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ABSTRACT

Question answering (QA) is a computer science discipline within the fields of information
retrieval and natural language processing that is concerned with building systems that
answer questions posed in natural language. Question answering is not just a scientific
challenge, question answering techniques have seen widespread use and adoption in the
industry. They are used in all well-known search engines (e.g., Google and Bing) and
digital assistants (e.g., Siri, Alexa, and Google Assistant) for answering questions like
“What’s the time in New York?” or “How many children did Albert Einstein have?”.

Today, users often are interested in posing questions or information requests with a geo-
spatial dimension to search engines, chatbots and virtual personal assistants. However,
such technologies, like Google and ChatGPT, still struggle to give immediate and precise
answers to complex geographic questions of the form: “Which rivers longer than 10kms
cross London and at least one other city?”, “How many churches exist in a 2-mile radius
of the city center of Austin, Texas?”, “Which countries border Greece, have the euro as
their currency and their population is greater than the population of Greece”.

In this thesis, we deal with the problem of answering such questions over geospatial know-
ledge graphs i.e., knowledge graphs (KGs) which represent knowledge about geographic
features or simply features in the terminology of GIS systems. Geospatial knowledge in
KGs is encoded using latitude/longitude pairs representing the center of features (as e.g.,
in DBpedia and YAGO2), but also more detailed geometries (e.g., lines, polygons) since
these are more appropriate for modeling the geometries of features such as rivers, roads,
countries etc. (as in Wikidata, YAGO2geo, WorldKG and KnowWhereGraph).

We present the geospatial QA system GeoQA3 which is based on GeoQA and its revi-
sion GeoQA2. GeoQA3 represents a radical evolution of the GeoQA family of engines,
introducing Large Language Models in the question-answering pipeline to improve natural
language understanding and facilitate dynamic query generation. This allows GeoQA3 to
understand and correctly answer a larger variety of questions. The engine is available as
open source. As its predecessor, it targets the union of the knowledge graph YAGO2 and
the geospatial knowledge graph YAGO2geo.

SUBJECT AREA: Geographic Information Systems

KEYWORDS: Geospatial Question Answering, Geospatial Data, Neural Network,
Knowledge Graph, SPARQL



ΠΕΡΙΛΗΨΗ

Η απάντηση ερωτημάτων είναι μία περιοχή της επιστήμης των υπολογιστής που ασχο-
λείται με την κατασκευή συστημάτων που απαντούν ερωτήσεις που δίνονται σε φυσική
γλώσσα. Δεν αποτελεί απλά ένα τομέα επιστημονικής αναζήτησης, τεχνικές απάντησης
ερωτημάτων έχουν χρησιμοποιηθεί ευρεύως από μεγάλες εταιρείες λογισμικού. Χρησιμο-
ποιούνται σε όλες τις γνωστές μηχανές αναζήτησης (π.χ. Google και Bing) και σε ψηφια-
κούς βοηθούς (π.χ. Siri, Alexa και Goggle Assistant) για να απαντούν σε ερωτήσεις όπως
"Τι ώρα είναι στη Νέα Υόρκη;" και "Πόσα παιδιά είχε ο Άλμπερτ Αϊνστάιν;".

Σήμερα, οι χρήτες συχνά θέλουν να κάνουν ερωτήσεις με γεωχωρική χροιά σε μηχανές
αναζήτησης, chatbots και ψηφιακούς βοηθούς. Όμως συστήματα όπως το Google Search
και το ChatGPT αδυνατούν να δώσουν ακριβής απαντήσεις σε πολύπλοκες γεωχωρικές
ερωτήσεις της μορφής: "Ποιά ποτάμια που είναι μεγαλύτερα από 10 χιλιόμετρα παιρνούν
από το Λονδίνο και τουλάχιστον μία ακόμα πόλη;", "Πόσες εκκλησίες υπάρχουν σε ακτίνα 2
μιλίων από το κέντρο της πόλης τουΌστιν στο Τέξας", "Ποιές γειτονικές χώρες της Ελλάδας
χρησιμοποιούν το ευρώ και έχουν πληθυσμό μεγαλύτερο από την Ελλάδα;".

Σε αυτη τη διπλωματική εργασία αντιμετωπίζουμε το πρόβλημα της απάντησης τέτοιων
ερωτήσεων που μπορούν να απαντηθούν απο γεωχωρικούς γράφους γνώσεων που ανα-
παριστούν γεωγραφικά σημεία ενδιαφέροντος. Η γεωχωρική γνώση στους γράφους γνώ-
σεων κωδικοποιείται με τη χρήση συντεταγμένων (όπως σε DBpedia και YAGO2) αλλά
και με λεπτομερέστες γεωμετρίες (π.χ. γραμμές, πολύγωνα) που είναι πιο ταιριαστές ανα-
παραστάσεις για δρόμους, ποτάμια, χώρες και λοιπά (όπως σε Wikidata, YAGO2geo,
WorldKG και KnowWhereGraph).

Παρουσιάζουμε το γεωχωρικό σύστημα απάντησης ερωτημάτων GeoQA3 που βασίζεται
στα συστήματα GeoQA και GeoQA2. Το GeoQA3 είναι μία ριζική εξέλιξη για τα συστήματα
GeoQA, μιας και κάνει χρήση Μεγάλων Γλωσσικών Μοντέλων στην αρχιτεκτονική του για
βελτιωμένη κατανόηση της φυσικής γλώσσας και την ικανότητα να παράγει εκτελέσημα
ερωτήματα δυναμικά. Αυτό επιτρέπει στο GeoQA3 να κατανοεί και να απαντάει ένα μεγά-
λυτερο εύρος ερωτήσεων. Το σύστημα είνα προσφέρεται ως λογισμικό ανοιχτού κώδικα.
Όπως και το GeoQA2 στοχεύει στην απάντηση ερωτημάτων με τη χρήση των YAGO2 και
YAGO2geo.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γεωγραφικα Πληροφοριακα Συστηματα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Απάντηση Γεωχωρικών Ερωτημάτων, Γεωχωρικά Δεδομένα,
Νευρωνικά Δίκτυα, Γράφος Γνώσης, SPARQL
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1. INTRODUCTION

1.1 Problem description
The number of data sources in private environments, enterprises, and the Web is increas-
ing continuously, increasing the effort of making data accessible. One important means
of making data accessible is question answering (QA), which provides a natural language
interface for common users to express their information needs [25]. A significant fraction
of the available data on the Web is geospatial, and this fraction is growing by at least 20%
per year [35].

Today users often are interested in posing questions or information requests with a geo-
spatial dimension to search engines, chatbots and virtual personal assistants. However,
such technologies, like Google and ChatGPT, still struggle to give immediate and precise
answers to complex geographic questions of the form: “Which rivers cross London?”,
“How many churches exist in a 2-mile radius of the city center of Austin, Texas?”, “Which
countries border Greece, have the euro as their currency and their population is greater
than the population of Greece”. Answering such questions or information requests re-
quires access to a source of precise data that includes geospatial information as well.

There is plenty of such data available today in the form of geospatial knowledge graphs
(KGs) (e.g., YAGO2 [26], YAGO2geo [30], WorldKG [13] and KnowWhereGraph [28]).
The standard way to retrieve knowledge from geospatial KGs (or RDF stores storing
linked geospatial data) is by using the query language SPARQL and its geospatial exten-
sions GeoSPARQL and stSPARQL. However, to better serve the needs of non-technical
end users, a system that will enable posing geospatial questions in natural language is
needed. Although the developments in question answering (QA) over structured or un-
structured data have been significant during the last few years, the geospatial dimension
introduces additional challenges [40]: i) the QA system has to automatically identify the
spatial representation (e.g., point, polygon) of the entities to choose, depending on the
context of the question; ii) the interpretation of spatial operations and relations is subject
to the map scale tied to the question (e.g., the word “near” is interpreted differently for the
questions “Which countries are near Greece?” and “Which POIs are near Acropolis?”); iii)
the problem of spatial relation recognition can be difficult due to the variability of language
(north of Greece vs. northern Greece); iv) calculations among the geometries of the en-
tities mentioned in the question may be required, a process that can be computationally
very expensive.

The research community has attempted to address the above challenges by developing
geospatial question-answering systems like GeoQA2 and the system of [23]. These sys-
tems utilize templates and heuristics to facilitate the query generation process. Although
such systems excel in handling a subset of similar natural language questions, their un-
derstanding of natural language remains significantly constrained. As a result, their abil-
ity to generate appropriate queries for input questions is limited, particularly when these
questions cannot be readily mapped to predefined templates. Furthermore, in [31] we
observed that pipelines of such systems are prone to error propagation, that is when an
incorrect output in one component leads to a faulty query or even complete failure. On
the other end of the spectrum, fully neural approaches to geospatial question answering
present their own set of limitations. Available GeoSPARQL [44] datasets are small in size
and limited in scope, which makes the training and fine-tuning of an end-to-end neural
question answering engine a very difficult task. Because of this limitation, such systems
are unable to learn and reproduce the structure of complex queries and are prone to mak-

S.-A. Kefalidis 12
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ing syntactical mistakes.

1.2 Introducing GeoQA3
Based on the aforementioned problems, we decided to implement a hybrid approach that
both ensures the generation of well-formed queries, which is characteristic in rule-based
approaches, and is able to understand complex natural language, which is inherent in ap-
proaches that utilize deep learning techniques. For the rule-based part, we utilize depend-
ency parsing and a set of heuristics for improved semantic parsing. The large language
model part, which was implemented by utilizing Llama 2 [58], enabled the understanding
of complex language, while also avoiding error propagation in various scenarios.

In this thesis, we present the geospatial QA system GeoQA3 which answers questions
over the KG YAGO2geo. GeoQA3 is based on GeoQA, the first geospatial QA engine
proposed by [49] and its revision GeoQA2 in [48]. Even though GeoQA3 reuses compon-
ents of GeoQA2 it is a fundamentally different engine, built from the ground up to generate
queries dynamically, thus removing the need for handwritten templates. GeoQA3 is avail-
able as open source1.

1.3 Thesis Layout
The rest of this thesis is organized as follows. In Chapter 2 we present the basic concepts
that geospatial question answering is built on. In Chapter 3 we present an overview of
work related to ours. In the following two Chapters, 4 and 5, we present two existing
geospatial question answering engines, GeoQA2 [50] and the engine of [23], and how
they function. In Chapter 6 we present our engine, GeoQA3. In the final Chapter 7.1 we
evaluate the three engines on the dataset GeoQuestions1089 [31].

1https://github.com/AI-team-UoA/GeoQA

S.-A. Kefalidis 13
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2. BASIC CONCEPTS IN GEOSPATIAL QUESTION ANSWERING

For a better understanding of the rest of this thesis, in this chapter we introduce all neces-
sary notions related to geospatial QA over KGs.

2.1 Knowledge Graphs
A knowledge graph is a directed graph KG = (V,E) consisting of a set of vertices V that
represent entities, types, and literals, and a set of labeled edges E that connect these
vertices [63, 27]. The RDF framework [64] standardized by the W3C is the data model for
knowledge graphs. RDF is based on the notion of a triple SPO where S is the subject, P
is the predicate, and O is the object. For a knowledge graph KG represented in RDF, we
have S,O ∈ V and P ∈ E. SPARQL1 is the structured query language for querying RDF.
GeoSPARQL [44], standardized by OGC, defines a vocabulary for representing geospatial
data in RDF and it is an extension of SPARQL for processing geospatial data. stRDF
and stSPARQL [32], proposed independently and around the same time as GeoSPARQL,
are also extensions of RDF and SPARQL, respectively, for representing and querying
spatial data, but they also support geospatial aggregate functions and offer constructs for
representing and processing temporal data.

2.2 Geographic Features
Geospatial or geographic knowledge has been studied for many years by researchers
in Geography, Geographic Information Systems (GIS), Geographic Information Retrieval
(GIR), Databases, Artificial Intelligence and the Semantic Web, and there is a wealth of
research results concerning representation, querying and inference for geographic know-
ledge. In GIS terminology which we use in this paper, a geographic feature (or simply
feature) is an abstraction of a real-world phenomenon and can have various attributes
that describe its thematic and spatial characteristics. For example, the country Greece is
a feature, its name and population are thematic attributes, while its location on Earth in
terms of polar coordinates is a spatial attribute. Knowledge about the spatial attributes of a
feature can be quantitative or qualitative. For example, the fact that the distance between
Athens and Salonika is 502 km is quantitative knowledge, while the fact that river Evros
crosses Bulgaria and Turkey is qualitative knowledge.

Qualitative geographic knowledge can be captured by qualitative binary relations between
the geometries of features. Qualitative geospatial data can be expressed as a property
of an entity or an explicit assertion. For example, in the YAGO2geo KG, the resource
yago:Berlin has the object property geo:sfWithin with value yago:Germany, hence the
question “Is Berlin in Germany?” can be easily answered. Quantitative geographic know-
ledge is, usually, represented using geometries (e.g., points, lines and polygons on the
Cartesian plane). Hence, in cases where the qualitative geographic knowledge cannot
be logically entailed by the KG, polygon-based spatial operations can be performed. For
instance, supposing that it is not explicitly included in YAGO2geo that Berlin is located
in Germany, it suffices to check if the polygon representing Berlin is within the polygon
representing Germany to answer the aforementioned question.

1https://www.w3.org/TR/rdf-sparql-query/

S.-A. Kefalidis 14
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2.3 Geospatial Questions
A geospatial question is a question that requires qualitative or quantitative geographic
knowledge to be answered. This definition agrees with the notion of geographic question,
as defined by [40].

2.4 Summary
In this chapter, we introduced the definitions of knowledge graph, geographic features
and geospatial questions. We also explained how qualitative and quantitative geospatial
knowledge is stored and used.

S.-A. Kefalidis 15
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3. RELATED WORK

In this chapter, we discuss related work on knowledge graphs, question answering sys-
tems, and question answering benchmarks.

3.1 Knowledge Graphs
In this section we survey the most well-known KGs, paying special attention to those that
contain a significant amount of geospatial knowledge.

3.1.1 Encyclopedic Knowledge Graphs
Freebase is a collaborative KG built in 2007 [5] by the American company Metaweb. Free-
base was bought by Google in 2010 and was used as a basis for the Google KG. In 2014,
Freebase was shut down by Google, and its data were moved to Wikidata [56].

Wikidata1 is a knowledge graph which was created in 2012 [62]. Wikidata is a free, col-
laborative, multilingual database, that collects structured data to provide support for Wiki-
pedia, Wikimedia Commons, and the other wikis of the Wikimedia movement. It can be
read and edited by both humans and machines and contains geospatial information such
as point coordinates, polygons, countries, and cities.

DBpedia2 is another well-known KG that was proposed in 2007 [3] to extract and intercon-
nect structured information from Wikipedia infoboxes. DBpedia organizes this information
into RDF triples. The DBpedia 2014 release consists of 3 billion RDF triples, out of which
580 million were extracted from the English edition of Wikipedia and 2.46 billion were ex-
tracted from other language editions. The DBpedia knowledge graph has several advant-
ages over other KGs: it covers many domains; it represents real community agreement;
it automatically evolves as Wikipedia changes; and it is multilingual.

YAGO 3 is KG proposed in 2007 [53]. It contains more than 2 million entities (like persons,
organizations, cities, etc.) and 20 million facts about these entities. YAGO includes data
extracted from the categories and infoboxes of Wikipedia, combined with the taxonomy
of WordNet. YAGO was manually evaluated and found to have an accuracy of 95% with
respect to the extraction source. YAGO classifies each entity into a taxonomy of classes.
Every entity is an instance of one or multiple classes. Every class (except the root class) is
a subclass of one or multiple classes which yields a hierarchy of classes — the taxonomy.

In YAGO2 [26], the second version of YAGO, geospatial and temporal information is in-
troduced in the KG. Geospatial information in YAGO2 comes from two sources, namely
Wikipedia and GeoNames4. GeoNames is a gazetteer5, whose data and accuracy have
been studied in [1, 2, 20]. Geospatial information in YAGO2 is represented with the proper-
ties yago2:hasLongitude and yago2:hasLatitude that provide the longitude and latitude
of the center of a geoentity (i.e., an entity that represents a geographical feature). To
simplify the representation and querying of geospatial and temporal knowledge, YAGO2
introduced the SPOTL data model where S stands for subject, P for predicate, O for ob-

1https://www.wikidata.org
2https://www.dbpedia.org/
3https://yago-knowledge.org/
4https://www.geonames.org/
5A gazetteer is a geographical dictionary that is used, in most cases, together with a map. Given a name

(i.e., a city or a river) a gazetteer gives geospatial information about that name.
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ject, T for time and L for location. The SPOTL model allows for facts of the knowledge
graph to be associated with temporal and geospatial information. For example, the fact
that Barack Obama was inaugurated as president of the USA can be associated with a
place (Washington D.C.) and a date (2009-01-20). However, since YAGO2 relies on Geo-
Names, it contains only points, so it is not an appropriate KG for many applications e.g.,
the exact geometry of a country cannot be represented and similarly the geometry of other
features such as rivers, lakes etc.

YAGO3 [39] extends YAGO2 with multilingual information. YAGO3 has been constructed
from 10 different Wikipedia versions (English, German, French, Dutch, Italian, Spanish,
Polish, Romanian, Persian, and Arabic) resulting in having more than 17 million entities
(like persons, organizations, cities, etc.) and containing more than 150 million facts about
these. YAGO3 combines the clean taxonomy of WordNet with the richness of the Wiki-
pedia category system, assigning the entities to more than 350,000 classes. It is also
anchored in time and space since it is an extension of YAGO2.

Another large KG is YAGO4 [57]. Although previous versions of the YAGOKG like YAGO2
and YAGO3 had substantial improvements in scope and size, their focus on Wikipedia in-
foboxes meant that YAGO did not have the same scale as Freebase or Wikidata. There-
fore YAGO4 was created, based on Wikidata, the largest public KG. YAGO4 refines the
data of Wikidata by making all entity and property identifiers human-readable. Also, the
top-level classes and properties come from schema.org, a standard list of classes and
properties maintained by a community, combined with bioschemas.org. The lower-level
classes are a selection of Wikidata classes. YAGO4 also contains semantic constraints in
the form of SHACL, a WWW Consortium standard language for enhancing the semantic
and technical interoperability of RDF ontologies. These constraints keep the data clean
and consistent and allow for logical reasoning.

3.1.2 Geospatial Knowledge Graphs
Only four geospatial KGs are currently available in the literature, namely YAGO2 presen-
ted above [26], YAGO2geo [30], WorldKG [13] and KnowWhereGraph [28].

YAGO2geo [30] extended YAGO2with more complex geometries, namely lines, polygons,
andmulti-polygons. Tominimize the geometric uncertainty [40], YAGO2geo is constructed
with precise geographical administrative data provided by official sources (from Greece,
the United Kingdom and the Republic of Ireland) and the Global Administrative Areas
dataset. Additionally, for naturaly formed geofeatures, such as lakes and streams, the
respective YAGO2 geo-entities are further enriched with information from OSM. Later on,
data of administrative divisions of the United States of America from NBD6 was added
by [19]. YAGO2geo currently contains 640 thousand polygons and 137 thousand lines
and, hence, it can be used to answer questions for which precise geospatial information
is required.

WorldKG [13] is a more recent effort to create a geospatial knowledge graph using data
from OpenStreetMap (OSM). The first release of WorldKG contains over 100 million geo-
graphic entities from 188 countries and over 800 million triples. Overall, the number of
geographic entities in WorldKG is two orders of magnitude higher than in Wikidata and
DBpedia knowledge graphs. WorldKG models data using the WorldKG ontology which
has been constructed by converting the flat OSM schema into a hierarchy. The WorldKG
ontology is aligned with the Wikidata and DBpedia ontologies enabling the support of ap-

6https://www.usgs.gov/
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plications utilizing data from all these knowledge graphs.

The most recent geospatial knowledge graph is the KnowWhereGraph [28], a visionary
approach to integrating geospatial data silos to offer information e.g., for environmental
intelligence. KnowWhereGraph integrates information about extreme events, administrat-
ive boundaries, soils, crops, climate, transportation etc. It departs from the representation
of geospatial information using geometries like the above knowledge graphs do, and uses
instead a discrete global grid called the “S2 Grid System.” KnowWhereGraph is currently
used in three applications: humanitarian relief, food safety and land valuation.

3.2 Question Answering Benchmarks
In this section, we present datasets that can be used to evaluate question answering
engines. In addition, these datasets can be used to train deep learning models that can
then be part of QA engines.

3.2.1 Encyclopedic Question Answering Datasets
The datasets WebQuestions [4] (6K questions), SimpleQuestions [6] (100K questions),
both targeting Freebase7, were the first considerably large datasets that appeared in the
literature. WebQuestions was created in a forward manner: 100K questions were ran-
domly selected by using the Google Suggest API and, then, by manually keeping the
ones that could be answered by Freebase. SimpleQuestions, on the other hand, was
created in a backward manner: a set of facts from Freebase were shortlisted and, then,
manually annotated with relevant questions by English speakers. In terms of structural
complexity, both datasets were simple, containing only factoid questions i.e., questions
with a unique answer that can be derived from a single fact (triple) in Freebase. In 2016,
WebQuestionsSP [66] (5K questions) was generated from WebQuestions, by providing
SPARQL queries for the questions that the annotators could fully process to find the an-
swers (SP stands for Semantic Parsing). Then, WebQuestionsSP was used to generate
the benchmark ComplexWebQuestions [54] (35K questions) by sampling question-query
pairs and automatically creating more complex SPARQL queries. From these queries,
a set of questions was generated automatically by using 687 templates, and, then, the
resulting questions were manually reformulated. ComplexWebQuestions contains com-
position questions, superlatives, and comparatives.

Three other significant benchmarks that contain complex questions are the LC-QuAD [59],
LC-QuAD 2.0 [60] and QALD-9 [61] datasets. The LC-QuAD dataset (5K questions) tar-
gets DBpedia. Similarly to SimpleQuestions, it was created in a backward manner: the
queries were generated semi-automatically by extracting sub-graphs containing triples
within a 2-hop distance from a seed entity. The generation of the questions was facilitated
automatically, using templates, and, then, refined manually. LC-QuAD was later exten-
ded to form LC-QuAD 2.0 (30K questions), which contains questions, their paraphrases,
and their corresponding SPARQL queries. QALD-9 was generated manually as part of
the latest QALD challenge8. It targets DBpedia 2016-10 and contains 558 manually cre-
ated questions with counts, superlatives, comparatives, and temporal aggregators. The
questions are available in 11 different languages and each question is annotated with a
manually specified SPARQL query and its output.

7SimpleQuestions were later reformulated to target also Wikidata [12].
8http://qald.aksw.org/
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3.2.2 Geospatial Question Answering Datasets
All aforementioned datasets contain encyclopedic questions, but some of them also con-
tain geospatial questions. However, as the datasets are too large, NLP techniques are
required to extract them from the full dataset, and, then, check manually that the extracted
questions are indeed geospatial (for instance, the question “when was Washington elec-
ted” may, falsely, be identified as a geospatial question as Washington is both a state and
a person), which is a time-consuming process. A dataset marginally relevant to the geo-
spatial domain is POIReviewQA9 (20K questions), which contains questions about POIs.
It was created by retrieving questions from the “Ask the community” service of Yelp busi-
ness pages10 and, then, by manually filtering the ones for which answers are identified in
the respective reviews. The dataset contains only pairs of questions with their answers.

Currently, the only datasets focusing on the geospatial domain areGeoQuery [55], GeoAnQu [65],
GeoQuestions201 [49] and GeoQuestions1089 [31]. GeoQuery [55] contains 880 hand-
crafted factoid questions about the U.S. Geography in natural language paired with the
corresponding queries in a formal query language (Prolog). GeoAnQu is a corpus of 429
geo-analytic complex and non-factoid questions manually extracted from research papers
containing GIS analysis, and GIScience textbooks.

GeoQuestions201, created for the evaluation of GeoQA [49], targets the linked geospa-
tial dataset built from DBpedia and the parts of the datasets GADM and OSM restricted
to the United Kingdom and the Republic of Ireland. It contains 201 manually crafted fact-
oid, simple and complex questions, with the respective stSPARQL/GeoSPARQL/SPARQL
queries and answers. It has been used to evaluate the engines proposed by [21, 23] and
by [37].

The benchmark GeoQuestions1089 is the largest question-answering benchmark focus-
ing on the geospatial domain over a specific KG, that contains factoid, simple and complex
questions that may contain aggregates and superlatives. In addition to simple questions
like those present in GeoQuestions201, GeoQuestions1089 contains semantically com-
plex questions that require a sophisticated understanding of both natural language and
GeoSPARQL to be answered. Furthermore, it expands the geographical area of interest,
by including questions about the United States and Greece. This expanded list of coun-
tries of interest introduces additional challenges that QA engines must overcome. In this
thesis GeoQuestions1089 is used to evaluate GeoQA3 and compare it to existing geo-
spatial question answering systems.

3.3 Geospatial Question Answering Engines
Within the research efforts for the development of natural language processing tools in re-
cent years, an increase of question answering systems has been observed in the literature.
[11] in a recently released survey presented a set of QA systems over KGs. Two main re-
search directions are presented in this survey: i) translation of natural language questions
into the respective SPARQL queries or, ii) learning to embed the question in the same
embedding space with the KG and retrieve the answers by calculating the vector similar-
ities among them. Since then, a plethora of research works has been noted for both ap-
proaches or their combination (e.g., [9, 68]). The spatial nature of the geospatial domain,
where the geospatial KGs do not always contain or can logically entail the required know-
ledge, but further algebraic calculations among the polygons may need to be performed,

9http://stko.geog.ucsb.edu/poireviewqa/
10https://blog.yelp.com/news/qa/
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led us to the first approach. Hence, in this section we will present the state-of-the-art in the
geospatial QA over KGs by transforming the questions to SPARQL/GeoSPARQL queries.

One of the first efforts in this domain is presented by [55]. They present an inductive logic
programming approach for learning a semantic parser and applies its techniques to two
areas, one of which is querying geospatial databases. They have experimented with a
dataset consisting of 1000 Prolog facts from the U.S. Geography domain, and have also
developed a corpus of 880 natural language questions and their corresponding logical
queries in Prolog.11 A part of this corpus was used to train the semantic parser developed
by the authors.

The work by [67] is closely related to our work since it presents a system for answer-
ing geospatial questions over DBpedia. The system is based on a PostGIS12 database
containing precise geospatial information of features in the United Kingdom provided by
Ordnance Survey, a spatial index of DBpedia resources built using their point coordinates,
and a SPARQL endpoint storing the DBpedia dataset. The three classes of questions con-
sidered are proximity “Find churches within 1 km of the River Thames”), crossing (e.g.,
“Find the mouths of the rivers that cross Oxford”) and containment (e.g., “Find churches
in Manchester”).

[20] explore the use of DBpedia andGeonames for answering topological queries involving
administrative divisions of Switzerland and Scotland (since the authors are very familiar
with the administrative geographies of these two countries). The paper contains a detailed
discussion of quality issues in linked geospatial data and especially the two linked data
sources used by the authors (e.g., incompleteness, inconsistency of data etc.). Finally,
the paper considers queries for neighbouring and containing/contained administrative divi-
sions, andmeasures precision and recall when only one of datasets or both linked datasets
are used.

[22], initially, analyzed the natural language question-answer dataset MS MARCOV2.1
[45], which contains questions posed to the Bing search engine and human-generated
answers. They concentrated on place-related questions of this dataset and defined a set
of patterns that can be used to characterize semantically questions and their answers.
In their next work [21], they extended this set of patterns to build GeoSPARQL queries
from natural language questions. Specifically, they defined patterns utilizing the semantic
characteristics of the questions, according to their constituency and dependency parse
tree, and based on these patterns and a set of rules, first order statements are produced.
Finally, the respective GeoSPARQL queries are generated from these statements.

[8] presented an approach for translating natural language questions to spatial SQLs
through a parameterization process. The authors identified different parameters entity
name, entity names, order, distance, number and entity type. Five different types of geo-
graphic questions are considered and different templates of the SQL queries are pre-
defined for these different question types. The question is annotated with different para-
meters present in the question and based on the different parameters present in the ques-
tion it is classified in to one of the five different question type. The differences between
the parameters and spatial function needed to answer the question is the key to the clas-
sification of the questions. The templates of the SQL queries are generated from filling
templates with the different annotated parameters in the question.

[41] present a spatially explicit transnational knowledge graph embedding model called
11http://www.cs.utexas.edu/users/ml/nldata/geoquery.html
12http://postgis.net/
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TransGeo which utilizes an edge-weighted PageRank and sampling strategy to encode
the distance decay into the embedding model training process. This embedding model is
further applied to relax and rewrite unanswerable geographic questions. The embedding
model is evaluated using two tasks: link prediction as well as query relaxation/rewriting for
an approximate answer prediction task. The approach is not to generate SPARQL/GeoSPARQL
queries from natural language but considers that the SPARQL/GeoSPARQL query is already
generated from natural language and it can not produce any answers and thus rewrites
the query and based on both the similarity/relatedness among geographic entities (the
distance decay effect) and the nature of the question. The evaluation results over their
benchmark dataset shows that spatially explicit embeddingmodel outperforms non-spatial
models.

The first QA engine over a KG has been a system for answering geospatial questions over
DBpedia [67]. The system is based on a PostGIS database containing precise geospatial
information of features in the United Kingdom provided by Ordnance Survey, a spatial
index of DBpedia resources built using their point coordinates, and a SPARQL endpoint
storing the DBpedia dataset. The three classes of questions considered are proximity
(e.g., “Find churches within 1 km of the River Thames”), crossing (e.g., “Find the mouths
of the rivers that cross Oxford”) and containment (e.g, “Find churches in Manchester”).

The next geospatial QA engine to be proposed was GeoQA [49] and its revised ver-
sion [48]. GeoQA can answer geospatial questions over DBpedia interlinked with the
parts of GADM and OSM for the United Kingdom and Ireland. GeoQA is implemented
as a pipeline of six components (dependency parse tree generator, concept identifier,
instance identifier, geospatial relation identifier, property identifier and query generator)
using a template-based approach.

[37] proposed to use a neural approach for extracting information from input questions and
experimented with Long Short-Term Memory (LSTM) networks and transformers for the
implementation of the idea. They also used geospatial semantic graphs for representing
input questions. To generate the geospatial semantic graph, they first use a semantic
dependency parser to map questions to dependency graphs. Then, they combine the
parsing results with the neural encoding results to construct the final geospatial semantic
graph. Finally, they use a template-based approach like the one proposed by GeoQA
for generating the final GeoSPARQL queries. [37] achieves better results than [49] in
producing GeoSPARQL translations of input questions. However, they achieve worse
results than [48] given that the GeoQuestions201 benchmark is very small to allow for
the successful training of deep learning models. In contrast, neural approaches to non-
spatial factoid question answering exhibit excellent results because the used deep learning
models have been trained on very large question benchmarks [38].

[23] presents a geographic QA engine that uses pre-trained deep learning models for fine-
grained named entity recognition and part-of-speech tagging for extracting encodings of
nouns, verbs, adjective etc. from the question and, in that way, discovering e.g., whether
a noun is a place name or an event name. Then, they defined patterns utilizing the ex-
tracted encodings of the questions, according to their constituency and dependency parse
tree, and based on these patterns and a set of rules, first-order logic statements were pro-
duced. The elements from first-order logic statements are mapped to the resources and
classes of YAGO2geo using different techniques that include string matching from preb-
uilt Solr indexes, exact matching and cosine similarity of BERT embeddings. Predefined
templates are used with set of rules to build the structure of the GeoSAPRQL query and
mapped elements are replaced to generate thefinal executable GeoSPARQL query over
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the YAGO2geo knowledge graph. We are going to present this engine in more detail in
section 5.

[50] presents the geospatial question-answering engine GeoQA2, an evolution of GeoQA
that targets the YAGO2geo [30] knowledge graph and integrates constituency parsing in
the pipeline to handle more complex questions. We will present this engine in more detail
in section 4 since it was used as the starting point for our work.

The rise of foundational models like GPT-4 [47] and Llama2 [58] has not gone unnoticed
in the geospatial question-answering space. A number of engines that utilize such models
for query generation exist [15] and ChatGeoPT13. Both of these engines employ a few-shot
learning environment to instruct instruction trained LLMs to generate executable queries
over a knowledge base. Even though this approach is seemingly both simple to program
and able to generate complex queries no evaluation results are provided. GeoQA3 is,
to our knowledge, the first engine that combines classical question-answering techniques
with LLMs and is compared to existing geospatial question-answering engines.

At this point we have finished our overview of related work on geospatial question-answering
engines, knowledge graphs and datasets. We will continue with the presentation of the
engines of our engine, as well as the engines of [23] and [50] with which we compare our
work.

3.4 Summary
In this chapter we discussed related work about knowledge graphs, question answering
engines and datasets in the domain of geospatial question answering. We make two im-
portant observations. First, translating natural language questions to executable SPARQL
queries is the natural approach followed by a large majority of geospatial question answer-
ing engines. Second, there is a lack of large GeoSPARQL datasets that are suitable for
training machine learning models on the task of GeoSPARQL query generation. FInally,
we introduced the two engines that will be used as benchmarks for our own, GeoQA2 [50]
and the engine of [23].

13https://github.com/earth-genome/ChatGeoPT
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4. THE GEOQA2 QUESTION ANSWERING ENGINE

In this chapter, we present the GeoQA2 engine in detail. GeoQA2 was used as the starting
point for the development of GeoQA3 so the two systems share multiple components of
their pipelines. A detailed study of GeoQA2 will aid in understanding GeoQA3 and its
innovations over its predecessor.

4.1 The conceptual model of GeoQA2
Before we present the pipeline that implements GeoQA2, it is important to explain the
conceptual model on which it is based. According to GeoQA2, the world consists of in-
stances (e.g., Essex) that belong to concepts (e.g., county). Instances can have thematic
(e.g., population) or geospatial properties (e.g., geometry). In addition, instances can be
related with geospatial relations (e.g., overlaps) to other instances.

In GeoQA2, world knowledge is stored in KG YAGO2geo and there is the following cor-
respondence between YAGO2geo constructs and GeoQA2 terminology (see Figure 4.1):

• Instances in GeoQA2 correspond to geoentities in YAGO2geo.

• Concepts in GeoQA2 correspond to classes in YAGO2geo.

• Properties in GeoQA2 correspond to thematic and geospatial properties of geoentit-
ies in YAGO2geo.

• Geospatial relations inGeoQA2 correspond to geospatial relations between geoentit-
ies in YAGO2geo.

Figure 4.1: The conceptual model of GeoQA2

4.2 The GeoQA2 pipeline
GeoQA2 takes as input a question in natural language (currently only English is suppor-
ted) and the YAGO2geo KG, and produces one or more answers. Question answering is
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Figure 4.2: The Question Answering process with GeoQA2 and Strabon

performed by translating the input question into a set of SPARQL/GeoSPARQL queries,
ranking these queries, and executing the top-ranked query over a YAGO2geo endpoint.
An overview of the question-answering process with GeoQA3 is presented in Figure 4.2.

In Figure 4.3 we illustrate the conceptual view of the GeoQA2 pipeline, which contains the
following components:

• Dependency and constituency parse tree generator

• Concept identifier

• Instance identifier

• Geospatial relation identifier

• Property identifier

• Query generator

Figure 4.3: The conceptual architecture of GeoQA2

The order in which these components are called in the pipeline is important because some
components use the output generated from other components to perform their task. The
dependency parse tree generator must be the first in the pipeline as all the other com-
ponents annotate the respective nodes of the dependency parse tree. The functionality
of the concept, instance, and geospatial relation identifiers does not depend on any other
component to perform their tasks, thus they can be called in any order in the pipeline. The
property identifier uses the outputs from the concept and instance identifiers, thus it must
be called only after these two components. The query generator uses the outputs from all
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Figure 4.4: The dependency parse tree for the question: “Which bays intersect with county
councils that border with County Mayo?” as it is generated by CoreNLP.

Table 4.1: Classes from YAGO2geo ontology

Class Label URI of the class
County Council yago2geoo:OSI_County_Council
Nature Reserve yago2geoo:OSM_nature_reserve

Townland yago2geoo:OSI_Townland
Barony yago2geoo:OSI_Barony
Bay yago2geoo:OSM_bay

the other components to generate queries so it is the last one in the pipeline. Below we
present each one of these components in detail.

Dependency parse tree generator. This component carries out part-of-speech tagging
and generates a dependency parse tree for the input question using the Stanford CoreNLP
toolkit [42]. The dependency parse tree is produced in CoNLL-U format [46]. In Figure 4.4
we provide an example of the dependency parse tree for the question Q: “Which bays
intersect with county councils that border with County Mayo?” (which will be the question
of reference in the rest of this text).

Concept identifier. This component identifies the types of features (concepts) present
in the input question and maps them to the corresponding classes of the YAGO2geo on-
tology. These concepts are identified by the elements of the question that are tagged as
nouns (NN, NNS, NNP, NNPS) by the dependency parse tree generator. Then, these
elements are mapped to the ontology classes using n-grams, as shown in Figure 4.5.

For instance, in the input question Q, it identifies the concepts “county councils” (as well
as “county” and “councils”) and “bays”, as they are tagged as NN, NNS, NNP and maps
them to the class yago2geoo:OSI_County_Council and yago2geoo:OSM_bay, respectively.
To simplify the process, we have added labels to the YAGO2geo classes (an excerpt of
the YAGO2geo labels with their corresponding classes is presented in Table 4.1)1. Hence,
the concept identifier iterates through this list of class labels from the ontology, it gener-
ates the n-grams (where n is the number of words present in each class label) for Q,
and compares the n-grams with the respective class labels. For instance, for the class
label “County Council” and the input question Q, the generated 2-grams are: {“Which
bays”, “bays intersects”, “intersects with”, “with county”, “county councils”, “councils that”,
“that border”, “border with”, “with County”, “County Mayo”}. The 2-gram “county councils”,
which has string similarity 0.998 with the class label “county council” (all letters of the class
labels are converted to lowercase at the pre-processing phase), is mapped to the class
yago2geoo:OSI_County_Council. In its final stage, the concept identifier annotates the
appropriate node of the dependency parse tree with its results.

1The list of prefixes used in the paper can be found at https://figshare.com/s/584841072d90481e122f
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Figure 4.5: GeoQA2 pipeline: Concept identifier

Instance identifier. This component identifies the features (instances) present in the input
question. These can be, for example, the Corfu island or County Mayo. The features
are identified by the elements of the question that are tagged as (NN, NNS, NNP) by
the dependency parse tree generator. Then, these elements are mapped to YAGO2geo
resources using an entity recognition and disambiguation tool, as shown in Figure 4.6.

In previous work [48] we tested a set of well-known tools for named entity recognition
and/or disambiguation over GeoQuestions201 [49] and concluded in TagMeDisambigu-
ate [16], which had the best performance. As TagMeDisambiguate links the identified
instances with instances only from Wikipedia (hence, from YAGO2 as well [26]), we, also,
query YAGO2geo to disambiguate the instances that are contained in YAGO2geo, but not
in YAGO2 (e.g., instances in GADM), along with the total number of YAGO2geo triples
that contain these instances.

In the running example, once the term “County Mayo” is identified from TagMeDiambig-
uate, it is mapped to yago2geor:geoentity_Mayo_3302545, which is found by executing
the SPARQL query SELECT DINSTICT ?x WHERE{?x yago: hasName "County Mayo"@en}
over the YAGO2geo endpoint.

Figure 4.6: GeoQA2 pipeline: Instance identifier

Geospatial relation identifier. Geospatial questions often include some qualitative geo-
spatial relation, such as “borders”, or some quantitative ones, such as “at most 2km”. The
current implementation supports the geospatial relations and their synonyms shown on
Table 4.2. These include topological, distance, and cardinal direction relations [14, 18, 51].

Similarly to the previous modules, this module first identifies the geospatial relations in
the input question, based on the POS tags {VB, IN, VP, VBP, VBZ}, generated by the
dependency parse tree. Then, it maps them (or their synonyms) to the respective spatial
function of the GeoSPARQL or stSPARQL vocabulary according to Table 4.2. In the run-
ning example question, Q, the geospatial relations “intersect” and “border” are identified
from their POS tag (VBP) in the dependency tree, and they are mapped to the spatial func-
tions geof:sfIntersects and geof:sfTouches of the GeoSPARQL vocabulary. In its final
stage, the geospatial relation identifier annotates the appropriate node of the dependency
parse tree with its results, as shown in Figure 4.7.
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The semantics of the topological relations are according to the Dimensionally Extended
9-Intersection Model (DE9IM) [52]. Distance relations, such as “close to” and “near”, are
translated into quantitative distance relations based on the concept identified earlier by
the concept identifier (e.g., when asking for “hotels near a place”, “near” is taken to mean
at most 1 kilometer). The semantics of cardinal direction relations are the usual ones, i.e.,
a relation A north of B is interpreted by considering the bounding box of the reference
region B and the partition of the plane in nine areas that is induced by it [51]. The same
semantics are implemented by the Strabon system and its query language stSPARQL,
which is used as the back-end geospatial RDF store [33] (GeoSPARQL does not support
any cardinal direction functions or relations, therefore stSPARQL is used instead).

Figure 4.7: GeoQA2 pipeline: Geospatial relation identifier

Property Identifier. The property identifier module identifies attributes of types of features
and attributes of features specified by the user in input questions and maps them to the
corresponding properties in YAGO2geo. For instance, for the question “Which village
in Rhodes has the biggest population?”, the “population” attribute of the type of feature
“village” is required.

This module first identifies the properties in the input question, based on the POS tags
{NN, JJ, NNP, NP}, generated by the dependency parse tree. Additionally, from the con-
cepts identified by the concept identifier it performs pattern matching between the filtered
terms and the labels of the 1-hop connected relations of the YAGO2geo classes. For in-
stance, for the question “Which village in Rhodes has the biggest population?”, the terms
T = {village, Rhodes, population} are filtered. Also, the 1-hop relations connected to the
class yago2geoo:OSM_village, returned by the concept identifier are selected. Finally, the
property identifier performs pattern matching between these relations and the terms in T .
This way, the YAGO2geo property yago2geoo:hasGAG_Population is retrieved, as shown
in Figure 4.8.

For two cases, though, this process is not straightforward: first, when the property is not
explicitly mentioned in the question and, second, when the KG does not explicitly contain
the implied property. Consider the question “Which is the largest lake in Greece?”. Here,
the qualification “by area” is not clearly stated but implied. For such cases, we have
defined the rules (not listed here due to space limit) to identify the implied properties. It
is to be noted that the list of rules can be extended further without having any impact on
the process as required. In particular, the implied property is specified from the classes
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Table 4.2: Geospatial relations and their synonyms

Relation Type Geospatial Relation
(With their Synonyms)

Respective
Spatial Function

Topological

within :
in, inside, is located in, is included in geof:sfWithin()

crosses:
flows, passes through geof:sfCrosses()

borders:
at the border of, at the outskirts of,
at the boundary of

geof:sfThouches()

intersects:
overlaps geof:sfIntersects()

Distance

distance:
nearby, close to, around

geof:sfDistance()near
far
at most/least x units

Cardinal
Direction

north of:
above strdf:above()

south of:
below strdf:below()

east of:
right strdf:right()

west of:
left strdf:left()

northeast strdf:above() && strdf:right()
northwest strdf:above() && strdf:left()
southeast strdf:below() && strdf:right()
southwest strdf:below() && strdf:left()

participating in the question (returned by the concept identifier), the JJS or NN POS tags
of the edges of the dependency parse and the implied properties. Hence, in the previous
example, to capture the property “area”, after identifying with the concept identifier the
class yago2geoo:OSM_lake, the property identifier checks if the POS tags of the edges
of the dependency parse are annotated as JJS (adjective, superlative, e.g. “biggest”) or
NN (noun, singular, e.g. “lake”) and if so, it then checks if any of the keywords {smallest,
biggest, largest} appears in the question. If this is the case, according to the table of
implied properties, the question is annotated with the “area” property. Supposing, now,
that YAGO2geo does not contain any property related to the term “area” for the class
yago2geoo:OSM_lake, then the areas of the lakes in Greece will be calculated by applying
the stSPARQL function strdf:area() on their geometries.

Query generator. This module generates the formal query using handcrafted query pat-
terns, templates, and the outputs of the previous modules. In particular, the query gener-
ator reformulates the annotated (by the previous components of the pipeline) dependency
parse tree and parses it in traversal order. From this process, it identifies the pattern of
the question and, then, the respective template. Finally, the GeoSPARQL or SPARQL
queries are generated from the templates and the resources identified from the previous
modules of the pipeline. If the user question does not match any of the patterns, no query
is generated.

We utilized the question patterns defined by [48], which we extended with one more ques-

S.-A. Kefalidis 28

yago2geoo:OSM_lake
yago2geoo:OSM_lake
strdf:area()


Geospatial Question Answering with GeoQA3

Figure 4.8: GeoQA2 pipeline: Property identifier

county councils / NN NNS
C: yago2geo:OSI_CountyCouncil

…

with / DT

? / .

that / WDT

border / VBP
R: geof:sfTouches()

with / IN

County Mayo / NNP 
NNP

I: yago:County_Mayo
…

Which / WDT

intersects /VBP
R: geof:sfIntersects()

punct
nsubj

nsubj

case

case

acl:relcl

dep

obl

bays / NNS
C: yago2geoo:OSM_baydet

Figure 4.9: Modified dependency parse for the question: “Which bays intersect with county
councils that border with County Mayo?”.

tion pattern (PCRCRI). An incomplete list of question patterns is shown in table 4.3, where
“C” stands for “concept”, “I” for “instance”, “R” for “geospatial relation”, “P” for “property”
and “N” for “Count of”, following the terminology introduced above. Also, in the same
tables, the corresponding question type (as defined in Section 7.1), an example question,
and the corresponding GeoSPARQL query template is presented for each pattern. Notice
that the identification of the intent of the question is implicitly executed through the identi-
fication of the proper query template. The query templates contain slots (strings starting
with an underscore), which are replaced by the query generator with the outputs of the
previous modules.

For instance, the question pattern of the running example question, Q, is CRCRI. The
reformulated annotated dependency parse tree is illustrated in Figure 4.9. As it shown,
it is annotated with the concepts (C) yago2geoo:OSM_bay and yago2geoo:OSI_County_
Council, the geospatial relations (R) geof:sfIntersects and geof:sfTouches and the
instance (I) yago2:County_Mayo. The question pattern is extracted by traversing the tree
in order.

To capture more complex questions, containing superlatives, comparatives, or counts,
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the query generator produces, also, the constituency parse tree of the input question.
Then, the templates are reformulated based on dependency and constituency parse tree,
and a number of handcrafted rules. This way, for instance, the query generator will de-
tect that the question “Which Civil Parishes in Ireland have more than 10 townlands?”
contains the quantifier phrase (QP) “more than 10”. Subsequently, it will automatically
replace the “SELECT ?x” with “SELECT ?x (COUNT(?y) AS ?total)” and it will add GROUP
BY(?x) HAVING (?total > 10) at the end of the query generated by the template-based
approach.

Lastly, the query generator ranks the generated queries. The ranking system employed
is based on the estimated importance of the instances that are used in the generated
queries. The importance of an instance is measured as the number of triple patterns that
it is a member of, more important instances are likely to have more triple patterns in the
knowledge graph. The generated query with the highest total importance is selected. It is
to be noted that GeoSPARQL queries are given priority over SPARQL queries in regard
to query selection.

4.3 Summary
In this chapter, we presented the complete GeoQA2 pipeline. We examined its pipeline in
detail, looking at the functionality of every component. We also discussed the conceptual
model of GeoQA2 and how the entire question answering process works.
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Table 4.3: A sample of SPARQL/GeoSPARQL templates that are used by GeoQA2.

Pattern Question
Type

Example natural
language ques-
tion

SPARQL/GeoSPARQL Template

IP A What is the popu-
lation of Piraeus?

SELECT ?property WHERE {
_Instance _Property ?property.
}

IRI B
Is Kallithea at the
border of Nea
Smyrni?

ASK WHERE {
_Instance1 geo:hasGeometry ?iGeom1.
?iGeom1 geo:asWKT ?iWKT1.
_Instance2 geo:hasGeometry ?iGeom2.
?iGeom2 geo:asWKT ?iWKT2.
FILTER(_Relation(?iWKT1, ?iWKT2))
}

CRI C Which streams
cross Limerick?

SELECT ?x WHERE {
?x rdf:type _Concept; geo:hasGeometry
?xGeom.
?xGeom geo:asWKT ?xWKT.
_Instance geo:hasGeometry ?iGeom.
?iGeom geo:asWKT ?iWKT.
FILTER(_Relation(?xWKT, ?iWKT))
}

CRC D Which parks are
within cities?

SELECT ?x WHERE {
?x rdf:type _Concept1; geo:hasGeometry
?xGeom.
?xGeom geo:asWKT ?xWKT.
?y rdf:type _Concept2; geo:hasGeometry
?yGeom.
?yGeom geo:asWKT ?yWKT.
FILTER(_Relation(?xWKT, ?yWKT))
}

CRIRI E

Which beaches
are at most 100
km distance to
Ormos Vourkari in
Greece?

SELECT ?x WHERE {
?x rdf:type _Concept; geo:hasGeometry
?xGeom.
?xGeom geo:asWKT ?xWKT.
_Instance1 geo:hasGeometry ?i1Geom.
?i1Geom geo:asWKT ?i1WKT.
_Instance2 geo:hasGeometry ?i2Geom.
?i2Geom geo:asWKT ?i2WKT.
FILTER(_Relation1(?xWKT, ?i1WKT) &&
_Relation2(?i1WKT, ?i2WKT) )
}
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5. THE QA ENGINE OF HAMZEI ET AL.

5.1 The engine of Hamzei et al.
Like GeoQA2, the engine of Hamzei et al. [23] takes as input a natural language question
and translates it into a GeoSPARQL query targeting a version of YAGO2geo that has been
extended with more data from OSM [23]. The engine uses a four-step workflow, shown
in Figure 5.1 consisting of encoding extraction, grammatical parsing, intermediate rep-
resentation generation, and GeoSPARQL query generation. These steps are described
below using the question “How many pharmacies are in 200 meter radius of High Street
in Oxford?” as an example.

The step of encoding extraction extracts certain kinds of information from the question
and encodes them using an extension of the encoding classes of [24]. These encoding
classes offer a rich representational framework that can be used to classify a geospatial
question according to what kind of question word it uses (e.g., “how many”), whether
semantic categories such as placenames (e.g., “High Street” and “Oxford”), place types
(e.g., “pharmacies”), geospatial relations (e.g., “in 200 meter radius of” and “in”) etc. are
mentioned.1 The encoding extraction step is implemented as a rule-based system but its
POS tagging and named entity recognition components use the pre-trained neural network
models of [34, 29] and the large language model BERT [10].

In the grammatical parsing step, the engine of Hamzei et al. constructs a constituency
parse tree and a dependency parse tree for the input question. In this step, the intention
of the question is also computed (e.g., “How many pharmacies”) through the use of a
number of heuristic rules.

The intermediate representation generation step uses the information produced by the
previous two steps to compute a first-order logic formula corresponding to the input ques-
tion. For the example question, the formula is

Count(x) : Place(High Street) ∧ Place(Oxford) ∧ Pharmacy(x)

∧ InRadiusOf(x,HighStreet, 200meter) ∧ In(HighStreet, Oxford)

where our notation for first-order logic is the usual note.

The step of GeoSPARQL query generation produces a GeoSPARQL query based on
the first-order logic formula of the previous step by utilizing YAGO2geo and its ontology.
Classes, geospatial relations and properties are identified in similar fashion to GeoQA2.
For named features (what GeoQA calls Instances) instead of doing place-name disambig-
uation, this step relies on string similarity search using an Apache Solr server for identifying
instances. This means that the engine lacks a named entity recognition and disambigu-
ation component, like the Instance identifier of GeoQA2. The query structure is generated
dynamically by the intermediate, first-order logic representation, contrary to GeoQA no
complete SPARQL/GeoSPARQL templates are employed.

The resulting query is subsequently sent to an Apache Jena Fuseki endpoint where YAGO2geo
is stored to retrieve the answer(s).

The code for the Hamzei et al. engine is publicly available at 2 while a demo is available
at 3.

1The conceptual framework of Hamzei et al. [23] is much richer than the one of GeoQA2 and it includes
concepts such as events, times etc. but it has not been tested with KGs or datasets involving these concepts.

2https://github.com/hamzeiehsan/Questions-To-GeoSPARQL
3https://tomko.org/demo/
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Figure 5.1: The conceptual architecture of the system of Hamzei et al. [23]

5.2 Summary
In this chapter, we presented the question answering engine of Hamzei et al. The engine
follows a pipeline architecture and utilizes classical natural language processing tech-
niques to process the input questions and generate executable GeoSPARQL queries over
the YAGO2geo KG. Before generating the executable queries, a first-order logic interme-
diate representation is produced. This intermediate representation is subsequently trans-
lated to GeoSPARQL.
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6. THE GEOQA3 QUESTION ANSWERING ENGINE

In this section we begin by presenting the architecture and fundamental logic of theGeoQA3
engine. Following that, we provide a comprehensive analysis of the query generation pro-
cess.

6.1 Overview
GeoQA3, like all engines in the GeoQA family, takes as input a question in natural lan-
guage and the YAGO2 [26] and YAGO2geo [30] knowledge graphs and produces one or
more answers. The natural language question is translated to a SPARQL/GeoSPARQL
query which is subsequently executed over a Strabon endpoint that stores both YAGO2
and YAGO2geo knowledge graphs. A notable departure from previous iterations is that
GeoQA3 generates a single query.

Like its predecessors, GeoQA3 uses a pipeline architecture, meaning that it consists of a
number of components, each of which performs a specific task. Information is propagated
from one component to the next. The GeoQA3 QA pipeline, as showcased in 6.1, is split
in 4 distinct conceptual steps:

1. WHERE clause generation

2. SELECT/ASK clause generation

3. Query generation

4. Query rewriting

Previous members of the GeoQA family utilized predefined templates for producing quer-
ies. This restricted the variety of questions that could be answered by those engines. In or-
der to achieve a more flexible query generation process, in GeoQA3 theWHERE clause is
generated dynamically by combining basic SPARQL/GeoSPARQL buildings blocks. This
allows for the inclusion of information that can potentially be used in the next steps, and is
utilized for handling natural language questions of arbitrary size. The identification of the
correct building blocks is handled by the individual components that partake in this step,
using a variety of techniques like dependency parsing, string similarity, lemmatization and
named entity recognition and disambiguation.

The SELECT/ASK clause is generated by a combined approach that utilizes the large
language model Llama2 [58] and dependency parsing. This step was pivotal in removing
templates from our architecture and is heavily dependent on the usage of deep learn-
ing techniques offered by Llama2, which is responsible for understanding the intended

Figure 6.1: Conceptual steps of the GeoQA3 pipeline
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return values of the questions. The return values are specified by traversing the depend-
ency parse tree generated by the input question. Utilizing Llama2, allowed our engine to
achieve a much more meaningful natural language understanding and provided it with the
capability to handle more complex questions.

The query generation step works by combining the SELECT/ASK clause and WHERE
clause generated by the previous conceptual steps. In addition, at this stage, any inform-
ation about superlatives, ordering, grouping and specific number of expected return values
is used to enhance the final generated query. All information required for this process is
gathered in the aforementioned two steps.

The final conceptual step of our engine is the rewriting of the query generated by the
previous step. The rewriting process is implemented, by using a transpiler that was de-
veloped by the AI Team of the University of Athens GoST1, in which GeoSPARQL queries
are transformed to their equivalent SPARQL queries, that utilize materialized information
in the knowledge graph.

Unlike GeoQA2, GeoQA3 is not implemented using the Qanary [7] framework for pipeline
question answering engines. Instead, we opted to rewrite our pipeline from scratch, which
has allowed us to achieve a significantly faster query generation speed. This can be
explained by the removal of the information propagation overhead that is caused by the
extensive use of Stardog2 as a bridge between components.

6.2 Pipeline
In this section, we provide a detailed analysis of GeoQA3’s pipeline as presented in Fig-
ure 6.2.

6.2.1 WHERE clause generation
The WHERE clause generation process happens in the following components:

• Instance identifier

• Concept identifier

• Property identifier

• Geospatial relation identifier

As was previously mentioned, the WHERE clause of the generated query is created
by combining simple SPARQL/GeoSPARQL blocks. Each component is responsible for
identifying a kind of geographic feature, property or geospatial relation and creating the
corresponding block. All components annotate the dependency parse tree with inform-
ation about their discoveries. The functionality of the pipeline’s components will be dis-
cussed using the question “Is the largest island in the United Kingdom larger than Crete
by population?” (Figure 6.3).

1https://github.com/AI-team-UoA/GoST
2https://www.stardog.com/
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Figure 6.2: The complete GeoQA3 pipeline. The conceptual steps are shown in green.
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Figure 6.3: WHERE-clause generation.
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Instance identifier. Similarly to GeoQA2, the instance identifier identifies the features
(instances) present in the input question (e.g., “United Kingdom” and “Crete”). The fea-
tures are identified using the TagMeDisambiguate tool [16]. Then, these elements are
mapped to knowledge graph resources (e.g., yago:United_Kingdom and yago:Crete).

To facilitate our WHERE-clause generation process and improve the general performance
of this component, we introduce the following two important optimizations:

1. For instances that consist of multiple words, e.g., New York City, after identifying the
instance, the component modifies the dependency parse tree to merge the three
nodes into one. As a consequence, the dependency parse tree is modified as ele-
ments are discovered. That applies to all components in this section. Particularly
for the instance identifier, this avoids the problem of falsely identifying the word City
as a concept in the following step.

2. In addition to identifying the instance, the instance identifier is responsible for creat-
ing the block that will be used in the WHERE clause for the identified instance. The
generated block has the following structure:

<URI> geo:hasGeometry ?iGeomertryID .
?iGeomertryID geo:asWKT ?iWKTID .

Concept identifier. Similarly to the instance identifier, the concept identifier has not seen
change functionality wise. It identifies the types of features (concepts) present in the input
question (e.g., “island”) and maps them to the corresponding classes of the YAGO2 or
YAGO2geo ontologies (e.g., y2geoo:OSM_island). These concepts are identified by the
elements of the question that are tagged as nouns (POS tags NN, NNS, NNP and NNPS)
during dependency parsing. Then, these elements are mapped to the ontology classes of
YAGO2 and YAGO2geo using string matching based on n-grams.

The same two modifications that were applied to the Instance identifier were applied to the
Concept identifier. Multi-word concepts lead to the modification of the dependency parse
tree. The concept identifier is also responsible for generating the query block that will be
used in the WHERE clause for any identified concepts. This has the following structure:

?cID a <URI> .
?cID geo:hasGeometry ?cGeometryID .
?cGeometryID geo:asWKT ?cWKTID .

Property identifier. The property identifier identifies attributes of features or types of
features specified by the user in input questions andmaps them to the corresponding prop-
erties in YAGO2 or YAGO2geo. For instance, for the example question the property “popu-
lation” of type of feature “island” will be identified andmapped to property yago:hasPopulation.

In GeoQA2 only one property per question is supported, a limitation of the template-based
approach to query generation. For GeoQA3, we wanted to overcome this limitation to be
able to answer a wider array of question. For that reason, this component has been
completely rewritten.

For each identified concept, we try to match, using string similarity, its properties to the
words in the sentence. Matched properties are identified as candidate properties for this
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concept. Multiple concepts might have the same candidate property. To combat this, we
introduced a heuristic, that selects the closest concepts as the targets to the properties.
The proximity heuristic is calculated using the distance of nodes in the dependency parse
tree. For tiebreaks, the distance of the words in the natural language question is used.
This process is similar for instances inside the question.

In addition, we reworked how superlative and implicit properties are identified in GeoQA3,
again to overcome the one-property-per-sentence limitation of GeoQA2. We identify words
with JJS part-of-speech tag (adjective, superlative) in our input questions. For each iden-
tified word, we compute the nearest dependency parse tree distance feature, whether that
feature represents a concept or a property. When it pertains to a property, the information
is stored for later use in the query generator as a superlative for that property. Superlatives
are expressed through ORDER BY, DESC/ASC, and LIMIT clauses in SPARQL or Geo-
SPARQL queries. If the feature is a concept, it implies an implicit property. In such cases,
as the property is not explicitly mentioned in the natural language question, we generate
the property and store it as information to be utilized as a superlative for the generated
property in the query generation process. For instance, in the case of an implicit property,
consider the natural question ’Which is the largest lake in Greece?’ In this context, we
can deduce that the word ’largest’ when referring to a ’lake’ refers to the ’area’ property.
Thus, we create a property to represent ’area’ and store it, along with its corresponding
superlatives, for use in the query generation component.

The result of the property identifier has the following structure:

INSTANCE/CONCEPT_VARIABLE <URI> ?pID.

Geospatial relation identifier. The geospatial relation identifier first identifies the geo-
spatial relations (e.g., “in”) in the input question, and then maps them to the respective
spatial function of the GeoSPARQL or stSPARQL vocabulary (e.g., geof:sfWithin) ac-
cording to a mapping between geospatial relations and stSPARQL/GeoSPARQL functions
provided by a dictionary.

This component was completely reworked to facilitate a more dynamic approach to query
generation, without using templates, as well as incorporating deep learning techniques to
improve natural language understanding, and with it improve overall system performance.

GeoQA3’s geospatial relation identifier is implemented in the following manner. For each
label of a geospatial relation, for example north of, contains, located, etc., n-grams are
generated similarly to the concept identifier. If the relation is matched, the two closest
geographic features (instances and concepts) are located using the following equation:

distance = dependency_parse_tree_distance+ (word_distance/100)

By identifying the two closest features, we assign the closest feature as the first argument
and the second closest feature as the second argument of the relation, except in the case
of cardinal directions, where the positional order of the features in the sentence is the
primary concern. When the geospatial relation pertains to distance, we search for the
nearest CD (cardinal number) tag, which typically represents a numerical value. We use
this number as the distance (with conversions like kilometers made accordingly). The
NER component of CoreNLP [43] played a crucial role in the development of this step.
Leveraging this deep learning component enabled us to efficiently locate CD tags and
gather relevant information about the numerical values’ interpretation within the question.
With the NER component, the identifier was able to determine whether the number should
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be used as greater, smaller, or equal in the FILTER clause of the query, as needed.

A part of the component’s implementation involves how the dependency parse tree is nav-
igated to identify paths to different concepts and instances. Our approach, which improved
the performance of this component, was to halt the traversal within the current branch of
the dependency parse tree when a geospatial relationship is encountered. This pruning
technique assumes that when a geospatial relationship is in close proximity to a concept
or instance, it holds a stronger association with that concept or instance. Consequently,
there is no need to continue traversing the tree.

Furthermore, in order to implement conjunctions in sentences, the dependency parse tree
is traversed to locate ”conj:and” edges which are stored for later usage. After all relation-
ships are located, the edges containing conjunctions are visited to examine the feature
that ”conj:and” targets. Utilizing the features and relationships, another relationship of the
same type is added by replacing the non-target feature.

The result of the geospatial relation identifier has the following structure:

FILTER (<URI> (FIRST_FEATURE, SECOND_FEATURE))

and

FILTER (geof:distance (FIRST_FEATURE, SECOND_FEATURE, uom:metre)
{<, >, <=, >=} DISTANCE)

6.2.2 SELECT/ASK clause generation
The ASK/SELECT clause generation process happens in the following components:

• Return Type identifier

• Query Form identifier

Return type identifier. The return type identifier is responsible for identifying the expec-
ted form/type of the answer to the question. Our example question is a yes or no question,
so the expected return type is a boolean value. Such questions are answered using ASK
statements, while questions that expect row of values are answered using SELECT state-
ments. For SELECT statements, this component is also responsible for predicting the
types of the returned values. The supported types are { Name, Coordinates, Number-
Property, Number-Count }.

During the development of the return type identifier, we opted to leverage the deep learn-
ing framework Llama2 [58] due to its proven efficiency and open-source nature. In imple-
menting this component, we conducted extensive experimentation with various Llama2
settings to enhance our system’s performance.

Our trials with Llama2 7B and 13B yielded middling results, as they struggled to fully
comprehend the prompts provided. Consequently, we chose to employ Llama2 70B in
a few-shot setting instead of a zero-shot setting, as the latter generally failed to deliver
satisfactory outcomes. The integration of this system into GeoQA3 now enables us to ef-
ficiently generate the return types required to formulate the final SPARQL or GeoSPARQL
queries. The prompt we deployed for our system is showcased at the end of this section.
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Figure 6.4: SELECT-clause generation.

It’s worth noting that we refrained from using Llama2 to determine whether the generated
query should be a SELECT or an ASK query. This decision was made because this task
can be performed through lexical analysis, which offers both faster execution speed and
effectiveness comparable to the results achieved by Llama2.

Query form identifier. The return type identifier is responsible for generating the final
ASK/SELECT clause, which will be used by the query generator. It takes as input the re-
turn types generated by the return type identifier. For each expected return type, we follow
an iterative approach as follows: If the type is ’Name,’ we search for the next concept. If
the type is ’Coordinates,’ we seek the next concept or instance. When the return type is
’Number-Property,’ we look for the next property, and if it’s ’Number-Count,’ we search for
the next concept. Additionally, we enhance the query by introducing a COUNT aggrega-
tion and the necessary GROUP BY clauses.

To determine the ’next’ object, we traverse the dependency parse tree. The traversal
begins from the Wh-word of the sentence. Wh-words are those that are tagged as WP,
WFT, WRB by the CoreNLP part of speech tagger. After locating Wh-words, we identify
the objects that are closest based on the dependency parse tree distance.
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The prompt used by Llama 70B is presented below:

SYSTEM (inside <sys> tags): You are an assistant that can only use the words
{ Name, Coordinates, Number-Property, Number-Count }. Answer appropriately and concisely.
Instruction (inside <INST> tags):
Select the most fitting expected answer type from these options
{ Name, Coordinates, Number-Property, Number-Count }.
I don't want you to answer the question, but to return the type of the answer. Some examples:

QUESTION: Which parks are in New York City?
ANSWER: Name
QUESTION: Which towns in England are near rivers?
ANSWER: Name
QUESTION: What are the 5 tallest mountains of Mexico?
ANSWER: Name
QUESTION: Which is largest lake in Brazil?
ANSWER: Name
QUESTION: Which towns are less than 10kms away from the Grand Canyon?
ANSWER: Name
QUESTION: In Rhodes, which towns are close to a lake and near a mountain?
ANSWER: Name
QUESTION: Where is Greece located?
ANSWER: Coordinates
QUESTION: Where is Washington D.C. located?
ANSWER: Coordinates
QUESTION: What is the location of Norway?
ANSWER: Coordinates
QUESTION: Where is Moscow situated?
ANSWER: Coordinates
QUESTION: What are the coordinates of Tokyo?
ANSWER: Coordinates
QUESTION: Where is the capital of Spain located?
ANSWER: Coordinates
QUESTION: How large is Lake Trichonida?
ANSWER: Number-Property
QUESTION: What is the area of France?
ANSWER: Number-Property
QUESTION: What is the population density of Athens?
ANSWER: Number-Property
QUESTION: What is the average surface area of lakes in Italy?
ANSWER: Number-Property
QUESTION: How many lakes are there in Germany?
ANSWER: Number-Count
QUESTION: What is the number of mountains in County Sligo?
ANSWER: Number-Count
QUESTION: Where is Greece located and how many islands does it have?
ANSWER: Coordinates Number-Count
QUESTION: What are the five biggest cities in France and their population?
ANSWER: Name Number-Property
QUESTION: Which is the tallest mountain in the US and how tall is it?
ANSWER: Name Number-Property
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QUESTION: Which Greek regions have more than 3 municipalities and
how many municipalities do they have?

ANSWER: Name Number-Count
QUESTION: Which is the smallest and which is the largest forest in Turkey?
ANSWER: Name Name
QUESTION: MY_QUESTION

6.2.3 Final query generation
The query generator is responsible for generating the final query. Within this stage of the
pipeline, it assimilates all the information provided by the preceding components and com-
bines them into a suitable, executable SPARQL or GeoSPARQL query. This component
also determines the inclusion of superlatives such as ’the most,’ ’the least,’ ’the fewest,’
and so on. Once again, the dependency parse tree distance is employed to pinpoint the
relevant features, and the requisite GROUP BY and ORDER BY clauses are inserted
accordingly, if needed.

6.2.4 Query Materialization and Execution
Query materialization and execution is the final component of the GeoQA3 pipeline and
is responsible for rewriting GeoSPARQL queries into SPARQL queries, in order to utilize
the materialized geospatial relationships inside the knowledge graph. The materialization
process and optimization is further discussed in [31].

The rewriting process is achieved by integrating the GoST transpiler, which relies on
Apache Jena [17]. GoST leverages the visitor patterns provided by Jena to parse the in-
put GeoSPARQL query and extract the geospatial Boolean functions. It handles FILTERs
within the query, processing and consolidating them into a single filter. This filter, in turn,
is used to structure the query into a tree-like arrangement, encompassing UNION clauses
for logical ORs within the FILTER and EXCEPT clauses for logical NOTs. The inherent
conjunctive structure of triples is maintained within each branch. In the final, this tree-like
structure is assembled into a query using UNION and EXCEPT clauses. Importantly, the
final query omits any Boolean geospatial relationships that are already materialized within
the knowledge graph and replaces them with the appropriate triples.

After the generation and the rewriting of the query, its execution happens in a Strabon triple
store endpoint. To the best of our knowledge, GeoQA3 is the first engine to integrate this
functionality in its pipeline.

6.3 Summary
In this chapter, we presented our engine GeoQA3 and how it combines classical natural
language processing techniques, like those used in GeoQA2 and the engine of Hamzei
et al., to generate the WHERE-clause with modern neural techniques to generate the
ASK/SELECT-clause. This way our pipeline uses a hybrid approach to query generation
aiming to achieve a more sophisticated understanding of natural language while main-
taining the ability to generate well-formed queries. GeoQA3 is the first engine to forego
handwritten query templates, making it able to tackle a wider array of questions. It is
also, to the best of our knowledge, the first question answering that utilizes materialized
geospatial relations.
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7. EVALUATION

In this chapter we present an evaluation of GeoQA3 on the dataset GeoQuestions1089
and a comparison to GeoQA2 and the engine of Hamzei et al. We start this chapter by
shortly introducing the GeoQuestions1089 dataset and

7.1 The GeoQuestions1089 dataset
The GeoQuestions1089 dataset consists 1089 triples of questions-queries-answers. The
questions were crowdsourced by students of the University of Athens. The dataset is split
in two parts, GeoQuestionsC (1017 questions) and GeoQuestionsW (72 questions) both
of which target the union of YAGO2 and YAGO2geo.

The dataset GeoQuestionsC was checked by the authors. Each question (query) was
checked both grammatically and syntactically, using Grammarly (1) and QuillBot (2). The
resulting set contained 1017 question-query-answer triples.

GeoQuestionsW consists of the elements of GeoQuestionsC whose questions originally
had spelling, grammar or syntax mistakes. The end goal of benchmarking how capable
QA engines are at handling incorrect input.

Following the categorization of [49], we can see that the questions of dataset GeoQues-
tions1089 fall under the following categories:3

A. Asking for a thematic or a spatial attribute of a feature, e.g., “Where is Loch Goil
located?” . In GeoQA2, these questions can be answered by posing a SPARQL
query to YAGO2geo.

B. Asking whether a feature is in a geospatial relation with another feature or features,
e.g., “Is Liverpool east of Ireland?” . The geospatial relation in this example question
is a cardinal direction one (east of). Other geospatial relations in this category of
questions include topological (“borders”) or distance (“near” or “at most 2km from”).

C. Asking for features of a given class that are in a geospatial relation with another fea-
ture. E.g., “Which counties border county Lincolnshire?” or “Which hotels in Belfast
are at most 2km from George Best Belfast City Airport?”. The geospatial relation
in the first example question is a topological one (“border”). As in the previous cat-
egory, other geospatial relations in this set of questions include cardinal or distance
(as in the second example question).

D. Asking for features of a given class that are in a geospatial relation with any features
of another class, e.g., “Which churches are near castles?” . Arguably, this category
of questions might not be useful unless one specifies a geographical area of interest;
this is done by the next category of questions.

E. Asking for features of a given class that are in a geospatial relation with an unspe-
cified feature of another class, and either one or both, is/are in another geospatial
relation with a feature specified explicitly. E.g., “Which churches are near a castle
in Scotland?” or “In Greece, which beaches are near villages?”.

1https://www.grammarly.com/
2https://quillbot.com/
3For comparison purposes, for each question category, we comment whether the search engines Google

and Bing can answer such questions after having tried a few examples.
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F. As in categories C, D and E above, plus more thematic and/or geospatial character-
istics of the features expected as answers, e.g., “Which mountains in Scotland have
height more than 1000 meters?”.

G. Questions with quantities and aggregates, e.g., “What is the total area of lakes in
Monaghan?” or “How many lakes are there in Monaghan?”.

H. Questions with superlatives or comparatives, e.g., “Which is the largest island in
Greece?” or “Is the largest island in France larger than Crete?”.

I. Questions with quantities, aggregates, and superlatives/comparatives, e.g., “Which
city in the UK has the most hospitals?” or “Is the total size of lakes in Greece larger
than lake Loch Lomond in Scotland?”.

Table 7.1 describes GeoQuestions1089 giving numbers per type of question.

7.2 Comparison to GeoQuestions201
GeoQuestions201 contains mostly simple questions that can be answered with simple
queries. For that reason, the state of the art geospatial QA engines are able to answer a
significant portion of it correctly, as was shown in [23] and confirmed by our own experi-
ence while developing GeoQA3.

GeoQuestions1089 includes numerous complex questions that require both solid natural
language understanding and advanced SPARQL features (nested queries, not-exists fil-
ters, arithmetic calculations) to be answered. For example: “How many times bigger is
the Republic of Ireland than Northern Ireland?” or “What is the population density of the
municipality of Thessaloniki?” or “How much of the UK is woodland?” or “Is Belfast closer
to the capital of the Republic of Ireland or the capital of Scotland?” or “Which islands
don’t have any lakes but have forests?”. Additionally, GeoQuestions1089 is targeted on
YAGO2geo, enabling easier comparison of engines that target this KG. Furthermore, be-
cause YAGO2geo also includes data about the United States and Greece, new challenges
arise that must be dealt with by a good QA engine. For instance, some Greek entities lack
English labels, which makes disambiguation more difficult. All in all, GeoQuestions1089
is a more varied and more challenging dataset that uses a much wider array of SPARQL
functionality in its queries compared to GeoQuestions201.

7.3 Using GeoQuestions1089 to benchmark Geospatial Question Answering en-
gines

In this section, we use the dataset GeoQuestions1089 to benchmark the QA engines
GeoQA2, the one by [23] and finally GeoQA3. We ran the experiments on a machine
with the following specifications: Intel Xeon E5-4603 v2 @2.20GHz, 128 Gb DDR3 RAM,
1.6 TB HDD (RAID-5 configuration).

7.3.1 Methodology and metrics
The question answering engine that is being evaluated attempts to generate a query for
each natural language question in the dataset. If the generation is successful, the query is
then processed by the transpiler that rewrites the query using materialized relations and it
is then sent to a geospatial RDF store that executes the query over our knowledge graph.
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The result is compared to the gold result included in GeoQuestions1089. In the case of
GeoQA3, the transpiler is already embedded as a component, so the rewriting process
happens inside the engines pipeline. To accept an answer as correct, it must match the
gold result exactly. We do not consider partially correct answers (e.g., when computed
answers are a proper subset of the ones in the gold set) as correct. Likewise, we do
not consider a superset of the answers in the gold set as correct. We chose to not use
precision, recall and F-measure because the correct number of returned answers/entities
for each query varies greatly, which biases the metric towards certain kinds of questions.

7.3.2 Evaluating GeoQA2
To evaluate GeoQA2 we set up three Strabon [33] endpoints. In the first two we store
YAGO2 and YAGO2geo respectively. These endpoints are required by GeoQA2 to gener-
ate queries. In the third endpoint, which we use for retrieving the answers to our generated
queries, we store YAGO2, YAGO2geo and its materialization.

Tables 7.2 and 7.3 show the results of the evaluation. The column “Generated Queries”
gives the percentage of questions for which GeoQA2 was able to generate a query. The
column “Correct Answers” gives the percentage of questions for which the query that was
generated was able to retrieve the correct set of answers.

We observe that the complexity of the structure of the question affects significantly the per-
formance of the system. For instance, GeoQA2 performed decently in answering rather
simple questions (i.e., geospatial relation between two features), while it has difficulties
in answering more structurally complex questions (i.e., questions with a combination of
superlatives and quantities, questions with more sophisticated syntax or vocabulary). In
addition, we see that GeoQA2 is a robust engine, meaning that it loses only a small per-
centage of its effectiveness when the input questions contain spelling, grammar or syntax
mistakes.

Our benchmark showcases three core weaknesses of the GeoQA2 engine. First, a rule-
based understanding of natural language, which falls apart for questions outside the spe-
cified rules. Second, the inherent difficulty of instance identification, especially for entit-
ies that have the same or extremely similar names (e.g., there are multiple places called
Athens). Third, the limited array of GeoSPARQL queries that can be constructed using the
existing templates, which are not enough to answer many of our more complex questions.

7.3.3 Evaluating the system of Hamzei et al.
The engine of [23] requires two servers, an Apache Solr server, used for placename and
place type identification, and an Apache Jena GeoSPARQL Fuseki server for executing
the generated queries. Even though a Solr index is provided in the code repository of the
engine, it is not suitable for our dataset. [23] use a modified version of YAGO2geo that
does not include Greece and includes a number of additional entities from Open Street
Map. We create a new Solr index that includes YAGO2 and YAGO2geo. We load the
Fuseki endpoint with YAGO2, YAGO2geo, the materialized relations of YAGO2geo and
the materialization of the surface area of every polygon in YAGO2geo. The last part is
necessary because Fuseki does not have the ability to calculate the surface area of a
polygon.

In a similar vein to the evaluation of GeoQA2, the generated queries of the engine are
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Table 7.2: Evaluation of GeoQA2 over GeoQuestionsC .
Category Generated Queries Correct Answers
A 84% 47.42%
B 76.25% 58.99%
C 79.21% 44.38%
D 56% 12%
E 80% 31.85%
F 66.66% 16.66%
G 74.13% 32.18%
H 71.12% 26.05%
I 84% 20%
Total 76.99% 38.54%

Table 7.3: Evaluation of GeoQA2 over GeoQuestionsW .
Category Generated Queries Correct Answers
A 82% 47.05%
B 81.81% 54.54%
C 85.71% 57.14%
D 50% 33%
E 88% 0.00%
F 36.36% 0.00%
G 50.00% 0.00%
H 100.00% 0.00%
I 50% 50%
Total 72.22% 34.72%

processed by our transpiler before being sent to the Apache Jena Fuseki endpoint whose
answer is compared to that included in GeoQuestions1089. To communicate with the
Fuseki endpoint we use Apache Jena’s own SPARQL-OVER-HTTP scripts to make sure
that queries are sent and results are returned correctly. Tables 7.4 and 7.5 show the results
of the evaluation.

We make three main observations. First, we see that as questions become more com-
plex, the effectiveness of the engine drops dramatically, as was the case in our evaluation
of GeoQA2. The more complex the question, the less likely it is that the query generator
is able to construct the proper GeoSPARQL query, with the most extreme example being
questions of type I. Second, the system severely underperforms in questions of Category
A, which is one of the simpler categories. This is caused by the lack of a dedicated step
for named entity disambiguation. For example, if given the input question “Where is Dub-
lin located?” the engine of [23] will return the location of every place named “Dublin” in
the KG, instead of the location of the capital of the Republic of Ireland. This leads to an
explosive increase of returned answers. Moreover, there is no mechanism for ranking
the returned answers in accordance to their relevance, so even taking the first 3 answers
as candidates doesn’t significantly change the picture. Instead of a dedicated disambig-
uation step, the engine relies on the automatic resolution of disambiguation during query
execution, which is an approach that works well for category B questions. In the original
evaluation of their system, the authors disregarded toponym disambiguation, but we con-
sider it a core part of question answering. Third, the system can handle spelling, grammar,
and syntax mistakes without performance loss.

The main weakness of the engine of [23] is the lack of a dedicated disambiguation step.
This leads to answers that contain numerous irrelevant results, i.e., the system is lacking
precision. The other significant weakness is the rule-based approach to query generation
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Table 7.4: Evaluation of the system of [23] over GeoQuestionsC . Because the query generator of
the engine was not designed to work with entities that do not have detailed geometries, we also

provide statistics for the subset of questions that target YAGO2geo only.

Category GeoQuestionsC
GeoQuestionsC
without YAGO2 Questions

Generated
Queries

Correct
Answers

Generated
Queries

Correct
Answers

Type-A 89.71% 10.85% 88.88% 12.50%
Type-B 95.68% 53.23% 95.52% 55.22%
Type-C 97.75% 30.33% 97.41% 32.90%
Type-D 100% 12% 100% 12%
Type-E 99.25% 7.40% 99.25% 7.46%
Type-F 79.16% 4.10% 76.19% 4.76%
Type-G 98.27% 11.49% 97.94% 13.01%
Type-H 97.18% 7.74% 96.49% 7.89%
Type-I 92% 0% 95% 0%
Total 95.77% 18.97% 95.53% 20.67%

Table 7.5: Evaluation of the system of [23] over GeoQuestionsW

Category GeoQuestionsW
Generated Queries Correct Answers

A 88.23% 17.64%
B 100.00% 54.54%
C 100.00% 35.71%
D 100.00% 0.00%
E 87.50% 0.00%
F 90.90% 0.00%
G 100.00% 0.00%
H 100.00% 0.00%
I 100.00% 0.00%
Total 94.44% 19.44%

that is unable to deal with complex queries.

7.3.4 Evaluating GeoQA3
Similarly with the evaluation of GeoQA2, we set up three Strabon [33] endpoints. In the
first two we store YAGO2 and YAGO2geo respectively. These endpoints are required
by GeoQA3 to generate queries. In the third endpoint, which we use for retrieving the
answers to our generated queries, we store YAGO2, YAGO2geo and its materialization.

Tables 7.6 and 7.7 show the results of the evaluation. The column “Generated Queries”
gives the percentage of questions for which GeoQA3 was able to generate a query. The
column “Correct Answers” gives the percentage of questions for which the query that was
generated was able to retrieve the correct set of answers.

We observe that the complexity of the structure of the question affects significantly the
performance of the system. For instance, GeoQA3 like GeoQA2 performed decently in
answering rather simple questions (i.e., geospatial relation between two features), while
it has difficulties in answering more structurally complex questions (i.e., questions with a
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Table 7.6: Evaluation of GeoQA3 over GeoQuestionsC .
Category Generated Queries Correct Answers
A 77.08% 56.00%
B 91.79% 57.50%
C 87.09% 45.46%
D 88.00% 24.0%
E 94.77% 34.80%
F 85.71% 8.33%
G 88.35% 33.90%
H 85.96% 29.50%
I 72.72% 24.00%
Total 87.03% 41.38%

Table 7.7: Evaluation of GeoQA3 over GeoQuestionsW .
Category Generated Queries Correct Answers
A 64.70% 35.29%
B 100% 18.18%
C 100% 35.71%
D 0.00% 0.00%
E 71.42% 14.28%
F 100.00% 0.00%
G 45.45% 18.18%
H 62.50% 0.25%
I 50.00% 50.00%
Total 77.77% 26.38%

combination of superlatives and quantities, questions with more sophisticated syntax or
vocabulary). In addition, GeoQA3 maintains its robustness even when input questions
contain spelling, grammar or syntax mistakes.

Our benchmark showcases two core weaknesses of theGeoQA3 engine, which are similar
to the first two weaknesses appearing in GeoQA2. First, a rule-based understanding of
natural language, which falls apart for questions outside the specified rules. Second, the
inherent difficulty of instance identification, especially for entities that have the same or
extremely similar names (e.g., there are multiple places called Athens).

7.3.5 Engine Comparison
The results of our evaluation, for engines using templates, show that GeoQA2 significantly
outperforms the QA engine of [23] by generating twice the amount of correct queries.
The main factor of this performance gap is the existence of a dedicated named entity
disambiguation step in GeoQA2 (instance identifier). Other than this main difference, the
two engines are similar in a number of ways. Both utilize dependency and constituency
parsing to understand the structure of the input question and the relations that exist among
its tokens. Likewise, both engines have a rule-based query generator, although the engine
of [23] uses a more dynamic of approach of combining smaller templates which allows
it to generate queries for a significantly larger portion of the dataset. Considering these
similarities, it follows that the engines must share some weaknesses. That is the case,
with the inability of either engine to reliably answer complex questions being their most
important weakness.

According to the outcomes of our evaluation, GeoQA3 clearly surpasses the QA engine
presented by [23], for reasons similar to GeoQA2, and delivers enhancements and a slight
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overall performance increase compared to GeoQA2 for sentences that are grammatically
and syntactically correct, i.e., GeoQuestionsC . Firstly, by employing a dynamic approach
to query generation and removing the usage of templates, we achieved a generation tech-
nique that successfully produces results even from complex questions, which as shown in
Tables 7.6 massively outperforms GeoQA2 in generating executable SPARQL and Geo-
SPARQL queries. Secondly, from the results it is showcased that correct answers are
slightly increased in almost all categories compared to GeoQA2. By utilizing Llama 2 [58]
and Stanford’s NER [43] deep learning techniques, our geospatial QA engine managed
a better and more meaningful natural language understanding, which provide the inform-
ation required for the generation of a query from a given natural language question. At
the same time, a consequence of this improved natural language understanding being a
core part of the GeoQA3 pipeline is that the engine produces worse results for sentences
that include significant syntactical mistakes, like those in GeoQuestionsW , which in turn
leads to a lower overall score in this subset of GeoQuestions1089. It is important to note
that GeoQA3’s ability to answer questions with multiple properties or many concepts and
instances is not well represented in the evaluation results. Even though a large number of
the questions in GeoQuestions1089 pose significant challenges, the amount of features
and properties in them is small. This is a result of the crowdsourcing effort and the instruc-
tions given to the students. GeoQA2 is limited to answering questions that have at most
two (2) concepts, two (2) instances and one (1) property. GeoQA3 has no such limitation
making it able to generate queries for a significantly larger variety of questions.

7.4 Summary
In this chapter, we presented an evaluation of GeoQA3 on the geospatial question an-
swering benchmark GeoQuestions1089 and how its performance compares to our ques-
tion answering baselines. We showed that GeoQA3 outperforms both engines, although
only by 7% in the case of GeoQA2. We presented our interpretation of the results and the
limitations of each engine. Nonetheless, we consider these results promising, considering
that this is a new approach to question answering that has not been iterated upon. In com-
parison, GeoQA2 has been worked on for 6 years. Additionally, the chosen benchmark
does not capture GeoQA3’s ability to answer more varied questions, like questions that
contain more concepts or features.
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8. CONCLUSIONS & FUTURE DIRECTIONS

In this thesis we have addressed the challenges of providing access to the YAGO2geo KG
for non-expert users using natural language QA interfaces. Given the use of geospatial
contexts in many practical situations, this challenge is of major importance while adopting
QA for wide use.

We presented the geospatial question answering engine GeoQA3, the latest in the family
of GeoQA question answering engines and the first to introduce the usage of Large Lan-
guage Models in its pipeline. GeoQA3 debuts the novel approach of LLM-guided query
generation in the space of geospatial question answering, combining heuristics and tra-
ditional semantic parsing, with state-of-the-art neural models. GeoQA3 is not a template-
based system, meaning that it can answer a wider array of questions, of any length. All
in all, our system improves upon the state of the art of geospatial question answering,
while also having a high future development ceiling, having surpassed the performance
of GeoQA2 which has been iterated upon for a number of years.

GeoQA3 as a basis for the question answering engine EarthQA2 for satellite data archives.
EarthQA2 can be used to answer queries such as “Find Sentinel-2 images that cover
Crete, have cloud cover less than 10% and have been captured in July 2023”.

For future work, we will continue advancing our approach by using neural models to extract
more information out the natural language questions. To that end, we will extend upon our
current approach of LLM-guided query generation, by fine-tuning Llama2 on GeoQues-
tions1089 to provide more detailed and complex information which will guide the query
generator through more complex tasks. A prototype implementation of this advancement
allows us to generate LIMIT clauses with greater accuracy, as well as identifying properties
more reliably. In addition, we are looking into integrating constrained natural languages
as intermediate targets for query generation, as done in [36] for SPARQL, which could
possibly lead to the creation of an end-to-end neural model for question answering over
geospatial knowledge graphs. We will also look at the potential of using LLMs to modify
and/or complete queries to combat the issue of error propagation and to handle complex
queries that require nesting.
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ABBREVIATIONS - ACRONYMS

LLM Large Language Model

KG Knowledge Graph

QA Question Answering

GIS Geographic Information Systems

NER Named Entity Recognition

NERD Named Entity Recognition and Disambiguation

POS Part-of-Speech

URI Uniform Resource Identifier

LSTM Long Short-Term Memory

OSM OpenStreetMap

GADM Global Administrative Areas

NBD National Boundary Dataset

OGC Open Geospatial Consortium

POI Point of Interest

AI Artifical Intelligence

NLP Natural Language Processing
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