
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

PyJedAI Parallelization with MPIRE

Ilias A. Kontonis

Supervisors: Manolis Koubarakis, Professor
George Papadakis, Senior Researcher
Konstantinos Nikoletos, M.Sc. student

ATHENS

JANUARY 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Παραλληλοποίηση του PyJedAI με τη χρήση του MPIRE

Ηλίας Α. Κοντονής

Επιβλέποντες: Μανόλης Κουμπαράκης, Καθηγητής
Γιώργος Παπαδάκης, Ανώτερος Ερευνητής
Κωνσταντίνος Νικολέτος, Φοιτητής M.Sc.

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2023

BSc THESIS

PyJedAI Parallelization with MPIRE

Ilias A. Kontonis
S.N.: 1115201700055

SUPERVISORS: Manolis Koubarakis, Professor
George Papadakis, Senior Researcher
Konstantinos Nikoletos, M.Sc. student

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Παραλληλοποίηση του PyJedAI με τη χρήση του MPIRE

Ηλίας Α. Κοντονής
Α.Μ.: 1115201700055

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανόλης Κουμπαράκης, Καθηγητής
Γιώργος Παπαδάκης, Ανώτερος Ερευνητής
Κωνσταντίνος Νικολέτος, Φοιτητής M.Sc.

ABSTRACT

Entity resolution is a critical task in various applications, but it faces quadratic complex-
ity. To make entity resolution scalable to large datasets, blocking is typically employed.
Syntactic blocking methods usually group similar entities into overlapping blocks, redu-
cing the number of necessary comparisons. Further efficiency gains are achieved with
Meta-blocking, which prunes unnecessary comparisons in overlapping blocks, signific-
antly improving precision without sacrificing much recall.

However, despite its time efficiency, applying Meta-blocking to solve entity resolution prob-
lems on very large datasets remains a challenge. For instance, processing 7.4 million
entities can take almost eight full days on a high-end server.

In this thesis, we work with the parallelization of the python framework PyJedAI. Python
introduces new challenges due to the Global Interpreter Lock (GIL) which forces us to
implement a fork-join model instead of generating multiple threads. We use the MPIRE
python module to implement the parallel Meta-blocking algorithms.

The experimental analysis validates the scalability of the parallel implementation as well
as the significant time reduction in certain steps of the Meta-blocking. We also analyze the
deadlocks we encountered in the time efficiency of our implementation due to the fork-join
model and how it is possible to get over them.

SUBJECT AREA: PyJedAI parallelization

KEYWORDS: Entity Resolution, Meta-blocking, parallelization, fork-join, GIL, MPIRE,
PyJedAI

ΠΕΡΙΛΗΨΗ

Η ανάλυση οντοτήτων είναι μια κρίσιμη εργασία σε διάφορες εφαρμογές, αλλά αντιμετω-
πίζει την τετραγωνική πολυπλοκότητα. Για να καταστεί εφικτή η ανάλυση οντοτήτων με
μεγάλα σύνολα δεδομένων, χρησιμοποιείται η ομαδοποίηση. Συντακτικές μέθοδοι ομαδο-
ποίησης (blocking) συνήθως οργανώνουν παρόμοιες οντότητες σε αλληλοκαλυπτόμενα
μπλοκ, μειώνοντας τον αριθμό των απαραίτητων συγκρίσεων. Περαιτέρω κέρδη απόδο-
σης επιτυγχάνονται με τη μετα-ομαδοποίηση (meta-blocking), το οποίο περιορίζει τις πε-
ριττές συγκρίσεις σε επικαλυπτόμενα μπλοκ, βελτιώνοντας σημαντικά την ακρίβεια χωρίς
να μειώνεται πολύ η ανάκληση.

Παρά τη χρονική του απόδοση, η εφαρμογή της μετα-ομαδοποίησης (meta-blocking) για
την επίλυση προβλημάτων επίλυσης οντοτήτων σε πολύ μεγάλα σύνολα δεδομένων πα-
ραμένει μια πρόκληση. Για παράδειγμα, η επεξεργασία 7,4 εκατομμυρίων οντοτήτων μπο-
ρεί να διαρκέσει σχεδόν οκτώ ολόκληρες ημέρες σε έναν διακομιστή υψηλής τεχνολογίας.

Σε αυτή τη διατριβή, εξετάζουμε την παραλληλοποίηση του python πακέτου PyJedAI. Η
Python εισάγει νέες προκλήσεις λόγω του Global Interpreter Lock (GIL) και της ανάγκης
να ενσωματωθεί ένα μοντέλο fork-join αντί της δημιουργίας πολλαπλών νημάτων. Χρησι-
μοποιούμε τη βιβλιοθήκη MPIRE για την υλοποίηση των παράλληλων αλγορίθμων μετα-
ομαδοποίησης σε python.

Η πειραματική ανάλυση επικυρώνει την επεκτασιμότητα της παράλληλης υλοποίησης κα-
θώς και τη σημαντική μείωση χρόνου σε ορισμένα στάδια της μετα-ομαδοποίησης. Επίσης,
θα αναλύσουμε και τα αδιέξοδα που συναντήσαμε στη χρονική απόδοση της υλοποίησής
μας λόγω του μοντέλου fork-join και πώς είναι δυνατόν να τα ξεπεράσουμε.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Παραλληλοποίηση του PyJedAI

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανάλυση οντοτήτων, Meta-blocking, παραλληλοποίηση, fork-join,
GIL, MPIRE, PyJedAI

ACKNOWLEDGEMENTS

Για τη διεκπεραίωση της παρούσας Πτυχιακής Εργασίας, θα θέλαμε να ευχαριστήσουμε
τους επιβλέποντες, Μανόλη Κουμπαράκη, Γεώργιο Παπαδάκη, Κωνσταντίνο Νικολέτο για
τη συνεργασία και την πολύτιμη συμβολή τους στην ολοκλήρωση της.

CONTENTS

1. INTRODUCTION 12

2. Problem Statement 14

3. PRELIMINARIES 15

3.1 Parallel programming . 15

3.2 GIL (Global Interpreter Lock) . 15

3.3 Fork-Join Model of MPIRE . 16

3.4 PyJedAI Framework . 17

4. Parallelization of PyJedAI with MPIRE 19

4.1 MPIRE for Multiprocessing . 19
4.1.1 General Structure . 19
4.1.2 SharedData . 19

4.2 Core methods . 20

4.3 Parallelization of ER steps . 20
4.3.1 Block Building . 20
4.3.2 Block Cleaning . 21
4.3.3 Comparison Cleaning . 22
4.3.4 Entity Matching . 23

5. EVALUATION 25

5.1 Experimental Setup . 25
5.1.1 CPU Configuration . 25
5.1.2 Memory Configuration . 26

5.2 Performance Metrics . 27

5.3 Results and Plots . 27
5.3.1 Block Building . 31
5.3.2 Block Cleaning . 31
5.3.3 Comparison Cleaning . 32
5.3.4 Entity Matching . 35

5.4 Discussion of Findings . 38

6. CONCLUSIONS AND FUTURE WORK 39

ABBREVIATIONS - ACRONYMS 40

REFERENCES 43

LIST OF FIGURES

1.1 Simplified Meta Blocking Example: . 12

3.1 Generic Fork-Join Example. 17
3.2 ER pipeline diagram . 18

5.1 Block Building for dataset 8 . 31
5.2 Block Cleaning for dataset 1 . 32
5.3 Block Cleaning for dataset 7 . 32
5.4 WEP for dataset 1 . 33
5.5 WEP for dataset 5 . 33
5.6 WEP for dataset 7 . 33
5.7 WEP for dataset 9 (Dirty 10k) . 34
5.8 CEP for dataset 2 . 34
5.9 CEP for dataset 6 . 35
5.10 CEP for dataset 10 (Dirty 100k) . 35
5.11 Entity Matching for dataset 1 . 36
5.12 Entity Matching for dataset 2 . 36
5.13 Entity Matching for dataset 7 . 36
5.14 Entity Matching for dataset 8 . 37
5.15 Entity Matching for dataset 9 (Dirty 10k) . 37
5.16 Entity Matching for dataset 10 (Dirty 100k) 37

LIST OF TABLES

5.1 Statistics of the CC datasets . 27
5.2 Statistics of the dirty datasets . 27
5.3 CEP - CC 1 . 28
5.4 WEP - CC 1 . 28
5.5 CEP - CC 1 Speed-up . 28
5.6 WEP - CC 1 Speed-up . 28
5.7 CEP - CC 1 Effiency . 28
5.8 WEP - CC 1 Effiency . 28
5.9 CEP - CC 2 . 28
5.10 WEP - CC 2 . 28
5.11 CEP - CC 2 Speed-up . 28
5.12 WEP - CC 2 Speed-up . 28
5.13 CEP - CC 2 Efficiency . 29
5.14 WEP - CC 2 Efficiency . 29
5.15 CEP - CC 3 . 29
5.16 WEP - CC 3 . 29
5.17 CEP - CC 3 Speed-up . 29
5.18 WEP - CC 3 Speed-up . 29
5.19 CEP - CC 3 Efficiency . 29
5.20 WEP - CC 3 Efficiency . 29
5.21 CEP - Dirty 10k . 29
5.22 WEP - Dirty 10k . 29
5.23 CEP - Dirty 10k Speed-up . 30
5.24 WEP - Dirty 10k Speed-up . 30
5.25 CEP - Dirty 10k Efficiency . 30
5.26 WEP - Dirty 10k Efficiency . 30
5.27 CEP - 100k . 30
5.28 CEP - 100k Speed-up . 30
5.29 CEP - 100k Efficiency . 30
5.30 WEP - 100k . 30
5.31 WEP - 100k Speed-up . 30
5.32 WEP - 100k Efficiency . 30

PyJedAI Parallelization with MPIRE

1. INTRODUCTION

In the realm of data-intensive applications, Entity Resolution (ER) emerges as a pivotal
and recurring challenge, essential for maintaining data quality and enabling efficient data
analysis. This task involves identifying and linking disparate data records that refer to the
same real-world entities [6] [8]. While conceptually straightforward, ER grapples with an
inherent quadratic complexity, as its brute-force approach considers all possible pairs of
input entities, thus rendering it computationally demanding as data volumes continue to
surge [10].

To tame the quadratic time complexity of ER, blocking is typically used to reduce the
processing to the pairs that are most likely to be matching [5] [26]. Meta-blocking refines
the original set of blocks to further reduce these candidate pairs. As an example, consider
Figure 1.1, where we initially had an heterogeneous set of entities and we derive the
blocks out of the values of each attribute of each entity. We store the entities that contain
a specific blocking key to the corresponding block. Then we build a graph whose nodes
are entities and the link between two entities, represents the number of times they were
in the same block. In the end, we prun the edges whose counter is below the average
ranking position and the remaining edges indicate the possible entity duplicates.

Nevertheless, even with the efficient time management that Meta-blocking offers, the time
complexity remains notably high. For instance, processing 7.4 million entities can con-
sume nearly eight full days on a high-end server. This challenge calls for innovative
strategies to accelerate the entity resolution process, especially when managing large
datasets [11].

Figure 1.1: Simplified Meta Blocking Example:
(a) Heterogeneous entity collection, (b) the resulting set of attribute-agnostic blocks, (c)

the blocking graph corresponding to it, (d) the pruned blocking graph.

In this thesis, we embark on the formidable task of parallelizing the Python framework
PyJedAI [21], a robust tool for entity resolution. The parallelization endeavor encounters
hurdles due to Python’s Global Interpreter Lock (GIL) and necessitates a migration from
the conventional multithreading approach in favor of a fork-join model. Our work is driven
by the objective of making entity resolution more accessible and efficient for large-scale
applications.

The empirical analysis within this thesis serves as a testament to the scalability and time

I. Kontonis 12

PyJedAI Parallelization with MPIRE

reduction achieved through the parallel implementation of Meta-blocking. We present
evidence of enhanced performance in several critical aspects. By distributing the work-
load across multiple processes, we harness the computational power of multiple cores,
resulting in improved efficiency. The essence of this approach lies in the strategic division
of tasks and the orchestration of parallel processes, which allows us to exploit parallelism
bypassing the GIL barrier.

As we will see in Section 4 we achieve different efficiency for each step of the entity resol-
ution process. We manage to reach an almost linear speed up for the heaviest step of the
algorithm. However, we also delve into the intricacies of certain deadlocks that emerged
due to the implementation of the fork-join model. Communication between processes in-
troduces another aspect to the parallel implementation: serialization and deserialization.
We have many cases where this task requires more time than the actual processing of
the algorithm leading to underperformance.

This thesis navigates the complex terrain of entity resolution, exploring the promise of
parallelization within the PyJedAI framework while candidly addressing the obstacles en-
countered in our pursuit of efficiency. The ensuing chapters provide a comprehensive
journey through our methodology, experiments, and findings, shedding light on both the
accomplishments and the challenges in the field of entity resolution at scale.

I. Kontonis 13

PyJedAI Parallelization with MPIRE

2. PROBLEM STATEMENT

In the era of big data, the task of ER, also known as record linkage or deduplication
[6], holds a pivotal role in maintaining data quality, enabling effective data analysis, and
supporting a myriad of applications across various domains. ER involves identifying and
linking records that correspond to the same real-world entities, despite inconsistencies,
variations, and errors in the data. While conceptually straightforward, the computational
demands of ER are considerable, especially when dealing with large datasets [12].

Traditional ER techniques face a significant challenge due to their inherent quadratic com-
plexity, which makes them impractical for processing massive volumes of data. To over-
come this challenge, practitioners often employ blocking techniques [5] [22], which group
similar entities into overlapping blocks, reducing the number of necessary pairwise com-
parisons. Further efficiency gains are achieved throughMeta-blocking [25] [27] [28], which
prunes redundant comparisons in overlapping blocks, resulting in significantly improved
precision without sacrificing recall [7] [13] [29].

However, despite the compelling advantages of Meta-blocking in enhancing time effi-
ciency, applying these techniques to solve ER problems on very large datasets remains
a formidable challenge [11]. For instance, processing millions of entities can be a time-
consuming endeavor even on high-end servers, limiting the applicability of ER to a broader
spectrum of applications [24].

An open-source library that leverages Python’s data science ecosystem to build powerful
end-to-end ER workflows is PyJedAI. A large variety of methods is also implemented by
JedAI [26]. However, JedAI, like most Link Discovery tools, constitutes an isolated sys-
tem, implemented in Java, which cannot be easily extended with existing state-of-the-art
techniques from other domains, like Deep Learning and Natural Language Processing
(NLP). To address this issue, pyJedAI was developed, a new open-source system that
implements the same methods as JedAI, but is capable of combining them with any pack-
age from Python’s data science ecosystem [21]. In this thesis, we focus on pyJedAI, due
to its capabilities and the widest coverage of the literature.

Moreover, the adoption of the PyJedAI framework for ER introduces additional complexit-
ies due to the presence of Python’s Global Interpreter Lock (GIL), which hampers straight-
forward multithreading [4] [14] [15] [19]. To tackle these challenges effectively, there is a
growing need for innovative strategies that can parallelize PyJedAI while addressing the
limitations imposed by the GIL and harnessing the power of multi-core and distributed
computing.

The problem at hand, therefore, revolves around the development of scalable paralleliz-
ation strategies for PyJedAI that can enable efficient ER on large datasets while mitig-
ating the adverse effects of the GIL. The successful resolution of this problem promises
to revolutionize the field of ER, making it more accessible, efficient, and practical for a
diverse range of applications, from data integration and cleansing to information retrieval
and knowledge discovery.

This thesis endeavors to explore these challenges and pave the way for the development
of innovative solutions that enhance the efficiency and scalability of ER through the par-
allelization of the PyJedAI framework.

I. Kontonis 14

PyJedAI Parallelization with MPIRE

3. PRELIMINARIES

In this section, we lay the foundational groundwork for understanding the core concepts
and the background that is essential to our research in parallelization and ER using the
PyJedAI framework. We introduce the significance of ER in the context of handling large
and heterogeneous datasets [7], setting the stage for our research. We also delve into
the PyJedAI framework, emphasizing its role as a versatile and robust Python-based tool
that extends the multiprocess python framework [20]. Additionally, we highlight the Python
Global Interpreter Lock (GIL) and its implications for parallelization, and we explore the
fork-join model with processes, focusing on its interaction with the GIL. These preliminary
insights provide readers with a solid foundation for the subsequent in-depth discussions
and findings in our research.

3.1 Parallel programming

Parallel programming is a computational paradigm designed to enhance performance by
breaking down tasks into smaller, independent units that can be executed simultaneously
across multiple processing units, such as CPU cores or distributed computing nodes [9].
The principles underlying parallel programming emphasize the efficient utilization of avail-
able resources to accomplish tasks faster and more effectively. These principles include:

• Task decomposition, which involves dividing a problem into smaller, manageable
subtasks that can be executed concurrently

• Data decomposition, which focuses on distributing data across processing units to
enable parallel processing

• Synchronization, which ensures proper coordination and communication among
parallel tasks to maintain consistency and avoid conflicts

Metrics used to evaluate parallel programs encompass various aspects, including:

• Speedup, which measures the performance improvement achieved by parallel ex-
ecution compared to sequential execution

• Scalability, which assesses how effectively a parallel program maintains perform-
ance as the problem size or number of processing units increases

• Efficiency, which evaluates the utilization of resources relative to the desired out-
come, considering factors like overhead and communication costs

These principles and metrics form the foundation for designing, analyzing, and optimizing
parallel programs across diverse computing architectures and application domains [33]
[18] [30].

3.2 GIL (Global Interpreter Lock)

The Python Global Interpreter Lock (GIL) is a fundamental concept that influences the
parallelization of tasks within Python [4]. GIL is an intrinsic feature of the Python program-
ming language. It is a mutex (or lock) that allows only one thread to execute in a Python

I. Kontonis 15

PyJedAI Parallelization with MPIRE

process at a given time. This design ensures thread safety but can also introduce com-
plexities when it comes to leveraging multi-threading for parallel computing.The presence
of the GIL has significant implications for parallelization efforts within Python-based ap-
plications. While Python threads can offer concurrency, true parallel execution is impeded
by the GIL, which restricts multiple threads from executing Python bytecodes in parallel [2]
[32]. As a result, multi-threading may not fully harness the capabilities of multi-core pro-
cessors, limiting the efficiency and performance of parallelization. In the context of Python
and the GIL, achieving efficient parallelization becomes a more challenging task. Tradi-
tional multi-threading approaches may not yield the expected performance gains due to
the limitations imposed by the GIL. Consequently, this limitation prompts researchers and
developers to explore alternative strategies for parallel execution in Python. In response
to the challenges posed by the GIL, researchers and practitioners have explored alternat-
ive parallelization strategies, including multi-processing, asynchronous programming, and
shared memory approaches. These strategies aim to work around the GIL’s constraints
and maximize the utilization of multi-core processors for improved parallel computing [2]
[4] [16] [17].

3.3 Fork-Join Model of MPIRE

The fork-join model is a parallel programming paradigm that divides a task into multiple
independent processes, each of which executes concurrently. These processes are often
used to leverage the capabilities of multi-core processors efficiently. Each process op-
erates separately and communicates with others as needed to complete the overall task
[30]. We can see in Figure 3.1 an simple example of the fork-join model where the master
process forks the slave process and when a slave finishes, master acquires their results
(join). Finally, in a multi-process approach, each process has its own GIL, which
enables more effective parallelization in Python [20].

I. Kontonis 16

PyJedAI Parallelization with MPIRE

Figure 3.1: Generic Fork-Join Example.

3.4 PyJedAI Framework

PyJedAI is a dynamic Python framework engineered to provide robust and efficient solu-
tions for a broad spectrum of ER challenges. It caters to both experienced practitioners
and novices, offering state-of-the-art tools and features that streamline the ER process.
PyJedAI is built on the foundation of cutting-edge Python frameworks, harnessing the
latest advancements in data science, machine learning, deep learning, and natural lan-
guage processing (NLP). These technologies are readily available within the Python data
science ecosystem, ensuring that PyJedAI integrates the best tools for tackling ER tasks
effectively [21]. For the parallel approach we based our implementation on version 0.1.2.

In Figure 3.2, we can see the ER pipeline diagram. When a rectangle, which represents
a step, is bypassed by an arrow, it means the the step is optional. In summary, we have:

• Block Building: the dataset is divided into blocks, which are formed to group similar
records together, aiming to reduce the number of comparisons needed.

• Block Cleaning: involves the removal of entire blocks that are dominated by re-
peated comparisons or comparisons between non-matching entities, aiming to im-
prove the efficiency and accuracy of subsequent comparison processes. It ensures
that only relevant records are considered for further analysis.

• Comparison Cleaning: operates at the level of individual records within each block,
involving preprocessing such as standardizing formats, resolving inconsistencies, or
handling missing data. Like block cleaning, its goal is to ensure that records are in
a consistent and comparable format before similarity comparison.

I. Kontonis 17

https://github.com/AI-team-UoA/pyJedAI/
https://github.com/AI-team-UoA/pyJedAI/
https://github.com/AI-team-UoA/pyJedAI/
https://github.com/AI-team-UoA/pyJedAI/
https://github.com/AI-team-UoA/pyJedAI/releases/tag/0.1.2

PyJedAI Parallelization with MPIRE

• Entity Matching: it is the core process of comparing records within each block to
identify potential matches. Similarity metrics or algorithms are applied to compare
attributes of pairs of records. Records that exceed a certain similarity threshold are
considered potential matches.

• Clustering: the matched records are grouped to form clusters of entities. This step
organizes the matched records into groups that represent the same real-world entity.

Figure 3.2: ER pipeline diagram
(a) First required step of Block Building (b) Optional step of Block Cleaning which may be
recurring (c) Optional step of Comparison Cleaning (d) Required step of Entity Matching

(e) Optional step of Clustering

We combine the ER pipeline depicted in Figure 3.2 with the the fork-join model. Generally,
in each step of the pipeline we break the input data into N chunks and fork (create and
execute) N processes. Each process takes as input a chunk and follows the procedure of
the current algorithm of the step. The master process gathers and merges the results of
each process. When all process have finished, the master process moves to the next ER
step and so on.

I. Kontonis 18

PyJedAI Parallelization with MPIRE

4. PARALLELIZATION OF PYJEDAI WITH MPIRE

In this section, we present our efforts to parallelize the PyJedAI framework using the
MPIRE library, implementing the existing algorithms introduced in [11], [23]. Our object-
ive is to enhance the efficiency and scalability of PyJedAI’s ER processes when handling
large and complex datasets using the MPIRE framework.

4.1 MPIRE for Multiprocessing

4.1.1 General Structure

The implementation code has been designedwith scalability inmind, offering an extensible
architecture. This design allows future enhancements or additional features. The code-
base is structured in a way that promotes ease of modification and integration, making it
straightforward for developers to extend functionality and incorporate new components as
needed.

First of all, the core code is structured in a way where each step of the ER algorithm is
mapped to a class (aka a Python file). We follow the same logic in the parallel imple-
mentation, creating a class for each algorithm. For example, we have the class Multi-
processCEP, that extends the class MultiprocessComparisonCleaning, that extends the
class AbstractMultiprocess.

The main methodology behind a multiprocess execution of a particular step of the al-
gorithm is that we break the data into chunks and we generate new partial objects (e.g.
in MultiprocessCEP we have many CardinalityEdgePruning objects) that are assigned to
each chunk. This way we only need to do minor changes in the core implementation or
re-write some parts of code when the parallel algorithm is different than the serial ap-
proach. One future-work task, that is not currently implemented, is load balancing, which
can improve the overall performance by ensuring that each core has more or less the
same workload.

4.1.2 SharedData

In each multiprocess class we define a SharedData object, which is passed to each pro-
cess and contains read-only data that are not going to be modified. For example, this
object can be used to share the dataset between the processes. This way we can reduce
memory consumption and speed up the initialization step of a process as it takes some
time to serialize/deserialize data in order to achieve process communication. If there is a
need to use any of multiprocess oriented tools like a mutex, a queue, etc, we will use this
way of sharing objects between processes as it is a restriction of the inner infrastructure
of the multiprocess package. In the existing classes we use the SharedData objects when
we can avoid making different copies of large data for each process, as for example the
dataset or the set of blocks. [20]

If we want to have shared data between processes that are going to be modified we must
use some lower level tools like shared_memory of the multiprocess package. This is
actually considered as another future-work task to improve significantly the overall per-
formance by limiting the serializations/deserializations needed.

I. Kontonis 19

HTTPS://GITHUB.COM/ILIAS6/PARALLEL-PYJEDAI

PyJedAI Parallelization with MPIRE

4.2 Core methods

Each multiprocess class has 4 main methods:

1. The constructor.
When a multiprocess object is initialized, it prepares the chunks of data that will be
assigned to each process, while ensuring that our SharedData object, worker pool
and the partial objects are properly set.

2. The init_class_object() method.
It initializes the partial objects. This method is called within the constructor, and is
the step where we copy the necessary information of the initial global object to the
partial objects.

3. The generate_task_objects() method.
It is the method that breaks the data into chunks and generates the necessary para-
meters for the processes we intend to fork.

4. The run() method.
It is where the fork-join model is actually implemented. For some steps of the al-
gorithm this method can be written in one line (e.g. MultiprocessEntityMatching), but
for others that we need to perform some actions during the join phase, we must write
some extra code. For example, in MultiprocessCEP, when a process is finished, we
retrieve its top-k stack and we push each element in our global top-k stack, which is
the final result.

4.3 Parallelization of ER steps

Each ER step of Figure 3.2 has different time and memory complexity. We will see that
Block Building and Block Cleaning steps need far less amount of time to be computed
in comparison to Comparison Cleaning and Entity Matching. Also, the Clustering step’s
time scale is in order of milliseconds even for large datasets, so we did not implement
any parallel execution for this. Unfortunately, we noticed that in most cases we have
underperformance in Block Building and Block Cleaning due to the latency in the joining
phase.

4.3.1 Block Building

Block building is not a very time consuming task compared to Comparison Cleaning or
Entity Matching, although for large datasets this time might need to be cut down. For this
ER step we split the dataset to N parts where N is the number of processes that will be
executed. We assign the indices slice of the dataset to each process to create a partial
dataset for the process to work with. In order to expand the parallel execution of each
different block building algorithm all we need to do is to override the init_class_object()
method. The SharedData object we use for this one, contains the dataset.

In the join phase we take the block dictionary produced by each process and we merge it
using the methods:

I. Kontonis 20

PyJedAI Parallelization with MPIRE

def merge_dicts (d i c t1 , d i c t2 , i s _ d i r t y _ e r) :
d ic t1_keys = d i c t 1 . keys ()
d ic t2_keys = d i c t 2 . keys ()

f o r key i n d ic t2_keys :
i f key i n d ic t1_keys :

d i c t 1 [key] . concat (d i c t 2 [key] , i s _ d i r t y _ e r)
e lse :

d i c t 1 [key] = d i c t 2 [key]

Block method
def concat (se l f , o ther_b lock : ’ Block ’ , i s _ d i r t y _ e r) −> None :

s e l f . en t i t i es_D1 . update (o ther_b lock . en t i t i es_D1)
i f i s _ d i r t y _ e r :

r e t u rn
s e l f . en t i t i es_D2 . update (o ther_b lock . en t i t i es_D2)

We observed that there is latency when a process finishes its job and it is very significant
compared to the actual computation time. This occurs because serializing/deserializing
the blocks that are calculated within each process takes more time than the block building
processing.

4.3.2 Block Cleaning

Block cleaning is an even lighter task than block building, nevertheless, we implemented
the parallel approach. For this one we have two algorithms: Block Filtering (BF) and Block
Purging (BP). The SharedData object for both of them contains the block dictionary that
the Block Building step previously produced. Similarly with Block Building, we divide the
block dictionary to N chunks, one for each process. BP is very simple, all we need to do
is to override the init_class_object() method and each process will filter out entire blocks
whose cardinality exceeds a certain threshold. When it comes to BF it is little bit more
complicated: we need to follow the procedure as it is explained in [11]. Each process
iterates over its assigned blocks, and for each entity, it filters out records that do not occur
frequently enough in blocks, based on a ratio. The master process, must collect and
merge the filtered blocks and then it removes blocks that contain only one entity.

So the run method for BF is:

def run (s e l f) :
s e l f . b locks = { }
f o r res i n s e l f . pool . imap_unordered (s e l f . apply_processing , s e l f . param) :

f o r key , value i n res . i tems () :
s e l f . b locks . s e t de f au l t (key , Block ())

. concat (value , s e l f . data . i s _ d i r t y _ e r)

new_blocks = d rop_s ing le_en t i t y_b locks (
s e l f . blocks , s e l f . data . i s _ d i r t y _ e r)

s e l f . b locks = new_blocks

while in BP master process just collects and merges the blocks returns by each child.

I. Kontonis 21

PyJedAI Parallelization with MPIRE

Again, we observed that there is high latency in the joining phase which leads to under-
performance.

4.3.3 Comparison Cleaning

We implemented two algorithms for the parallel Comparison Cleaning: Cardinality Edge
Pruning (CEP) and Weighted Edge Pruning (WEP). The SharedData object for CEP con-
tains the initial Comparison Cleaning class, which includes all the data and as well as
parameters like threshold. The SharedData object for WEP contains whatever the CEP
contains, plus 3 more objects that we will explain shortly. For both we override the meth-
ods generate_task_objects(), init_class_object() and run() methods. The key difference
is that in CEP we need a Priority Queue for each process and a global one for the joining
phase. As explained in [11], we store the top-K edges in a local priority queue and in the
joining phase with pop the items into the global priority queue.

So, the run() method for CEP is:

def run (s e l f) :
t h resho ld = s e l f . shared_data . main_object . _ th resho ld
top_k_edges = Pr io r i t yQueue (th resho ld * 2)
minimum_weight = s e l f . shared_data . main_object . _minimum_weight
f o r res i n s e l f . pool . imap_unordered (s e l f . apply_processing , s e l f . param) :

f o r comparison i n res :
weight = comparison [0]
i f weight >= minimum_weight :
top_k_edges . put ((weight , comparison [1] , comparison [2]))
i f t h resho ld < top_k_edges . qs ize () :
minimum_weight = top_k_edges . get () [0]

e lse :
break

s e l f . b locks = d e f a u l t d i c t (se t)
wh i le not top_k_edges . empty () :

comparison = top_k_edges . get ()
s e l f . b locks [comparison [1]] . add (comparison [2])

When it comes to WEP, we have a simple join phase where we just update the block
dictionary with the block dictionary - result of each process. As mentioned in [11], we must
calculate the global threshold first in order the proceed to the pruning. This is achieved
with the 3 objects included in the SharedData object and are used as following in the
method executed by each child process:

shared_data . weight += cc . _ th resho ld
shared_data . edges += cc . _num_of_edges
shared_data . b a r r i e r . wa i t ()
cc . _ th resho ld = shared_data . weight / shared_data . edges

while the entire method is:

def apply_processing (shared_data , pid , cc , e n t i t y _ s t a r t , en t i t y_end) :

i f cc . data . i s _ d i r t y _ e r or cc . _node_centr ic :

I. Kontonis 22

PyJedAI Parallelization with MPIRE

cc . _ l i m i t = cc . data . num_of_ent i t ies
e lse :
cc . _ l i m i t = cc . data . d a t a se t _ l im i t

cc . _ f i r s t _ e n t i t y = e n t i t y _ s t a r t
cc . _ l i m i t = en t i t y_end
cc . _en t i t y_ i ndex = shared_data . main_object . _en t i t y_ i ndex
cc . _num_of_blocks = len (shared_data . main_object . _blocks)
cc . _blocks = shared_data . main_object . _blocks

cc . _counters = np . empty ([cc . data . num_of_ent i t ies] , dtype= f l o a t)
cc . _ f l ags = np . empty ([cc . data . num_of_ent i t ies] , dtype= i n t)
i f (cc . _compar isons_per_ent i ty_requ i red ()) :

cc . _ s e t _ s t a t i s t i c s ()

cc . _num_of_edges = 0.0
cc . _ th resho ld = 0.0

f o r i i n range (cc . _ f i r s t _ e n t i t y , cc . _ l i m i t) :
cc . _process_en t i t y (i)
cc . _update_threshold (i)

shared_data . values [” weight ”] . value += cc . _ th resho ld
shared_data . values [” edges ”] . value += cc . _num_of_edges
shared_data . b a r r i e r . wa i t ()

weight = shared_data . values [” weight ”] . value
edges = shared_data . values [” edges ”] . value
cc . _ th resho ld = weight / edges

re tu rn cc . _prune_edges ()

In this ER step, we have reduced the overall time but there is also significant latency in
the joining phase because of the serialization/deserialization of the returned results.

4.3.4 Entity Matching

The parallel Entity Matching is quite straight forward. Each core gets some blocks to work
on. It iterates over the canditate pairs in these blocks. For every pair <pi, pj>, it adds two
nodes ei, ej on a graph G. It also connects them with an edge <ei, ej>. The weight of the
edge depends on how well the entities match. This graph is simple, meaning there’s only
one edge between any two nodes. The SharedData object contains the blocks and in the
joining phase we merge the graphs returned from each process. The merge is done using
the method:
def merge_graphs (se l f , o the r_pa i r s) :

s e l f . pa i r s . add_nodes_from (o the r_pa i r s . nodes ())
s e l f . pa i r s . add_edges_from (o the r_pa i r s . edges ())

This is a latency-free step. In contrary with the other ER steps, the result of the Entity
Matching is a Graph, which programatically needs very little memory space compared to

I. Kontonis 23

PyJedAI Parallelization with MPIRE

the dictionaries of Blocks that the other ER steps return. Of course, this leads to easier
serialization/deserialization, so less latency.

I. Kontonis 24

PyJedAI Parallelization with MPIRE

5. EVALUATION

The evaluation of our parallelization efforts for entity resolution in PyJedAI has provided
valuable insights into the project’s outcomes. Our parallelization strategy excels in entity
matching, but in other steps, the serial approach continues to exhibit superior perform-
ance. We run the experiments with up to 16 processes and we had at our disposal 128Gb
of memory.

5.1 Experimental Setup

5.1.1 CPU Configuration

The experiments were conducted on a server with a total of 16 processors. Each pro-
cessor belongs to the Intel Xeon E5-4603 v2 family. Each individual processor has the
following characteristics (content of /proc/cpuinfo):

• CPU Family: 6

• Model: 62

• Stepping: 4

• Microcode: 0x42e

• CPU MHz: 1200.601

• Cache Size: 10240 KB

• Physical ID: 0

• Siblings: 8

• CPU Cores: 4

• APIC ID: 0

• Initial APIC ID: 0

• Flags: fpu, vme, de, pse, tsc, msr, pae, mce, cx8, apic, sep, mtrr, pge, mca, cmov,
pat, pse36, clflush, dts, acpi, mmx, fxsr, sse, sse2, ss, ht, tm, pbe, syscall, nx,
pdpe1gb, rdtscp, lm, constant_tsc, arch_perfmon, pebs, bts, rep_good, nopl, xtopo-
logy, nonstop_tsc, cpuid, aperfmperf, pni, pclmulqdq, dtes64, monitor, ds_cpl, vmx,
smx, est, tm2, ssse3, cx16, xtpr, pdcm, pcid, dca, sse4_1, sse4_2, x2apic, popcnt,
tsc_deadline_timer, aes, xsave, avx, f16c, rdrand, lahf_lm, cpuid_fault, pti, ssbd,
ibrs, ibpb, stibp, tpr_shadow, vnmi, flexpriority, ept, vpid, fsgsbase, smep, erms,
xsaveopt, dtherm, arat, pln, pts, md_clear, flush_l1d

• Bogomips: 4400.41

• clflush size: 64

• cache_alignment: 64

• address sizes: 46 bits physical, 48 bits virtual
I. Kontonis 25

PyJedAI Parallelization with MPIRE

5.1.2 Memory Configuration

The setup of the server has the followingmemory configuration (content of /proc/meminfo):

• Total Memory (MemTotal): 131,966,744 kB (126.08 GB)

• Available Memory (MemAvailable): 110,837,680 kB (105.65 GB)

• Buffers: 1,671,224 kB (1.59 GB)

• Cached: 5,150,164 kB (4.91 GB)

• Swap Total: 8,388,604 kB (7.99 GB)

• Swap Free: 446,756 kB (0.43 GB)

• Dirty: 456 kB

• Writeback: 17,038,592 kB (16.26 GB)

• Anon Pages: 15,928,924 kB (15.20 GB)

• Mapped: 1,677,000 kB (1.60 GB)

• Shmem: 2,230,172 kB (2.13 GB)

• Slab: 1,544,536 kB (1.47 GB)

• SReclaimable: 949,568 kB (0.91 GB)

• SUnreclaim: 594,968 kB (0.57 GB)

• Kernel Stack: 22,944 kB (0.02 GB)

• Page Tables: 589,420 kB (0.56 GB)

• Commit Limit: 74,371,976 kB (70.85 GB)

• Committed AS: 353,551,364 kB (337.12 GB)

• Vmalloc Total: 34,359,738,367 kB (32,750.00 GB)

• Vmalloc Used: 0 kB

• Vmalloc Chunk: 0 kB

• Huge Pages Total: 0

• Huge Pages Size: 2,048 kB

• Direct Map 4k: 33,037,120 kB (31.51 GB)

• Direct Map 2M: 101,134,336 kB (96.50 GB)

• Direct Map 1G: 2,097,152 kB (2.00 GB)

I. Kontonis 26

PyJedAI Parallelization with MPIRE

5.2 Performance Metrics

The metrics that we use to evaluate our parallel implementation are: efficiency, speed-up
and memory consumption. Time metrics measure the extent to which our parallelization
strategy has decreased the overall execution time compared to a serial execution, but
also, increased in some other steps of the entity matching process. Efficiency is a metric
that gauges the resource utilization of our parallel implementation. We assess the trade-
offs between resource consumption and task completion. A similar measure is speed-
up which is a fundamental indicator of how effectively our parallelization strategy utilizes
multiple processing units. We measure the speed-up achieved and analyze its variations
as the dataset size and complexity change.

For Speedup S, we have:
S = Tserial/Tparallel (5.1)

For Efficiency E, we have:
E = S/P (5.2)

where P is the number of cores used.

Finally, memory usage is a crucial consideration in parallel computing as it monitors the
second important resource of computing system, the memory and helps us analyze pos-
sible trade-offs.

5.3 Results and Plots

In the following tables, we see the results for each step of the algorithm for different data-
sets. In total, we used 8 Clean-Clean datasets (CC) and 2 Dirty (10k and 100k entities).

Table 5.1: Statistics of the CC datasets

Dataset Name 1 Name2 Ent. 1 Ent. 2 Attr. 1 Attr. 2 N-V Pairs 1 N-V Pairs 2 Cart. Prod.
1 rest1 rest2 339 2256 4 4 1356 9024 764784
2 abt buy 1076 1076 4 4 4304 4304 1157776
3 amazon gp 1354 3039 5 5 6770 15195 4114806
4 acm dblp 2294 2616 5 5 11470 13080 6001104
5 imdb tmdb 5118 6056 12 15 61416 90840 30994608
6 imdb tvdb 5118 7810 12 8 61416 62480 39971580
7 tmdb tvdb 6056 7810 15 8 90840 62480 47297360
8 amazon walmart 22074 2554 7 7 154518 17878 56376996

Table 5.2: Statistics of the dirty datasets

Dataset Entities Attributes N-V Pairs Cart. Prod.
10Kfull 10000 5 50000 100000000
100Kfull 100000 5 500000 10000000000

N-V: Name-Value

I. Kontonis 27

PyJedAI Parallelization with MPIRE

As mentioned before, the metrics for the evaluation are the execution time, Speed-up and
Efficiency.

Table 5.3: CEP - CC 1

N BB BC CC EM Total
1 5.77 2.71 91.11 131.57 231.2
2 11.36 4.21 76.08 82.39 174.07
4 11.69 4.38 53.0 45.17 114.28
8 12.59 4.86 41.05 25.34 83.86
16 11.71 5.79 38.21 17.42 73.15

Table 5.4: WEP - CC 1

N BB BC CC EM Total
1 6.28 3.07 77.51 847.75 934.64
2 11.46 4.46 58.93 432.54 507.42
4 11.27 5.46 31.63 219.35 267.74
8 11.48 5.36 17.19 116.83 150.89
16 15.13 8.25 13.37 73.74 110.52

Table 5.5: CEP - CC 1 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.51 0.64 1.2 1.6 1.33
4 0.49 0.62 1.72 2.91 2.02
8 0.46 0.56 2.22 5.19 2.76
16 0.49 0.47 2.38 7.55 3.16

Table 5.6: WEP - CC 1 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.55 0.69 1.32 1.96 1.84
4 0.56 0.56 2.45 3.86 3.49
8 0.55 0.57 4.51 7.26 6.19
16 0.42 0.37 5.8 11.5 8.46

Table 5.7: CEP - CC 1 Effiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.25 0.32 0.6 0.8 0.66
4 0.12 0.15 0.43 0.73 0.51
8 0.06 0.07 0.28 0.65 0.34
16 0.03 0.03 0.15 0.47 0.2

Table 5.8: WEP - CC 1 Effiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.27 0.34 0.66 0.98 0.92
4 0.14 0.14 0.61 0.97 0.87
8 0.07 0.07 0.56 0.91 0.77
16 0.03 0.02 0.36 0.72 0.53

Table 5.9: CEP - CC 2

N BB BC CC EM Total
1 3.25 2.04 28.41 69.4 103.11
2 5.75 4.38 26.37 53.64 90.15
4 5.33 5.49 19.61 31.01 61.45
8 7.69 6.85 17.18 18.22 49.94
16 7.76 7.53 18.25 12.19 45.73

Table 5.10: WEP - CC 2

N BB BC CC EM Total
1 3.2 1.96 21.47 59.32 85.96
2 5.47 4.82 19.06 31.73 61.09
4 5.87 5.85 9.81 17.15 38.68
8 8.26 6.84 6.96 11.61 33.68
16 10.11 9.51 4.48 10.69 34.8

Table 5.11: CEP - CC 2 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.57 0.47 1.08 1.29 1.14
4 0.61 0.37 1.45 2.24 1.68
8 0.42 0.3 1.65 3.81 2.06
16 0.42 0.27 1.56 5.69 2.25

Table 5.12: WEP - CC 2 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.59 0.41 1.13 1.87 1.41
4 0.55 0.34 2.19 3.46 2.22
8 0.39 0.29 3.08 5.11 2.55
16 0.32 0.21 4.79 5.55 2.47

I. Kontonis 28

PyJedAI Parallelization with MPIRE

Table 5.13: CEP - CC 2 Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.28 0.23 0.54 0.65 0.57
4 0.15 0.09 0.36 0.56 0.42
8 0.05 0.04 0.21 0.48 0.26
16 0.03 0.02 0.1 0.36 0.14

Table 5.14: WEP - CC 2 Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.29 0.2 0.56 0.93 0.7
4 0.14 0.08 0.55 0.86 0.56
8 0.05 0.04 0.39 0.64 0.32
16 0.02 0.01 0.3 0.35 0.15

Table 5.15: CEP - CC 3

N BB BC CC EM Total
1 1.62 0.73 13.36 49.86 65.58
2 2.65 1.71 13.47 31.19 49.03
4 3.65 2.31 9.47 16.45 31.89
8 3.62 3.56 9.69 10.05 26.93
16 5.19 4.37 10.22 6.51 26.29

Table 5.16: WEP - CC 3

N BB BC CC EM Total
1 1.28 1.24 12.56 782.83 797.92
2 3.17 2.33 11.73 406.3 423.54
4 2.63 2.95 7.0 269.86 282.43
8 3.98 2.94 4.96 184.08 195.97
16 5.64 4.68 3.78 112.31 126.41

Table 5.17: CEP - CC 3 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.61 0.43 0.99 1.6 1.34
4 0.44 0.32 1.41 3.03 2.06
8 0.45 0.21 1.38 4.96 2.44
16 0.31 0.17 1.31 7.66 2.49

Table 5.18: WEP - CC 3 Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.4 0.53 1.07 1.93 1.88
4 0.49 0.42 1.79 2.9 2.83
8 0.32 0.42 2.53 4.25 4.07
16 0.23 0.26 3.32 6.97 6.31

Table 5.19: CEP - CC 3 Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.31 0.21 0.5 0.8 0.67
4 0.11 0.08 0.35 0.76 0.51
8 0.06 0.03 0.17 0.62 0.3
16 0.02 0.01 0.08 0.48 0.16

Table 5.20: WEP - CC 3 Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.2 0.27 0.54 0.96 0.94
4 0.12 0.11 0.45 0.73 0.71
8 0.04 0.05 0.32 0.53 0.51
16 0.01 0.02 0.21 0.44 0.39

Table 5.21: CEP - Dirty 10k

N BB BC CC EM Total
1 63.67 15.5 21.28 403.4 503.85
2 182.48 45.52 33.76 339.73 601.49
4 180.41 22.27 27.06 189.04 418.78
8 175.33 31.44 20.63 154.76 382.17
16 176.05 90.07 21.89 82.23 370.24

Table 5.22: WEP - Dirty 10k

N BB BC CC EM Total
1 66.19 6.07 14.7 556.01 642.98
2 206.54 55.84 19.36 364.34 646.08
4 176.59 48.22 12.83 208.69 446.33
8 170.42 40.64 9.08 111.03 331.17
16 181.08 53.58 8.93 67.31 310.9

I. Kontonis 29

PyJedAI Parallelization with MPIRE

Table 5.23: CEP - Dirty 10k Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.35 0.34 0.63 1.19 0.84
4 0.35 0.7 0.79 2.13 1.2
8 0.36 0.49 1.03 2.61 1.32
16 0.36 0.17 0.97 4.91 1.36

Table 5.24: WEP - Dirty 10k Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.32 0.11 0.76 1.53 1.0
4 0.37 0.13 1.15 2.66 1.44
8 0.39 0.15 1.62 5.01 1.94
16 0.37 0.11 1.65 8.26 2.07

Table 5.25: CEP - Dirty 10k Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.17 0.17 0.32 0.59 0.42
4 0.09 0.17 0.2 0.53 0.3
8 0.05 0.06 0.13 0.33 0.16
16 0.02 0.01 0.06 0.31 0.09

Table 5.26: WEP - Dirty 10k Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.16 0.05 0.38 0.76 0.5
4 0.09 0.03 0.29 0.67 0.36
8 0.05 0.02 0.2 0.63 0.24
16 0.02 0.01 0.1 0.52 0.13

Table 5.27: CEP - 100k

N BB BC CC EM Total
1 669.56 648.42 1012.23 18090.43 20420.64
2 667.34 764.89 1210.28 9512.34 12154.85
4 617.63 786.76 840.7 5741.97 7987.06

Table 5.28: CEP - 100k Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 1.0 0.85 0.84 1.9 1.68
4 1.08 0.82 1.2 3.15 2.56

Table 5.29: CEP - 100k Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.5 0.42 0.42 0.95 0.84
4 0.27 0.21 0.3 0.79 0.64

Table 5.30: WEP - 100k

N BB BC CC EM Total
1 592.54 700.81 591.56 153.46 2038.38
2 600.65 595.77 502.86 99.13 1798.41
4 640.59 680.38 350.84 66.73 1738.54
8 574.04 750.01 257.44 54.58 1636.07

Table 5.31: WEP - 100k Speed-up

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.99 1.18 1.18 1.55 1.13
4 0.92 1.03 1.69 2.3 1.17
8 1.03 0.93 2.3 2.81 1.25

Table 5.32: WEP - 100k Efficiency

N BB BC CC EM Total
1 1.0 1.0 1.0 1.0 1.0
2 0.49 0.59 0.59 0.77 0.57
4 0.23 0.26 0.42 0.57 0.29
8 0.13 0.12 0.29 0.35 0.16

In the plots below, the y-axis represents time while the x-axis denotes the number of cores
utilized. There are 4 different lines:

I. Kontonis 30

PyJedAI Parallelization with MPIRE

1. The red dotted line: this one depicts the serial execution time.

2. The blue line, Exec Time: this one depicts the total execution time, counting from
the very beginning of the step to the very ending.

3. The green line, (Time) With Latency: this one depicts the time, counting from the
point the data of each process is initialized.

4. The orange line, Calc Time: it represents the maximum value of the time that each
process consumed on doing its assigned task, plus the time required for merging
the results. This visualization allows us to observe the optimal execution time if
there were no latency from the interprocess communication or any other factors.
However, in some cases, it might be misleading because the time for merging, that
is included, is counted as the sum of the time of each merged result. The problem
with this is that merging and computing is happening in parallel, as a result, we add
up time that overlaps with the execution eitherway. So we may observe a worse time
performance than the actual, but it ensures that it is not any worse than that.

5.3.1 Block Building

The first step of the ER algorithm is Blocking Building. Generally, this step is not very time
consuming in comparison with Comparison Cleaning and Entity Matching. We can clearly
see the underperformance in this step as the red line which is the serial execution time is
below every other.

Figure 5.1: Block Building for dataset 8

5.3.2 Block Cleaning

The second step of the ER algorithm is Block Cleaning, which is even lighter, in terms
of time complexity, than the first one. We can also see the underperformance as the
efficiency is getting lower when the the number of processes increases.

I. Kontonis 31

PyJedAI Parallelization with MPIRE

Figure 5.2: Block Cleaning for dataset 1

Figure 5.3: Block Cleaning for dataset 7

5.3.3 Comparison Cleaning

The third step of the ER algorithm is Comparison Cleaning where the pruning of entities
is taking place. In this one, the efficiency is low, but in most cases there is no under-
performance. Also, keep in mind that the load balancing algorithm is not implemented,
so different data chunk sizes will distribute differently the data to each process which will
lead to different performance.

The following plots are depicting the performance of the Weighted Edge Pruning (WEP)
algorithm.

I. Kontonis 32

PyJedAI Parallelization with MPIRE

Figure 5.4: WEP for dataset 1

Figure 5.5: WEP for dataset 5

Figure 5.6: WEP for dataset 7

I. Kontonis 33

PyJedAI Parallelization with MPIRE

Figure 5.7: WEP for dataset 9 (Dirty 10k)

The following plots are depicting the performance of the Cardinality Edge Pruning (CEP)
algorithm.

Figure 5.8: CEP for dataset 2

I. Kontonis 34

PyJedAI Parallelization with MPIRE

Figure 5.9: CEP for dataset 6

Figure 5.10: CEP for dataset 10 (Dirty 100k)

5.3.4 Entity Matching

The fourth step is Entity Matching, which is the computationally heaviest step. As we
can see in the plots below, the 3 lines are overlapping with each other which means that
latency due to the serialization is very low.

Now lets take a look at our greatest results.

I. Kontonis 35

PyJedAI Parallelization with MPIRE

Figure 5.11: Entity Matching for dataset 1

Figure 5.12: Entity Matching for dataset 2

Figure 5.13: Entity Matching for dataset 7

I. Kontonis 36

PyJedAI Parallelization with MPIRE

Figure 5.14: Entity Matching for dataset 8

Figure 5.15: Entity Matching for dataset 9 (Dirty 10k)

Figure 5.16: Entity Matching for dataset 10 (Dirty 100k)

I. Kontonis 37

PyJedAI Parallelization with MPIRE

5.4 Discussion of Findings

In conclusion, MPIRE is an optimization of the multiprocessing python library, plus it takes
a step further the simplicity of its use, as it provides an implementation of higher level calls.
In the official documentation of MPIRE [20], it is stated that in most scenarios MPIRE is
faster than the multiprocessing library, Nevertheless, we cannot expect to reduce the time
complexity of an algorithm with an optimization of the library we use, we must optimize
our algorithm. In our case, interprocess communication, that is necessary for the parallel
implementation in python, introduces a bottleneck to our algorithm. Using any python
package for multiprocessing that requires this kind of communication and not a shared
memory solution for example, would lead to the same bottleneck. So, the evaluation of
our implementation using MPIRE is more or less the same as using any multiprocessing
package.

As we can see, Entity Matching and Comparison Cleaning are the steps that bring in time
reduction in the parallel implementation. These results would be even better if the load
balancing algorithm of [11] was implemented too. For example, in Figure 5.42, it seems
that for 2 processes the execution time is increased, but for 4 processes it is decreased,
which means that this is not a bottleneck of the parallel algorithm but probably an ineffi-
cient data distribution. In such cases, most probably, there is poor load balancing. What
happens, is that the time of the process with the most work sets the wall clock, delaying the
entire processing. But, when it comes to poor load balancing, it means that there will be
processes/threads that will finish too early, as a result being idle. Also, in most plots, like
Figure 5.36, we can clearly see that the calculation time (the time for the longest job plus
the total time needed for merging the results in the join phase) is much smaller than the
execution time [1]. As we mentioned before, this is due to the serialization/deserialization
of the data when two processes communicate.

I. Kontonis 38

PyJedAI Parallelization with MPIRE

6. CONCLUSIONS AND FUTURE WORK

In the course of our research into parallelization in Python, we have unearthed several
crucial insights that shed light on the intricacies and challenges associated with harnessing
parallel computing power within a high-level language like Python. These findings are
instrumental in understanding the inherent complexities and exploring potential solutions:

Challenges of Parallelization in Python: It has become evident that parallelization in Py-
thon can be more intricate and demanding compared to lower-level languages. The pres-
ence of the GIL and other language-specific constraints can restrict the full potential of
parallel computing, making it imperative to explore alternative strategies to maximize per-
formance.

Latency in Data Communication: A significant contributor to latency in our parallel pro-
cessing is the serialization and deserialization of data. The necessity to convert data into
a transportable format for communication between processes can introduce overhead,
leading to huge delays in the overall execution of parallel tasks.

Exploring SharedMemory Solutions: As we look toward addressing the issue of serialization-
induced latency, one promising avenue involves the implementation of a shared memory
approach. This strategy allows processes to access and manipulate data within a shared
memory space, eliminating the need for resource-intensive serialization and deserializa-
tion. By enabling direct and efficient data exchange, shared memory solutions hold the
potential to substantially enhance the speed and efficiency of parallelized tasks. [33] [31]
[19] [3]

In conclusion, our research underscores the challenges posed by parallelization in a lan-
guage like Python and highlights the role of data serialization in introducing latency within
parallel processes. The pursuit of solutions, such as shared memory implementations,
offers a promising pathway to mitigate these challenges, ultimately paving the way for
more efficient and scalable parallelization in the context of Python-based applications like
entity resolution. These insights are invaluable for researchers and practitioners aiming to
harness the full potential of parallel computing within high-level programming languages.

I. Kontonis 39

PyJedAI Parallelization with MPIRE

ABBREVIATIONS - ACRONYMS

GIL Global Interpreter Lock

WEP Weighted Edge Pruning

CEP Cardinality Edge Pruning

N-V Name-Value

I. Kontonis 40

PyJedAI Parallelization with MPIRE

BIBLIOGRAPHY

[1] Amdalh’s Law Wikipedia. URL: https://en.wikipedia.org/wiki/Amdahl%27s_
law.

[2] Jim Anderson. “An Intro to Threading in Python – Real Python”. In: MArzo (2019).
[3] Todd Anderson and Tim Mattson. “Multithreaded parallel Python through OpenMP

support in Numba”. In: 2021. DOI: 10.25080/majora-1b6fd038-012.
[4] Zina A. Aziz, Diler Naseradeen Abdulqader, Amira Bibo Sallow and Herman Khalid

Omer. “Python Parallel Processing and Multiprocessing: A Rivew”. In: Academic
Journal of Nawroz University 10 (3 Aug. 2021). ISSN: 2520-789X. DOI: 10.25007/
ajnu.v10n3a1145.

[5] Peter Christen. “A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication”. In: IEEE Transactions on Knowledge and Data Engineering 24 (9
Sept. 2012), pp. 1537–1555. ISSN: 1041-4347. DOI: 10.1109/TKDE.2011.127.

[6] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, and
Duplicate Detection. Springer, 2012, pp. I–XIX, 1–270. ISBN: 978-3-642-31163-5.

[7] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis and
Kostas Stefanidis. “An Overview of End-to-End Entity Resolution for Big Data”. In:
ACM Comput. 53.6 (2021), 127:1–127:42.

[8] Vassilis Christophides, Vasilis Efthymiou and Kostas Stefanidis. Entity Resolution in
the Web of Data. Springer International Publishing, 2015. ISBN: 978-3-031-79467-
4. DOI: 10.1007/978-3-031-79468-1.

[9] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler and Alejandro Cosimo. “Parallel
distributed computing using Python”. In: Advances in Water Resources 34 (9 Sept.
2011). ISSN: 03091708. DOI: 10.1016/j.advwatres.2011.04.013.

[10] Xin Luna Dong and Divesh Srivastava. Synthesis Lectures on Data Management.
Morgan Claypool Publishers, 2015, pp. 1–198. ISBN: 978-3-031-00725-5.

[11] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis
and Themis Palpanas. “Parallel meta-blocking for scaling entity resolution over big
heterogeneous data”. In: Information Systems 65 (Apr. 2017). ISSN: 03064379.
DOI: 10.1016/j.is.2016.12.001.

[12] Papadakis George, Ioannou Ekaterini and Palpanas Themis. “Entity Resolution:
Past, Present and Yet-to-Come”. In: Proceedings of the EDBT/ICDT 2020 Joint Con-
ference. Copenhagen, Denmark, Mar. 2020.

[13] Papadakis George and Palpanas Themis. “Web-scale, Schema-Agnostic, End-to-
End Entity Resolution”. In: Proceedings of the World Wide Web (WWW) – The Web
Conference 2018. Lyon, France, Apr. 2018.

[14] Kazuo Goda, Yuto Hayamizu, Hiroyuki Yamada and Masaru Kitsuregawa. “Out-of-
order execution of database queries”. In: Proceedings of the VLDB Endowment
13 (12 Aug. 2020), pp. 3489–3501. ISSN: 2150-8097. DOI: 10.14778/3415478.
3415571.

[15] Steve Kleiman, Devang Shah and Bart Smaalders. Programming with threads. Sun
Soft Press Mountain View, 1996.

I. Kontonis 41

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://doi.org/10.25080/majora-1b6fd038-012
https://doi.org/10.25007/ajnu.v10n3a1145
https://doi.org/10.25007/ajnu.v10n3a1145
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1007/978-3-031-79468-1
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.is.2016.12.001
https://doi.org/10.14778/3415478.3415571
https://doi.org/10.14778/3415478.3415571

PyJedAI Parallelization with MPIRE

[16] Ami Marowka. “On parallel software engineering education using python”. In: Edu-
cation and Information Technologies 23 (1 Jan. 2018). ISSN: 1360-2357. DOI: 10.
1007/s10639-017-9607-0.

[17] Stefano Masini and Paolo Bientinesi. “High-Performance Parallel Computations Us-
ing Python as High-Level Language”. In: 2011. DOI: 10.1007/978-3-642-21878-
1_66.

[18] Berna L. Massingill, Timothy G. Mattson and Beverly A. Sanders. “Parallel program-
ming with a pattern language *”. In: International Journal on Software Tools for Tech-
nology Transfer 3 (2 2001). ISSN: 14332779. DOI: 10.1007/s100090100045.

[19] Timothy G. Mattson, Todd A. Anderson and Giorgis Georgakoudis. “PyOMP: Multi-
threaded Parallel Programming in Python”. In: Computing in Science Engineering
23 (6 Nov. 2021), pp. 77–80. ISSN: 1521-9615. DOI: 10.1109/MCSE.2021.3128806.

[20] MPIRE Official Documentation. URL: https://sybrenjansen.github.io/mpire/
index.html.

[21] Konstantinos Nikoletos, George Papadakis and Manolis Koubarakis. “pyJedAI: a
Lightsaber for Link Discovery”. In: Proceedings of the ISWC 2022 Posters, Demos
and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 21st
International Semantic Web Conference (ISWC 2022), Virtual Conference, Hang-
zhou, China, October 23-27, 2022.

[22] George Papadakis, George Alexiou, George Papastefanatos and Georgia Koutrika.
“Schema-agnostic vs schema-based configurations for blocking methods on homo-
geneous data”. In: Proceedings of the VLDB Endowment 9 (4 Dec. 2015), pp. 312–
323. ISSN: 2150-8097. DOI: 10.14778/2856318.2856326.

[23] George Papadakis, Konstantina Bereta, Themis Palpanas and Manolis Koubara-
kis. “Multi-core Meta-blocking for Big Linked Data”. In: ACM, Sept. 2017. ISBN:
9781450352963. DOI: 10.1145/3132218.3132230.

[24] George Papadakis, Ekaterini Ioannou, Emanouil Thanos and Themis Palpanas.
“Possible Directions for Future Work”. In: 2021, pp. 119–120. DOI: 10.1007/978-3-
031-01878-7_9.

[25] George Papadakis, Georgia Koutrika, Themis Palpanas andWolfgang Nejdl. “Meta-
Blocking: Taking Entity Resolutionto the Next Level”. In: IEEE Transactions on Know-
ledge and Data Engineering 26 (8 Aug. 2014), pp. 1946–1960. ISSN: 1041-4347.
DOI: 10.1109/TKDE.2013.54.

[26] George Papadakis, George Mandilaras, Luca Gagliardelli, Giovanni Simonini, Em-
manouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas
and Manolis Koubarakis. “Three-dimensional Entity Resolution with JedAI”. In: In-
formation Systems 93 (Nov. 2020), p. 101565. ISSN: 03064379. DOI: 10.1016/j.
is.2020.101565.

[27] George Papadakis, George Papastefanatos, Themis Palpanas andManolis Koubara-
kis. “Boosting the Efficiency of Large-Scale Entity Resolution with Enhanced Meta-
Blocking”. In: Big Data Research 6 (Dec. 2016), pp. 43–63. ISSN: 22145796. DOI:
10.1016/j.bdr.2016.08.002.

[28] George Papadakis, George Papastefanatos, Themis Palpanas andManolis Koubara-
kis. “Scaling entity resolution to large, heterogeneous data with enhanced meta-
blocking”. In: vol. 2016-March. 2016. DOI: 10.5441/002/edbt.2016.22.

I. Kontonis 42

https://doi.org/10.1007/s10639-017-9607-0
https://doi.org/10.1007/s10639-017-9607-0
https://doi.org/10.1007/978-3-642-21878-1_66
https://doi.org/10.1007/978-3-642-21878-1_66
https://doi.org/10.1007/s100090100045
https://doi.org/10.1109/MCSE.2021.3128806
https://sybrenjansen.github.io/mpire/index.html
https://sybrenjansen.github.io/mpire/index.html
https://doi.org/10.14778/2856318.2856326
https://doi.org/10.1145/3132218.3132230
https://doi.org/10.1007/978-3-031-01878-7_9
https://doi.org/10.1007/978-3-031-01878-7_9
https://doi.org/10.1109/TKDE.2013.54
https://doi.org/10.1016/j.is.2020.101565
https://doi.org/10.1016/j.is.2020.101565
https://doi.org/10.1016/j.bdr.2016.08.002
https://doi.org/10.5441/002/edbt.2016.22

PyJedAI Parallelization with MPIRE

[29] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos and Themis Palpanas.
“Blocking and Filtering Techniques for Entity Resolution: A Survey”. In: ACM Com-
put. 53.2 (2021), 31:1–31:42.

[30] Thomas Rauber and Gudula Rünger. Parallel Programming. Springer Berlin Heidel-
berg, 2013. ISBN: 978-3-642-37800-3. DOI: 10.1007/978-3-642-37801-0.

[31] Ariya Shajii, Ibrahim Numanagić, Alexander T. Leighton, Haley Greenyer, Saman
Amarasinghe and Bonnie Berger. “A Python-based optimization framework for high-
performance genomics”. In: bioRxiv (2020).

[32] L.M. SHavtikova and M.B. Tekeev. “Parallel computation of threads in the Python
programming language”. In: TRENDS IN THE DEVELOPMENT OF SCIENCE AND
EDUCATION (2020). DOI: 10.18411/lj-12-2020-46.

[33] Giancarlo Zaccone. Python Parallel Programming Cookbook. 2015.

I. Kontonis 43

https://doi.org/10.1007/978-3-642-37801-0
https://doi.org/10.18411/lj-12-2020-46

	CONTENTS
	INTRODUCTION
	Problem Statement
	PRELIMINARIES
	Parallel programming
	GIL (Global Interpreter Lock)
	Fork-Join Model of MPIRE
	PyJedAI Framework

	Parallelization of PyJedAI with MPIRE
	MPIRE for Multiprocessing
	General Structure
	SharedData

	Core methods
	Parallelization of ER steps
	Block Building
	Block Cleaning
	Comparison Cleaning
	Entity Matching

	EVALUATION
	Experimental Setup
	CPU Configuration
	Memory Configuration

	Performance Metrics
	Results and Plots
	Block Building
	Block Cleaning
	Comparison Cleaning
	Entity Matching

	Discussion of Findings

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	REFERENCES

