

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES

“COMPUTER SCIENCE”

MASTER THESIS

Managing the Data Modeling Lifecycle with the DOLAR Type-
Manager Web-app

Ioanna P. Mourtzaki

Supervisor: Alexis Delis, Professor
Kostas Saidis, Visiting Lecturer

Athens

March 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΠΛΗΡΟΦΟΡΙΚΗ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαχείρηση του κύκλου ζωής των μοντέλων με χρηση του
DOLAR Type Manager Web-app

Ιωάννα Π. Μουρτζάκη

Επιβλέπων: Αλέξης Δελής, Καθηγητής
Κώστας Σαΐδης, Επιτετραμμένος Λέκτορας

Αθήνα

Μάρτιος 2024

MASTER THESIS

Managing the Data Modeling Lifecycle with the DOLAR Type-Manager Web-app

Ioanna P. Mourtzaki

R.N.: cs22200021

SUPERVISOR: Alexis Delis, Professor
Kostas Saidis, Visiting Lecturer

THESIS COMMITEE: Alexis Delis, Professor
Panagiotis Rondogiannis, Professor

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαχείρηση του κύκλου ζωής των μοντέλων με χρηση του

DOLAR Type Manager Web-app

Ιωάννα Π. Μουρτζάκη

Α.Μ.: cs22200021

ΕΠΙΒΛΕΠΩΝ: Αλέξης Δελής, Καθηγητής
Κώστας Σαΐδης, Επιτετραμμένος Λέκτορας

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Αλέξης Δελής, Καθηγητής
Παναγιώτης Ροντογιάννης, Καθηγητής

ABSTRACT

In today's rapidly evolving digital landscape, the volume, diversity and
variety of information continue to expand at an unprecedented pace.
Organizations face the challenge of effectively managing their
ever-growing datasets, which are often held in different representations,
types, structures, and formats. The DOLAR (Data Object Language And
Runtime) framework offers a comprehensive solution for managing the
complexities of information expansion by virtualizing the information
space. DOLAR introduces a virtual object environment, which serves as an
abstraction layer between the data model, the data store and the
application/business logic. This abstraction allows for seamless
integration of new datasets into existing applications, as well as
straight-forward reuse of existing datasets to new applications.

At the core of the DOLARL lies a storage-agnostic representation of (a)
the data models (called DOLAR prototypes) and (b) the objects instantiated
by these models (called virtual objects). The prototypes encapsulate
essential data characteristics such as field types, their characteristics
and their relationships and the framework supports multiple, distinct yet
equivalent, syntactic representations for defining and storing the
proptotypes (namely XML, JSON and the FLY domain-specific language). DOLAR
also offers a Type Manager extension, a seamless DOLAR prototype
introspection and modification API, that uniformly hides the underpinnings
of the underlying DOLAR prototype syntax.

This thesis builds upon DOLAR's Type Manager extension to introduce the
Type Manager Web App, a user-friendly and intuitive interface for managing
DOLAR prototypes. This web app is developed using Java Spring Boot for the
backend endpoints and React framework for the development of the user
interface. Additionally, it is packaged as an Electron application,
providing a self-contained desktop experience. Users can manage various
aspects of DOLAR prototypes through the Type Manager Web App, including
creating, modifying, and deleting prototypes, managing inheritance
relationships, as well as executing batch actions that resemble
refactorings, traditionally performed by application developers through
IDEs. The application enables users to interact with DOLAR prototypes
effortlessly through a web-based interface, without having to learn a
custom syntax or new language. The integration of Spring Boot ensures
robust and efficient backend functionality, while React facilitates a
responsive and interactive frontend experience. The Electron framework
allows for the distribution of the Type Manager Web App as a standalone
desktop application, enhancing convenience and flexibility.

SUBJECT AREA: Data modeling

KEYWORDS: data representation, DOLAR prototypes virtual objects, web application

ΠΕΡΙΛΗΨΗ

Στην σημερινή εποχή της πληροφορίας που διανύουμε είναι γνωστό ότι ο όγκος και η
ποικιλία των διαθέσιμων δεδομένων επεκτείνονται συνεχώς με ραγδαίους ρυθμούς και
αυτό καθιστά ζωτικής σημασίας την αποτελεσματική διαχείριση των πληροφοριών.
Ωστόσο, οι παραδοσιακές προσεγγίσεις στην διαχείριση πληροφοριών αδυνατούν να
συμβαδίσουν με τη δυναμική φύση των δεδομένων. Μία από τις κύριες προκλήσεις είναι
η στενή σύζευξη που υπάρχει μεταξύ της επιχειρηματικής λογικής, και της αποθήκευσης
και αναπαράστασής της ίδιας της πληροφορίας. Αυτή η σύζευξη καθιστά δύσκολη την
εισαγωγή νέων τύπων δεδομένων ή την τροποποίηση υφιστάμενων δομών. Για την
αντιμετώπιση αυτού του προβλήματος και την αποτελεσματικότερη διαχείρηση
πληροφοριών, ο διαχωρισμός της επιχειρηματικής λογικής από την αποθήκευση και την
αναπαράσταση πληροφοριών έχει αναγνωριστεί ως λύση για την επίτευξη ευελιξίας,
επεκτασιμότητας και προσαρμοστικότητας. Η παρούσα εργασία εστιάζει στον
διαχωρισμό της λογικής της πληροφορίας από την αποθήκευση και την αναπαράστασή
της, στο πλαίσιο του συστήματος DOLAR (Dynamic Object-oriented Virtual Information
Space). Το DOLAR παρέχει μια ολοκληρωμένη λύση για τη διαχείριση πολύπλοκων
πληροφοριών, αξιοποιώντας ένα περιβάλλον εικονικού χώρου πληροφοριών, όπου η
πληροφορία υπάρχει, ανακτάται και τροποποείται, χωρίς να χρειάζεται άμεση
πρόσβαση στην ίδια την αναπαράσταση της πληροφορίας, καθώς και στον χώρο στον
οπoίο έχει αποθηκευτεί. Για τη βελτίωση της διαχείρισης των πρωτοτύπων DOLAR, η
εργασία παρουσιάζει την εφαρμογή Type Manager Web App, η οποία αναπτύχθηκε με
χρήση Java Spring Boot και React. Η εφαρμογή αυτή συνεισφέρει στην αφαίρεση της
πολυπλοκότητας της διαχείρησης πληροφοριών, επιτρέποντας στους χρήστες να
αλληλεπιδρούν με τα DOLAR μοντέλα και να τα επεξεργάζονται εύκολα, μέσω μιας web
διεπαφής. Συγκεκριμένα, η εργασία ασχολείται με την αρχιτεκτονική της εφαρμογής, το
σχεδιασμό της διεπαφής (UI Design), καθώς και την υλοποίηση της. Επιπλέον,
παραθέτει ένα end-to-end παράδειγμα για να περιγράψει τη διαδικασία τροποποίησης
ενός DOLAR μοντέλου μέσω της εφαρμογής. Διαχωρίζοντας την επιχειρηματική λογική
από την αποθήκευση και την αναπαράσταση πληροφοριών, η εφαρμογή Type Manager
Web App προσφέρει μια ολοκληρωμένη λύση για τη διαχείριση των DOLAR μοντέλων,
διασφαλίζοντας έτσι επεκτασιμότητα και προσαρμοστικότητα ενόψει των
διευρυνόμενων απαιτήσεων της πληροφορίας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μοντελοποίηση δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: αναπαράσταση δεδομένων, ψηφιακή πληροφορία, web application

CONTENTS

1. INTRODUCTION .. 10

2. DOLAR DATA MODELING LIFECYCLE ... 11

2.1 DOLAR Prototypes ... 11

2.2 Type Manager Extension .. 17

2.3 DOLAR Prototype Lifecycle ... 17

3. TYPE MANAGER WEB APP ... 18

3.1 Overview .. 18

3.2 Architecture ... 19

3.3 Back-End RESTful API ... 20

3.4 Front end UI Design .. 21

3.4.1 Homepage and Navigation .. 21

3.4.2 Side Navigation Menu ... 23

3.4.3 Prototype Information Page ... 25

3.4.4 Modal Components ... 27

3.4.5 Notifications ... 29

3.5 Implementation ... 31

3.5.1 Front-End Implementation ... 31

3.5.2 Back-End Implementation ... 32

3.5.3 Asynchronous Communication Logic .. 42

3.5.4 End-to-End Example: Adding a Field .. 43

4. CONCLUSION AND FUTURE WORK ... 53

APPENDIX .. 55

REFERENCES .. 57

LIST OF FIGURES

Figure 1: Type Manager Web App Architecture ... 20

Figure 2: UI Design - Homepage ... 22

Figure 3: UI Design - Create New Prototype page .. 23

Figure 4: UI Design - Side Menu - Local DOLAR prototypes ... 24

Figure 5: UI Design - Side Menu - Core DOLAR prototypes.. 25

Figure 6: UI Design - Prototype Information page ... 26

Figure 7: UI Design - Add New Field modal... 28

Figure 8: UI Design - Notification for successfully adding a prototype 30

Figure 9: UI Design - Notification for unsuccessfully adding a prototype 30

LIST OF TABLES

Table 1: Back-End Implementation Endpoints ... 55

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 10

1. INTRODUCTION

In today's rapidly evolving digital landscape, the volume and variety of information
continue to expand at an unprecedented pace. Organizations face the challenge of
effectively managing this ever-growing pool of data, which often comes in several types,
structures, and formats [1]. Traditional approaches to information management struggle
to keep up with these dynamics, leading to complex development processes, increased
costs, and difficulties in adapting to changing business requirements. [2] [3] [4]

One key issue is the tightly coupled nature of business logic with the storage and
representation of information. In many systems, the data model and the underlying
storage technology are intricately intertwined, making it challenging to introduce new
data types or modify existing structures without significant effort and potential
disruptions. This tight coupling creates dependencies and limits the flexibility needed to
accommodate the expanding information landscape. [5]

To address these challenges, researchers and practitioners have recognized the need
for decoupling the business logic of information from its storage and representation [6].
By separating the logical model from the physical implementation, organizations can
achieve greater flexibility, scalability, and adaptability when dealing with diverse data
types and evolving business requirements.

The DOLAR (Data Object Language And Runtime) framework, introduced by Saidis,
Smaragdakis, and Delis offers a comprehensive solution for managing the complexities
of information expansion [7]. DOLAR leverages a virtual information space environment,
which serves as an abstraction layer between the data model and the actual business
logic. This abstraction allows for seamless integration of new data types and structures
into existing applications, without the need for knowing and understanding the data
model representation.

At the core of the DOLAR lies a storage-agnostic representation of a) the data models
(called DOLAR prototypes) and b) the data objects instantiated by these models (called
virtual objects). These prototypes encapsulate essential characteristics, relationships,
and field information in different syntactic representations, abstracting away the
complexities of data representation. This empowers users to define and modify models
in terms of different, yet equivalent, syntactic representations. The framework currently
supports three variations, namely XML, JSON, and FLY.

To augment the capabilities of the DOLAR framework, a Type Manager Extension has
been developed, that offers a seamless DOLAR prototype introspection and
modification API, regardless of the underlying DOLAR prototype syntax. For example,
the action “add field X to type Y” can be triggered through the Type Manager and it will
seamlessly perform this action in any of the three syntactic variations that is currently
selected.

This API offers methods that facilitate prototype refactoring actions swiftly and
accurately. Users can manage various aspects of DOLAR prototypes through this API,
including creating, modifying, and deleting prototypes, managing inheritance
relationships, fields, and field groups, as well as executing batch actions for efficient
bulk operations.

Building upon the DOLAR framework and the Type Manager Extension, this thesis
introduces the Type Manager Web App. This web app is developed using Java Spring
Boot for the backend endpoints and React framework for the development of the user
interface. Additionally, it is packaged as an Electron application, providing a self-
contained desktop experience.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 11

The Type Manager Web App provides a user-friendly interface for managing DOLAR
prototypes. By abstracting away the complexities of backend operations, the application
enables users to interact with DOLAR prototypes effortlessly through a web-based
interface. The integration of Spring Boot ensures robust and efficient backend
functionality, while React facilitates a responsive and interactive frontend experience.
The Electron framework allows for the distribution of the Type Manager Web App as a
standalone desktop application, enhancing convenience and flexibility.

This thesis explores the architecture, user interface design and implementation of the
Type Manager Web App. It delves into the backend RESTful APIs developed with
Spring Boot, the frontend UI design implemented in React, and their asynchronous
communication logic. Additionally, an end-to-end example is included to highlight the
process of adding a field to a DOLAR prototype. The thesis concludes with a discussion
regarding the web app, possibilities of future work, and some references.

This thesis aims to provide a comprehensive solution for decoupling business logic from
information storage and representation. This enables developers and organizations to
effectively manage the complexities of prototype refactoring and data modeling,
ensuring scalability and adaptability in the face of expanding information requirements.

2. DOLAR DATA MODELING LIFECYCLE

The DOLAR (Data Object Language And Runtime) framework offers a comprehensive
solution to the complexities of information expansion. By introducing a virtual
information space environment, DOLAR harnesses the power of automation and
abstraction to facilitate the integration of novel data types within existing applications.
This approach significantly mitigates the expenses associated with expansion while
ensuring the scalability and adaptability of the system. [6]

2.1 DOLAR Prototypes

At its core, DOLAR revolves around the concept of DOLAR prototypes and Virtual
Objects, which serve as the fundamental building blocks for representing and
manipulating data within diverse digital environments. DOLAR is based on a
revolutionary approach to data modeling that lies a storage-agnostic representation of
a) the data models (called DOLAR prototypes) and b) the objects instantiated by these
models (called virtual objects). One of the most compelling aspects of DOLAR is its
ability to abstract away the complexities of data representation, empowering users to
define and adjust models through diverse but interchangeable syntactic representations.
Presently, the framework offers support for three variations: XML, JSON, and FLY.

In essence, DOLAR enables users to focus solely on defining or refining data models
according to their requirements, without needing to delve into the underlying intricacies
of how these models are represented internally. The beauty of DOLAR lies in its
utilization of storage-agnostic representation as a standardized format for defining and
representing data models. Each representation contains attributes crucial for the model,
including relationships, fields, schemes, and other essential details.

In other words, DOLAR prototypes provide a logical abstraction of data stored in various
artifacts, fostering a unified and standardized perspective regardless of underlying
storage intricacies. This cohesive approach could be illustrated through the detailed
depiction of a DOLAR prototype, named ‘Photo’. Below, you will find representations of
the 'Photo' prototype in both XML, JSON, and FLY formats. These representations
elucidate the structured definitions and attributes encapsulated within each format,

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 12

exemplifying the versatility and adaptability of DOLAR prototypes in managing and
representing complex data structures.

XML representation

<?xml version="1.0" encoding="utf-8"?>

<prototype>

 <inherits id="Model"/>

 <inherits id="CommonMetadata"/>

 <inherits id="ItemBase"/>

 <inherits id="PhotoContainer"/>

 <label lang="el">Φωτογραφία</label>

 <label lang="en">Photo</label>

 <meta id="Factory" />

 <meta id="Indexable" />

 <field id="caption">

 <label lang="el">Λεζάντα</label>

 <label lang="en">Caption</label>

 <type>TEXT</type>

 <map>true</map>

 <meta id="sortable"/>

 </field>

 <field id="depictedSubject">

 <label lang="el">Απεικονιζόμενο θέμα</label>

 <label lang="en">Depicted subject</label>

 <type>TEXT</type>

 </field>

 <fieldGroup id="migration_files">

 <field id="filepath">

 <label lang="en">Filepath</label>

 <type>TEXT</type>

 </field>

 <field id="filename">

 <label lang="en">Filename</label>

 <type>TEXT</type>

 </field>

 </fieldGroup>

</prototype>

JSON representation

{

 "id" : "Photo",

 "inherits" : ["CommonMetadata", "Core_Node", "Core_Timestamps", "ItemBase",

"Model", "PhotoContainer"],

 "labels" : [{

 "lang" : "el",

 "value" : "Φωτογραφία"

 }, {

 "lang" : "en",

 "value" : "Photo"

 }],

 "meta" : [{

 "id" : "Factory",

 "value" : ""

 }, {

 "id" : "Indexable",

 "value" : ""

 }],

 "fields" : [{

 "id" : "parents",

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 13

 "meta" : [],

 "type" : "REF",

 "transient" : false,

 "array" : true,

 "map" : false,

 "constraint" : "/butterfly/core/Container",

 "defaultValue" : ""

 }, {

 "id" : "address",

 "labels" : [{

 "lang" : "el",

 "value" : "Διεύθυνση"

 }, {

 "lang" : "en",

 "value" : "Address"

 }],

 "meta" : [],

 "type" : "BIGTEXT",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

 "defaultValue" : ""

 }, {

 "id" : "caption",

 "labels" : [{

 "lang" : "el",

 "value" : "Λεζάντα"

 }, {

 "lang" : "en",

 "value" : "Caption"

 }],

 "meta" : [],

 "type" : "TEXT",

 "transient" : false,

 "array" : false,

 "map" : true,

 "constraint" : "",

 "defaultValue" : ""

 }, {

 "id" : "depictedSubject",

 "labels" : [{

 "lang" : "el",

 "value" : "Απεικονιζόμενο θέμα"

 }, {

 "lang" : "en",

 "value" : "Depicted subject"

 }],

 "meta" : [],

 "type" : "TEXT",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

 "defaultValue" : ""

 }],

 "fieldGroups" : [{

 "id" : "timestamps",

 "meta" : [],

 "fields" : [{

 "id" : "createdAt",

 "labels" : [{

 "lang" : "en",

 "value" : "Creation timestamp (milliseconds since the Εpoch)"

 }],

 "meta" : [],

 "type" : "NUMBER",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 14

 "defaultValue" : ""

 }, {

 "id" : "modifiedAt",

 "labels" : [{

 "lang" : "en",

 "value" : "Modification timestamp (milliseconds since the Εpoch)"

 }],

 "meta" : [],

 "type" : "NUMBER",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

 "defaultValue" : ""

 }]

 }, {

 "id" : "files",

 "labels" : [{

 "lang" : "el",

 "value" : "Αρχεία"

 }, {

 "lang" : "en",

 "value" : "Files"

 }],

 "meta" : [],

 "fields" : [{

 "id" : "thumb",

 "labels" : [{

 "lang" : "el",

 "value" : "Μικρογραφία"

 }, {

 "lang" : "en",

 "value" : "Thumbnail"

 }],

 "meta" : [],

 "type" : "REF",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "/butterfly/core/JpegFile|/butterfly/core/PngFile",

 "defaultValue" : ""

 }, {

 "id" : "hqFile",

 "labels" : [{

 "lang" : "el",

 "value" : "Εικόνα υψηλής ποιότητας"

 }, {

 "lang" : "en",

 "value" : "High quality image file"

 }],

 "meta" : [],

 "type" : "REF",s

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" :

"/butterfly/core/TiffFile|/butterfly/core/JpegFile|/butterfly/core/PngFile",

 "defaultValue" : ""

 }, {

 "id" : "webFile",

 "labels" : [{

 "lang" : "el",

 "value" : "Εικόνα web ποιότητας"

 }, {

 "lang" : "en",

 "value" : "Web image file"

 }],

 "meta" : [],

 "type" : "REF",

 "transient" : false,

 "array" : false,

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 15

 "map" : false,

 "constraint" : "/butterfly/core/JpegFile|/butterfly/core/PngFile",

 "defaultValue" : ""

 }]

 }, {

 "id" : "migration_files",

 "meta" : [],

 "fields" : [{

 "id" : "filepath",

 "labels" : [{

 "lang" : "en",

 "value" : "Filepath"

 }],

 "meta" : [],

 "type" : "TEXT",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

 "defaultValue" : ""

 }, {

 "id" : "filename",

 "labels" : [{

 "lang" : "en",

 "value" : "Filename"

 }],

 "meta" : [],

 "type" : "TEXT",

 "transient" : false,

 "array" : false,

 "map" : false,

 "constraint" : "",

 "defaultValue" : ""

 }]

 }]

}

FLY representation

@annotate(

label: map("en","Photo", "el","Φωτογραφία"),

Factory: "true",

Indexable: "true"

)

type Photo inherits data.Model, data.CommonMetadata, data.ItemBase,

niovity.butterfly.core.PhotoContainer, niovity.butterfly.core.DCItem {

 @annotate(

 label: map("en","Caption", "el","Λεζάντα"),

 sortable: "true"

)

 caption Map(Text)

 @annotate(

 label: map("en","Depicted subject", "el","Απεικονιζόμενο θέμα")

)

 depictedSubject Text

 @annotate(migration_files) {

 @annotate(

 label: map("en","Filepath"),

 sortable: "true"

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 16

)

 filepath Map(Text)

 @annotate(

 label: map("en","Filename"),

 sortable: "true"

)

 fileName Map(Text)

 }

}

The XML representation of the 'Photo' prototype provides a structured and hierarchically
organized definition of its attributes and properties. Each element within the XML
document delineates specific characteristics of the prototype, such as labels in different
languages, metadata, fields with their respective identifiers, types, and constraints.

At the same time, the JSON representation offers a concise and compact depiction of
the 'Photo' prototype's attributes in a key-value pair format. Each attribute is
encapsulated within its corresponding identifier, accompanied by relevant labels,
metadata, and constraints. This representation displays the versatility of JSON in
representing complex data structures with minimal verbosity.

Regarding the FLY representation, the declaration introduces the prototype named
'Photo', which inherits attributes and functionalities from foundational prototypes.
Annotations are included throughout the representation to provide metadata and
information for handling each attribute within the DOLAR framework.

All representations of the ‘Photo’ prototype contain the following information:

Inheritance and Property Definitions

Within all representations, the 'Photo' prototype is articulated as inheriting foundational
properties from prototypes such as "Model," "CommonMetadata," and "ItemBase." This
inheritance establishes the core attributes and functionalities of the 'Photo' prototype,
ensuring consistency and coherence across various implementations.

Multilingual Labeling

All representations uphold the principle of multilingual labeling, catering to diverse
linguistic contexts. Labels provided in both Greek and English languages enhance
accessibility and usability for a wider audience, accommodating users with different
language preferences or requirements.

Metadata Specification

Metadata elements such as "Factory" and "Indexable" are consistently defined and
incorporated into the representations. These metadata specifications offer contextual
information crucial for the efficient management and utilization of 'Photo' prototype
instances, ensuring that relevant metadata is readily available for downstream
processes.

Field Definitions and Grouping

In the representations, fields encapsulating specific data attributes, such as "caption"
and "depictedSubject," are meticulously defined. Additionally, field grouping is employed
to enhance organizational clarity and facilitate modular design principles. These

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 17

groupings aid in structuring and organizing data attributes, promoting maintainability
and extensibility of the prototype definitions.

In essence, all the syntactic representations maintain equivalence in terms of
fundamental attributes, properties, and structural coherence. All representations
collectively offer a comprehensive and unified depiction of the "Photo" prototype,
underscoring its versatility and adaptability within the proposed system architecture.

2.2 Type Manager Extension

To augment the capabilities of the DOLAR framework, a Type Manager Extension has
been developed, offering a seamless DOLAR prototype introspection and modification
API. This extension enhances the framework's flexibility by providing users with the
ability to interact with DOLAR prototypes regardless of the underlying syntax variation.
For instance, actions such as "add field X to type Y" can be effortlessly executed
through the Type Manager, seamlessly accommodating any of the three syntactic
variations currently selected.

When executing the "add field X to type Y" operation in the Photo prototype through the
Type Manager Extension, the XML representation, for example, will be updated to
include the newly added field. For instance, upon adding the "captureDate" field to the
Photo prototype (“add field captureDate to type Photo”), the XML representation would
incorporate the following definition:

<field id="captureDate">

 <type>DATE</type>

 <transient>false</transient>

 <array>false</array>

 <map>false</map>

</field>

This XML snippet illustrates how the Type Manager Extension seamlessly integrates
modifications into the XML representation of DOLAR prototypes, ensuring consistency
and coherence across all representations.

2.3 DOLAR Prototype Lifecycle

In addition to simplifying prototype management, the API offered by the Type Manager
Extension streamlines prototype refactoring actions swiftly and accurately. Users can
leverage a variety of methods provided by the API to manage various aspects of
DOLAR prototypes, enhancing their flexibility and efficiency in handling data modeling
tasks. These methods include creating, modifying, and deleting DOLAR prototypes, as
well as managing inheritance relationships, fields, and field groups.

With the API, users gain granular control over prototype management tasks. They can
retrieve DOLAR prototypes by namespace, allowing for organized and efficient access
to prototype information. Detailed information about specific prototypes can be fetched,
providing users with comprehensive insights into prototype attributes and
configurations. Moreover, users can seamlessly create new prototypes or delete
existing ones, facilitating the adaptation of the data model to evolving requirements.

The API empowers users to establish or remove inheritance relationships between
prototypes, enabling flexible and dynamic modeling of data structures. This capability is
essential for maintaining coherence and consistency within the data model while
accommodating changes and updates over time. Additionally, users can manage fields
and field groups with ease, defining and organizing data attributes according to specific
requirements.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 18

Furthermore, the API supports batch actions for efficient bulk operations, allowing users
to execute repetitive tasks quickly and effortlessly. This feature enhances productivity
by automating routine operations and reducing manual effort. Overall, the
comprehensive set of methods provided by the API facilitates agile and efficient data
modeling workflows, empowering users to design and manage DOLAR prototypes
effectively.

The Type Manager Extension encapsulates the core functionality necessary for DOLAR
prototype refactoring, leveraging the robustness and efficiency of command-line
interactions. By housing the actual actions methods, the Type Manager Extension
ensures that prototype refactoring processes are executed swiftly and accurately,
without compromising on performance or reliability.

It is worth noting that the approach taken in developing the Type Manager Extension
bears resemblance to the principles underlying the Language Server Protocol (LSP)
utilized in Integrated Development Environments (IDEs). Just as LSP abstracts the
language-specific features of IDEs, allowing for the development of language-
independent tools and services, the Type Manager Extension abstracts the syntactic
complexities of DOLAR prototypes, providing a unified interface for managing and
refactoring prototypes irrespective of their underlying syntax. This abstraction layer
fosters interoperability and extensibility, enabling the integration of the DOLAR
framework with diverse tools and systems while maintaining consistency and coherence
in data modeling workflows. [8]

By adopting a similar philosophy to LSP, the Type Manager Extension enhances the
accessibility and usability of DOLAR prototype management, enabling users to interact
with prototypes consistently and intuitively.

In summary, the discussion surrounding the DOLAR prototypes approach and the
innovative Type Manager Extension underscores the importance of flexible frameworks
and efficient management tools in modern software development. By decoupling
application logic from contextual elements and providing users with streamlined
methods for prototype management and refactoring, significant advancements can be
made in terms of system flexibility, scalability, and usability.

3. TYPE MANAGER WEB APP

3.1 Overview

Built upon the foundation laid by the DOLAR framework and the Type Manager
Extension, this thesis introduces the Type Manager Web App – an intuitive interface
designed to support prototype refactoring processes. Developed using modern
technologies, the Type Manager Web App leverages the Type Manager Extension
actions to create a seamless user experience for managing DOLAR prototypes.

The development of the Type Manager Web App was motivated by the need to
enhance user experience and accessibility in managing DOLAR prototypes within the
existing Type Manager Extension. While the Type Manager Extension provided
powerful functionality for prototype refactoring, its command-line interface presented a
steep learning curve and required users to have a comprehensive understanding of the
underlying syntactic representation of prototypes. The Type Manager Web App aims to
address these limitations by providing a user-friendly web-based interface that abstracts
away the complexities of the backend operations. By leveraging the power of Spring
Boot and React, the app offers a seamless and interactive experience for users to
create, modify, and manage DOLAR prototypes. Furthermore, by packaging the app as

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 19

an Electron application, it can be distributed as a standalone desktop app, providing
convenience and flexibility to users.

The Type Manager Web App abstracts away the complexities of backend operations,
allowing users to interact with DOLAR prototypes effortlessly through a user-friendly
web interface. By consuming the endpoints provided by the Type Manager Extension,
the Type Manager Web App extends the accessibility and usability of prototype
refactoring functionalities to a broader audience.

Through intuitive UI components and streamlined workflows, users can view, create,
modify, and delete prototypes with ease. The Type Manager Web App ensures that
users can execute prototype refactoring actions without needing to delve into the
intricacies of backend operations or command-line interactions. Instead, users can
focus on defining and refining data models according to their requirements, fostering
agility and efficiency in data modeling tasks. In essence, the Type Manager Web App
serves as a bridge between backend actions methods and frontend user interfaces,
offering a holistic solution for prototype refactoring and data modeling within the DOLAR
ecosystem.

One of the standout features of the Type Manager Web App is its isolation of the
prototype representation, which enhances user experience and simplifies data
management. Users can engage in prototype refactoring without needing to know the
intricate details of the underlying model representation. Instead, they interact with the
user interface, which abstracts away the complexities of backend operations, thus
streamlining the refactoring process.

Another notable aspect of the Type Manager Web App is its flexibility in executing
prototype refactoring actions. Users have the option to execute each action separately -
such as adding a field, editing a field, or refactoring inheritance—or to bundle multiple
actions into a batch and execute them together with a single call to the backend. This
capability streamlines the refactoring process, allowing users to execute complex
actions efficiently and effectively.

One other important feature of the Type Manager Web App is its standalone nature,
made possible by Electron. Users can access the application as a self-contained
desktop application, eliminating the need for constant internet connectivity or reliance
on web browsers. This standalone functionality enhances user convenience and
flexibility, allowing users to manage DOLAR prototypes seamlessly across various
computing environments.

Through its utilization of Electron, the Type Manager Web App offers a robust and
versatile solution for managing DOLAR prototypes. By combining the flexibility of web
technologies with the power of native desktop integration, the application delivers a
seamless user experience, empowering users to streamline prototype refactoring tasks
with ease.

3.2 Architecture

The architecture of the Type Manager Web App is carefully designed to provide a
robust and efficient framework for prototype management. At its core, the app is divided
into two main components: the Front-End and the Back-End.

The Front-End is developed using React, a popular JavaScript library for building user
interfaces. It leverages the Electron framework, enabling the creation of cross-platform
desktop applications. The use of React allows for the construction of modular
components, including the Side Menu, the Modals, and the Notifications. This

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 20

component-based approach ensures a clean and organized codebase, making it easier
to manage and scale the application.

The Back-End is powered by Java Spring Boot, a versatile framework that simplifies the
development of production-ready applications. Within the Back-End, API endpoints are
defined through controllers, which act as the interface between the Front-End and the
core application logic. The service layer encapsulates the intricate details of prototype
management, handling actions such as creating, updating, and deleting DOLAR
prototypes. The Spring Boot Controller orchestrates these actions, ensuring a seamless
and efficient process.

The constructive collaboration between the Front-End and Back-End is key to the app's
success. The Front-End communicates with the Back-End through well-defined API
endpoints, enabling the exchange of data and actions. This integration ensures a
responsive and interactive user experience, with changes in the Front-End triggering
corresponding actions in the Back-End.

The modular nature of the architecture enhances scalability and maintenance. Each
component, from the smallest UI element to the entire Navigation Menu of the
application, is encapsulated within its own module. This modular approach simplifies
updates, bug fixes, and the addition of new features, contributing to the overall agility of
the development process.

The following diagram provides a high-level overview of the system architecture:

Figure 1: Type Manager Web App Architecture

In summary, the architecture of the Type Manager Web App is a carefully orchestrated
blend of cutting-edge technologies, aiming to provide users with a seamless experience
in managing DOLAR prototypes. The division of responsibilities between the Front-End
and Back-End, coupled with a modular design, lays the foundation for a scalable,
maintainable, and responsive application.

3.3 Back-End RESTful APIs

The back-end RESTful APIs serve as the backbone of the Type Manager Web App,
orchestrating the communication between the front end and the data storage. The API,

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 21

implemented using Java Spring Boot, follows RESTful principles, offering a set of well-
defined endpoints for various operations on DOLAR prototypes. The high-level design
of the back-end focuses on providing a robust and efficient mechanism for prototype
management, including features such as creating DOLAR prototypes, updating fields,
managing inheritance relationships, and more. The Type Manager Web App utilizes the
following endpoints:

1. Retrieve DOLAR prototypes by Namespace: Retrieves prototype names

belonging to a specific namespace, facilitating namespace-based exploration.

2. Retrieve Prototype Details: Fetches detailed information about a specific

prototype, including inheritance details and field information.

3. Create New Prototype: Creates a new prototype with the given name, ensuring

uniqueness.

4. Delete Prototype: Deletes the identified prototype.

5. Add Inheritance to Prototype: Establishes an inheritance relationship for the

prototype, reflecting the added inheritance in the response.

6. Remove Inheritance from Prototype: Removes an inheritance relationship from

the identified prototype.

7. Create Field: Adds a new field to the prototype, with parameters like field ID, type,

and constraint.

8. Update Field for Prototype: Modifies an existing field for the prototype, with

parameters like field ID, type, and constraint.

9. Delete Field: Removes a field from the prototype.

10. Add Field Group to Prototype: Adds a new field group to the prototype.

11. Remove Field Group from Prototype: Removes a field group from the

prototype.

12. Add Batch Actions: Executes bulk operations on multiple prototypes

simultaneously.

These RESTful endpoints provide a robust API for managing DOLAR prototypes and
related entities. The design follows industry-standard conventions, ensuring clarity and
ease of use for developers. For a consolidated overview of all endpoints, a summary
table is available in the appendix.

3.4 Front end UI Design

The Type Manager Web App is meticulously designed to provide users with a robust
and user-friendly interface for creating, modifying, and deleting DOLAR prototypes. The
design principles revolve around seamless navigation, a well-organized information
hierarchy, and effective user interaction. The following paragraphs detail key aspects of
the design.

3.4.1 Homepage and Navigation

The homepage serves as the user's gateway to the Type Manager Web App, featuring
a side menu meticulously organized into prototype groups. This design choice

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 22

enhances user efficiency, allowing them to quickly locate and select DOLAR prototypes
of interest. The side menu's collapsible structure ensures a clean and organized
interface, minimizing visual clutter and providing users with a focused view of available
prototype categories.

The strategically placed "Create new prototype" button on the homepage is a pivotal
element of the navigation and information hierarchy. This button serves as an entry
point for users who wish to contribute to the digital library by adding new DOLAR
prototypes. By clicking this button, users are seamlessly directed to the "Create New
Prototype" page, where they can provide a name for the prototype and initiate the
creation process. This separation of the creation process from the prototype exploration
ensures a clear distinction in user workflows.

Figure 2: UI Design – Homepage

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 23

Figure 3: UI Design - Create New Prototype page

3.4.2 Side Navigation Menu

The Side Menu serves as a fundamental element in navigating through the Type
Manager Web App. Positioned prominently on the homepage, the Side Menu
categorizes DOLAR prototypes into the "Local" and "Core" groups, presenting users
with a clear distinction between editable and read-only DOLAR prototypes.

The "Local" DOLAR prototypes represent the user's creations and editable DOLAR
prototypes. Users have complete control over these DOLAR prototypes, enabling
actions such as editing, adding, and performing various management tasks. The "Local"
group forms an integral part of the user's workspace, facilitating a dynamic and
interactive environment for prototype development.

In contrast, the "Core" DOLAR prototypes encompass third-party libraries or predefined
DOLAR prototypes imported into the system. These DOLAR prototypes are read-only,
emphasizing their role as reference or foundational components. Users are restricted
from editing or modifying "Core" DOLAR prototypes, ensuring the integrity of these
essential components.

The collapsible design of the Side Menu optimizes screen real estate, allowing users to
toggle between different prototype groups effortlessly. Clicking on a prototype group
triggers an expansion, revealing a detailed list of DOLAR prototypes within that
namespace. This dynamic responsiveness enhances user engagement, providing an
efficient mechanism for users to explore and select DOLAR prototypes based on their
categorization.

Notably, the Side Menu's functionality extends beyond navigation. It persistently
accompanies users across pages, ensuring continual access to prototype groups. This
consistent presence reinforces a sense of orientation and ease of use, enabling users to
seamlessly transition between different sections of the system. The selected prototype
is visually emphasized, aiding users in identifying their current location within the
prototype hierarchy.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 24

In essence, the Front-End UI Design prioritizes user-friendly interactions and clear
categorization, promoting a cohesive and efficient experience in managing both "Local"
and "Core" DOLAR prototypes.

Figure 4: UI Design - Side Menu - Local DOLAR prototypes

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 25

Figure 5: UI Design - Side Menu - Core DOLAR prototypes

3.4.3 Prototype Information Page

Upon selecting a prototype, users are directed to the "Prototype Information" page. The
following section delves into the intricacies of the "Prototype Information Page," a
central hub within the system where users interact with individual DOLAR prototypes.
Organized into distinct sections, this page aims to provide users with an efficient
experience. The Inheritance Section (Inherited Prototypes) allows users to navigate and
manipulate the prototype's relationships, managing both direct and indirect inherited
DOLAR prototypes. Meanwhile, the Fields Section (Structure) meticulously organizes
attributes, offering dynamic tools for adding, updating, and removing fields and field
groups.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 26

Figure 6: UI Design - Prototype Information page

Inheritance Section

The Inheritance Section provides a comprehensive overview of the prototype's lineage,
encompassing both direct and potentially indirect inherited DOLAR prototypes. Users
can interact with this section to manage inherited DOLAR prototypes. Removal of
directly inherited DOLAR prototypes is facilitated by the "X" icon next to the prototype
name. Additionally, a toggle button extends the view to include indirect inherited DOLAR
prototypes, enhancing exploration. To incorporate new inherited DOLAR prototypes,
users can utilize a dedicated button that initiates the process through a modal, allowing
them to select the desired prototype for inheritance.

Fields Section

The Fields Section organizes information about the prototype's attributes, grouping
them based on field groups for clarity. Users have the flexibility to efficiently manage
fields associated with the prototype. Adding a new field is simplified through a button,
triggering a modal for input. The “Edit” option facilitates updates to existing fields, while
the “Delete” option removes fields linked to the prototype. Fields are presented in sub-
tables categorized by field groups, fostering a structured representation of the
prototype's attributes. The modal for updating a field is shown in the below image, as
well as the confirmation dialog for the deletion of a field. Users can dynamically add new
field groups and remove existing ones, promoting adaptability. A specific sub-table
labeled "Standalone fields" ensures the orderly presentation of fields that do not belong
to any predefined group, maintaining a visually tidy interface.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 27

Figure 7: UI Design - Update Field modal

Figure 8: UI Design - Delete Field confirmation dialog

3.4.4 Modal Components

In the Type Manager Web App, Modal components play a pivotal role in facilitating user
interactions, particularly during user actions. The modal, leveraging the Material-UI
(MUI) library, is strategically employed to provide users with a streamlined experience.
The following outlines the modal workflow within the system:

When a user initiates specific actions, such as adding a new field, the Modal comes into
play, ensuring a focused and distraction-free interaction. Clicking on the corresponding
button triggers the display of the Modal, prompting users to input the necessary
information for the intended action.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 28

Within the modal, users are presented with fields to complete, capturing essential data
for the action. This design choice ensures a seamless and guided experience,
minimizing the potential for errors or omissions.

Within each action available, such as adding or updating fields, two buttons coexist in
the modal– the "Save" button and the "Add to Batch" button. This thoughtful design
allows users to choose between immediate execution and deferred action storage.
When users press the "Save" button, the action is sent to the server and executed
promptly. On the other hand, if users opt for the "Add to Batch" button, the action is
saved locally in the browser's storage.

Figure 9: UI Design - Add New Field modal

Following action execution, whether immediate or deferred, the Modal automatically
closes, contributing to a clean and uncluttered interface. This closure is complemented
by immediate feedback through a visually clear indication of the action's success or
failure.

Users have the option to cancel the operation by pressing the cancel button within the
modal. Cancelling results in the closure of the modal without executing the intended
action, offering users flexibility in their interactions.

As part of the user feedback system, an alert notification is displayed upon action
completion, providing real-time information about the outcome. This notification
mechanism ensures users are promptly informed about the success or failure of their
actions.

This thoughtful design of modal interactions aligns with the broader user experience
principles of the Type Manager Web App, emphasizing clarity, efficiency, and user-
friendly interactions.

To access and manage the actions saved at the batch, users can utilize the "Show
Batch Actions" button on the "Prototype" page. This action triggers the display of a
modal, known as the "Batch Actions Modal," providing an organized overview of all
saved actions.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 29

3.4.4.1 Batch Actions Modal

The "Batch Actions Modal" is designed to offer users a detailed and structured view of
the deferred actions. Upon pressing the "Show Batch Actions" button, users are
presented with a modal that categorizes actions by prototype. For each DOLAR
prototype, there is a list of saved actions, including the type of action (e.g., "Update
Field") and specifics of the change (e.g., field ID, type, constraint).

This modal empowers users to selectively manage deferred actions. They can remove
individual actions by interacting with "X" buttons next to each action entry. Additionally,
users have the option to clear the entire batch with a single click, providing a
streamlined way to reset or revise their deferred actions. Once users are satisfied with
the batched actions, they can press the "Save Actions" button within the modal. This
action initiates the process of sending a JSON string containing all the batched actions
to the server for execution. Simultaneously, the modal closes, ensuring a clean and
uncluttered interface.

The "Batch Actions Modal" introduces a user-friendly means of managing deferred
actions, aligning seamlessly with the broader user experience principles of the Type
Manager Web App.

Figure 10: Batch Actions Modal

3.4.5 Notifications

The Notifications feature is a crucial component embedded in the Type Manager Web
App, designed to provide real-time and informative feedback to users. This section
plays a pivotal role in enhancing user awareness and transparency, ensuring that users
are promptly notified about system actions and changes, ultimately contributing to a
positive user experience.

When users perform actions, such as adding or removing DOLAR prototypes, updating
fields, or making other modifications within the system, the Notifications system comes
into play. These notifications serve as immediate feedback, informing users about the
outcome of their actions. This initiative-taking communication is vital in keeping users

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 30

well-informed and engaged with the ongoing processes within the Type Manager Web
App.

Figure 11: UI Design – Notification for successfully adding a prototype

Figure 12: UI Design - Notification for unsuccessfully adding a prototype

The design of the notifications is carefully crafted to balance visibility and non-
intrusiveness. Each notification is presented in a clear and unobtrusive manner,
avoiding disruption to the user's workflow while ensuring that essential information is
readily accessible. The language used in these notifications is concise and informative,
conveying the essential details of the action performed.

Moreover, the Notifications system supports accessibility by incorporating features such
as color-coding to signify the nature of the notification. This approach caters to users

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 31

with diverse needs, ensuring that the system communicates effectively regardless of
individual user preferences or potential limitations.

In summary, the design prioritizes a user-centric approach, ensuring an intuitive and
efficient user experience. The detailed consideration of navigation, information
presentation, interaction, and feedback mechanisms establish a foundation for a robust
Type Manager Web App. These design choices set the stage for a smooth transition to
the "Implementation" section, where the theoretical concepts will be translated into
practical, functional elements of the system.

3.5 Implementation

The Type Manager Web App represents a culmination of cutting-edge technologies
strategically integrated to deliver a robust and user-centric solution. At its core, the
system relies on the powerful Java Spring Boot framework for the back-end, ensuring a
solid foundation for scalable and maintainable operations. Augmenting this, the front-
end is meticulously crafted using React, a declarative JavaScript library celebrated for
its efficiency in constructing dynamic and interactive user interfaces. The integration of
Electron extends React's capabilities, allowing the system to effortlessly function as a
standalone desktop application. To ensure a contemporary and cohesive user interface,
the Material-UI (MUI) styling library is deployed, aligning with Google's Material Design
principles for an aesthetically pleasing and user-friendly experience.

3.5.1 Front-End Implementation

The front-end implementation of the Type Manager Web App relies on the powerful
combination of React with Electron, providing users with an immersive and responsive
user interface. The utilization of React, a JavaScript library for building user interfaces,
offers a component-based approach that fosters modular and reusable code. This not
only enhances code organization but also streamlines development and maintenance.

3.5.1.1 React Front-End Implementation

The frontend of the Type Manager Web App is meticulously crafted using React, a
declarative JavaScript library renowned for its efficiency in constructing dynamic and
interactive user interfaces. React's component-based architecture forms the backbone
of the system, promoting code reusability and maintainability. Each distinct element,
from the Side Menu to modals and alerts, is encapsulated within separate React
components, facilitating a modular and organized codebase. This choice not only
enhances development speed but also paves the way for a more scalable and
extensible system. React's virtual DOM ensures optimal rendering performance,
contributing to a seamless and responsive user experience. [9]

React's popularity and widespread adoption in the industry demonstrate its
effectiveness as a front-end development tool [10]. Its robust ecosystem provides a vast
array of community-driven libraries and packages that extend its capabilities and
simplify common tasks [11]. Additionally, React's strong community support offers
extensive documentation, online forums, and tutorials, making it easier for developers to
learn and troubleshoot issues [12].

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 32

3.5.1.2 Electron Integration

The integration of Electron amplifies the capabilities of the React frontend, enabling the
Type Manager Web App to function effortlessly as a standalone desktop application.
Electron leverages web technologies to package React applications into cross-platform
desktop apps, extending the reach and accessibility of the system. This integration
ensures a consistent user experience across various operating systems, maintaining
the responsiveness and interactivity characteristic of web applications. By leveraging
Electron, the Type Manager Web App transcends traditional web application
boundaries, providing users with the flexibility of a desktop application. [13]

Electron has gained significant popularity as a framework for building desktop
applications using web technologies [14]. Its rich feature set and cross-platform
compatibility make it a preferred choice for developers seeking to create desktop
applications with web technologies. The Electron community actively contributes to the
framework's growth, offering a wide range of plugins and extensions that enhance its
functionality and enable integration with native operating system capabilities [15].

3.5.1.3 Material-UI Styling Library

The user interface of the Type Manager Web App is enhanced by the integration of the
Material-UI (MUI) styling library. Material-UI is a popular React UI framework that
implements Google's Material Design principles. By utilizing Material-UI components,
the system achieves a modern and cohesive look and feel. The library offers pre-
designed, customizable components, ensuring consistency in design elements and
enhancing the overall user experience. This strategic use of Material-UI aligns the
system with contemporary design standards and contributes to an aesthetically pleasing
and user-friendly interface. The system extensively utilizes Material-UI components,
including buttons, modals, forms, and navigation elements, to maintain a cohesive
design language throughout the application. [16]

Material-UI has gained traction in the React community due to its comprehensive set of
components and ease of integration. Its flexible theming capabilities allow developers to
customize the visual aspects of the application to align with branding guidelines or
specific design requirements [17]. Material-UI's active development and frequent
updates ensure ongoing support and the incorporation of new features. [18]

In conclusion, the front-end implementation revolves around React and Electron,
combining the modular and component-driven nature of React with the desktop
application capabilities of Electron. This amalgamation results in a responsive and
efficient user interface, offering a seamless experience across different platforms. The
emphasis on components ensures a well-organized and maintainable codebase,
facilitating a smooth development process and enhancing the overall user interaction
with the Type Manager Web App.

3.5.2 Back-End Implementation

The back end of the Type Manager Web App is powered by Java Spring Boot, a widely
adopted and highly regarded framework for building robust and scalable Java-based
applications.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 33

3.5.2.1 Spring Back-End Implementation
Spring Boot simplifies the development process by providing conventions and defaults,
allowing developers to focus on business logic rather than boilerplate code. Leveraging
the Spring Boot framework enhances the system's maintainability and reliability, with
features such as dependency injection, aspect-oriented programming, and a vast
ecosystem of extensions. This choice aligns with industry best practices, ensuring a
solid foundation for the Type Manager Web App's backend operations. [19]

The system architecture comprises Configuration, Controller, Service,
PrototypeEncoder, and Application files.

The Configuration file (ApiConfiguration) plays a crucial role in configuring the Type
Manager Web App, specifically setting up the virtual space for DOLAR prototypes. The
primary purpose of the file is to provide configuration details for the system's virtual
space setup. In this context, a virtual space represents the location where DOLAR
prototypes are stored. This externalization of configuration details enhances flexibility,
allowing for easy modifications and adaptability to different environments or use cases.

The Controller class (ApiController) acts as the Controller, exposing various endpoints
for communication with the front end. These endpoints include functionalities for
retrieving DOLAR prototypes, creating, updating, and deleting DOLAR prototypes,
managing fields, handling inheritance relationships, and working with field groups. For
instance, the getPrototypes, createType, deleteType, createField, addInheritance, and
other methods define the API endpoints responsible for these operations.

The Service class (ApiService) encapsulates the logic for prototype management. It
coordinates the actions requested by the Controller, interacting with the data repository,
which in this case is a folder in the code directory where DOLAR prototypes are stored.
The Service class performs actions such as loading DOLAR prototypes, creating
DOLAR prototypes, updating fields, and managing inheritance relationships.

The PrototypeEncoder class (ApiPrototypeEncoder) is instrumental in ensuring the
correct encoding of DOLAR prototypes. When data needs to be exchanged between the
back end and the front end, the encoding process is vital to represent the DOLAR
prototypes in a format that can be efficiently transmitted and understood by both sides.
More specifically, the PrototypeEncoder class is responsible for encoding the details of
DOLAR prototypes, translating them into a format suitable for communication. This
class is tightly coupled with the Service component, where it collaborates to correctly
encode DOLAR prototypes based on specific requirements.

The main class (ApiApplication) is a fundamental component in the Spring Boot
application, serving as the entry point for the Type Manager Web App. The primary
purpose of the ApiApplication class is to bootstrap the Spring Boot application. It
initializes the Spring context, configures the application, and starts the embedded web
server. It launches the Type Manager Web App. By encapsulating the startup logic
within this class, developers benefit from the auto-configuration capabilities of Spring
Boot and a well-organized entry point for the application.

In summary, the integration of React with Electron for the front end and Java Spring
Boot for the back-end results in a comprehensive and efficient Type Manager Web App.
The implementation adheres to a modular structure, where components are
encapsulated for maintainability. This design, coupled with clear communication
between the front end and back end, ensures a well-organized and user-friendly system
that successfully realizes the outlined design concepts.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 34

3.5.2.2 Endpoints

The Type Manager Web App exposes a set of RESTful endpoints through the
ApiController class in the Spring Boot application, providing a versatile API for the
management of DOLAR prototypes, fields, inheritance relationships, and field groups.
The rest of this subsection delves into the essential endpoints and their respective
functionalities.

Please note that edit operations (POST, PUT, DELETE) mentioned in the following
endpoints apply exclusively to "Local" DOLAR prototypes, representing user-created
DOLAR prototypes. On the other hand, GET and read-only operations are designed to
encompass both "Local" and "Core" DOLAR prototypes.

1. Retrieve DOLAR prototypes by Namespace

This endpoint retrieves the IDs of the DOLAR prototypes belonging to a specific
namespace identified by {id}. The response includes a list with the IDs of the DOLAR
prototypes, facilitating namespace-based exploration. The data of this endpoint is used
to populate the namespaces of the side menu, the category of the “Local DOLAR
prototypes” and the “Core DOLAR prototypes”.

Endpoint Method Path Variable Response

/api/type/category/{id} GET namespace ID list of prototype IDs

2. Retrieve Prototype Details

This endpoint fetches detailed information about a specific prototype identified by {id}.
The response includes the prototype's ID, inheritance details, and field information,
providing a comprehensive snapshot. The data of this endpoint is used to populate the
page with the prototype information.

Regarding the inheritance details, the endpoint returns two different lists of DOLAR
prototypes: the directed inherited DOLAR prototypes which are the DOLAR prototypes
that are directly inherited from the original prototype, and the transitively inherited
DOLAR prototypes, which are all the DOLAR prototypes that are inherited from the
prototype. The transitively inherited DOLAR prototypes are displayed by toggling the
corresponding button in the UI, while the user can remove only the directed inherited
DOLAR prototypes from the prototype page.

Regarding the field details, the endpoint returns a list with all the fields that belong to the
prototype. Additionally, the response contains a “definedInThis” field which indicates
which fields belong to the specific prototype. The user can edit and delete the fields that
are “defined in this”, because these fields are actually defined in the prototype, and they
are not inherited.

The endpoint also returns a list of field groups, which contains all the field groups that
are defined in this prototype. For every field contained in each field group, the basic field
information (field ID, type, default value, constraint, defined in this) is also being
returned.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 35

Endpoint Method Path Variable Response

/api/type/{id} GET prototype ID

- prototype ID

- inheritance details

o directed inherited prototypes

o transitively inherited
prototypes

- field details

o field ID

o type

o default value

o constraint

o defined in this

- field group details

o field details

3. Create New Prototype

This endpoint is used to create a new prototype with the given name {id}. The response
contains the details of the newly created prototype. The user has to provide a unique
name for the prototype, because the system checks if an existing prototype has the
provided name.

Endpoint Method Path Variable Response

/api/type/{id} POST prototype ID prototype details

4. Delete Prototype

This endpoint is used to delete the prototype identified by {id}. This action requires
confirmation in the front-end to avoid accidental deletions.

Endpoint Method Path Variable Response

/api/type/{id} DELETE prototype ID -

5. Add Inheritance to Prototype

This endpoint establishes an inheritance relationship for the prototype identified by {id}.
The request parameter includes the inherited prototype. The response provides updated
details of the prototype, reflecting the added inheritance.

Endpoint Method
Path
Variable

Request
Parameter

Response

/api/type/{id}/inheritance POST
prototype
ID

inherited
prototype ID

prototype
details

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 36

6. Remove Inheritance from Prototype

This endpoint removes one DOLAR prototype from the prototype identified by {id}. The
request parameter includes the DOLAR prototype to be removed. The response
provides updated details of the prototype, reflecting the removed inheritance
relationships.

Endpoint Method
Path
Variable

Request
Parameter

Response

/api/type/{id}/inheritance DELETE
prototype
ID

inherited prototype
ID

prototype
details

7. Add Field to Prototype

This endpoint adds a new field to the prototype identified by {id}. The request includes
parameters like field ID, type, and constraint. The response provides updated details of
the prototype, reflecting the newly added field. All the created fields are included in the
“undefined” group category by default.

Endpoint Method
Path
Variable

Request Parameter Response

/api/type/{id}/field POST prototype ID

field ID

type

constraint

prototype
details

8. Update Field in Prototype

This endpoint modifies an existing field for the prototype identified by {id}. The request
includes parameters like field ID, type, and constraint. The response provides updated
details of the prototype, reflecting the modified field. It is worth mentioning that the user
can update only the fields that belong to the prototype and are directly “defined in this”.
Only these specific fields have the “Edit” option next to them, helping the user to
understand which are editable and which are read-only.

Note: In the UI the user can modify the type and the constraint of the field, as in the
“Edit Field” modal the field ID is read-only and is only sent in the request to define which
is the updating field.

Endpoint Method
Path
Variable

Request Parameter Response

/api/type/{id}/field PUT prototype ID

field ID

type

constraint

prototype
details

9. Delete Field from Prototype

This endpoint removes a field from the DOLAR prototype identified by {id}. The request
includes the field ID. The response provides updated details of the prototype, reflecting
the removed field. It is worth mentioning that the user can delete only the fields that

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 37

belong to the prototype and are directly “defined in this”. Only these specific fields have
the “Delete” option next to them, helping the user to understand which are deletable.

Endpoint Method
Path
Variable

Request Parameter Response

/api/type/{id}/field DELETE prototype ID field ID
prototype
details

10. Add Field Group to Prototype

This endpoint adds a new field group to the prototype identified by {id}. The request
includes the group ID. The response provides updated details of the prototype,
reflecting the added field group.

Endpoint Method
Path
Variable

Request Parameter Response

/api/type/{id}/group POST prototype ID group ID
prototype
details

11. Delete Field Group from Prototype

This endpoint removes a field group from the prototype identified by {id}. The request
includes the group ID. The response provides updated details of the prototype,
reflecting the removed field group.

Endpoint Method
Path
Variable

Request Parameter Response

/api/type/{id}/group DELETE prototype ID group ID
prototype
details

12. Add Batch Actions

This endpoint executes a batch of actions specified as a string parameter and converts
it into a JSON file for processing. The request includes the batch actions as a string
parameter. The response provides feedback on the execution status.

Endpoint Method Request Parameter Response

/api/type/batch POST jsonString
feedback on the execution
status

These RESTful endpoints provide a comprehensive API for managing DOLAR
prototypes and related entities in the Type Manager Web App. They cover essential
actions such as creating, updating, and deleting DOLAR prototypes, fields, inheritance
relationships, and field groups. The design follows REST conventions, making it intuitive
for developers to interact with the system programmatically.

Furthermore, to provide a comprehensive overview of the entire API structure, a
summary table consolidating all endpoints can be found in the appendix.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 38

3.5.2.3 Payload

3.5.2.3.1 Prototype Payload

The response payload returned for almost every Type Manager Web App request
provides a comprehensive overview of the prototype's structure, inheritance details, and
associated fields. The payload includes the following key attributes:

Prototype Information:

• ID: A unique identifier assigned to the prototype, allowing for unambiguous
reference.

• inherits: Directly inherited DOLAR prototypes, indicating the immediate parent
DOLAR prototypes.

• inheritsTransitively: All DOLAR prototypes inherited, both directly and indirectly,
creating a full inheritance hierarchy.

Field Group Categorization:

• Fields are organized and categorized based on their associated field group IDs,
providing a structured view of the prototype's fields.

• Within each field group, individual fields are listed, each with the aforementioned
attributes.

Field Information:

• ID: Unique identifier for each field within the prototype, facilitating precise
identification.

• type: Specifies the data type of the field, offering insights into the nature of the
stored information.

• defaultValue: Indicates the default value assigned to the field, aiding in
understanding the expected initial state.

• constraint: Identifies other DOLAR prototypes that serve as constraints for the
current field, establishing relationships.

• isDefinedInThis: A binary indicator, conveying whether the field is defined directly
within the current prototype.

This payload structure ensures clarity and completeness in representing the prototype's
composition, inheritance relationships, and the attributes associated with each field. It
allows users to quickly comprehend the prototype's structure, aiding in efficient
navigation and informed decision-making during system interactions. The categorization
of fields into groups adds an additional layer of organization, enhancing the payload's
readability and user comprehension.

Consider the example of a DOLAR prototype named "LocationDetails":

{

 "id": "LocationDetails",

 "inherits": [

 "/local/Model"

],

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 39

 "inheritsTransitively": [

 "/local/Model",

 "/butterfly/core/Node"

],

 "fields": [

 {

 "id": "parents",

 "type": "REF",

 "array": true,

 "constraint": "/butterfly/core/Container",

 "defaultValue": "",

 "isDefinedInThis": false

 },

 {

 "id": "centerGeoPoint",

 "type": "EMBED",

 "array": false,

 "constraint": "GeoPoint",

 "defaultValue": "",

 "isDefinedInThis": true

 }

],

 "fieldGroups": {

 "files": [

 {

 "id": "geoJSON",

 "type": "REF",

 "array": false,

 "constraint": "/butterfly/core/JsonFile",

 "defaultValue": "",

 "isDefinedInThis": true

 }

]

 }

}

In this example, "LocationDetails" inherits from "/local/Model" and transitively inherits
from "/local/Model" and "/butterfly/core/Node." The prototype includes fields such as
"parents" and "centerGeoPoint," each with specific attributes. Additionally, the field
"geoJSON" is appropriately placed within the "files" field group, exemplifying the
organization of fields based on their associated field group IDs.

The isDefinedInThis attribute serves as a binary indicator, providing valuable
information about the origin of each field. When isDefinedInThis is set to true, as in the
case of "centerGeoPoint" in the example, it indicates that the field is explicitly defined
within the current prototype ("LocationDetails"). On the other hand, when
isDefinedInThis is false, as in the case of "parents," it signifies that the field is inherited
from one of the parent DOLAR prototypes, in this instance, from "/local/Model."

This attribute is instrumental in understanding the source of each field, whether it is
locally defined in the current prototype or inherited from parent DOLAR prototypes.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 40

3.5.2.3.2 Batch Actions Payload

In addition to the standard payload, when users press the "Save Actions" button within
the "Batch Actions Modal," a JSON file is generated and sent to the server. This JSON,
encapsulated under the "actions" key, contains an array of objects, each representing a
deferred action:

{

 "actions": [

 {

 "method": "CreatePrototype",

 "prototypeName": "Bush",

 "prototypePath": "/local/Bush"

 },

 {

 "method": "DeletePrototype",

 "prototypeName": "Address",

 "prototypePath": "/local/Address"

 },

 {

 "method": "AddField",

 "prototypeName": "Monument",

 "prototypePath": "/local/Monument",

 "id": "region",

 "type": "REF",

 "constraint": "/local/User"

 },

 {

 "method": "UpdateField",

 "prototypeName": "Address",

 "prototypePath": "/local/Address",

 "id": "region",

 "type": "REF",

 "constraint": ""

 }

]

}

 {

 "method": "RemoveField",

 "prototypeName": "Bush",

 "prototypePath": "/local/Bush",

 "id": "location"

 },

 {

 "method": "AddFieldGroup",

 "prototypeName": "Architect",

 "prototypePath": "/local/Architect",

 "id": "Locations"

 },

 {

 "method": "RemoveFieldGroup",

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 41

 "prototypeName": "Bush",

 "prototypePath": "/local/Bush",

 "id": "Timestamps"

 },

 {

 "method": "AddInheritance",

 "prototypeName": "Address",

 "prototypePath": "/local/Address",

 "inheritedPrototypes": ["/local/Region"]

 },

 {

 "method": "RemoveInheritance",

 "prototypeName": "City",

 "prototypePath": "/local/City",

 "removePrototypes": ["/local/Languages", "/local/Model"]

 }

]

 }

This JSON includes detailed information about each deferred action, such as the action
type ("CreatePrototype," "DeletePrototype," "AddField," etc.), the relevant prototype
name, the path of the DOLAR prototype and additional parameters specific to each
action type. More specifically, let us break down the structure of the Batch Actions
JSON:

• Each object within the "actions" array represents a deferred action that the user
has chosen to include in the batch.

• The "action" attribute specifies the type of action to be performed, such as
"CreatePrototype," "DeletePrototype," "AddField," and others.

• For actions like "AddField," "UpdateField," "RemoveField," and "AddFieldGroup,"
specific details about the field or field group are included, such as "id," "type,"
and "constraint."

• The "prototypeName" attribute identifies the ID of the DOLAR prototype to which
the action is applied.

• The "prototypePath" attribute identifies the path of the DOLAR prototype to which
the action is applied.

• For actions involving inheritance ("AddInheritance" and "RemoveInheritance"),
the associated DOLAR prototypes are listed under "inheritedPrototypes" or
"removePrototypes" respectively.

This structured JSON representation ensures that the server can accurately interpret
and execute the batched actions. The server processes each object within the "actions"
array sequentially, applying the specified actions to the corresponding DOLAR
prototypes. This approach ensures the preservation of data integrity and consistency
within the Type Manager Web App, even when users choose to defer and batch their
actions for execution at a later time. The detailed information in the JSON file enables
the server to precisely execute each action, reflecting the user's intentions within the
system.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 42

3.5.3 Asynchronous Communication Logic

The Type Manager Web App employs a robust asynchronous communication logic to
establish seamless data exchange between the front-end React application and the
back-end Spring Boot server. The underlying functions, including getData, postData,
deleteData, and putData, play a pivotal role in enabling efficient asynchronous HTTP
requests through the utilization of the fetch API. This section elucidates the intricacies of
this communication logic, shedding light on its structure and key components.

Common Structure

The core asynchronous functions share a common structure, enhancing consistency
and simplifying maintenance. Each function accepts a URL parameter denoting the API
endpoint and an optional formData parameter containing data destined for the server.
Leveraging the fetch API, these functions ensure an agile and responsive
communication flow between the front end and back end.

Request Configuration

A fundamental aspect of these functions is the configuration of the HTTP request.
Parameters such as method, mode, cache, credentials, headers, and body are
meticulously set to tailor the request to the specific needs of the operation. The use of
the await keyword ensures that the asynchronous fetch operation completes before
proceeding, maintaining a synchronous appearance in the code.

Response Handling

Upon receiving a response from the server, the system employs the response.json()
method to parse the response as JSON. This asynchronous operation yields the actual
data transmitted by the server, a critical step for effective handling of server responses
and extraction of pertinent information.

Modularity and Reusability

Encapsulating this asynchronous logic into utility functions enhances modularity and
promotes reusability. The approach ensures that the code remains organized, making it
easier to manage and extend as the application evolves. As a result, the Type Manager
Web App achieves a high degree of maintainability and adaptability in handling diverse
data interactions with the back end.

async function postData(url = "", formData = new FormData()) {

 const response = await fetch(url, {

 method: "POST",

 mode: "cors",

 cache: "no-cache",

 credentials: "same-origin",

 headers: {},

 redirect: "follow",

 referrerPolicy: "no-referrer",

 body: formData,

 });

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 43

 return response.json();

}

In essence, the well-structured asynchronous communication logic is a cornerstone of
the React front-end implementation, contributing to a responsive and user-friendly
experience during data exchanges with the Spring Boot back end.

3.5.4 End-to-End Example: Adding a Field

To illustrate the seamless flow of the "Add Field" functionality in the Type Manager Web
App, an end-to-end example is presented. This process involves the interaction
between the front-end React application, the back-end Spring Boot server, and the
underlying service responsible for managing DOLAR prototypes.

3.5.4.1 Front-End Implementation

On the front end, the React application manages user interactions and initiates the
process of adding a field. The user triggers the addition of a new field by clicking the
"Add new field" button.

<button className="add-field-button" onClick={handleAddField}>

 Add new field

</button>

The handleAddField function resets the selected field information and opens the modal
for adding a new field, as shown in the code below.

const handleAddField = () => {

 setSelectedFieldId(null);

 setSelectedFieldType(null);

 setSelectedFieldConstraint(null);

 setShowFieldModal(true);

};

The modal, displayed conditionally based on the showFieldModal state, enables users
to input the details of the new field. The modal includes fields for the "Field ID," "Value
Type," and "Constraint," along with buttons to save, cancel, or add the field to the batch.

<Modal open={showFieldModal} onClose={handleCancelField} aria-

labelledby="modal-modal-title"

 aria-describedby="modal-modal-description">

 <Box sx={style}>

 <div className="add-field-form">

 <h3 className="add-new-field">Add Field</h3>

 <FormControl sx={{width: '300px'}}>

 <Stack spacing={2} sx={{margin: '10px'}}>

 // Input fields for Field ID, Value Type and Constraint

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 44

 </Stack>

 </FormControl>

 <div className="field-button-container">

 <button className="cancel-field-button"

onClick={handleCancelField}>

 Cancel

 </button>

 <button className="save-action-button" onClick={saveField}>

 Save

 </button>

 <button className="add-action-batch-button"

onClick={addToBatch}>

 Add to Batch

 </button>

 </div>

 </div>

 </Box>

</Modal>

3.5.4.1.1 Adding a Field

The saveField function is triggered when the user confirms the field addition and works
as a wrapper around the handleSaveField function, providing additional error handling
and cleanup after attempting to save a new field.

const saveField = async () => {

 try {

 await handleSaveField(selectedFieldId, selectedFieldType,

selectedFieldConstraint);

 handleCancelField();

 } catch (error) {

 console.error('Error saving field:', error);

 }

};

Then, the handleSaveField function receives the input that the user provided in the
modal, and orchestrates the communication with the back end:

const handleSaveField = async (selectedFieldId, selectedFieldType,

selectedFieldConstraint) => {

 setShowFieldModal(false);

 const formData = new FormData();

 if (selectedFieldType !== null)

 formData.append('type', selectedFieldType);

 if (selectedFieldConstraint !== null) {

 let group = null;

 if (selectedFieldConstraint.includes("Local")) {

 group = "/local/";

 } else {

 group = "/butterfly/core/";

 }

 const prototype =

selectedFieldConstraint.substring(selectedFieldConstraint.lastIndexOf('/') +

1);

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 45

 const constraint = group + prototype;

 formData.append('constraint', constraint);

 }

 formData.append('fieldId', selectedFieldId);

 postData(`${baseURL}/${prototypeName}/field`, formData).then((data) => {

 setOpenFieldAlert(true);

 setTimeout(() => {

 setOpenFieldAlert(false);

 }, 3000);

 });

};

The handleSaveField method orchestrates the saving of a new field on the front end.
After closing the field modal, it constructs a FormData object containing essential field
details. This function then sends a POST request to the server endpoint for creating a
new field, with the URL dynamically generated based on the prototype name. Upon
successful execution, it logs the server response and displays an alert, providing
immediate feedback to the user about the success of the field addition. Error handling is
incorporated to log any issues with the server request, ensuring a robust and
responsive field creation process in the Type Manager Web App.

The postData function is a crucial part of this asynchronous communication logic. It
uses the modern fetch API to send a POST request to the specified URL, in this case,
targeting the endpoint responsible for creating a new field. The function's structure
ensures proper configuration of the request, including containing the form data.

async function postData(url = "", formData = new FormData()) {

 const response = await fetch(url, {

 method: "POST",

 mode: "cors",

 cache: "no-cache",

 credentials: "same-origin",

 headers: {},

 redirect: "follow",

 referrerPolicy: "no-referrer",

 body: formData,

 });

 return response.json();

}

This structured approach to front-end logic ensures that the user's action triggers a well-
defined process of creating a new field in the Type Manager Web App.

3.5.4.1.2 Adding a field to Batch

On the other hand, the handleAddFieldToBatch function manages the addition of the
field to a batch for deferred actions. It constructs an action object and updates the local
storage with the batched actions.

const handleAddFieldToBatch = async (selectedFieldId, selectedFieldType,

selectedFieldConstraint) => {

 setShowFieldModal(false);

 let constraint = "";

 if (selectedFieldConstraint !== null) {

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 46

 let group = null;

 if (selectedFieldConstraint.includes("Local")) {

 group = "/local/";

 } else {

 group = "/butterfly/core/";

 }

 const prototype =

selectedFieldConstraint.substring(selectedFieldConstraint.lastIndexOf('/') +

1);

 constraint = group + prototype;

 }

 const actionObject = {

 action: 'AddField',

 prototypeName: prototypeInfo.id,

 id: selectedFieldId,

 type: selectedFieldType,

 constraint: constraint,

 };

 const existingActions = JSON.parse(localStorage.getItem('batchActions'))

|| [];

 const isActionExists = existingActions.some(

 (existingAction) =>

 existingAction.action === actionObject.action &&

 existingAction.prototypeName === actionObject.prototypeName &&

 existingAction.id === actionObject.id &&

 existingAction.type === actionObject.type &&

 existingAction.constraint === actionObject.constraint

);

 if (isActionExists) {

 setActionExistsAlert(true);

 setTimeout(() => {

 setActionExistsAlert(false);

 }, 3000);

 } else {

 existingActions.push(actionObject);

 localStorage.setItem('batchActions',

JSON.stringify(existingActions));

 setAddedToBatchAlert(true);

 setTimeout(() => {

 setAddedToBatchAlert(false);

 }, 3000);

 }

};

The handleAddFieldToBatch function manages the addition of a field action to a batch
for deferred processing. Upon clicking the "Add to Batch" button, it constructs an action
object with essential details such as the action type, prototype name, field ID, type, and
constraint. Before adding the action to the batch, it checks for the existence of a similar
action in the batch to prevent duplicates. If the action is unique, it updates the local
storage with the new action and displays an alert to inform the user of a successful
addition to the batch. The method ensures efficient batch management, allowing users
to defer actions in the Type Manager Web App.

The addToBatch function, triggered by the "Add to Batch" button, calls the
handleAddFieldToBatch method.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 47

const addToBatch = () => {

 handleAddFieldToBatch(selectedFieldId, selectedFieldType,

selectedFieldConstraint);

};

3.5.4.1.3 Executing Batch actions

The Batch Actions Modal component serves as a user interface for executing batch
actions within the Type Manager Web App. This modal is triggered when the user clicks
the "Show Batch Actions" button on the Prototype page. The modal allows users to
view, manage, and execute a collection of batch actions that they have assembled.

The Batch Actions Modal component encapsulates several key functionalities:

1. Displaying Batch Actions: Upon opening the modal, it presents a list of batch
actions grouped by prototype names. Each action type is displayed along with its
corresponding details.

Object.entries(groupedActions).map(([prototypeName, actions]) => (

 <div key={prototypeName}>

 <h3>{prototypeName}</h3>

 {Object.entries(actions).map(([actionType, actionList]) => (

 <div key={actionType}>

 <h4>{actionType} action</h4>

 {actionList.map((action, index) => (

 <li key={index} className="action-item">

 {/* Display action details */}

))}

 </div>

))}

 <hr />

 </div>

))

2. Removing Batch Actions: Users can remove individual batch actions by
clicking on the delete icon associated with each action item.

<span

 className="delete-action-icon"

 onClick={() => handleRemoveAction(index)}>

 X

3. Removing All Batch Actions: The modal provides an option to remove all batch
actions at once using the "Remove all batch actions" button.

<button className="remove-all-button" onClick={handleRemoveAllActions}>

 Remove all batch actions

</button>

4. Executing Batch Actions: Users can execute all batch actions by clicking on
the "Save all actions" button.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 48

<button className="batch-save-button" onClick={handleSaveBatch}>

 Save all actions

</button>

The handleSaveBatch method is responsible for executing the batch actions stored in
the local storage and communicating with the backend server to process these actions.

When the user clicks the "Save all actions" button in the modal, this method is triggered.

 const handleSaveBatch = async () => {
 const jsonString = convertArrayToString(batchActions);

 const formData = new FormData();

 formData.append('jsonString', jsonString);

 postData(`${baseURL}/batch`, formData)

 .then(response => response.text())

 .then(data => {

 if (data === "OK") {

 setOpenAlert(true);

 localStorage.removeItem('batchActions');

 const hasCreatePrototype = batchActions.some(action =>

action.action === 'CreatePrototype');

 handleCloseModal(hasCreatePrototype);

 setTimeout(() => {

 handleCloseModal();

 }, 2000);

 } else {

 setOpenAlertError(true);

 }

 })

 .catch(error => {

 console.error('Error saving batch:', error);

 setResponse("An error occurred while saving the batch.");

 setShowResponse(true);

 });

};

It performs the following steps:

Convert Actions to JSON String: The method converts the batch actions stored in the
local storage into a JSON string format. This string represents the payload to be sent to
the server for processing.

const convertArrayToString = (batchActions) => {

 const actionsArray = batchActions.map(action => {

 const properties = Object.entries(action)

 .map(([key, value]) => {

 if ((key === 'inheritedDOLAR prototypes' || key ===

'removeDOLAR prototypes') && typeof value === 'string') {

 return `"${key}": ["${value}"]`;

 } else {

 return `"${key}": "${value}"`;

 }

 });

 return `{ ${properties.join(', ')} }`;

 });

 return `{ "actions" : [${actionsArray.join(', ')}] }`;

};

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 49

Prepare FormData: The JSON string containing batch actions is appended to a
FormData object. This FormData object is used to send the payload to the server via a
POST request.

Send POST Request: The method sends a POST request to the backend server's
/api/type/batch endpoint, along with the FormData containing the batch actions payload.

Handle Response: Upon receiving a response from the server, the method processes
the response data. If the response indicates success (data === "OK"), it displays a
success message using a Snackbar component and removes the batch actions from
the local storage. If an error occurs, it displays an error message.

Error Handling: If an error occurs during the HTTP request, such as network issues or
server errors, it catches the error and displays an error message indicating that an error
occurred while saving the batch.

The handleSaveBatch method encapsulates the logic for processing and executing
batch actions, including converting them into a suitable format, sending them to the
server, and handling the server's response.

It ensures a smooth user experience by providing feedback on the execution status of
batch actions, both for successful executions and errors.

5. Feedback on Execution: After executing the batch actions, the modal provides
feedback on the execution status. If the execution is successful, a success
message is displayed using a Snackbar component with a green color scheme.
In case of an error during execution, an error message is shown using the same
Snackbar component with a red color scheme.

<Snackbar open={openAlert} onClose={() => setOpenAlert(false)}

autoHideDuration={2000}>

 <Alert icon={false} severity="success" sx={{ width: '100%' }}>

 Batch actions executed successfully!

 </Alert>

</Snackbar>

<Snackbar open={openAlertError} onClose={() => setOpenAlertError(false)}

autoHideDuration={2000}>

 <Alert icon={false} severity="danger" sx={{ width: '100%' }}>

 An error occured while executing the batch..

 </Alert>

</Snackbar>

6. Closing the Modal: Users can close the modal by clicking the close button (X) or
by clicking outside the modal. Additionally, the modal automatically closes after a
certain duration when the batch actions are executed successfully.

<button className="batch-close-button" onClick={handleCloseModal}>

 X

</button>

3.5.4.2 Back-End Implementation

3.5.4.2.1 Adding a Field

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 50

The back-end functionality is encapsulated in the ApiController class, defined as a
@RestController in the Spring Boot application. The relevant endpoint for adding a field
is mapped using the @PostMapping annotation:

@RestController

@RequestMapping("/api")

@CrossOrigin(maxAge = 3600)

public class ApiController {

 private final ApiService apiService;

 public ApiController(ApiService apiService) {

 this.apiService = apiService;

 }

 @PostMapping("/type/{id}/field")

 public void createField(@PathVariable String id, @RequestParam String

fieldId, @RequestParam(required = false) String type,

 @RequestParam(required = false) String

constraint, HttpServletResponse response) throws IOException {

 Prototype prototype = apiService.addField(id, fieldId, type,

constraint);

 JsonPrototypeEncoder encoder = new

JsonPrototypeEncoder(response.getOutputStream(), true);

 prototype.encode(encoder, true);

 }

}

In this example, when a POST request is made to /api/type/{id}/field, the createField
method is invoked. It delegates the field creation operation to the ApiService, passing
the necessary parameters.

The corresponding service class, ApiService, is responsible for interacting with the
prototype and executing the necessary actions:

@Service

public class ApiService {

 private final VirtualSpaceSetup setup;

 public ApiService(VirtualSpaceSetup setup) {

 this.setup = setup;

 }

 private static final String workingDir = System.getProperty("user.home");

 public Prototype addField(String prototypeName, String id, String type,

String constraint) {

 constraint = (constraint != null) ? "/local/" + constraint : null;

 return new PrototypeActionsBatch(setup.getVirtualSpace(), setup)

 .addField("/local/" + prototypeName, id, type, constraint)

 .execute((PrototypeLifecycle.Result result) ->

result.modified().get(0));

 }

}

The ApiService class orchestrates the addition of a field, constructing the necessary
parameters and utilizing the PrototypeActionsBatch to execute the field addition
operation.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 51

The PrototypeActionsBatch class plays a pivotal role in orchestrating various actions
related to DOLAR prototypes. This class, which implements the PrototypeLifecycle
interface, encapsulates a series of actions to be performed on DOLAR prototypes within
the virtual space.

public class PrototypeActionsBatch implements PrototypeLifecycle {

 private final VirtualSpace space;

 private final DOLAR prototypestorage storage;

 private final List<PrototypeAction> actions = new ArrayList<>();

 private final Map<String, Prototype> typesBeingProcessed = new

LinkedHashMap<>();

 private final Set<String> markedForDeletion = new LinkedHashSet<>();

 public PrototypeActionsBatch(VirtualSpace space, DOLAR prototypestorage

storage) {

 this.space = space;

 this.storage = storage;

 }

 @Override

 public PrototypeLifecycle createPrototype(String prototypeName) {

 ensureNotExists(prototypeName);

 actions.add(new CreatePrototype(space, prototypeName,

typesBeingProcessed));

 return this;

 }

In the snippet above, the PrototypeActionsBatch class provides a convenient way to
batch multiple actions, ensuring atomicity and consistency in the management of
DOLAR prototypes. The createPrototype method adds a "create" action to the batch,
indicating the intention to create a new prototype with the specified name.

Furthermore, the CreatePrototype class, located in the dislib.typeman.actions package,
represents the specific action of creating a prototype. It extends the
PrototypeActionBase class, which serves as the foundation for various prototype-related
actions.

package dislib.typeman.actions;

import com.niovity.dolar.space.Prototype;

import com.niovity.dolar.space.VirtualSpace;

import java.util.Map;

public class CreatePrototype extends PrototypeActionBase {

 protected final VirtualSpace space;

 public CreatePrototype(VirtualSpace space, String prototypeName,

Map<String, Prototype> typesBeingProcessed) {

 super(Type.CREATE, space, prototypeName, typesBeingProcessed);

 this.space = space;

 }

 @Override

 public void execute() throws PrototypeActionException {

 Prototype proto =

space.getVirtualSpace().newPrototype(prototypeName);

 typesBeingProcessed.put(prototypeName, proto);

 }

}

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 52

The CreatePrototype class defines the execution logic for the creation action. When
executed, it utilizes the virtual space to create a new prototype with the specified name
and adds it to the typesBeingProcessed map, ensuring that the system keeps track of
DOLAR prototypes currently in the process of creation or modification.

In essence, the combination of the PrototypeActionsBatch and CreatePrototype classes
provides a structured and extensible framework for handling various prototype-related
actions in the back end of the Type Manager Web App.

3.5.4.2.1 Executing Batch Actions

The controller defines an endpoint /api/type/batch that handles batch actions sent from
the front-end. It receives a JSON string representing the batch actions via a POST
request. The controller method responsible for handling this endpoint is named
executeBatch.

@PostMapping("/type/batch")

public String executeBatch(@RequestParam String jsonString) throws

IOException {

 String fileName = "batchToExecute.json";

 String userHome = System.getProperty("user.home");

 String filePath = userHome + fileName;

 try (FileWriter writer = new FileWriter(filePath, false)) {

 writer.write(jsonString);

 }

 return apiService.executeBatch(filePath);

}

This method receives a JSON string containing batch actions as a request parameter
named jsonString. Then, it writes the received JSON string to a file named
batchToExecute.json in a specified directory. The method then delegates the execution
of batch actions to a service named apiService.executeBatch(filePath) and returns the
result obtained from the service.

The service layer contains the business logic for executing batch actions. The
executeBatch method in the service class processes the batch actions stored in the
JSON file and performs the necessary operations on DOLAR prototypes accordingly.

public String executeBatch(String jsonFile) {

 try {

 PrototypeLifecycle batch = Config.newLifeCycle();

 JsonActions jsonActions = new JsonActions();

 List<TimestampedActionData.ActionData> actions =

jsonActions.parseJson(new File(jsonFile));

 jsonActions.process(batch, actions);

 batch.execute((PrototypeLifecycle.Result result) -> {

 return "Batch executed successfully.";

 });

 return "OK";

 } catch(Exception e) {

 return ("There was an error. Error: " + e.getMessage());

 }

}

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 53

The executeBatch method takes the file path of the JSON file containing batch actions
as input. It initializes a new PrototypeLifecycle object and parses the JSON file to
extract the batch actions. The batch actions are then processed using the process
method, which applies the actions to the DOLAR prototypes. Finally, the execute
method is called to execute the batch actions, and the result is returned as a string
indicating success or failure.

In summary, this end-to-end example showcases a streamlined process of adding a
field, involving coordinated interactions between the front-end React application, the
back-end Spring Boot server, and the underlying service responsible for managing
DOLAR prototypes.

4. CONCLUSION AND FUTURE WORK

In this thesis, we developed the Type Manager Web App, a user-friendly web-based
interface that enhances the management of DOLAR prototypes within the existing Type
Manager Extension. By addressing the limitations, the Type Manager Web App
provides a seamless and interactive experience for users to create, modify, and
manage DOLAR prototypes.

Through the development process, we implemented various endpoints and
functionalities within the app, including retrieving prototype details, creating, and
deleting prototypes, managing inheritance relationships, adding, and removing fields,
and executing batch actions. These features empower users to efficiently work with
multiple prototypes and perform bulk operations, significantly improving productivity and
streamlining the prototype management process.

The integration of technologies such as Spring Boot, React, and Electron played a
crucial role in the success of the project. Leveraging the power of Spring Boot, we
achieved a robust and scalable backend, while React enabled the development of a
dynamic and responsive user interface. By packaging the app as an Electron
application, we ensured its compatibility across multiple platforms and provided users
with the flexibility to use it as a standalone desktop application.

While the Type Manager Web App has demonstrated its effectiveness in addressing the
identified limitations, there is still room for further improvement and expansion. Future
work can focus on incorporating additional features, such as advanced search and
filtering capabilities, as well as Role-Based Access Control.

In our forthcoming efforts, we aim to enhance the Type Manager Web App to better
cater to the needs of our users. Firstly, we aim to enhance the functionality of the
interface by incorporating search capabilities for specific fields and introducing filtering
options. These additions will empower users to efficiently locate and manage relevant
information, further enhancing the usability and effectiveness of the system.
Additionally, we will introduce a feature that enables users to categorize new DOLAR
prototypes into specific groups during the creation process, improving organization
within the system. Furthermore, users will have more control over defining new fields,
with the ability to add additional attributes beyond the basics, such as customizable
metadata and descriptions.

The introduction of Role-Based Access Control (RBAC) will add an extra layer of
security, allowing administrators to define specific permissions for different user roles.
Another valuable addition could be implementing a feature that allows users to view the
history of changes made to a prototype. This feature would provide transparency and
accountability, allowing users to track the evolution of a prototype over time.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 54

Overall, the development of the Type Manager Web App has successfully achieved its
objectives of enhancing user experience and accessibility in managing DOLAR
prototypes. The app serves as a valuable tool for researchers and developers working
with DOLAR-based systems, facilitating efficient and streamlined prototype
management processes.

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 55

APPENDIX

Table 1: Back-End Implementation Endpoints

Description Endpoint Method Path
Variable

Request
Parameter

Response

Retrieve
DOLAR
prototypes by
Namespace

/api/type/category/{id} GET
namespac
e ID

- list of prototype IDs

Retrieve
Prototype
Details

/api/type/{id} GET
prototype
ID

-

- prototype ID

- inheritance details

o directed
inherited
prototypes

o transitively
inherited
prototypes

- field details

o field ID

o type

o default value

o constraint

o defined in
this

- field group details

o field details

Create New
Prototype

/api/type/{id} POST
prototype
ID

- prototype details

Delete
Prototype

/api/type/{id} DELETE
prototype
ID

- -

Add
Inheritance to
Prototype

/api/type/{id}/inheritance POST
prototype
ID

inherited
prototype
ID

prototype details

Remove
Inheritance
from

/api/type/{id}/inheritance DELETE
prototype
ID

inherited
prototype
ID

prototype details

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 56

Prototype

Add Field in
Prototype

/api/type/{id}/field POST
prototype
ID

field ID

type

constraint

prototype details

Update Field
in Prototype

/api/type/{id}/field PUT
prototype
ID

field ID

type

constraint

prototype details

Delete Field
from
Prototype

/api/type/{id}/field DELETE
prototype
ID

field ID prototype details

Add Field
Group to
Prototype

/api/type/{id}/group POST
prototype
ID

group ID prototype details

Delete Field
Group from
Prototype

/api/type/{id}/group DELETE
prototype
ID

group ID prototype details

Add Batch
Actions

/api/type/batch POST - jsonString
feedback on the execution
status

DOLAR Type Manager Web app: An effective tool for managing the data modeling lifecycle

I. Mourtzaki 57

REFERENCES

[1] Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009). Methodologies for

data quality assessment and improvement. ACM computing surveys (CSUR), 41(3),

1-52.

[2] Laranjeiro, Nuno & Soydemir, Seyma & Bernardino, Jorge. (2015). A Survey on

Data Quality: Classifying Poor Data. 10.1109/PRDC.2015.41.

[3] Loshin, David. (2011). Business Impacts of Poor Data Quality. 10.1016/B978-0-12-

373717-5.00001-4.

[4] Haug, Anders & Zachariassen, Frederik & Liempd, Dennis. (2011). The costs of poor

data quality. Journal of Industrial Engineering and Management. 4.

10.3926/jiem..v4n2.p168-193.

[5] Colburn, T., Shute, G. Decoupling as a Fundamental Value of Computer

Science. Minds & Machines 21, 241–259 (2011). https://doi.org/10.1007/s11023-

011-9233-3

[6] Hellerstein, J. M. (2003). Toward network data independence. ACM SIGMOD

Record, 32(3), 34-40.

[7] Saidis, K., Smaragdakis, Y. and Delis, A. (2011), DOLAR: virtualizing heterogeneous

information spaces to support their expansion. Softw: Pract. Exper., 41: 1349-

1383. https://onlinelibrary.wiley.com/doi/10.1002/spe.1050

[8] Gunasinghe, N., Marcus, N. (2022). Understanding the Language Server Protocol.

In: Language Server Protocol and Implementation. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-7792-8_2

[9] React, "Documentation," React website, [Online]. Available:

https://legacy.reactjs.org/docs/getting-started.html [Accessed: 12/03/2024].

[10] Facebook. (2021). React - A JavaScript library for building user interfaces.

Retrieved from [React website]: https://reactjs.org/

[11] Awesome React. (n.d.). Retrieved from [GitHub repository]:

https://github.com/enaqx/awesome-react

[12] React Community. (n.d.). Retrieved from [React

website]: https://reactjs.org/community/support.html

[13] Electron, "Documentation," Electron website, [Online]. Available:

https://www.electronjs.org/docs [Accessed: 12/03/2024].

[14] Electron. (n.d.). Retrieved from [Electron website]: https://www.electronjs.org/

[15] Electron Forge. (n.d.). Retrieved from [Electron Forge website]:

https://www.electronforge.io/

[16] Material-UI, "MUI: A popular React UI framework," Material-UI website, [Online].

Available: https://mui.com/ [Accessed: 12/03/2024].

[17] Material-UI. (n.d.). Theming. Retrieved from [Material-UI website]:

https://mui.com/customization/theming/

[18] Material-UI. (n.d.). Changelog. Retrieved from [Material-UI website]:

https://mui.com/guides/changelog/

[19] Spring Boot, "Documentation," Spring Boot website, [Online]. Available:

https://docs.spring.io/spring-boot/docs/current/reference/html/index.html [Accessed:

12/03/2024].

https://doi.org/10.1007/s11023-011-9233-3
https://doi.org/10.1007/s11023-011-9233-3
https://onlinelibrary.wiley.com/doi/10.1002/spe.1050
https://doi.org/10.1007/978-1-4842-7792-8_2
https://legacy.reactjs.org/docs/getting-started.html
https://reactjs.org/
https://github.com/enaqx/awesome-react
https://reactjs.org/community/support.html
https://www.electronjs.org/docs
https://www.electronjs.org/
https://www.electronforge.io/
https://mui.com/
https://mui.com/customization/theming/
https://mui.com/guides/changelog/
https://docs.spring.io/spring-boot/docs/current/reference/html/index.html

