
NATIONAL KAPODISTRIAN UNIVERSITY OF 
ATHENS 

SCHOOL OF SCIENCE 

DEPARTEMENT OF PHYSIC 

DEPARTEMENT OF INFORMATICS AND 
TELECOMMUNICATIONS 

  

 

Postgraduate program of Department of Physics and Informatics 

and Telecommunications 

MSc in Electronics and Radioelectrology 

DISERTATION THESIS 

“Control of Network Devices in 5G Communications Systems” 

 

 

 

 

 

 

Kaponis Georgios 

2020101 

 

 

 

 



[2] 
  Georgios Kaponis 

Table of Contents 
1. Introduction ...................................................................................................................... 5 

2. Definition of the Problem ................................................................................................. 6 

2.1 Software Defined Networking ........................................................................................ 6 

2.2 Field Programmable Gate Array ..................................................................................... 8 

2.3 Communication and Interface with SoC....................................................................... 10 

2.4 Architecture .................................................................................................................. 11 

3. Control of Network elements through different Protocols ........................................... 13 

3.1 SNMP ....................................................................................................................... 13 

3.2 SCPI .......................................................................................................................... 22 

3.3 TL1 (Transaction Language 1) ................................................................................. 26 

3.4 NETCONF ................................................................................................................. 33 

3.4.1 NETCONF Data Modeling and Operations ...................................................... 34 

3.4.2 Advantages of NETCONF and Use Cases......................................................... 38 

3.5 OpenFlow ................................................................................................................ 41 

3.5.1 OpenFlow Architecture and Operations ........................................................ 43 

3.5.2 Advantages and presence SDN ecosystem ..................................................... 48 

3.5.3 Practical Implementations of OpenFlow and Challenges .............................. 50 

4. The Interface Developed................................................................................................. 53 

4.1 Methodology ........................................................................................................... 53 

4.1.1 Interface Design and Implementation ........................................................... 56 

4.1.2 Testing and Validation ..................................................................................... 59 

5. Conclusions and Future work ......................................................................................... 60 

6. List of figures ................................................................................................................... 62 

7. List of Tables .................................................................................................................... 63 

8. References ....................................................................................................................... 64 

Appendix A: Interface script code .......................................................................................... 66 

 

 

 

 

 

 



[3] 
  Georgios Kaponis 

Abstract 

Control of Network elements is an essential idea in networking, especially for the 5G 

and 6G communication systems. Through the decades the scientific community has 

researched protocols and ways to remote control and manage network devices such 

as routers, switches even instruments. By taking advantage of such protocols, the 

network engineer is able to decide how the network can be designed and controlled. 

The objective of this MSc thesis is to design, develop, implement and eventually 

evaluate a network interface capable of integrating a 6G Thz Node into a 

communication system that has been designed according to a specific paradigm. 

First of all, a general presentation of the challenge at hand is presented. Next, the 

FPGAs and network paradigms used in the present are being addressed. In addition, a 

literature review of the network protocols for managing and controlling network 

devices is presented in detail 

In the latest chapters, a presentation of the solution this research has proposed in 

order to integrate a Thz Node into an existing communication system. The way of 

thinking, the problem breakdown analysis and the script proposed are addressed. 

Lastly, conclusions and evaluation of the integration plan of this thesis are presented 

as well as future work proposed on top of the integration performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[4] 
  Georgios Kaponis 

Prologue 

This Thesis is presented in the context of acquiring the diploma of MsC in Electronics 

and Radioelectrology. A master provided by National Kapodistrian University of 

Athens, school of science, departments of Physic and Informatics. 

This Thesis could not be devised without the constant guidance of professors A. 

Tzanakaki and M. Anastosopoulos. I would like to express my sincerest gratitude for 

giving me the opportunity to participate in something so fascinating, but also thank 

them for entrusting me with this project. The motivation provided by the two in order 

to devise this thesis, but also believe in my self to achieve something like this. Special 

thanks to the PhD candidate I. Floudas, first of all as a professional and mentor, as well 

as a friend who stood beside me from the beginning of this Master. 

Last but not least I couldn’t forget to thank my dearest family, friends and fiancé that 

helped me, motivated me and supported me through all these years. 

 

Athens, January 2024 

Georgios Kaponis 

 

 

 

 

 

 

 

 

 

 

 

 



[5] 
  Georgios Kaponis 

1. Introduction 
The digital revolution we are experiencing as well as the one foreseen is associated 

with multiple applications available to common people, industries and governments. 

These applications depending on the function they serve come up with a different set 

of requirements as far as bandwidth, connectivity, mobility and latency are concerned. 

The 5G revolution has already triggered the fantasy of scientific groups in search of the 

next best technology. 6G development as well as the increase of the requirements of 

5G, in order to achieve functions as smart cities, augmented reality, self-driven smart 

cars and very low latency applications that will make surgeries happen on the other 

side of the globe, demand that the elements of the system will work in a way that it 

will not concern the end user. Traffic control, administration of fatal errors as well as 

other unexpected events must be handled. Except for the unexpected events, the 

whole flow of information and traffic must happen in a way that each system element 

doesn’t become an obstacle. 

It becomes rather obvious that the control of each element in a way that cooperates 

efficiently with the other elements is crucial for an effective and fast system such as 

5G. In order for this to happen, different protocols and interfaces are used in different 

layers as well. Different devices understand completely different commands and 

protocols and in order to make these cooperate interfaces must be developed. It is 

also crucial to integrate all these protocols and element in a system that the frontend 

and backend user doesn’t bother on how this information is guided and routed 

between all these different layers and devices.  

The first chapter of this essay will present the main problem of controlling a specific 

device very important for the implementation of mm Waves in a communication 

system. Chapter two will present the architecture of controlling this type of devices 

and the principles and main ideas of this architecture. We will also discuss the different 

layers in which we dive into in order to control and integrate. The next chapter will 

review the set of protocols used in networks in a way that is understood how the 

different devices are controlled. Chapter four will be about presenting the solution 

found in the lab about the device described in the first chapter. This control device is 

needed to implement the mm Waves in our communication system and we will 

present how it is managed, controlled and integrated in our communication system. 

Lastly, we will summarize the knowledge earned from all the research process and 

propose some future work. 

 

 

 

 



[6] 
  Georgios Kaponis 

2. Definition of the Problem 
Before elaborating on the problem itself it is mandatory to refer to some technologies 

that influenced 5G and will play a significant role in 6G as well. The key technologies 

that this essay will refer to are the Software Defined Networking and the FPGAs (Field 

Programmable Gate Array). 

2.1 Software Defined Networking 
The era of 5G and the breakthrough that came with it, apart from the physical layer 

innovation and techniques, is mostly described by the implementation of Software 

Defined Networking (SDN). According to this technology network management can be 

dynamic. The changes in the network management aim to program the network 

configuration in a way that is efficient and improves the performance and monitoring. 

The difference between SDN and traditional network management is the key that 

made SDN network configuration more akin to cloud computing[1],[2]. As mentioned 

in Wikipedia, “SDN is meant to address the static architecture of traditional networks 

and may be employed to centralize network intelligence in one network component 

by disassociating the forwarding process of network packets (data plane) from the 

routing process (control plane). The control plane consists of one or more controllers, 

which are considered the brains of the SDN network, where the whole intelligence is 

incorporated”. The dynamic environment of SDN enabled the use of cloud computing 

in a way that the data plane and the control plane are separated and the infrastructure 

becomes software – programmable. This means that we can redirect the traffic in a 

way that is beneficial to us without having to replace the hardware of the network[3]. 

Off course the network traffic is not the only parameter that can be managed in this 

dynamic programmable environment. The SDN controller is an application inside the 

architecture of SDN that is responsible for the functions of network orchestration, 

management, analytics and automation. This controller runs on a server and uses 

protocols to tell the switches where to send the packets. The standards and API’s of 

the SDN controllers are open so that different equipment from different vendors can 

be controlled. The innovation of the implementation of SDN in the network 

management brought many benefits in business and cost efficiency  bringing up more 

attention to this technology. 

 

 

https://en.wikipedia.org/wiki/Network_packet
https://en.wikipedia.org/wiki/Data_plane
https://en.wikipedia.org/wiki/Control_plane


[7] 
  Georgios Kaponis 

 

 

 

 

 

 

 

 

 

SDN is a paradigm that is very close to the term Network Functions Virtualization 

(NFV), which offers the ability to use virtually what was appliance dependent functions 

such as firewalls, load balancers and WAN accelerators. SDN becomes the orchestrator 

that uses efficiently all the virtual functions without having to dedicate these resources 

to one place. As far as the interfaces and protocols are concerned, literature review 

and elaboration on the matter will be presented in next chapters of this essay.  

In conclusion, the SDN paradigm enables the remote programming of the network 

elements and resource allocation of functions. The paradigm as described above was 

taken into consideration in order to develop a way to control an FPGA remotely. The 

efficient control of the FPGA mentioned above will redirect the traffic in such way that 

the use of mm Waves can be achieved whenever they are available and needed. 

Figure 1 Simplified block diagram of SDN[4] 



[8] 
  Georgios Kaponis 

2.2 Field Programmable Gate Array 
The FPGA is an integrated circuit which allows the user to program it and reprogram it 

in the way that is most suitable for him after the manufacturing procedure[5]. This 

circuit consists of an array of programmable logic block and interconnects that can be 

reconfigured in order to perform various digital functions. The versatility, flexibility and 

speed of this kind of circuits as well as the ability of parallel processing make them 

ideal for applications in the field of telecommunications.  

FPGAs are programmed using a hardware description language (HDL). In order to 

configure this kind of circuit a certain expertise on this kind of language is needed from 

the end user. In addition this kind of circuits employ designs with very fast I/O data 

rates and bidirectional buses. This kind of data rates require a certain amount of 

caution as far as timing is concerned. The valid data must be transmitted within the 

valid time windows between setup and hold time. It is safe to say that even though 

this kind of hardware offers great advantages, it comes with some disadvantages that 

can’t be ignored. 

The reason engineers and system designers choose FPGAs is the flexibility offered. 

However the tradeoff of this flexibility comes with the difficulty of implementing this 

kind of circuit into a greater system. FPGAs do not have the driver ecosystem and 

code/IP base that microprocessor architectures and OSs do. In addition, 

microprocessors coupled with OSs provide the foundation for file structures and 

communication to peripherals used for many, often essential, tasks such as logging 

data to disk. In order to implement this kind of hardware into a telecommunication 

system a hybrid architecture is advised. a microprocessor is paired with an FPGA that 

is then connected to I/O. Modern FPGAs often combine logic gates with processors 

Figure 2Xilinx FPGA[7] 



[9] 
  Georgios Kaponis 

into a single chip called a System on Chip (SoC) for increased computing performance. 

This approach takes advantage of the benefits that both these targets offer. 

 

 

 

 

 

 

 

 

 

 

 

In order to design FPGAs, a set of tools are recruited. Two main categories are the 

traditional tools and the high-level synthesis design tools. In the context of this essay 

neither will be elaborated; however, both of them include specific skill set or “tool-

box” such as labview.  

As far as telecommunications are concerned, 5G and 6G especially, pure usage of 

FPGAs is not advised. On the contrary a heterogeneous  architecture representing a 

System On Chip (SoC) that has the ability to be reconfigured and addressed by a 

processor is highly advised[6]. Following this paradigm and the SDN architecture the 

IHP institute, Radio Frequency & Broadband Communication System division 

developed a SoC that runs an OS making it able to communicate with serial ports. This 

was the starting point of the present essay’s research activity.  

Figure 3 FPGA architecture 



[10] 
  Georgios Kaponis 

2.3 Communication and Interface with SoC 
Researchers of IHP institute developed a SoC with the capability of wireless 

transmitting and receiving in the frequencies of millimeter waves. This specific 

frequency range is desired and adopted in the development of 6G. As far as the 

internal architecture and design of the SoC are concerned the research team in the lab 

doesn’t have the ability to reprogram or intervene. However, the OS in the SoC has the 

ability to connect with ethernet or serial port on a server  that will control the SoC. 

This SoC will provide the ability to implement a mm Wave transceiver, as long as we 

have the information of the status of the transceiver through the SoC. However, the 

lack of variety of communication commands with the SoC created the need to develop 

an interface capable of transferring the information. This part was the main theme of 

this research.  

 

The main problem with this architecture is that the board was able to establish 

communication with the PC (server) with a very specific command and retrieve the 

parameters of the registers with a specific command with different parameters. This 

makes it unable to be directly controlled by an SDN controller. An interpreter or maybe 

better an interface had to be developed in order to establish connection with the 

Figure 4 FPGA used for our research 



[11] 
  Georgios Kaponis 

board and at the same time send the parameters to a broker that the SDN controller 

has direct communication. 

Another problem that this research had to overcome was that the OS of the board had 

to maintain intact in order to continue to stay active. As a result, we had to be very 

careful in the lab not to send a wrong command or bit stream towards the board that 

might make it unserviceable. Specific instructions addressing the on and off as well as 

the tracing of this board were given in order not to create a mismatch or a software 

erase. In better words, trial and error was not an option.  

Last but not least, the SDN controllers and APIs use a specific set of protocols that 

cannot establish communication or transmit bitstreams to the board. This board will 

be part of telecommunication system and has to conform with the 5G and 6G demands 

of SDN and VFN, as well as the protocols used for such paradigms.  

All these problems and drawbacks had to be taken into account in order to integrate 

such technology to a 5G and 6G system. Having all these in mind, the research created 

a script that could solve the issues and also leave room for more development of more 

functions for future use. In the next chapters the solution that was created is 

presented. The code used is also demonstrated at the Appendix A of this essay. 

2.4 Architecture 
SDN is considered revolutionary because of the way it separated the control plane 

from the data plane. In order to perform so different architectures have been 

designed; however, each one has the same principle of separating the control from the 

data plane. In addition, as referenced above, the architecture must be open in order 

for different equipment from different vendors can be used and integrated. In other 

words, the purpose of SDN is to provide open interfaces that enable the development 

of software specialized in controlling the network elements, the flow of the traffic, as 

well as redirecting the traffic after inspecting it[9].  

In order to perform such a function SDN is separated in three layers as described in 

figure 5. The SDN controller, considered as the Control Layer, communicates with the 

Figure 5 Basic SDN architecture[9] 



[12] 
  Georgios Kaponis 

Application layer with Northbound interface and with the Data plane with the 

Southbound interface.  

The infrastructure layer (data plane) includes all the network elements that present 

their capabilities towards the SDN controller (control layer) via the southbound 

interface.  In “Software-Defined Networking: The New Norm for Networks” this 

interface is called control-data plane interface. The Southbound interfaces are 

responsible for delivering the status of the network infrastructure towards the 

controller giving it a complete picture of what resources are available. Important thing 

to notice is that this interface must also include the traffic forwarding and processing 

functions. Something as important as the fact that the data plane is responsible for the 

traffic monitoring and forwarding, is that the data plane can include the minimum 

subset of control and management functions. 

The Northbound interface is responsible for the communication between the SDN 

applications and the SDN controller. The SDN applications reside in the application 

layer and communicate their network requirements towards the control plane via the 

Northbound interface. The SDN controller, as the man in the middle, receives the 

requirements from the application layer and the resources available from the data 

plane. Then proceeds to translates the higher-level requirements into low-level control 

towards the network elements, while giving feedback towards the SDN applications. 

This simplified architecture depicts how the system should work. However, the need 

of management in each layer seemed to be mandatory. This is the reason why another 

architecture, based on the one referenced above, has been deployed and is pictured 

in figure 6.  

 

According to the VNF that are needed to be established in order to set up a complete 

network the SDN ha to adapt with managers and other interfaces, although the 

overview and the principals remain the same. For SDN controlled mmWave 

Figure 6 SDN overview[9] 



[13] 
  Georgios Kaponis 

transceivers interfaces in the southbound side must be developed in order to 

communicate with the open protocols such as openflow etc. The architecture this 

project has followed will be presented in chapter 4.  

3. Control of Network elements through 

different Protocols  
 

As already mentioned in previous chapters the SDN concept is adopted by 5G and 6G 

and quickly became a breakthrough because of the way it changed the static entity of 

network elements. As far as this essay is concerned more attention will be drawn 

towards the southbound interfaces.  

The most common interface that dominated the modern telecommunication systems 

is openflow. Openflow has been a breakthrough and sometimes there is confusion as 

far as the meaning of SDN becomes equal to openflow. Truth is there are also other 

protocols for managing network elements that were used in the past but also still used 

up to this date due to the unique systems they control. After all 5G and 6G are 

standards that endorse IOT. Technology is very dynamic and the changes are rapid. 

Openflow is already considered “old” and new protocols and ways of communication 

between the Southbound interfaces are being studied and used in order to evolve the 

concept of SDN and VNF. Going through the literature and the information available in 

the world wide web we observed that many manufacturers move to VXLAN with a 

EVPN MP-BGP control plane. The revolution of Python also brought up changes in the 

way APIs are developed. However, knowledge of each technology and paradigm can 

help improve the way we handle the obstacles in developing and researching.  In this 

chapter we will discuss about SNMP, SCPI, TL1, NetConf and off course extensively 

about openflow. This literature review will help the reader understand the take we had 

on tackling the difficulties of our research in integrating a 6G node for controlling a 

mmWave transceiver, in a deeper way and answer the question why we preferred the 

solution that was chosen.  

3.1 SNMP 

SNMP stands for “Simple Network Management Protocol” and is an Internet Standard 

protocol responsible for collecting and organizing information about managed devices 

on IP networks. This protocol is also responsible for modifying this information in order 

to change device behavior[10]. Most of the network devices such as routers and 

switches as well as cables support SNMP. This protocol uses a manager client 

architecture and is used widely in enterprise networks. Within SNMP networks, 

systems, components, and applications are described as entities. The number of 

entities that need to be managed is growing rapidly[11]. SNMP uses UDP port 161/162 

in order to monitor and detect faults as well as reconfigure remotely some devices[12]. 

Requests and responses arrive at the 161 UDP port and notification on 162 [14]. 



[14] 
  Georgios Kaponis 

SNMP manager or management system is a separate entity that is responsible to 

communicate with the SNMP agent implemented network devices. Usually, this is a 

computer that is used to run one or more network management systems. SNMP’s 

manager key functions include sending queries towards the agents, getting responses 

from   them, setting variables in the agents and acknowledging asynchronous events 

from them. 

On the other side we have the managed devices. A managed device or a network 

element, is a part of the network that requires some form of monitoring and 

management. For example this element might be routers, switches, servers, 

workstations printers etc. In order for the SNMP manager to communicate and/or 

control the network elements a program must packaged within the network element 

itself. This program is called agent. Enabling the agent allows the manager to collect 

information about the device. The agent enables the management information 

database from the device locally and makes it available to the manager when is 

needed. The agent as a manager software in the device has local knowledge and is 

used as an interpreter between the device and the manager. Key functions of an agent 

include the collection of management information about its local environment, 

storage and retrieval of management information as defined in the MIB and signals of 

the events towards the manager. In some cases, when a network node is not SNMP 

manageable the agent acts as a proxy[13],[10].  

In order to understand the way this protocol works we have to talk about OID and MIB. 

MIB stands for Management information base and is a collection of information 

organized hierarchically. SNMP accesses these databases in order to retrieve the OID. 

Scalar objects define a single object instance whereas tabular objects define multiple 

related object instances grouped in MIB tables. MIBs are collections of definitions 

which define the properties of the managed object within the device to be managed. 

The information stored in the MIB includes data such as system configuration details, 

performance statistics, and error messages. Devices that support SNMP have an agent 

software component that interacts with the MIB. The SNMP manager communicates 

Figure 7 SNMP visualization [14] 



[15] 
  Georgios Kaponis 

with the agent to query or set values in the MIB, enabling the monitoring and 

management of network devices. 

There are various standard MIBs defined by organizations like the Internet Engineering 

Task Force (IETF) that cover general aspects of network management. Additionally, 

vendors often define their own private MIBs to provide information specific to their 

devices.  

OIDs stands for Object identifiers. OIDs uniquely identify the managed objects in a MIB 

hierarchy. It can be depicted as a tree whose levels are assigned by different 

organizations.  

OID stands for Object Identifier in the context of the Simple Network Management 

Protocol (SNMP). An Object Identifier is a unique identifier used to identify managed 

objects in the SNMP management information base (MIB). The MIB is a hierarchical 

tree-like structure that organizes information about devices on a network, making it 

accessible and manageable. 

The OID is represented as a sequence of numbers separated by dots, similar to a 

hierarchical path. Each number in the sequence represents a node in the tree, and the 

complete OID uniquely identifies a specific variable or object within the MIB. 

For example, the OID 1.3.6.1.2.1.1.1.0 might represent the system description in the 

SNMP MIB. Here's a breakdown of what each number in the OID might represent: 

- 1: ISO (International Organization for Standardization) 

- 3: Identified Organization 

- 6: Internet 

- 1: Private enterprises 

- 2: IANA (Internet Assigned Numbers Authority) 

- 1: SNMP MIBs 

- 1: SNMP MIB-II 

- 1: System 

- 0: System description 

In SNMP, the OID is crucial for uniquely identifying and retrieving information about 

specific variables or objects from network devices. It serves as a standardized way to 

reference and manage data in a network management system. 

 

  

 



[16] 
  Georgios Kaponis 

 

 

Figure 8 Standard MIB tree[15] 

Scalar objects define a single object instance. Tabular objects define multiple related 

object instances that are grouped in MIB tables. SysDescr, for example, is a scalar 

object. 

As far as the architecture is concerned, figure 9 is a simplified visualization of SNMP. 

SNMP is an application layer protocol that utilizes the UDP protocol on an IP network. 

NMS is software that collects data from the devices, organizes it, and shows it to the 

end user. The ICONICS SNMP connector functions as a manager in an SNMP scenario. 

An NMS would monitor or control managed devices that provide SNMP information 

Figure 9 SNMP architecture[16] 



[17] 
  Georgios Kaponis 

through the agents. An agent is software that runs on a device (such as a router, printer 

or PC) and answers to the messages from the NMS. These messages can either be read 

messages (NMS wants to retrieve data) or write messages (the manager wants to set 

data). The agent can also send a trap to the NMS. A trap is a notification similar to an 

alarm[17]. When a threshold is exceeded, the network element will not wait for the 

query of the SNMP manager. On the contrary it will send directly a trap notification 

giving that information.  

 

Figure 10 SNMP principle of communication [10] 

The manager may send requests from any available source port to port 161 in the 

agent. The agent response is sent back to the source port on the manager. The 

manager receives notifications (Traps and InformRequests) on port 162. The agent may 

generate notifications from any available port. When used with Transport Layer 

Security or Datagram Transport Layer Security, requests are received on port 10161 

and notifications are sent to port 10162[18]. 

Different versions of SNMP have been developed in order to efficiently control the 

elements of a network. The first versions did not emphasize much in the security of 

the protocol. Next versions implemented solutions on the security issues that arose. 

In order to conform to the versions different RFCs have been developed.  In SNMPv1 

specifies five core protocol data units (PDUs). In SNMPv2 two more PDUs were 

implemented, the GetBulkRequest and InformRequest and in SNMPv3 the Report PDU 

was added. Even though there are differences between each version all SNMP PDUs 

are synthesized as follows [10]. 

IP header 
UDP 
header 

version community 
PDU-
type 

request-id 
error-
status 

error-
index 

variable 
bindings 

  

PDU type is described by the PDU-type field which is filled with one of the following: 

GetRequest 



[18] 
  Georgios Kaponis 

A manager-to-agent request to retrieve the value of a variable or list of variables. 

Desired variables are specified in variable bindings (the value field is not used). 

Retrieval of the specified variable values is to be done as an atomic operation by the 

agent. A Response with current values is returned. 

SetRequest 

A manager-to-agent request to change the value of a variable or list of variables. 

Variable bindings are specified in the body of the request. Changes to all specified 

variables are to be made as an atomic operation by the agent. A Response with 

(current) new values for the variables is returned. 

GetNextRequest 

A manager-to-agent request to discover available variables and their values. Returns a 

Response with variable binding for the lexicographically next variable in the MIB. The 

entire MIB of an agent can be walked by iterative application of GetNextRequest 

starting at OID 0. Rows of a table can be read by specifying column OIDs in the variable 

bindings of the request. 

GetBulkRequest 

A manager-to-agent request for multiple iterations of GetNextRequest. An optimized 

version of GetNextRequest. Returns a Response with multiple variable bindings walked 

from the variable binding or bindings in the request. PDU specific non-repeaters and 

max-repetitions fields are used to control response behavior. GetBulkRequest was 

introduced in SNMPv2. 

Response 

Returns variable bindings and acknowledgement from agent to manager for 

GetRequest, SetRequest, GetNextRequest, GetBulkRequest and InformRequest. Error 

reporting is provided by error-status and error-index fields. Although it was used as a 

response to both gets and sets, this PDU was called GetResponse in SNMPv1. 

Trap 

Asynchronous notification from agent to manager. While in other SNMP 

communication, the manager actively requests information from the agent, these are 

PDUs that are sent from the agent to the manager without being explicitly requested. 

SNMP traps enable an agent to notify the management station of significant events by 

way of an unsolicited SNMP message. Trap PDUs include current sysUpTime value, an 

OID identifying the type of trap and optional variable bindings. Destination addressing 

for traps is determined in an application-specific manner typically through trap 

configuration variables in the MIB. The format of the trap message was changed in 

SNMPv2 and the PDU was renamed SNMPv2-Trap. 

InformRequest 



[19] 
  Georgios Kaponis 

Acknowledged asynchronous notification. This PDU was introduced in SNMPv2 and 

was originally defined as manager to manager communication.[4] Later 

implementations have loosened the original definition to allow agent to manager 

communications.[19][20][21] Manager-to-manager notifications were already 

possible in SNMPv1 using a Trap, but as SNMP commonly runs over UDP where 

delivery is not assured and dropped packets are not reported, delivery of a Trap was 

not guaranteed. InformRequest fixes this as an acknowledgement is returned on 

receipt.[10] 

According to RFC 1157, an SNMP implementation must be able to accept a message 

of at least 458 bytes length. In reality, the messages are longer. Malformed SNMP 

requests are discarded. Successfully decoded SNMP requests are authenticated by 

community string. If authentication fails, a trap is sent indicating an authentication 

failure message, and the message is dropped. 

 

As mentioned above, three versions of SNMP have been deployed Version1, Version2 

and Version3. The specifications of Version1 were described in requests for comments 

(RFCs) 1065, 1066 and 1067 in 1988. In 1990s the above documents were superseded 

by RFC 1155, 1156, 1157 and in 1991 the 1156 was replaced by 1213. Version 1 has 

been considered as unsafe due to its poor security, however the specification allow 

some custom authentication that were used in more trivial methods. As a result the 

security of each message depends on the security of the channel itself. For example, 

an organization may consider their internal network to be sufficiently secure that no 

encryption is necessary for its SNMP messages. In such cases, the community name, 

which is transmitted in cleartext, tends to be viewed as a de facto password, in spite 

of the original specification.[10] 

Figure 11 SNMP message types[14] 



[20] 
  Georgios Kaponis 

SNMPv2, defined by RFC 1441 and RFC 1452, revises version 1 and includes 

improvements in the areas of performance, security and manager-to-manager 

communications. It introduced GetBulkRequest, an alternative to iterative 

GetNextRequests for retrieving large amounts of management data in a single request. 

The new party-based security system introduced in SNMPv2, viewed by many as overly 

complex, was not widely adopted. This version of SNMP reached the Proposed 

Standard level of maturity, but was deemed obsolete by later versions.[22] SNMPv2 

also introduced the option for 64-bit data counters; Version 1 was designed only with 

32-bit counters. Due to differences between v1 and v2 as far as PDU and header 

format, RFC 3584 defines two SNMPv1/v2c coexistence strategies: proxy agents and 

bilingual network-management systems in order to overcome incompatibility. This 

version can be described as an enhanced version of v1 using the same administration 

structure (“community based”) with some enhancements as far as packet types, 

transport mapping and MIB structure elements are concerned. 

Even though Version 3 doesn’t make changes to the protocol, except for the enhanced 

security, it looks very different from the previous versions due to new textual 

conventions, concepts and terminology[20].  Version 3 implemented a secure version 

of SNMP by adding security and remote configuration enhancements to SNMP. The 

security aspect is addressed by offering both strong authentication and data 

encryption for privacy. For the administration aspect, SNMPv3 focuses on two parts, 

namely notification originators and proxy forwarders. The changes also facilitate 

remote configuration and administration of the SNMP entities, as well as addressing 

issues related to the large-scale deployment, accounting, and fault management[10].  

The security features provided in SNMPv3 are as follows: 

• Message integrity—Ensures that a packet has not been tampered with during transit. 

• Authentication—Determines that the message is from a valid source. 

• Encryption—Scrambles the content of a packet to prevent it from being learned by 

an unauthorized source.[24] 

SNMPv3 is a security model in which an authentication strategy is set up for a user and 

the group in which the user resides. Security level is the permitted level of security 

within a security model. A combination of a security model and a security level 

determines which security mechanism is used when handling an SNMP packet. 

The table below describes the combinations of SNMPv3 security models and levels 

 

 



[21] 
  Georgios Kaponis 

 

 

Table 1 SNMPv3 security levels[24] 

Level Authentication Encryption What Happens 
noAuthNoPriv Username No A username match 

is used for 
authentication 

autNoPriv MD5 or SHA No Provides 
authentication 
based 
on the Hashed 
Message 
Authentication 
Code 
(HMAC)-MD5 or 
HMAC-SHA 
algorithms. 

authPriv MD5 or SHA Data Encryption 
Standard 

Provides MD5 and 
SHA 
Authentication and 
also provides DES 
56-bit 
encryptionbased 
on Cypher Block 
Chaining 

 

As far as Architecture of SNMPv3 is concerned, the specifications of the Internet-

Standard Management Framework are based on a modular architecture. This 

framework is more than just a protocol for moving data. The framework consists of 

• A data definition language 

• Definitions of management information (the Management Information Base, 

or MIB) 

• A protocol definition 

• Security and administration. 

The framework was structured with a protocol-independent data definition language 

and Management Information Base, along with a MIB-independent protocol. The 

SNMPv3 Framework builds and extends these architectural principles by building on 

these four basic architectural components, in some cases incorporating them from the 

SNMPv2 Framework by reference, and by using these same layering principles in the 

definition of new capabilities in the security and administration portion of the 

architecture. 



[22] 
  Georgios Kaponis 

Those who are familiar with the architecture of the SNMPv1 Management Framework 

and the SNMPv2 Management Framework find many familiar concepts in the 

architecture of the SNMPv3 Management Framework. However, in some cases, the 

terminology may be somewhat different[25]. From 2004 the IETF considers SNMPv3 a 

full internet standard as defined in RFC 3411-3418. Previous versions are considered 

obsolete.  

3.2 SCPI 
Amongst other protocols, SCPI (pronounced “skipi”) stands for Standard Commands 

for Programmable Instruments and might not seem to intrigue the attention in 

telecommunication systems, but is important to refer to, after all 5G and 6G implement 

the usage of IOT. In set of sentences we could define SCPI a standardized 

communication protocol used in the field of test and measurement equipment, such 

as oscilloscopes, multimeters, and other electronic instruments. SCPI defines a set of 

commands and syntax that allows a computer or controller to communicate with and 

control these instruments over various communication interfaces, such as GPIB 

(General Purpose Interface Bus), LAN (Local Area Network), USB (Universal Serial Bus), 

and others. 

 

The SCPI standard was developed to provide a common language for programming 

and controlling instruments from different manufacturers. This standardization helps 

ensure interoperability between instruments and simplifies the process of writing 

software or scripts to automate test and measurement tasks. 

SCPI commands typically follow a hierarchical structure and consist of a series of 

keywords and parameters. Users can send SCPI commands to configure instrument 

settings, initiate measurements, and retrieve data. The standard covers a wide range 

of functionalities, making it versatile for various types of test and measurement 

applications. 

Figure 12 Back of instrument providing connections for remote control [29] 



[23] 
  Georgios Kaponis 

In 1975 the IEEE standardized a bus developed by Hewlett-Packard originally called 

HPIB (Hewlett-Packard Interface Bus) which was later renamed to GPIB (General 

Purpose Interface Bus). The standard was called IEEE488 which defined mechanical 

aspects of the bus. With standard IEEE488.2 protocol properties were defined, 

however a set of rules between the manufacturers on commands to control the 

instruments was still missing. Even between different models from the same 

manufacturer the commands were different something that made controlling and 

implementing of these instruments quite difficult.[27] 

The physical hardware communications link is not defined by SCPI. While it was 

originally created for the IEEE-488.1 (GPIB) bus, SCPI can also be used with RS-232, RS-

422, Ethernet, USB, VXIbus, HiSLIP, etc. SCPI commands are ASCII textual strings, which 

are sent to the instrument over the physical layer (e.g., IEEE-488.1). Commands are a 

series of one or more keywords, many of which take parameters.  

In order to understand better the architecture of this protocol some definitions are 

provided: 

• Command: A command is an instruction in SCPI consisting of mnemonics 

(keywords), parameters (arguments), and punctuation. You combine 

commands to form messages that control instruments.  

• Controller: A controller is any device used to control the instrument, for 

example the instrument itself, a computer, or another instrument. 

• Event Command: Some commands are events and cannot be queried. An event 

has no corresponding setting; it initiates an action at a particular time 

• Program Message: A combination of one or more properly formatted 

commands. 

• Querry: A special type of command used to instruct the instrument to make 

response data available. A query ends with a question mark. Query any 

command value that is set is available. 

• Response message: A collection of data in specific SCPI formats sent from the 

instrument to the controller. Response messages inform the controller about 

the internal state of the instrument 

 

So SCPI commands either perform a set operation, for instance power on, or a query 

operation par example a reading of an input voltage to the instrument. As mentioned 

above queries require a question mark at the end of the command. A group of 

commands can be used for both set or queries. The distinction between the 

functionality is the question mark at the end of the command. For example, 

ACQuire:MODE and ACQuire:MODE? Commands. Another set of commands also set 

and query both at the same time. For example, the *CAL? command runs a self-

calibration routine on some equipment, and then returns the results of the calibration.  



[24] 
  Georgios Kaponis 

Except for the distinction between queries and set commands, the commands can be 

separated into two groups: common commands and subsystem commands. Common 

commands are used to manage status registers, synchronization, and data storage and 

are defined by IEEE 488.2. Common commands begin with an asterisk (*). This type of 

commands are not part of a subsystem and are interpreted by the system in the same 

way, regardless the path setting. On the other hand, subsystem commands follow a 

tree structure and are easily distinguished from the colon “:” character. This special 

character is used at the beginning of the command statement and between keywords, 

for instance :CONTrol:IO1:OUTPut. The tree structure that the protocol follows is 

similar to a computer filesystem architecture. A simplified example is shown in the 

figure bellow. 

This architecture is designed to provide a common language that facilitates 

communication between instruments and controllers, regardless of the manufacturer, 

however each manufacturer provides a user manual with the supported commands 

for the instrument used. As discussed above the commands are easy to comprehend 

and use due to the consistent syntax, standard prefixes and special characters and 

keywords. SCPI serves its purpose mainly because it has a set of commands that 

identify the equipment at hand, it ensures interoperability between the instruments, 

transfers data and specifically measurement data and supports different 

communication interfaces such as GPIB, LAN, USB and more. The identification of the 

instrument includes the manufacturer, the model and the serial number. This feature 

can be quite useful in remote controlling the devices in case of a failure.  Another asset 

as far error handling is concerned is the definition of a standardized error reporting 

mechanism from the protocol. Instruments should provide detailed error information 

to help users diagnose and address issues. The interoperability and usefulness of this 

protocol is depicted in the way remote controlling can be achieved. Specifically, it 

allows users to write scripts or programs in various languages that can control the 

devices of different vendors without major modifications. 

Such paradigm is followed mostly nowadays, mostly with the use of LabView and 

interfaces that allow the virtualization of the instrument. An approach by Balaji, 

Aravind & Sasikumar, Subramanian & K, Dr. Ramesh [28] shows the way such paradigm 

can be followed. 

Figure 13 Simplified SCPI commad tree 



[25] 
  Georgios Kaponis 

 

Figure 14 Design Flow of the integrated environment [28] 

 

In conclusion this protocol is used to remotely control instruments through GPIB, LAN, 

USB, ethernet and more in a way that provides interoperability between devices. It 

also provides the user the ability to integrate other scripts or programs encouraging 

IOT paradigms and remote control and troubleshooting. It is important to mention the 

crucial role of VISA in such paradigm. VISA stands for Virtual Instrument Software 

Architecture and it is an industry-standard API that is used to communicate with 

instruments from a computer. There are many different versions of VISA – the most 

common is National Instruments NI-VISA, but there is also the Keysight IO Libraries, 

Tektronix TekVISA, Rohde & Schwarz VISA and more. While they are supposed to be 

interoperable to some extent, software which is built against one particular VISA may 

have difficulty operating with another which may necessitate having multiple VISAs 

installed with one designated as the primary VISA. Occasionally, this could result in a 

conflict which breaks instrument connectivity altogether. The job of the VISA is to 

interface your application program (which could be written in C or any other language 

where libraries are provided for your VISA) to the device through the operating system 

and its drivers. Although this protocol and the manufacturers provide flexibility and 

interconnection, some issues can be encountered due to slow instruments or long 

command sequences which might take instruments longer than expected to respond. 

This will result in a timeout error if it takes longer than the default 2000ms timeout. 

When integrating instruments in remote control the synchronization is a very crucial 

aspect that must be taken into severe consideration. 

Most instrument manufacturers provide the documentation, the libraries even 

examples in order to integrate the devices into a system as shown in the figure below. 



[26] 
  Georgios Kaponis 

 

 

In such way of integrating and remote controlling the controller can be a pc that is 

connected on the internet with a remote server that will control the controller. This 

kind of architecture and connection flexibility can provide a lot of potential for future 

work and even though this protocol has a history of around 30 years it is still reliable 

and useful with a lot of potential in system integration. As much as it is desired to 

remotely control instruments and integrate such devices, safety measures must be 

taken. When using this kind of equipment that are able to control current and voltages 

there is risk of overcharging or malfunctions. System engineering using this kind of 

automation should always take into account the worst-case scenario and implement 

ways of safely treating malfunctions and inconvenient situations. 

3.3 TL1 (Transaction Language 1) 
Transaction Language 1 (TL1) is a set of ASCII-based instructions, or "messages". These 

messages allow a human user or an Operations Support System (OSS) to manage a 

network element (NE) and its resources. It is a widely used protocol in 

telecommunication systems especially in SONET/SDH systems and considered a man 

machine language. TL1 is the primary method for managing conventional telecom 

equipment such as access devices as well as optical networking gears such as 

SONET/SDH boxes. TL1 is a messaging protocol that represents data as human-

readable strings of characters rather than as objects. Study of this protocol is 

important in order to understand the control of network elements in Synchronous 

Optical Networking (SONET) and Synchronous Digital Hierarchy. 

Figure 15 Complete documentation, libraries and examples from manufacturer [27] 



[27] 
  Georgios Kaponis 

SONET and SDH are standardized protocols that transfer multiple digital bit streams 

synchronously over optical fiber or highly coherent light emitted from LEDs. A majority 

of the backbone transport for voice, video and data applications continues to be 

SONET and SDH optical transmission networks. SONET and SDH transmission network 

also continue to be used for conventional channelized traffic. TL1 is the language that 

organizes and controls the systems that implement a SONET/SDH protocol.  

TL1 was developed by Bellcore in 1984 as a standard man-machine language to 

manage network elements for the Regional Bell Operating Companies (RBOCs). It is 

based on Z.300 series man machine language standards. TL1 was designed as a 

standard protocol readable by machines as well as humans to replace the diverse ASCII 

based protocols used by different Network Element (NE) vendors. It is extensible to 

incorporate vendor specific commands. Telcordia OSSs such as NMA (Network 

Monitoring and Analysis) used TL1 as the element management (EMS) protocol. This 

drove network element vendors to implement TL1 in their devices. [32] 

TL1 commands are issued to the system from a craft terminal (a terminal that performs 

local maintenance operations) or from an Operations Support System Interface (OSSI). 

To issue commands, the user must be logged on to the shelf or node that is the target 

of the command. The shelf or node that is the target of the command is referred to as 

the targeted system. 

A session is the period of time when a user is logged on to the system. The process of 

logging on is referred to as opening a session. Logging off is referred to as closing a 

session. To open a TL1 session, a user must have a user identifier (UID) and a private 

identifier (PID, or password). These codes are assigned by the system administrator. 

Figure 16 LAN transport of TL1 data [31] 



[28] 
  Georgios Kaponis 

The UID/PID database may be accessed on a per-user basis, so that if a session is 

inactive for 30 minutes, the system automatically closes the session.[33] 

So in order to communicate with a network element the OSS user connects to the 

element and sends a message through a secure session. The messages transmitted 

have 4 types: 

• Input message: Command sent by the user or the SSO to the NE (Network 

element) 

• Output/Response message: Reply from the NE towards the SSO (or user) in 

response to the input message  

• Acknowledgement message: This message is an acknowledgement that the NE 

received the input message and is sent if the response message needs more 

than 2 seconds to be sent  

• Autonomous message: Asynchronous messages, usually alarms or events sent 

by the NE.  

 

Each TL1 command is divided into a set of positional parameters that represent actions 

or objects. TL1 commands must be typed accurately, with no spaces and with 

parameters separated by colons. For example,  

COMMAND:TID:AID:CTAG:KEYWORD=DOMAIN:STATE; 

 

TID, AID, and CTAG are used for routing and controlling the command. The other 

parameters provide the information to complete the action that the command 

requests. TL1 commands are not case-sensitive. Commands, keywords, and domains 

can be strung together using commas. For example: 

ED-SYS:TID::CTAG:::TMG=EXT1544,AAT=0,ADT=0; 

Figure 17 Simplified representation of message types 



[29] 
  Georgios Kaponis 

 

Figure 18 Sample of autonomous message [36] 

 

Some of the TL1 parameters used are described in the following table 

Table 2 TL1 Command parameters[34] 

Parameter Description 

AID The AID is an access code used to identify 
the exact address of the equipment or 
facilities (channels) within the command. 

AID Type 

The access identifier (AID) type specifies 
whether the AID applies to equipment, 
communications, or one of the traffic or 
data channels. 

CTAG 

The correlation tag (CTAG) is a unique 
identifier that the operator gives to each 
input command. When the network 
element responds to that command, it 
includes the CTAG of the command in the 
reply. This prevents any confusion about 
which response applies to which 
command. CTAGs consist of up to six ASCII 
characters. 

DOMAIN 

This parameter contains the list of 
possible settings for a given keyword. 
Only one value from the domain can 
be chosen for each use of the 
keyword. 

The proper domain setting must be 
chosen for the specified keyword 
when editing the system, equipment, 
or facilities. 

Keywords not used in a command are not 
affected by the command. 

PID 
The private identifier (PID) is the 
password associated with the UIS. 

SID 
The source identifier (SID) is the same as 
a TID, except that it is used when the 



[30] 
  Georgios Kaponis 

network element is identifying itself in a 
response message. 

TID 

The target identifier (TID) is a unique 
name given to each system when it is 
installed in the network. This name 
identifies the particular network 
element to which each command is 
directed. Each TID comprises a 
maximum of 20 alphanumeric 
characters. 

Note: If the data in the parameter 
reserved for the TID is not data that has 
been assigned to any NE as a SID, the 
command receives a timeout response. 
When the parameter position reserved for 
the TID is empty, or null, the parameter 
defaults to the value placed in that 
position in the last command entered. 

UIS The user logon name. 

 

After defining the command structure, we are able to describe the message structure 

in TL1. TL1 messages consist of the following parts: header, identifier, text block and 

terminator. Each part has a set of tokens that convey details about the network 

element and the event being reported.  

Header: The header format is the same for autonomous and output response 

messages. It consists of TID (terminal identifier) and the date and time the event 

occurred. 

Identifier: Contains information relevant to the nature of the message. For 

autonomous messages it contains an autoid that identifies the importance of the 

message. In output messages it contains a correlation tag (CTAG) that identifies to the 

input message that triggered this response and completion code (CompCode). 

Text Block: Optional component that contains information specific to a message. 

Terminator: Indicates the end of the message. 

For instance this is a complete message in TL1: 

<cr> <lf> <lf> 

^^^BOCALFMA010^03-06-02^01:10:20 <cr> <lf> 

*^^456.123^REPT^ALM^T1 <cr> <lf>  

^^^”T1AID-16:MN,CGA,NSA” <cr> <lf> 

^^^”T1AID-32:<cr> <lf> MN,CGA,NSA” <cr> <lf> 



[31] 
  Georgios Kaponis 

; 

 Where: 

 

^^^ are spaces 

BOCALFMA010 is the AID 

03-06-02 is the date 

01:10:20 is the time 

456.123 is the Atag (Autonomous Correlation Tag) 

REPT is the verb 

ALM is an additional modifier to the verb 

T1 is an additional modifier to the verb 

”T1AID-16:MN,CGA,NSA” <cr> <lf> is a quoted line 

 

Another example with a visualization of this format is: 

MyNE 04-08-14 09:12:04 

M 101 COMPLD 

"UID=sridev:CID=CRAFT,UAP=1:" 

; 

[32]

 

While TL1 (Transaction Language 1) is a widely used language in the 

telecommunications industry for managing and monitoring network elements, it does 

have some drawbacks. A few common drawbacks associated with TL1 are: 

1. Human-Readability: TL1 commands are often considered less human-readable 

compared to some other network management languages. The syntax and structure 

may be complex, making it challenging for operators and administrators to understand 

and work with directly. 

2. Limited Standardization: Although TL1 is a standardized language, the degree of 

standardization can vary across different vendors. This lack of strict adherence to a 

universal standard may lead to compatibility issues and interoperability challenges 

when working with equipment from different manufacturers. 



[32] 
  Georgios Kaponis 

3. Security Concerns: TL1 does not inherently provide robust security features. The 

lack of built-in encryption and authentication mechanisms can pose security risks, 

especially when communicating over unsecured networks. Security concerns are 

particularly important in today's environment where network security is a top priority. 

4. Scalability Challenges: As network complexity and size increase, managing devices 

using TL1 commands might become less scalable. The manual execution of commands 

for large-scale network operations may become cumbersome and inefficient. 

5. Dependency on Specific Equipment: TL1 is often associated with 

telecommunications equipment, and its usage may be limited to specific devices and 

vendors. This dependency can create challenges if an organization wants to diversify 

its network infrastructure or adopt equipment from different suppliers. 

6. Limited Extensibility: Extending or customizing TL1 commands for specific needs can 

be challenging. The language may not be as extensible as some other network 

management protocols, limiting the ability to adapt to unique requirements without 

significant effort. 

7.Proprietary Implementations: Some implementations of TL1 by different vendors 

may include proprietary extensions or variations. This can result in vendor lock-in and 

complicate interoperability when attempting to integrate equipment from different 

manufacturers. 

8. Learning Curve: Learning TL1 commands and syntax may require additional training 

for network operators who are more familiar with other network management 

languages. This learning curve can be a barrier, especially when transitioning to TL1 

from other more user-friendly protocols. 

Despite these drawbacks, it's essential to note that TL1 continues to be widely used in 

the telecommunications industry. Many organizations have successfully integrated TL1 



[33] 
  Georgios Kaponis 

into their network management systems, leveraging its strengths while addressing its 

limitations through proper planning and implementation strategies 

. 

There are many reasons why TL1 is still used especially in the backbone network, some 

of them being the integration with legacy systems, multi-protocol support where TL1 

and SNMP coexist along with NETCONF (which will be described in later chapter), the 

support from the equipment vendors and the transition strategies that were followed 

while evolving the core network. In cases where different devices in the network use 

different protocols modern network management systems employ protocol mediation 

mechanisms. An example of this integration paradigm is the SNMP proxy agent as 

described in [35]. Last but not least, as mentioned many times in this essay, 5G and 6G 

networks endorse cloud-native solutions. By integrating TL1 in such environments the 

management of both traditional and cloud-based networks are achieved.  

In conclusion, TL1 is a very useful protocol for managing network elements especially 

those of SONET/SDH systems. Despite the fact that it has been introduced in 1984 it is 

still a widely used language. There are similarities between the already mentioned 

protocols such as SNMP with some differences off course in the structure and syntax. 

Developers didn’t cancel this protocol but integrated TL1 in the future architectures by 

implementing ways like protocol mediation mechanisms or proxy agents [35]. 

Nevertheless, the criteria of selection in choosing the appropriate protocol or language 

lies in the system specifications and limitations, as well as the deployment that will be 

followed. Different languages may excel in different aspects, and the choice often 

depends on the goals and characteristics of the network management system. 

3.4 NETCONF 
Network Configuration Protocol (NETCONF) is an XML-based network management 

protocol that provides a programmable method to configure and manage network 

Figure 19 Integration of TL1 with Java 



[34] 
  Georgios Kaponis 

devices. NETCONF was defined in RFC 4741 by the Internet Engineering Task Force 

(IETF) and revised in RFC 6241. NETCONF provides a standard framework and follows 

the Procedure Call (RPC) paradigm, through which network administrators and 

application developers can manage configurations of network devices and obtain 

network device status promptly. The NETCONF packets are in XML format and the 

NETCONF protocol has a powerful filtering capability. Each data field has a fixed 

element name and position. Therefore, the devices of the same vendor can use the 

same access mode and result display mode. The devices of different vendors can 

achieve the same effect by XML mapping. This feature facilitates third-party software 

development and NMS software customization in the multi-vendor, multi-device 

environment. With the help of such NMS software, NETCONF simplifies device 

configuration and improves device configuration efficiency. 

NETSCONF is a key protocol in the field of network management that plays a crucial 

role in modern networking environments. The importance of this protocol can be 

depicted through various aspects such as the standardized configuration, the YANG 

Modeling, the structured Data exchange and the remote device configuration. In 

addition, the transaction support and the security features that are provided as well 

as the adaptability to network changes through multiprotocol support, make NETCONF 

a widely used protocol. 

Going through the specifications and the importance of this protocol, this chapter will 

allow the reader to comprehend the use of NETCONF and why it can be chosen for 

different networking systems. As mentioned in previous chapter there are similarities 

and differences between all the protocols as far as use and format are concerned. 

However, the choice of the protocol depends on the system engineered and the 

specifications provided.  

3.4.1 NETCONF Data Modeling and Operations 

The NETCONF packets are in XML format and the NETCONF protocol has a powerful 

filtering capability. Each data field has a fixed element name and position. Therefore, 

the devices of the same vendor can use the same access mode and result display 

mode. The devices of different vendors can achieve the same effect by XML mapping. 

This feature facilitates third-party software development and NMS software 

customization in the multi-vendor, multi-device environment. With the help of such 

NMS software, NETCONF simplifies device configuration and improves device 

configuration efficiency. Due to its use on managing network elements the protocol 

subsequently added the support for encoding in JSON (JavaScript Object Notation). 

 

 

This protocol is logically partitioned in four layers as represented in Figure 20 



[35] 
  Georgios Kaponis 

 

 

• Content layer: It consist of configuration data and status data. Describes 

configuration data involved in network management. Most configurations do 

not have standard NETCONF data models, so the devices from different 

vendors may use different configuration data. 

• Operation layer: The operation layer defines a series of operations used in RPC. 

These operations compose the basic capabilities of NETCONF in order to 

retrieve and modify the configuration data. The content in this layer can be 

<get>, <get-config>, <edit-config>. 

• Message layer (or RPC layer): This layer provides a simple RPC request and 

reply mechanism independent of transport protocols. The client uses the 

<rpc> element to encapsulate RPC request information and sends the RPC 

request information to the server using a secure, connection-oriented session. 

The server uses the <rpc-reply> element to encapsulate RPC response 

information (content at the operation and content layers) and sends the RPC 

response information to the client. Huawei switch functions as the NETCONF 

server to receive NETCONF requests from the NETCONF client. Normally, the 

<rpc-reply> element encapsulates data required by the client or a 

configuration success message. If the client sends an incorrect request or the 

server fails to process a request from the client, the server encapsulates the 

<rpc-error> element containing detailed error information in the <rpc-reply> 

element and sends the <rpc-reply> element to the client. The content of this 

layer can be <rpc> , <rpc-reply>.[37] 

• Transport layer: This layer provides a secure and reliable transport of messages 

between a client and a server. NETCONF can be layered over any transport 

protocol that meets the following basic requirements: 

Figure 20 NETCONF protocol layers [38] 



[36] 
  Georgios Kaponis 

o The transport protocol is connection-oriented. The NETCONF manager 

and NETCONF agent must establish a persistent connection. This 

connection must provide reliable, sequenced data transmission. 

o The transport layer provides user authentication, data integrity, and 

confidentiality for NETCONF. 

o The transport protocol provides a mechanism to distinguish the 

session type (client or server) for NETCONF. 

The transport protocols that meet the requirements and that are used for NETCONF 

are BEEP, SSH, TLS, SOAP, HTTP. 

In order to understand how the NETCONF server communicates with the NETCONF 

client a schematic representation is shown below. 

The NETCONF client initiates the SSH connection with the server. After the connection 

is established the server sends a “hello” packet to the client notifying him of his 

capability sets and in return after the reception the client sends back to the server a 

“hello” packet with its own capability sets. After the “hello” packet procedure is 

finished the client sends an RPC request to the server for configuration and 

management. After analyzing the RPC request from the client, the server returns an 

RPC reply. In that way the communication between server and client is established and 

the system is manageable and controllable. 

 

 

 

In order for the system to be controlled and manageable this protocol defines the 

following operations. 

Operation Description 

Figure 21 NETCONF Interaction process [37] 



[37] 
  Georgios Kaponis 

<get> Retrieve running configuration and device state 
information 

<get-config> Retrieve all or part of a specified configuration 
datastore 

<edit-config> Edit a configuration datastore by creating, deleting, 
merging or replacing content 

<copy-config> Copy an entire configuration datastore to another 
configuration datastore 

<delete-config> Delete a configuration datastore 

<lock> Lock an entire configuration datastore of a device 

<unlock> Release a configuration datastore lock previously 
obtained with the <lock> operation 

<close-session> Request graceful termination of a NETCONF session 

<kill-session> Force the termination of a NETCONF session 

 

NETCONF data modeling is subject to YANG data modeling language; after the 

description of data modeling and operations in NETCONF it is important to present 

YANG and how NETCONF followed this paradigm, as well as why it is important for 

NETCONF to apply to the rules defined by YANG. 

YANG stands for “Yet Another Next Generation” and is a data modeling language for 

the definition of data sent over network management protocols. As mentioned above 

NETCONF is a protocol that follows YANG paradigm. YANG is maintained by the 

NETMOD working group in the IETF and originally published in RFC 6020 with an 

update in RFC 7950. The data modeling language can be used to model both 

configuration data as well as state data of network elements. In addition, YANG can 

also define the format of event notifications sent by network elements and it allows 

data modelers to define the signature of remote procedure calls that can be invoked 

on network elements via the NETCONF protocol. The language, being protocol 

independent, can then be converted into any encoding format, e.g. XML or JSON, that 

the network configuration protocol supports. In simple words, NETCONF was 

standardized protocol, but the data content was not standardized; as a result, the data 

content had to be modeled and YANG was created. The importance of YANG lies in the 



[38] 
  Georgios Kaponis 

fact that is protocol independent and simple to understand. In addition, compared 

with SNMP and MIBs YANG is more hierarchical, can distinguish between 

configurations and status and provides high flexibility.  So independently of the 

encoding used xml or json or even the protocol used (NETCONF, RESTCONF) the way 

the data is organized in the encoding is the same. That is the most important aspect of 

YANG. 

3.4.2 Advantages of NETCONF and Use Cases 

After analyzing the processes and data structure of NETCONF protocol, as well as the 

importance of it, we are able to evaluate the usefulness of adopting NETCONF 

protocol. The evaluation performed takes into consideration the protocols mentioned 

in previous chapters as well as the operability in a state-of-the-art environment 

following the 2024 trends in the scientific community as well as the potential of 

technologies researched. Cloud computing and virtualization are core ideas in 

developing future networks. Recognizing the importance of these two leads us to the 

realization that virtualization and cloud computing involve huge networks or even 

better network of networks. That leads to the conclusion that in all these different 

systems and networks there are a lot of different devices and structures. In order to 

adapt in the era of virtualization and cloud computing there are some key indicators 

in order to chose which protocol. In addition, security is a very important part of 

telecommunication systems and networks. Taking all the above into consideration, a 

brief comparison between SNMP and NETCONF was performed in order to show the 

advantages. However, it is important to understand that each protocol has its own 

advantages and disadvantages and the systems specifications must be taken into 

consideration. 

As far as configuration protection is concerned SNMP doesn’t provide something like 

this. NETCONF provides a lock mechanism to prevent multiple user configuration 

conflicts while also ensuring the backup od these configurations. Multiple 

configuration databases are provided in NETCONF which are backups of each other. 

SNMP provides configuration queries but requires multiple times of interaction when 

in NETCONF you can query all configuration data of one object based on filtering 

conditions with a batch data collection speed 10 times faster than SNMP. Important 

aspect in developing a network management system is the scalability of the protocol 

used. SNMP provides poor scalability, when NETCONF uses a multi-layer model where 

each layer is independent of the other and the extension of one layer doesn’t have 

impact on the other layer. In addition, the XML format of NETCONF expands the 

capability of management capability and system compatibility. Last but not least, 

security is a very crucial aspect in network protocols. As mentioned in chapter 3.1 

SNMP added security levels in version 3 through MD5 and SHA. This provides 

authentication and encryption that is limited though through functions that cannot be 

expanded. NETCONF uses existent security protocols, such as SSH and SOAP in order 

to ensure network security and is not specific to any security protocols; this provides 

flexibility in security protection. 



[39] 
  Georgios Kaponis 

Having in mind the above comparison and the advantages of NETCONF a use case of 

this protocol is presented. 

Use Case: Automated Configuration Deployment 

Scenario: 

Imagine an enterprise network with a diverse set of networking devices from different 

vendors. The network administrator needs to deploy a new service that involves 

configuring multiple devices across the network. This service requires changes to be 

made in the configurations of routers, switches, and firewalls. 

Challenges: 

• Diverse Vendor Devices: The network comprises devices from different 

vendors, each with its own configuration syntax and command structure. 

• Large-scale Deployment: The deployment involves a significant number of 

devices spread across different locations, making manual configuration impractical and 

error-prone. 

• Consistency and Accuracy: Ensuring that the configurations are consistent 

across devices is crucial to avoid operational issues and potential security 

vulnerabilities. 

Solution using NETCONF: 

YANG Data Models: 

Network administrators use YANG data models to define the configurations required 

for the new service. YANG provides a standardized way to model the configuration 

data, ensuring consistency and clarity. 

NETCONF Transactions: 

The network administrator creates a NETCONF transaction that includes all the 

necessary configuration changes for the new service. The transaction groups multiple 

configuration changes into a single atomic operation. 

 

 

Device Independence: 

NETCONF allows the network administrator to interact with devices from different 

vendors using a uniform set of operations. This ensures that the same NETCONF 

operations can be used regardless of the device type or vendor. 

Secure Communication: 

 The configuration changes are sent securely using NETCONF over SSH, ensuring the 

confidentiality and integrity of the data in transit. 



[40] 
  Georgios Kaponis 

Error Handling and Rollback: 

NETCONF provides mechanisms for error handling. If an error occurs during the 

transaction, NETCONF allows for a rollback to the previous configuration state, 

preventing partial or inconsistent changes. 

Automated Scripting: 

The network administrator can use scripts or automation tools to generate and 

execute NETCONF operations, streamlining the deployment process. This automation 

reduces the likelihood of human errors associated with manual configuration. 

Real-time Monitoring: 

NETCONF allows for real-time monitoring of the operational state of devices. Network 

administrators can use NETCONF operations to retrieve information about the status 

and performance of devices post-configuration. 

Benefits: 

Efficiency and Speed: 

Automated configuration deployment using NETCONF significantly speeds up the 

deployment process, allowing the network to adapt quickly to changing service 

requirements. 

Consistency and Accuracy: 

The use of standardized YANG data models and atomic transactions ensures that 

configurations are consistent and accurate across all devices, reducing the risk of 

misconfigurations. 

 

Scalability: 

NETCONF's scalability allows administrators to deploy configurations simultaneously 

across a large number of devices, making it suitable for large-scale network 

environments. 

Vendor Independence: 

The use of NETCONF allows the enterprise to deploy configurations across devices 

from different vendors without having to deal with vendor-specific command syntax. 

This use case illustrates how NETCONF, with its standardized approach to configuration 

management, automation capabilities, and support for diverse devices, can be a 

valuable tool for efficiently deploying and managing network configurations in 

complex and dynamic environments. However, it is of most importance to take into 

consideration the costs involved into creating new networks or performing 

modifications in the existing ones. As stated in [41] “NETCONF is a stable standard for 

writing network configurations, with outstanding features for automating sequences 



[41] 
  Georgios Kaponis 

of configurations and driving out the costs associated with manual manipulation of 

devices.” 

In conclusion, NETCONF is a protocol associated with YANG data modeling language 

suitable for different network equipment from different vendors. It provides scalability, 

flexibility and versatility. The overall advantages of NETCONF make it a powerful tool 

for network configuration and management, in the context of modern dynamic 

network environments. It is natural that as every other protocol NETCONF also has 

drawbacks and disadvantages. Disadvantages like the complexity compared to SNMP, 

the XML overhead and that is resource intensive cannot be ignored when designing a 

network system. In addition, this protocol doesn’t provide support for Legacy Devices, 

it is not well suited for real-time applications due to inherent delays introduced by the 

xml-based communication and transactional nature of the operations. Protocols with 

lower overhead are usually suitable for real-time requirements. Lastly, the ecosystem 

around NETCONF, including community support, tools, and libraries, may not be as 

extensive as for some other protocols. This can affect the availability of resources and 

support for network administrators. Considering all the above, we conclude to the 

non-original thought that depending on the system designed and the needs of each 

network we have to prefer the most suitable protocol. 

3.5 OpenFlow 

OpenFlow is a communications protocol that gives access to the forwarding plane of a 

network switch or router over the network. It is used between controllers and 

forwarders in an SDN architecture. As mentioned in chapter two SDN main idea is to 

separate the forwarding plane from the control plane. In order to achieve this, the 

communication standard that was build between the controllers and the forwarders 

allowed the controllers to directly access and control the forwarders. This separation 

allows a more sophisticated way of traffic management using ACLs (Access Control 

Lists) and routing protocols. 

OpenFlow originated from the Clean Slate Program of Stanford University. This 

program considered how the Internet could be redesigned with a "clean slate", and 

aimed to change the network infrastructure that was slightly out of date and difficult 

to evolve. In 2006, Martin Casado, a student from Stanford University, led a project on 

network security and management. The project attempted to use a centralized 

controller to allow network administrators to easily define security control policies 

based on network flows and to apply these security policies to various network 

devices, thereby implementing security control over the entire network 

communication. Inspired by this project, professor Nick McKeown — the director of 

the Clean Slate Program — and his team found that if the data forwarding and routing 

control modules of traditional network devices were separated, a centralized 

controller could be used to manage and configure various network devices through 

standard interfaces. This would result in more possibilities for the design, 

management, and use of network resources, thereby facilitating network innovation 

and development. Therefore, they put forward the concept of OpenFlow and 



[42] 
  Georgios Kaponis 

published a paper entitled "OpenFlow: Enabling Innovation in Campus Networks" in 

2008, introducing the principles and application scenarios of OpenFlow in detail for 

the initial time. The first version of OpenFlow, OpenFlow 1.0 was introduced in 

December 2009. Due to the huge interest OpenFlow attracted an organization was 

created in 2011 Open Networking Foundation. ONF is a user-led organization 

dedicated to promotion and adoption of software-defined networking (SDN) that 

manages the standardization of OpenFlow. Founders of this organization where huge 

companies like Microsoft, Google and Facebook as well as various research institutions 

that implemented and researched the protocol. 

 

 

 

 

 

 

 

 

 

 

Since its first official version 

1.0 released at the end of 2009, 

OpenFlow has evolved from 

versions 1.1, 1.2, 1.3, to the latest 

Figure 22 OpenFlow in the SDN architecture [42] 

Figure 23 Evolution of OpenFlow [42] 



[43] 
  Georgios Kaponis 

version 1.5. Currently, versions 1.0 and 1.3 of OpenFlow are most widely supported 

and applied. 

The importance of OpenFlow can already be understood from the attention it attracted 

from the early years of development and from the companies involved. This protocol 

played a crucial role in developing the SDN architecture, according to which almost all 

nowadays networks comply with.  It revolutionized the Internet as we know it and led 

to the development of communication systems according to the SDN technology. 

3.5.1 OpenFlow Architecture and Operations 

The OpenFlow architecture consists of a controller, an OpenFlow switch and a secure 

channel. The OpenFlow protocol defines the interface between an OpenFlow 

Controller and an OpenFlow switch. The OpenFlow protocol allows the OpenFlow 

Controller to instruct the OpenFlow switch on how to handle incoming data packets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After defining the architecture, it is essential to define each element of this 

architecture. 

OpenFlow Controller: 

It is the thinking mind of the SDN architecture and is located at the control layer. The 

controller’s job is to instruct data forwarding through the OpenFlow protocol. 

Mainstream OpenFlow controllers are classified into two categories: open-source 

controllers and vendor-developed commercial ones. The widely used open-source 

controllers include NOX, POX, and OpenDaylight. Huawei's iMaster NCE controllers are 

commercial ones. 

Figure 24 OpenFlow architecture [42] 



[44] 
  Georgios Kaponis 

 

OpenFlow Secure Channel: 

A secure channel is established between the controller and an OpenFlow switch. 

Through this channel, the controller controls and manages the switch, and receives 

feedback from the switch. The messages exchanged over the OpenFlow secure 

channel must comply with the format specified by the OpenFlow protocol. The 

OpenFlow secure channel is usually encrypted using Transport Layer Security (TLS), but 

may be run directly over TCP in plain text in OpenFlow 1.1 and later versions. The 

following OpenFlow messages are transmitted over the channel: [42] 

• Controller-to-Switch message: is sent by the controller to the OpenFlow switch 

to manage or obtain the OpenFlow switch status. 

• Asynchronous message: is sent by the OpenFlow switch to the controller to 

update network events or status changes to the controller. 

• Symmetric message: is sent without solicitation by either the OpenFlow switch 

or the controller. It is mainly used to set up a connection and detect whether 

the peer is online. 

OpenFlow switch: 

Core component of the OpenFlow network architecture, mainly responsible for 

forwarding at the data layer. This switch can either be a physical or a virtual one 

(OpenvSwitch). The two types of switches based on their support of OpenFlow are: 

• Dedicated OpenFlow switch: Standard OpenFlow device that supports only 

OpenFlow forwarding. The switch processes all traffic that passes through it in 

OpenFlow mode, and cannot perform Layer 2 or Layer 3 forwarding on the 

traffic. 

• OpenFlow-compatible switch: Supports both OpenFlow and layer 2/3 

forwarding. This type is usually a commercial switch that has the feature of 

supporting flow tables and secure channel. 

 

 

 

 

 

 

 

 

Figure 25 OpenFlow Protocol 
[45] 



[45] 
  Georgios Kaponis 

An OpenFlow switch forwards packets entering the switch based on the flow table, 

which contains a set of policy entries instructing the switch on how to process traffic. 

Flow entries are generated, maintained, and delivered by a controller. The OpenFlow 

switch may be programmed to identify and categorize packets from an ingress port 

based on a various packet header field; Process the packets in various ways, including 

modifying the header; Drop or push the packets to a particular egress port or to the 

OpenFlow Controller. 

Flow Entry: 

Network devices such as switches and routers that don’t support OpenFlow, forward 

the data based on the locally saved Layer 2 MAC address forwarding table, Layer 3 IP 

address routing table and transport layer port numbers. OpenFlow switches forward 

the data according to the flow tables that contain information for all layers of the 

network. The entries in a flow table are flexible combinations of keywords and actions. 

Each flow entry in an OpenFlow flow table consists of match fields and a set of 

instructions applying to matching packets. When receiving a data packet, an OpenFlow 

switch parses and matches the packet header against match fields in the flow entries, 

and executes the corresponding instruction if a match is found. The flow entry 

structure varies according to the OpenFlow versions. 

 

Figure 26 Flow entries in different OpenFlow versions [42] 

According to OpenFlow specifications document for version 1.0 [47], each flow table 

entry contains: 

• Header fields to match against the packet 



[46] 
  Georgios Kaponis 

• Counters to update for matching packet 

• Actions to apply to the matching packet 

The header value of a packet is either specific (which matches specific header in the 

flow table) or “ANY” (which matches every header). So in fact headers are important 

for matching the packet, counters for statistics which is something that the controller 

takes into serious consideration and off course actions that have to happen with the 

packet. 

Switch designers are free to implement the internals in any way convenient provided 
that correct functionality is preserved. For example, while a flow may have multiple 
forward actions, each specifying a different port, a switch designer may choose to 
implement this as a single bitmask within the hardware forwarding table. 

The matching procedure is explained in the flowcharts below: 

Figure 28 Packet Flow in OpenFlow switch [47] 

Figure 27 Parsing procedure for headers [47] 



[47] 
  Georgios Kaponis 

On receipt of a packet, an OpenFlow Switch performs the functions shown in Figure 
28. Header fields used for the table lookup depend on the packet type as described 
below (and shown in Figure 28). 

• Rules specifying an ingress port are matched against the physical port 

that received the packet. 

• The Ethernet headers as specified in OpenFlow version 1.0 specifications [47] are 
used for all packets. 

• If the packet is a VLAN (Ethernet type 0x8100), the VLAN ID and PCP 

fields are used in the lookup. 

• (Optional) For ARP packets (Ethernet type equal to 0x0806), the lookup 

fields may also include the contained IP source and destination fields. 

• For IP packets (Ethernet type equal to 0x0800), the lookup fields also 

include those in the IP header. 

• For IP packets that are TCP or UDP (IP protocol is equal to 6 or 17), 

the lookup includes the transport ports. 

• For IP packets that are ICMP (IP protocol is equal to 1), the lookup 

includes the Type and Code fields. 

• For IP packets with nonzero fragment offset or More Fragments bit set, 

the transport ports are set to zero for the lookup. 

Multi-level flow table pipeline processing: 

OpenFlow v1.0 uses a single flow table to match packets. This implementation is 
simple, but the flow table becomes quite large as various policies are configured to 
implement increasingly complex network requirements. This makes management of 
the control plane more difficult, and poses higher requirements on hardware. 
OpenFlow v1.1 and later versions support multi-level flow tables and pipeline 
processing. When a packet arrives at a switch, matching starts from the flow table with 
the smallest sequence number, and may continue to additional flow tables in the 
pipeline. Multi-level flow tables can not only implement complex processing on data 
packets, but also reduce the length of a single flow table and therefore improve the 
entry lookup efficiency. 

Figure 29 multi-level flow table processing [42] 



[48] 
  Georgios Kaponis 

Flow table delivery: 

Flow tables in OpenFlow can be delivered via two modes: 

• In proactive mode, the controller delivers the flow table information to the 
switches 

• In reactive mode, when a switch does not find a flow entry match any packet 
received sends a message to the controller informing him of the situation. The 
controller determines how the packet will be forwarded and sends the flow 
table entry to the switch. In addition, the switch will not maintain all entries. It 
obtains entries from the controller to serve the generated traffic and deletes 
the ones that are aged out. The procedure is described in OpenFlow 
specification paper [47] as: 

“Each flow entry has an idle timeout and a hard timeout associated with it. If 
no packet has matched the rule in the last idle timeout seconds, or it has been 
hard timeout seconds since the flow was inserted, the switch removes the 
entry and sends a flow removed message. In addition, the controller is able to 
actively remove entries by sending a flow message with the DELETE or 
DELETE_STRICT command. Like the message used to add the entry, a removal 
message contains a description, which may include wild cards” 

3.5.2 Advantages and presence SDN ecosystem 

As addressed in previous paragraphs, OpenFlow is considered a very important part of 
SDN paradigm. The way this protocol revolutionized the network control and 
administration as well as the cost of network infrastructure development and 
maintenance are some of the benefits of this technology. In order to determine the 
role of OpenFlow in the SDN ecosystem it is important to highlight the key advantages 
and evaluate the open-source implementations. 

The key advantages and optimizations of OpenFlow in network performance are 
demonstrated in the following key points: 

Centralized Control: Centralized control of network traffic is enabled through 
OpenFlow, providing administrators with a complete supervision of the entire 
network. This enables efficient traffic management, resource allocation, and 
troubleshooting. 

Real-time Traffic Optimization: With OpenFlow, administrators can dynamically route 
traffic based on real-time conditions. Analysis of the network's performance metrics, 
can lead to the redirection of traffic to less congested paths, optimizing bandwidth 
utilization and minimizing latency. 

Flexibility and Scalability: OpenFlow's flexible architecture provides easy adaptation 
to changing network requirements. Businesses grow and evolve and OpenFlow 
enables scalability by providing a programmable environment, ensuring that networks 
can meet future demands without having to replace their equipment. 

Improved Security: Network administrators gain granular control over traffic flows. 
This allows for the implementation of security policies and the identification and 
mitigation of potential threats in real-time. By providing rules over and over through 



[49] 
  Georgios Kaponis 

feedback from the switches the controllers are able to detect some threats and 
minimize the risk of attacks. In addition, OpenFlow uses an SSL channel in the 
controller-switch communication. 

Integration with Existing Infrastructure: This protocol is designed to integrate with 
existing network infrastructures, enabling organizations to leverage their current 
investments while enhancing network performance. This makes the adoption of 
OpenFlow a cost-effective solution for network optimization. In fact according to “The 
wall street journal” many telecommunication enterprises aimed to use SDN and 
OpenFlow in order to save costs and advance their network. 

 

Figure 30 The Wall Street Journal about AT&T in 2014 [49] 

In year 2019, the global SDN market was valued $9.86 billion. 

The implementation of OpenFlow in network systems came hand to hand with SDN. 
The role of OpenFlow in SDN is described in some key points. After all, OpenFlow 
provided standardized interface between control and data plane. Network automation 
through OpenFlow became a reality through the enabling of automation in 
management tasks, traffic engineering, security policies and resource allocation. 
Complex networks operations are now simplified minimizing human error. In addition, 
organizations can meet SLA (Service-Level Agreement) commitments by allowing for 
granular policy enforcement dependent on service requirements. In simple words, 
with OpenFlow resources like bandwidth and latency can be allocated towards certain 
critical applications, minimizing performance issues. Another aspect of SDN very 
crucial that has been influenced by the implementation of OpenFlow is network 
virtualization.  According to Wikipedia [50], “in computing, network virtualization is 
the process of combining hardware and software network resources and network 
functionality into a single, software-based administrative entity”. In other words, the 



[50] 
  Georgios Kaponis 

physical resources are used in a way where the SDN controller takes advantage of them 
so it provides certain QOS depending on the demands. OpenFlow’s aid was crucial in 
this aspect of SDN.  

 

Figure 31 Basic Network Virtualization [51] 

Another important aspect of OpenFlow in the implementation of SDN is the space it 

provided for experimentation and innovation. In an open and programmable platform 

many researchers could develop their own solutions and experiments without having 

to replace the network equipment. Last but not least, not only researchers didn’t need 

to buy new equipment to experiment but also organizations. The fact that OpenFlow 

is a standard that ensures interoperability between different vendors’ networking 

devices is called Vendor Neutrality. In that way Organizations can choose the 

equipment they want selecting from various suppliers, which promotes competition 

and flexibility. 

3.5.3 Practical Implementations of OpenFlow and Challenges  

As described in previous paragraph OpenFlow is the protocol that allows the Controller 

and the OpenFlow switch to communicate in a standardized way in order to separate 

the control from the data plane. It is logical to deduce that in order for that to happen, 

there have to be some deployments on the side of the SDN controller, some others on 

the side of the vSwitch and some that are more focused on the part of packet 

forwarding. The nature of OpenFlow is open-source, which allows a lot of 

implementations and deployments. In this paragraph we will refer to a set of 

implementations of OpenFlow from the three aspects mentioned above: SDN 

controller, vSwitch, packet forwarding. Indigo, Floodlight, and P4 Agent are software 

components related to OpenFlow and software-defined networking (SDN). Each plays 

a specific role in the OpenFlow ecosystem: 

• Indigo: Indigo is an open-source software-defined networking (SDN) stack 

developed by the Open Networking Foundation (ONF). It provides a framework 

for building OpenFlow-based switches. It supports OpenFlow specifications 

and enables the deployment of OpenFlow-compliant switches on various 



[51] 
  Georgios Kaponis 

hardware platforms. Indigo includes both the OpenFlow agent, responsible for 

communication with an SDN controller, and the data plane forwarding 

elements. This project has been used as the basis for various OpenFlow switch 

implementations. Indigo is open-source supporting OpenFlow on a range of 

physical switches. By leveraging hardware features of Ethernet switch ASICs, 

Indigo supports high rates for high port counts, up to 48 10-gigabit ports. 

Multiple gigabit platforms with 10-gigabit uplinks are also supported. These 

exceed the limits of NetFPGA or pure-software OpenFlow implementations. 

Indigo firmware is actively used in many campus deployments (at Stanford and 

several other schools), in at least one OpenFlow startup, a 20-switch 

conference network deployment and a 32-switch data center deployment. The 

current release is based on the OpenFlow Reference Implementation from 

Stanford and currently implements all OpenFlow 1.0 features. 

The Indigo software distribution is available in two ways: 

o As pre-built firmware images (recommended for starting users) 

o As a source distribution in a VM (recommended for advanced 

users) 

Indigo supports multiple user interfaces including both a web-based 

configuration UI and a CLI accessible via telnet or ssh. These interfaces allow 

the configuration of the control interface (including behavior when the 

controller connection is lost) and monitoring of the ports and flow table. 

More advanced users can download the Indigo Open Development System 

(IODS), a source release of the Indigo software. Users can modify the web 

server, command-line interface, some OpenFlow processing logic, and even 

add additional programs. IODS enables extensions in both C and Lua (a Python-

like scripting language). The CLI and backend of the on-board web server are 

written in Lua and can be modified by the user. 

• Floodlight: Floodlight is an open-source SDN controller platform developed in 

Java. It serves as the control plane in an SDN architecture, managing 

communication between the SDN controller and OpenFlow-enabled switches. 

It provides a modular and extensible platform for building SDN applications. 

Developers can create applications to customize network behavior through the 

Floodlight API. It also supports various network applications, including load 

balancing, network virtualization, and traffic engineering. Floodlight is widely 

used in research, educational, and commercial environments for SDN 

experimentation and deployment. 

• P4 Agent: P4 (Programming Protocol-Independent Packet Processors) is a 

language designed for describing the forwarding behavior of network devices. 

The P4 Agent is a component that enables the deployment and management 

of P4-programmable devices within an SDN environment. It allows network 

operators to define and customize packet processing behavior in the data plane 

of network devices. The P4 Agent works in conjunction with P4-programmable 

switches, enabling them to interpret and execute P4 programs. It also 

facilitates the integration of P4-programmable devices into an SDN 



[52] 
  Georgios Kaponis 

architecture, providing a way to control and program these devices 

dynamically.  

These components work together to implement and manage SDN environments 

based on the OpenFlow protocol. Indigo, Floodlight, and P4 Agent represent 

different aspects of the SDN ecosystem. Indigo provides an OpenFlow stack for 

building switches, Floodlight serves as an SDN controller for managing network 

devices, and P4 Agent facilitates the deployment and control of P4-programmable 

switches. Together, they contribute to the flexibility, programmability, and 

centralized control that are key characteristics of SDN architectures. Their open-

source nature encourages collaboration and innovation in the development and 

deployment of SDN solutions. 

Even though OpenFlow opened up a new window towards SDN and networking in 

general there are still challenges that have to be faced. Most of these challenges 

involve security, scalability and the limited support of complex policies [58],[59]. 

Another issue that has to be dealt is the scalability as the number of switches and 

flow entries increase. The centralized control model can become a bottleneck 

when managing a large-scale network with numerous devices and flow rules. 

Lastly, the complexity in Programming and Debugging is also an important 

challenge that has to be tackled. The complexity of defining and managing flow 

rules requires a certain level of skill and can lead to operational challenges. 

In conclusion, OpenFlow is a protocol that revolutionized the network architecture 

and the implementation of SDN. The fundamentals of SDN and virtualization lie 

with the development of OpenFlow and the projects that implemented this 

protocol. The open-source nature of this standardization led to the heavy research 

and the adaptation of most organizations, that saw their profits go up due to the 

benefits it provided. The scientific and economic benefits of this technology 

became very crucial to the development of networking as it is today and will 

probably have an impact on the networking definition in the future generations. 

However, technology is a very dynamic filed that evolves. OpenFlow is considered 

old news now even though a lot of organizations still use this protocol.  P4 seems 

to be the future of SDN while this essay is being written, however the ever changing 

technological and economic environment will determine the next best thing. As in 

every protocol studied and addressed in this essay, OpenFlow ha to be used 

according to the needs of the system that is being engineered and developed.  

 

 

 

 

 



[53] 
  Georgios Kaponis 

4. The Interface Developed 
Having reviewed some of the most important network protocols used in control of 

network elements in Chapter 3 and defining the cause that led into the need of 

developing a solution for our SoC in chapter 2, a detailed roadmap of the interface 

build will be presented in this chapter. The methodology and the results of the 

outcome of this research will be presented in detail, as well as some limitations that 

came along with this solution.  

4.1 Methodology 
 The chip provided by IHP institute is a Xilinx ZCU111 chip that has been programmed 
by the institute to have a specific behavior according to the content of some registers. 
Specifically, the developers in the institute managed to load the FPGA with a software 
that can be identified by a Linux operated pc with a specific set of commands with a 
specific set of parameters. The SoC is connected to a separate power supply and a USB 
port to the Linux operated PC. The SoC can also be detected with a Windows system, 
however the commands and the drivers in order to access the registers needed did not 
meet our demands and proceeded with the Linux OS. The developers in the institute 
provided the team with a “map” of the registers and a set of instructions on how to 
read and write on these registers, as well as a set of illustrations that gave us the 
capability to recognize the status of the equipment. The status of the FPGA is 
presented in the Figures bellow. 

 

Figure 32 No program installed on the FPGA 

All lights illuminated represent 

the absence of the source 

program provided by IHP 



[54] 
  Georgios Kaponis 

 

Figure 33 FPGA in good operation 

Also, the roadmap provided by institution described all the element of the registers 

and their meaning. The association between the bit sequence input of the registers 

and their meaning is provided in the table below. 

Table 3 Registers Roadmap 

Register 
Addr. 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reset 
Value 

0x00 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Ch.3 
enable 

Ch.2 
enable 

Ch.1 
enable 

Ch.0 
enable 

0x0F 

0x01 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Modulation: 
“00”: BPSK 
“01”: QPSK 
“10”: QAM16 
“11”: reserved 

0x02 

0x02 Frame format and settings: TBD 
 

0x00 

0x03 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

0x00 

0x04 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

0x00 

0x05 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

0x00 

0x06 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

0x00 

0x07 Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

0x00 

 

In order to access the FPGA and make changes to the functionality of it, without 

damaging the source code included is through two specific commands. 

Only one illuminated LED 

indicates the Good Operation of 

this FPGA. 



[55] 
  Georgios Kaponis 

First of all, administrative rights had to be given to the user that will engage with the 

registers. Second, the port responsible for communicating with the relevant entities 

are USB serial port 2 9600. So in order to establish communication, at first the user 

had to initialize the port by providing the command  

“su sudo 

screen /dev/ttyUSB2 9600” 

Apart form the initialization of the port this command is responsible for monitoring 

the good operation of the FPGA.  If the connection is stable and in good condition (not 

overloaded from many commands running in the background) the screen command 

will initiate a window in which whatever character typed will be mirrored to the open 

terminal after being processed through the serial port. Upon initialization and check 

of status the operations needed to be performed are read and write in the registers 

mentioned above. In order to achieve this hexdump command is used. Hexdump gives 

the user the ability to access the registers. However, the command itself is not enough 

and has to have a set of parameters that complement the action at hand. The 

command that initiates the read right procedure is  

“hexdump -ve '1/1 "%3.2x"' /dev/ttyUSB2” 

This command enables the read/write procedure and has to stay active in the 

background. In another terminal a set of commands and parameters are sent towards 

the enabled for read and write FPGA. These commands and parameters are exhibited 

as a set of examples as shown in the table below. 

Table 4 Examples of commands and the register output 

printf ‘\x01\x00’  > /dev/ttyUSB2 
 

Read register address 0x00 

printf ‘\x01\x01’ > /dev/ttyUSB2 
 

Read register address 0x01 

printf ‘\x01\x02’ > /dev/ttyUSB2 
 

Read register address 0x02 

printf ‘\x01\x07’ > /dev/ttyUSB2 Read register address 0x07 
 

printf ‘\x02\x00\x55’ > /dev/ttyUSB2 
 

Write to register address 0x00, value equal to 0x55 

printf ‘\x02\x01\x66’ > /dev/ttyUSB2 
 

Write to register address 0x01, value equal to 0x66 

printf ‘\x02\x03\xFF’ > /dev/ttyUSB2 
 

Write to register address 0x03, value equal to 0xFF 

 

All these consisted the starting point of the research at hand. Having in mind the way 

of communicating with the FPGA and the tools as well as the desired architecture we 

were able to proceed to the engineering of the interface. In the next two sub chapters 

we will point out the interface design and implementation as well as the testing and 

validation. 



[56] 
  Georgios Kaponis 

4.1.1 Interface Design and Implementation 

The interface under research is part of a bigger movement in telecommunication 

systems. The paradigm at hand is “5G Complete” and the architecture involves this is 

interface as a southbound interface. Having this in mind, as well as the tools provided 

the development of such interface wouldn’t be a hardware device that would translate 

signals towards the Thz Node. As part of a bigger picture, the interface had to be able 

to adapt and get feedback from higher level controllers. A software that is able to 

interact with the node, on a platform that is able to connect to another network from 

which it will receive orders and to which it will send information. That is the main 

principle of the interface developed. 

 

 

  

 

 

 

 

 

 

 

 

 

As shown in Figure 34 the researched interface will provide the coupling between the 

Thz Node and the OpenDaylight [61]. The interface specifications demand that it will 

be able to communicate with the Thz Node, read and write information on the 

registers, communicate with the Southbound interface in a way that it can provide the 

information of the registers and wait for orders as to what to write and to which one.  

In addition, since the tools we have apply on Linux OS, the interface must be 

compatible and run optimally on Linux. Also, the received coupling with the 

southbound interface must be applicable in Linux. Combining all the above the 

decision was to write a bash script on Ubuntu OS. That way we effectively take 

advantage of the standard tools already provided and at the same time, due to the 

nature of Open Source software of Linux, leave room for more implementations that 

will communicate with the Upper part of the southbound interface. 

In order to make this work we decided to break the expected outcome in smaller 

procedures. The outcome of this thinking is presented in the Figure below. 

Figure 34 Itegration of Thz Node in 5G complete architecture [60] 



[57] 
  Georgios Kaponis 

 

Figure 35 Problem Breakdown Analysis 

Since the analysis of the problem was performed, a decision was taken: each one 

represents a specific function that can be called upon. However simple it might look 

each step had a set of challenges to be tackled in order to deliver the final product. 

• Reading of the Registers: 

In order to initiate the read/write procedure with the serial port 2 of the FPGA, a 

command of initialization had to be given. This tool has already been delivered from 

the institute. However, in order to read and write this procedure had to be in the 

background and proceed towards the read state. In order for the agent to establish a 

connection with the Node and then start the reading procedure, a specific tactical 

latency of 2 seconds was intentionally added so the system could use the time window 

for parameter retrieval. In addition, through a lot of tries a big latency in the response 

was detected. Due to the hexdump initialization commands given without terminating 

them, the FPGA started lagging. This meant that cleanup is mandatory in order to keep 

the good operation of the SoC. As a result, the final function called “total” was able to 

initiate the connection, read the register content (the writing procedure is something 

not provided in this version but will be implemented in future work) and cleanup the 

system memory. 

• Saving of Data State: 

This is the most challenging part of the interface. The SoC is unable to understand 

anything else than 2 specific commands with the exact parameters. Any other 

command didn’t apply and returned nothing. In addition, the Linux operators that play 

a crucial role in input-output and saving into file operations were not working on the 

SoC, as it was unable to “understand” them. With only 2 commands and the risk of 

damaging the core software of the SoC, making trial and error unavailable, the way of 

Reading Of Registers

• Initialization of read/write procedure

• Reading of the content of registers

Saving of Data State

• Loging the Data 

• Parsing the Data

Data Process

• Process of the register status

• Saving the status in json file



[58] 
  Georgios Kaponis 

saving the data seemed impossible. The solution found was an out of the box thought: 

don’t expect the data from the FPGA. Since communication was very limited and the 

results only showed on the terminal of the operating system, we stopped monitoring 

the FPGA and started monitoring the terminal that was communicating. A “script” 

command with input the “save data function” was used in order to monitor the 

outcome of the terminal on a log text file. In this way, for the first time, we had the 

data of the registers in a text file along with a lot of the terminal events as clutter. So 

now the data parsing had to begin. The data we needed was a set of numbers. A series 

of “grep” commands along with specific parameters were used, as well as some 

temporary files that contained part of the information. In order to understand the 

procedure, a flow diagram below is presented. 

 

Figure 36 Flow Diagram of data saving function 

The outcome of the Saving Data Function is a simple text file. Each line in this file is a 

set of bits. Each set represents a register content. 

• Data Processing: 

After successfully saving the status of each register line by line in a simple text file, a 

data process function was created. The concept was to read this file line by line and 

store each line in an array. Then the data of the array was compared in order to show 

whether the SoC is online or offline. If the registers didn’t contain anything meant that 

we were unable to retrieve anything, which actually meant the Node is offline. Any 

other set of digits was presented and then formatted in a json file. A flow chart of the 

function is presented below. 



[59] 
  Georgios Kaponis 

 

Figure 37 Process Function Flow chart 

The format of the json file will allow the agent to send it to the other side of the 

interface directly to a controller or indirectly to a broker that will be accessed by the 

controller. In such way the system will now know that the Thz node is online and will 

be able to redirect traffic. As a result, a part of the SDN architecture has been 

implemented. The SDN controller has now access to the status of the Thz Node. No 

specific or exclusive technology has been used according to the SDN paradigm. The 

Thz Node is available for status retrieval and with small implementations in the read 

function, can be controlled. This implementation can help promote the SDN paradigm 

including the Thz Node and open a new window in the telecommunication technology.  

 

4.1.2 Testing and Validation 

Testing and Validation of the interface happened step by step in order to be sure that 

the result of each function is valid and can be used. Each function is dependent on the 

outcome of the previous one as defined in the sub chapter above. Through testing and 

validation came the realization of clean up procedures as well as the intendent delays 



[60] 
  Georgios Kaponis 

between commands and smaller functions. The equipment used for testing was a 

commercial laptop with the characteristics presented bellow. 

Processor: AMD Ryzen 3 3250U with Radeon Graphics 2.60 GHz 

Installed RAM: 8,00 GB (5,88 GB used) 

System version: Operating system 64 bit, processor x64 

The time needed for all the procedures to finish and have the final json file is 5 seconds 

due to the intendent delays for synchronization between the commands. The interface 

is successful and has capabilities that will be implemented in next versions. The output 

json file is destined towards the other side of the interface enabling the coupling 

between the two sides. 

The code of all the bash scripts as well as the main program that implements the 

functions are included in Appendix A of this essay. 

 

5. Conclusions and Future work 
The outcome of this research achieved the development of an interface between a Thz 

Node and an SDN controller, following the SDN paradigm that was studied throughout 

the extent of this essay. The interface developed gave the administrator of a network 

system the capability to communicate with an FPGA that was unable to understand 

anything more than two specific commands. In that way a resource addition to the 5G 

complete paradigm was implemented signaling the use of mmWaves and Thz 

transmission bringing 6G one step closer. 

Developing a new technology is thrilling and gives the researchers pride and a feeling 

of fulfilment. However, this in only the tip of the iceberg. The literature that was 

studied gave the insight needed to develop technology and imagine the next step, and 

the step after the next one. Throughout the extent of this essay the writer became 

familiar FPGAs and the upcoming innovations in this domain. SoCs seem to play a 

crucial role in cutting edge technology and especially in the filed of network 

engineering. In addition, the programmability and the flexibility that they offer seem 

to be in line with the SDN paradigm which is ruling the telecommunication systems as 

we know them, and most probably as we will meet them in the nearest future. SDN 

paradigm that has been introduced in 2009 has impacted the way we develop and use 

networks. Characteristics such as virtualization and remote control of network 

elements became a key into developing new technology and ensuring specific QoS 

according to the needs of the application. Flexibility, scalability and vendor 

independency are just a few of the advantages that this paradigm has provided. Even 

though SDN is fascinating as an idea and as a usable paradigm the scientific community 

was aware of the importance of remote controlling elements and started introducing 

protocols to establish that since the 1980s. Network element control protocols such 

as SNMP, SCPI, TL1 and NETCONFIG have been developed and researched way before 



[61] 
  Georgios Kaponis 

the adaptation of SDN. While studying all these protocols the idea of sending messages 

between the agent and the controller became clear. Each one with its own advantages 

and disadvantages which the network engineer would have to take into consideration 

when he performs a design of the network. These protocols are by far not obsolete 

and are used up to this date. For example, the usage of SCPI is widely spread through 

the design and engineering of test benches in most industries. In addition, NETCONF 

is part of the 5G complete implementation as shown in Figure 34. Off course, the usage 

of OpenFlow is still very important and relevant as a protocol that separated the 

control from the data plane. The various enrolments of this protocol according to the 

usage that ‘ll have, either on the controller side or the vSwitch side, helped develop 

more the idea of SDN. While writing this essay the definitions and necessities of south 

bound and north bound interfaces became clear. With a clear view of all the protocols 

mentioned above, as well as the idea of SDN the decision on how to move towards the 

integration of this interface for the Thz Node in order to implement it to the paradigm 

of 5G complete became all the more feasible. As mentioned in Chapter 4, the 

methodology that was adopted always had in mind the way of SDN and the use of 

remote calls, as well as the fact that this interface must both be useful to both sides of 

this “coupling”. The idea of interacting only with the Node without saving the status 

makes the system incapable of being controlled, therefore unable of being used in an 

SDN ecosystem. Lessons were learned through the literature review as well as through 

the procedure of implementing the interface. The Thz Node is now able to be 

controlled, since we can obtain the parameters of the registers and determine whether 

its is online or offline, but also information about the modulation adopted from this 

Node. Although it is important to know the status of this device, it is also important to 

have the ability of controlling it. In order to do so, the next version of this interface will 

implement the parameters for writing inside the Node by actuating remotely. More 

future work includes the usage of this script periodically without being invoked by a 

remote controller, but having the information of the Node available through a broker 

somewhere in the cloud. Security optimizations are also an aspect that has to be 

addressed in future work. It is also important to understand the limitations. This script 

interface is available every 5s. This delay in intentional and has a huge impact on the 

synchronization of the commands in order to draw crucial and original data from the 

registers. By all means, the concept of remotely controlling an innovative device like 

this Thz Node, at least at the south bound interface part has been achieved and even 

though future work can be performed, the pleasure of integrating technologies and 

making a step ahead towards progress is a feeling that few can indulge. Tackling the 

obstacles and delivering is important, but so is inspiration to achieve more of what has 

already been delivered. The future is closer than we thought. 

 

 

 

 



[62] 
  Georgios Kaponis 

6. List of figures 
Figure 1 Simplified block diagram of SDN[4] ............................................................................. 7 

Figure 2Xilinx FPGA[7] ............................................................................................................... 8 

Figure 3 FPGA architecture ........................................................................................................ 9 

Figure 4 FPGA used for our research ....................................................................................... 10 

Figure 5 Basic SDN architecture[9] .......................................................................................... 11 

Figure 6 SDN overview[9] ........................................................................................................ 12 

Figure 7 SNMP visualization [14] ............................................................................................. 14 

Figure 8 Standard MIB tree[15] ............................................................................................... 16 

Figure 9 SNMP architecture[16] .............................................................................................. 16 

Figure 10 SNMP principle of communication [10]................................................................... 17 

Figure 11 SNMP message types[14] ........................................................................................ 19 

Figure 12 Back of instrument providing connections for remote control [29] ........................ 22 

Figure 13 Simplified SCPI commad tree................................................................................... 24 

Figure 14 Design Flow of the integrated environment [28] .................................................... 25 

Figure 15 Complete documentation, libraries and examples from manufacturer [27]........... 26 

Figure 16 LAN transport of TL1 data [31] ................................................................................ 27 

Figure 17 Simplified representation of message types ........................................................... 28 

Figure 18 Sample of autonomous message [36] ..................................................................... 29 

Figure 19 Integration of TL1 with Java ..................................................................................... 33 

Figure 20 NETCONF protocol layers [38] ................................................................................. 35 

Figure 21 NETCONF Interaction process [37] .......................................................................... 36 

Figure 22 OpenFlow in the SDN architecture [42] ................................................................... 42 

Figure 23 Evolution of OpenFlow [42] ..................................................................................... 42 

Figure 24 OpenFlow architecture [42] ..................................................................................... 43 

Figure 25 OpenFlow Protocol [45] ........................................................................................... 44 

Figure 26 Flow entries in different OpenFlow versions [42].................................................... 45 

Figure 27 Parsing procedure for headers [47] ......................................................................... 46 

Figure 28 Packet Flow in OpenFlow switch [47] ...................................................................... 46 

Figure 29 multi-level flow table processing [42] ..................................................................... 47 

Figure 30 The Wall Street Journal about AT&T in 2014 [49] ................................................... 49 

Figure 31 Basic Network Virtualization [51] ............................................................................ 50 

Figure 32 No program installed on the FPGA .......................................................................... 53 

Figure 33 FPGA in good operation ........................................................................................... 54 

Figure 34 Itegration of Thz Node in 5G complete architecture [60] ........................................ 56 

Figure 35 Problem Breakdown Analysis .................................................................................. 57 

Figure 36 Flow Diagram of data saving function ..................................................................... 58 

Figure 37 Process Function Flow chart .................................................................................... 59 

  

file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248274
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248275
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248276
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248277
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248278
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248279
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248280
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248282
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248284
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248285
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248286
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248288
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248289
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248290
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248292
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248293
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248294
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248295
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248296
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248297
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248298
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248300
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248301
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248302
file:///C:/Users/dec4y/OneDrive/Desktop/Control%20of%20network%20elements%20in%205G%20systems%20Back%20up.docx%23_Toc156248307


[63] 
  Georgios Kaponis 

7. List of Tables 
Table 1 SNMPv3 security levels[24] ......................................................................................... 21 

Table 2 TL1 Command parameters[34] ................................................................................... 29 

Table 3 Registers Roadmap ...................................................................................................... 54 

Table 4 Examples of commands and the register output ........................................................ 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



[64] 
  Georgios Kaponis 

8. References  
1. https://en.wikipedia.org/wiki/Software-defined_networking 

2. https://www.techtarget.com/searchnetworking/definition/SDN-controller-software-

defined-networking-controller 

3. Mittal, Sangeeta. (2018). Performance Evaluation of Openflow SDN Controllers. 

10.1007/978-3-319-76348-4_87. 

4. https://en.wikipedia.org/wiki/Field-programmable_gate_array 

5. https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-

electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-

fundamentals.html 

6. https://gr.mouser.com/new/xilinx/xilinx-sp701-eval-kit/ 

7. https://www.ihp-microelectronics.com/fields-of-activity/radio-frequency-

broadband-communication-systems 

8. https://opennetworking.org/wp-

content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf 

9. https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol 

10. https://docs.oracle.com/cd/E19253-01/817-3000/introduction-3/index.html 

11. https://www.geeksforgeeks.org/simple-network-management-protocol-snmp/ 

12. https://www.manageengine.com/network-monitoring/what-is-snmp.html 

13. https://networkwalks.com/snmp-simple-network-management-protocol/ 

14. https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Manag

ement_Information_Base_MIB_.htm 

15. https://www.geeksforgeeks.org/snmp-enumeration/ 

16. https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Introd

uction.htm 

17. RFC 6353 Section 10 

18.  D. Levi; P. Meyer; B. Stewart (April 1999). "RFC 2573 – SNMP Applications". Internet 
Engineering Task Force. doi:10.17487/RFC2573. {{cite journal}}: Cite journal 

requires |journal= (help) 

19. ^ Jump up to:a b "SNMP Inform Requests". Cisco. Retrieved 2011-12-09. {{cite 

journal}}: Cite journal requires |journal= (help) 

20. ^ "Understanding the SNMP Implementation in JUNOS Software". Juniper Networks. 
Retrieved 2013-02-11. {{cite journal}}: Cite journal requires |journal= (help) 

21.  "RFC Search Detail: Standards Track snmpv2 RFCs". The RFC Editor. Retrieved 2014-
02-24. 

22. Douglas R. Mauro & Kevin J. Schmidt. (2001). Essential SNMP (1st ed.). Sebastopol, CA: 
O'Reilly & Associates. 

23. https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-3se/3850/snmp-
xe-3se-3850-book/nm-snmp-snmpv3.pdf 

24. https://snmp.com/snmpv3/snmpv3_intro.shtml 

25. https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments 

26. https://www.rohde-schwarz.com/au/driver-pages/remote-control/remote-programming-
environments_231250.html 

27.  Balaji, Aravind & Sasikumar, Subramanian & K, Dr. Ramesh. (2021). SCPI based 
integrated test and measurement environment using LabVIEW. IOP Conference Series: 
Materials Science and Engineering. 1045. 012036. 10.1088/1757-899X/1045/1/012036. 

28. https://goughlui.com/2021/03/28/tutorial-introduction-to-scpi-automation-of-test-
equipment-with-pyvisa/ 

29. https://www.dpstele.com/network-monitoring/alarm/tl1/what-is.php 

30. https://www.dpstele.com/dps/protocol/2001/jan-feb/index.php 

31. https://en.wikipedia.org/wiki/Transaction_Language_1 

https://en.wikipedia.org/wiki/Software-defined_networking
https://www.techtarget.com/searchnetworking/definition/SDN-controller-software-defined-networking-controller
https://www.techtarget.com/searchnetworking/definition/SDN-controller-software-defined-networking-controller
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html
https://gr.mouser.com/new/xilinx/xilinx-sp701-eval-kit/
https://www.ihp-microelectronics.com/fields-of-activity/radio-frequency-broadband-communication-systems
https://www.ihp-microelectronics.com/fields-of-activity/radio-frequency-broadband-communication-systems
https://opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://docs.oracle.com/cd/E19253-01/817-3000/introduction-3/index.html
https://www.geeksforgeeks.org/simple-network-management-protocol-snmp/
https://www.manageengine.com/network-monitoring/what-is-snmp.html
https://networkwalks.com/snmp-simple-network-management-protocol/
https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Management_Information_Base_MIB_.htm
https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Management_Information_Base_MIB_.htm
https://www.geeksforgeeks.org/snmp-enumeration/
https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Introduction.htm
https://docs.iconics.com/V10.96/GENESIS64/Help/Apps/WBDT/SNMP/SNMP_Introduction.htm
https://en.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6353
https://tools.ietf.org/html/rfc2573#section-3.3
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC2573
https://en.wikipedia.org/wiki/Template:Cite_journal
https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol#cite_ref-cisco_a_6-0
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol#cite_ref-cisco_a_6-1
http://www.cisco.com/en/US/docs/ios/11_3/feature/guide/snmpinfm.html
https://en.wikipedia.org/wiki/Template:Cite_journal
https://en.wikipedia.org/wiki/Template:Cite_journal
https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol#cite_ref-7
https://www.juniper.net/techpubs/software/junos-security/junos-security10.2/mib-srx5600-srx5800-service-gateway/topic-21511.html
https://en.wikipedia.org/wiki/Template:Cite_journal
https://en.wikipedia.org/wiki/Help:CS1_errors#missing_periodical
http://www.rfc-editor.org/search/rfc_search_detail.php?pubstatus%5b%5d=Standards+Track&std_trk=Any&pub_date_type=any&wg_acronym=snmpv2
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-3se/3850/snmp-xe-3se-3850-book/nm-snmp-snmpv3.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-3se/3850/snmp-xe-3se-3850-book/nm-snmp-snmpv3.pdf
https://snmp.com/snmpv3/snmpv3_intro.shtml
https://en.wikipedia.org/wiki/Standard_Commands_for_Programmable_Instruments
https://www.rohde-schwarz.com/au/driver-pages/remote-control/remote-programming-environments_231250.html
https://www.rohde-schwarz.com/au/driver-pages/remote-control/remote-programming-environments_231250.html
https://goughlui.com/2021/03/28/tutorial-introduction-to-scpi-automation-of-test-equipment-with-pyvisa/
https://goughlui.com/2021/03/28/tutorial-introduction-to-scpi-automation-of-test-equipment-with-pyvisa/
https://www.dpstele.com/network-monitoring/alarm/tl1/what-is.php
https://www.dpstele.com/dps/protocol/2001/jan-feb/index.php
https://en.wikipedia.org/wiki/Transaction_Language_1


[65] 
  Georgios Kaponis 

32. https://www.ibm.com/docs/en/netcoolomnibus/8?topic=acquisition-issuing-commands 

33. https://www.ibm.com/docs/en/netcoolomnibus/8?topic=acquisition-tl1-command-structure 

34. S. S. Chavan and R. Madanagopal, "Generic SNMP proxy agent framework for 
management of heterogeneous network elements," 2009 First International 
Communication Systems and Networks and Workshops, Bangalore, India, 2009, pp. 1-6, 
doi: 10.1109/COMSNETS.2009.4808873. 

35. https://www.dpstele.com/blog/how-to-understand-tl1-protocol.php 

36. https://support.huawei.com/enterprise/en/doc/EDOC1100112399/3707247/introduction-to-
netconf 

37. https://en.wikipedia.org/wiki/NETCONF 

38. RFC 6241 

39. https://support.huawei.com/enterprise/en/doc/EDOC1100126923/a8fda134/overview-of-
netconf 

40. Caroline Chappell, “Creating the Programmable Network: The business Case for 
NETCONF/YANG in Network Devices”, 2013 Heavy Reading 

41. https://info.support.huawei.com/info-finder/encyclopedia/en/OpenFlow.html 

42. https://en.wikipedia.org/wiki/OpenFlow 

43. https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-
defined-networking-sdn/what-is-openflow/ 

44. https://noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/ 

45. https://medium.com/@fiberoptics/openvswitch-and-openflow-what-are-they-whats-their-
relationship-d0ccd39b9a5c 

46. https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf 

47. https://utilitiesone.com/role-of-openflow-in-software-defined-networking-sdn-for-traffic-
management 

48. Αθανασία Αλωνιστιώτη, Διαφάνειες μαθήματος «Δικτύωση Βασισμένη στο Λογισμικό» ,  
2021 ΕΚΠΑ. 

49. https://en.wikipedia.org/wiki/Network_virtualization 

50. https://sdn.systemsapproach.org/netvirt.html 

51. https://floodlight.atlassian.net/wiki/spaces/Indigo/overview 

52. https://www.oreilly.com/library/view/software-defined-networking-
with/9781783984282/b67ed638-71a5-46ac-a81a-9d7e69506a99.xhtml 

53. https://github.com/floodlight/floodlight/blob/master/README.md 

54. https://github.com/p4lang/p4ofagent 

55. da Costa Cordeiro, W.L., Marques, J.A. & Gaspary, L.P. Data Plane Programmability 
Beyond OpenFlow: Opportunities and Challenges for Network and Service Operations 
and Management. J Netw Syst Manage 25, 784–818 (2017). 
https://doi.org/10.1007/s10922-017-9423-2 

56. Wenjuan Li, Weizhi Meng, Lam For Kwok, 

57. A survey on OpenFlow-based Software Defined Networks: Security challenges and 
countermeasures, Journal of Network and Computer Applications, Volume 68, 2016, 
Pages 126-139, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2016.04.011. 

58. https://opennetworking.org/p4/ 

59. 5G-COMPLETE deliverable D4.1, “Initial report on the development of advanced signal 
processing tools for fronthaul and midhaul services”, 2022. 

60. https://opendaylight.org/about 

 

 

 

https://www.ibm.com/docs/en/netcoolomnibus/8?topic=acquisition-issuing-commands
https://www.ibm.com/docs/en/netcoolomnibus/8?topic=acquisition-tl1-command-structure
https://www.dpstele.com/blog/how-to-understand-tl1-protocol.php
https://support.huawei.com/enterprise/en/doc/EDOC1100112399/3707247/introduction-to-netconf
https://support.huawei.com/enterprise/en/doc/EDOC1100112399/3707247/introduction-to-netconf
https://en.wikipedia.org/wiki/NETCONF
https://support.huawei.com/enterprise/en/doc/EDOC1100126923/a8fda134/overview-of-netconf
https://support.huawei.com/enterprise/en/doc/EDOC1100126923/a8fda134/overview-of-netconf
https://info.support.huawei.com/info-finder/encyclopedia/en/OpenFlow.html
https://en.wikipedia.org/wiki/OpenFlow
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/what-is-openflow/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/what-is-openflow/
https://noviflow.com/the-basics-of-sdn-and-the-openflow-network-architecture/
https://medium.com/@fiberoptics/openvswitch-and-openflow-what-are-they-whats-their-relationship-d0ccd39b9a5c
https://medium.com/@fiberoptics/openvswitch-and-openflow-what-are-they-whats-their-relationship-d0ccd39b9a5c
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://utilitiesone.com/role-of-openflow-in-software-defined-networking-sdn-for-traffic-management
https://utilitiesone.com/role-of-openflow-in-software-defined-networking-sdn-for-traffic-management
https://en.wikipedia.org/wiki/Network_virtualization
https://sdn.systemsapproach.org/netvirt.html
https://floodlight.atlassian.net/wiki/spaces/Indigo/overview
https://www.oreilly.com/library/view/software-defined-networking-with/9781783984282/b67ed638-71a5-46ac-a81a-9d7e69506a99.xhtml
https://www.oreilly.com/library/view/software-defined-networking-with/9781783984282/b67ed638-71a5-46ac-a81a-9d7e69506a99.xhtml
https://github.com/floodlight/floodlight/blob/master/README.md
https://github.com/p4lang/p4ofagent
https://doi.org/10.1007/s10922-017-9423-2
https://doi.org/10.1016/j.jnca.2016.04.011
https://opennetworking.org/p4/
https://opendaylight.org/about


[66] 
  Georgios Kaponis 

Appendix A: Interface script code 
 



[67] 
  Georgios Kaponis 



[68] 
  Georgios Kaponis 

 



[69] 
  Georgios Kaponis 

 



[70] 
  Georgios Kaponis 



[71] 
  Georgios Kaponis 

 



[72] 
  Georgios Kaponis 

 


