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ABSTRACT

Variational quantum classifiers (VQCs) are a type of machine learning model that leverage
the principles of quantum mechanics to perform classification tasks. This thesis seeks to
determine if entanglement may be utilized as a freely available resource to improve clas-
sification task performance using VQCs. With the ever-increasing interest in quantum
computing and its potential applications in machine learning, understanding the role of
entanglement in enhancing classification performance becomes imperative. The primary
objective of this research is to explore how the presence of entanglement affects the ac-
curacy and generalization capabilities of variational quantum classifiers. To achieve this,
we employ the concept of global entanglement, which refers to the average entanglement
between multiple qubits within a quantum system. By quantifying the amount of entangle-
ment present in different quantum circuits, we can evaluate its impact on the classifier’s
performance. Finally, we present a case study to demonstrate the effectiveness of the
proposed method. The findings of this research will contribute to the growing body of
knowledge in quantum machine learning and ultimately aid in the development of more
efficient and powerful quantum algorithms for classification tasks.

SUBJECT AREA: Quantum Computing, Machine Learning

KEYWORDS: quantum circuits, quantum entanglement, machine learning, classific-
ation, supervised learning, variational quantum classifier, global entan-
glement



ΠΕΡΙΛΗΨΗ

Οι μεταβλητοί κβαντικοί ταξινομητές (VQC) είναι ένας είδος μοντέλου μηχανικής μάθησης
που αξιοποιεί τις αρχές της κβαντομηχανικής για την εκτέλεση εργασιών ταξινόμησης. Η
παρούσα εργασία επιδιώκει να καθορίσει εάν η διεμπλοκή μπορεί να χρησιμοποιηθεί ως
ελεύθερα διαθέσιμος πόρος για τη βελτίωση της απόδοσης εργασιών ταξινόμησης με τη
χρήση VQCs. Με το συνεχώς αυξανόμενο ενδιαφέρον για την κβαντική πληροφορική και
τις πιθανές εφαρμογές της στη μηχανική μάθηση, η κατανόηση του ρόλου της διεμπλοκής
στην ενίσχυση της απόδοσης ταξινόμησης καθίσταται επιτακτική. Ο πρωταρχικός στό-
χος αυτής της έρευνας είναι να διερευνήσει πώς η παρουσία της διεμπλοκής επηρεάζει
την ακρίβεια και τις δυνατότητες γενίκευσης των κβαντικών ταξινομητών μεταβλητής. Για
να το επιτύχουμε αυτό, χρησιμοποιούμε την έννοια της καθολικής διεμπλοκής, η οποία
αναφέρεται στη μέση διεμπλοκή μεταξύ πολλαπλών qubits εντός ενός κβαντικού συστή-
ματος. Με την ποσοτικοποίηση της έκτασης της διεμπλοκής που υπάρχει σε διαφορετικά
κβαντικά κυκλώματα, μπορούμε να αξιολογήσουμε την επίδρασή της στην απόδοση του
ταξινομητή. Τέλος, παρουσιάζουμε μια μελέτη περίπτωσης για να αποδείξουμε την απο-
τελεσματικότητα της προτεινόμενης μεθόδου. Τα ευρήματα αυτής της έρευνας θα συμ-
βάλουν στον αυξανόμενο όγκο γνώσεων στην κβαντική μηχανική μάθηση και τελικά θα
βοηθήσουν στην ανάπτυξη πιο αποτελεσματικών και ισχυρών κβαντικών αλγορίθμων για
εργασίες ταξινόμησης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κβαντική Υπολογιστική, Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κβαντικά κυκλώματα, κβαντική διεμπλοκή, μηχανική μάθηση,
κατηγοριοποίηση, επιβλεπόμενη μάθηση, μεταβλητός κβαντικός
ταξινομητής, καθολική διεμπλοκή
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The Effects of Quantum Entanglement on Variational Quantum Classifiers

1. INTRODUCTION

1.1 Overview

Quantum computers, the cutting-edge technology that harnesses the power of quantum
mechanics, have been making waves in the scientific community. With their potential
to solve some particular computational problems exponentially faster than classical com-
puters, quantum computers hold the key to revolutionizing various fields, from crypto-
graphy to drug discovery. An exciting and active area of research within quantum comput-
ing is the development of quantum machine learning, and especially variational quantum
classifiers, which are being used to solve classification problems. In this thesis, we will
explore the concept of variational quantum classifiers and investigate the role of quantum
entanglement in enhancing their performance.

Classification is a crucial aspect of machine learning, where algorithms are trained to
classify data into distinct categories based on patterns and characteristics. Traditional
machine learning algorithms, such as support vector machines and random forests, have
made significant contributions to various fields. However, they may face limitations when
dealing with large and complex datasets. This is where quantum computers come into
play.

To grasp the significance of quantum computers in machine learning, it is essential to
understand their fundamental principles. Traditional computers, known as classical com-
puters, process data in binary form, using bits that represent either a 0 or a 1. In con-
trast, quantum computers use quantum bits, or qubits, which can represent a 0, a 1, or
a superposition of both simultaneously. This unique property of qubits enables quantum
computers to perform certain calculations that exponentially increase their computational
power.

Variational quantum classifiers (VQCs) are a type of machine learning model that leverage
the principles of quantum mechanics to perform classification tasks. Unlike classical ma-
chine learning algorithms, VQCs utilize quantum states and quantum gates to represent
and manipulate data. These classifiers consist of a parameterized quantum circuit that is
optimized to minimize a cost function, enabling them to learn from labeled training data
and make predictions on unseen samples.

Quantum entanglement, a fundamental concept in quantum mechanics, allows particles
to become correlated in such a way that the state of one particle is dependent on the state
of another, regardless of the distance between them. This phenomenon has intrigued
scientists for decades and has been harnessed for various applications in quantum com-
puting.

In the context of variational quantum classifiers, quantum entanglement plays a crucial
role in their capabilities. By entangling multiple qubits within the classifier’s quantum cir-
cuit, the model can capture complex relationships between features and exploit quantum
parallelism to process information more efficiently. This unique ability of quantum entan-
glement enables VQCs to potentially outperform classical machine learning algorithms in
certain scenarios.

VQCs offer several advantages over their classical counterparts. Firstly, they have the po-
tential to handle high-dimensional data more effectively. Traditional machine learning al-
gorithms often struggle with high-dimensional feature spaces, leading to decreased accur-
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acy and increased computational complexity. However, VQCs can leverage quantum su-
perposition and entanglement to represent and process high-dimensional data efficiently,
potentially improving classification accuracy. As researchers continue to explore and re-
fine VQC techniques, we can expect further advances in this field, paving the way for new
applications and breakthroughs in machine learning and quantum computing.

Despite these promising prospects, there are still challenges that need to be overcome
before quantum computers become widely accessible. One major hurdle is the issue of
qubit stability. Quantum computers rely on qubits, the basic units of quantum informa-
tion, to perform calculations. However, qubits are extremely delicate and prone to errors
caused by environmental disturbances. Developing error-correcting techniques and im-
proving qubit stability are critical for the practical implementation of quantum computers.

In addition, the resources needed for quantum computers are substantial, encompassing
both software and hardware. Sophisticated manufacturing methods and experience are
needed to build a quantum computer that can solve complicated problems. It’s also a
constant struggle to create software tools and quantum algorithms that take full advant-
age of the capabilities of quantum computers. Quantum computing has the potential to
revolutionize machine learning and open the door to ground-breaking solutions for a wide
range of computational issues as we continue to push the frontiers of computing.

1.2 Structure and Objective

In an effort to guarantee readability and accessibility for readers who might not be familiar
with quantum computing beforehand, this thesis is structured in a certain way. Back-
ground information is provided in the first two chapters. Beginning with the fundamental
mathematical underpinnings of quantum computing in the first chapter, even readers with
no prior experience with it can participate fully in the following chapters.

The theoretical underpinnings and characteristics of machine learning are covered in detail
in the second chapter. By concentrating on variational quantum circuits and emphasiz-
ing the methods employed in the suggested implementation, the third chapter acts as a
transition between the first two.

In-depth examination of the suggested VQC design and interpretations of the outcomes
are covered in the fourth chapter. The fifth and last chapter, which comes after the sim-
ulation chapter, offers results from the investigation and suggests possible directions for
further research and development. In the end, an appendix with details on the code im-
plementation is also included.

This thesis’ primary goal is to conduct a comprehensive investigation of whether entan-
glement can be used as readily available resource to enhance the performance of a clas-
sification task by means of a VQC.

D. Chamarias 12
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2. QUANTUM COMPUTING

In this section, we will delve into the fundamental principles and mathematical formal-
ism of quantum computation that will be needed in order to understand the results of this
thesis. Firstly, we will explore the underlying concepts of quantum mechanics, like super-
position and entanglement, which form the basis of quantum computation. Subsequently,
the quantum circuit model will be introduced, which helps us visualize complex quantum
computations. Finally, we will look at the applications of the density operator for systems
with multiple qubits. We assume that the reader has a basic understanding of complex
numbers, probability theory, and linear algebra. The sources used for this chapter are [1]
[2] [3] unless otherwise explicitly cited.

2.1 Foundations of Quantum Computation

2.1.1 The Qubit

One of the fundamental building blocks of quantum computers is the qubit (short for
quantum bit), which is the quantum mechanical analogue of a classical bit. Information is
represented in bits in classical computing, with each bit having a possible value of either
zero or one. In quantum computing, qubits are used to store and encode information. A
qubit is a two-level quantum system where the two basis qubit states are usually written
as |0⟩ and |1⟩. A qubit can be in any of the following states: |0⟩, |1⟩ or, in contrast to a
classical bit, a superposition, a linear combination of both states.

In general, a two-dimensional quantum state (that is, a qubit), can be written in the follow-
ing form:

|ψ⟩ = α |0⟩+ β |1⟩

where α and β are probability amplitudes with complex values. The two basis states

are written in Dirac or bra-ket notation and represent the column vectors
(
1
0

)
and

(
0
1

)
respectively. The ”|·⟩” symbol is called a ket, and its dual partner, ”⟨·|”, is called a bra. It is
the Hermitian conjugate of its corresponding ket and represents a row vector, for example:

⟨ψ| =
(
a∗ b∗

)
After measuring a qubit, the only possible states that it can be in are the basis states. In
our case, the states are |0⟩ and |1⟩. The choice to which of those two states the qubit is
going to ”collapse” is decided according to the Born rule, where the probability of finding
the |ψ⟩ in state |0⟩ is equal to |α|2 and for state |1⟩ it is equal to |β|2. Since the squares
of the coefficients of |ψ⟩ represent the probability of the only two possible outcomes of a
measurement, they must comply with the following condition:

|α|2 + |β|2 = 1

If this condition is not met, we say that our state is not normalized. Another way of probing
whether a state is not normalized, is to take the square root of the inner product of the state
with itself, otherwise called the norm of the vector, and compare the result with the unity.
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If it is equal to one, then the condition is met and the state is normalized. Consequently,
the condition can also be written as:

||ψ|| =
√

⟨ψ|ψ⟩ = 1

We can compute the normalized version of our state, if it does not meet the previous
criteria, by dividing it by its norm such that:

|ψ̃⟩ = |ψ⟩
||ψ||

Lastly, a vector space coupled with an inner product is referred to as a Hilbert space. Thus,
a qubit is a vector in a two-dimensional complex Hilbert space, or C2. A state vector can
also be written, up to a global phase, in the following form:

|ψ⟩ = cos(θ/2) |0⟩+ eiϕsin(θ/2) |1⟩

This form will help us visualize a qubit through, what is called, a Bloch sphere. Any two-
level quantum state can be expressed as a point on the surface of the Bloch sphere with
radius r = 1 and therefore can be described by two angles θ and ϕ. As long as the vector
is normalized, the two parameters, θ and ϕ, are adequate to characterize a state. On the
Bloch sphere, the standard basis states are situated at opposite locations. When θ = 0,
|ψ⟩ = |0⟩ and when θ = π, |ψ⟩ = |1⟩.

|ψ⟩

x

y

z

ϕ

θ

Figure 2.1: Bloch sphere representation of a qubit

2.1.2 Manipulating Qubits

Similarly to classical bits, we can transform qubits from one state to another. The tools
employed for this task are called operators. Let A be an operator that acts on a state ψ.
The result will be a new state:

Â |ψ⟩ = |ϕ⟩

The same holds true not only for ”ket”s, but also for ”bra”s:

⟨ψ| Â = ⟨ϕ|

D. Chamarias 14
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Two of the most basic and simple operators are the identity operator, which leaves the
state as it is, and the zero operator which transforms the state to the zero vector:

Î |ψ⟩ = |ψ⟩

0̂ |ψ⟩ = 0

A class of operators that prove to be very significant in quantum computing are called Pauli
operators. Included in these four operators is the identity one, which we saw previously.
The first of the three remaining Pauli operators is usually referred to as the NOT operator,
because it flips the basis states and is denoted as σ1, σx, or X:

X̂ |0⟩ = |1⟩ , X̂ |1⟩ = |0⟩

Next, we have the operator σ2, σy, or Y that acts on the basis states as follows:

Ŷ |0⟩ = −i |1⟩ , Ŷ |1⟩ = i |0⟩

And finally, we have σ3, σz, or Z which acts as:

Ẑ |0⟩ = |0⟩ , Ẑ |1⟩ = − |1⟩

Apart from its action on a basis state, an operator can be represented in other ways as
well. One of these is through an outer product. An outer product between a ket and a bra
is written as |ψ⟩ ⟨ϕ|. Then, if we apply this product to an arbitrary state, we have:

(|ψ⟩ ⟨ϕ|) |χ⟩ = |ψ⟩ ⟨ϕ|χ⟩ = ⟨ϕ|χ⟩ |ψ⟩

We can see that our original state |χ⟩ has been transformed to a new state that is propor-
tional to |ψ⟩, as the inner product ⟨ϕ|χ⟩ is just a complex value.

An additional way by which we can represent an operator is through a matrix. In an n-
dimensional vector space, operators are represented by n×nmatrices. For the purposes
of this thesis, we are interested in operators that act on qubits, which ”live” in a two-
dimensional Hilbert space C2, so that means that the operators we are going to be looking
at are 2× 2 matrices.

To find each element of the matrix representation of an operator A, in the standard basis,
we use the expression:

Â =

(
⟨0|A|0⟩ ⟨0|A|1⟩
⟨1|A|0⟩ ⟨1|A|1⟩

)
Doing the calculations for the Pauli matrices, we end up with the following:

Î =

(
1 0
0 1

)
, X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 −1

)
In quantum theory and hence in quantum computation, two distinct kinds of operators are
essential: Hermitian and unitary operators. An operator A is Hermitian if:

Â = Â†

Â† is called the Hermitian adjoint and it is equal to the transpose of thematrix, but with each
of its elements replaced by their complex conjugate. For an operator to be Hermitian, it

D. Chamarias 15
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means that its diagonal matrix elements have real values. Another property of a Hermitian
operator is that its eigenvalues are also real. Because of this characteristic, Hermitian
operators in quantum physics represent physical observables.

For an operator to be unitary, its inverse needs to be equal to its Hermitian adjoint. The
letter U is commonly used to represent unitary operators. So, by definition:

Û Û † = Û †Û = Î

Unitary operators are significant because they describe how a quantum state changes
over time. The Pauli operators are both Hermitian and unitary.

Next, we will discuss the spectral decomposition theorem, which states that for every
normal operator acting on a vector space there is a diagonal matrix representation with
regard to some orthonormal basis of that space. An operator A is normal if it satisfies the
following:

ÂÂ† = Â†Â

As a result of the theorem, we can express the operator in the form:

Â =
∑
i

λi |ui⟩ ⟨ui|

where λi are the eigenvalues of the operator and |ui⟩ is a basis.

Operators can also be utilized as function inputs. Using the Taylor series expansion, we
get:

f(Â) =
∞∑
n=0

aiA
n

Thanks to the spectral decomposition theorem we can simplify formulas for functions of
operators. If an operator A is normal and given its spectral decomposition, the previous
formula transforms to:

f(Â) =
∑
i

f(λi) |ui⟩ ⟨ui|

Finally, due to the probabilistic nature of quantum mechanics, when measuring an ob-
servable, which is represented by an operator, instead of measuring once, we prepare a
quantum state |ψ⟩ several times, and then we average the measurement findings. This
mean, also known as the expectation value of the operator, is written as:

⟨Â⟩ = ⟨ψ|Â|ψ⟩

2.1.3 Multiple Qubits

So far, we have only examined single qubits, their features and how to use them for simple
calculations. Understanding how quantum mechanics operates for systems made up of
several qubits interacting with one another is essential if we are to research more complex
and potentially beneficial quantum computations. In order to accomplish that, we must be
able to generate a Hilbert space consisting of each qubit’s own independent Hilbert space.
The mathematical equipment needed to carry out this task is known as the Kronecker or
tensor product.

D. Chamarias 16
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Let H1 and H2 be two Hilbert spaces of N1 and N2 dimensions respectively. By using the
tensor product of those two spaces, we can construct a new composite Hilbert space H,
of N1N2 dimensions, such that:

H = H1 ⊗H2

In a similar fashion, we can use the tensor product to construct a state that belongs to H.
If |ϕ⟩ ∈ H1 and |χ⟩ ∈ H2 are two state vectors members of the Hilbert spaces that were
utilized to build H, then the following holds:

|ψ⟩ = |ϕ⟩ ⊗ |χ⟩

Given that spaces made up of two-dimensional subspaces are of interest to us, the sub-
sequent steps are taken to calculate the product:

|ψ⟩ = |ϕ⟩ ⊗ |χ⟩ =
(
a
b

)
⊗

(
c
d

)
=


ac
ad
bc
bd


Again, by employing the tensor product, we can construct a basis for our Hilbert space H.
If |ui⟩ and |vi⟩ are the basis vectors of H1 and H2, then our new basis is the following:

|wi⟩ = |ui⟩ ⊗ |vi⟩

Most of the time the ”⊗” symbol is omitted, so, for example, the tensor product |ϕ⟩⊗ |χ⟩ is
written as |ϕ⟩ |χ⟩, or even more concisely as |ϕχ⟩.

Additionally, we can also make operators that act on our composite system. Let |ϕ⟩ ∈ H1

and |χ⟩ ∈ H2, as well as operator A acting on |ϕ⟩ and operator B acting on |χ⟩. We can
create an operator that is the tensor product of these two operators and that acts on our
state |ψ⟩ ∈ H, as follows:

(A⊗ B) |ψ⟩ = (A⊗ B)(|ϕ⟩ ⊗ |χ⟩) = (A |ϕ⟩)⊗ (B |χ⟩)

Assuming that the operators A and B act on a two-dimensional Hilbert space, we can
compute the matrix representation of their tensor product:

A⊗ B =

(
a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22



2.1.4 Quantum Entanglement

It is crucial to keep in mind that, for example, a two-qubit composite system’s state is not
always able to be expressed in terms of a tensor product. The state can be expressed in
product form if the two qubits are prepared separately and maintained in isolation, con-
stituting a closed system for each one. Writing the state in the product form might not be
feasible if the qubits are permitted to interact, as this would result in a closed system that
consists of both qubits. In this situation, we refer to the qubits as being entangled, and
they are a vital component of quantum computation.
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Entanglement is a phenomenon that occurs not only in two-qubit but in multiple-qubits
systems as well.

2.2 Quantum Circuit Model

In classical computers, the fundamental actions that can be performed on a bit of informa-
tion are moving it from one location in memory to another, or we can process and transform
that bit using what are known as logic gates. These logic gates can be combined to form
digital circuits that enable us to carry out even more intricate calculations. The same is
true for quantum computers, where any state transformations that act on qubits are called
quantum gates, and a series of these gates constitute a quantum circuit.

Quantum gates are unitary operations on qubits; hence, gates and unitary operators are
equivalent notions, and we will be alternating between these two terms from here on. Op-
erators can be represented by matrices, thus for a quantum gate we need its appropriate
unitary matrix. A gate with n inputs and outputs requires a 2n×2n matrix. So, for example,
a single-qubit gate is represented as a 2 × 2 matrix and quantum gate that acts on two
qubits is a 4× 4 matrix.

The simplest single-qubit gate is one we are already familiar with. The quantum NOT
gate, which flips the basis states, is just the X Pauli operator. By writing the matrix in the
standard basis, we have:

ÛNOT = X̂ =

(
0 1
1 0

)
The other three Pauli operators, I, Y , Z, can also be used as a gate, since they are unitary.
We have already seen how they operate on a qubit in Section 2.1.2.

A very important gate for quantum computing is the Hadamard gate, which puts both
standard basis states in an even superposition. The Hadamard gate operates on the
basis states in the following manner:

Ĥ |0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩

Ĥ |1⟩ = 1√
2
(|0⟩ − |1⟩) = |−⟩

Given the standard basis, we can write the Hadamard gate in the following matrix form:

Ĥ =
1√
2

(
1 1
1 −1

)
Let’s now examine how to use exponentiation to generate more single-qubit gates. Given
a matrix U that is unitary and Hermitian, we can easily prove with the help of the Taylor
expansion that:

e−iθÛ = cos(θ)Û − isin(θ)Û

What that means is that by exponentiating a matrix we can construct a new gate. By
exponentiating the Paul matrices, for example, we can create gates that rotate a qubit
along the x, y and z axes on the Bloch sphere. These matrices are the following:

R̂x(θ) = e−iθX/2 =

(
cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

)
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R̂y(θ) = e−iθY /2 =

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
R̂z(θ) = e−iθZ/2 =

(
e−iθ/2 0
0 eiθ/2

)
Using the rotation matrices above, we can reduce any single-qubit gate to a sequence of
rotations along the z and y axes, called a Z-Y decomposition. The z and y axes are not
special, and we could have chosen any other two non-parallel axes on the Bloch sphere.
Given an operator U , real numbers a, b, c, d exist such that:

Û = eiaR̂z(b)R̂y(c)R̂z(d)

A circuit diagram can be used to illustrate how quantum gates operate. The input and
output of each unitary operator or gate are represented by lines, often known as ”wires”,
and the gate itself is represented by a rectangle. A sample graphical representation is
depicted in Figure 2.2. We begin on the left side where we see the state of each qubit
before the application of any gate. Then, each gate is applied one at a time, from left to
right, until we arrive at the right side where our output is. In our example, in the beginning,
a Hadamard and a Pauli-X gate is applied to the first and third qubit respectively. After
that, a two-qubit U gate is applied to the first and second qubit, followed by a rotation on
the z axis for the first qubit. At last, we perform a measurement on the first and third qubit,
which is depicted as the meter in the rectangle.

|0⟩ H

U

RZ(θ)

|1⟩

|ψ⟩ X Y

Figure 2.2: An example of a quantum circuit diagram

Now, we shall examine two-qubit gates, just like the one we saw in Figure 2.2. Gates
with more than one qubit as input are also known as controlled gates, because they are
comprised of control and target qubits, in no particular order, and in our case for two-qubit
gates, one control and one target qubit. The target qubit experiences no changes if the
control qubit is zero; however, if the control qubit is equal to one, a unitary operation is
applied to the target. One may compute the matrix representation of a two-qubit gate
using the following 4× 4 matrix:

Û =


⟨00|Û |00⟩ ⟨00|Û |01⟩ ⟨00|Û |10⟩ ⟨00|Û |11⟩
⟨01|Û |00⟩ ⟨01|Û |01⟩ ⟨01|Û |10⟩ ⟨01|Û |11⟩
⟨10|Û |00⟩ ⟨10|Û |01⟩ ⟨10|Û |10⟩ ⟨10|Û |11⟩
⟨11|Û |00⟩ ⟨11|Û |01⟩ ⟨11|Û |10⟩ ⟨11|Û |11⟩


The two-qubit gate that we need to know for the objectives of this thesis is the controlled−
NOT or CNOT gate. If the control qubit is |0⟩, then the target qubit stays as is, but if the
control qubit is |1⟩ then the target flips its value, just as if a gate NOT had been applied
to it. The actions of a CNOT gate to all possible input states are as follows:

CNOT |00⟩ = |00⟩
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|ψ⟩ |ψ⟩

|ϕ⟩ |ϕ⊕ ψ⟩

Figure 2.3: Circuit diagram representation of a CNOT gate

CNOT |01⟩ = |01⟩

CNOT |10⟩ = |11⟩

CNOT |11⟩ = |10⟩

Knowing the matrix representation of a two-qubit gate and the actions of a CNOT gate
on the two qubits, it follows that the CNOT matrix is equal to:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



2.3 Density Operator

We have always assumed in the previous sections that a system’s state has an exact state
vector. That is, if an orthonormal basis |ui⟩ exists, we can write our state vector in that
basis as:

|ψ⟩ = c1 |u1⟩+ c2 |u2⟩+ ...+ cn |un⟩

The likelihood that the system will be in state |ui⟩ at measurement is thus provided by |ci|2,
as determined by the Born rule. The term used to describe such a state is ”pure”.

Often, we find that we are only interested in or have access to a small portion of a broader
system. One way to illustrate this is by considering an EPR pair example. Let’s assume
the system in question is equal to the Bell state:

|β00⟩ =
|00⟩+ |11⟩√

2

where Alice is in possession of one qubit and Bob is in possession of the other and they
separate to completely opposite directions. That state contains information about the
whole entangled system, but Alice has no way of describing her own qubit since it is
not in the usual form of a |0⟩ + b |1⟩. The density operator formulation is a valuable tool
for characterizing the state of a composite system’s subsystem, which is referred to as a
mixed state.

When considering a pure state |ψ⟩, the definition of the density operator is:

ρ = |ψ⟩ ⟨ψ|

Returning to our example, the density operator for the composite system is:

ρ = |β00⟩ ⟨β00| =
1

2
(|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|)
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Using the density operator, we can define a reduced density operator for Alice, which is
defined through the partial trace operation:

ρA = TrB(ρ)

The partial trace over Bob’s system acts on the basis states in the following manner:

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b2|)

Using the property above, we calculate Alice’s reduced density operator, by tracing out
Bob’s system:

ρA = TrB(ρ) =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|)

All the pertinent information about Alice’s system is contained in the partial trace TrB(ρ),
and the same is true for Bob’s system, in TrA(ρ). But there is not enough information in
these local descriptions to recreate the system’s overall state.

One scenario where density operators are also useful is when we want to quantify the
degree of entanglement between two qubits. Figuring out the concurrence of a state is
one method of measuring entanglement. Concurrence between two qubits is defined as
[4]:

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4)

where λ1, λ2, λ3, λ4 are the eigenvalues,in decreasing order, of the following matrix R:

R =
√√

ρρ̃
√
ρ

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy)

The value of concurrence ranges from zero (no entanglement at all) to one (maximally
entangled state).

We can generalize the concurrence measure for systems with multiple qubits. Suppose
that we are interested in measuring the entanglement of a subsystem of m qubits, that
is part of a larger composite system of n qubits. Let M denote this collection of qubits.
Then, we can rewrite concurrence as [5]:

CM(ρ) =
√

2(1− Trρ2M)

where ρM is the reduced density matrix of the subsystem M.
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3. MACHINE LEARNING

In this part, we shall explore the basic ideas behind machine learning as a field, in order to
later synthesize them with our understanding of quantum computation, so we can analyze
the topic of our thesis, which is VQCs. First, we start with a brief introduction to machine
learning. Subsequently, the problem of classification is analyzed and how we can solve it
using gradient descent on a loss function.

3.1 Introduction

Generally speaking, there are two primary types of machine learning: unsupervised and
supervised learning [6] [7].

The goal of unsupervised learning is to find structure and patterns in unlabeled data. ”Un-
supervised” refers to the fact that these algorithms find patterns in data that are concealed
and do not require human ”supervision” or assistance. Unsupervised learning methods
are typically employed for three tasks: clustering, anomaly detection and dimensionality
reduction.

The main characteristic of supervised learning as a machine learning technique is the
usage of labeled datasets. The model can learn over time due to the training dataset,
which contains inputs paired with the correct outputs. Through, what is called, a loss
function, the algorithm gauges its accuracy and makes adjustments until the error is suit-
ably reduced. Regression and classification are the two main subcategories of tasks in
supervised learning. We consider the classification task that is relevant for this thesis.

3.2 Classification

Classification algorithms aim to precisely classify test data into distinct groups, for ex-
ample, to find out whether a dog or a cat is depicted in an image or if an email is spam or
not. Classification may be separated into to two categories: binary and multi-class clas-
sification. As the names suggest, in binary classification there are only two categories for
the model to choose from, whereas in multi-class classification there are more than two.

To be more specific, given an input domain X, an output domain Y and a dataset D of
pairs (xm, ym) ∈ X × Y,m = 1, ...,M , in addition to a new unclassified input x ∈ X, the
goal is to estimate the matching output y ∈ Y . In order to solve this problem, we create a
model family {fθ}, which may be represented mathematically as a collection of functions
f that translate inputs from X to outputs from Y . These models are based on a set of
parameters θ that identify a specific model within the family. Then, the optimal model,
together with its distinct parameter set of θ, which replicates the data, is chosen from this
set of functions.

A loss or cost function that calculates the difference between the model’s prediction fθ(x)
for an input x and the intended output y defines the concept of ”best model”. The model
that minimizes the expected loss, that is, the average loss over all possible data, is the
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best. If L(fθ(x), y) is our loss function, then the best parameters are [6] [7]:

θ∗ = min
θ

1

M

M∑
i=1

L(fθ(xi), yi)

Machine learning poses a problem in that the optimal model must be chosen with limited
access to data - a finite number of instances are provided. In other words, finding a model
that can generalize from the small sample size to the entirety of the data domain.

3.2.1 Loss Function

Among the several loss functions available, the most straightforward one for classification
tasks is the one that depends on a model’s accuracy, or the percentage of samples that
have been properly categorized. If accuracy is defined as [6]:

Accuracy =
C

T

where C are the number of correctly categorized examples and T is the total number of
examples, then our loss function will be equal to [6]:

L(fθ(x), y) = 1− Cθ

T

Nevertheless, the majority of training methods depend on a continuous-valued loss, which
is essential for calculating gradients, a topic that we will cover in Section 3.2.2 on optimiz-
ation. The squared Euclidean distance between the prediction and the target, referred to
as the mean squared error loss, is one of the most widely used continuous loss functions
[6] [7]:

L(fθ(x), y) = (fθ(x)− y)2

The most often used loss function for classification, and the one we will use in this thesis,
is the cross-entropy loss function [6]:

L(fθ(x), y) = −
D∑

d=1

ydlogpd

where D is the number of classes, yd is a binary value that indicates whether the true of
class of x is class i and pd is the probability of x being of class i.

3.2.2 Optimization

Optimizers are algorithms that are used in machine learning to adjust a model’s paramet-
ers in an iterative fashion as a means to minimize the loss function.

If C is our cost function and θ its parameters, then the parameters are updated iteratively
by gradient descent using the following rule [6] [7]:

θ(t+1) = θ(t) − η∇C(θ(t))
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Figure 3.1: 3D plot of gradient descent on a function

where η is a hyperparameter known as the learning rate and t is an integer that indicates
the number of iterations completed thus far. A hyperparameter is a parameter that is
chosen before the execution of the training process. The learning rate, basically, dictates
the pace at which a minimum of the function, local or global, is reached. Its value is
usually a small number that is updated and assessed in accordance with the cost function’s
behavior. Greater learning rates lead to bigger leaps, but there’s a chance they’ll exceed
the minimum, but on the other hand, lower learning rates take longer to converge to a
minimum. In the landscape of the cost function, the gradient points in the direction of
ascent, so following its negativemeans heading in the direction of valleys, until the gradient
is zero, as shown in Figure 3.1.

The gradient descent method is applied in three different ways [6] [7]. The first is called
batch gradient descent (BGD). After evaluating every training sample, a procedure known
as a training epoch, batch gradient descent adds up the errors for every point in a train-
ing set and updates the model. Despite the fact that batching reduces computing costs,
processing large training datasets may still take a while.

The second variation of the gradient descent algorithm is called stochastic gradient des-
cent (SGD). In SGD, every example in the dataset undergoes a training epoch, and each
training example’s parameters are updated one at a time. Compared to BGD, these fre-
quent updates may result in losses in computing efficiency although they can provide
greater detail.

And last, we have mini-batch gradient descent where ideas from both BGD and SGD are
combined. It divides the training dataset into smaller batches, and performs updates on
each of those batches. This method finds a compromise between batch gradient descent’s
computing efficiency and stochastic gradient descent’s speed.
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4. VARIATIONAL QUANTUM CLASSIFIER

4.1 Introduction

A tremendous amount of effort has gone into creating the earliest iterations of what might
eventually become a complete quantum computer, known as Noisy Intermediate-Scale
Quantum (NISQ) devices. These devices lack error correction and can only yield approx-
imations of computing results since they currently consist of around 50–100 qubits, not all
of which interact with each other. In theory, quantum devices in the NISQ era might be
used to explore the benefits of quantum computing; nevertheless, quantum algorithmic
design is significantly impacted by the requirement to restrict algorithms to a small num-
ber of qubits and gates. In order to address the aforementioned problem, a brand-new
category of algorithms known as variational quantum algorithms was created [8].

x0

Sx Uθ ∇Lθ · · ·
......

xn

Figure 4.1: General structure of a variational quantum circuit

These algorithms are not specified by a predetermined sequence of gates, but rather by
an ansatz, a pattern that determines which gates are applied to which qubits. The ansatz
template is modular and may be applied to varying quantities of qubits by repeating it in
layers. Certain gates in the ansatz, typically Pauli rotations, depend on freely adjustable
parameters, which is where the term ”variational” originates. An optimization procedure
that is classical in nature and optimizes a cost function obtained from the problem at hand
will select the parameters.

Figure 4.1 illustrates a variational quantum circuit in the form of a diagram. We begin with
an input vector x with n features. First, we need to prepare our classical input so it can
be processed by the quantum circuit. This procedure is called state preparation, which is
represented by the Sx block. Then, we apply unitary transformations to our input, using a
mixture of parameterized and non-parameterized gates, which is the Uθ block. After that,
our system is ready for measurement. Using the output accordingly and passing it to a
classical optimizer, we can calculate the new parameters. Finally, we adjust the paramet-
ers of the Uθ block and this process is repeated until the optimal solution is reached.

Variational quantum circuits can be thought of asmachine learningmodels [6] [8]. Applying
a quantum circuit U(x, θ) that depends on both the input x and the parameters θ to the
initial state, allows us to view a variational quantum circuit as a machine learning model,
where the output of that model is nothing more than a function of the expectation value of
an observable O. In the case of a classification task, the expectation value ⟨O⟩ ∈ R, can
be interpreted as the probability of our input being in a certain class or category, and the
difference between the true label and the expectation value is then used to define the cost
function [8] [9].
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4.2 Input Encoding

The choice of how to represent data, whether it be single inputs or large datasets, by
quantum states must be made if we wish to utilize a quantum computer to learn from
classical data. In this section, we will explain various pertinent methods for encoding or
embedding information into an n-qubit system’s quantum state. There are primarily four
ways to encode classical data in a quantum state [6]: basis encoding, amplitude encoding,
time-evolution encoding and Hamiltonian encoding. We will concentrate on two of this
methods for this thesis: amplitude encoding and time-evolution encoding.

Suppose that we want to encode a single input with N features, so x ∈ CN , into the
amplitudes of a state. First of all, since every qubit has two amplitudes, in a n-qubit system
the amplitudes become 2n, which means that the number of features must be N = 2n. If
that is not the case, then our state needs to be padded with some value. Next, a state
would need to be normalized before it could be regarded as valid. Therefore, the second
step we need to take is to normalize our input so that

∑2n−1
i=0 |xi|2 = 1. Once we have

completed all of the above steps, we can finally encode our input in the following manner
[6]:

|ψx⟩ =
2n−1∑
j=0

xj |j⟩

On to the second encoding, time-evolution encoding, according to which, a Hamiltonian
H relates a scalar value x ∈ R with the time t in the unitary evolution of the quantum state
[6]:

U(x) = e−ixH

The most widely used subcategory of the time-evolution encoding is referred to as rotation
encoding or angle encoding, with the Pauli rotation gates being utilized as the unitary
transformation. A gate is applied to each qubit; one qubit for each feature. Suppose that
our input has N features, just like in the previous example, but x ∈ RN this time. First, we
are going to normalize our input so that each feature is in the interval [0, 2π]. If we wish to
apply a Pauli Y rotation gate to our input, the unitary transformation becomes [6]:

U(x) = Ry(x1)⊗ · · · ⊗ Ry(xN)

If all of the N qubits of our system are initialized to |0⟩, then the final state is encoded as
[10]:

|ψx⟩ =
(
cos(x0/2)
sin(x0/2)

)
⊗ · · · ⊗

(
cos(xn/2)
sin(xn/2)

)

4.3 Model Training

Determining the values of θ that minimize a cost function that depends on input data is the
process of training a variational quantum model. As we saw in Section 3.2.2, for this to
be achieved, we need to compute the gradient of the cost function Cθ with respect to its
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parameters θ = {θ1, . . . , θK} [6], which by definition is equal to:

∇C(θ) =


∂C(θ)
∂θ1...

∂C(θ)
∂θK


Each partial derivative with respect to a parameter θi is:

∂C(θ)

∂θi
= lim

h→0

C(θ1, . . . , θi + h, . . . , θK)− C(θ)

h

We can approximate these derivatives by choosing an infinitesimal value that is close to
zero ∆θ in place of h:

∂C(θ)

∂θi
≈ C(θ1, . . . , θi +∆θ, . . . , θK)− C(θ)

∆θ

4.4 Measuring Entanglement

In Section 2.3, we talked about howwe can quantify the amount of entanglement of a single
qubit that is a component of a larger composite system. The purpose of this thesis is to
investigate, using a VQC, whether entanglement is associated with improved performance
in a classification problem. It is therefore necessary to quantify the total quantum circuit’s
entanglement. We use a metric known as global entanglement to do that.

For a system of n qubits, the global entanglement measure is defined as [11] [12]:

Q(ψ) =
1

n

n∑
i=1

C2
i (ψ)

whereCi is the concurrence of the i-th qubit, which we discussed in Section 2.3. The value
of the global entanglement measure ranges from zero to one, similarly to concurrence,
which allows us to compare the entanglement of circuits with different numbers of qubits.
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5. SIMULATION AND RESULTS

5.1 Setup

The VQC was implemented as a quantum circuit in the Python programming language
with the help of the PyTorch and NumPy libraries. More information can be found in the
Appendix A.

5.1.1 Datasets and Metrics

The datasets used to evaluate the effects of entanglement on VQCs are the IRIS dataset
and a generated concentric circles dataset. The IRIS dataset is possibly one of the most
well-known datasets in the machine learning space. It contains measurements of sepal
length, sepal width, petal length, and petal width for three different species of iris flowers,
which means that each input vector has 4 features with 3 classes to be predicted by the
model. As for the concentric circles dataset, each data point has 2 features with 2 classes
available for prediction. Therefore, the performance of the models will be tested on both
binary and multi-class classification tasks.

In order to assess the impact of entanglement on the classifier, we will juxtapose the global
entanglement with the accuracy of the model on the previously mentioned datasets.

Figure 5.1: Global Entanglement of classifier for IRIS dataset

As shown in Figure 5.1, the global entanglement measure is dependent upon the input of
the classifier and fluctuates significantly for each data point of a dataset (for the depiction,
the IRIS dataset was used as an example). As a result, to calculate the total entanglement
of our circuit, we simply take the average of all the global entanglement measures for the
dataset and use it as our metric.
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5.1.2 Ansatz Design

Various combinations of encodings, as well as, rotation and entangling gates were invest-
igated for the overall purposes of this thesis. The encodings employed in the simulation
are the amplitude and rotation encodings, which were covered in Section 4.2. For single-
qubit gates, the Pauli Y and Z rotation gates were used, with the addition of the Hadamard
gate that was used for superposition and entanglement. The only two-qubit gate utilized
was the CNOT gate.

Encoding Ansatz A General Rotation Ansatz B

x0 RZ(x0) H RZ(θ1) RY (θ2) RZ(θ3)

x1 RZ(x1) RZ(θ4) RY (θ5) RZ(θ6) H H

Figure 5.2: General structure of the ansatz patterns used

In general, the classifier is configured as follows: After encoding the input using the es-
tablished methods, the first ansatz uses a combination of single and two-qubit gates to
calibrate the model’s entanglement. Next comes the variational portion of the classifier,
where we rotate each qubit in a certain direction using a set of trainable parameters θ,
which will be optimized iteratively. Then, the second ansatz follows, which is comparable
to the first. Finally, we measure our system to get the prediction. For a visual represent-
ation, see Figure 5.2 and for one of the circuits used in the simulation, see Figure 5.3

x0 RY (x0) RZ(θ1) RY (θ2) RZ(θ3)

x1 RY (x2) RZ(θ4) RY (θ5) RZ(θ6)

x2 RY (x2) RZ(θ7) RY (θ8) RZ(θ9)

x3 RY (x3) RZ(θ10) RY (θ11) RZ(θ12)

Figure 5.3: Example of an ansatz pattern

5.2 Results

Webegin with the results for the IRIS dataset. Figure 5.4 shows a clear trend of decreasing
accuracy, although the correlation seems to be weak. When entanglement is zero our
model performs poorly. The same can be said about increased levels of entanglement.
The most striking result to emerge from Figure 5.4 is that, when entanglement is just
above zero, more specifically about 0.02, the accuracy of the model shoots up to almost
90%. Amplitude encoding was the encoding used for this specific model; however, given
the other models with the same encoding fared badly, it is extremely improbable that the
rise was caused by the specific encoding.
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Figure 5.4: Relationship between global entanglement and accuracy for the IRIS dataset

Figure 5.5: Learning curve with best results for IRIS dataset

The same slight downward trend is seen for the concentric circles dataset, as illustrated
in Figure 5.6. Compared to the IRIS dataset, here, the results are a bit more balanced.
The model that performed the best had approximately 0.45 entanglement reaching 65%
accuracy, which is not ideal, with the second best model having zero entanglement but
being not far behind, scoring 62%.

One interesting aspect that emerged from the analysis, that both plots seem to have in
common, is that there is an outlier in the data, performing much better than the others. A
conclusion we can draw from this fact is that, even though improved performance cannot
simply be ascribed to the effects of entanglement, there exists a ”sweet spot” of entangle-
ment, which is different for each dataset. When a certain level is reached, the model can
improve drastically.
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Figure 5.6: Relationship between global entanglement and accuracy for the Concentric Circles
dataset

Having said that, extreme caution must be exercised in interpreting these data, as the
combinations of different encodings, gates and ansatz patterns were limited. But all things
considered, these findings seem to point in the direction that entanglement is not a fool-
proof way to boost a VQC’s performance.
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6. CONCLUSIONS AND FUTURE WORK

In conclusion, this thesis explored the effects of entanglement on VQCs. Through a com-
prehensive analysis of the experimental results, it has been determined that there appears
to be no significant correlation between the extent of entanglement and the accuracy of
the classifier. These findings challenge the notion that entanglement plays a crucial role
in enhancing classifier performance.

However, it is important to note that this conclusion is based on the specific datasets and
parameters utilized in this study. To establish a more definitive understanding, future re-
search should focus on employing larger and more diverse datasets. Additionally, invest-
igating the impact of varying entanglement measures and exploring alternative quantum
architectures may provide valuable insights.

The implications of this research extend beyond the scope of quantum machine learning,
as it prompts further investigation into the fundamental role of entanglement in quantum
information processing. It is pertinent for researchers to collaborate and share their find-
ings to collectively advance the field. The results presented in this thesis contribute to the
existing body of knowledge surrounding variational quantum classifiers and pave the way
for future investigations in this domain.
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ABBREVIATIONS - ACRONYMS

VQC Variational Quantum Classifier

CNOT Controlled-NOT

BGD Batch Gradient Descent

SGD Stochastic Gradient Descent

NISQ Noisy Intermediate-Scale Quantum
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APPENDIX A. CODE IMPLEMENTATION

The full code implementation, as well as all the simulation results, can be found in the
GitHub repository:

https://github.com/DImiTrisXam/bsc_thesis
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