k is the number of features, and the label is denoted as y.

With features and labels defined, the dataset X can be expressed as X = {xt, yt}Nt=1,
encompassing N instances of feature-label pairs indexed from 1 to N .

3.1.2.2 Training, Validation and Test Data

To facilitate the learning process of a machine learning model, data is a prerequisite. To
optimize this process, the dataset is divided into Training, Validation, and Test sets. The
Training set typically encompasses the majority of data points as it is utilized to fine-tune
the model. Tuning involves adjusting the model’s parameters based on its performance
on the training set, evaluated using an objective function. Simultaneously, we assess the
model’s ability to generalize by introducing a Validation set, containing data points unseen
during training. Throughout training epochs, the model classifies this set to gauge its
efficacy in generalization.

Upon identifying the model parameters that minimize validation error, a final training phase
is conducted with these optimized parameters. Subsequently, the model undergoes eval-
uation on a distinct Test set, providing an unbiased assessment of its generalization per-
formance. This separation of training, validation, and test sets ensures a robust evaluation
framework.

Various techniques exist for splitting datasets, with Cross Validation, where the dataset is
iterative split in different subsets, standing out as one of the most well-known methodolo-
gies.

3.1.2.3 Parameters and HyperParameters

Two vital elements in the realm of machine learning theory are parameters and hyper-
parameters. Parameters, often referred to as weights and biases, constitute the internal
variables of a model, undergoing fine-tuning throughout the training process. The dynamic
adjustments to these parameters are instrumental in enabling models to excel across vari-
ous machine learning tasks.

Conversely, hyperparameters are external variables that guide the learning process. They
encompass crucial aspects such as the model’s complexity, learning rate, regularization
strength, and the choice of optimization algorithm. Unlike parameters, hyperparameters
are established before training commences and require fine-tuning methodologies, such
as grid search or random search.

Successful machine learning model development hinges on finding the right combination
of parameters and hyperparameters, striking a balance for accurate and generalizable
results. This interplay between internal adjustments (parameters) and external configura-
tion choices (hyperparameters) forms the foundation of effective machine learning model
building.

3.1.2.4 Learning Process

The Learning Process is a crucial component in the training of machine learning models,
organized into multiple epochs. In each epoch, the entire training set is processed, often
in batches, to iteratively refine the model’s hyperparameters. Following each epoch, the

V.-G. Anemogiannis 34

Anomaly Detection and Prediction on Kubernetes Resources

model’s performance is assessed using the validation dataset. The learning process con-
cludes either after a predetermined number of epochs or when the generalization error
starts to rise, indicating potential overfitting. In figure 3.1 is a visual representation of the
learning process from the lecture notes [18].

Figure 3.1: Learning Process

The primary objective of the learning process is to minimize the loss function. The loss
function is typically a non-convex function with multiple local minima and a global min-
imum. Figure 3.2 illustrates our goal, which is to reach the global minimum.

Figure 3.2: Goal of Training

V.-G. Anemogiannis 35

Anomaly Detection and Prediction on Kubernetes Resources

For regression problems, a widely-used loss function is Mean Squared Error, defined as:

L(ŷ, y) = 1

n

n∑
i=1

(yi − ŷi)
2

where n denotes the training instances per batch, y is the true label, and ŷ is the predicted
value.

In the context of binary class classification problems, the binary cross-entropy loss function
is popular and defined as:

L(ŷ, y) = − 1

n

n∑
i=1

(yi log ŷi + (1− yi) log ˆ(1− yi))

where n denotes the training instances per batch, y is the true label, and ŷ is the predicted
value.

3.1.2.5 Model Evaluation

In supervised machine learning, where labeled datasets are available, model evaluation
is straightforward. A reliable model is characterized by a small loss score and the ability to
generalize effectively on new, unseen data. This is why the Test set, an unseen dataset,
is crucial during the evaluation process. Various evaluation metrics exist, with F1-score
being one of the most popular, computed as F1 = True Positive

True Positive+ 1
2
(False Positive+False Negative) .

For unsupervised machine learning models, the evaluation task becomes more challen-
ging. There does not exist an objective function that can measure how well clustering
was performed. (Note that for compression tasks, there are ways to train the model on
how well it reconstructs the original file.) Various methods exist to evaluate clustering
performance, with one of the most popular being the Silhouette coefficient. This value is
calculated using the mean distance of samples within the cluster a and the mean nearest
cluster distance b for the same samples. The silhouette coefficient is then computed using
the formula b−a

max(a,b) , providing a measure of how well clustering was performed. The best
possible value is 1, indicating that all samples are appropriately placed, while the worst
value is -1, suggesting that samples have been poorly assigned to clusters.

3.1.3 Overfitting and Underfitting

In addition to model evaluation, machine learning practitioners must be careful of the chal-
lenges of overfitting and underfitting.

Overfitting occurs when a machine learning model becomes overly attuned to the intrica-
cies of the training data, compromising its ability to generalize to new, unseen data. This
phenomenon is often observed when the model is trained for an excessive number of
epochs or when the model’s complexity surpasses the inherent complexity of the underly-
ing data. In such cases, the model starts to capture noise and outliers in the training data,
leading to poor performance on unseen examples.

Conversely, underfitting manifests when a model lacks the capacity to sufficiently capture
the underlying patterns within the training data, resulting in poor performance on both the
training set and new data. This inadequacy may stem from a model that is too simplistic
or undertrained.

V.-G. Anemogiannis 36

Anomaly Detection and Prediction on Kubernetes Resources

To illustrate these phenomena, Figure 3.3 provides a visual representation of overfitting,
while Figure 3.4 depicts the relationship between training data and error.

Figure 3.3: Underfitting, Derired and Overfitting

Figure 3.4: Relationship between train-data and error

3.2 Machine Learning Algorithms

3.2.1 Approaches in Machine Learning algorithms

3.2.1.1 Gradient-Based Algorithms

Gradient-Based Algorithms constitute a fundamental category within optimization algorithms,
aiming to minimize an objective function J(θ), θ ∈ Rd, where θ signifies the model’s para-
meters as described in [34]. The optimization process involves iteratively updating these
parameters in the direction of the gradient of the objective function, denoted as ∇θJ(θ).
Each iteration entails traversing the slope of the algorithm, seeking both local and ideally
global minima. A significant factor in these algorithms is the learning rate, represented by

V.-G. Anemogiannis 37

Anomaly Detection and Prediction on Kubernetes Resources

η. The learning rate determines the size of the steps the algorithm takes in navigating the
slope towards the minima, influencing the convergence and efficiency of the optimization
process.

There exist three variants of gradient descent optimization algorithms. The simplest one,
known as Batch Gradient Descent, computes the cost function for the entire training set
and then updates the parameters using the rule θ = θ−η ·∇θJ(θ). Although effective, this
approach is memory-intensive as it requires loading the entire dataset for training, and it
is not suitable for online learning.

Stochastic Gradient Descent improves upon this by performing parameter updates for
each training example (x(i), y(i)) individually: θ = θ − η · ∇θJ(θ, x

(i), y(i)). This results
in faster training and is well-suited for online learning. However, the constant updating
introduces high variance, causing the objective function to fluctuate significantly.

To address the variance issue, Mini-Batch Gradient Descent combines the best of both
worlds by updating parameters for every mini-batch of n training points: θ = θ − η ·
∇θJ(θ, x

(i:i+n), y(i:i+n)). This approach strikes a balance, reducing variance in parameter
updates and providing stable convergence, solving the primary problem associated with
the stochastic approach.

3.2.1.2 Hyperplane-Based Algorithms

Hyperplane-based algorithms aim to determine the decision boundary y = f(x) ∈ H,
whereH represents the hypothesis class, with the objective of minimizing the loss function
and ensuring that, when presented with new data from the same distribution, the expec-
ted loss remains small. [23] The goal is to find parameters w such that y = sign(fw(x)) =
sign(wTx), where y ∈ {−1, 1}. The task involves identifying the parameter set that maxim-
izes the margin between the two possible classes of y. The distance of x to the hyperplane
fw(x) = 0 is given by |wT x|

∥w∥ . Additionally, a bias factor b (commonly denoted as w0) can be
introduced. If included, w becomes orthogonal to the hyperplane fw,b(x) = wTx + b = 0,
and the distance of fw,b(x) to the hyperplane fw,b = 0 is −b

∥w∥ . Bellow in figure 3.5 is a visual
representation.

V.-G. Anemogiannis 38

Anomaly Detection and Prediction on Kubernetes Resources

Figure 3.5: Margin With Bias

3.2.1.3 Tree Based Algorithms

Tree-based algorithms constitute a distinct class of machine learning methods employing
hierarchical tree structures for decision-making and data classification. These algorithms
recursively partition the feature space, creating subsets where each partition corresponds
to different decision outcomes. In a decision tree 3.2.2.4, internal nodes represent fea-
ture tests, branches represent possible outcomes, and leaves signify the final decision.
Notably, one of the key advantages of tree-based algorithms is their inherent interpretab-
ility. The decision-making process is transparent and easily traceable, allowing users to
understand the logic behind the model’s decisions.

3.2.2 Supervised Learning

3.2.2.1 Introduction to Supervised Learning

Supervised Learning is a machine learning paradigm aimed at acquiring the input-output
relationship information of a system based on a provided set of paired input-output training
samples, as defined by Qiong et al. [31]. In this paradigm, labeled data is essential, with
the objective of learning the mapping between inputs and expected outputs of a system.
This acquired knowledge enables the model to predict the output of new inputs. Common
tasks within supervised learning encompass classification, where the model predicts the
class label of input data, and regression, where themodel’s expected result is a continuous
value.

V.-G. Anemogiannis 39

Anomaly Detection and Prediction on Kubernetes Resources

3.2.2.2 Logistic Regression

Logistic Regression is a supervised machine learning algorithm, primarily employed for
binary classification as defined in [20]. This algorithm incorporates a Linear Regression
model, featuring a bias factor b and a weight vector w to compute the sum z = x · w + b,
where x represents the input vector containing the data features. To convert this result into
a binary classification decision, it undergoes a sigmoid function transformation: σ = 1

1+e−z ,
ensuring the output lies within the inclusive range of [0, 1]. With the obtained probabilities
for each class, the final decision is made: 1 if σ(w · x+ b) > 0.5, and 0 otherwise.

Parameter tuning in Logistic Regression involves optimizing themodel parametersw and b
using gradient descent 3.2.1.1, aiming to minimize the chosen loss function. By employing
the binary cross-entropy loss (LCE) as our objective, which is represented as:

LCE(ŷ, y) = −[y logσ(w · x+ b) + (1− y) log(1− σ(w · x+ b))]

where ŷ is replaced by the sigmoid function used in decision-making, we ensure the model
learns to accurately predict the binary outcomes.

3.2.2.3 Support Vector Machines (SVMs)

Building on the discussion in 3.2.1.2 and following the lecture slides [23, 24], the objective
for Support Vector Machines (SVMs) is to maximize the margin over each data point i,
where the margin is defined as γ = mini yifw,b(xi)

∥w∥ = yi(wT xi+b)
∥w∥ (where yi ∈ {−1, 1}), so

maxw,b γ = maxw,bmini yifw,b(xi)

∥w∥ . This margin represents the distance of the data points
from the decision boundary.

Solving this problem directly can be challenging, so SVMs introduce a fixed scale factor
that does not affect the margin, leading to y∗i (wTx∗

i + b) = 1, where x∗
i is the closest point

to the hyperplane. Consequently, for all data points yi(wTxi + b) ≥ 1, with at least one
data point where equality holds, resulting in a margin of 1

∥w∥ .

Support Vector Machines simplify the optimization problem to minw,b 1
2
∥w∥2 subject to

yi(wTxi + b) ≥ 1, ∀i.

The optimization problem is solved using the Lagrange multiplier method:

L(w, b, a) = 1

2
∥w∥2 −

∑
i

ai[yi(wTxi + b)− 1]

where a is the Lagrange multiplier.

This problem can be reduced toL(w, b, a) = ∑
i ai−

1
2

∑
i,j aiajyiyjx

T
i xj, subject to

∑
i aiyi =

0, ai ≥ 0.

Since w =
∑

i aiyixi, this gives us fw,b =
∑

i aiyix
T
i x+ b.

One last thing to add is the Kernel trick, which maps features from the non-linear feature
space to a linear one. This is particularly useful for handling non-linearly separable data,
as illustrated in the XOR problem in Figure 3.6.

V.-G. Anemogiannis 40

Anomaly Detection and Prediction on Kubernetes Resources

Figure 3.6: (a) Non-Linear Separable Problem, (b) Linearly Separable using a Polynomial Kernel of
second degree

3.2.2.4 Decision Trees

Focusing on the binary classification problem and following the discussion in 3.2.1.3, we
formalize the representation of decision trees following the paper [19]. The decision tree
classifier is a function f that maps the data point x to the hypothesis space H. Each data
point x contains m features denoted by xi.

The decision tree T is a directed acyclic graph that has at most one path between every
pair of nodes. There always exists a root node with no incoming edges in contrast to all
the other nodes of T . Every non-leaf node is associated with a feature xi, each outgoing
edge is associated with one or more values of the feature space, and each leaf node
is associated with a value from the hypothesis space. You can find an example using
Decision Trees from scikit-learn [29, 1] in Figure 3.7.

Each path in T follows the nodes and edges according to the values of the features of
the input until it reaches a terminal leaf node that determines the classification from the
hypothesis space.

To construct a decision tree from training vectors xi ∈ Rm and corresponding label vector y
with n samples, a recursive partitioning of the feature space is performed. Each nodeQm,
representing a subset of samples, is split based on a selected feature j and threshold tm.
This process continues recursively, creating left (Qleft

m (θ)) and right (Qright
m (θ)) subsets at

each node. The decision to split is based on minimizing an impurity or loss function H(),
and the quality of the split is measured by G(Qm, θ) =

nleft
m

nm
H(Qleft

m (θ))+ nright
m

nm
H(Qright

m (θ)).
The aim is to find optimal parameters θ∗ that minimize the impurity. The recursive splitting
continues until a predetermined maximum depth is reached or a node contains samples
from a single feature space.

V.-G. Anemogiannis 41

Anomaly Detection and Prediction on Kubernetes Resources

Figure 3.7: Decision Tree

3.2.3 Unsupervised Learning

3.2.3.1 Introduction to Unsupervised Learning

Unsupervised learning is a machine learning technique that, in contrast to supervised
learning, does not rely on labeled data. As a result, classification and regression tasks
are not applicable, given the absence of expected values without labels. The primary
objective of unsupervised learning is to uncover hidden and meaningful patterns within
the data. By identifying these patterns, clustering can be performed to group together
data points with similar characteristics. An extension of clustering involves anomaly de-
tection, where outliers in the data are identified. Unsupervised learning is also employed
for dimensionality reduction and the representation of data in latent spaces.

3.2.3.2 Isolation Forests

Isolation Forests represent an unsupervised machine learning approach designed for out-
lier detection. The underlying concept of Isolation Trees is based on the observation that
anomalies comprise very few instances, and their feature values significantly differ from
those of normal instances. Consequently, anomalies tend to be closer to the root of the
trees, while normal points are isolated deeper within the tree structure. [25]

The Isolation Forest method constructs a collection of isolation trees for the given dataset.
Anomalies are characterized as points with shorter average path lengths from all the trees
in the forest.

The user only needs to specify the number of isolation trees and the subsampling size.
The algorithm performs well with a small number of trees and converges rapidly.

V.-G. Anemogiannis 42

Anomaly Detection and Prediction on Kubernetes Resources

To partition points in each tree, random partitioning of the feature space is employed, with
normal points typically requiring more partitions to be isolated compared to anomalies.

In figure 3.8 we can see how normal point xi needed a significant amount of partitions to
be isolated. This contrasts the anomaly point x0 that in a few partitions was isolated.

After the creation of multiple isolation trees, the average of the depth of each point is taken
in order to reveal the outliers.

Figure 3.8: Partitions required to isolate normal point xi in contrast to anomaly x0

3.2.3.3 One-Class Support Vector Machines (SVMs)

In machine learning, One-Class Support Vector Machines (SVMs) have an important role
at anomaly detection. They were first described in the paper [13]. Consider a training
set X comprising n observations, each characterized by m features. In addition, consider
a feature map Φ, that maps the original space to a higher-dimensional feature space F .
Accompanying this, a kernel function K is employed, offering flexibility in the choice of
mapping, ranging from a simple dot product kernel to more sophisticated alternatives like
the Gaussian Kernel.

The primary objective of a one-class SVM is to define a function f that effectively maps
the majority of points to the positive class (+1), while isolating potential outliers as the
negative class (-1), based on their relative positions to a hyperplane.

To achieve this, a quadratic program must be solved, introducing a variable v ∈ (0, 1) and
a slack variable vector ξ:

min
w∈F,ξ∈Rm,ρ∈R

1

2
∥w∥2 + 1

vl

∑
i

ξi − ρ

subject to
(w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

Upon solving this optimization problem and obtaining the parametersw and ρ, the resulting
function f(x) = sgn((w · Φ(x))− ρ) classifies the majority of xi points as positive.

The parameter v in the one-class SVM equation controls the sensitivity of the algorithm.
Fine-tuning v allows for customization of the model’s performance to strike an optimal
balance between identifying outliers and minimizing false positives.

Applying the dot product Kernel function, the classification equation takes the form f(x) =
V.-G. Anemogiannis 43

Anomaly Detection and Prediction on Kubernetes Resources

sgn(
∑

i aiK(xi, x)− ρ), where ai represents non-negative support vectors. The determin-
ation of these coefficients is realized by solving the following optimization problem:

min
a

1

2

∑
i,j

aiajK(xi, xj)

subject to

0 ≤ ai ≤
1

vl
,

∑
i

ai = 1

3.2.4 Scikit-learn

Scikit-learn is a comprehensive framework designed to deliver high-level implementations
of machine learning algorithms. [29, 14] Focused on Python, it provides constantly up-
dated, state-of-the-art implementations of various algorithms. Notable for its commitment
to high code quality, Scikit-learn undergoes rigorous unit testing, adheres to a specific
writing style, and adopts the permissive BSD licensing model. With an emphasis on an
easy-to-use API and community-driven development, Scikit-learn aims to make machine
learning accessible to a broad audience. The project further distinguishes itself through
robust documentation, ensuring maximum usability and understanding.

In Listing 3.1, you can see the ease with which we created an SVM model using Scikit-
learn.

1 import numpy as np
2 from sklearn import svm
3 from sklearn.metrics import classification_report
4

5 # Create an SVM classifier with specified hyperparameters
6 clf = svm.SVC(kernel='rbf', C=3.9153433857642326, gamma='scale')
7

8 # Train the classifier
9 clf.fit(Xtrain , Ytrain)

10

11 # Make predictions on the test set
12 Ypred = clf.predict(Xtest)
13

14 # Print classification report
15 print(classification_report(Ytest , Ypred , target_names=genre_mapping.

values()))

Listing 3.1: Scikit-learn SVM Classifier Example

3.3 Hyper Parameter Optimization

3.3.1 What is Hyper Parameter Optimization

When creating aMachine Learning model, the user has to make decisions on a wide range
of hyper parameters that significantly influence the model’s performance.These paramet-
ers span a spectrum of choices, ranging from fundamental structural decisions, such as

V.-G. Anemogiannis 44

Anomaly Detection and Prediction on Kubernetes Resources

the complexity of the model architecture, to training-specific factors, such as the learning
rate.

The influence of hyperparameters on model performance cannot be overstated. Their
values govern the learning dynamics of the algorithm during the training process and,
consequently, impact the model’s ability to generalize patterns from the data. Minute
adjustments to these parameters can yield substantial variations in the model’s learning
capacity.

The primary objective of hyperparameter optimization is to discover the optimal set of
hyperparameter values. The ideal configuration is one that enables the model, during the
training phase, to converge towards the global minimum of the loss function.

In the spirit of computational efficiency and best practices in machine learning, the manual
exploration of hyperparameter spaces is often impractical. As computer scientists, our
goal is to automate and, when feasible, parallelize this intricate process. Automation
streamlines the search for optimal hyperparameters, while parallelization leverages the
power of modern computing resources, substantially reducing the time required for exper-
imentation.

In the context of this thesis, an analysis of algorithms described in the paper by Yu et al.
[37] will be conducted.

3.3.2 Search Algorithms For Hyper Parameter Optimization

3.3.2.1 Grid Search

Grid Search stands as the simplest hyperparameter optimization algorithm. In thismethod,
the user explicitly defines the values each hyperparameter can take, and the algorithm
systematically explores all possible combinations. Notably, Grid Search guarantees the
discovery of optimal hyperparameters within the specified search space on each run. How-
ever, it faces challenges in scalability due to the curse of dimensionality, as the search
space expands exponentially with each additional hyperparameter. Despite this limitation,
Grid Search exhibits ease of parallelization, as each combination is independent of others.

3.3.2.2 Random Search

Random Search, another hyperparameter optimization algorithm, explores the hyperpara-
meter space through a random distribution. This approach involves a search conducted
within a specified time or iteration budget, allowing for the examination of various hyper-
parameter combinations. In contrast to Grid Search, which allocates a fixed budget for
each hyperparameter, Random Search offers flexibility in distributing its computing re-
sources. This adaptability proves particularly valuable for non-uniformly distributed para-
meter ranges.

Following the principles of Monte Carlo techniques, Random Search efficiently utilizes an
increased budget, increasing the likelihood of discovering an optimal combination within
the search budget. Moreover, Random Search is amenable to parallelization and finds
particular utility in the initial stages of hyperparameter optimization. It helps identify a
preliminary range of optimal parameters, after which other algorithms are often employed
to fine-tune and approach the minimum of the loss function more closely.

V.-G. Anemogiannis 45

Anomaly Detection and Prediction on Kubernetes Resources

3.3.2.3 Bayesian Optimization

Bayesian Optimization, a traditional algorithm with applications in various optimization
problems, exhibits a key strength in its enhanced accuracy with more data. Operating
as a sequential method, it lacks parallelizability but compensates by converging rapidly
within a limited number of trials. This algorithm effectively balances exploration—initiating
trials based on new data to discover potential global minima—with exploitation, leveraging
existing data to make informed decisions and refine the search.

In the realm of hyperparameter search, Bayesian Optimization dynamically updates its
probability distribution after each trial, leveraging information from prior trials. This adapt-
ive approach significantly accelerates the search process compared to exhaustive meth-
ods like grid and random search, which exhaust their budget without the same adaptive
efficiency.

3.3.2.4 Tree Parzen Estimators (TPE)

Tree Parzen Estimators (TPE) represent a powerful extension of Bayesian Optimization,
specifically designed to handle categorical and conditional hyperparameters. TPE em-
ploys a tree-structured approach to model the objective function, efficiently navigating
complex hyperparameter spaces. This algorithm iteratively refines its search by balancing
exploration and exploitation, similar to Bayesian Optimization. TPE is particularly adept
at handling discrete and conditional parameters, making it a valuable asset in scenarios
where traditional optimization algorithms might face limitations.

3.3.3 Optuna

Optuna stands as a cutting-edge, open-source optimization framework, designed for seam-
less handling of experiments, whether small or large, with minimal setup requirements. It
was first introduced in 2019 in the study [11]. Being open source, it continuously integrates
the latest optimization algorithms and advancements in the field. Optuna offers a dynamic
approach to constructing the search space, incorporating versatile sampling and pruning
algorithms, while allowing users the flexibility to define their own. It simplifies the optimiz-
ation process for various tasks, aiming to minimize or maximize a user-defined objective
function.

Optuna supports diverse parameter types, such as integer, floating-point, or categorical,
and, through trials, adapts its strategy by identifying underlying relationships and concur-
rencies among hyperparameters. The framework implements a pruning algorithm based
on successive halving to enhance efficiency. Additionally, Optuna provides versatility in
execution environments, with options for user-specified storage backends and compatib-
ility with platforms ranging from Kubernetes clusters to simple Jupyter notebooks.

In Listing 3.2, the simplicity of creating an Optuna study for tuning hyperparameters in
SKLearn’s SVM model is evident. The code defines an objective function that takes hy-
perparameters as trial suggestions, trains an SVM model, and evaluates its performance
using the F1 score. The Optuna study then optimizes this objective function, iteratively
exploring the hyperparameter space over 50 trials. Finally, the best hyperparameters are
printed, showcasing Optuna’s effectiveness in automating the hyperparameter tuning pro-
cess.

V.-G. Anemogiannis 46

Anomaly Detection and Prediction on Kubernetes Resources

1 import optuna
2 from sklearn import svm
3 from sklearn.metrics import f1_score
4

5 def objective(trial):
6 kernel = trial.suggest_categorical('kernel', ['linear', 'rbf'])
7 c = trial.suggest_float('c', 1e-2, 10, log=True)
8 gamma = trial.suggest_categorical('gamma', ['scale', 'auto'])
9

10 clf = svm.SVC(kernel=kernel , C=c, gamma=gamma)
11 clf.fit(Xtrain , Ytrain)
12 Ypred = clf.predict(Xtest)
13 f1 = f1_score(Ytest , Ypred , average='macro')
14 return f1
15

16 study = optuna.create_study(direction='maximize')
17 study.optimize(objective , n_trials=50)
18 print(study.best_params)

Listing 3.2: Optuna Hyperparameter Optimization

V.-G. Anemogiannis 47

Anomaly Detection and Prediction on Kubernetes Resources

4. RELATED WORK

In this chapter, we conduct a thorough examination of existing literature and research
that serves as the bedrock for our study on anomaly detection in Kubernetes. This re-
view offers a deep insight into the state-of-the-art in anomaly detection for Kubernetes.
The works are categorized based on two crucial dimensions: anomaly detection for re-
source management and security threats. This dual categorization enables us to unravel
cutting-edge methodologies and techniques, providing a comprehensive understanding of
how the field has evolved. The subsequent sub-sections delve into each thematic area,
providing unique insights and ideas contributing to the collective knowledge in this field.

4.1 Resource Management

4.1.1 Reference Net-Based Performance and Management Model for Kubernetes

Medel et al. introduced a Reference Net-based performance and management model
for Kubernetes, as outlined in their work [28]. A Reference Net, belonging to the family
of Petri nets, serves as the foundational modeling tool. Petri nets, recognized as math-
ematical modeling languages, facilitate the depiction of distributed systems. Graphically,
Petri nets consist of nodes representing places (system states) and transitions (actions or
events affecting the system). Preconditions, depicted by arcs from places to transitions,
must be fulfilled to trigger transitions, while opposite arcs represent post conditions that
have already been met. This modeling approach specifically captures the pod life cycle,
highlighting the nuances of deploying and running applications within containers inside
the pod.

Figure 4.1 illustrates the container life cycle using Object Nets, a subtype of Petri nets.
The timed transitions (Ti) in the figure delineate critical stages in the model, such as T1
representing the time to create a container, and T6 and T7 representing the times for
termination.

To evaluate the proposed approach, micro-benchmarks were conducted across diverse
scenarios, including CPU-intensive, Input/Output, andNetwork-intensive applications. The
results not only demonstrate optimal pod and container allocation strategies for minimiz-
ing overhead costs per application type but also provide valuable insights into capacity
planning and resource management.

V.-G. Anemogiannis 48

Anomaly Detection and Prediction on Kubernetes Resources

Figure 4.1: Model of the life cycle of a Container [28]

4.1.2 Detection of Cluster Anomalies using ML Techniques - Kubernetes Anomaly
Detector

Kosińska et al. present the Kubernetes Anomaly Detector system (KAD) in their recent
work [22]. The architecture of KAD is characterized by simplicity and intuitiveness. It initi-
ates with data acquisition from a designated source, preprocesses the data to enhance its
suitability for modeling, engages in model training, explores hyperparameters, compares
various models, and ultimately selects the most promising one. Subsequently, the chosen
and trained model is employed for anomaly detection on future data batches. Figure 4.2
provides a visual representation of this workflow.

For model training and evaluation, a semi-supervised approach is adopted, assuming the
training set is free from anomalies. The user can define the selected model, or it can be
determined based on its performance on the training set relative to other options. The
authors consider four models for selection: Seasonal Autoregressive Integrated Moving
Average, Hidden Markov Model, Long Short-Term Memory, and Autoencoder. The former
two are statistical models, while the latter are based on Neural Networks. A simplified
architecture of KAD is illustrated in Figure 4.3.

To assess their work, the authors split the evaluation procedure into two parts. The
first part focused on model selection, utilizing the Numenta Anomaly Benchmark, which
provided a labeled dataset. All models yielded satisfactory results in both artificial and real-
world data, with each excelling on different datasets, underscoring the value of the model
selection mechanism. The second part scrutinized response latency in a production-ready
cluster. The open-source demo Sock Shop application, coupled with simulated load gen-
erators, was employed for this analysis. The results revealed that statistical models exhib-
ited significantly smaller training times than their Neural Network counterparts, rendering
them favorable choices for the given scenario. The study concluded that the preference
for different ML models can be contingent on the input, emphasizing the utility of a model
selection component.

V.-G. Anemogiannis 49

Anomaly Detection and Prediction on Kubernetes Resources

Figure 4.2: Sequence Diagram of Anomaly Based Error Detection

Figure 4.3: Simplified Architecture of KAD

4.1.3 Anomaly Detection and Diagnosis for Container-based Microservices with
Performance Monitoring

Qingfeng et al. introduce their Anomaly Detection System in [16], comprising three key
modules. The monitoring module gathers performance data from the target system, while
the data processing module analyzes this data to detect anomalies. Additionally, a fault
injectionmodule simulates service faults and generates datasets for training and validating
machine learning (ML) algorithms in anomaly detection.

V.-G. Anemogiannis 50

Anomaly Detection and Prediction on Kubernetes Resources

The monitoring agent is deployable across multiple clusters with containers, monitoring
the performance and metrics of individual containers. In this context, each container rep-
resents an entity hosting a single microservice, and Container Monitoring focuses on the
monitoring of individual containers. Notably, a microservice may be deployed in multiple
containers, and Microservice Monitoring aggregates data from all containers running the
specific microservice.

The data processing component is responsible for both detecting and diagnosing anom-
alies. It classifies whether a microservice exhibits anomalous behavior and identifies the
specific container responsible for the discrepancy. Anomalies encompass CPU hogging,
memory leaks, package losses, and network latency. Supervised ML algorithms are em-
ployed for anomaly detection, trained using load generators to simulate user requests.
The fault injection module simulates anomalous behavior for training purposes. Once the
model is trained, predictions are made based on time series data from each container.
When a microservice is identified as anomalous, all containers running that microservice
are analyzed using the Dynamic Time Warping algorithm to pinpoint the anomaly.

The experiments involve the use of various algorithms, including Support Vector Machine
(SVM), Nearest Neighbor Classifier, Naive Bayes, and Random Forest. The Nearest
Neighbor algorithm demonstrated superior performance in most cases.

The fault injection module plays a crucial role in creating ML training and validation data-
sets. Each container is equipped with an injection agent simulating CPU, memory, and
network faults. The resulting datasets include labels for normal behavior and various an-
omaly types based on fault behavior.

In summary, Qingfeng et al.’s Anomaly Detection System proves effective in monitoring
and diagnosing anomalies in container-based microservices, leveraging a combination of
supervised ML algorithms, fault injection for training, and innovative anomaly detection
methodologies.

4.2 Detection of Events in Cloud Infrastructure

4.2.1 Learning State Machines to Monitor and Detect Anomalies on a Kubernetes
Cluster

Cao et al. propose an innovative solution for detecting anomalies within a Kubernetes
Cluster, particularly in NetFlow data, in their work [15]. Their approach utilizes a Probab-
ilistic Deterministic Finite Automaton (PDFA) to model the runtime characteristics of the
cluster and identify potential attacks. Each transition in the PDFA is associated with a
probability, allowing the measurement of sequence probabilities using the multiplication
rule.

To learn the cluster’s modeling, state merging algorithms are employed. These algorithms
initialize with a state machine structured like a tree and iteratively merge states considered
similar. The merging process concludes when no similar states persist. Figure 4.4 illus-
trates an example of a state merge operation.

V.-G. Anemogiannis 51

Anomaly Detection and Prediction on Kubernetes Resources

Figure 4.4: Merge Operation Performed in the State Machine [15]

NetFlow data, describing the communication behavior between components, serves as
features for the model. Once the PDFA is created and trained, likelihood probabilities
are applied to new traces generated by Kubernetes cluster data. Any trace with a low
probability is flagged as an anomaly.

The system underwent testing in various scenarios, encompassing remote code execution
attacks, denial-of-service attacks, and malicious code in workloads. Training datasets
were created using benign users and simulated attacks.

The results are promising, with F1 scores surpassing 0.9 in some instances.

4.2.2 KubAnomaly: Anomaly detection for the Docker orchestration platform with
neural network approaches

Tien et al. present the KubAnomaly security monitoring system in their work [36]. KubAn-
omaly is designed formonitoring and detecting anomalous behavior at the container runtime,
tailored for Kubernetes (K8s) use. The system aggregates monitoring logs from each con-
tainer, extracts pertinent features, normalizes them, and inputs them into a 4-layer fully
connected linear neural network. Non-linear activation functions and aggressive dropout
layers between each layer are employed to mitigate overfitting. The model’s output fo-
cuses on individual containers, labeling each as Normal or Anomaly. Re-evaluation of
each container occurs every 10 seconds.

To assess the system, the authors created two datasets with varying levels of complex-
ity, in addition to utilizing public datasets. The model achieved a commendable F1 score
of 98.1%. In a real-world scenario, the authors tested KubAnomaly by deploying an ap-
plication with security vulnerabilities, successfully detecting and notifying about potential
attackers.

KubAnomaly operates with a modest overhead on the host machine, approximately 5%.
This efficiency ensures minimal impact on the overall system performance.

V.-G. Anemogiannis 52

Anomaly Detection and Prediction on Kubernetes Resources

4.3 Commercial Offerings

4.3.1 Service Now

Commercial solutions for anomaly detection in cloud-based systems are also prevalent.
One such offering is integrated into the ServiceNow platform, a cloud-based suite provid-
ing a range of IT service management tools to streamline and automate diverse business
processes. ServiceNow aids organizations in managing workflows, enhancing efficiency,
and fostering collaboration across different departments, with a dedicated focus on anom-
aly detection within its platform.

According to ServiceNow’s documentation [4], it monitors both cyclical and non-cyclical
metrics, differentiating between those that repeat regularly in a defined order and period
(cyclical) and those that exhibit irregular repetition (non-cyclical). In the context of an-
omaly detection, cyclical metrics include User Interface transaction counts, server re-
sponse times, SQL response times, average user transactions processed over a one-
minute period, and the maximum memory consumption at any given node.

Anomalies related to Jobs are also addressed, where metrics such as the number of
scheduled and concurrently run jobs, along with their transaction counts, are monitored
on an hourly basis. Anomalies are defined based on metrics using the standard deviation,
and alerts are triggered accordingly.

Due to the closed-source nature of ServiceNow, specific details regarding the mechanics
of anomaly detection on the metrics side are proprietary and not publicly disclosed.

4.3.2 Edge Impulse

Edge Impulse is a specialized platform designed to facilitate the development and de-
ployment of machine learning models, enabling the seamless integration of AI capabilities
into various applications. The platform simplifies the process of building and deploying
embedded machine learning solutions tailored for edge devices such as sensors, micro-
controllers, and other Internet of Things (IoT) devices.

Edge Impulse provides general-purpose anomaly detection algorithms [2], employing two
distinct methods for detecting anomalies:

The first method utilizes K-Means clustering, wherein a predefined number of clusters
group points based on their similarity. Anomalies are detected by establishing a threshold
that identifies data points placed farther away from all cluster centers.

The second implementation involves a Gaussian Mixture Model, representing a probability
distribution as a mixture of multiple Gaussian distributions. Each Gaussian component
signifies a cluster of data points with similar features. Essentially, samples within the
dataset are modeled by Gaussian distributions. If a data point is assigned a low probability
of being generated by the Gaussian Mixture Model, it is labeled as an anomaly.

Edge Impulse notes that these techniques are preferred over neural networks due to
their ability to handle situations where a data point doesn’t belong to any specific existing
class—an aspect that neural networks may struggle to effectively address.

V.-G. Anemogiannis 53

Anomaly Detection and Prediction on Kubernetes Resources

5. ANOMALY DETECTION AND PREDICTIVE CLASSIFICATION IN
KUBERNETES ENVIRONMENTS

5.1 Problem Description

In contemporary Kubernetes applications, resource optimization is a critical consideration
to enhance operational efficiency. One challenge arises in the context of dynamic work-
loads where predicting the exact resource requirements for each component beforehand
becomes inherently complex. Due to varying workloads, components may receive either
excessive or insufficient resources, leading to operational inefficiencies or, worse, com-
promised functionality. To address this, our proposed solution leverages monitoring data
and user-defined metrics to identify anomalies in the behavior of individual components
within the Kubernetes environment. By establishing a baseline of normal behavior based
on the majority of workflow components, our approach aims to detect deviations that may
indicate potential issues or inefficiencies. This proactive anomaly detection mechanism is
instrumental in signaling instances where additional resources should be allocated or fur-
ther investigation is warranted, ensuring the seamless and reliable execution of dynamic
workflows.

5.1.1 Dynamic Workflow Execution

The proposed anomaly detection and prediction component is strategically positioned
within the same architectural layer as the entity responsible for creating, instantiating,
and managing dynamic workflows. By residing in close proximity to the orchestrator, our
solution has privileged access to real-time data streams and comprehensive insights into
the evolving state of the Kubernetes environment. This strategic placement enables our
system to seamlessly integrate with the workflowmanagement process, allowing for timely
analysis of anomalies and efficient adaptation to changing resource demands. This close
coupling enhances the overall responsiveness and effectiveness of our anomaly detec-
tion mechanism, ensuring a holistic approach to dynamic workflow execution within the
Kubernetes ecosystem.

V.-G. Anemogiannis 54

Anomaly Detection and Prediction on Kubernetes Resources

5.1.2 Dynamic Workflow Graphical Representation

Figure 5.1: Visualization of Workflow Components in Kubernetes

Figure 5.3 illustrates a graphical representation of Kubernetes components employed in
a sample Workflow, using their representations in the Neo4j database. The red node at
the top signifies the Node the workflow runs on. The pink node represents the dedicated
Namespace created to encapsulate and isolate the Workflow. Deployments, depicted
in orange, house the applications that are currently running. Associated with each de-
ployment are purple Replica Sets, ensuring redundancy and scalability. In deep blue we
can find the Stateful Sets containing applications that require persistent storage. Each
big blue node corresponds to a Pod, while green nodes denote Containers. Volumes,
Ports, and Services are depicted in yellow, (small) blue and base respectively, highlight-
ing their crucial roles in inter-component communication within the Kubernetes cluster.
Edges symbolize the connections between these components. This intricate orchestra-
tion of Kubernetes components culminates in the successful execution of the initiated
Workflow.

5.1.3 Management of Kubernetes Components

As illustrated in Figure 5.3 and discussed in the previous subsection, Neo4j (2.6) serves
as a pivotal tool for visualizing and managing the dynamic landscape of Kubernetes com-
ponents. Each node in the Neo4j graph encompasses key metrics crucial for informing

V.-G. Anemogiannis 55

Anomaly Detection and Prediction on Kubernetes Resources

the anomaly detection algorithms. These metrics encompass parameters such as CPU
and Memory consumption, along with networking information.

Upon the initiation of a workflow, the initiating component notifies the graph manager com-
ponent of the newly instantiated components. Subsequently, the graph component quer-
ies the Kubernetes API to obtain detailed information on the new deployments. This in-
formation is then utilized to update the Neo4j graph, providing an accurate representation
of the current state of the cluster. Similar procedures are undertaken when a workflow
concludes, resulting in the removal of the associated components.

It is essential to note that a Kubernetes component is inherently dynamic, with its attributes
continually evolving. Pods may be replaced, and the CPU consumption of a Container
undergoes constant fluctuations. To address this dynamism, the monitoring component of
the cluster assumes a crucial role. This component collects real-time metrics and ensures
the timely update of the Neo4j graph, thereby maintaining a current and comprehensive
representation of the cluster.

Figure 5.2 showcases a segment of the information stored in a Node component within
the Neo4j graph, exemplifying resource capacity as one of the metrics.

Figure 5.2: Part of the Information the Node component of the graph contains

5.1.4 Anomaly Detection and Monitoring Strategy

With a real-time representation of the Kubernetes cluster’s state facilitated by Neo4j (2.6),
our focus shifts towards actively monitoring the cluster to identify anomalous behaviors.
Such anomalies may not only impact the immediate operation of a particular component
but also have cascading effects on interconnected components.

The purpose of our monitoring strategy is to efficiently allocate resources by concentrating
on specific areas of the cluster exhibiting anomalous behavior. It is crucial to emphasize
that the classification of a component as anomalous does not inherently signify a malfunc-
tion; rather, it indicates deviations in behavior compared to other components.

V.-G. Anemogiannis 56

Anomaly Detection and Prediction on Kubernetes Resources

Our ultimate objective is to assign a numerical value between 0 and 1 to each node in
the graph, reflecting the degree of anomaly for that specific component. A value of 0
denotes a non-anomalous component, while a value of 1 signifies a definite anomaly.
Additionally, our visualization aims to accentuate anomalous areas, with higher numerical
values corresponding to darker colors. Unaffected, non-anomalous components remain
unmarked. An example of a given anomaly score can be found in figure 5.3

Given the absence of domain expertise to precisely define anomalous behavior and train
supervised models, alternative strategies must be employed to discern and address an-
omalies within the Kubernetes cluster.

Figure 5.3: Anomaly Score Given to a Node in the Graph

5.2 Proposed Solution

5.2.1 Hierarchical Anomaly Detection Strategy

The graphical representation of the Kubernetes cluster, defined by its heterogeneous and
dynamic characteristics, poses challenges for employing a conventional ML model. The
presence of different component types, each with its unique metrics, and the dynamic
nature of the graph, with components being added or removed continuously, make it im-
practical to input the entire graph into an ML model and expect individual anomaly scores
for each component. Although obtaining an anomaly score for the entire graph is feas-
ible, precisely pinpointing the source of anomalous behavior becomes computationally
challenging due to the curse of dimensionality.

To address these challenges, our proposed solution involves splitting the anomaly de-
tection process based on the types of components within the graph. This means that
anomalies in Containers are evaluated against other Containers, Pods against Pods, and
so forth.

Despite this segregation, we aim to leverage the graph structure for information storage.
We conceptualize the graph as a tree, where Containers form the bottom layer and Nodes
occupy the top. This tree structure allows information to flow from the bottom layer up-
wards. For instance, when classifying a Pod as anomalous, the anomaly status of its
constituent Containers can be considered.

This hierarchical approach doesn’t preclude information from flowing backward. The be-
havior of a Node, for instance, can influence the behavior of the Containers it hosts. In our

V.-G. Anemogiannis 57

Anomaly Detection and Prediction on Kubernetes Resources

proposed solution, metrics can be shared among all connected components, but anomaly
scores are propagated only from the bottom to an upper-level component.

Recognizing that not all components have specific metrics, some components, like De-
ployments, serve as abstraction layers for their underlying components (e.g., Replica Sets
and Pods). Their role is to aggregate the anomaly scores of the components beneath them
in the hierarchy.

5.2.2 Anomaly Detection and Classification Process

Having defined the target for machine learning (ML) analysis within the Kubernetes cluster,
we delve into the anomaly detection and classification process. Due to the lack of domain
expertise for creating a dataset with an accurate representation of normal behavior for
each component type, our ML process is bifurcated into two distinct parts.

5.2.2.1 Unsupervised Part

In the unsupervised phase, we leverage observations of the target component and ap-
ply an unsupervised anomaly classification model. Potential models include an isolation
forest (3.2.3.2) or a One-Class SVM model (3.2.3.3). Our objective is to utilize the exist-
ing observations of the graph to discern, for each component type, which observations
deviate from the established norm. It is important to note that all observations could be
deemed normal.

This process allows us to construct a dynamic dataset of normal and anomalous data
points for each component type without prior knowledge of what constitutes anomalous
behavior. The dataset evolves over time as new observations are incorporated, and the
anomaly detection algorithms are periodically rerun to ensure accuracy. Rerunning the
algorithms with an increased number of observations reduces the likelihood of expected
behavior being classified as anomalous, as the observations of normal behavior accumu-
late.

5.2.2.2 Supervised Part

With a dataset of points labeled as normal or anomalous from the unsupervised part,
we proceed to employ traditional classification ML models. Models such as Logistic Re-
gression (3.2.2.2), Support Vector Machines (3.2.2.3), or decision trees (3.2.2.4) are con-
sidered. The goal is to perform two-class classification, designating points as normal or
anomalous. Moreover, we seek to obtain the certainty of a point being classified as an
anomaly, enabling us to visually distinguish and color that section of the graph.

Having trained themodels on the output of the unsupervised phase, we periodically scrape
the graph and update each node with an anomaly score ranging from 0 to 1. Each node
type in the heterogeneous graph has its own dedicated supervised trainedmodel for accur-
ate predictions. This approach ensures the existence of many small, lightweight models
capable of quickly and efficiently updating the graph at scheduled intervals.

As the unsupervised models evolve with additional data, the supervised models are also
retrained to capture new anomalous points or reevaluate points that may have been ob-
served frequently, potentially reclassifying them as non-anomalous.

V.-G. Anemogiannis 58

Anomaly Detection and Prediction on Kubernetes Resources

5.3 Anomaly Detection and Prediction Workflow

The Anomaly Detection and Prediction Workflow encompasses two essential functions
executed at user-specified time intervals: the ”update graph” and the ”update models”
functions. The ”update graph” function is frequently called to refresh anomaly values and
gather data, while the ”update models” function is invoked at longer intervals to retrain the
models with new data. A simplified architecture is illustrated in Figure 5.4.

5.3.1 Update Models

Upon invocation of the ”update models” function, all components with detectable anomaly
metrics undergo model updates. Components which solely aggregate anomaly scores,
bypass this function.

The process involves loading comma-separated value files storing accumulated graph ob-
servations. Subsequently, the Unsupervised model is initialized and fitted with the loaded
observations. The same model is used to label gathered data as anomalous or not. If
there are no anomalies or all points are labeled as anomalies, a dummy classifier model
that classifies all inputs using the same class is utilized. Alternatively, if both normal and
abnormal labels exist, a Supervised model is trained using the dataset. The trained su-
pervised model is then returned for making predictions on future observations.

As the model updating does not adhere to a hierarchical structure, the model of each
component is updated in parallel, harnessing available resources for optimal efficiency.

5.3.2 Update Graph

When the ”update graph” function is invoked, the objective is to refresh the graph with
the anomaly scores of the current observations. Starting from components at the bottom
of the hierarchy (as described in Section 5.2.1), information is propagated upwards until
reaching Nodes and Namespaces. Two types of operations take place: Classification-
Prediction workflows and data aggregation workflows.

5.3.2.1 Components with Models

For components withmodels, the workflow commences by querying the database to obtain
a dataframe with all currently deployed components of a specific type and their informa-
tion. A preprocessing step is then applied to convert data values into numerical formats.
Operations, such as counts of connections with other components, status categorization,
or averages of data from connected components, are performed. Once the latest obser-
vations are acquired, the dataframe is updated with the total observations for the specific
component type, retaining a maximum number of observations at any given time.

Subsequently, the current observation data is passed through the supervised model to
classify the component as anomalous or not. The classification is performed per compon-
ent of a specific type from the current observation. The anomaly scores obtained are then
used to update the graph, and the process continues to the next component.

V.-G. Anemogiannis 59

Anomaly Detection and Prediction on Kubernetes Resources

5.3.2.2 Aggregation Components

Components that aggregate anomaly scores of connected components are handled through
a simple Neo4J database query, calculating the average of the anomaly scores of their
connected components and updating the specified component.

5.3.3 Configurability and Adaptability

The user can configure the update frequency of models and the graph with two para-
meters. Additionally, the user has the flexibility to choose the information considered for
each type of component. This adaptability allows the component to be easily reconfigured
for different infrastructures. The component is agnostic to the types of activities it monit-
ors, learning from baseline observations and assuming that anomalies will be infrequent
within them. As such, it can monitor activities ranging from security threats to hardware
resource management with minimal reconfiguration. Users can also specify the amount
of component memory taken into account for retraining the models. The more memory al-
located, the longer the component retains old observations, contributing to the robustness
and historical context of the anomaly detection process.

Figure 5.4: Anomaly Detection and Prediction Component Architecture

V.-G. Anemogiannis 60

Anomaly Detection and Prediction on Kubernetes Resources

6. MODEL SELECTION AND EXPERIMENTS

6.1 Contextualizing Testing within the EO4EU Project

This thesis is conducted in the framework of the EO4EU project [10]. The EO4EU project
is designed to leverage cutting-edge, pre-exascale High-Performance Computing (HPC)
andCloud infrastructures equippedwith GPUs. These resources are intended to efficiently
handle the expected processing workloads across a diverse range of use cases. The
deployment architecture relies on microservices orchestration using Kubernetes Clusters
and higher-level abstraction services like Function as a Service (FaaS), ensuring flexibility,
extensibility, and scalability. The dynamic allocation of Persistent Volumes to Kubernetes
clusters facilitates the storage requirements of the EO4EU data store.

The primary objective of our component within the project is to perform anomaly detection
on the resources used by Kubernetes components that execute user-requested work-
flows. Since each workflow is unique and exhibits distinct behavior, our goal is to identify
components used during the workflow as anomalous when their behavior deviates from
the expected patterns.

6.2 Experiment Definition

Our experiments leverage data obtained from EO4EU workflow executions. The datasets
derived from this data are utilized for model comparison. To identify optimal configurations
for each model, we employ the hyperparameter optimization library, Optuna 3.3.3. This
systematic exploration of hyperparameter space ensures the robustness of each model
in anomaly detection or classification tasks across various datasets.

For evaluating the performance of each hyperparameter combination, we calculate the
average Silhouette or F1 score across all datasets. We conduct an extensive search with
50 trials to maximize the score. Emphasizing the importance of a diverse dataset, the
need for diversity is crucial for a meaningful evaluation.

Following each experimental iteration, our analysis will be visually represented through
two informative plots: the Parallel Coordinate Plot and the Hyperparameter Importance
Plot. The Parallel Coordinate Plot employs darker lines to signify configurations with higher
objective values, providing a visual correlation between specific parameter combinations
and their effectiveness in achieving desired outcomes. This visualization aids in identifying
optimal configurations that contribute to superior model performance. In contrast, the
Hyperparameter Importance Plot illustrates the influence of each hyperparameter on the
model’s overall performance. The percentage assigned to each hyperparameter indicates
the magnitude of its impact on the model; a higher percentage signifies a greater influence
on performance, offering understanding into the aspects of model tuning and optimization.

6.3 Data Gathering

To facilitate model selection, we initiate the process by gathering data from the resource
registry graph. To ensure consistency with the inputs during actual workflow execution, we
employ identical queries and data-processing methods for the graph. The quality of our

V.-G. Anemogiannis 61

Anomaly Detection and Prediction on Kubernetes Resources

observations directly impacts the effectiveness of our model selection. Thus, the greater
the number of observations, the better the outcomes. Furthermore, diversity in our obser-
vations is crucial. We aim to curate a dataset that encompasses a wide array of behaviors,
showcasing the diversity inherent in different components. Ultimately, our goal is to com-
pile a dataset for each component type associated with a model.

6.4 Unsupervised Model Tuning and Selection

6.4.1 Unsupervised Model Evaluation

Given our limited expertise in Kubernetes behavior, obtaining a labeled dataset repres-
enting real-world behaviors for assessing the unsupervised model’s performance is im-
practical. Consequently, we turn to the Silhouette metric, as detailed in Section 3.1.2.5, to
evaluate the model’s ability to classify data. This metric serves as a quantitative measure,
allowing us to assess the model’s proficiency in clustering data. By leveraging this metric,
we aim to provide a robust evaluation of the unsupervised model’s performance in the
absence of labeled real-world data. It’s worth noting that a Silhouette score closer to 1
indicates a more optimal clustering solution.

6.4.2 Unsupervised Model Tuning

6.4.2.1 Isolation Forest Tuning

In our pursuit of optimizing the Isolation Forest Model 3.2.3.2, we tried to optimise the
hyper parameters bellow:

• n_estimators: The number of isolation trees in the forest, ranging from 50 to 500.

• max_samples: The proportion of samples used to construct each tree, varying from
10% to 100%, with a step size of 10%.

• contamination: Representing the expected proportion of anomalies in the dataset,
the contamination parameter was tuned between 1% and 50%, with a step size of
1%.

• max_features: The maximum number of features to consider for splitting a node,
adjusted between 10% and 100% with a step size of 10%.

• bootstrap: A categorical parameter indicating whether bootstrap samples should
be used when building trees, with options for both True and False.

After running an exhaustive search with 50 trials, we successfully identified the optimal
hyperparameter configuration for the Isolation Forest Model:

• n_estimators: 109

• max_samples: 0.9

• contamination: 0.45

V.-G. Anemogiannis 62

Anomaly Detection and Prediction on Kubernetes Resources

• max_features: 1.0

• bootstrap: False

The corresponding Silhouette score achieved with this configuration is 0.9451. This out-
come, recorded during Trial 25, signifies the effectiveness of the selected hyperparameter
values in maximizing the model’s clustering performance.

For the Isolation Forest model, the Parallel Coordinate Plot (6.1) underscores key con-
figurations for optimal performance, with darker lines indicating higher objective values.
Notably, superior scores were consistently associated with settings such as bootstrap:
false, maintaining contamination in the range of 0.3 to 0.5, ensuring max features and
samples exceeded 0.8, and limiting n_estimators to be less than 200.

In the Hyperparameter Importances Plot (6.2), the significance of specific parameters is
evident. The contamination parameter stands out with a substantial importance value
of 0.78, followed by max samples at 0.18. Other hyperparameters exhibit marginal im-
portances, all measuring less than 0.1, underscoring their minor impact on overall model
performance.

Figure 6.1: Parallel Coordinate Plot for Isolation Forest

Figure 6.2: Hyper Parameter Importance for Isolation Forest

6.4.2.2 One-Class SVM Tuning

Similar to our approach with the Isolation Forest Model, we applied Optuna to fine-tune
the One-Class SVMModel 3.2.3.3. The key parameters subjected to optimization include:

• nu: The regularization parameter, ranging from 0.01 to 0.5 with a step size of 0.01.

• kernel: The kernel function for the SVM, with options for ’linear’, ’rbf’, and ’poly’.

V.-G. Anemogiannis 63

Anomaly Detection and Prediction on Kubernetes Resources

• gamma: The kernel coefficient (for ’rbf’ and ’poly’), varying from 0.01 to 1.0 in a log-
arithmic scale.

After running the 50 trial search, we successfully identified the optimal hyperparameter
configuration for the One-Class SVM Model:

• nu: 0.48

• gamma: 0.094

• kernel: poly

The corresponding Silhouette score achievedwith this configuration is 0.7636842037305247.
This outcome, was recorded during Trial 45.

For the One-Class SVM model, the Parallel Coordinate Plot (6.3) reveals configurations
for optimal performance. Notably, higher objective values are associated with settings
such as gamma > 0.1, and maintaining nu > 0.35. All kernels had dark lines passing
through them, without highlighting one being much better than the others.

In the Hyperparameter Importances Plot (6.4), the significance of specific parameters is
evident. The nu parameter stands out with a substantial importance value of 0.76, followed
by gamma at 0.15. The kernel parameter also exhibits importance, albeit to a lesser extent,
with a value of 0.09, verifying the conclusion of the previous paragraph.

Figure 6.3: Parallel Coordinate Plot for One-Class SVM

V.-G. Anemogiannis 64

Anomaly Detection and Prediction on Kubernetes Resources

Figure 6.4: Hyper Parameter Importance for One-Class SVM

6.4.3 Unsupervised Model Selection

Model Silhouette Score Time (seconds)
Isolation Forest 0.9451 0.8185
One Class SVM 0.7636842037305247 0.0079

Table 6.1: Model Comparison Results

After tuning the models on our data, it becomes evident that the Isolation Forest excels at
clustering datasets into anomalies or non-anomalies, while One Class SVM excel at being
rapid in performing that task. Since we can afford the luxury of a slower but more precise
model during the model training phase of our workflow, we will prefer the Isolation Forest
Model. Consequently, we will leverage this optimized model configuration for subsequent
runs of the actual anomaly detection and prediction workflow, as outlined in Section 5.3.

To further refine our tuning efforts in the Supervised Models section, we will employ this
well-performingmodel combination to label our datasets. This labeling process is essential
for preparing the datasets to be utilized in our ongoing tuning and evaluation endeavors.

6.5 Supervised Model Tuning and Selection

6.5.1 Supervised Model Evaluation

With labeled datasets in hand, our objective with the supervised models is to efficiently
classify future observations by predicting how this new data would be clustered. The
goal is to learn and apply the rules established by the unsupervised models using their
supervised counterparts. To evaluate our success in this endeavor, we rely on the F1
score, as described in Section 3.1.2.5.

Once again, the importance of a diverse dataset is underscored. A diverse dataset en-
sures an ample number of observations for creating training and testing datasets, par-
ticularly with a substantial representation of anomaly observations. From each labeled

V.-G. Anemogiannis 65

Anomaly Detection and Prediction on Kubernetes Resources

dataset, we allocate 80% of observations for training and 20% for testing. This approach
enables us to measure the model’s ability to generalize and make accurate predictions on
new, unseen data.

6.5.2 Supervised Model Tuning

6.5.2.1 Logistic Regression Tuning

Once again we will use Optuna to optimize the Logistic Regression model 3.2.2.2. Among
the hyperparameters subjected to optimization were:

• C: The regularization parameter, varying from 1× 10−10 to 1× 1010.

• penalty: The regularization term, with options for ’l1’ and ’l2’.

• solver: The optimization algorithm, with choices between ’liblinear’, ’saga’, and ’lib-
linear’.

• max_iter: The maximum number of iterations, ranging from 50 to 200.

This thorough exploration of hyperparameter space allows us to identify the optimal config-
urations for our supervisedmodels. In the case of Logistic Regression, the best-performing
hyperparameter values were found to be:

- C: 1.5983e+09 - penalty: ’l1’ - solver: ’liblinear’ - max_iter: 189

These hyperparameters achieved an impressive F1 score of 0.9509, highlighting the ef-
fectiveness of the selected values in maximizing the model’s performance in classifying
new observations. The dataset’s diversity plays a crucial role in this evaluation, as it en-
sures a comprehensive representation for creating training and testing datasets.

For the Logistic Regression model, the Parallel Coordinate Plot (6.5) emphasizes that
all combinations with the solver liblinear showcased excellent results, indicating the
effectiveness of this solver.

In the Hyperparameter Importances Plot (6.6), the significance of specific parameters
aligns with the observations from the parallel coordinate plot. Notably, the solver para-
meter stands out with a substantial importance value of 0.66, verifying the effectiveness of
liblinear. Additionally, max iter has an importance value of 0.21, while C and penalty
contribute with values of 0.1 and 0.03, respectively.

V.-G. Anemogiannis 66

Anomaly Detection and Prediction on Kubernetes Resources

Figure 6.5: Parallel Coordinate Plot for Logistic Regression

Figure 6.6: Hyper Parameter Importance for Logistic Regression

6.5.2.2 Support Vector Machines Tuning

Once again we will use Optuna to optimize the SVM model 3.2.2.3. Among the hyper-
parameters subjected to optimization were:

• C: The regularization parameter, ranging from 1× 10−3 to 1.

• kernel: The kernel function for the SVM, with options for ’linear’, ’poly’, ’rbf’, and
’sigmoid’.

• gamma: The kernel coefficient, varying from 0.0001 to 10.

• degree: The degree of the polynomial kernel function, ranging from 1 to 10.

• coef0: The independent term in the kernel function, ranging from 0 to 10.

V.-G. Anemogiannis 67

Anomaly Detection and Prediction on Kubernetes Resources

This thorough exploration of hyperparameter space allows us to identify the optimal con-
figurations for our supervised models. In the case of SVM, the best-performing hyper-
parameter values were found to be:

- C: 0.2601 - kernel: ’poly’ - gamma: 4.9406 - degree: 7 - coef0: 7

These hyperparameters achieved an impressive F1 score of 1, highlighting the effective-
ness of the selected values in maximizing the model’s performance in classifying new
observations. The dataset’s diversity plays a crucial role in this evaluation, as it ensures
a comprehensive representation for creating training and testing datasets.

For the SVM model, the Parallel Coordinate Plot (6.7) demonstrates that all values of C
and degree lead to favorable results. Additionally, configurations with coef > 6, gamma in
the range of 4-6, and utilizing the poly kernel exhibit good performance.

In the Hyperparameter Importances Plot (6.8), the paramount influence of the kernel para-
meter is evident, with a substantial importance value of 0.95. The remaining hyperpara-
meters show negligible importance in comparison.

Figure 6.7: Parallel Coordinate Plot for SVM

Figure 6.8: Hyper Parameter Importance for SVM

6.5.2.3 Decision Tree Tuning

Once again we will use Optuna to optimize the Decision Tree model 3.2.2.4. Among the
hyperparameters subjected to optimization were:

V.-G. Anemogiannis 68

Anomaly Detection and Prediction on Kubernetes Resources

• criterion: The function to measure the quality of a split, with options for ’gini’ and
’entropy’.

• splitter: The strategy used to choose the split at each node, with options for ’best’
and ’random’.

• max_depth: The maximum depth of the tree, ranging from 1 to 100.

• min_samples_split: The minimum number of samples required to split an internal
node, ranging from 2 to 100.

• min_samples_leaf: The minimum number of samples required to be at a leaf node,
ranging from 1 to 100.

• max_features: The number of features to consider for the best split, varying from
0.1 to 1.0.

For the case of Decision Tree, the best-performing hyperparameter values were found to
be:

- criterion: ’entropy’ - splitter: ’random’ - max_depth: 100 - min_samples_split: 2 -
min_samples_leaf: 1 - max_features: 0.1339

These hyperparameters achieved an impressive F1 score of 1, highlighting the effective-
ness of the selected values in maximizing the model’s performance in classifying new
observations. The dataset’s diversity plays a crucial role in this evaluation, as it ensures
a comprehensive representation for creating training and testing datasets.

For the Decision Tree model, the Parallel Coordinate Plot (6.9) illustrates favorable con-
figurations for both criteria. Effective results were observed with max depth > 70, max
features < 0.5, min samples leaf < 10, min samples split < 15, and utilizing the random
splitter.

In the Hyperparameter Importances Plot (6.10), the paramount influence of the min samples
leaf parameter is evident, with a substantial importance value of 0.94. Additionally, max
features contributes with an importance value of 0.05, while the remaining hyperpara-
meters show insignificant importance.

Figure 6.9: Parallel Coordinate Plot for Decision Tree

V.-G. Anemogiannis 69

Anomaly Detection and Prediction on Kubernetes Resources

Figure 6.10: Hyper Parameter Importance for Decision Tree

6.5.3 Supervised Model Selection

Model F1 Score Train Time Sec Predict Time Sec Predicts Prob.
Logistic Regression 0.9509, 0.0168 0.0071 Yes

Support Vector Machines 1 0.0153 0.0070 Yes
Decision Tree 1 0.0145 0.0067 No

Table 6.2: Model Comparison Results

After fine-tuning the models on our data, all three models showcase impressive results.
Each model demonstrates the ability to accurately describe the rules defined by the un-
supervised models. In terms also of time all models are pretty similar, especially in the
Prediction task that we need the most speed.

A crucial consideration for the supervised model is the inclusion of a predict probability
function. This function enables a more nuanced classification, allowing for various levels
of anomalous behavior to be identified. Without this function, the graph would be colored
only by either anomaly or non-anomaly, limiting the range of classifications. The predict
probability function allows us to recognize the degree to which an observation deviates
from our baseline behavior considered normal.

Taking into account all these factors, Support Vector Machines, showcase the best overall
attributes.

6.6 Anomaly Detection

Utilizing our models, we conducted anomaly detection on real-world workflow executions,
uncovering irregularities within the system. Notably, our analysis revealed a significant
anomaly within a Deployment instance characterized by the presence of nine Replica Sets.
Remarkably, one of these Replica Sets contained a Pod replica, while the remaining sets,
devoid of replicas, held no functional relevance to the workflow and should have been
removed.

V.-G. Anemogiannis 70

Anomaly Detection and Prediction on Kubernetes Resources

Anomaly detection algorithms assigned a remarkably high anomaly score of 0.99 to all
Replica Sets lacking replicas, as depicted in Figure 6.11, unequivocally signaling their
anomalous status. Conversely, a separate Replica Set within the same Deployment, con-
taining the expected Pod, received a normality designation with a score of 0.35, as shown
in Figure 6.12, falling below the anomaly threshold of 0.5.

Figure 6.11: Replica Set designated as Anomalous

Figure 6.12: Replica Set designated as Normality

Considering the collective anomaly status of these components, particularly within the
Deployment, becomes imperative. The Deployment’s overall anomaly score, depicted in
Figure 6.13, is influenced by the anomaly scores of its eight anomalous Replica Sets along
with the score of the normal set, resulting in an alarming score of 0.928.

Figure 6.13: Deployment designated as Anomalous

V.-G. Anemogiannis 71

Anomaly Detection and Prediction on Kubernetes Resources

Moreover, as these components are associated with a specific Namespace, it is reason-
able to expect the namespace’s anomaly score to reflect the irregularities present within its
constituent elements. As demonstrated in Figure 6.14, the Namespace is indeed flagged
as anomalous, albeit with a slightly lower score of 0.79. This discrepancy in score can
be attributed to the presence of other components within the namespace operating as
expected, including the aforementioned normal Replica Set.

Figure 6.14: Namespace designated as Anomalous

In summary, our experiment successfully identified anomalies within real-world workflow
executions, particularly within Deployments and their Replica Sets. The graph visually
demonstrated the propagation of anomaly scores from individual Replica Sets to the over-
arching Deployment and Namespace, highlighting the interconnectedness of these com-
ponents. These findings underscore the importance of effective anomaly detection in
maintaining system integrity.

V.-G. Anemogiannis 72

Anomaly Detection and Prediction on Kubernetes Resources

7. CONCLUSION AND FUTURE WORK

The primary objective of this thesis was to propose a comprehensive workflow for detect-
ing anomalous behavior within Kubernetes components and effectively highlighting such
instances. In achieving this goal, we successfully leveraged a graph database to repres-
ent the Kubernetes cluster, facilitating seamless querying and showcasing the intricate
connections between its components. This approach laid the foundation for a holistic un-
derstanding of the cluster’s dynamics.

Furthermore, we introduced a combination of Unsupervised Machine Learning (ML) tech-
niques to discern anomalous behaviors among the various components. This was comple-
mented by the incorporation of Supervised ML techniques, allowing for the swift labeling
of future observations as anomalous or not. The utilization of anomaly scores assigned
to the graph database nodes proved instrumental in streamlining this process.

A critical aspect of our work involved proposing a workflow for fine-tuning and selecting
ML models, aiming for optimal anomaly detection aligned with specific graph queries. The
achieved Silhouette scores of 0.9451 and F1 scores reaching 1 underscore the efficacy
of our approach in accurately identifying and classifying anomalous behaviors within the
Kubernetes environment.

Furthermore, the future holds the promise of enhancing predictive capabilities by incorpor-
ating Long Short-Term Memory (LSTM) neural networks. This advanced approach seeks
to harness the power of time series predictions, enabling the detection of anomalies be-
fore they manifest. By delving into the realm of predictive analytics, we aspire to further
fortify the resilience and proactive management of Kubernetes components.

V.-G. Anemogiannis 73

Anomaly Detection and Prediction on Kubernetes Resources

ABBREVIATIONS - ACRONYMS

IT Information Technology

IP Internet Protocol

HTTP Hyper text transfer Protocol

HTTPs Hyper text transfer Protocol secure

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

K8s Kubernetes

OS Operating System

VM Virtual Machine

AWS Amazon Web Services

API Application Programming Interface

CPU Central Processing Unit

ABI Application Binary Interface

SSH Secure Shell

SQL Standard Query Language

CRUD Create Read Update Delete

ASCII American Standard Code for Information Interchange

ML Machine Learning

SVM Support Vector Machine

BSD Berkley Software Distribution

KAD Kubernetes Anomaly Detector

PDFA Probabilistic Deterministic Finite Automaton

EU European Union

EO Earth Observation

EO4EU Earth Observation for European Union

GUI Graphic User Interface

CLI Command Line Interface

XR Extended Reality

V.-G. Anemogiannis 74

Anomaly Detection and Prediction on Kubernetes Resources

V.-G. Anemogiannis 75

Anomaly Detection and Prediction on Kubernetes Resources

BIBLIOGRAPHY

[1] Decision Trees . https://scikit-learn.org/stable/modules/tree.html, 2023. [Online; accessed
18/12/2023].

[2] Edge Impulse - Anomaly detection . https://docs.edgeimpulse.com/docs/edge-impulse-studio/
learning-blocks/anomaly-detection-gmm and https://docs.edgeimpulse.com/docs/
edge-impulse-studio/learning-blocks/anomaly-detection, 2023. [Online; accessed 27/12/2023].

[3] IaaS vs. PaaS vs. SaaS . Available:https://www.ibm.com/topics/iaas-paas-saas, 2023. [Online;
accessed 5/12/2023].

[4] Service Now - Anomalies detection . https://docs.servicenow.com/bundle/vancouver-impact/
page/product/impact/task/anomalies-detection.html, 2023. [Online; accessed 22/12/2023].

[5] The Benefits of Containerization and What It Means for You . Available:https://www.ibm.com/
blog/the-benefits-of-containerization-and-what-it-means-for-you/, 2023. [Online; accessed
10/12/2023].

[6] What are microservices? . Available:https://microservices.io/, 2023. [Online; accessed
8/12/2023].

[7] What is machine learning? . https://www.ibm.com/topics/machine-learning, 2023. [Online; ac-
cessed 16/12/2023].

[8] What’s the Difference Between Monolithic and Microservices Architecture? . Available:https://aws.
amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/,
2023. [Online; accessed 8/12/2023].

[9] Kubernetes. Available:https://kubernetes.io/docs/concepts/architecture/, 2023. [Online; ac-
cessed 03/01/2024].

[10] EO4EU Proposal . https://www.hesge.ch/heg/sites/default/files/actualite/documents/
2022/projet-recherche-alexandros_kalousis-eo4eu-executive-summary.pdf, 2024. [Online; ac-
cessed 8/1/2024].

[11] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework, 2019.

[12] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, Cambridge, MA, 2014.

[13] Alex Smola John Shawe-Taylort John Platt Bernhard Scholkopf, Robert Williamson. Support vector
method for novelty detection. In NeurIPS 1999 Proceedings, 1999.

[14] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pages 108–122, 2013.

[15] Clinton Cao, Agathe Blaise, Sicco Verwer, and Filippo Rebecchi. Learning state machines to monitor
and detect anomalies on a kubernetes cluster. In Proceedings of the 17th International Conference on
Availability, Reliability and Security, ARES 2022. ACM, August 2022.

[16] Qingfeng Du, Tiandi Xie, and Yu He. Anomaly detection and diagnosis for container-based mi-
croservices with performance monitoring. EasyChair Preprint no. 468, EasyChair, 2018.

[17] Darell Edmond, Vijay Soni, Lalit Garg, and Seema Bawa. Adoption of cloud services in central banks:
Hindering factors and the recommendations for way forward. Journal of Central Banking Theory and
Practice, 11:123–143, 05 2022.

[18] Ioannis Emiris. Software development course: Section 3 - neural networks, December 10 2023. Offline
lecture slides.

[19] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva. On explaining decision trees, 2020.

[20] Daniel Jurafsky and James H. Martin. Speech and language processing, 2023. Draft of January 7,
2023.

V.-G. Anemogiannis 76

 https://scikit-learn.org/stable/modules/tree.html
 https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/anomaly-detection-gmm
 https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/anomaly-detection-gmm
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/anomaly-detection
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/anomaly-detection
 Available: https://www.ibm.com/topics/iaas-paas-saas
 https://docs.servicenow.com/bundle/vancouver-impact/page/product/impact/task/anomalies-detection.html
 https://docs.servicenow.com/bundle/vancouver-impact/page/product/impact/task/anomalies-detection.html
 Available: https://www.ibm.com/blog/the-benefits-of-containerization-and-what-it-means-for-you/
 Available: https://www.ibm.com/blog/the-benefits-of-containerization-and-what-it-means-for-you/
 Available: https://microservices.io/
 https://www.ibm.com/topics/machine-learning
 Available: https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/
 Available: https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices-architecture/
 Available: https://kubernetes.io/docs/concepts/architecture/
 https://www.hesge.ch/heg/sites/default/files/actualite/documents/2022/projet-recherche-alexandros_kalousis-eo4eu-executive-summary.pdf
 https://www.hesge.ch/heg/sites/default/files/actualite/documents/2022/projet-recherche-alexandros_kalousis-eo4eu-executive-summary.pdf

Anomaly Detection and Prediction on Kubernetes Resources

[21] Ramandeep Kaur and Sumit Chopra. Virtualization in cloud computing : A review. International Journal
of Scientific Research in Computer Science, Engineering and Information Technology, pages 01–05, 07
2020.

[22] Joanna Kosińska and Maciej Tobiasz. Detection of cluster anomalies with ml techniques. IEEE Access,
10:110742–110753, 2022.

[23] Yingyu Liang. Machine learning basics - lecture 4: Svm i. https://www.cs.princeton.edu/courses/
archive/spring16/cos495/slides/ML_basics_lecture4_SVM_I.pdf, 2016.

[24] Yingyu Liang. Machine learning basics - lecture 5: Svm ii. https://www.cs.princeton.edu/courses/
archive/spring16/cos495/slides/ML_basics_lecture5_SVM_II.pdf, 2016.

[25] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422, 2008.

[26] Guozhi Liu, Bi Huang, Zhihong Liang, Minmin Qin, Hua Zhou, and Zhang Li. Microservices: archi-
tecture, container, and challenges. In 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pages 629–635, 2020.

[27] Félix López and Eulogio Cruz. Literature review about neo4j graph database as a feasible alternative
for replacing rdbms. Industrial Data, 18:135, 12 2015.

[28] Víctor Medel, Omer Rana, José Bañares, and Unai Arronategui. Modelling performance resource
management in kubernetes. pages 257–262, 12 2016.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[30] Aditi Rajesh Nimodiya Pratik Narendra Gulhane1. A review paper on cloud computing. International
Advanced Research Journal in Science, Engineering and Technology, 2022.

[31] Ying Wu Qiong Liu. Supervised learning. 2012.

[32] Bibhuti Regmi. Neo4j graph database, 01 2021.

[33] Marko A. Rodriguez and Peter Neubauer. The graph traversal pattern, 2010.

[34] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

[35] Jay Shah and Dushyant Dubaria. Building modern clouds: Using docker, kubernetes google cloud
platform. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
pages 0184–0189, 2019.

[36] Chin-Wei Tien, Tse-Yung Huang, Chia-Wei Tien, Ting-Chun Huang, and Sy-Yen Kuo. Kubanomaly:
Anomaly detection for the docker orchestration platform with neural network approaches. Engineering
Reports, 1(5):e12080, 2019.

[37] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications, 2020.

V.-G. Anemogiannis 77

https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture4_SVM_I.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture4_SVM_I.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture5_SVM_II.pdf
https://www.cs.princeton.edu/courses/archive/spring16/cos495/slides/ML_basics_lecture5_SVM_II.pdf

	CONTENTS
	INTRODUCTION
	INFRASTRUCTURE AS A SERVICE
	Cloud Computing
	What is Cloud Computing
	Key Elements of Cloud Computing
	Advantages of Cloud Computing
	Cloud Service Tiers
	Software as a Service (SaaS)
	Platform as a Service (PaaS)
	Infrastructure as a Service (IaaS)

	Microservices
	What are Microservices
	Characteristics of Microservices
	Independent Development
	Independent Deployment and Scaling
	Loose Coupling
	High Availability

	Containers
	What are Containers
	How Containers Work
	Containers and Traditional Virtualization
	Traditional Virtualization
	Container Virtualization

	Advantages of Containerization
	Efficiency
	Portability
	Security
	Management

	Containerization and Microservices

	Container Management with Kubernetes
	Capabilities of Kubernetes
	Automation and Load Balancing
	Service Discovery and Load Balancing
	Storage Orchestration and Configuration Management
	Self-Healing and Horizontal Scaling

	Architecture of Kubernetes
	Master Node
	Worker Nodes
	Kubernetes Cluster

	Resource Registry
	Namespace
	Description
	Interaction With Other Components

	Config Map and Secret
	Description
	Interaction With Other Components

	Persistent Volume and Persistent Volume Claim
	Description
	Interaction With Other Components

	Deployment and Replica Set
	Description
	Interaction With Other Components

	Pod and Container
	Description
	Interaction With Other Components

	Stateful Set, Daemon Set, Job and CronJob
	Description
	Interaction With Other Components
	Stateful Set
	Description
	Interaction With Other Components

	Daemon Set, Job, and CronJob
	Description
	Interaction With Other Components

	Service
	Description
	Interaction With Other Components

	Ingress
	Description
	Interaction With Other Components

	Node
	Description
	Interaction With Other Components

	Neo4j
	Architecture
	What Neo4j offers
	Transaction Management
	High Availability
	Cypher Query Language
	Efficiency for Relation-Centric Databases
	Schema-Free

	Use Case: Modeling Kubernetes Resources with Neo4j

	MACHINE LEARNING
	Introduction to Machine Learning
	What is Machine Learning
	Basic Concepts in ML
	Features and Labels
	Training, Validation and Test Data
	Parameters and HyperParameters
	Learning Process
	Model Evaluation

	Overfitting and Underfitting

	Machine Learning Algorithms
	Approaches in Machine Learning algorithms
	Gradient-Based Algorithms
	Hyperplane-Based Algorithms
	Tree Based Algorithms

	Supervised Learning
	Introduction to Supervised Learning
	Logistic Regression
	Support Vector Machines (SVMs)
	Decision Trees

	Unsupervised Learning
	Introduction to Unsupervised Learning
	Isolation Forests
	One-Class Support Vector Machines (SVMs)

	Scikit-learn

	Hyper Parameter Optimization
	What is Hyper Parameter Optimization
	Search Algorithms For Hyper Parameter Optimization
	Grid Search
	Random Search
	Bayesian Optimization
	Tree Parzen Estimators (TPE)

	Optuna

	Related Work
	Resource Management
	Reference Net-Based Performance and Management Model for Kubernetes
	Detection of Cluster Anomalies using ML Techniques - Kubernetes Anomaly Detector
	Anomaly Detection and Diagnosis for Container-based Microservices with Performance Monitoring

	Detection of Events in Cloud Infrastructure
	Learning State Machines to Monitor and Detect Anomalies on a Kubernetes Cluster
	KubAnomaly: Anomaly detection for the Docker orchestration platform with neural network approaches

	Commercial Offerings
	Service Now
	Edge Impulse

	ANOMALY DETECTION AND PREDICTIVE CLASSIFICATION IN KUBERNETES ENVIRONMENTS
	Problem Description
	Dynamic Workflow Execution
	Dynamic Workflow Graphical Representation
	Management of Kubernetes Components
	Anomaly Detection and Monitoring Strategy

	Proposed Solution
	Hierarchical Anomaly Detection Strategy
	Anomaly Detection and Classification Process
	Unsupervised Part
	Supervised Part

	Anomaly Detection and Prediction Workflow
	Update Models
	Update Graph
	Components with Models
	Aggregation Components

	Configurability and Adaptability

	Model Selection and Experiments
	Contextualizing Testing within the EO4EU Project
	Experiment Definition
	Data Gathering
	Unsupervised Model Tuning and Selection
	Unsupervised Model Evaluation
	Unsupervised Model Tuning
	Isolation Forest Tuning
	One-Class SVM Tuning

	Unsupervised Model Selection

	Supervised Model Tuning and Selection
	Supervised Model Evaluation
	Supervised Model Tuning
	Logistic Regression Tuning
	Support Vector Machines Tuning
	Decision Tree Tuning

	Supervised Model Selection

	Anomaly Detection

	Conclusion and Future Work
	ABBREVIATIONS - ACRONYMS
	REFERENCES

