NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Modelling business workflows using version control primitives
atop DOLAR

Spyros D. Trifonidis

Supervisors: A. Delis, Professor
K. Saidis, Dr.

ATHENS
JANUARY 2024

EONIKO KAI KAMNOAIZTPIAKO NMANENIZTHMIO AOGHNQN

2XOAH OETIKQN EMIZTHMQN
TMHMA NAHPO®OPIKHZ KAI THAEMNIKOINQNIQN

NTYXIAKH EPTAZIA

MovteAotroinon d10dIKACIWY XPNOIHOTTOIWVTAG
eAéyxou ekdO6oewv pe To DOLAR

21mopog A. Tpupwvidng

EmiBAémrovreg: A. AeAng, KaBnyntig
K. Zaidng, Ap.

AOHNA
IANOYAPIOZ 2024

OTOIXEi

BSc THESIS

Modelling business workflows using version control primitives atop DOLAR

Spyros D. Trifonidis
S.N.: 1115201600175

SUPERVISORS: A. Delis, Professor
K. Saidis, Professor

NTYXIAKH EPTAZIA

MovTteAotroinon S10dIKACIWY XPNOIKMOTTIOIWVTOG OTOIXEIO EAEyXoU ekddoewV pe To DOLAR

21mopog A. Tpupwvidng
A.M.: 1115201600175

ENIBAEMNONTEZX: A. AeAng, Kabnyntig
K. Zaidng, Kabnyntig

ABSTRACT

Version control systems (VCS) are essential tools for tracking changes in software source
code. However, their utility extends beyond the traditional boundaries of software engineer-
ing. Recognizing the benefits of version control for a broader spectrum of applications, this
thesis presents the design and implementation of a framework that allows business applica-
tion developers to integrate version control capabilities into the implementation of business
workflows with minimal overhead. The framework capitalizes on the DOLAR framework’s
functionalities to provide a data store agnostic, version controlled object database, offering
an efficient way to manage changes in the workflow driver datasets.

Through the proposed implementation, this thesis addresses both the challenge of introduc-
ing version control into new applications and the complexity of integrating it into existing
legacy systems. The underlying structure of our approach comprises adaptations of VCS
principles, using constructs such as repositories, commits, and branches to handle changes
in application data. The evaluation of our approach includes detailed real-world scenarios,
demonstrating how it could elegantly support processes such as academic thesis submis-
sions and generic form submissions within business applications.

In assesing the practical implementation of our approach, the thesis showcases how such a
version control system can serve to reduce complexity, enhance transparency in changes,
and facilitate smoother workflows. While acknowledging the trade-offs made in terms of in-
creased storage overhead and impact on search systems, the thesis concludes by empha-
sizing the framework’s contribution to application development and its potential for future
enhancements, such as conflict detection and resolution, extended user interface options,
and richer VCS operations.

SUBJECT AREA: Version Control Systems
KEYWORDS: version control systems, data modelling

NEPIAHWYH

Ta cuoTApaTa eAéyxou ekdOotcwv (ZEE) eval atrapaitnta epyoAgia yia tnv kataypoen
aAaywv oTov TInyaio KwdIka £pywv Aoyiopikou. Map’ 6Aa auta, n XpnolhoTnté Toug
EKTEIVETE EKTOC TNG OUVIBUCOUEVNG XPAONG TOUG OTNV TTapaywyr] Aoyiouikou. Avayvwpilovtag
TA TTPOTEPHHUATA TOU EAEYXOU EKDOOCEWV O€ MIA TTIO EUPEIA YKAUA OTTO EQPAPUOYEG, AUTH N
epyacia mapouciadel Tnv oxediaon Kal UAOTTOINCN €vOG €PYAAEIOU TO OTTOIO ETTITPETTEI OE
TIPOYPAPUATIOTEG VA EVOWHATWOOUV dUVATOTNTEG EAEYXOU EKOOOEWV OTO AOYIOMIKO TOUG
ME MIKPO KOOTOC. To epyaleio ekpeTaAeveTtal TiIc duvaTtotnTeg Tou DOLAR yia va Tpoo@Epel
MIa ayVWwOTIKA WG TTPOG TNV TEXVOAOYia atroBrikeuong, PACHN QVTIKEIUEVWY PE dUVATOTNTEG
EAEYXOU EKOOOEWV, TO OTTOIO ETTITPETTEI EUKOAEG AAAAYEG OTO HOVTEAO DEQOUEVWIV.

Méoa atro Tnv uAoTToinoN TNG, AUTH N EPYOC0IA AVTIMETWTTICEI KAl TNV OUOKOAIQ TNG E1I0aYWYNAG
OUVATOTATWY EAEYXOU E€KOOOEWV OE VEEC €QAPMOYEG KABWG Kal TNV TTEPITTAOKOTNTA TNG
EI00YWYNG TOUuG o€ NON UTTAPXOVTA TIPOYPAUMOTA. H QpXITEKTOVIKI TNG TTPOOEYYIoNG
QTTOTEAEITE ATTO UAOTTOINCEIG DOUIKWY OTOIXEIWV EVWIG CUCTHHATOG EAEYXOU EKOOOEWV OTTWG
aTTOBETAPIA, KATAYPAPES, Kal DIGKAADWOEIS YIa va XEIPIOTED TIGC aAAayEG oTa dedopéva Tng
epapuoyne. H armotipnon NG TPoofyyiong CUPTTEPIAQUBAVEI TTPAYUATIKA TEVAPIA OTTWG
TNV evamébeon akadnuaAiKwyY €PYOCIWV Kal YEVIKA TV UTTOROAR Qopuwy oTa TTAdicIa uia
£PAPHOYNG.

XpNOIUOTTOIWVTAG TNV UAOTTOINCN TNG TTPOCEYYIONG, N £pY0Cia avadelkvUEl TTwG Eva TETOIO
ouoTnUa eAEyxou ekOOOEWV UTTOPEI VA PEIWOEI TNV TTEPITTAOKOTNTA TNG UAOTTOINONG, VA
evioxuoel Tnv dla@avela Twv aAAaywyv o€ dedopéva, Kal va dIEUKOAUVEL TNV O1adikaoia Twv
EPYACIWV TTOU TTPOCPEPEI TO ouoTNUA. Evw avayvwpilel Toug cupBIBacuoug TTou Eyivav
WG TTPOG TNV €TTAUENUEVN avdykn YIO OTTOONKEUTIKOUG TTOPOUG Kal TNV TTEPITTAOKA TWV
OUCTNUATWY avadnTNoNG, N Epyacia KAaTaAfyel TOViICwVTag TNV CUVOPOWI TOU EPYAAEiOU OTNV
QVATITUEN EQAPPOYWYV KAl TNV dUVATOTNTA VIO JEANOVTIKEG BEATILWOEIG, OTTWG TNV AViXVEUOT
AUOnN OUuyKpoUOEwV, TTEPICOOTEPEG OIETTAPEG YIA TO XPNOTN, KAl TTO EUTTAOUTIOMEVEG
AeImoupyieg evog 2EE.

OEMATIKH NEPIOXH: >uotuata EAéyxou EkdOoewvV
AEZEIZ KAEIAIA: cuoTripata eA£yxou €KOOOEWYV, JOVTEAOTTOINON OEQOUEVIIV

CONTENTS

I AV 5 15 L T 8
2. RELATED WORK ..ottt ettt ettt e e e e e e e e e e e e e e e e e e e s e e ansaaasenneees 9
3. MOTIVATION .ottt ettt ettt s s s s e e e e e e e e eee e 10
3.1. Pergamos thesis submission WOrkflow ... 10
3.2. General form submission WOIKfIOWcooiiiiiiiiiiici e 14
3.3. Proposing vcs concepts for business WOrkflowscccoooovvviiiiiiiiiiiiiii e, 15
4. VCS OVERVIEW ... s 17
g I T o Y= 1= (o 17
5. DOLAR OVERVIEWcooiiiiiiiiiiiiiiiiieeeee ettt ettt ettt ee et eeeeeeeeeeeeeeeeeeeeeeeeeeees 19
6. DESIGN & IMPLEMENTATION ..o 23
7. EVALUATION L.ttt e et eeseaaaaaaaannsanssnsnssssssnnnnnees 28
8. CONCLUSION ...ttt eee e 31

BIBLIOGRAPHY ...ttt ettt e e e e e e e e 32

Modelling business workflows using version control primitives atop DOLAR

1. INTRODUCTION

Version control systems are ubiquitous in modern software development. From software en-
gineering classes in universities to globally distributed software engineering teams, version
control systems help engineers work with and reason about the changes in their program’s
source code across its life cycle. Their building blocks, like commits and branches, are sim-
ple and allow engineers to work on coherent sets of changes without interfering with each
other. Moreover, they serve as an archive for each and every change the source of a pro-
gram has gone through. Thus, they enable engineers to inspect the history of changes of
their source code and the reasoning behind them. The history and fundamentals of modern
version control systems are covered in Chapter 4.

Software engineering is not the only domain that has benefited from version control systems.
Authoring software like word processors and content management systems often employ
version control in the form of revision control, by keeping a linear history of past versions of
a document. Likewise, many business applications could benefit by a version control system
similar to those used by software engineers. We believe that applications with submission
and review cycles or applications that deal with complex business object hierarchies are
prime candidates for the usage of version control in their data models. More details about
such applications are discussed in Chapter 3. In this context, application developers need to
take the need for a version control system into consideration from the start of the develop-
ment process. Furthermore, implementing version control in a legacy system is often down-
right impossible without rewriting large portions of the system [1]. Thus, the costs associated
with building version control capabilities in business applications is often prohibitive.

This thesis presents the implementation of a version control system layer that can be used
by downstream applications, like applications that implement business workflows. Specifi-
cally, this thesis is implemented as an extension to the DOLAR project [2]. DOLAR abstracts
the details of storing business objects and provides a uniform interface for interacting with
them. The primitives DOLAR provides will be presented in Chapter 5. Furthermore, the way
this thesis leverages DOLAR will be analysed in Chapter 6. Finally, Chapter 7 discusses the
perceived benefits of the approach in the context of the real world scenarios outlined before.

Spyros D. Trifonidis 8

Modelling business workflows using version control primitives atop DOLAR

2. RELATED WORK

There have been various efforts aimed at bringing VCS features to a more diverse set of ap-
plications. The most similar one to the implementation of this thesis is CoreObject [3], which
also implements a version controlled object database. The main differences with CoreOb-
Ject are the backing databases and target applications. CoreObject uses SQLite whereas
the implementation of this thesis is storage agnostic. Additionally, CoreObject is aimed at
native desktop applications while the implementation of this thesis is geared towards web
applications.

Another relevant project is the XTDB database [4]. XTDB is a bi-temporal database sys-
tem meaning that data is stored across two axes of time. These axes of time are the valid
time, which is the application defined time during which the object was valid and transaction
time which is the time the object was inserted into the system. XTDB models objects as
immutable records. Thus, users can query records across every state they have ever been
in. This allows users to implement features like a version control system with relative ease.
Similarly, bi-temporal extensions exist for traditional relational database management sys-
tems (RDBMS). One such extension is the temporal_tables [5] extension for the PostgreSQL
RDBMS. While bi-temporal databases are very useful they operate on a lower abstraction
layer than this thesis which provides a dedicated version controlled object database. Thus,
such systems have no notion of commits, branches or merges and their implementation de-
pends on the application developer should they be needed.

Other systems used by the industry support some simple forms of object versioning. The
Simple Storage Service or S3 provided by Amazon Web Services supports keeping track of
each version of an object stored in it [6] as does the similar Cloud Storage service by Google
Cloud Platform [7]. Alternatively simple versioning can be achieved in traditional RDBMS
using extensions such as the table_version [8] extension for PostgreSQL which tracks the
history of rows in a table. Such systems are simple in their operation and effective if applica-
tions only need history tracking and simple restoration of older versions but like bi-temporal
databases lack any higher level VCS features.

Spyros D. Trifonidis 9

Modelling business workflows using version control primitives atop DOLAR

3. MOTIVATION

Implementing version control capabilities in business software is expensive. This cost stems
from the complexity of implementing the data model of a VCS on top of an already sophis-
ticated business domain data model. Hence, equipping software engineers with tools that
manage that complexity can enable the creation of business applications featuring VCS ca-
pabilities. Moreover, tools that allow the retroactive introduction of VCS capabilities in exist-
ing software can increase the usability of legacy software without large scale rewrites. To this
end, this thesis aims to implement such a tool, namely a version controlled object database,
by leveraging the DOLAR project. We next briefly present Pergamos, the digital repository
of the University of Athens, as a use case for the realization of our proposal.

3.1. Pergamos thesis submission workflow

Business applications can often benefit greatly from the use of version control features. Con-
sider the scenario of a thesis submission to the library of a university for review and publish-
ing. Let’s take for example Pergamos [9], the digital library of the University of Athens, that
manages theses written by students at the university. Firstly, the student submits their draft
to Pergamos for review (Figure 1).

APAMOE &ath_studs @ A = * = o

MAorjynon Avalrtnon EupetripLa Borifela IXETIKG n

Awadikaoia andbeong (3 Briparta)

1. Evapgn katddeong tou UAkol

Bripa 1 arno 3

Akadnpatkr povasa

ExoMr) OeTikwy Emotnpwy
Turjpa NANPo@oPLKG & TNAETILKOLWWVLLY

BLBMOBrKN KataBeong

n npocoyr

BLBALOBI KN KaL Kévtpo MAnpowdpnonc 0U OWOTOU
BLBALOBI KN IXOArC ©ETIKWY EMotnpiv ou

ApLBUOC pnTpwou f) AplBpdg AeAtiou Tautdtntag:

EmAéETe To e(80¢ UALKOU:

Mruylaxr pyadia v

Emall yia Afjin evnpepucewy & BEBaloEwy:

'.eswgm;\\‘col“

=3

Figure 1: The first step of the Pergamos thesis submission interface

In turn, Pergamos stores the draft and notifies the relevant reviewer. Next, the reviewer re-
views the draft submission and decides to accept or reject it with comments for why it was
rejected. Upon rejection, Pergamos notifies the submitter with the comments the reviewer
made. Then, the submitter fixes their submission and resubmits it to Pergamos which noti-
fies the reviewer again. Finally, after the submitter has fixed all the comments made by the

Spyros D. Trifonidis 10

Modelling business workflows using version control primitives atop DOLAR

reviewer and the reviewer has accepted the submission the thesis is recorded in the Perg-
amos database. This processes is described graphically in Figure 2. Once published, the
thesis is accessible publicly.

Submitter Pergamos Reviewer

Submit thesis

k4

Maotify the Reviewer

P
-

Review the thesis submission

Reject the submission with comments

F 3

Notify the Submitter of the rejection

"
-+

Fix mistakes according to Reviewer's comments

Resubmit thesis

h

MNotify the Reviewer of the resubmission

e
-

Review the thes_i_s__submission

Accept the submission

F 9

Notify the Submitter of the acceptance

o
-+

Submitter Pergamos Reviewer

Figure 2: A possible submission process to the Pergamos system

This is a prime example of a process that can be elegantly expressed in a series of atomic
steps. Additionally, depending on the way the developers have modeled this process, it can
prove hard to take into account all the possible states a thesis can be in. A simple implemen-
tation using a Thesis object with a field called state can be in several states depending on
the step in the process described before (Figure 3).

*
A 4
UNDER_SUBMISSION

~
//7 ~

/ ™
[) L%
SUBMITTED
Y
[e \
Lo v
REJECTED | FINALIZED

Figure 3: The state diagram of a thesis in the Pergamos system

The object would start in the UNDER _SUBMISSION state until the submitter submitted it for review
when it would transition to a SUBMITTED state. Next, the reviewer would review it and either

Spyros D. Trifonidis 11

Modelling business workflows using version control primitives atop DOLAR

reject it transitioning it back to the UNDER SUBMISSION state or approve it and transition it to
the final FINALIZED state. This would mean that every query involving Thesis objects would
need to take the state field into account in order to avoid including unwanted objects in the
result. Thus, the application developer needs to always be aware of all the possible states
a Thesis object can be in when working on a feature involving them. Moreover, having a
clear historical view of the procedure can prove useful for analytic or auditing purposes. For
example, statistics about rejections and their reasons could prove useful in documenting
common pitfalls in the submission process thus making it smoother for future submitters.

MAonynon Avalntnan Eupetripla BorBewa b3 E -

MNpoowmomnoLnueveg uttnpecieg » HAektpouikn) KataBeon

Awadikaola anoBeong (3 Briparta)

EvapEn katabeong tou uAwol 2. Enegepyacia kal untoBoAr) Tou UAkoU 3. EAgyyog Tou UAKoU arto tn BLBALoBrk

Bﬁp{] 2 CLTI@ 3 MTuyLo Epyaoia - ZupummAfpuar ' TaBeonc OYTZOED‘N’]“' &) AnoBrikeuon M Lraypapr

Zrouyeia umeuBuvoTnTag Zupminpwon ®oppag

Akadnpaikn povada

Iyohr) Oetikwv Emotnuwv i N
Turua NAnpo@optkng & THAETLKOLVWVLLY XOPAKTAPEC (TPOCEETE
pIv EXETE MATAPEVO TO
BiBALoBrikn katdBeong mhrktpo "Caps Lock” oto
TANKTpOAOYLO Oac)

BiBALoBrkn koL Kevtpo MAnpowopnong
BiBALoBNKn IxoAng BsTikwy EMoTnpwy

oag TIOPEKEL
whelEELg yua Ta

* Zuyypapiag

test@gmail.com

Emuwvupo IMavakn ZImavaxn
‘Ovopa ABrnva Athena ¢) Eva TANKTpo
"Refresh” mou

MNatpuvupo * *
otnv omnoia Bpiokeote

AM.] AAT. AK456321 (xprioto av vopiZete ont
KaTL Sev AEttoupyel omuwe Ba

A * ETIPETIE, OTILG TIX. V@ PNV
anoBnkeleTal CwoTd To
TIEPLEXOHEVD oTa TESLa

[—— Tekpnpiwanc)

Figure 4: The second step of the Pergamos thesis submission interface

Spyros D. Trifonidis 12

Modelling business workflows using version control primitives atop DOLAR

Encgepyaoia otoyslwv ouyypapsa - test@gmail.com

‘Oha ta otovyeia mou gnrodviat ival UTIo}PEWTLKA.

Emwvupo Inavakn ITavakn

Athena

ELOQYETE TO MATPLVUNO OTa sEAANVIKA ELOAYETE TO MATPWVUPO OTO

AM. N AAT AK456321 TnA. Eroayete Tov aplipo thsguwvou

Figure 5: Editing fields before submitting the thesis

Spyros D. Trifonidis 13

Modelling business workflows using version control primitives atop DOLAR

qaqr\AMO{ & ath_studs & i

Miorynon Avagrtnon Eupetiipla Boffsia Ixeukd -

]
*
(i
+

#& MNpogWITOTIONHEVES UTINPECLE HAEKTp k1) KaraBzo;

Awadwaoia anoBeong (3 Bripata)

3. EAgyx0g Tou UALKoU ammé tr BuALoBIikn

Briua 3 armo 3

H poppa éxet uroPAnBel atnv appodia BiBAloBrikn katabeong

BiBAL0BIiKN kaL KEvTpo MAnpopopnang
BLBALOBI KN ZYOANG OETIKWY ETILOTNUWY

To oUCTnpa oag £4£1 AMOOTELAEL QUTOPATA OYETLKG PNVUPA NAEKTPOVIKOU TaYUSPOpELOU

AVaVEWDT]

Figure 6: Submitting the thesis

3.2. General form submission workflow

Likewise, the general form submission workflow that is ingrained in business applications
poses similar challenges. Imagine an application with a deep and complex object hierarchy.
For instance, consider an application that manages Monument objects. Monument objects ref-
erence multiple other objects, for example City objects in a field named city which corre-
sponds to the city a monument resides in Listing 1.

// A class representing a city
class City {
String name; // The name of the city

}

// A class representing a monument
class Monument {
String name; // The name of the monument
City city; // A reference to the city object this monument resides in

}
Listing 1: Example data model

Form submissions like this Figure 7 often need to be reviewed before being promoted to
publicly accessible in order to ensure that the information they represent is factually correct.
Consequently, application developers need to take this requirement into consideration when

Spyros D. Trifonidis 14

Modelling business workflows using version control primitives atop DOLAR

creating the domain model of the application. Moreover, they always need to be aware of
the state of an object before operating on it. Thus, the problems outlined in the Pergamos
example also apply to the general case of a form submission workflow.

MORLUMENTA Edappoyn Auayeipiong

m

Evépyeiec ﬂ Ktrpto - Mpoadrikn
B Amodikeuon @ Axipwon
O npéoBetn yAwooa Texpunpiweng EmiokéTnon

® & i

]

066¢ = .)

Aopn

- H

v Emokémnon ApBHGG

AptBLo¢ SlagTavpwong pe

Fewypadixd atiypa

TuvTETayHEVEC 0 0

Map Satellite

TeXVLKEG AETTTOUEPELES

TUVTAKTIG = fnon - [+

Figure 7: A monument object creation form

3.3. Proposing vcs concepts for business workflows

Both the specific thesis submission workflow and the broader form submission workflows
encountered in business applications exhibit challenges related to managing complex work-
flows. Introducing version control capabilities to the software systems involved could signif-
icantly mitigate these challenges. By implementing version control features, developers can
establish a clear historical view of the submission process, track changes, and manage the
various states that objects undergo during the workflow. For instance, in the case of thesis
submissions, version control mechanisms could facilitate tracking revisions, documenting
reviewer comments, and streamlining the acceptance process. Similarly, in the context of
general form submissions, version control could enhance the management of complex ob-
ject hierarchies, ensure accurate data representation, and simplify the review and promotion
process. A prime example of form heavy and business object rich applications are applica-
tions that are employed by public services. Such applications oftentimes provide forms and
workflows that allow users to create or update documents related to real world bureaucratic
processes. Thus, keeping a trail of every change any person caused to such business ob-
jects could prove useful for transparency, bookkeeping and recovery use cases. Ultimately,
integrating version control concepts into business applications offers a promising avenue to
enhance workflow efficiency, facilitate auditing and analytics, and alleviate the burden on

Spyros D. Trifonidis 15

Modelling business workflows using version control primitives atop DOLAR

developers by providing a structured approach to managing complex processes and data
states.

Spyros D. Trifonidis 16

Modelling business workflows using version control primitives atop DOLAR

4. VCS OVERVIEW

The history of version control systems starts with the Source Code Control System devel-
oped by Marc J. Rochkind at Bell Labs in 1973 [10]. It was primitive, allowed only one user
to make changes at a time and required changes to the source code of programs in order to
use. However, it proved that the idea of version control systems was sound and sparked the
development of what today is considered an industry. From there, numerous other projects
emerged with varying degrees of success, and number of features. The real breakthrough
however came with the advent of distributed version control systems [11]. Up until their cre-
ation, VCS required a centralized server that coordinated access to the repository. On the
other hand, distributed VCS allowed developers to work on and share their changes with
each other without the requirement for a centralized component. Thus, teams with a large
number of code contributors could work more efficiently. One of these teams was that of the
Linux kernel. Its creator Linus Torvalds, after a spat with the proprietary BitKeeper VCS in
2005 went on to create what is now the most widely used VCS, Git[12].

4.1. Git basics

Modern VCS are designed with a set of primitives that are composed to provide version con-
trol capabilities. The implementation of this thesis uses the nomenclature used by modern
VCS, with preference to that used by Git. The root directory which contains all the files that
will be tracked by the VCS is called a repository. The atomic unit of change processed by
a VCS is called a commit. It consists of the set of changes to the files tracked by the VCS
along with a commit message. That message explains the motivation behind the change,
the person who made the change called the committer and the time at which the change
was made. Commits refer to the commit that came directly before them, forming a chain and
allowing users to traverse the chain and inspect the state of the repository at any point in
time. Commits can belong to a branch, a parallel chain of commits to the main chain that
can be committed to concurrently with the main chain and can be merged back to it after
its lifetime. Branches are commonly used to work on single features in order to isolate the
work from other unrelated changes and to prevent breakages and impediments to the main
branch which is the basis of other branches. Finally many VCS allow users to tag commits
with a user defined tag id which allows commits to represent special points in the life of a
repository like software releases.

Let’s take a look at an example. First, Alice creates the repository for her project and commits
the initial files. Then, she commits the implementation of a feature called foo in a separate
branch. Concurrently, another developer called Bob begins work on a feature called bar in
another separate branch Alice finishes with the work on the foo feature and merges the foo
branch to the main branch. Additionally, when Bob finishes the work on the bar feature he
also merges to the main branch. Finally, in a new commit, Alice adapts foo to use bar and
then tags that commit as the first version of the software. Thus, Alice and Bob have managed
to coordinate work on the same software project. More importantly however, they have a
complete historical record of every change that has led to the current state of the repository.

Spyros D. Trifonidis 17

Modelling business workflows using version control primitives atop DOLAR

D o D

Initial Commit .

~

Implement feature A1
Implement feature B1 .
Implement feature A2

Implement feature B2 .

Merge branch A

J

Merge branch B

Fixed bug in feature A1

Figure 8: An example of a repository with its commit history

Spyros D. Trifonidis 18

Modelling business workflows using version control primitives atop DOLAR

5. DOLAR OVERVIEW

The implementation of the version controlled object database uses the DOLAR project in
order to provide its data store agnostic capabilities. DOLAR provides its own set of primitives
to abstract and provide a unified API over data stores and the objects stored in them. The
first and foremost primitive is the Store which represents a repository of objects. The Store
is configured with a backing storage system which it uses to read and write objects to, for
example the MySQL database server. Objects are described by a Prototype that defines the
data the object consists of as perceived from the application side (Listing 2).

type Person {
name String

}

type Driver inherits Person {
yearsDriving Number

}

type Manufacturer {
name String

}

type Car {
modelName String
manufacturer Manufacturer
drivers List(Driver)

}
Listing 2: Example DOLAR prototype

An instance of an object is called a virtualObject. VirtualObjects are associated with a
Prototype and are created by retrieving the object from the backing data store and mapping
it to the virtualobject using the Prototype. Additionally, VirtualObjects can be created by
application code in order to store new objects in the backing data store (Listing 3).

Spyros D. Trifonidis 19

Modelling business workflows using version control primitives atop DOLAR

Car createCar(Manufacturer m, String modelName) {

// Instantiate a new instance of the desired Prototype that resides in memory.
// The returned instance is a VirtualObject
var car = DOLAR.newObject(Car.class);

// Set the relevant fields
car.setModelName (modelName) ;
car.setManufacturer(m);

// Return the VirtualObject to the caller. Do note that until the save()

// method is called on the VirtualObject it is not persisted in the backing
// data store.

return car;

}

void doStuffWithCar() {
// Get an existing object using its unique identifier
var manufacturer = DOLAR.getObjectByID("manufacturerA")

var car = createCar(manufacturer, "MK-1")

// Save the created object to the configured backing data store.
// Here the configuration of the datastore is removed for brevity.
car.save();

Listing 3: Example DOLAR Java SDK usage

Objects can be retrieved by their unique identifier from the Store and can reference other
objects in the Store. Furthermore, objects can be inserted in batches that will leverage the
transaction capabilities of the backing storage system, where available. Moreover, the Store
can be configured with a backing index system that can be leveraged to query the objects
in the Store with more sophisticated criteria. Finally, DOLAR provides the application with
hooks that it can use to react to events in the lifetime of a VirtualObject.

It is evident that DOLAR plays a significant role in our implementation as it enables us to
offer a store-agnostic version control primitives atop of any underlying DOLAR store. Its most
important element however is its batch processing capabilities which the implementation re-
lies on and extends. The DOLAR batch object processing system allows data manipulation
of multiple objects at once Figure 9. This includes inserting new objects to the data store,
updating objects that already exist and deleting them.

Spyros D. Trifonidis 20

Modelling business workflows using version control primitives atop DOLAR

[E)Etast&%

Batch request decoder H Batch processor HData store command encoder

A
Sends DOLAR batch

|

Figure 9: The DOLAR batch object processing system

There are multiple ways to construct a DOLAR batch operation request. Here its JSON doc-
ument format will be used as JSON is the defacto contemporary industry standard for data
exchange in web applications. DOLAR batches support a number of operations with the
most important ones being “create”, “update” and “delete”. The user can provide the data
to each operation by creating an object named after the operation. This operation object
in turn can feature any number of lists named after the Prototype of the objects that the
operation will act upon. Each list consists of any number of objects that contain the data
for the virtualObject the operation will act on. Objects in the batch can reference other ob-
jects in the batch by using a special referral ID. That ID is created using the following syntax
@<OPERATION NAME>.<PROTOTYPE>.<INDEX IN LIST>. Consider the following example. The data

model we will use is described using pseudo-java Listing 4.

Spyros D. Trifonidis 21

Modelling business workflows using version control primitives atop DOLAR

class City {
String name;

}

class Monument {
String name;
City city;

}

class FeaturedMonument {
Monument monument;

}
Listing 4: Example data model

The data model describes a simple hierarchy of objects that could be used by a mon-
ument cataloging application. Lets imagine that a FeaturedMonument with an ID set to
featured monument greece has already been inserted into the system. Next, the DOLAR
batch facility will be supplied using a JSON document Listing 5.

{
"CREATE": {
"Monument": [
{
"name": "Temple of Poseidon",
"city": "@CREATE.City.0Q"
}
1,
"City": [
{
"name": "Sounio"
}
]
b
"UPDATE": {
"FeaturedMonument": [
{
"id": "featured monument greece",
"monument”: "@CREATE.Monument.0"
}
]
}
}

Listing 5: The DOLAR batch input document

After the batch system completes the request the backing data store will store two new ob-
jects and the updated third object. The newly created City object will reference the newly
created Monument object. Likewise, the already existing FeaturedMonument object will refer-
ence the newly created Monument object. More importantly, all this will happen in a single
database transaction, if the backing data store provides such capability. Ultimately, the batch
processing feature of DOLAR is a powerful mechanism that the implementation of the thesis
uses to transparently provide its version control features.

Spyros D. Trifonidis 22

Modelling business workflows using version control primitives atop DOLAR

6. DESIGN & IMPLEMENTATION

The implementation borrows some terminology used by git internally for its primitives. Firstly,
a DOLAR store represents a repository. Next, the implementation uses some Prototypes to
describe and store its primitives.

* Commit Listing 6

Commit objects represent an atomic snapshot of the state of the objects in the lifetime of
the repository. In order to represent the evolution of that state, Commit objects reference the
Commit objects that they derive their previous state from using a field called parents. Objects
created in the repository belong to a Commit.

class Commit {
String id;
List<Commit> parents;

}
Listing 6: The data model of the Ref object in pseudo-java

* Ref Listing 7

Ref objects represent a named reference to a particular state of the repository. For instance,
the main Ref represents the latest state of the repository and is created automatically when
the repository is initialized. Ref objects reference the latest Commit in the particular state they
refer to using a field called head. The latest state of an object (as of a specific Ref) belongs
to a Ref.

class Ref {
String id;
Commit head;

}
Listing 7: The data model of the Ref object in pseudo-java

The implementation strives to be independent from the data stored in existing systems such

that such systems can work with the implementation without needing a complete rewrite,

so it does not introduce extra fields to the objects stored in the repository. Instead, it uses
the identifiers of the objects in question to augment their meaning and provide the version
control capabilities. For instance, the identifier of an object that is part of a Commit is <object

ID>:commit:<Commit ID>. Likewise, the identifier of an object that is latest as of a particular

Ref iS <object ID>:ref:<Ref ID>. Consider the example state of a repository in Figure 10.

Objects implicitly refer to the VCS object they belong to (here marked by the dotted line).

Conversely, VCS objects have an explicit reference to each other.

* objectl and object2 were created first and their snapshots objectl:commit:1 and
object2:commit:1 belong to commit:1. At first the main Ref ref:main was created and ref-
erenced commit:1 while objectl and object2 implicitly belong to ref:main.

* object3 was created along with its snapshot object3:commit:2 and a new Commit object
commit:2. The ref:main object was updated to reference the newly created commit:2.

The final state of the repository contains every state the repository has gone through.

Spyros D. Trifonidis 23

Modelling business workflows using version control primitives atop DOLAR

object1 object2 object3

_
[

object3:commit:2

]
*
*

object1:commit:1 ‘ object2:commit:1 commit:2

L]
*
+

7 commit: 1

Figure 10: The representation of the history of the main branch

On the other hand, branches to the history of the repository are nothing more than a Ref
other than ref:main. In Figure 11 a branch named foo, represented by the Ref ref:foo, was
created at some point along the history of the repository. Objects at the latest state of the
repository as of the ref:foo branch are represented by simply concatenating the ref:foo
suffix to their identifier.

object54ref:-foo object58:ref.foo object60:ref-foo
------------ T
object60:commit: 161 > ref:.foo
. . ad
“a

object54:commit;: 160 object58:commit: 160 commit: 161

'\-.“-.* ‘--'-
commit: 160

parents

commit:...

Figure 11: The representation of the history of an auxilliary branch

Having described the primitives used by the implementation and the way they work the op-
erations that it provides can be introduced. These are

Spyros D. Trifonidis 24

Modelling business workflows using version control primitives atop DOLAR

+ Committing one or more new objects or updates to existing objects to a branch of the

repository.

* Merging a branch onto another one.

The commit VCS operation provided by the implementation is implemented by extending
the DOLAR batch processing system with a new batch processor. Clients must submit an
input DOLAR batch request to the commit operation which in turn will transform it before

it is processed by the rest of the DOLAR batch system. Initially the batch processor trans-

forms the batch request by adding the creation of a Commit object along with the update of
the relevant Ref object to reference the newly created Commit. Next, for every object that
is updated or created in the batch the VCS batch processor adds the creation of a second
identical object with its identifier set to reference the commit that is created to the batch
request. Similarly, the identifier of the created or update object is set to reference the Ref
object that this batch is a part of. A notable exception is the case of the main Ref for which

the identifier of the object is left as is so as to facilitate the data independence guarantees of

the implementation. For example consider the input DOLAR batch for the commit operation
on the main branch (Listing 8).

{

"CREATE": {
"Monument": [
{
"name": "Temple of Poseidon",
"city": "@CREATE.City.0"
}
1,
"City": [
{
"name": "Sounio"
}
]
}
"UPDATE": {
"FeaturedMonument": [
{
"id": "featured monument greece",
"monument": "@CREATE.Monument.0"
}
]
}

Listing 8: An example input DOLAR batch

When this batch is submitted the VCS batch processor transforms it to batch in Listing 9.

Spyros D. Trifonidis

25

Modelling business workflows using version control primitives atop DOLAR

{
"CREATE": {
"Commit": [
{
"id": "500",
"parents": "499"
}
1,
"Monument": [
{
"id": "temple of poseidon",
"name": "Temple of Poseidon",
"city": "@CREATE.City.0"
}
{
"id": "temple of poseidon:commit:500",
"name": "Temple of Poseidon",
"city": "@CREATE.City.0"
}
1,
"City": [
{
"id": "sounio",
"name": "Sounio"
b
{
"id": "sounio:commit:500",
"name": "Sounio"
}
1,
"FeaturedMonument": [
{
"id": "featured monument greece:commit
"monument": "@CREATE.Monument.0"
}
1
}
"UPDATE": {
"Ref": [
{
"id": "main",
"head": "@CREATE.Commit.0"
}
1,
"FeaturedMonument": [
{
"id": "featured monument greece",
"monument": "@CREATE.Monument.0"
}
1
}
}

:500",

Listing 9: The transformation applied to the example input batch

Spyros D. Trifonidis 26

Modelling business workflows using version control primitives atop DOLAR

Regarding the merge operation, clients can request it by specifying the source and target
branches. The VCS system accomplishes the merge operation by creating and submitting
a DOLAR batch operation. The DOLAR batch contains the creation of a Commit object that
references the latest Commit objects of both branches. Next, the Ref of the target branch is
updated to reference the newly created Commit object. Finally, every object that was created
or updated in the source branch is inserted to the DOLAR batch. Thus, the state of the
repository after the merge operation is the union of the states of both the source and target
branches with the intersection keeping the objects of the source branch Figure 12.

object1 object2
“a o
object2:ref:foo object2:commit:3 ‘ ref:main ‘
. . head
' *‘h“q_h
object2:commit:2 ref:foo commit:3
he%d nts
object1:commit:1 commit:2 parents
parents
commit:1

Figure 12: The representation of the history after a merge

Spyros D. Trifonidis 27

Modelling business workflows using version control primitives atop DOLAR

7. EVALUATION

The implementation provides application developers with a DOLAR system that enables the
use of version control primitives and operations to model or extend their systems with. Ap-
plication developers could introduce DOLAR along with the VCS extensions presented here
to the write code paths of their applications thus benefiting from the history tracking. The
evaluation of the implementation however, is accomplished by examining a possible rework
of the Pergamos thesis submission workflow with the primitives and operations provided
by it. First, the process begins by the submitter submitting their draft to Pergamos. In turn,
Pergamos creates a branch named after the thesis and commits the thesis draft. This branch
will represent the thesis in an unpublished and under review state. Next, Pergamos notifies
the reviewer of the thesis submission. The reviewer will review the submission and accept
or reject it with comments. Upon rejection, Pergamos commits the comments made by the
reviewer and notifies the submitter. Then, the submitter fixes their submission and resubmits
to Pergamos which in turn commits the new submission. Once the submitter has fixed all the
comments made by the reviewer and the reviewer has accepted the submission, Pergamos
merges the submission branch to the main branch Figure 13.

Spyros D. Trifonidis 28

Modelling business workflows using version control primitives atop DOLAR

Submitter Pergamos Reviewer

Submit thesis

P
-

Create branch and commit submission

Natify the Reviewer

.y
L

Review the thesis submission

Reject the submission with comments

-+
Commit the rejection along with the comments

Notify the Submitter of the rejection

-1
Fix mistakes according to Reviewer's comments

Resubmit thesis

=
Commit new submission

MNotify the Reviewer of the resubmission

P
>

Review the thesis submission

Accept the submission

-
e}

Merge the accepted submission to the main branch

Notify the Submitter of the acceptance

-+

Submitter Pergamos Reviewer

Figure 13: The Pergamos thesis submission process using version control features

Thus, the main branch only contains published theses. This reduces the number of states
a thesis can be in while on the main branch. Recall the possible states a thesis can take in
the simple implementation discussed earlier Figure 3. Compared to that, the current revised
implementation can forgo the state field entirely. Instead, the thesis is in the - now implicit
- finalized state if and only if it is present in the main branch. Conversely, theses on other
branches and by definition in the UNDER SUBMISSION state. Consequently, the cognitive load
imposed on developers was reduced. More importantly however, the data model and its state

space was greatly simplified Figure 14.

Spyros D. Trifonidis 29

Modelling business workflows using version control primitives atop DOLAR

h
UNDER_SUBMISSION

h 4
FINALIZED

&

Figure 14: The state diagram of a Pergamos thesis after the domain simplification

This results in a more robust solution, since edge case states don’t need to be included in
every user facing query, and a more scalable solution since developers can implement new
workflows using a simplified data model. Moreover, each state a thesis has been in across
its lifetime has been recorded it the system and can be resurfaced easily.

Similarly, the more general form submission workflow discussed in Chapter 3 could benefit
from the introduction of a VCS workflow. Like the Pergamos case, objects created or updated
as part of a form submission are persisted in a branch. When the review process completes
the submission branch, now at the desired state, is merged to the main branch populating it
with the objects in a reviewed and correct state.

This improves the general form submission workflow in a number of ways. First, objects be-
longing to submissions pending review are separated from the working set of objects thus
simplifying the work of the application developers. Secondly, the versions the object goes
through in the life cycle of the application are preserved and can be inspected on demand.
Finally, the code that needs to be written by application developers is simpler thus allowing
for more and more complex business workflows to be implemented in a robust way.

However, the current design has some limitations and the implementation makes some trade
offs in order to meet its stated goals. First, objects are essentially copied on update. This
means that frequently updated objects will end up increasing the total storage space used
significantly. Next, in order to support merging, some metadata needs to be tracked for each
branch. This results in even more storage space use as well as slower operations since
each operation needs to also write the metadata to the backing data store. Finally, data inde-
pendence is achieved by repurposing the identifier of an object instead of adding additional
fields or relations. Consequently, searching using version control information would be hard
while unrelated searches would result in unwanted version control objects. Thus, the current
implementation elects to not index version control objects at all in order to keep the search
system backwards compatible.

Spyros D. Trifonidis 30

Modelling business workflows using version control primitives atop DOLAR

8. CONCLUSION

In conclusion, the implementation equips application developers with the tools necessary to
enrich their applications with version control capabilities. It should be noted that our work
does so with full backwards compatibility and data independence from the existing system
and without requiring applications to adapt their data models to the requirements of the im-
plementation. However, the implementation trades off its flexibility and backwards compati-
bility with increased storage overhead because of the extra copies of objects it stores.

The current implementation leaves much room for improvement in the future. First, no work
is done on conflict detection and resolution. Implementing such a feature, while maintaining
the backwards compatibility guarantees of the current implementation, will pose interesting
challenges as changes to the underlying data model will be needed. Secondly, various other
features could be built upon the core implemented in this thesis. For example, a Ul showing
the history of a branch along with the changes introduced by each commit. Moreover, the
operations provided by the implementation could be enhanced providing more VCS opera-
tions like rebasing and cherry picking. Finally, an indexing system that allows the dynamic
search of the history of a repository would allow even better history querying capabilities.

Spyros D. Trifonidis 31

Modelling business workflows using version control primitives atop DOLAR

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

BIBLIOGRAPHY

C. Birchall, “Re-Engineering Legacy Software,” Manning, 2016.

K. Saidis, Y. Smaragdakis, and A. Delis, “DOLAR: virtualizing heterogeneous informa-
tion spaces to support their expansion,” Software: Practice and Experience, vol. 41, no.
11, pp. 1349-1383, 2011.

“CoreObject.” Accessed: Mar. 18, 2024. [Online]. Available: http://coreobject.org/
“XTDB.” Accessed: Mar. 18, 2024. [Online]. Available: https://www.xtdb.com/

“temporal_tables.” Accessed: Mar. 18, 2024. [Online]. Available: https://github.com/
arkhipov/temporal_tables

“How S3 Versioning works.” Accessed: Mar. 18, 2024. [Online]. Available: https://docs.
aws.amazon.com/AmazonS3/latest/userguide/versioning-workflows.html

“Object versioning.” Accessed: Mar. 18, 2024. [Online]. Available: https://cloud.google.
com/storage/docs/object-versioning

“‘postgresql-tableversion.” Accessed: Mar. 18, 2024. [Online]. Available: https://github.
com/linz/postgresql-tableversion

“‘Pergamos.” Accessed: Mar. 18, 2024. [Online]. Available: https://pergamos.lib.uoa.gr/
uoa/dl/frontend/index.html

M. J. Rochkind, “The source code control system,” IEEE Transactions on Software En-
gineering, no. 4, pp. 364-370, 1975.

R. Majumdar, R. Jain, S. Barthwal, and C. Choudhary, “Source code management us-
ing version control system,” in 2017 6th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO), 2017, pp.
278-281. doi: 10.1109/ICRITO.2017.8342438.

L. Torvalds, J. Hamano, and others, “Git,” Software Freedom Conservancy, p. 20-21,
2005.

Spyros D. Trifonidis 32

http://coreobject.org/
https://www.xtdb.com/
https://github.com/arkhipov/temporal_tables
https://github.com/arkhipov/temporal_tables
https://docs.aws.amazon.com/AmazonS3/latest/userguide/versioning-workflows.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/versioning-workflows.html
https://cloud.google.com/storage/docs/object-versioning
https://cloud.google.com/storage/docs/object-versioning
https://github.com/linz/postgresql-tableversion
https://github.com/linz/postgresql-tableversion
https://pergamos.lib.uoa.gr/uoa/dl/frontend/index.html
https://pergamos.lib.uoa.gr/uoa/dl/frontend/index.html
https://doi.org/10.1109/ICRITO.2017.8342438

	INTRODUCTION
	RELATED WORK
	MOTIVATION
	Pergamos thesis submission workflow
	General form submission workflow
	Proposing vcs concepts for business workflows

	VCS OVERVIEW
	Git basics

	DOLAR OVERVIEW
	DESIGN & IMPLEMENTATION
	EVALUATION
	CONCLUSION
	BIBLIOGRAPHY

