
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

MSc THESIS

The semantic data cube system Plato and its cache
optimization

Filippos E. Yfantis

Supervisors: Manolis Koubarakis, Professor
Dimitris Bilidas, PhD
Georgios Stamoulis, PhD Student

ATHENS

March 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Το σύστημα σημασιολογικού κύβου δεδομένων Plato με
τη βελτιστοποίηση κρυφής μνήμης

Φίλιππος Ε. Υφαντής

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Δημήτρης Μπηλίδας, Διδάκτωρ
Γεώργιος Σταμούλης, Υποψήφιος Διδάκτωρ

ΑΘΗΝΑ

Μάρτιος 2024

MSc THESIS

The semantic data cube system Plato and its cache optimization

Filippos E. Yfantis
S.N.: CS2190003

SUPERVISORS: Manolis Koubarakis, Professor
Dimitris Bilidas, PhD
Georgios Stamoulis, PhD Student

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Το σύστημα σημασιολογικού κύβου δεδομένων Plato με τη βελτιστοποίηση κρυφής
μνήμης

Φίλιππος Ε. Υφαντής
Α.Μ.: CS2190003

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανόλης Κουμπαράκης, Καθηγητής
Δημήτρης Μπηλίδας, Διδάκτωρ
Γεώργιος Σταμούλης, Υποψήφιος Διδάκτωρ

ABSTRACT

The DeepCube project provides us with multiple datasets, in the form of data cubes. We
can access this data as a foreign table in PostgreSQL, through the development and use of
a Multicorn Foreign Data Wrapper. Furthermore, we can use Ontop to query the database
as a virtual RDF Graph, using SPARQL. The entire pipeline is implemented through the
semantic data cube system Plato. However, the querying process lacks in efficiency and
thus, we extend the Ontop plugin by implementing a cache system with a corresponding
table in PostgreSQL, for faster access to the requested data. This way a certain portion
of the dataset will always be materialized in the database, constantly updating based on
user queries.

SUBJECT AREA: Artificial Intelligence, Big Data
KEYWORDS: RDF, OBDA, Database Management, Geospatial Data

ΠΕΡΙΛΗΨΗ

Το έργο DeepCube παρέχει πολλαπλά σύνολα δεδομένων, με τη μορφή κύβων δεδομέ-
νων. Μπορούμε να προσπελάσουμε αυτά τα δεδομένα σαν έναν εξωτερικό πίνακα (foreign
table) στην PostgreSQL, μέσω της ανάπτυξης και χρήσης ενός Multicorn Foreign Data
Wrapper. Επιπλέον, μπορούμε να χρησιμοποιήσουμε το Ontop για να θέσουμε ερωτή-
ματα στη βάση δεδομένων σαν έναν εικονικό RDF γράφο, μέσω της γλώσσας SPARQL.
Ολόκληρη η διαδικασία υλοποιείται μέσω του συστήματος σημασιολογικού κύβου δεδο-
μένων Plato. Ωστόσο, η διεργασία των ερωτημάτων στερείται αποτελεσματικότητας και
έτσι, επεκτείνουμε το πρόσθετο Ontop υλοποιώντας ένα σύστημα κρυφής μνήμης με αντί-
στοιχο πίνακα στην PostgreSQL, για ταχύτερη πρόσβαση στα ζητούμενα δεδομένα. Με
αυτόν τον τρόπο ένα συγκεκριμένο τμήμα του συνόλου δεδομένων θα υπάρχει πάντα στη
βάση δεδομένων και θα ενημερώνεται συνεχώς με βάση τα ερωτήματα των χρηστών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη, Μεγάλα Δεδομένα
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: RDF, OBDA, Διαχείριση Βάσης Δεδομένων, Γεωχωρικά Δεδομένα

Ευχαριστώ την οικογένειά μου για την ανιδιοτελή της αγάπη.
Είναι ο λόγος που συνεχίζω να προσπαθώ για το καλύτερο.

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisors, Prof. Manolis Koumparakis, Dr. Dimitris
Bilidas andGeorgios Stamoulis for their immense help and guidance throughout the planning
and development of this thesis. They were always willing to assist me with any issues and
obstacles I had to face, and they were always there to motivate me and make sure I stayed
on track, every step along the way. Without them I would not have accomplished my end
goal.

I am truly grateful to them.

CONTENTS

1. INTRODUCTION 13

2. BACKGROUND AND RELATED WORK 15

2.1 Data cubes . 15
2.1.1 Infrastructures . 15
2.1.2 Semantic enrichment . 15

2.2 Array databases . 16

2.3 Semantic Web: Languages, Systems and Technologies for Grids and Arrays 19
2.3.1 SciSPARQL . 19
2.3.2 GeoSPARQL+ . 19
2.3.3 The RDF Data Cube Vocabulary . 20

2.4 Ontop: OBDA in other Semantic Frameworks . 20

2.5 Summary . 21

3. THE SEMANTIC DATA CUBE SYSTEM PLATO 22

3.1 Architecture . 22

3.2 Ontop plugin . 22

3.3 PostGIS - Foreign Data Wrappers . 23

3.4 Cache . 25

3.5 Raptor Join . 27

3.6 Summary . 27

4. USING PLATO IN THE DEEPCUBE PROJECT 28

4.1 Climate-induced migration in Africa . 28

4.2 Fire hazard forecasting . 30

4.3 Copernicus services for sustainable tourism . 32

4.4 Summary . 33

5. EXPERIMENTAL EVALUATION OF PLATO 35

5.1 Data cubes and datasets . 35

5.2 Query evaluation . 37

6. CONCLUSIONS AND FUTURE WORK 39

ABBREVIATIONS - ACRONYMS 40

REFERENCES 42

LIST OF FIGURES

3.1 The architecture of Plato . 23

4.1 Data quality layer in Sextant, for the Internally Displaced Persons (IDP)
Drought index. The color map shows districts in Somalia that pass the
quality check threshold, along with their quality value. 30

PREFACE

Problem solving has always been one of my favourite activities. Whether that be games,
puzzles, math or science it has always intrigued me to break down a problem and figure
out the solution, no matter how long it would take. This was further entertained with
my introduction to the world of computer science, to the point that I chose to pursue a
degree in it. During my Bachelor's degree I was introduced to many of its different fields,
but the ones that drew my attention the most was AI and Databases. I proceeded with
my academic studies by pursuing a MSc Degree, specializing in Data, Information and
Knowledge Management. I was also fortunate enough to be hired as a research assistant
in Prof. Koubarakis's team, which allowed me to work in the field that interested me the
most. This enabled me to develop this thesis in parallel with my work in the DeepCube
project.

The semantic data cube system Plato and its cache optimization

1. INTRODUCTION

In this thesis we will try to implement a solution to handle and optimize complex Geo-
SPARQL queries on large datasets. We will also try to find ways to increase the perform-
ance of those queries on given datasets and extract some statistics and metrics. All of
this will be presented in the context of Plato, a semantic data cube system implementa-
tion which uses ontology-based data access technologies and, in particular, the system
Ontop.

A data cube is a multidimensional array of values. It is a natural data structure for storing
analysis-ready Earth observation (EO) data as well as multidimensional data of all kinds.
As a result, a number of data cube infrastructures targeting EO data have recently been
developed (e.g., the Open Data Cube infrastructure in Australia, the Euro Data Cube and
Earth System Data Cube funded by ESA etc.). These data cube infrastructures offer
libraries and APIs (e.g., xarray, YAXArrays) to store and query multidimensional data.
However, before data cube infrastructures became a trend, there had already been lots
of research and development on array data base management systems (DBMS) (e.g.,
Rasdaman [6], SciDB [22] and MonetDB SciQL [30]), which provide declarative query
languages for modeling and accessing multidimensional data.

The concept of semantic EO data cubes (or semantic data cubes for simplicity) was first
presented by Augustin et al. in [4]. The term semantic was used to distinguish them from
regular EO data cubes that contain numbers without high-level meaning for the user (e.g.,
reflectance values). In semantic data cubes, these values are intricately connected to
symbolic high-level concepts, allowing users to not only gain insights into the specified
concepts but also establish associations with the original values. Beyond imparting know-
ledge through interpretations, a semantic data cube has the potential to streamline the
integration of external knowledge (datasets) and enable the linking of such information
with the original values, fostering a comprehensive combined analysis. Utilization of such
systems becomes evident in numerous scenarios involving geospatial data. For instance,
demographic data released by a governmental organization can be leveraged to pinpoint
major cities situated within a specified distance from regions designated as pine forests.

Plato is a pioneering semantic data cube system utilizing geospatial OBDA technologies.
OBDA serves as a methodology for connecting an ontology, which captures geospatial
knowledge about entity classes and properties within a specific application domain, to
underlying data sources. These data sources, managed by specialized systems, exist
in various formats and typically reside in pre-existing repositories (e.g., a geospatial re-
lational DBMS or a shapefile). To establish the connection, declarative mappings are
employed, enabling the generation of ontology terms based on information extracted from
the data sources. Rather than materializing all ontology terms, in OBDA systems users
can pose queries directly on the ontology. Subsequently, a process of query transforma-
tion takes place, converting the user’s query into the native language understood by the
underlying data sources (e,g., GeoSPARQL). This transformed query is executed, and
the results are then converted back into ontology terms for presentation to the user. This
approach, often referred to as the virtual knowledge graph approach, offers the advant-
age of providing users with a familiar vocabulary to articulate queries while abstracting
the complexities of the underlying data sources, including intricate schemas and storage
nuances. However, the process of transforming the initial query over the ontology into
a query over the underlying data sources can occasionally lead to complex and sizable
queries.

F. Yfantis 13

The semantic data cube system Plato and its cache optimization

Due to the impedance mismatch between the concepts of an ontology language (direc-
ted graphs of classes, instances, properties and values) and the concepts of data cubes
(multidimensional arrays of values), our task proved to be very challenging. We show
how to face this problem by implementing the semantic data cube system Plato using
the well-known ontology-based data access system Ontop [29], Python xarray scripts and
PostgreSQL Foreign Data Wrappers (FDWs). During initialization of the Ontop engine,
we provide an ontology in the OWL2 QL language and a set of mappings. The mappings
define the way that ontology terms are related to the data residing in the backend. After
initialization, Ontop is ready to accept GeoSPARQL queries and translate them into SQL
enhanced with spatial operators. The PostGIS backend contains virtual tables based on
FDWs. The data cubes are stored in “.zarr” directory format or as .nc (netCDF) files, and
we utilize Python scripts for efficient access. This is possible through the use of the Python
xarray package that allows us to work with labelled multi-dimensional arrays conveniently.
To handle access to the local or remote data cubes we use Multicorn, a PostgreSQL 9.1+
extension meant to make FDW development easy though the use of Python. Finally, to
reduce execution time of queries over large cubes, we implemented a caching mechan-
ism to minimize on-the-fly transformation from GeoSPARQL to SQL, and Raptor Join to
efficiently compute spatial join operations.

After a thorough overview of Plato, we can proceed with the evaluation of its perform-
ance, using data cubes from the use cases of European Horizon 2020 project DeepCube
(https://deepcube-h2020.eu/). Our experiments demonstrate that the optimizations we
have developed, focusing mainly on the caching one, allowing us to process complicated
GeoSPARQL queries targeting GBs of data very efficiently.

F. Yfantis 14

https://deepcube-h2020.eu/

The semantic data cube system Plato and its cache optimization

2. BACKGROUND AND RELATED WORK

In this chapter we will go more in depth regarding the surrounding aspects of Plato and
its optimizations. We commence by further explaining data cubes, their infrastructure
and their semantic enrichment, followed by array database systems, semantic web tech-
nologies and what purpose does an OBDA implementation serve. Other approaches to
building semantic data cube frameworks are also highlighted. This chapter has been writ-
ten jointly with my colleague Anastasios Mantas and, as a result, it also appears verbatim
in his MSc thesis [16].

2.1 Data cubes

Starting of, we will present the most well-known infrastructures used to handle and operate
with data cubes. In addition, we will highlight the process of semantically enriching a data
cube through the characteristics of a different fully-fledged semantic data cube system,
besides Plato.

2.1.1 Infrastructures

The Earth System Data Lab (ESDL) data cube provides functionalities for building mul-
tivariate data cubes from a variety of sources. The current standard is to store large spatio-
temporal datasets in NetCDF format, which is optimized for local filesystems. However,
with growing size of the datasets and more demand for cloud-computing there is a grow-
ing demand for cloud-optimized storage formats for spatiotemporal datasets. One option
here is the zarr format which stores data and metadata in separate objects to ensure
quick access to subsets of the data in high-latency file systems or object stores. During
the data conversion, the input datasets are read from different sources and ingested into
a common data model so that multivariate analyses can be applied on a common spatio-
temporal grid. The resulting data cube is stored in the cloud-compatible zarr format and
accessible to end users through python or Julia APIs. Users can apply their own complex
processing methods and scale them in distributed environments using either xarray+dask
(python) or YAXArrays.jl + Distributed.jl (Julia). In addition to applying existing ESDL work-
flows DeepCube aimed to extend the ESDL capabilities, in particular regarding possible
deep learning (DL) applications. More specifically, the aim was the implementation of
improvements on efficient data shuffling, storing data in overlapping chunks and thereby
facilitating moving-window analyses.

2.1.2 Semantic enrichment

In their work [24], Sudmanns et al. explore the possibilities of an extensive data cube
analysis, through an infrastructure which supports users to transform geodata into inform-
ation. Their system, called Sen2Cube.at [26], utilizes computer vision (CV) to automate
semantic enrichment on a big EO data scale, while an interactive web-based graphical
user interface (GUI) allows users to create, save and share queries in a knowledge base,
without the need of technical expertise. More specifically, a user first defines an area and
a timeframe of interest for the generic fact-base, where multiple data cubes can be ac-

F. Yfantis 15

The semantic data cube system Plato and its cache optimization

cessed. Then, by combining spectral categories, continuous variables and additional geo-
graphic information, they can build a semantic model in the knowledge base (the model is
translated into a query against the fact-base using an inference engine [27]). These spec-
tral categories (e.g., types of vegetation, land-forms, water depth, etc.) are generated
using the Satellite Image Automatic Mapper (SIAM) [5] software, which is responsible for
the base-level semantic enrichment by performing categorization of optical multi-spectral
EO imagery (Sentinel-2 MSI) from multiple sensors in an automated manner. This meth-
odology is also present in a more recent publication [20] by Sudmanns et al., where the
greenness of Austria is measured by combining three information layers (i.e., density,
change, and lifespan of vegetation) in one semantic model. The Sen2Cube.at prototype
has been successfully transferred to other regions (e.g., North-Western Syria) and data-
sets (e.g., Sentinel-3) as well, while having been used in a variety of applications, including
agricultural monitoring, soil sealing identification and the derivation of essential climate
variables [23]. As in our approach, however, open research gaps like the automated
instantiation of semantic EO data cubes, the evaluation and transferability of semantic
models, or the homogeneity of semantic queries across multiple such data cubes [25],
are topics which require further investigation.

2.2 Array databases

In this section we briefly discuss the current state in the area of specialized data manage-
ment systems for multi-dimensional arrays. Our discussion is based on a recent survey
paper by Baumann et al. [7]. Such systems are relevant for the task of developing the se-
mantic data cube technology, as they can be used as backends, where array processing
can be efficiently performed. The query languages supported by these systems are of
particular interest, as specific fragments of an initial GeoSPARQL query can be trans-
lated to corresponding languages. Multi-dimensional arrays (also known as raster data,
gridded data or data cubes) are increasingly prominent in science and engineering do-
mains. They are the primary means of spatio-temporal sensor, image, simulation output,
or statistical data representation. However, arrays are not sufficiently supported by clas-
sic database systems, resulting in information silos and architectures that are unable to
keep up with the ever-increasing performance and service quality requirements. In [7]
specialized array database management systems are deemed fit to tackle these issues
by providing declarative query support for flexible ad-hoc analytics on large n-dimensional
arrays. This is analogous to what SQL offers on set-oriented data, XQuery on hierarchical
data, as well as SPARQL and CIPHER on graph data. Array Database systems combine
the advantage-proven features of a declarative query language for “shipping code to data”
with techniques such as parallelization for efficient server-side evaluation. Such systems
act as a means to serve massive spatio-temporal data cubes in an analysis-ready manner.
Their genuine array support deems them superior to other approaches, with respect to
functionality, performance, scalability and data cube standards compliance. Query func-
tionality is independent from the data encoding, and the user can specify the format of data
to be delivered. Ultimately, such approaches herald a new level of service quality for data
cube services in science, engineering and beyond. Furthermore, massive parallelism and
distributed processing is possible with concurrent Petascale Array Database installations.
This research is unprecedented, regarding the depth at which technology and available
standards are explored, while also providing a comprehensive analysis of: model, query
language, architecture, practical usability and performance aspects. Regarding query lan-
guages, the two most relevant standards currently are the following:

F. Yfantis 16

The semantic data cube system Plato and its cache optimization

• ISO SQL 9075 Part 15:
Multi-Dimensional Arrays (MDA) provides support for querying n-D arrays and do-
mainneutral modeling, by extending the SQL query language based on the rasda-
man query model. As will be discussed later, the integration of relational and array
data is of great significance.

• OGC Web Coverage Processing Service (WCPS):
This standard defines a geospatial data cube analytics language. While being fun-
damentally similar to SQL/MDA, two main differences can be found. First, WCPS
is based on the Open Geospatial Consortium (OGC) data cube standard, which re-
volves around the modeling of coverage data. Therefore, it understands geospatial
semantics, including spatio-temporal axes and coordinate reference systems (as
well as transformations between them). Second, it comes ready for integration with
XPath/XQuery (on an experimental level), as XML is themost popular metadata stor-
age format. WPCS has also demonstrated its capabilities on a Petabyte scale [17].

Other notable array query languages proposed in the literature are mentioned below. De-
tails for each one can be found in [18].

• Array Query Language (AQL)

• RasDaMan Query Language (RasQL)

• Array Manipulation Language (AML)

• Relational Array Mapping (RAM)

• Array Functional Language (AFL)

• SciQL

A total of 19 systems are compared in [7] (featuring various Array Databases, command
line tools and libraries, together with MapReduce-based tools), four out of which (full-stack
array DMBSs–Rasdaman, SciDB, SciQL and EXTASCID) are extensively benchmarked.
Some relevant features are selected on a conceptual level, and a comparison is presented
in tabular form on the next page. The authors hope that this constitutes a representative
overview to any readers willing to immerse into the field, along with being a comprehens-
ible guide to those searching for the best suited data cube tool for their application. On this
topic, a few of the main contributions are outlined. Notably, a feature matrix (Table 2.1)
is constructed, addressing both abstract concepts (e.g., query language expressiveness)
and practicalities (e.g. data formats, support for ingestion tools). This facilitates future test-
ing, as a large matrix is available for further system comparison. Array system designers
get a feature list, including relevant standards, along which their own tools can be crafted.
In addition, the aforementioned performance benchmark (concerning four Array DBMSs)
is made public. It is more rigorous and systematic than existing array benchmarks, and
its design prevents tuning a system towards the tests performed, contributing to its gen-
eral value and reliability. One thing that requires some clarification is the meaning of the
first three columns in Table 2.1 (Relational tables, XML stores, RDF stores). According
to the authors, they denote the capabilities of each system for data/metadata integration
in the corresponding data model. One open question is the competence of each system
for efficiently handling and querying data in each of these models. Also, a second open

F. Yfantis 17

The semantic data cube system Plato and its cache optimization

question is relevant to the ability of efficiently performing combined data analysis from a
single query that operates both on array and other thematic data in some of these models.
Specifically, for the RDF data model, to the best of our knowledge, there is no published
system or application that achieves this task. For example, as reported, rasdaman can
realize handling of RDF data through the AMOS II mediator system, but to the best of our
knowledge there is no developed solution that achieves this. In a similar manner, there
are systems that store and query RDF datasets in PostgreSQL. For example, the Stra-
bon [15] system developed by UoA stores data in PostGIS and performs GeoSPARQL
query processing. But none of these systems supports array operations with utilization of
the PostGIS Raster implementation. The same holds for Oracle GeoRaster. OPeNDAP
Hyrax provides RDF descriptions of its data holdings, but lacks the ability to perform com-
bined analysis of semantic and array data through querying. Lastly, the authors highlight
the importance of the ISO SQL/MDA standard. It is based on the rasdaman query lan-
guage, and it integrates multi-dimensional arrays (data) into SQL (metadata). Standalone
array stores, even with query capabilities, lead to silo solutions. The integration of array
handling into the frequently used metadata paradigms is imperative. If ISO SQL/MDA is
standardized as a universal data cube query language, a game change is expected in
terms of increased interoperability and cross-domain application manageability.

Table 2.1: Highlighted conceptual features for all the different array systems and tools

Relational
tables XML stores RDF stores

Query
Language

Expressiveness
Data Formats ISO SQL MDA OGC/ISO geo

data cubes

rasdaman Yes (SQL/MDA
std) Yes (WCPS std) Yes (AMOS II) declarative array

QL

CSV, JSON,
TIFF, PNG,
NetCDF, etc.

Yes Yes

SciDB No No No declarative array
QL

CSV/text, binary
server format No No

SciQL Yes No Yes declarative array
QL

FITS, MSEED,
VAM, TIFF No No

EXTASCID Yes No No No, function calls - No No

PostGIS Raster Yes (postgresql) Yes (postgresql) Only via
postgresql

Array functions
with specific
microsyntax

Multiple Formats No No

Oracle
GeoRaster Yes Yes Yes

PL/SQL + object
relational

functions with
sub-language

TIFF, GIF, BMP,
PNG No No

Teradata Arrays Yes Yes Yes
Array functions
with specific
microsyntax

- No No

OPeNDAP
Hyrax Yes Yes Yes - Import: CSV,

DSP, etc.
Export:

ascii,NetCDF,etc. No

xarray No No No - Multiple Formats No No

TensorFlow No No No No, python library

Import/Export:
binary checkpoint
files + saved

model

No No

Wendelin.core No No No No, python library No No No

Google Earth
Engine No No No

No, function
calls, python and

JavaScript
GeoTIFF No No

OpenDataCube No No No No, client-side
python calls NetCDF No No

xtensor No No No No, C++ library No No No

Boost::geometry No No No No, C++ library Requires external
code No No

Ophidia No No No
No, client-side
command line or

python

FITS, NetCDF,
JSON No No

TileDB No No Key-Value store No No No No

SciHadoop No No No Yes, functional NetCDF, HDF No No

SciSpark No No No
No,

transformations
and actions

NetCDF, HDF,
CSV No No

F. Yfantis 18

The semantic data cube system Plato and its cache optimization

2.3 Semantic Web: Languages, Systems and Technologies for Grids and Arrays

The RDF data model [1] holds a prominent position in the context of semantic web, as a
simple and easy to use data model, for creating interlinked graph databases, aiming to
facilitate data and information exchange on the web. RDF, along with the corresponding
query language SPARQL [2], act as official World Wide Web Consortium (W3C) recom-
mendations for exchanging and querying information in the semantic web. Regarding the
spatial dimension of RDF datasets, GeoSPARQL [13] is a proposal by the OGC that con-
tains an ontology for modeling spatial objects, coupled with an extension of the SPARQL
query language. GeoSPARQL introduces spatial data types in RDF and also both qualitat-
ive and quantitative spatial predicates and functions that can be used for querying. In the
following subsections we present languages, systems and technologies that extend the
aforementioned standards in order to incorporate processing of array and grid datasets in
the semantic web.

2.3.1 SciSPARQL

SciSPARQL [3] is an extension of the SPARQL 1.1 query language for representing and
querying multi-dimensional arrays. As the underlying data model it uses the “Grid Cover-
age Ontology”, which is an RDF version of OGC coverage model. In SciSPARQL arrays
are incorporated as value nodes into the RDF graph and connected to all their metadata.
The authors have implemented their proposal using the rasdaman array DBMS in order to
push down SciSPARQL subqueries that involve array processing and manipulation, and
they use an in-memory RDF store for thematic processing of the fragments of SciSPARQL
queries that do not involve array operations. SciSPARQL also employs user defined func-
tions (UDFs) and second order functions in order to facilitate the definition and application
of array manipulation operations. An example of a UDF from [3] is the following one that
computes the Normalized Difference Vegetation Index (NDVI) on the fly, considering that
the RDF graph contains two aligned arrays storing the NIR and RED components as the
properties :nir and :red of the node with id ”mycoverage”.

DEFINE FUNCTION NDVI(?nir ?red ?x) AS
SELECT (255 * xsd:integer(((?nir − ?red) / (?nir + ?red)) > ?x) AS ?result)

Then, this UDF can be used in the following example SciSPARQL query (again, query
taken from [3]):

SELECT (MAP(xsd:integer, NDVI(*, *, $x), ?nir, ?red) AS ?result)
WHERE { ?c :id ”mycoverage” ; ex:nir ?nir ; ex:red ?red }

2.3.2 GeoSPARQL+

GeoSPARQL+ [13] is an extension of the GeoSPARQLmodel, that has been developed in
order to integrate geospatial raster data into the Semantic Web. This proposal contains an
ontology that defines a new type of geospatial data type for raster, and it also extends the
GeoSPARQL query language with new filter functions based on raster algebra operations,
e.g. rasterPlus, rasterSmaller etc. Using GeoSPARQL+, combined vector and raster
data analysis can be achieved from a single query. Regarding the implementation, the
authors modify the Apache Jena RDF library with extra functions and use java libraries

F. Yfantis 19

The semantic data cube system Plato and its cache optimization

to implement all vector and raster operators. As there is no specialized back-end, the
scalability of the implementation remains an open issue. An example GeoSPARQL+ query
taken from [13] is the following, which is used to find passable roads which are not flooded
by more than 10cm in an emergency flooding event:
SELECT ?road
WHERE {

?road a ex:Road ;
geo:hasGeometry ?roadseg .

?roadseg geo:asWKT ?roadseg wkt .
?floodarea a ex:FloodRiskArea ;

geo2:asCoverage ?floodarea cov .
?floodarea cov geo2:asCoverageJSON ?floodarea covjson .
BIND(geo2:rasterSmaller(?floodarea covjson,10) AS ?relfloodarea)
FILTER(geo2:intersects(?roadseg wkt,?relfloodarea))

}

This query accesses two different datasets. The first dataset contains the vector geo-
metries of roads in a specific area, whereas the second dataset is a raster that contains
a value corresponding to flood altitude for each raster cell. The query uses the raster
algebra operator “geo2:rasterSmaller”, in order to filter the specific raster values where
the flood altitude is larger than 10 centimetres. Then it uses the GeoSPARQL+ function
“geo2:intersects” in order to relate the two datasets and obtain roads that intersect with
given raster cells. This specific function is an extended version of the GeoSPARQL func-
tion “geo:intersects”, which takes as input both raster and vector geometries.

2.3.3 The RDF Data Cube Vocabulary

The RDF Data Cube Vocabulary [1] offers an ontology for modelling and publishing multi-
dimensional data on the web. It has been aW3C recommendation since 16 January 2014.
It is compatible with the Statistical data and metadata exchange (SDMX) ISO standard for
exchanging and sharing statistical data and metadata among organizations, and it ex-
tends well-known existing RDF vocabularies such as SKOS, FOAF, Dublin Core etc. This
model does not come with an appropriate query language in order to access and process
specific data cells of the data cube.

2.4 Ontop: OBDA in other Semantic Frameworks

Ontop [29] (https://ontop-vkg.org/) is one of the first OBDA systems able to perform
SPARQL to SQL query translation, given a user defined ontology. The result of the pro-
cess, is an SQL query that is executed on any database instance that follows the input
schema, and provides the complete answers with respect to the ontology axioms. Ontop
has been successfully deployed in several demanding use cases and has an active com-
munity of users and developers, with 154 forks and 549 stars in Github. It has also been
commercialized by the Italian company Ontopic (https://ontopic.ai/en/).

Ontop-spatial was developed by the AI team of the National and Kapodistrian University
of Athens in 2016 [8, 9] (https://ontop-spatial.di.uoa.gr/). It is the first geospatial
OBDA system and it was implemented as a geospatial extension of Ontop. In Ontop-
spatial, the input GeoSPARQL query is transformed into an intermediate form based on

F. Yfantis 20

https://ontop-vkg.org/
https://ontopic.ai/en/
https://ontop-spatial.di.uoa.gr/

The semantic data cube system Plato and its cache optimization

Datalog, and this query is rewritten by taking into consideration the ontology and the map-
pings from the ontology-concepts to the data sources. The final result is an SQL query
that uses spatial SQL functions, which correspond to the GeoSPARQL functions and op-
erators of the initial query. This SQL query can be executed in a spatially-enabled re-
lational system, like PostGIS (the spatial extension of PostgreSQL) or Spatial-Lite (the
spatial extension of SQLite). The functionalities of Ontop-spatial have been integrated
fully into Ontop as of version 4.1.0. A semantic framework based on Ontop was recently
developed by Hamdani et al [12]. By extending the GeoSPARQL ontology, they built a
model that combines the semantics of raster layers with feature-based data that involve
geometries as well as spatial/topological relationships. Both raster and vector data are
materialized in relational tables from their raw formats, and subsequently undergo several
conversions (using PostGIS functions) in order to conform to the design of the ontology.
Such materializations and conversions become very costly as raster data becomes ex-
tensive. However, the evaluation of this system did not involve large EO data cubes, and
more importantly, its querying capabilities are limited to the operations currently suppor-
ted by SPARQL. Lastly, there is another similar approach aiming to extend Ontop in a
fashion similar to Ontop-spatial, albeit only for transforming vector data in the relational
format [11]. The system architecture resembles that of Plato, in that it features a Python
wrapper connecting PostgreSQL to the Rasdaman backend. But this wrapper is actually
implemented in PL/Python 1, an untrusted language, meaning database security issues
could arise in the process. Among other problems that were observed in the description
of their pipeline, two significant ones are the potential pre-processing and post-processing
of the data, as well as the string format of query results retrieved as filtered arrays, which
prevents any further analysis and visualization. Even if most of these issues were to be
resolved in the future (after the integration of Ontop), a single query would still have to be
expressed using two languages (i.e., SPARQL+rasql), adding further layers of complexity
for the end user.

2.5 Summary

This chapter explored the landscape of infrastructures for handling data cubes, such as
the Earth System Data Lab (ESDL) data cube, along with a fully-fledged semantic data
cube system, Sen2Cube.at, which utilizes computer vision for semantic enrichment. It
highlighted specialized data management systems for multi-dimensional arrays, focusing
on their relevance in various domains. It discussed the limitations of traditional database
systems in handling arrays effectively and introduced specialized array database man-
agement systems as solutions, emphasizing their role in developing semantic data cube
technology. Various query languages, such as ISO SQL 9075 Part 15 and OGC Web
Coverage Processing Service (WCPS), were examined for their capabilities and stand-
ards compliance. The intersection of semantic web technologies with grid and array data
processing was also explored, including RDF data modeling and extensions like Geo-
SPARQL+. Finally, Ontop and its role in ontology-based data access (OBDA) systems,
including Ontop-spatial for spatial query translation, were discussed alongside other se-
mantic frameworks contributing to spatial data processing.

1https://www.postgresql.org/docs/current/plpython.html

F. Yfantis 21

https://www.postgresql.org/docs/current/plpython.html

The semantic data cube system Plato and its cache optimization

3. THE SEMANTIC DATA CUBE SYSTEM PLATO

In this chapter we will highlight the architecture of Plato, going in detail on its two main
components: the Ontop OBDA system and the PostGIS backend. We will discuss about
the implementation of FDWs to facilitate handling large data cubes as PostgreSQL for-
eign tables. Finally, we will outline the system’s various optimizations, focusing on the
implementation of caching raster data for efficient operations. This chapter, apart from
the sections regarding the Cache and Raptor Join optimizations, has been written jointly
with my colleague Anastasios Mantas and, as a result, it also appears verbatim in his MSc
thesis [16].

3.1 Architecture

The architecture of Plato is shown in figure 3.1. To facilitate our discussion, we assume
that a data cube consists of analysis ready data in four dimensions: latitude, longitude,
time and variable of interest. Further dimensions can be added as a result of an analysis.

The twomain components of Plato are the OBDA systemOntop and the PostGIS backend.
The PostGIS backend contains virtual tables used to communicate with data cubes (stored
locally or remotely). This communication is achieved through Python scripts utilizing the
Xarray [14] library and the Multicorn package [10], to implement FDWs.

In Plato, data cubes are stored either in a .zarr directory format or as .nc (netCDF) files.
Even with a compressed format like these two, many data cubes are very large to un-
pack and materialize in a PostgreSQL database. For that matter, we utilize FDWs and the
Xarray package so that we can expedite working with labelled multi-dimensional arrays.
Xarray introduces labels in the form of dimensions, coordinates and attributes on top of
raw NumPy-like arrays, and functions in a similar manner to the Pandas package. For-
eign Data Wrappers are libraries that can communicate with external data sources while
hiding connection and data retrieval details. Using FDWs and Xarray can turn out to be
an intensive operation, both time and memory-wise, and is by no means a realistic ap-
proach for large data cubes. For that reason, we decided to also look into parallelization
modules of Python. As the FDW applications are not IO bound, multi-threading was not
of much benefit, which was confirmed from brief experimentation. Multiprocessing, on the
other hand, resulted in massive speedups, through the exploitation of data chunking and
dispatched reading by multiple spawned processes, wherever possible.

Lastly, in favour of testing and a successful deployment of the entire pipeline, we have
developed a dockerfile to build an image that installs all the necessary components (Post-
greSQL, Python3, Multicorn, Xarray, Zarr) and exposes a port to access the database
within the created container. Furthermore, the Ontop component regards multiple end-
points that can also be deployed using Docker, one for every user-provided ontology, so
that GeoSPARQL querying may be available online.

3.2 Ontop plugin

Plato is implemented using theOBDA systemOntop [29], one of the pioneering OBDA sys-
tems capable of performing query translation from SPARQL to SQL. The inputs required
for this process are: (i) an ontology expressed in the OWL2 QL subset of the OWL2

F. Yfantis 22

The semantic data cube system Plato and its cache optimization

Figure 3.1: The architecture of Plato

ontology language [28], (ii) a database schema, (iii) a set of mapping assertions which
generate virtual RDF triples from database records, and (iv) a well-formed GeoSPARQL
query targeting the ontology. An SQL query is produced as a result, which can then be
executed on any database instance that is in compliance with the input schema, providing
comprehensive answers that are consistent with all axioms present in the ontology. In
essence, an ontology is defined during the initialization of the Ontop engine, alongside
with the specified set of mappings. Ontologies provide a familiar vocabulary for the user
in terms of classes and properties, while mappings define the way the ontology terms are
related to the data residing in the backend. After initialization, Ontop is ready to accept
GeoSPARQL queries and translate them into SQL enhanced with spatial operators.

3.3 PostGIS - Foreign Data Wrappers

Extending the PostgreSQL relational database with PostGIS enables us to store, index,
and query geospatial data. This data may or may not be materialized. After creating the
necessary extension through the PostgreSQL command line interface, we get access to
the geometry data type as well as multiple useful methods to assist us in handling and
processing datasets with geospatial information. For instande, we can now utilize various
publicly available datasets (shp, zarr, tiff files), containing geometries in the form of points
or (multi)polygons, in tandem with the data cubes.

The Multicorn package [10] is a PostgreSQL extension which enables us to implement
our own FDWs in Python. It assists us in projecting data from the cubes that is requested
at query time, in the form of a relational foreign table (connection info is non-transparent).
This is achieved through the development of the aforementioned FDWs in Python, which
are able to parse the query filters, process the data cubes through Xarray according to
those, and retrieve the requested data in the form of tuples. In order to create a FDW,

F. Yfantis 23

The semantic data cube system Plato and its cache optimization

first we need to define a method according to Multicorn’s documentation that will be able
to access the external data source, in our case a data cube, and return the requested
variable based on a given query. The simplest version of that process is as follows:
import xarray
from multicorn import ForeignDataWrapper

class CubeForeignDataWrapper(ForeignDataWrapper):

def __init__(self, options, columns):
super(CubeForeignDataWrapper, self).__init__(fdw_options, fdw_columns)
self.columns = fdw_columns
self.dataset = fdw_options.get(’dataset’, None)
self.ds = xarray.open_dataset(self.dataset)

def execute(self, quals, columns):
for i in range(self.ds.time.size):
for j in range(self.ds.y.size):
for k in range(self.ds.x.size):
row = {}
for column in columns:
if (column == ”time”):
row[column] = self.ds.time.values[i]

elif (column == ”y”):
row[column] = self.ds.y.values[j]

elif (column == ”x”):
row[column] = self.ds.x.values[k]

else:
row[column] =
self.ds.get(column).values[i][j][k]

yield row

This was essentially our first approach in handling data cubes as virtual tables in Post-
greSQL. Generally speaking, the conversion from multi-dimensional arrays to a tabular
format introduces many shortcomings, especially regarding I/O efficiency. Generating
rows of the form [time, y, x, variable] as shown above means that we have to iterate over
the corresponding ndarrays in order to retrieve their values. From the early stages of de-
velopment, it became apparent that handling large data cubes in this manner was less
than desirable. Nevertheless, this problem was mitigated in subsequent versions of each
FDW, by implementing multiple optimizations such as handling query filters, slicing the
data cube based on user parameters, parallelization of reading and writing, etc. After suc-
cessfully installing our FDW implementation, we can create a PostgreSQL server that will
operate in order to handle any queries directed to the external data source, which in our
case will be a data cube. Afterwards, we can create a foreign table in our database to
access that data cube, with columns that correspond to the exact same variables found
in the data cube. This is done as follows:
CREATE SERVER multicorn_cube FOREIGN DATA WRAPPER multicorn
options (

wrapper ’CubeForeignDataWrapper’
);

F. Yfantis 24

The semantic data cube system Plato and its cache optimization

CREATE FOREIGN TABLE public.cubetable (
”time” character varying NOT NULL,
y double precision NOT NULL,
x double precision NOT NULL,
ndvi double precision

)
SERVER multicorn_cube
OPTIONS (

dataset ’/cubes/dataset−greece.nc’
);

In this example, we have just created a foreign table for the data cube dataset-greece.nc,
handling only the three available dimensions as well as its ndvi variable. This can obvi-
ously be expanded, depending on the use case and dataset requirements.

3.4 Cache

The main idea behind caching raster data in PostGIS by modifying the Ontop plugin, is
to efficiently query large volumes of data cubes by having various parts of them be ma-
terialized and readily available. In order to achieve this, during Ontop’s query translation
from GeoSPARQL to SQL, we can recognize the portions of raster data that need to be
accessed and transformed to geometries and save them in an intermediate cache table
in the database. This way instead of using on-the-fly transformation and then discarding
the data, we can have access to the requested variables and transformations for sim-
ilar future queries. In order to check if the requested data is already in the cache table,
we have implemented data structures as indexes, accessed inside the Ontop plugin. Cur-
rently, a hash table is fully implemented for the time dimension of the datasets, with similar
functionality for latitude and longitude dimensions being worked on. The following code
snippet from the CacheManager class inside the Ontop plugin, performs that check for the
time dimension, for a user specified time range and variable (if no range is specified, we
have to check all the possible dates for the dataset):

//check if data is in time hash (exists in cache table)
String tmp_str;
boolean miss = false;
outerLoop: for (LocalDate tmp_date = min_date; tmp_date.isBefore(max_date);

tmp_date = tmp_date.plusDays(1)) {
tmp_str = tmp_date.toString();
if (!this.timeCache.containsKey(tmp_str)) {

//if current date is NOT in hash, break
miss = true;
break;

}
else {
//if current date IS in hash, check requested variables

for (String var:variables) {
//if variable is NOT in hash, break
if (!this.timeCache.get(tmp_str).contains(var)) {

miss = true;
break outerLoop;

F. Yfantis 25

The semantic data cube system Plato and its cache optimization

}
}

}
}

This process might benefit by switching from a simpler structure like the hash table, to a
tree structure (R-trees), due to complexity concerns when handling and caching data for
multiple dimensions simultaneously. If the requested data is found to be available in the
cache table, the query translation process into SQL is modified, in order to access the
cache and not a FDW (virtual table). This is performed with the following logic, found in
the DataCubeCacheManager class:

//modify data node if query can be answered by cache
if (replaceWithCacheTable)

return DataCubeCacheManager.renameExtensionalDataNode(
dataNode, coreSingletons, ”cache_table”);

else
return dataNode;

...
private static ExtensionalDataNode renameExtensionalDataNode(

ExtensionalDataNode node, CoreSingletons coreSingletons, String name) {
//Create an extensional data node to access the cache
return coreSingletons.getIQFactory().createExtensionalDataNode(new

DataCubeCacheManager.ValuesRelationDefinition(name, coreSingletons.
getTypeFactory().getDBTypeFactory().getAbstractRootDBType(), new
SQLStandardQuotedIDFactory(), node), node.getArgumentMap());

}

Although this may look complex, all we do is essentially bypass the default functionality
provided by the Ontop plugin, altering the present translation structure in order to create
and use a new node that will represent our cache table. When querying for data we are
presented with three different cases regarding the cache table: (a) the requested data is
not cached at all, (b) the requested data is partially cached, and (c) the requested data
is fully cached and we can access it without the need of a FDW. For (a) we can simply
update our cache table, by storing the requested data after the process of querying the
FDW has returned it. For (b), ideally we would want to use both the cache and a FDW to
answer the query, but through testing we found that to be impractical in the context of the
Ontop plugin, with its specific pipeline of using a node structure to represent queries. For
that reason, we choose to just update the cache with the missing data for future queries,
similar to what we did in case (a). An example query to update the cache table can be
seen below:

ALTER TABLE cache_table
ADD COLUMN IF NOT EXISTS variable double precision;

INSERT INTO cache_table (time, x, y, variable)
SELECT time, x, y, variable FROM foreign_table
WHERE time >= min_date AND time <= max_date +
AND x >= min_x AND x <= max_x
AND y >= min_y AND y <= max_y
AND variable != ’NaN’
ON CONFLICT (time, x, y) DO UPDATE

F. Yfantis 26

The semantic data cube system Plato and its cache optimization

SET variable = EXCLUDED.variable;

Should the cache reach its specified maximum size after a number of user queries, a set
replacement policy kicks in, freeing up the necessary space for any newly requested data
(e.g. keep the most recent dates). That ease of access to “hot” data is the main benefit of
the implementation, as it allowsmore efficient joins and general operations between dense
data cubes and other materialized (non-EO) data. The results of the cache implementation
(shown in a later section) are promising for the future of its usage. Furthermore, we can
adjust the maximum size and replacement policy accordingly, depending on the specific
needs for each use case.

3.5 Raptor Join

After testing various GeoSPARQL queries on large data cubes, we have discovered that
accessing large portions of data cubes and transforming each pixel to a vector point (the
obvious implementation) created a bottleneck in our system. The idea behind Raptor
Join [19] alleviates this problem by reading only parts of the raster that overlap a set of
vector geometries (using scanlines), without the need for conversions between the two
forms in order to perform a join. The Raptor Join method is implemented in Plato as a
Python FDW and calculates the result of a spatial operation as output. The requirements
are: a set of vector geometries, an EO variable name (raster), an aggregate function name
(e.g., sum, max, count, etc.), a spatial relation (intersection currently supported), and a
specific time frame as input. Just by adding the properties reflecting these parameters to
a given ontology, we are able to create a single mapping to connect Ontop with the FDW
operator. Further information on the Raptor Join optimization can be found in [16].

3.6 Summary

The architecture of Plato consists of two main components: the OBDA system Ontop
and the PostGIS backend. Ontop facilitates query translation from SPARQL to SQL,
utilizing ontology definitions and mapping assertions. PostGIS extends PostgreSQL to
handle geospatial data, with Multicorn enabling the implementation of Foreign Data Wrap-
pers (FDWs) in Python. FDWs and Xarray expedite handling large multidimensional ar-
rays, while parallelization, particularly multiprocessing, significantly improves processing
speed. Additionally, caching raster data in PostGIS enhances query efficiency. The Rap-
tor Join method optimizes GeoSPARQL queries by reading only relevant portions of data
cubes, reducing processing overhead significantly. These components collectively enable
efficient querying and analysis of large geospatial datasets in Plato.

F. Yfantis 27

The semantic data cube system Plato and its cache optimization

4. USING PLATO IN THE DEEPCUBE PROJECT

DeepCube – “Explainable AI pipelines for big Copernicus data” – is a three-year project,
funded by the Horizon 2020 program of the European Union under the topic “Big data
technologies and Artificial Intelligence for Copernicus”. The project aims to unlock the
potential of Copernicus data, leveraging on advances in the fields of Artificial Intelligence
and Semantic Web. Plato, which was developed for this project, enables the semantic
enrichment of the Earth System Data Cube (ESDC). It allows users to query EO data,
other Linked Open Data, and information/knowledge extracted from the data, using a se-
mantic query language, thus creating new value chains. We subsequently present the
use cases of DeepCube, where Plato’s contribution is highlighted for each respective ap-
proach. Parenthetically, each of the imminent GeoSPARQL queries which are highlighted
for the use cases contain predicates of the form <prefix>:<property>. For readability, all
of the prefixes used are listed beforehand. In a typical environment (endpoint), a query
should be preceded by the prefixes involved in it.
PREFIX uc2: <http://deepcube−h2020.eu/migration/ontology#>
PREFIX uc3: <http://deepcube−h2020.eu/fire−risk/ontology#>
PREFIX uc5: <http://deepcube−h2020.eu/tourism/ontology#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>
PREFIX ofn: <http://www.ontotext.com/sparql/functions/>

This chapter has been written jointly with my colleague AnastasiosMantas and, as a result,
it also appears verbatim in his MSc thesis [16].

4.1 Climate-induced migration in Africa

This use case focuses on how the biosphere and anthroposphere are affected by extreme
weather events, such as heatwaves, droughts, and floods, as well as changing climatic
circumstances. The climate issue is both caused and impacted by humans, and mitigation
and adaptation strategies greatly depend on a knowledge of both effects. The overarching
goal of the use case, developed and maintained by the University of Valencia, is to model,
anticipate, and understand climate-induced migration flows in Africa from reliable data.
The goal is to offer insights into drought-induced displacement trends by utilizing causal
time series analysis to identify displacement triggers and quantify their causal relation-
ships and time lags. Additionally, the use case products aim to anticipate and follow-up
displacement and provide narratives for these displacements. To achieve this, they need
to combine different data sources in order to (i) identify the main environmental and so-
cioeconomic drivers of humanmobility and develop models able to reproduce and forecast
migration flows, (ii) apply causal discovery methods to gain a deeper understanding of the
characteristics of the climate-induced migration flows, and (iii) establish the causal rela-
tionships of environmental and socioeconomic drivers with humanmobility in sub-Saharan
Africa.

To this purpose, they compiled and structured a data cube integrating socioeconomic,
environmental and climatic variables and the longest drought displacement time-series
existing (covering the 2006-2022 period in Somalia). Through them, causal graphs are
derived, applying causal inference at district level. The data we utilized include socioeco-

F. Yfantis 28

The semantic data cube system Plato and its cache optimization

nomic indexes, displacement data, ERA5 land observations and precipitation from the
Climate Hazards Group InfraRed Precipitation with Station.

With the flexibility of FDWs, concepts like the aforementioned variables can be expressed
in our ontology [21] as data properties of broader classes, which categorize diverse user
requirements. An example query regarding the Correlation class is the following:
SELECT ?district ?causal_variable ?causal_link ?mean ?total_mean ?geometry
WHERE {
?corr a geo:Correlation ;

uc2:hasDistrictName ?district ;
uc2:causalVar ?causal_variable ;
uc2:causalLink ?causal_link ;
uc2:hasMean ?mean ;
uc2:hasTotalMean ?total_mean ;
uc2:hasAcquisitionDate ?date ;
uc2:hasGeometry ?geometry .

FILTER(?causal_variable = ”IDP Drought”)
FILTER(?date > ”2010−01−01 00:00:00” && ?date < ”2013−01−01 00:00:00”)
}

In this query we request the districts of Somalia that have a causal link between drought
and any other index available. Alongside those, two averages of the drought variable for
each district are calculated and returned: ?total_mean, which spans the entire 2006-2022
period, and ?mean, which spans a user-defined 3-year interval (start of 2010 - end of
2012).

Another query which allows us to directly compare metrics between two zones of interest
and their variables can be seen below:
SELECT ?district_a ?district_b ?diff ?geom_a ?geom_b
WHERE {
?join a uc2:JoinSimilar;

uc2:hasDistrictA ?district_a ;
uc2:hasDistrictB ?district_b ;
uc2:hasVariable ”Water Prices”^^xsd:string ;
uc2:hasAggregate ”max” ^^xsd:string ;
uc2:hasTolerance ?tolerance ;
uc2:hasDiff ?diff ;
uc2:hasGeomA ?geom_a ;
uc2:hasGeomB ?geom_b .
FILTER(?tolerance = 0.25)

}

In this instance, we request pairs of Somali districts (and their geometries) having a max
water price difference of at most 0.25. The aggregation (e.g., max, min, avg, etc.) for
each variable takes all of the available district data into account, spanning from 2006 to
2022. The tolerance filter can be set according to the user’s needs.

For this use case, Plato is further used to allow integration of EO (raster) and non-EO
(vector) datasets in a unified manner and formulate GeoSPARQL queries that are used to
produce thematic maps with the visualization tool Sextant, as narratives for displacements.
There are three types of semantic queries that were implemented based on the use case
needs: (i) data quality queries to check the quality of a variable’s values for each district,

F. Yfantis 29

The semantic data cube system Plato and its cache optimization

Figure 4.1: Data quality layer in Sextant, for the Internally Displaced Persons (IDP) Drought index.
The color map shows districts in Somalia that pass the quality check threshold, along with their

quality value.

(ii) early warning queries over the different variables for a specific district and (iii) queries
(join) over the causal graphs.

4.2 Fire hazard forecasting

By leveraging AI on large EO and non-EO data, this use case seeks to improve the op-
erational readiness of fire departments and civil protection agencies with fire danger fore-
casting systems. It looks at a variety of topics, including burned area trends in Mediter-
ranean ecosystems, the anthropogenic drivers that affect fire proneness, the state of the
climate and vegetation, modeling of fire hazard to improve future predictions using EO data
time-series analysis, and the effect of vegetation recovery dynamics on inter-seasonal fire
risk. In order to improve our understanding of the dynamics of fire in complex ecosys-
tems and produce reliable large-scale fire hazard forecasts, hybrid modeling is employed,
which combines physical models with data-driven machine learning (ML). The main output
products of the use case are: (i) daily fire risk forecasts based on the predictions of the
DL models developed by the National Observatory of Athens (NOA), (ii) plots that explain
the main reasons behind the model’s prediction and (iii) daily fire risk assessment based
on asset exposure.

Three types of datasets were provided (along with the corresponding predictions, when
available) in the form of data cubes: first, there is a cube for the analysis of wildfires in
Greece, containing historical data from 2009 to 2020. Second, the Hellenic Fire Service
provided daily EO data cubes (for daytime and night-time) accompanied with their respect-
ive fire risk index prediction cubes, for the latter half of 2022. The third and final data cube
was compiled by NOA for the modeling and analysis of Wildfires in the entire Mediter-
ranean Sea region (named ”mesogeos”), covering two decades (2002 to 2022). All of the

F. Yfantis 30

The semantic data cube system Plato and its cache optimization

datasets include dynamic variables, such as satellite data from the Moderate Resolution
Imaging Spectroradiometer (MODIS), weather variables from ERA5-Land, soil moisture
index from JRC European Drought Observatory, as well as static variables, e.g., popula-
tion count and distance to roads from worldpop.org, land cover from Copernicus Climate
Change Service, elevation, aspect, slope and curvature fromCopernicus the European Di-
gital Elevation Model (EU-DEM), and burned areas and ignition points from the European
Forest Fire Information System (EFFIS).

Plato enhances the pipeline by enabling the semantic enrichment of the available data
cubes and allows users to (i) interact with the data cube using higher-level semantic con-
cepts (e.g., land use/land cover classes) instead of only data variables and their values,
and (ii) perform combined analysis using the initial data (e.g., observations) and the result
of the ML methods (e.g., predictions). An example query on the developed ontology is as
follows:

SELECT ?name ?fri ?time ?wktPOI ?wktPred
WHERE {
?poi a uc3:PointOfInterest ;

uc3:hasType ?type ;
uc3:hasName ?name ;
geo:asWKT ?wktPOI .

?rastercell a uc3:PredictionRasterCell ;
geo:asWKT ?wktPred .

?pred a uc3:FirePrediction ;
uc3:refersToPredictionRC ?rastercell ;
uc3:hasFireRiskIndex ?fri ;
uc3:hasAcquisitionDate ?time .

FILTER(geof:distance(?wktPred, ?wktPOI, uom:metre) < 5000)
FILTER(?type = ”archaeological”)
FILTER(?fri > 0.25)
}

This query uses the predictions of the historical greek data cube (1km x 1km x 1 daily grid),
in order to find if there are any archaeological sites in a distance less than 5 kilometres
away from a pixel with a fire risk index above a value of 0.25.

Apart from this instance, the aforementioned raster layers could be combined with other
datasets containing geometries in the form of vectors. Plato’s database is enriched with
many topography layers from OpenStreetMap, as well as protected areas from the Natura
2000 European Ecological Network. A query example, utilizing the Natura areas dataset
and a different data cube containing information on the Mediterranean region, can be seen
below:

SELECT ?result ?label ?wktNaturaGR
WHERE {
?naturaGR a uc3:NaturaArea ;

rdfs:label ?label ;
geo:asWKT ?wktNaturaGR .

?join a uc3:Raptor ;
uc3:hasResult ?result ;
uc3:hasVariable ”smi” ;
uc3:hasAggregateFunction ”avg” ;
uc3:hasSpatialRel ”intersects” ;

F. Yfantis 31

The semantic data cube system Plato and its cache optimization

uc3:hasAcquisitionDate ”2022−07−15T00:00:00” ;
uc3:hasGeometry ?wktNatura .

}

This query requests information on the average soil anomaly index of Natura areas for the
date July 15th, 2022 and has been enhanced through both the optimizations of the Raptor
Join and caching techniques. Combining all the different data sources alongside the non-
EO variables present in the larger data cubes, allows users to gather useful statistics
for different areas of interest, while Sextant can also be utilized to get specialized visual
feedback regarding the same results.

4.3 Copernicus services for sustainable tourism

The main objective of this application is to produce a pricing tool for hotels and package
tours, which is independent of the current major booking platforms and which incorpor-
ates an environmental and sustainable tourism dimension. Our motivation is to reduce
the impact of tourism on planet Earth by implementing a business system based on sup-
ply, demand, but also environmental impact. The objectives of this use case are: (i) to
characterize the present tourism environmental footprint, tourism demand and tourism of-
fer on the areas of interest, (ii) to develop an engine evaluating the environmental footprint
of tourism on a given destination and at a given period, (iii) to develop a pricing engine
evaluating downward or upward trend to be applied to a tourism package depending on
its destinations and travel periods.

The data cubes used to produce the services, combine air quality information from the
Copernicus Atmosphere Service (CAMS) along with weather conditions from the ERA5-
Land hourly dataset. We also rely on tourism visit data provided by the Orange FluxVision
service and tourism pricing information. FluxVision data is obtained by processing a mix of
mobile phone network events and socio-demographic customer data, allowing after data
adjustment processes to provide a statistical estimate of a number of people present in
an area. The tourism pricing information are extracted from the Amadeus API1.

For this application, we use Plato to integrate air quality data with tourism data. In order to
access the different input sources, we designed an ontology [21] to capture the domain,
that allows us to pose GeoSPARQL queries that combine all our sources to analyse the
data. A query showcasing links between air quality and tourism frequentation is presented
below:

SELECT ?area ?avg_no2 ?total_excursionists ?wktAOI
WHERE {
?tf a uc5:Traffic ;

uc5:hasArea ?area ;
uc5:hasDate ?date ;
uc5:hasExcursionists ?total_excursionists .

?aoi a uc5:AreaOfInterest ;
uc5:hasName ?area ;
geo:asWKT ?wktAOI .

?join a uc5:Raptor ;
uc5:hasResult ?avg_no2 ;

1https://developers.amadeus.com/

F. Yfantis 32

https://developers.amadeus.com/

The semantic data cube system Plato and its cache optimization

uc5:hasVariable ”cams_no2_conc” ;
uc5:hasAggregateFunction ”avg” ;
uc5:hasAcquisitionDate ?date ;
uc5:hasGeometry ?wktAOI .

FILTER(?date = ”2022−01−01T00:00:00”)
}

This query utilizes the Raptor Join technique in order to calculate the average nitrogen
dioxide value for several areas of France, in a particular day. For the same spatiotemporal
input, the total number of day-trippers is also requested. We could alternatively ask for
different types of visitors, and/or different CAMS variables, as shown below:
SELECT ?co2 ?total_visitors ?wktAOI
WHERE {
?tf a geo:Traffic ;

uc5:hasArea ”Moissac” ;
uc5:hasDate ?dateVisit ;
uc5:hasTotalVisitors ?total_visitors .

?aoi a uc5:AreaOfInterest ;
uc5:hasName ”Moissac” ;
uc5:hasGeom ?wktAOI .

?join a uc5:Raptor ;
uc5:hasResult ?co2 ;
uc5:hasVariable ”cams_co2_conc” ;
uc5:hasAggregateFunction ”avg” ;
uc5:hasSpatialRel ”intersects” ;
uc5:hasAcquisitionDate ?date ;
uc5:hasGeom ?wktAOI .

FILTER (?total_visitors > 10000) .
FILTER(

?dateVisit >= ”2022−07−01T00:00:00” &&
?dateVisit <= ”2022−08−31T00:00:00”

) .
FILTER(ofn:daysBetween(?dateVisit, ?date) < 1)
}

In the above query we request the average carbon dioxide concentration, in a specific
area (”Moissac”), between the months of July and August of 2022, when the total number
of visitors exceeds ten thousand. The last filter is required because the observations from
the data cube are hourly, while the tourism frequentation data for each area is daily.

Finally, the returned results of both queries can be viewed as a thematic map with the
areas of interest using Sextant, to provide a visual interpretation for our end users.

4.4 Summary

This chapter highlights Plato’s pivotal role within the DeepCube project, demonstrating its
application across three diverse use cases. Firstly, in climate-induced migration in Africa,
Plato facilitates the understanding of migration flows by combining socioeconomic and
environmental variables. Secondly, in fire hazard forecasting, Plato enhances forecasting
systems by enabling semantic enrichment and combined analysis of observational and

F. Yfantis 33

The semantic data cube system Plato and its cache optimization

predictive data. Lastly, in Copernicus services for sustainable tourism, Plato supports
the research for the development of pricing tools and environmental impact assessments.
Throughout these applications, Plato’s capabilities in semantic enrichment, spatial ana-
lysis, and data integration play a crucial role in deriving actionable insights from complex
datasets.

F. Yfantis 34

The semantic data cube system Plato and its cache optimization

5. EXPERIMENTAL EVALUATION OF PLATO

In this chapter we will present an assessment of query performance on Plato. We begin
with an overview of the datasets used for benchmarking, encompassing diverse geospa-
tial and temporal dimensions. The first aspect is the evaluation of the impact of caching
mechanisms, while the second one is the exploration of the efficacy of the Raptor Join
method, compared to simpler join techniques. This chapter has been written jointly with
my colleague Anastasios Mantas and, as a result, it also appears verbatim in his MSc
thesis [16].

5.1 Data cubes and datasets

The experiments shown in this section were performed using Ontop 4.2, on a 64-bit ma-
chine with 32 logical processors (2.20 GHz), and 128GB of RAM (DDR3, 1600 MHz). Five
different data cubes are used in the experiments, with time, latitude and longitude as the
primary dimensions, along with several data variables:

• DC-GR-1 (4314×562×700). NDVI data for Greece for the period 2009-2020.

• DC-GR-2 (1×940×1328). Daily relative humidity for Greece for the year 2022.

• DC-BR (2160×200×200). NDVI data for Brazil for the year 2019.

• DC-SI (8762×150×310). Hourly total precipitation data for Slovenia for the year
2021.

• DC-FR (8760×334×636). Hourly total precipitation data for France for the year 2022.

Alongside those, we utilize imported vector data concerning fire prediction data for Greece
(point geometries; 2022), Natura-protected areas for Europe (multipolygon geometries),
and administrative data for Brazil (polygon geometries). The sizes for all of the datasets
are displayed in Table 5.1.

Table 5.1: Raster and Vector datasets

Raster (GB)
Data cube Size
DC-GR-1 10
DC-GR-2 0.5
DC-BR 5.9
DC-SI 15.5
DC-FR 35.5

Vector (MB)
Dataset Size

Fire Prediction Data 25
Natura Areas (GR) 7
Natura Areas (EU) 78
Brazil Admin. Data 0.5

Since to our knowledge there is no equivalent semantic data cube system to Plato, the
evaluation consists of experiments with different query types over the presented data
sources, and the results of our optimization techniques. We start with the evaluation of
the cache implementation. The different query types selected to evaluate query-execution
performance when using a cache table are shown below. These examples are based on
an arbitrary ontology, just to provide a template for each query structure. The range of
dates for our tests (cases (B) and (D)) was 3-5 days.

F. Yfantis 35

The semantic data cube system Plato and its cache optimization

• (A) - Requesting variable for one day:

SELECT ?wktObs ?value
WHERE {
?rastercellObs a uc:ObservationRasterCell ;

geo:asWKT ?wktObs .
?var a uc:Variable ;

uc:refersToObservationRC ?rastercellObs ;
uc:hasValue ?value ;
uc:hasAcquisitionDate ?timeObs .

FILTER(?timeObs = ”2023−06−01T00:00:00”) .
FILTER(?value < 0.5)
}

• (B) - Requesting variable for a range of dates:

SELECT ?wktObs ?value
WHERE {
?rastercellObs a uc:ObservationRasterCell ;

geo:asWKT ?wktObs .
?var a uc:Variable ;

uc:refersToObservationRC ?rastercellObs ;
uc:hasValue ?value ;
uc:hasAcquisitionDate ?timeObs .

FILTER(
?timeObs >= ”2023−06−01T00:00:00” &&
?timeObs <= ”2023−06−30T00:00:00”
) .
FILTER(?value < 0.5)
}

• (C) - Requesting variable to join vector areas with raster predictions (daily), for one
day:

SELECT ?label ?wktPrediction ?time ?value
WHERE {
?geom a uc:VectorArea ;

rdfs:label ?label ;
geo:asWKT ?wktGeometry .

?rastercell a uc:PredictionRasterCell ;
geo:asWKT ?wktPrediction .

?var a uc:Variable ;
uc:refersToPredictionRC ?rastercellPred ;
uc:hasValue ?value ;
uc:hasAcquisitionDate ?timePred .

FILTER(geof:distance(?wktPrediction, ?wktGeometry, uom:metre) < 1000)
FILTER(?timePred = ”2023−06−01T00:00:00”)
FILTER(?value > 0.5)
}

• (D) - Requesting variable to join vector areas with raster predictions (daily), for a
range of dates:

F. Yfantis 36

The semantic data cube system Plato and its cache optimization

SELECT ?label ?wktPrediction ?time ?value
WHERE {
?geom a uc:VectorArea ;

rdfs:label ?label ;
geo:asWKT ?wktGeometry

?rastercell a uc:PredictionRasterCell ;
geo:asWKT ?wktPrediction .

?var a uc:Variable ;
uc:refersToPredictionRC ?rastercellPred ;
uc:hasValue ?value ;
uc:hasAcquisitionDate ?timePred .

FILTER(geof:distance(?wktPrediction, ?wktGeometry, uom:metre) < 1000)
FILTER(
?timeObs >= ”2023−06−01T00:00:00” &&
?timeObs <= ”2023−06−30T00:00:00”
)
FILTER(?value > 0.5)
}

5.2 Query evaluation

The results for the cache implementation on queries posed to all the data cubes are shown
in Table 5.2. We can see that by utilizing a cache table we can overcome the overhead of
retrieving the requested data from a foreign table through the use of FDWs. This is more
apparent in queries that concern a range of dates (Types B and D), where the cache imple-
mentation shows by far the best results. In this way, it is clear that having readily available
”hot” data for multiple requested dates by materializing them, improves the overall user
experience.

Table 5.2: Query execution times with cache implementation

Cache (sec)
Data Cube Type Default Cache
DC-GR-1 A 72.3 20.2
DC-GR-1 B 243 60.6
DC-GR-1 C 1038 953
DC-GR-1 D >18000 2221
DC-GR-2 A 28.6 1.06
DC-GR-2 B 96.8 7.65
DC-GR-2 C 29.7 1.26
DC-GR-2 D 90.2 2.38
DC-BR A 6.83 2.22
DC-BR C 13.6 10.8
DC-SI A 5.61 2.51
DC-SI C 72.9 8.31
DC-FR A 26.5 11.1
DC-FR C 5121 168

We continue with the evaluation of the join queries. For benchmarking needs, a method
simpler than Raptor Join is also implemented, which checks if the pixels within the Min-

F. Yfantis 37

The semantic data cube system Plato and its cache optimization

imum Bounding Rectangle (MBR) of input vectors coincide with the actual geometries
(requires pixel-to-point transformations). We can also evaluate the performance of our
entire pipeline by allowing the Raptor Join implementation to utilize the available data
found in the cache table for each of the data cubes and posing the same queries as be-
fore. The performance results for those queries for all the different techniques are shown
in Table 5.3. The default way to handle a join query is as in case (C) shown in the previous
section, while a template for the other two join methods could be written as follows:

SELECT ?result ?label ?wktGeometry
WHERE {
?geom a uc:VectorArea ;

rdfs:label ?label ;
geo:asWKT ?wktGeometry .

?join a uc:JoinMethod ;
uc:hasResult ?result ;
uc:hasVariable ”ndvi” ;
uc:hasAggregateFunction ”avg” ;
uc:hasSpatialRel ”intersects” ;
uc:hasAcquisitionDate ”2022−08−01T00:00:00” ;
uc:hasGeometry ?wktGeometry .

}

Table 5.3: Query execution times with Raptor join and Raptor-Cache combined

Join Results (sec)
Data Cube Default MBR Raptor Raptor–Cache
DC-GR-1 1038 139 54 40.2
DC-BR 15.1 21.6 20.9 25.8
DC-SI 72.3 90.4 46.5 17.9
DC-FR 5121 299 137 75.2

The table shows the benefits of using the various join optimizations that we implemented
instead of using the default FDWs for data retrieval and letting PostGIS handle the joins
by making the necessary pixel-to-point transformations. First of all, the available data
(both raster and vector) for Brazil is not very big, so the extra parsing/preprocessing in
such cases seems to have an inverse effect on the total time efficiency. Furthermore, the
vector data for France has geometries spread around the area of the entire country, while
DC-FR is limited to the region of Occitanie. Hence, MBRs are calculated for many non-
overlapping geometries, in which case Cache availability allows for the better handling of
transformations by PostGIS rather than the use of the MBR technique’s FDW. Finally, it
is clear that both the simpler MBR method as well as the Raptor Join method generally
offer a more efficient approach than handling join queries using standard PostGIS and the
default FDWs. Caching data for specific observations and timeframes, when combined
with Raptor Join, provide the best speedup (for data of substantial size).

F. Yfantis 38

The semantic data cube system Plato and its cache optimization

6. CONCLUSIONS AND FUTURE WORK

We presented Plato, a semantic data cube system using OBDA technologies. For the
evaluation of Plato, we used data from use cases of the DeepCube project, and showed
that the optimizations of caching and Raptor Join allowed us to handle many classes of
semantic (GeoSPARQL) queries in an efficient manner. These techniques proved to be
significant in alleviating the core issue inherent to the architecture, i.e. projecting data from
data cubes onto relational tables, while also reducing I/O load from large datasets. In clos-
ing, we discussed other relevant studies/frameworks of semantic systems and underlined
the ways that Plato differs from them.

In the future steps of our study, we pinpoint key areas for optimization, specifically fo-
cusing on Raptor Join, Caching, and the implementation of a holistic distributed system.
For Raptor Join, our exploration into multiprocessing aims to enhance processing speed
and efficiency, particularly addressing the effective handling of multiple vector geomet-
ries within the system. Simultaneously, in the domain of Caching, the integration of an
R-tree index is anticipated to expedite the retrieval of raster data from cubes, optimizing
data access. Extending our focus to a holistic distributed system, we aim to address chal-
lenges associated with large data cubes, particularly in terms of access and conversion
to tabular form. This integrated approach not only refines the performance of individual
components but also lays the foundation for a more scalable and efficient system, aligning
with the dynamic demands of our application domain.

F. Yfantis 39

The semantic data cube system Plato and its cache optimization

ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

RDF Resource Description Framework

OBDA Ontology-based Data Access

EO Earth Observation

API Application Programming Interface

DBMS Data Base Management Systems

FDW Foreign Data Wrappers

OWL Web Ontology Language

ESDL Earth System Data Lab

CV Computer Vision

MDA Multi-Dimensional Arrays

OGC Open Geospatial Consortium

WCPS Web Coverage Processing Service

XML Extensive Markup Language

UDF User Defined Function

SDMX Statistical Data and Metadata Exchange

IO Input/Output

MODIS Moderate Resolution Imaging Spectroradiometer

EU-DEM European Digital Elevation Model

EFFIS European Forest Fire Information System

ML Machine Learning

DL Deep Learning

F. Yfantis 40

The semantic data cube system Plato and its cache optimization

BIBLIOGRAPHY

[1] RDF 1.1 concepts and abstract syntax, W3C.

[2] SPARQL 1.1 query language.

[3] Andrej Andrejev, Dimitar Misev, Peter Baumann, and Tore Risch. Spatio-temporal gridded data pro-
cessing on the semantic web. In IEEE International Conference on Data Science and Data Intensive
Systems, DSDIS 2015, Sydney, Australia, December 11-13, 2015, pages 38–45. IEEE Computer Soci-
ety, 2015.

[4] Hannah Augustin, Martin Sudmanns, Dirk Tiede, Stefan Lang, and Andrea Baraldi. Semantic earth
observation data cubes. Data, 4(3):102, 2019.

[5] Andrea Baraldi. Satellite image automatic mapper - SIAM™, 2001.

[6] Peter Baumann, Paula Furtado, Roland Ritsch, and Norbert Widmann. The RasDaMan approach to
multidimensional database management. In Barrett R. Bryant, Janice H. Carroll, Dave Oppenheim, Jim
Hightower, and K. M. George, editors, Proceedings of the 1997 ACM symposium on Applied Computing,
SAC’97, San Jose, CA, USA, February 28 - March 1, pages 166–173. ACM, 1997.

[7] Peter Baumann, Dimitar Misev, Vlad Merticariu, and Bang Pham Huu. Array databases: concepts,
standards, implementations. J. Big Data, 8(1):28, 2021.

[8] Konstantina Bereta and Manolis Koubarakis. Ontop of geospatial databases. In Paul Groth, Elena
Simperl, Alasdair J. G. Gray, Marta Sabou, Markus Krötzsch, Freddy Lécué, Fabian Flöck, and Yolanda
Gil, editors, The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part I, volume 9981 of Lecture Notes in Computer Science,
pages 37–52, 2016.

[9] Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop of geospatial data-
bases. J. Web Semant., 58, 2019.

[10] Ronan Dunklau and Florian Mounier. Multicorn - PostgreSQL extension, 2015.

[11] Arka Ghosh, Mantas Simkus, and Diego Calvanese. Semantic querying of integrated raster and rela-
tional data: A virtual knowledge graph approach. In Jan Vanthienen, Tomás Kliegr, Paul Fodor, Davide
Lanti, Dörthe Arndt, Egor V. Kostylev, Theodoros Mitsikas, and Ahmet Soylu, editors, Proceedings of
the 17th International Rule Challenge and 7th Doctoral Consortium@RuleML+RR 2023 co-located with
19th Reasoning Web Summer School (RW 2023) and 15th DecisionCAMP 2023 as part of Declarat-
ive AI 2023, Oslo, Norway, 18 - 20 September, 2023, volume 3485 of CEUR Workshop Proceedings.
CEUR-WS.org, 2023.

[12] Younes Hamdani, Guohui Xiao, Linfang Ding, and Diego Calvanese. An ontology-based framework
for geospatial integration and querying of raster data cube using virtual knowledge graphs. ISPRS Int.
J. Geo Inf., 12(9):375, 2023.

[13] Timo Homburg, Steffen Staab, and Daniel Janke. GeoSPARQL+: Syntax, semantics and system for
integrated querying of graph, raster and vector data. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia
d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The
Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece, November
2-6, 2020, Proceedings, Part I, volume 12506 of Lecture Notes in Computer Science, pages 258–275.
Springer, 2020.

[14] Stephan Hoyer and Joe Hamman. xarray: N-D labeled arrays and datasets in Python. Open Research
Software, 5(1), 2017.

[15] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A semantic geospatial
DBMS. In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Man-
fred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva
Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th International Semantic Web Conference, Bo-
ston, MA, USA, November 11-15, 2012, Proceedings, Part I, volume 7649 of Lecture Notes in Computer
Science, pages 295–311. Springer, 2012.

[16] Anastasios Mantas. The semantic data cube system plato and its spatial join optimization, 2024.

F. Yfantis 41

The semantic data cube system Plato and its cache optimization

[17] Baumann Peter, Rossi Angelo Pio, Bell Brennan, Clements Oliver, Evans Ben, Hoenig Heike, Hogan
Patrick, Kakaletris George, Koltsida Panagiota, Mantovani Simone, Marco Figuera Ramiro, Merticariu
Vlad, Misev Dimitar, Pham Huu, Siemen Stephan, and Wagemann Julia. Fostering cross-disciplinary
earth science through datacube analytics. Earth Observation Open Science and Innovation, pages
91–119, 01 2018.

[18] Florin Rusu and Yu Cheng. A survey on array storage, query languages, and systems. CoRR,
abs/1302.0103, 2013.

[19] Samriddhi Singla. Raptor: Large scale processing of big raster + vector data. In Guoliang Li, Zhanhuai
Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on Manage-
ment of Data, Virtual Event, China, June 20-25, 2021, pages 2905–2907. ACM, 2021.

[20] Pierre Soille, Stefanie Lumnitz, and Sergio Albani. Proceedings of the 2023 conference on Big Data
from Space. In BiDS - 2023, number KJ-05-23-390-EN-N (online) in Big Data from Space, Luxembourg
(Luxembourg), 2023. European Commission, Publications Office of the European Union.

[21] George Stamoulis. Deepcube: Ontologies for semantic data cubes, 02 2023.

[22] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The architecture of SciDB. In
Judith Bayard Cushing, James C. French, and Shawn Bowers, editors, Scientific and Statistical Data-
base Management - 23rd International Conference, SSDBM 2011, Portland, OR, USA, July 20-22, 2011.
Proceedings, volume 6809 of Lecture Notes in Computer Science, pages 1–16. Springer, 2011.

[23] Martin Sudmanns, Hannah Augustin, Brian Killough, Gregory Giuliani, Dirk Tiede, Alex Leith, Fang
Yuan, and Adam Lewis. Think global, cube local: an earth observation data cube’s contribution to the
digital earth vision. Big Earth Data, 7(3):831–859, 2023.

[24] Martin Sudmanns, Hannah Augustin, Lucas van der Meer, Andrea Baraldi, and Dirk Tiede. The austrian
semantic EO data cube infrastructure. Remote. Sens., 13(23):4807, 2021.

[25] Martin Sudmanns, Hannah Augustin, Lucas van der Meer, Christian Werner, Andrea Baraldi, and Dirk
Tiede. One GUI to rule them all: Accessing multiple semantic EO data cubes in one graphical user
interface. GI Forum, Volume 1:53–59, 2021.

[26] Dirk Tiede, Andrea Baraldi, Martin Sudmanns, Mariana Belgiu, and Stefan Lang. Sen2Cube.at: Se-
mantic earth observation data cube analysis, 2021.

[27] Lucas van der Meer, Martin Sudmanns, Hannah Augustin, Andrea Baraldi, and Dirk Tiede. Semantic
querying in earth observation data cubes. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLVIII-4/W1-2022:503–510, 2022.

[28] W3C. OWL 2 web ontology language profiles (second edition), 2012.

[29] Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel Kalayci, Linfang Ding,
Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. The virtual knowledge graph
system Ontop. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu,
Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The Semantic Web - ISWC 2020 - 19th
International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II,
volume 12507 of Lecture Notes in Computer Science, pages 259–277. Springer, 2020.

[30] Ying Zhang, Martin L. Kersten, and Stefan Manegold. SciQL: array data processing inside an RD-
BMS. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 1049–1052. ACM, 2013.

F. Yfantis 42

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Data cubes
	Infrastructures
	Semantic enrichment

	Array databases
	Semantic Web: Languages, Systems and Technologies for Grids and Arrays
	SciSPARQL
	GeoSPARQL+
	The RDF Data Cube Vocabulary

	Ontop: OBDA in other Semantic Frameworks
	Summary

	THE SEMANTIC DATA CUBE SYSTEM PLATO
	Architecture
	Ontop plugin
	PostGIS - Foreign Data Wrappers
	Cache
	Raptor Join
	Summary

	USING PLATO IN THE DEEPCUBE PROJECT
	Climate-induced migration in Africa
	Fire hazard forecasting
	Copernicus services for sustainable tourism
	Summary

	EXPERIMENTAL EVALUATION OF PLATO
	Data cubes and datasets
	Query evaluation

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

