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ABSTRACT 

Chest X-rays are a crucial tool for detecting abnormalities with the classification 

and localization of these diseases under intense research. The black box nature 

of deep learning algorithms necessitates the development of eXplainable 

Artificial Intelligence (XAI) methods. This study employs the VinBigData 

dataset, featuring 18,000 posterior-anterior (PA) images from Hospital 108 

(H108) and Hanoi Medical University Hospital (HMUH) in Vietnam. 

 The focus of this study is on classifying six abnormalities (‘Aortic Enlargement’, 

‘Cardiomegaly’, ‘Lung Opacity’, ‘Pleural Effusion’, ‘Pleural Thickening’ and 

‘Pulmonary Fibrosis’) and a ‘No-Finding’ class which represents the absence of 

a disease. A pretrained ResNet50 on the ImageNet dataset is used, and Grad-

Cam is the chosen XAI method. Evaluation of the XAI methods involves using 

the Intersection Over Union (IoU) metric to assess alignment between ground 

truth and predicted bounding boxes. Pixel importance analysis is also used for 

evaluation of the XAI method by replacing crucial pixels identified by Grad-Cam, 

with mean values in all three channels.  

The model achieves a micro F1 score of 0.81, with ‘No-Finding’ obtaining the 

highest F1 score (0.96). ‘Aortic Enlargement’ and ‘Cardiomegaly’ show 

satisfactory F1 scores (0.86 and 0.83), while ‘Lung Opacity’ and ‘Pulmonary 

Fibrosis’ exhibit lower values (0.55 and 0.57). Examining Grad-Cam heatmaps 

reveals stable behaviour and localization for ‘Aortic Enlargement’ and 

‘Cardiomegaly’. However, other classes produce less reliable heatmaps, with 

‘Pleural Thickening’ showing the least favourable results. 

While this research provides encouraging outcomes, chest X-rays classification 

remains challenging, necessitating further research of XAI methods and 

evaluation processes. 

 

SUBJECT AREA: Image Processing  

KEYWORDS: Classification, Convolutional Neural Networks, chest X-rays, 
eXplainable Artificial Intelligence (XAI) methods, Grad-Cam 
 



ΠΕΡΙΛΗΨΗ 

Οι ακτινογραφίες θώρακα αποτελούν ένα σημαντικό εργαλείο για τον εντοπισμό 

διαφόρων παθολογιών στο θώρακα. Οι αλγόριθμοι μηχανικής μάθησης που 

χρησιμοποιούνται για την κατηγοριοποίηση αυτών των ανωμαλιών 

χαρακτηρίζονται ως «μαύρα κουτιά» λόγω της αυξανόμενης πολυπλοκότητάς 

τους. Για την εφαρμογή αυτών των αλγορίθμων είναι απαραίτητη η χρήση και 

η ανάπτυξη μεθόδων ερμηνευσιμότητας (eXplainable Artificial Intelligence, 

XAI). Η παρούσα μελέτη χρησιμοποιεί το σύνολο δεδομένων VinBigData που 

περιλαμβάνει 18,000 οπισθο-πρόσθιας (PA) προβολής ακτινογραφίες θώρακα. 

Στόχος αυτής της εργασίας είναι η ταξινόμηση και η δημιουργία χαρτών 

ερμηνείας έξι παθολογιών του θώρακα: ‘Aortic Enlargement’, ‘Cardiomegaly’, 

‘Lung Opacity’, ‘Pleural Effusion’, ‘Pleural Thickening’, ‘Pulmonary Fibrosis’ και 

της κλάσης ‘No-Finding’ που αντιπροσωπεύει τις υγιείς ακτινογραφίες. Για την 

ταξινόμηση των ανωμαλιών χρησιμοποιείται ένα προ-εκπαιδευμένο ResNet50 

μοντέλο στο σύνολο δεδομένων ImageNet και η μέθοδος ερμηνευσιμότητας 

είναι η Grad-Cam. Για την αξιολόγηση της Grad-Cam χρησιμοποιείται η 

μετρητική Intersection over Union (IoU) και η ανάλυση σημαντικότητας 

εικονοστοιχείων. 

Το μοντέλο επιτυγχάνει ένα F1 score 0.81, με την κλάση ‘No-Finding’ να κατέχει 

την υψηλότερη τιμή. Οι κλάσεις ‘Aortic Enlargement’ και ‘Cardiomegaly’ 

παρουσιάζουν ικανοποιητικά αποτελέσματα, ενώ οι κλάσεις ‘Lung Opacity’ και 

΄Pulmonary Fibrosis’ παρουσιάζουν τις χαμηλότερες τιμές. Από τους χάρτες 

ερμηνείας που προκύπτουν από την εφαρμογή της Grad-Cam, παρατηρείται η 

ικανότητα εντοπισμού των κλάσεων ‘Aortic Enlargement’ και ‘Cardiomegaly’, 

ενώ για τις υπόλοιπες κλάσεις παρουσιάζουν λιγότερα αξιόπιστα 

αποτελέσματα. Παρόλο, που αυτή η μελέτη καταλήγει σε ενθαρρυντικά 

αποτελέσματα, η ταξινόμηση των ακτινογραφιών θώρακα με μοντέλα βαθιάς 

μηχανικής μάθησης απαιτεί την περαιτέρω ανάπτυξη μεθόδων 

ερμηνευσιμότητας.  

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Επεξεργασία Εικόνας  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Κατηγοριοποίηση, Ερμηνεία Συνελικτικών Δικτύων, 

Ακτινογραφίες Θώρακα, Επεξηγηματική Τεχνητή Νοημοσύνη, Grad-Cam 



  



ACKNOWLEDGMENTS 

 

I would like to thank all the people who contributed to this research. First, I 

would like to thank professors Dr. Theodoros Dalamagas, Research Director of 

Information Management Systems Institute of the Athena Research Center and 

Dr Christos Diou, Assistant Professor at Department of Information and 

Telematics of Harokopio University of Athens for their guidance and their 

valuable advice throughout the entirety of this thesis. I would also like to thank 

Vasilis Gkolemis, Research Assistant of Athena Research Center, for the very 

good cooperation and the opportunity of discussing all the matters that came 

up in the thesis. Finally, special thanks to my friends and family for the support 

and courage during my studies. 

 

 

 



TABLE OF CONTENTS 
 

PREFACE ......................................................................................................................... 17 

1. INTRODUCTION ...................................................................................................... 18 

1.1 eXplainable Artificial Intelligence (XAI) Methods in Medical Images .................................. 18 

1.2 Problem Statement ............................................................................................................ 19 

2. BACKGROUND AND RELATED WORK .......................................................... 25 

2.1 Machine Learning Techniques, Dense Neural Networks, Convolution Neural 

Networks ....................................................................................................................................... 25 

2.2 Residual Networks (ResNets).............................................................................................. 28 

2.3 Overview of XAI Methods .......................................................................................................... 32 
2.3.1 Taxonomy of XAI Methods ................................................................................................. 32 

2.3.2 XAI Methods ....................................................................................................................... 33 

2.4 Background ................................................................................................................................ 38 

3. XAI METHODS AND EVALUATION TECHNIQUES .............................. 44 

3.1 Grad Cam ........................................................................................................................... 44 

3.2 SmoothGrad [20] ................................................................................................................ 47 

3.3 Evaluation of XAI methods ................................................................................................. 48 
3.3.1 Evaluating heatmaps based on human experts. .................................................................. 49 
3.3.2 Evaluating heatmaps based on experiments. ...................................................................... 49 

3.4 Evaluation in this research ......................................................................................................... 51 
3.4.1 Intersection over Union (IoU) ............................................................................................. 51 
3.4.2 Pixel Importance Analysis ................................................................................................... 53 

4. MACHINE LEARNING PIPELINE FOR XAI METHODS IN CHEST X-RAY 

CLASSIFICATION TASK ........................................................................................... 54 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 11 

 

4.1 Dataset....................................................................................................................................... 54 

4.2 Technical Characteristics ............................................................................................................ 57 

4.3 Model......................................................................................................................................... 57 

4.4 Results ....................................................................................................................................... 59 

4.5 Grad-Cam Results ....................................................................................................................... 62 

4.6 Smooth Grad .............................................................................................................................. 69 

5. EVALUATION RESULTS ...................................................................................... 73 

5.1 Intersection over Union (IoU) ..................................................................................................... 73 

5.2 Pixel Importance Analysis .......................................................................................................... 79 

6. CONCLUSION .......................................................................................................... 85 

ABBREVATIONS ......................................................................................................... 88 

REFERENCES .............................................................................................................. 89 

 

 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES 

Figure 1: Distribution of the various pathologies in the VINDr dataset. .......... 21 

Figure 2: An overview of the pipeline: An input CXR image is fed into the model 

for multilabel classification to identify apparent diseases, such as Aortic 

Enlragement and Cardiomegaly in this example. Heatmaps generated from 

Grad-Cam highlight regions of abnormalities. The images undergo 

transformations based on the most important pixels indicated by Grad-Cam. 

These modified images are then fed back into the model, and plots illustrating 

the changes in predictions are obtained. ....................................................... 24 

Figure 3: Calculation of a single dot product. The calculation of the dot product 

involves an element-wise multiplication between convolutional filter and the 

matching grid in the input data. The resulting values are summed obtaining a 

single number that is stored in the central pixel in the feature map [16]. ....... 27 

Figure 4: A schematic of the VGG16 [17]. ..................................................... 28 

Figure 5: Training error (left) and test error (right) in CIFAR-10 with 20-layer and 

56-layer “plain” networks. The deeper the network, the higher the training error, 

and thus the test error [12]. ............................................................................ 29 

Figure 6: Residual learning: a building block [12]........................................... 30 

Figure 7: Example network architectures for ImageNet. Left: the VGG-19 model 

(19.6 billion FLOPs) as a reference. Middle: a plain network with 34 parameters 

layers (3.6 billion FLOPs) as a reference. Right: a residual network with 34 

parameters layers (3.6 billion FLOPs). The dotted shortcuts increase dimension 

so a stride of 2 is used [12]. ........................................................................... 31 

Figure 8: Taxonomy of XAI methods [3]. ........................................................ 33 

Figure 9: a) Images of a dog classified as greyhound (35%), a ramen soup 

classified as soup bowl (50%) and octopus classified as eel (70%). b) Pixel 

Attributions or saliency maps for the Vanilla Gradient method, Vanilla Gradient 

+ SmoothGrad and Grad-Cam [20]. ............................................................... 37 

Figure 10: Examples of COVID-19 model activation maps [31]. .................... 40 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 13 

 

Figure 11: Eight common thoracic diseases observed in chest X-rays that 

validate a challenging task of fully automated diagnosis [4]. .......................... 41 

Figure 12: Localization result from ‘Cardiomegaly’ class. Correct bounding box 

(in green), false positive (in red) and the ground truth (in blue) are plotted over 

the original image [4]. ..................................................................................... 41 

Figure 13: CheXNet is a 121-layer convolutional neural network that takes a 

chest X-ray image as input, and outputs the probability of a pathology. On this 

example, CheXNet correctly detects pneumonia and localizes areas in the 

image indicative of the pathology [29]. ........................................................... 43 

Figure 14: Frontal and lateral radiographs of the chest in a patient with bilateral 

pleural effusions on both the frontal (top) and the lateral (bottom) views, with 

predicted probabilities p = 0.936 and p = 0.939 in the frontal and lateral views 

respectively [6]. .............................................................................................. 43 

Figure 15: Annual development of Top 5 saliency-based XAI methods applied 

in medical image analysis based on the total number of citations [2]............. 44 

Figure 16: An overview of the Grad-Cam. Given an image and a class of interest 

(e.g. ‘tiger cat’ as input, we forward propagate the image through the CNN part 

of the model and through task-specific computations to obtain a raw score for 

the category. The gradients are set to zero for all classes except the desired 

class (‘tiger cat’), which is set to 1. This signal is then backpropagated to the 

rectified convolutional feature maps of interest, which we combine to compute 

the coarse Grad-Cam localization (blue heatmap) which represents where the 

model has to look to make the particular decision [13]. ................................. 47 

Figure 17: Intersection of two boxes. ............................................................. 51 

Figure 18: Distribution of the classes of the train dataset. ............................. 55 

Figure 19: Examples of chest X-rays with their corresponding labels. ........... 56 

Figure 20: Training loss and validation loss for 7 classes. ............................. 59 

Figure 21: Confusion matrices for each label, configuration of 7 classes. ..... 61 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 14 

 

Figure 22: ROC Curves. 0: ‘Aortic Enlargement’, 3: ‘Cardiomegaly’, 7: ‘Lung 

Opacity’, 10: ‘Pleural Effusion’, 11: ‘Pleural Thickening’, 13: ‘Plumonary 

Fibrosis’, 14: ‘No-Finding’. ............................................................................. 62 

Figure 23: Images of healthy chest X-rays along with the corresponding 

heatmaps and the probabilities for the ‘No-Finding’ class displayed above each 

image. ............................................................................................................ 64 

Figure 24: Images both annotated with the classes ‘Aortic Enlargement’ and 

‘Cardiomegaly’ along with the corresponding heatmaps and the probabilities of 

each class displayed above each heatmap. ‘Aortic Enlargement is annotated 

with red color and ‘Cardiomegaly’ is annotated with yellow. .......................... 66 

Figure 25: top – the model has correctly classified the two diseases ‘Aortic 

Enlargement’ and ‘Cardiomegaly’, but it is observed an unexpected behavior 

regarding the localization of the diseases. Bottom – Although the model 

misclassifies ‘Cardiomegaly’ class, it still localizes it in a region of interest for 

this disease. ................................................................................................... 66 

Figure 26: Examples of the abnormalities ‘Lung Opacity’, ‘Pleural Effusion’, 

‘Pleural Thickening’ and ‘Pulmonary Fibrosis’ with the corresponding 

heatmaps. ...................................................................................................... 69 

Figure 27: Implementation of Grad-Cam and SmoothGrad in the same chest X-

ray both with 0.1 and 0.2 noise. ..................................................................... 71 

Figure 28: Top figure: Original image annotated with all the pathologies and the 

Ground Truth boxes. Bottom figures: Bounding boxes for each label 

(percentages: 0.02, 0.05 and 0.1). Green: GT Box, Purple: Predicted Bounding 

Box. ................................................................................................................ 76 

Figure 29: Chest X-rays labelled by different annotators. .............................. 78 

Figure 30: Mean IoU for each class at percentages: 0.01, 0.02, 0.03, 0.05, 0.08, 

0.1, 0.2. Classes: 0: ‘Aortic Enlargement’, 3: ‘Cardiomegaly’, 7: ‘Lung Opacity’, 

10: ‘Pleural Effusion’, 11: ‘Pleural Thickening’, 13: ‘Pulmonary Fibrosis’, 14: ‘No-

Finding’. ......................................................................................................... 78 

Figure 31: Mean and Gaussian Transformed Images with 10% replacement of 

the most important pixels. .............................................................................. 80 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 15 

 

Figure 32: Transformed Images predictions in various percentages. 

Transformations: Mean, Gaussian Blur (kernel_size = (11,11), Gaussian Blur 

(kernel_size = (21,21). Each letter (a-g) gives a transformation based on the 

heatmaps of following classes: (a) 0 – ‘Aortic Enlargement’, (b) 3 – 

‘Cardiomegaly’, (c) 7 – ‘Lung Opacity’, (d) 10 – ‘Pleural Effusion’, (e) 11 – 

‘Pleural Thickening’, (f) 13 – ‘Pulmonary Fibrosis’, (g) 14 – ‘No-Finding’. In the 

y-axis of the above plots the difference in the prediction is presented (poriginal – 

preplaced). The more the increase in the prediction the more the reduction of 

preplaced). ......................................................................................................... 82 

  



LIST OF TABLES 

Table 1: An overview of existing public datasets for CXR interpretation. ....... 20 

Table 2: Final Dataset .................................................................................... 57 

Table 3: F1 Scores for different experiments ................................................. 60 

Table 4: Part of code for the extraction of the predicted bounding boxes. ..... 73 

Table 5: Intersection over Union (IoU) for each class in different percentages 

for Figure 27................................................................................................... 76 

Table 6: IoU Metric for each class in different percentages. .......................... 79 

 

  



PREFACE 

The master thesis “Explainable Artificial Intelligence in Chest X-rays” has been 

conducted at the ATHENA Research Center for the completion of the 

Postgraduate Program “Bioinformatics – Biomedical Data Science”, 

Department of Informatics and Telecommunications, National and Kapodistrian 

University of Athens, Greece. 

The first chapter introduces the need of eXplainable Artificial Intelligence (XAI) 

methods in medical imaging during the last years and the problem statement of 

this thesis.  

In chapter 2, we provide a concise theoretical overview of the methods 

employed in this research, encompassing deep learning and neural networks, 

with a specific focus on convolutional neural networks widely utilized in 

computer vision techniques. Additionally, we touch upon common explainability 

methods. 

Moving to chapter 3, we offer a more in-depth analytical description of the 

methods integral to our pipeline, placing particular emphasis on the detailed 

analysis of Grad-Cam and SmoothGrad. Subsequently, in Chapter 4, we 

present an overview of the evaluation methods used across various research 

studies and detail the methodology adopted in our research, including pixel 

importance analysis and the application of the Intersection over Union (IoU) 

method. 

Chapter 5 delves into a detailed exploration of the dataset, our methodology, 

and the outcomes of our experiments. In chapter 6, we further expound upon 

the evaluation methods employed in our experiments. Finally, Chapter 7 

initiates a comprehensive discussion of our results, accompanied by 

considerations of potential proposal or alternatives for future investigations. 
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1. Introduction 

1.1 eXplainable Artificial Intelligence (XAI) Methods in Medical Images 

In recent years, the number of Artificial Intelligence (AI) based applications for 

research and clinical care in medicine has increased dramatically, with medical 

imaging clearly being the focus of such developments. Specifically, deep 

learning techniques have been proven to be very useful tools in medical image 

analysis with tasks such as image classification, image segmentation or image 

detection. In deep learning, features such as edges or corners (low-level image 

properties) and higher-level image properties such as the spiculated border of 

a cancer are learned by a neural network to optimally give a result (or output) 

given an input. An example of a deep learning system could be the output 

‘cancer’ given the input of an image showing a cancer.  

Neural networks typically consist of many layers connected via many nonlinear 

intertwined relations. Even if one is to inspect all these layers and describe their 

relations, it is infeasible to fully comprehend how the neural network came to 

its decision. Therefore, deep learning is often considered a ‘black box’. Concern 

is mounting in various fields of application that these black boxes may be biased 

in some way, and that such bias goes unnoticed. Especially, in medical 

applications, this can have far-reaching consequences  [1]. 

Past years’ research focused on implementing innovative and powerful system 

architectures, pursuing the goal of providing the best possible solution to 

several tasks. This led to increasingly opaque and complex systems. At the 

same time, explainability and interpretability suffered under this trend, resulting 

in increased difficulty in understanding the prediction process and inner 

workings of emerging solutions [2] .  

As the number of parameters in machine learning models increases, it becomes 

more challenging for a human to understand the reasons behind a model’s 

decision, particular in critical domains like healthcare. A medical diagnosis 

system needs to be transparent, understandable, and explainable to gain the 

trust of physicians, regulators as well as the patients involved. Newer 

regulations like the European General Data Protection Regulation (GDPR) are 

making it harder for the use of black-box models in all business including 
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healthcare because retractability of the decisions is now a requirement [3]. In 

such cases, explainability becomes crucial for clinicians to comprehend the 

model’s decisions and gain confidence in confirming diagnosis.  

Research has focused on developing methods known as eXplainable Artificial 

Intelligence (XAI) to facilitate the explanation of a model’s decisions. Various 

XAI approaches have emerged, categorized broadly into two types: model-

agnostic and model-specific. Model-agnostic methods are designed to work 

with various machine learning models and do not depend on a specific 

architecture. On the other hand, model-specific methods are tailored to a 

particular type of model. By adopting these XAI methods, clinicians can gain 

specific insights into the results provided by the models and enhance their 

confidence. However, ensuring the credibility of these explanations 

necessitates the development of robust evaluation methodologies to assess 

their performance and determine their usefulness in practical applications. 

 

1.2 Problem Statement 

As mentioned above, XAI methods are of great importance in the healthcare 

domain. One of the most common medical images are Chest X-ray images (or 

CXR) that are widely used for the diagnosis of various chest pathologies. 

Distinguishing, between the different pathologies can be difficult due to the 

overlapping of the diseases or confusing abnormalities.  Last years, many CXR 

datasets have been published, such as ChestX-ray8 and ChestX-ray14 [4], 

Padchest [5], CheXpert [6] and MIMIC-CXR [7] (Error! Reference source not 

found.). These datasets are not manually annotated (NLP tools or automated 

rule-based labeller that extract keywords from medical reports are used), 

posing significant issues related to the quality of the labels.  

In 2020, VinBigData [8] (VINDr) Chest X-Ray Abnormalities Detection dataset 

was published, containing 18,000 posterior-anterior (PA) view CXR scans in 

DICOM format, which were di-identified to protect patient privacy. All images 

were labelled by 17 radiologists with at least 8 years of experience and they 

were manually annotated for the presence of 14 critical radiographic finding 
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visible in Error! Reference source not found., along with the “no-finding” label 

indicating the absence of disease.  

Table 1: An overview of existing public datasets for CXR interpretation. 

Dataset Release Year # findings # samples 

ChestX-ray8 [4] 2017 8 108,948 

ChestX-ray14 [4] 2017 14 112,120 

CheXpert [6] 2019 14 224,316 

PadChest [5] 2019 193 160,868 

MIMIC-CXR [7] 2019 14 377,110 

VinDr-CXR [8] 2020 28 18,000 

VinBigData [9] group performed a classification task using EfficientNet [10] to 

distinguish six common lung diseases, including pneumonia, tuberculosis, lung 

tumor, pleural effusion, other diseases and no finding class with a mean F1-

score of 0.631 and an object detection task using EfficientDet [11] to localize 

14 critical findings from the CXR images, i.e. cardiomegaly, opacity, 

consolidation, atelectasis, pneumothorax, pleural effusion, aortic enlargement, 

interstitial lung disease (ILD), infiltration, nodule/mass, pulmonary fibrosis, 

pleural thickening, calcification and other lesions with the free-response 

receiver operating characteristic (FROC) analysis achieving a sensitivity of 

80.2% at the rate of 1.0 false-positive lesion identified per scan.  
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Figure 1: Distribution of the various pathologies in the VINDr dataset. 

 

This research aims to develop an end-to-end method for the detection of CXR 

pathologies with a focus on employing eXplainable Artificial Intelligence (XAI) 

techniques and evaluating their efficacy. To this end, the VINDr dataset, 

sourced from kaggle, was chosen for its robustness, boasting high-quality 

labels provided by domain experts, along with detailed annotations highlighting 

critical findings in each CXR image. Building upon the groundwork laid by the 

VinBigData group [9] our study extends their efforts by undertaking a multilabel 

classification task. Specifically, we target six abnormalities identified within the 

VINDr dataset, in addition to categorizing healthy CXRs. This selection was 

made based on the prevalence of these abnormalities within the dataset, 

ensuring a representative sample of analysis. Impressively, our approach yields 

a noteworthy average micro F1 score of 0.81, signifying promising performance 

in pathology detection. Subsequently, we implement an explainability method 

to elucidate the salient features driving the classification decisions. Finally, 

thorough evaluation of the XAI method is conducted, encompassing 

comprehensive scrutiny of its effectiveness. In sum, this research 

encompasses the entirety of the classification process, the elucidation of crucial 

features via XAI, and meticulous evaluation, culminating in substantial findings 

poised to contribute significantly to the field of medical image analysis. 

https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/
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Our approach can be summarized as follows. The detection of the different 

pathologies is a multilabel task, where we input a chest X-ray image ang get 

seven labels (‘Aortic Enlargement’, ‘Cardiomegaly’, ‘Lung Opacity’, ‘Pleural 

Effusion’, ‘Pleural Thickening’, ‘Pulmonary Fibrosis’ and the ‘No-finding’ 

category indicating no disease) as output. These labels, denoted as yi, are 

taking values between 0 and 1 indicating the existence or not, of each 

pathology. We used a pretrained ResNet50 [12] model trained on the ImageNet 

dataset. ResNet50 is advantageous because it incorporates skip connections 

or residual connections. These connections make it easier for information to 

move through the network, addressing issues like the vanishing gradient 

problem. This feature proves helpful, especially when training very deep 

networks. 

To better understand the features involved to model’s decision, we adopted the 

Grad-Cam [13] explainability method which is widely used in medical imaging 

tasks and known for producing considerable results. In essence, Grad-Cam 

takes the gradient of the outputs with respect to the activation of the last 

convolution layer of the model, which is concerned to be the feature map with 

the more profound semantics. Subsequently, the heatmaps resulting from 

Grad-Cam are superimposed onto the original image to highlight important 

areas.     

One of the main goals of this study is the evaluation of the XAI methods, as it 

is crucial to develop trustworthy methods to be able to assess the model’s 

decision and introduce this pipeline to medical domain. Two evaluation paths 

are employed: 

1. The first method involves optical evaluation where the annotations of the 

different radiologists are compared with the respective heatmaps. The 

ground truth boxes of the diseases marked by the annotators are 

compared with the predicted bunding boxes generated form the 

heatmaps from Grad-Cam implementation. We computed the 

Intersection Over Union (IoU) metric to assess the overlapping between 

these boxes.  

2. In the second approach, we identify the most important pixels based on 

the Grad-Cam results. These significant pixels are then subjected to 
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Gaussian blurring or replaced with the mean values across all three 

channels with varying percentages of these key pixels replaced in each 

iteration. Subsequently, we feed these modified blurred images to the 

model and observe its resultant prediction. This procedure aids in 

comprehending the specific contribution of these pixels to the model’s 

final prediction. It serves as a means of assessing how changes in the 

pixels highlighted by Grad-Cam impact the prediction of each disease. 

The primary contribution of this research lies in the development of an end-to-

end pipeline for addressing the CXR classification problem. It offers insights 

into the application of eXpalinable Artificial Intelligence (XAI) methods in such 

tasks by proposing evaluation methodologies to assess their performance 

effectively. An overview of the pipeline is presented in Figure 2. In summary the 

key contributions include: 

• Utilizing a pretrained ResNet50 model for a multilabel task achieving 

state-of-the-art performance in CXR datasets with an average micro F1 

Score of 0.81 (ranging from 0.55 to 0.96) and AUC scores ranging from 

0.93 to 0.99. 

• Implementing the Grad-Cam explainability method to highlight important 

regions within CXR datasets. 

• Developing two evaluation paths (Intersection over Union and Pixel 

Importance Analysis) to assess the performance of XAI method. 

Results of the evaluation pipeline show interesting findings. A reduction in 

the prediction probability of each class is observed each time the crucial 

pixels of the image are replaced ranging from 0.1 to 0.7. IoU metric 

demonstrates alignment for the classes ‘Aortic Enlargement’ and 

‘Cardiomegaly’ with values 0.201 and 0.237, respectively). However, it does 

not yield significant results for the remaining classes. 
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Figure 2: An overview of the pipeline: An input CXR image is fed into the model for 

multilabel classification to identify apparent diseases, such as Aortic Enlragement and 

Cardiomegaly in this example. Heatmaps generated from Grad-Cam highlight regions 

of abnormalities. The images undergo transformations based on the most important 

pixels indicated by Grad-Cam. These modified images are then fed back into the 

model, and plots illustrating the changes in predictions are obtained. 
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2. BACKGROUND AND RELATED WORK 

2.1 Machine Learning Techniques, Dense Neural Networks, Convolution 

Neural Networks 

In recent years, various statistical machine learning techniques classifiers such 

as support vector machines and decision trees have been employed for image 

recognition and classification. However, the emergence of deep neural 

networks (DNNs) has led to significant advancements in image classification, 

particularly in tasks involving complex pattern and motif recognition. One of the 

most prominent architectures in this domain is the Convolution Neural Network 

(CNN). The name “convolutional” arises from the mathematical operation called 

convolution, which is pivotal to its functioning.  

CNNs have multiple layers, including convolutional layer, non-linearity 

activation layers (sigmoid, tanh, or ReLU), pooling layers and fully connected 

layers. While convolutional and fully connected layers feature learnable 

parameters, pooling and non-linear activations do not. This amalgamation of 

layers allows CNNs to exhibit exceptional performance in machine learning 

tasks [14]. 

• Convolution Layer 

The convolution layer is the core building block of CNN. This layer performs a 

dot product between two matrices, where one matrix is the set of learnable 

parameters (kernel or filter) and the other matrix is the restricted portion of the 

receptive field form the input image. The kernel is spatially smaller than an 

image but is deeper in terms of dimensions. For instance, if the image is 

composed of three (RGB) channels, the kernel’s height and width will be 

spatially compact, while its depth extends up to all three channels. 

During the forward pass, the kernel slides across the height and width of the 

image producing the image representation of each receptive region. This 

produces, two-dimensional representation of the image known as activation 

map or feature map depicting the kernel’s response at every spatial position. 

The sliding size of the kernel is called a stride.  
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If we have an input of size NxNxC and Dout number of kernels with a spatial 

size of F with stride S and amount of padding P, the output volume’s dimensions 

are determined by the following formula: 

𝑵𝒐𝒖𝒕 =  
𝑵 − 𝑭 + 𝟐𝑷

𝑺
+ 𝟏          (𝟏) 

This will yield an output volume of size Nout x Nout x Dout. 

CNNs possessed distinct characteristics that make them effective in pattern 

recognition problems compared to traditional artificial neural networks. A key 

trait is the reduction in learnable parameters of the network. In conventional 

neural networks, every output unit interacts with every input unit. In contrast, 

convolution neural networks exhibit sparse interaction due to their use of 

smaller kernels. For instance, an image can have millions or thousands of 

pixels, but while processing it using kernel, we can detect meaningful 

information that is of tens or hundreds of pixels. This means that we need to 

store fewer parameters that not only reduces the memory requirement of the 

model but also improves the statistical efficiency of the model. 

If computing one feature at a spatial point (x1, y1) is useful, then it should also 

be useful at some other spatial point (x2, y2). It means that for a single two-

dimensional slice i.e., for creating one activation map, neurons are constrained 

to use the same set of weights. In a traditional neural network, each element of 

the weight matrix is used once and then never revisited, while convolution 

network has shared parameters. 

Due to parameter sharing, the layers of convolution neural network will have a 

property of equivariance to translation. This property signifies that if we change 

the input in a way, the output will also be modified in the same way. 

• Pooling Layer 

Pooling layers play a role in subsampling the network’s output at specific 

locations by computing a summary statistic of nearby outputs. This helps in 

reducing the spatial dimensions of the representation, which decreases the 

required amount of computation individually. Common pooling functions include 

averaging over a rectangular neighborhood and max pooling, which retains the 

maximum output within a neighborhood.  
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• Fully Connected Layer 

Neurons in this layer have fully connectivity with all neurons in the preceding 

and succeeding layer. This is why it can be computed as usual by a matrix 

multiplication followed by a bias effect. The fully connected layer helps to map 

the representation between the input and the output. 

• Non-linearity Layers 

Since convolution is a linear operation, non-linearity layers are often placed 

directed after the convolutional layer to introduce non-linearity to the activation 

map. There are several types of non-linear operations, among the more popular 

are sigmoid, tanh and ReLU, with ReLU being the most widely used activation 

function. It computes the function 𝑓(𝑥) = max (𝑥, 0), essentially applying a 

threshold at zero [15]. 

 

Figure 3: Calculation of a single dot product. The calculation of the dot product 

involves an element-wise multiplication between convolutional filter and the matching 

grid in the input data. The resulting values are summed obtaining a single number that 

is stored in the central pixel in the feature map [16]. 
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Figure 4: A schematic of the VGG16 [17]. 

 

2.2 Residual Networks (ResNets) 

As mentioned before, Convolutional Neural Networks (CNNs) have made a 

significant breakthrough in image classification tasks. However, an important 

consideration is the extent to which we can optimize a model? Increasing the 

depth of a model can enhance its ability to recognize complex features and 

functions, potentially leading to improved accuracy results. This was the main 

idea behind VGG model architecture introduced by Karen Simonyan and 

Andrew Zisserman in 2015 [17]. 

Nevertheless, it has been observed, that the increasing the depth of a neural 

network does not necessarily conclude in better training accuracy. In fact, at a 

certain point the training error may start to increase instead of decreasing. This 

phenomenon is known as the degradation problem. It occurs when, as the 

network depth increases, the accuracy saturates and then begins to degrade 

rapidly if more layers are introduced (Figure 5). 
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Figure 5: Training error (left) and test error (right) in CIFAR-10 with 20-layer and 56-

layer “plain” networks. The deeper the network, the higher the training error, and thus 

the test error [12]. 

Researchers Kaiming He, Xiangyu Zhang and Shaoqing Ren [12] introduced in 

the paper Deep Residual Learning for Image Recognition the ResNets 

architecture where they address the degradation problem by introducing a deep 

residual framework. In ResNets, a technique called skip connections is used. 

Skip connections connects activations of a layer to further layers by skipping 

some layers in between. This forms a residual block. Instead of layers learning 

the underlying mapping, they allow the network to fit the residual mapping. 

Formally, denoting the desired underlying mapping as 𝐻(𝑥), they let the 

stacked nonlinear layer fit another mapping of 𝐹(𝑥) ∶= 𝐻(𝑥) − 𝑥. The original 

mapping is recast into 𝐹(𝑥) + 𝑥. They propose that is easier to optimize the 

residual mapping than to optimize the original. 

The formulation of 𝐹(𝑥) + 𝑥 has been realized by feedforward neural networks 

with shortcuts connections, which skip one or more layers. In case of ResNets 

shortcut connections perform identity mapping, and their outputs are added to 

the outputs of the stacked layers. They adopt residual learning to every few 

stacked layers. A building block is shown in Figure 6 and is defined as: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥     (2) 

Here x and y are the input and the output vectors of the layers considered. The 

function 𝐹(𝑥, {𝑊𝑖}) represents the residual mapping to be learned. For example, 
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in  that has two layers, 𝐹 =

𝑊2𝜎(𝑊1𝑥) in which σ denotes ReLU. The operation 𝐹(𝑥) + 𝑥 is performed by a 

shortcut connection and element-wise addition. The second nonlinearity is 

adopted after the addition 𝜎(𝑦). Shortcut connections introduce neither extra 

parameter nor computation complexity, enabling the comparisons between 

plain and residual networks. It should be noted that the dimensions of x and F 

must be equal in equation 2.  

 

Figure 6: Residual learning: a building block [12]. 
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Figure 7: Example network architectures for ImageNet. Left: the VGG-19 model (19.6 

billion FLOPs) as a reference. Middle: a plain network with 34 parameters layers (3.6 

billion FLOPs) as a reference. Right: a residual network with 34 parameters layers (3.6 

billion FLOPs). The dotted shortcuts increase dimension so a stride of 2 is used [12]. 
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2.3 Overview of XAI Methods 

 

2.3.1 Taxonomy of XAI Methods 

In general, there exist various classifications of the different explainability 

methods, depending on the method’s characteristics. These methods can be 

concurrently grouped into many over-lapping or non-overlapping categories [3]. 

We present some of the criteria employed in the categorization of the XAI 

methods, and a summarizing flowchart is shown in Figure 8.  

• Model Specific or Model Agnostic 

Model-specific interpretation methods are based on the parameters inherent to 

individual models. In contrast model-agnostic methods are independent of a 

model’s internal parameters they are applicable in post-hoc analysis. 

Consequently, these methods can be used on any machine learning model. 

• Local or global Method 

Local interpretable methods are applicable to a single prediction of the model. 

This can be done by designing methods that can explain the reason for a 

particular prediction focusing on specific features and their attributes. On the 

contrary, global methods concentrate on the inside of a model by exploiting the 

overall knowledge about the model, its training, and the associated data. It tries 

to explain the behaviour of the model in general. Feature importance is a 

representative example of this method, which tries to figure out the features 

which are in general responsible for better performance of the model among all 

different features. 

• Surrogate Methods or Visualization Methods 

Surrogate methods consist of different models as an ensemble which are used 

to analyse other black-box models. The black box models can be understood 

better by interpreting surrogate model’s decision. The decision tree is an 

example of surrogate methods. The visualization methods are not a different 

model, but it helps to explain some parts of the models by visual understanding 

like activation maps [3]. 
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Figure 8: Taxonomy of XAI methods [3]. 

2.3.2 XAI Methods 

Pixel attribution methods highlight the pixels that were relevant for a certain 

image classification by a neural network.  

2.3.2.1 Occlusion – or perturbation-based 

Methods like SHAP and LIME manipulate parts of the image to generate 

explanations. These methods investigate properties of DNNs by perturbating 

the input of a model. One of the most popular model-agnostic method is LIME 

(Local Interpretable Model-Agnostic Explanations) proposed by Ribeiro et al in 

2016 (18). In this paper, the authors propose a concrete implementation of local 

surrogate models. Surrogate models are trained to approximate the predictions 

of the underlying black box model. The main idea is that LIME generates a new 

dataset consisting of perturbed samples and the corresponding predictions of 

the black box model. On this new dataset LIME trains an interpretable model, 

which is weighted by the proximity of the sampled instances to instance of 

interest. 

Another famous method is SHAP (Shapley Additive exPLanations) by 

Lundeberg and Lee (2017) [19]. The goal of SHAP is to explain the prediction 

of an instance x by computing the contribution of each feature to the prediction. 

The SHAP explanation method computes Shapley values from coalitional game 

theory. The feature values of a data instance act as players in a coalition. 
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Shapley values implies how to fairly distribute the prediction among the 

features. A player could be an individual feature (tabular data) or a group of 

features – superpixels (image data) [20]. 

2.3.2.2 Gradient based methods [20]. 

Many methods compute the gradient of the prediction (or classification score) 

with respect to the input features. The gradient-based methods mostly differ in 

how the gradient is computed. Some of the most widely used gradient-based 

methods are Vanilla Gradient (Saliency Map), DeconvNet, Grad-Cam, Guided 

Grad-Cam, Smooth-Grad, and Layer Wise Propagation (LRP). 

• Vanilla Gradient (Saliency Map) 

One of the first pixel attribution methods is Vanilla Gradient introduced be 

Simonyan et al. (2013) [21]. The idea behind this method is to calculate the 

gradient of the loss function for the class in interest with respect to the input 

pixels. This provides us with a map of the size of the input features with negative 

to positive values. The recipe for this approach is:  

1. Perform a forward pass of the image of interest. 

2. Compute the gradient of class score of interest with respect to the input 

pixels: 

𝐸𝑔𝑟𝑎𝑑(𝐼0) =  
𝛿𝑆𝑐
𝛿𝐼
|
𝐼= 𝐼0

     (3) 

Here we set all other classes to zero. 

3. Visualize the gradients. You can either show the absolute values or 

highlight negative and positive contributions separately. 

Vanilla Gradient has a saturation problem, when ReLU is used, and the 

activation at the previous layer is below zero, then the activation is capped at 

zero and does not change anymore.  

• Deconvolution Network (DeconvNet) 

In 2014 DeconvNet was proposed by Zeiler and Fergus [22]. The goal of 

DeconvNet is to reverse a neural network and the paper proposed operations 

that are reversals of the filtering, pooling, and activation layers. DeconvNet is 
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equivalent to Vanilla Gradient, but it makes a different choice for 

backpropagating the gradient through ReLU: 

𝑅𝑛 = 𝑅𝑛+1𝐼(𝑅𝑛+1 > 0)     (4) 

where Rn and Rn+1 are the layer reconstructions and I the indicator function. 

When backpropagating from layer n+1 to layer n, DeconvNet remembers which 

of the activations in layer n+1 was set to zero in the forward pass and sets them 

to zero in layer n. Activations with negative value in layer n+1 are set to zero in 

layer n. 

• Layer Wise Propagation (LRP) 

Layer Wise Propagation (LRP) is an XAI method proposed by Gregoire 

Montavon and Sebastian Blach [23] and is based on deep Taylor 

decomposition. The basic idea is to associate to every pixel (p) of the input 

image a relevance score Rp(x), that indicates for an image x to what extent the 

pixel p contributes to explaining the classification decision f(x). The relevance 

of each pixel can be stored in a heatmap denoted by R(x) = {Rp(x)} of same 

dimensions as the image x. The heatmap can therefore also be visualized as 

an image. The method begins from the last layer by taking the relevance score 

of the output and redistributes in the proceeding layers, till the input image. The 

equation behind this process is the following: 

𝑅𝑖 = ∑
𝑤𝑖𝑗
2

∑ 𝑤𝑖′𝑗
2

𝑖′

𝑅𝑗      (5)

𝑗

 

Where Ri and Rj are the relevance scores at layers i and j respectively and w ij 

the weights that connect these layers. 

• Grad-Cam (Gradient-weighted Class Activation Map) 

Grad-Cam (Gradient-weighted Class Activation Map) described in the paper 

[13] by Reamparasaath R. Selavaraju et al. uses the gradients of any target 

concept (say a dog in a classification network or a sequence of words in 

captioning network) flowing into the final convolutional layer to produce a 

coarse localization map highlighting the important regions in the image for 

predicting the concept. The difference with the previous methods is that here 
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we do not backpropagate all the way back to the image, but (usually) to the last 

convolution layer. More details in Grad-Cam will be given in chapter 3.1. 

• Guided Grad-CAM 

Since Grad Cam uses the last convolution layer, one can suggests that the 

convolution feature maps have a much coarser resolution compared to the input 

image. In contrast, other attribution methods backpropagate all the way to the 

input pixels. They are therefore much more detailed and can show individual 

edges or spots that contributed most to a prediction. A fusion of both method is 

called Guided Grad-CAM. The idea is that one can compute for an image both 

the Grad Cam explanation and the explanation from another attribution method, 

such as Vanilla Gradient. The Grad Cam output is then unsampled with bilinear 

interpolation, then both maps are multiplied element-wise Grad Cam works like 

a lens that focuses on specific parts of the pixel-wise attribution map.  

• SmoothGrad  

The idea of SmoothGrad by Smilkov et al. [24] is to make gradient-based 

explanations less noisy by adding noise and averaging over these artificially 

noisy gradients. SmoothGrad is not a standard explanation method, but an 

extension to any gradient-based method.  

In Figure 9 presented below, various instances depict the application of distinct 

Explainable Artificial Intelligence (XAI) methods trained with VGG-16 [17] on 

the ImageNet dataset. The corresponding images are accompanied by the 

classification scores assigned by the neural network. Upon closer examination 

of these examples, it becomes clear that assessing the reliability of an 

explanation method poses a considerable challenge. Certain explanations 

resonate with human intuition, such as the clear highlighting of an octopus by 

SmoothGrad and vanilla methods, or the accurate identification of a dog in the 

initial image. However, it is notable that in some instances, Grad-Cam appears 

to produce results that may be perceived as less coherent. 

A notable challenge inherent in most XAI methods is the absence of a definitive 

ground truth for the explanations they provide. Consequently, at this juncture, 

our evaluation is limited to accepting or rejecting an explanation based on its 

interpretability and alignment with human understanding. The inherent 
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ambiguity underscores the complexity of evaluating XAI methods and 

emphasizes the need for careful consideration in accepting or dismissing 

explanations within the given context [20]. 

 

 

Figure 9: a) Images of a dog classified as greyhound (35%), a ramen soup classified as 

soup bowl (50%) and octopus classified as eel (70%). b) Pixel Attributions or saliency 

maps for the Vanilla Gradient method, Vanilla Gradient + SmoothGrad and Grad-Cam 

[20]. 

 

2.3.2.3 Path-Attribution Methods / Integrated Gradients (IG) 

There are also path-attribution methods which compare the current image to a 

reference image, which can be an artificial “zero” image such as a completely 

grey image. The difference in actual and baseline prediction is divided among 
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the pixels. Integrated Gradients (IG) [25] is a widely used model-specific 

method of this category. It computes the gradient of the model’s prediction 

output to its input features and requires no modification to the original deep 

neural network.  

For the explanation of Integrated Gradients, suppose we have a function F:Rn 

→ [0,1] that represents a deep network. Specifically, let x ∈ Rn be the input at 

hand and x’ ∈ Rn be the baseline input. For image networks, the baseline could 

be a black image. We consider the straightline path (in Rn) from the baseline x’ 

to the input x and compute the gradients at all points along the path. Integrated 

gradients are obtained by cumulating these gradients. Specifically, integrated 

gradients are defined as the path integral of the gradients along the straightline 

path from the baseline x’ to the input x. 

Consequently, the gradients are computed to measure the relation between the 

change in one feature and the change in the output of the model. Gradients 

inform us which pixel has the more powerful impact to the predicted class of the 

model.  

The integrated gradient along the ith dimension for an input x and baseline x’ is 

defined as follows: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖(𝑥) ∷= (𝑥𝑖 − 𝑥𝑖
′) × ∫

𝜃𝐹(𝑥′ + 𝑎 × (𝑥 − 𝑥′))

𝜃𝑥𝑖
𝑑𝑎

1

𝑎=0

     (6) 

Here, 
𝜃𝐹(𝑥)

𝜃𝑥𝑖
 is the gradient of the F(x) along the ith dimension. 

 

2.4 Background 

 

Several studies have been published with the use of convolution neural 

networks for classification tasks in the medical domain, with impressive 

accuracy rates. The classification tasks in medical imaging could be Magnetic 

Resonance Imaging (MRI) (brain tumour detection [26], [27]), chest X-Rays 

(binary or multi class classification [28], [29], [4]) images. As mentioned before 

the use of machine learning techniques in the medical domain is of great 

importance. To make this happen, the black box nature of neural networks 
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should be overcome. Because of this, the use of XAI methods in these 

classification tasks has been of critical importance. For example, Windisch et 

al. [26] used Grad Cam to show which areas of brain MRI made the classifier 

decide on the presence of tumor and Böhle et al. [30] used LRP for identifying 

regions responsible for Alzheimer’s disease from brain MRI images.   

Chest X-ray (CXR) images are very important in the diagnosis about a patient’s 

condition, consequently the correct classification and interpretability of such 

images should be considered. The distinguish between the various pulmonary 

diseases is challenging due to their high-inter class similarities and low inner-

class variant abnormalities, especially given the complex nature of radiographs 

and the complex anatomy of chest [28]. 

With the outbreak of COVID-19 pandemic, numerous classification studies 

have been published, focusing on distinguishing COVID-19 disease, 

pneumonia, and healthy lung conditions. In paper [31], the authors employed a 

VGG-16 architecture to analyze 6,523 chest X-Rays collected from various 

medical institutes. Their model achieved a notable 96% accuracy in discerning 

between healthy chest X-rays and those indicative of pulmonary diseases. 

Moreover, the classification performance was impressive, with a 98% accuracy 

in correctly identifying images associated with COVID-19 or other health 

conditions. Additionally, the authors employed the Grad-Cam XAI method to 

elucidate critical regions in the X-rays, enhancing the interpretability of their 

model for COVID-19 prediction, illustrated in Figure 10. 
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Figure 10: Examples of COVID-19 model activation maps [31]. 

 

Many state-of-the-art methods have made efforts for the multilabel 

classification problem. For instance, Wang et al. [4] developed an ChestX-Ray 

8 dataset, which comprises 108,948 frontal-view X-ray images of 32,717 unique 

patients with text-mined eight disease image labels (where each image can 

have multi-labels), from the associated radiological reports using natural 

language processing Figure 11. They utilized the ImageNet pretrained deep 

CNN models, i.e., AlexNet [32], VGGNet [17], GoogleNet [33] and ResNet [12], 

to perform multi-label thoracic disease classification, which led to mass 

enthusiasm for the automated CXR analysis task. Their model achieved high 

AUC scores for class ‘Cardiomegaly’, while facing challenges with classes such 

as ‘mass’ due to its huge within-class appearance variation or ‘Pneumonia’, 
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possibly due to the limited instances in their patient population (less than 1% of 

total instances).  

In their evaluation, Wang et al. utilized Intersection Over Union (IoU) metric to 

estimate the overlap between the predicted and the ground truth bounding 

boxes. Additionally, they considered the Intersection over the detected B-Box 

area ratio (BBIoU) which focused on the predicted area, unlike IoU which 

considers the union, BBIoU becomes relevant when there is no high overlap 

between the predicted bounding box and the ground truth area but still captures 

a considerable portion. The results, as illustrated in Figure 12, demonstrate 

better agreement, particularly in the case of ‘Cardiomegaly’ class.    

 

Figure 11: Eight common thoracic diseases observed in chest X-rays that validate a 

challenging task of fully automated diagnosis [4]. 

 

Figure 12: Localization result from ‘Cardiomegaly’ class. Correct bounding box (in 

green), false positive (in red) and the ground truth (in blue) are plotted over the original 

image [4]. 
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Rajpurkar et al. [29] developed an algorithm CheXNet for the detection of lung-

pneumonia on the ChestX-ray14 dataset with 112,120 frontal-view X-ray 

images with 14 diseases, where the test dataset is annotated by four 

radiologists. CheXNet is a 121-layer Dense Convolutional Network [34] that 

inputs a chest X-ray image and outputs the probability of pneumonia along with 

a heatmap provided by cam algorithm localizing the areas of the image more 

indicative of pneumonia (Figure 13). They compared f1 metric of their model 

with that of the annotators and they realized that their performance exceeds 

average radiologist performance on the f1 metric. They even extend CheXNet 

to detect all 14 diseases in ChestX-ray14 with very promising results. 

In 2019, CheXpert [6] dataset was published consisting of 224,316 chest 

radiographs of 65,240 patients from Stanford Hospital, where the presence of 

14 observations in radiology reports was detected, capturing uncertainties 

inherent in radiograph interpretation. Different uncertainty policies for the 

training of the convolutional neural networks were investigated that led to useful 

results in different pathologies. The test dataset consists of 500 chestX-rays 

annotated by a consensus of 5 board-certified radiologists. The authors 

compared the performance of their model with that of 3 additional radiologists 

in the detection of 5 selected pathologies.  

The training procedure compared different models and concluded that 

DenseNet-121 [34] produced the best results, so they performed all the 

experiments with DenseNet. As they use different uncertainty policies the 

choose the best 10 checkpoints per run using the average AUC across the 

competition tasks. They run each model three times and take the ensemble of 

the 30 generated checkpoints by computing the mean of the output probabilities 

over the 30 models. They manage impressive AUC scores (the best is 0.97 for 

Pleural Effusion and the worst is 0.85 for Atelectasis). The model achieves 

higher results performance than the 3 radiologists on the test set in most of the 

cases. Finally, they visualize the areas of the radiograph which the model 

predicts to be most indicative of each observation using Grad-Cam (Figure 14). 

In 2021 Hieu H. Pham et al. [9] developed an explainable deep learning system 

called VinDr-CXR, that can classify a CXR scan into multiple thoracic diseases, 

and at the same time, localize most types of critical findings on the image. 
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VinDr-CXR was trained on 51,485 CXR scans [8] with radiologist-provided 

bounding box annotations. The model’s performance was validated on a 

separate set of 3,000 CXR scans, resulting in an F1 score of 0.631. The core 

of the VinDr-CXR system is based on DL-networks EfficientNet [10] and 

EfficientDet [11]. To assess robustness of their system, the researchers 

conducted evaluations on different datasets, including CheXpert [6] and 

CheXphoto [35]. 

 

Figure 13: CheXNet is a 121-layer 

convolutional neural network that takes a 

chest X-ray image as input, and outputs 

the probability of a pathology. On this 

example, CheXNet correctly detects 

pneumonia and localizes areas in the 

image indicative of the pathology [29].  

 

Figure 14: Frontal and lateral radiographs 

of the chest in a patient with bilateral 

pleural effusions on both the frontal (top) 

and the lateral (bottom) views, with 

predicted probabilities p = 0.936 and p = 

0.939 in the frontal and lateral views 

respectively [6]. 
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3. XAI METHODS AND EVALUATION TECHNIQUES 

3.1 Grad Cam 

The main method employed in this research is Grad-Cam. According to the 

research cited in [2], Grad-Cam has gained popularity among various 

explainability methods in the medical domain over the last few years, as shown 

in Error! Reference source not found.. Grad-Cam was introduced by 

researchers in 2017 in paper ‘Grad Cam: Visual Explanations from Deep 

Networks via Gradient-based Localization’ [13]. Grad-Cam, like other pixel 

attribution techniques, assigns each neuron a relevance score for the decision 

of interest. This decision of interest could be the class prediction (output layer), 

but theoretically it could be any other layer in the neural network. It can be used 

with different CNNs including fully connected layers, for structured output such 

as captioning and in multi-task outputs and for reinforcement learning [20]. 

 

Figure 15: Annual development of Top 5 saliency-based XAI methods applied in 

medical image analysis based on the total number of citations [2]. 

Several previous works have asserted that deeper representations in a CNN 

capture higher-level visual constructs. Furthermore, convolutional layers 

naturally retain spatial information, which is lost in fully connected layers, so we 

can expect the last convolutional layers to have the best compromise between 

high-level semantics and detailed spatial information. The neurons in these 

layers look for semantic class-specific information in the image like object parts. 

Grad-Cam uses the gradient information flowing into the last convolution layer 
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of the CNN to assign importance values to each neuron for a particular decision 

of interest [13]. 

The goal of Grad-Cam is to understand which parts of an image, a convolution 

layer searches for a certain classification. To understand how CNN makes 

decisions, Grad-Cam analyzes which regions are activated in the feature maps 

of the last convolutional layers. There are k feature maps in the last 

convolutional layer, which are noted as A1, A2, …., Ak. Grad-Cam is interested 

in deciding which of the feature k maps is important for our class of interest c, 

by setting all the other classes to zero. As shown in Figure 16, in order to obtain 

class-discriminative localization map Grad Cam, 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝ𝑢 𝑥 𝑣 of width u 

and height v for any class c, we first compute the gradient score for class c, 𝑦𝑐 

(before the softmax), with respect to feature map activations 𝐴𝑘 of a convolution 

layer, i.e. 
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘 . These gradients flowing back are global-average-pooled over the 

width and height dimensions (indexed by i and j respectively) to obtain the 

neuron importance weights 𝑎𝑘
𝑐 . 

𝑎𝑘
𝑐 =

1

𝑍
∑ 
𝑖

∑
𝑗

⏞  
𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

⏟
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 𝑣𝑖𝑎 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝

     (6) 

 

where 𝐴𝑖,𝑗
𝑘  is a neuron positioned at (i,j) in the (u,v) feature map 𝐴𝑘  and 𝑍 =

𝑢 𝑥 𝑣. During computation of 𝑎𝑘
𝑐  while backpropagating gradients with respect 

to activations, the exact computation amounts to successive matrix products of 

the weight matrices and the gradient with respect to the activation functions till 

the final convolution layer that the gradients are being propagated to. Hence, 

this weight 𝑎𝑘
𝑐  represents a partial linearization of the deep network downstream 

from A, and captures the ‘importance’ of feature map k for a target class c. 

We perform a weighted combination of forward activations maps, and follow it 

by a ReLU to obtain, 

𝐿𝐺𝑟𝑎𝑑=𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑𝑎𝑘

𝑐𝐴𝑘

𝑘

)
⏟      

𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

     (7) 
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The resulting heatmap will have the same dimensions as the convolutional 

feature map, which in the case of ResNet50 is 7 x 7. We apply a ReLU to the 

linear combination of maps because we are only interested in the features that 

have a positive influence on the class of interest, i.e. pixels whose intensity 

should be increased to increase 𝑦𝑐. Negative pixels are likely to belong to other 

categories in the image. As expected, without this ReLU, localization maps 

sometimes highlight more than just the desired class and perform worse at 

localization.  

Practitioners can use the CAM family of the methods to determine, given an 

input and a class, what is the information in the input that gives evidence for 

that class. Based on this information the practitioner can determine to what 

extent model predictions can be interpreted and assess for which classes 

consistent model predictions can expected. For example, if we have two models 

where both models have the same accuracy score, a model that produces 

heatmaps consistent with human experience is often considered more 

trustworthy compared to one where the heatmaps correspond poorly to human 

experience. Practitioners can also use the CAM family of methods to determine 

if there is an unfavourable class bias that the model is picking up on e.g., skin 

colour.  

To sum up, the steps that are followed in Grad-Cam to obtain the localization 

map, 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝ𝑢 𝑥 𝑣, are the following: 

1. Forward-propagate the input image through the convolutional neural 

network. 

2. Obtain the raw score for the class of interest, meaning the activation of 

the neuron before the softmax layer. 

3. Set all other class activations to zero. 

4. Back-propagate the gradient of the class of interest to the last 

convolution layer before the fully connected layers: 
𝜕𝑦𝑐

𝜕𝐴𝑘
. 

5. Weight each feature map “pixel” by the gradient for the class. Indices i 

and j refer to the width and height dimensions. 

6. Calculate an average of the feature maps, weighted per pixel by the 

gradient. 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 47 

 

7. Apply ReLU to the averaged feature map. 

8. For visualization: Scale values to the interval 0 and 1. Upscale the image 

and overlay it over the original image. 

 

Figure 16: An overview of the Grad-Cam. Given an image and a class of interest (e.g. 

‘tiger cat’ as input, we forward propagate the image through the CNN part of the model 

and through task-specific computations to obtain a raw score for the category. The 

gradients are set to zero for all classes except the desired class (‘tiger cat’), which is set 

to 1. This signal is then backpropagated to the rectified convolutional feature maps of 

interest, which we combine to compute the coarse Grad-Cam localization (blue heatmap) 

which represents where the model has to look to make the particular decision [13]. 

 

3.2 SmoothGrad [20] 

We also use SmoothGrad in combination with Grad Cam to examine if we have 

more located explanations. The main idea of SmoothGrad is to add noise to 

multiple samples and average the resulting heatmaps. SmoothGrad works in 

the following way: 

1. Generate multiple versions of the image of interest by adding noise to it. 

2. Create pixel attribution maps for all images. 

3. Average the pixel attribution maps. 

It is quite a simple idea, that according to the theory it should work as the 

derivative fluctuates greatly at small scales. Neural networks have no incentive 

during training to keep the gradients smooth, their goal is to classify images 

correctly. Averaging over multiple maps “smooths out” these fluctuations: 
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𝑅𝑠𝑔(𝑥)  =  
1

𝑁
∑𝑅

𝑛

𝑖=1

(𝑥 + 𝑔𝑖)     (8) 

here, 𝑔𝑖~𝑁(0, 𝜎
2) are noise vectors sampled from the Gaussian distribution. 

The most appropriate noise level depends on the input image and the network. 

The authors suggest noise level of 10% - 20%, which means 
𝜎

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 should 

be between 0.1 and 0.2, as this level balances sharpness and structure of the 

image. The limits xmin and xmax refer to minimum and maximum pixel values of 

the image. The other parameter is the number of samples, denoted as n, for 

which it is suggested to use n=50, since there are diminishing returns above 

that.  

 

3.3  Evaluation of XAI methods 

Given that we have the output of a model, which is likely a prediction in a 

classification task, our primary concern is to understand the rationale before the 

model’s decision. However, in addition to this, we also require an evaluation 

metric to assess the quality of this explanation. Practitioners need to know 

whether they can trust the explanation that may be returned, as there are cases 

where explanations may lead to misinterpretation. As mentioned earlier, there 

is a challenge with XAI methods, as there is no ground truth available for these 

explanations. In addition, the favourable evaluation metric may vary lot 

according to the specific evaluation goal and oriented user groups [36]. 

Consequently, several suggestions have been put forth to enable the evaluation 

of XAI methods. Some of these suggestions will be described in the following 

paragraphs. 

According to Gabriëlle Ras et al. Guide [36], there are two main approaches for 

evaluating explanations. The first is to devise an objective metric or benchmark 

to evaluate the explanations without human intervention. This approach has the 

benefit of being able to compare numerous explanations with each other. Given 

that visualization methods that produce heatmaps are a popular intuitive type 

of explanation method, it has gained most of the attention in the subfield of 

evaluation explanation. The second approach involves involving a human in the 

assessment of the explanation. By using professionals, such as radiologists for 
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a medical image analysis, to evaluate an explanation, we can investigate to 

what extent the explanation aligns with the human’s potential decision. 

 

3.3.1 Evaluating heatmaps based on human experts. 

One way to assess explanations using a human baseline is to examine the 

degree of alignment between model-generated explanations and those 

provided by humans. One approach could be to let domain experts test the 

explanation based on their expertise. An alternative method involves comparing 

a radiologist’s manually annotated tumor with the size and location of the region 

highlighted by the explainability method using a specific metric. However, this 

can be challenging in the context of medical image analysis, as obtaining 

manual annotations is a resource-intensive process. This approach offers the 

advantage of determining the interpretability and utility of the specific setting 

and explanation method for individuals who will be using them.  

3.3.2 Evaluating heatmaps based on experiments. 

A common approach is to introduce perturbation-based method for evaluating 

the quality of heatmaps. Using this method, one can replace the region of the 

image that corresponds to the highlighted area by the heatmap with randomly 

uniform data and check how much the classification score changes. According 

to this metric, the more the classification score changes the better the heatmap 

corresponds to class-discriminative features. This is a method that is 

represented in numerous papers as evaluating XAI methods [37], [38]. 

However, Hook et al. [39] argues that the perturbation-based method violates 

the assumption that the training and evaluation data come from the same 

distribution. In response, they propose a benchmark for evaluating feature 

importance estimates in DNNs. Their benchmark is called ROAR: RemOve and 

Retrain. The goal of ROAR is to determine whether the removal of important 

information caused classification degradation or whether the introduction of the 

so-called uninformative information caused the modified images to go out of 

distribution, thereby causing classification degradation. It replaces the fraction 

of pixels deemed important according to some heatmap with the channel mean, 

like perturbation-based methods. The difference with their method is that they 
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remove the same percentage of important pixels both in the training and test 

data with the channel mean of the image. Finally, the train separate models on 

the modified data and evaluates the classification accuracy. If the accuracy of 

the re-trained model goes down, we can conclude more safely that the removed 

information caused the classification degradation.  

Methods like [40] investigate the reliability of heatmaps by modifying the input 

with information that does not change the classification result and checking how 

the heatmaps change as a result. They find that various visualization methods 

are vulnerable to input modification and return incorrect heatmaps as a result. 

The main conclusion is that many visualization methods are unreliable because 

they do not satisfy input invariance.  

In contrast to the previous methods, Vu et al. [41] suggests a metric to evaluate 

heatmaps based on perturbing regions that are not indicate as important by the 

xai method. Their metric is called c-Eval, where c is a number that indicates 

how robust the classifier is to perturbations in regions indicated as important. 

This method indirectly measures how accurate the heatmaps are: the larger the 

c, the more robust the classifier, the more accurate the explanation method is 

at identifying class-discriminating features. Using c-Eval they compare various 

explanation methods and find that there is a significant difference in the quality 

of heatmaps produced by black-box models (e.g. SHAP, LIME) compared to 

back-propagation based methods (e.g., LRP). 

Adebayo et al. [42] proposes two sanity checks for evaluating the quality of 

heatmaps. The first is the model parameter randomization test, and it compares 

heatmaps generated by a trained model with heatmaps generated by a 

randomly initialized model. If the output is similar, the explanation method is 

insensitive to model properties such as the weights. The second sanity check 

is the data randomization test, and it compares heatmaps generated by a model 

trained on the original dataset with heatmaps generated by a model trained on 

a version of the dataset where all the labels have been randomly permuted. If 

the heatmaps are similar, it indicates that the explanation method is not 

dependent on the relationship between the data and the labels that exist in the 

original data. The distance between the heatmaps is measured using various 

similarity metrics. 
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3.4 Evaluation in this research 

In this research, we adopted two primary approaches to evaluate our results. 

The first approach involves comparing the resulting heatmaps with the 

annotated images of our dataset and utilizing the Intersection Over Union (IoU) 

metric. The second approach entails replacing a varying percentage of the most 

important pixels and examine the classification scores for each class. 

3.4.1 Intersection over Union (IoU) 

Intersection over Union is a common evaluation metric in the field of computer 

vision and image segmentation. It is useful for assessing the performance of 

object detection and image segmentation algorithms. It expresses the degree 

of overlap between a ground truth box and a predicted box. IoU is calculated 

as the ratio of the intersection area to the union area, where intersection is the 

region where the predicted object and the actual object coincide, and the union 

is the combined area of the predicted and the actual object. It is calculated as: 

IoU =
Intersection Area

Union Area
=
|A ∩ B|

|A ∪ B|
      (8) 

where A and B are the prediction and the ground truth area respectively. The 

IoU value typically ranges from 0 to 1, where: 

⚫ IoU = 0 means no overlap between the predicted and ground truth 

regions. 

⚫ IoU = 1 indicates a perfect match, where the predicted region precisely 

matches the ground truth region. 

 

Figure 17: Intersection of two boxes. 

The steps to calculate IoU are: 



Explainable Artificial Intelligence for Deep Learning Methods in Chest X-Ray Classification 

T. Chrysoula                                                                                                                                                                 52 

 

1. Calculate the top left corner of the intersection, we compare the top left 

corners of each of the boxes. 

X_intersection_left = max(x1, x3) 

Y_intersection_left = max(y1, y3) 

Calculate the bottom right corner of the intersection, we compare the 

bottom right corners of each of the boxes. 

X_intersection_right = max(x2, x4) 

Y_intersection_right = max(y2, y4) 

2. Check if there is an actual intersection by ensuring that x_intersection_right 

and y_intersection_right is greater than zero. If either of them is less than 

or equal to zero, there is no intersection. 

3. Calculate the area of the intersection: 

 Width_inter = (x_intersection_right - x_intersection_left) 

 Height_inter = (y_intersection_right - y_intersection_left) 

 Area_intersection = width_inter x height_inter 

4. Calculate the area of the bounding box: 

 Area_box1 = (x2-x1) x (y2-y1) 

 Area_box2 = (x4-x3) x (y4-y3) 

5. Calculate the area of the union: 

 Area_union = area_box1 + area_box2  

6. Calculate IoU: 

 IoU = area_intersection / area_union 

Given that our dataset contains annotated ground truth boxes for the different 

pathologies each delineated by different radiologists, we decided to evaluate 

our results by generating bounding boxes with varying proportions of the most 

significant pixels found in the resulting heatmaps. We then employed 

Intersection over Union (IoU) metric to measure the degree of alignment 

between these newly created bounding boxes and the ground truth boxes only 

for the classes that are predicted correctly from our model. 
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Since the ground truth boxes originate from multiple radiologists and thus 

exhibit variation, we perform comparisons between our bounding boxes and all 

the radiologists’ boxes for each pathology class. Subsequently, we calculate 

the mean IoU across these comparisons to provide comprehensive evaluation.  

3.4.2 Pixel Importance Analysis  

In the second approach used for evaluation, by using the resulted heatmaps by 

Grad-Cam implementation, we identify crucial pixels influencing predictions 

across the different classes. The identified pixel important thresholds include 

0.02, 0.05, 0.1, 0.2 and 0.5. Subsequently, we conduct an extraction of these 

pivotal pixels, replacing them either with the mean values across all three 

channels or through Gaussian blurring.  

The transformed images are then subjected to our pretrained model, and 

predictions are analysed for each specific class. A comparative examination is 

performed between the modified predictions and the original model predictions 

on the unaltered images. This methodology aims to enhance the interpretability 

of the model by elucidating the impact of the individual pixels on predictions 

and understanding how image transformations affect the classification 

outcomes.  
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4. MACHINE LEARNING PIPELINE FOR XAI METHODS IN 

CHEST X-RAY CLASSIFICATION TASK 

4.1 Dataset 

As mentioned before, the dataset used in this research is the VinDr-CXR 

dataset created by Vingroup Big Data Institute (VinBigData, [8]) with more than 

100,000 images in DICOM format that were retrospectively collected from the 

Hospital 108 (H108) and Hanoi Medical University Hospital (HMUH), two of the 

largest hospitals in Vietnam. The published dataset consists of 18,000 postero-

anterior (PA) view CXR scans that come with both the localization of critical 

findings and the classification of common thoracic diseases. The images were 

annotated by a group of 17 radiologists with at least 8 years of experience for 

the presence of 22 critical findings (local labels) and 6 diagnoses (global labels); 

each finding is localized with a bounding box. The local and global labels 

correspond to the “Findings” and “Impressions” sections, respectively, of a 

standard radiology report. Subsequently they divide the dataset into two parts: 

the training set of 15,000 scans and the test set of 3,000 scans. Each image on 

the training set was independently labeled by 3 radiologists. The labeling 

process was performed via an in-house system called VinDrLab, which was 

built in top of a Picture Archiving and Communication System (PACs).  

In this research, a slightly modified version of this dataset is used published in 

Kaggle platform (https://www.kaggle.com/c/vinbigdata-chest-xray-

abnormalities-detection/). We use only the training set of the dataset which we 

split into three parts: training set, validation set, and test set with a ratio of 

0.8:0.1:0.1 respectively. All the images are transformed to jpg format and 

resized to 512x512 while the boxes coordinates were rescaled to this size. 

As can be seen in Error! Reference source not found., there is an imbalance 

of the dataset, where the healthy images are much more than the images 

annotated with a thoracic disease. For this reason, six classes were finally 

chosen for the classification problem which are Aortic Enlargement, 

Cardiomegaly, Pleural Effusion (PE), Lung Opacity (LO), Pleural Thickening 

(PT), Pulmonary Fibrosis (PF) and healthy images labelled “No Finding”. 

https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/
https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection/
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Figure 18: Distribution of the classes of the train dataset. 
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Figure 19: Examples of chest X-rays with their corresponding labels. 
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Table 2: Final Dataset 

  

 

Train 11,836 

Valid 1.480 

Test 1,480 

Aortic 

Enlargement 

3067 

Cardiomegaly 2168 

Lung Opacity 1322 

Pleural Effusion 1032 

Pleural 

Thickening 

1981 

Pulmonary 

Fibrosis 

1617 

No Finding 10606 

 

 

4.2 Technical Characteristics 

This master thesis employs the PyTorch framework for training neural network 

models. PyTorch is chosen for its flexibility and ease of use in constructing and 

training models. The experimentation is carried out in Jupyter Notebooks, 

providing an interactive environment for prototyping and analysis. The 

implementation is done in Python, known for its simplicity and readability. To 

handle the computational demands, an NVIDIA GeForce GTX 1660 Ti with 

Max-Q Design GPU is utilized, accelerating the training process, and optimizing 

model performance. For the execution of the experiments some more useful 

and popular libraries are used such as Numpy, Matplotlib and OpenCV. 

4.3 Model 

The dataset preprocessing pipeline in this study incorporates a series of 

transformations aimed at enhancing the diversity and quality of the input 

images. Initially, the images are converted to PIL format using 

‘transforms.toPILImage()’. Subsequently, a resizing operation is applied to 
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standardize the dimensions to (224,224) through 

‘transforms.Resize((224,224)). To introduce variability and aid in model 

generation, a random horizontal flip with a probability of 0.5 is employed via 

transforms.RandomhHorizontalFlip(p=0.5)’. Additionally, random rotations up 

to 45 degrees are applied using ‘transforms.RandomRotation(degrees=45)’. 

The transformed images are then converted to tensors with 

‘transforms.ToTensor()’. Finally, the pixel values are normalize using the mean 

and standard deviation of the ImageNet dataset, aligning with the pre-training 

statistics commonly used in deep learning models 

(‘transforms.Normalize(mean=[0.485, 0.456, 0.406], std = [0.229, 0.224, 

0.225])’ ). This comprehensive set of transformations contributes to the 

augmentation and standardization of the input data, crucial for the training 

robust and effective neural network models. 

In this study, the model employed for the training process is ResNet50 

architecture, initially trained on the ImageNet dataset. To adapt the model for 

the specific classification problem at hand, the final dense layer is replaced with 

an ‘nn.Linear(num_ftrs, num_classes)’ layer, where num_classes corresponds 

to the number of classes involved in the classification task. The optimization is 

carried out using Stochastic Gradient Descent (SGD). Given the nature of the 

classification task as a multilabel problem, the chosen loss function is Sigmoid 

(‘nn.BCEWithLogitsLoss(pos_weight=pos_weight)’). This loss function treats 

each class as a binary task, providing probabilities for the presence or absence 

of a specific disease in an image. To address the dataset’s class imbalance, 

with a significantly larger number of healthy images compared to diseased 

ones, a ‘pos_weight’ is introduced. The ‘pos_weight’ is calculated as the ratio 

of negative counts to positive counts for each class (‘pos_weight = 

num_negatives/num_positives’). This approach aims to mitigate the model’s 

bias toward predicting the majority class, ensuring a more balanced and 

accurate learning process. The learning rate of the training process starts at 

0.01 and we utilize an LR Scheduler through ‘lr_scheduler.LinearLR(optimizer, 

start_factor=1.0, end_factor = 0.3 and total_iters = 20)’. We train the model for 

20 epochs, and we save the model in the minimum loss in the validation loss 
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as can be seen in the Figure 20. We use a batch size of 32 based on the 

available hardware and the size of the dataset. 

 

Figure 20: Training loss and validation loss for 7 classes. 

4.4 Results 

We conducted a series of experiments to assess the classification scores for 

each class in our study. The model was trained across different scenarios, 

including configurations for 3 classes (Aortic Enlargement, Cardiomegaly, No-

finding), 5 classes (Aortic Enlargement, Cardiomegaly, Pleural Thickening and 

No-finding), 7 classes (Aortic Enalrgement, Cardiomegaly, Lung Opacity, 

Pleural Effusion, Pleural Thickening, Pulmonary Fibrosis and No-finding). 

These configurations were chosen based on the distribution of diseases 

images. Additionally, we conducted training on the entire dataset. 

The subsequent Table 3 presents the results of these models on the test 

dataset. Following an analysis of the outcomes, we opted to implement Grad-

Cam specifically for the 7-class scenario due to achieving a satisfactory micro 

F1 score. 
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Table 3: F1 Scores for different 
experiments 
 

F1-score: 3 classes 

Label F1-score 

Aortic Enlargement 0.89 

Cardiomegaly 0.85 

No-Finding 0.95 

Micro avg 0.90 
 

F1 score: 5 classes 

Label F1-score 

Aortic Enlargement 0.81 

Cardiomegaly 0.82 

Pleural Thickening 0.58 

No Finding 0.91 

Micro avg 0.76 

 

F1-score: 7 classes 

Label F1-score 

Aortic Enlargement 0.86 

Cardiomegaly 0.83 

Lung Opacity 0.55 

Pleural Effusion 0.69 

Pleural Thickening 0.65 

Pulmonary Fibrosis 0.57 

No Finding 0.96 

Micro avg 0.81 

 

F1-score: whole dataset 

Label F1-Score 

Aortic 
Enlargement 

0.81 

Atelectasis 0.20 

Calcification 0.17 

Cardiomegaly 0.80 

Consolidation 0.39 

ILD 0.24 

Infiltration 0.31 

Lung Opacity 0.47 

Nodule/Mass 0.32 

Other Lesion 0.38 

Pleural Effusion 0.48 

Pleural Thickening 0.57 

Pneumothorax 0.09 

Pulmonary 
Fibrosis 

0.51 

No Finding 0.96 

Micro avg 0.60 
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Figure 21: Confusion matrices for each label, configuration of 7 classes. 
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Figure 22: ROC Curves. 0: ‘Aortic Enlargement’, 3: ‘Cardiomegaly’, 7: ‘Lung Opacity’, 

10: ‘Pleural Effusion’, 11: ‘Pleural Thickening’, 13: ‘Plumonary Fibrosis’, 14: ‘No-

Finding’. 

4.5 Grad-Cam Results 

In this study, we employed Grad-Cam as the XAI method, particularly pertinent 

in medical domain. The methodology involved partitioning the ResNet50 model 

into two segments, delineated by the last convolutional layer generating 

activation maps of size 7x7. To implement Grad-Cam, we conducted a forward 

pass of input images through the network, subsequently computing gradients 

of the output concerning the chosen convolutional layer. Given the multilabel 

nature of our task, outputs with a probability of 0.7 or higher were selected for 

Grad-Cam analysis. For each selected output, we performed Grad-Cam, 

followed by computing the average pooling of gradients to derive importance 

weights for each channel. The final step involved calculating the weighted sum 

of activation maps using the obtained importance weights.  

To visualize the resultant heatmaps, normalization was executed by dividing 

with the maximum value, and the heatmaps were upscaled to match the original 

dimensions of the image. This comprehensive process facilitated the 
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production of interpretable and visually accessible heatmaps, contributing to a 

deeper understanding of model decisions in our medical classification task. In 

the following examples, images are represented with annotated bounding 

boxes delineating the specific regions indicative of the disease. Additionally, the 

corresponding heatmaps are provided, emphasizing the salient areas within the 

images that significantly contribute to the classification.  

At first, images belonging to the “No-finding’ class are presented along with the 

corresponding heatmaps, revealing the regions where the model focuses its 

attention to make a decision. The heatmaps consistently indicate attention in 

both lungs or just below the letter indicating the side (R: Right or L: Left) of the 

chest X-Ray. This trend is observed across the majority of heatmaps generated 

by the model. It’s noteworthy that ‘No-Finding’ is the predominant class with the 

highest F1 score of 0.96. 
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Figure 23: Images of healthy chest X-rays along with the corresponding heatmaps and 

the probabilities for the ‘No-Finding’ class displayed above each image. 
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Subsequently, images of the classes ‘Aortic Enlargement’ and ‘Cardiomegaly’ 

are presented together due to their frequent co-occurrence in a distinct region 

of chest X-rays. Unlike other diseases, these conditions are consistently 

localized within the chest X-ray, making their identification more standardized. 

They both exhibit high F1 scores of 0.86 and 0.83 respectively. From the 

heatmaps in Figure 24, we can observe that the model generally succeeds in 

localizing these diseases to a considerable extent. However, as shown in 

Figure 25, there are instances that the model exhibits unexpected behavior and 

localize these diseases inaccurately. Despite occasional misestimations, the 

model tends to consistently identify and localize these diseases within the 

specified region in most of the cases. 
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Figure 24: Images both annotated with the classes ‘Aortic Enlargement’ and 

‘Cardiomegaly’ along with the corresponding heatmaps and the probabilities of each 

class displayed above each heatmap. ‘Aortic Enlargement is annotated with red color 

and ‘Cardiomegaly’ is annotated with yellow. 

 

 

Figure 25: top – the model has correctly classified the two diseases ‘Aortic Enlargement’ 

and ‘Cardiomegaly’, but it is observed an unexpected behavior regarding the localization 

of the diseases. Bottom – Although the model misclassifies ‘Cardiomegaly’ class, it still 

localizes it in a region of interest for this disease. 

In the provided set of Figure 26, several noteworthy characteristics can be 

observed for the rest of the classes. Figure (26a) exemplifies a typical instance 

of confusion, especially apparent in the presence of nearly all classes. The 
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model exhibits challenge in localizing ‘Lung Opacity’, achieves partial 

localization of ‘Pleural Effusion’, and demonstrates a typical behaviour for the 

‘Pleural Thickening’ class, capturing a broad range on the pleural side. 

Surprisingly, it achieves a relatively accurate localization of ‘Pulmonary 

Fibrosis’. 

In Figure (26b), the model correctly classifies the classes ‘Lung Opacity’, 

‘Pleural Effusion and ‘Pleural Thickening’, although it fails in completely 

localizing ‘Lung Opacity’ class. Additionally, its complete mislocalization of the 

‘Pleural Thickening’ indicates a limitation in its ability to precisely pinpoint the 

affected region, which is a common characteristic of this class.  

Figure (26c) showcases the model’s ability to identify the general area of 

pathologies in the chest X-ray, yet it struggles to distinguish between them, 

resulting in the misclassification of ‘Lung Opacity’ - a common challenge in its 

prediction.  

Figure (26d) reveals the model’s capability to identify an issue on the right side 

of the chest X-ray but fails to predict all the diseases. This suggests a limitation 

in disease recognition despite the localization ability.  

In figure (26e), the model successfully predicts and localizes ‘Lung Opacity’ and 

‘Pleural Effusion’ with high probabilities (0.994 and 0.998 respectively). 

However, it misclassifies ‘Pulmonary Fibrosis’ and localizes it in the general 

area of abnormalities. 

Figure (26f) demonstrates another instance where the model seems to 

comprehend the presence and location of pathologies, successfully localizing 

them. Notably, even when ‘Cardiomegaly’ is misclassified, the model correctly 

identifies the expected region for examination.  

It is crucial to acknowledge that the annotated pathologies result from diverse 

radiologists, leading to variations in labelling and bounding boxes annotations. 

Instances, where one radiologist annotates a disease while another does not 

underscore the inherent difficulty and subjectively in analyzing chest X-ray 

images, emphasizing the complex of drawing definitive conclusions. 
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Figure 26: Examples of the abnormalities ‘Lung Opacity’, ‘Pleural Effusion’, ‘Pleural 

Thickening’ and ‘Pulmonary Fibrosis’ with the corresponding heatmaps. 

4.6 Smooth Grad 

Subsequently, in our research we implement Smooth Grad, a method that 

introduces perturbations to the input data and observes the model’s sensitivity 

to these variations, providing additional information beyond what may be 

captured by methods solely relying on gradients. This is achieved by adding 

gaussian noise to the original image creating a number of samples. 

Subsequently we put these samples as an input to our model and implement 

Grad-Cam to take a heatmap for each sample. Finally, we average over the 

samples to take the final heatmap. The suitable noise proposed by (24) are 

between 0.1 and 0.2 to balance the sharpness of the heatmap and maintain the 

original structure of the image. The number of samples proposed by the 

authors, after several experiments is 50 samples. In the following set of figures, 

some examples of SmoothGrad are provided. 
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Noise 0.1 Noise 0.2 
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Figure 27: Implementation of Grad-Cam and SmoothGrad in the same chest X-ray both 

with 0.1 and 0.2 noise. 

We can conclude in some general results from the implementation of both 

Grad-Cam and SmoothGrad with the help of the above set of figures and the 

different chest X-rays that we examined. In instances of ‘Aortic Enlargement’ 

and ‘Cardiomegaly’, both Grad-Cam and SmoothGrad consistently produces 

sharper heatmaps with intensified pixel highlighting. This behaviour indicates 

the robustness of specific pixels, which remain invariant to noise. Differences 

between Grad-Cam and SmoothGrad, appear in some Cardiomegaly instances 

and may signify areas of uncertainty or lower model confidence.  

Regarding ‘Lung Opacity’ and ‘Pulmonary Fibrosis’, most cases revealed 

consistent behaviour between Grad-Cam and SmootGrad in 0.1 level of noise. 

Notably, by scenarios of increased noise, more pixels are highlighted in 

different regions. These pixels sometimes showcase improved localization and 

sometimes they give a more confused heatmap.  

Challenges persists in the interpretation of ‘Pleural Thickening’, with Grad-Cam 

generating noisy maps capturing a broad region of the chest X-ray. 

SmoothGrad mitigates noise to some extent, resulting in clearer heatmaps, 

however precise localization remains elusive for this class. 

In general, SmoothGrad consistently highlights specific pixels across multiple 

perturbed versions of an input for ‘Aortic Enlargement’ and ‘Cardiomegaly’, 

emphasizing the robustness of these regions in contributing to the model’s 
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decision-making. These two classes exhibit well-localized heatmaps, while 

behaviours vary for the other classes, in agreement with Grad-Cam results.  
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5. EVALUATION RESULTS 

5.1 Intersection over Union (IoU) 

In the first approach to heatmap evaluation, we utilize the Intersection over 

Union (IoU) metric to gauge the alignment between the true bounding boxes 

and those deduced by the heatmaps. The process of extracting bounding boxes 

involves distinguishing critical pixels through the creation of binary masks from 

the heatmaps. This is achieved by applying varied thresholds percentages 

(0.01, 0.02, 0.03, 0.05, 0.08, 0.1 and 0.2). 

Table 4: Part of code for the extraction of the predicted bounding boxes. 

 

The binary masks are created by isolating pixels based on their significance 

and subsequently, contours are extracted from these binary masks using the 

‘RETR_EXTERNAL’ mode provided by cv2 library. This mode selectively 

retains only the outermost contours, ensuring that nested contours not 

overshadow each other. 

Moreover, the ‘CHAIIN_APPROX_SIMPLE’ contour approximation method is 

employed, which streamlines horizontal, diagonal and vertical segments, 

storing only their endpoints. This approach aids in memory usage. Within the 

loop, the cv2.boundingRect(contour)’ function is applied to determine the 

bounding rectangle for each contour. This bounding rectangle is the smallest 

def create_bounding_boxes(self, mask): 

        mask = mask.detach().cpu().numpy().astype('uint8') # 224, 224, max: 

255, min: 0 

        mask = cv2.resize(mask, (512,512)) # shape: 512,512 

        contours,_ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) # list of points defining the contour's shape 

        for contour in contours: 

            # Find the bounding box 

            x,y,w,h = cv2.boundingRect(contour) 

            # Draw the bounding box in an image for visualization 

            # cv2.rectangle(img, (x,y), (x+w, y+h), (0,255,0)) 

        #print(f'For the bounding box x is: {x}, y is: {y}, width is: {w} and height 

is: {h}') 

        return x,y,w,h 
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rectangular area encompassing the contour and provides the coordinates (x,y) 

of the top-left corner, along with its width (w) and height (h). 

IoU metric is a metric that is applied only in the instances where the abnormality 

has been detected correct and therefore the ground truth bounding boxes of 

the abnormalities are available. In Figure 28, examples are presented to 

examine the results of the evaluation and discuss some of the difficulties 

associated with this method.  

 

Percentage: 0.02 Percentage: 0.05 Percentage: 0.1 
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Figure 28: Top figure: Original image annotated with all the pathologies and the Ground 

Truth boxes. Bottom figures: Bounding boxes for each label (percentages: 0.02, 0.05 and 

0.1). Green: GT Box, Purple: Predicted Bounding Box. 

Table 5: Intersection over Union (IoU) for each class in different percentages for Figure 

28. 

Pcg Aortic 

Enlargement 

Cardiomegaly LO PE PT PF 

0.01 0.202 0.056 0.0 0.0 0.0 0.0 

0.02 0.463 0.089 0.0 0.0 0.0 0.0 

0.03 0.425 0.145 0.0 0.0 0.0 0.0 

0.05 0.36 0.235 0.0 0.0 0.0 0.0 

0.8 0.268 0.249 0.0 0.0 0.0 0.0 

0.1 0.221 0.25 0.0 0.0 0.0 0.065 

0.2 0.092 0.268 0.04 0.0 0.0 0.149 

 

In the selected chest X-ray depicted in Figure 28 , the model successfully 

predicts all existing abnormalities. Images representing each class are 

accompanied by corresponding bounding boxes for both true and predicted 

labels, annotated in green and purple, respectively, at three percentages: 0.02, 

0.05 and 0.1. The IoU metric in the accompanying Table 5 details the overlap 

accuracy for all the classes and various percentages. Notably, ‘Aortic 

Enlargement’ and ‘Cardiomegaly’ exhibit high localization accuracy, with IoU 
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values of 0.463 and 0.268 respectively. Strikingly, for other classes, the IoU is 

zero, indicating a lack of overlap between the bounding boxes from the 

heatmaps and the true labels. The additional figure of the original image with 

all the annotated boxes, is included to illustrate that certain classes, such as 

‘Aortic Enlargement’ and ‘Cardiomegaly’, are annotated by multiple 

radiologists, while others have sole annotations by a single expert. This 

diversity in annotations, stemming from different radiologists who may identify 

varying abnormalities, introduces a challenging aspect to the analysis of chest 

X-rays in this dataset.  

In the provided Figure 29, additional examples are presented to further 

investigate this phenomenon. For instance, in Figure 29a, it is evident that the 

class ‘Aortic Enlargement’ has been annotated by three radiologists using 

bounding boxes with slightly different sizes. Figure 29b illustrates a similar 

scenario with the class ‘Pleural Thickening’, where three experts have labelled 

the abnormality, each delineating a distinct region. These instances underscore 

the challenge faced by the model in precisely localizing the pathology, 

particularly noteworthy in the case of ‘Pleural Thickening’, where the regions 

identified by each radiologist are entirely disparate. It is also noteworthy to 

mention cases where only one radiologist has labelled a specific abnormality. 

   Original Image Percentage:0.01 Percentage: 0.02 

   

 

a 
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Figure 29: Chest X-rays labelled by different annotators. 

Subsequently, IoU metric was calculated for all the chest X-ray images, 

specifically for the correctly predicted classes. The mean IoU for each class 

was computed at various percentages, and the results are presented in both 

Figure 30 and Table 6. Notably, the model exhibits a complete failure in 

localizing ‘Pleural Thickening’ and ‘Pulmonary Fibrosis’, despite accurately 

predicting the correct class in the chest X-ray image. Once again, it is evident 

that ‘Aortic Enlargement’ and ‘Cardiomegaly’ are the most accurately localized 

classes. 

 

Figure 30: Mean IoU for each class at percentages: 0.01, 0.02, 0.03, 0.05, 0.08, 0.1, 0.2. 

Classes: 0: ‘Aortic Enlargement’, 3: ‘Cardiomegaly’, 7: ‘Lung Opacity’, 10: ‘Pleural 

Effusion’, 11: ‘Pleural Thickening’, 13: ‘Pulmonary Fibrosis’, 14: ‘No-Finding’. 
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Table 6: IoU Metric for each class in different percentages. 

Pcg Aortic 

Enlargement 

Cardiomegaly LO PE PT PF 

0.01 0.178 0.126 0.085 0.095 0.019 0.057 

0.02 0.201 0.195 0.123 0.134 0.024 0.07 

0.03 0.192 0.223 0.136 0.152 0.023 0.076 

0.05 0.154 0.237 0.15 0.173 0.023 0.078 

0.08 0.114 0.223 0.135 0.178 0.02 0.067 

0.1 0.094 0.213 0.125 0.172 0.018 0.061 

0.2 0.05 0.162 0.087 0.127 0.012 0.047 

 

5.2 Pixel Importance Analysis 

In the second evaluation method we employ, a specified percentage of the most 

significant pixel withing the regions identified by the heatmaps undergo various 

transformations. The initial transformation involves computing the mean value 

across all three colour channels and substituting the regions of interest with this 

calculated mean value. Subsequently, a Gaussian blur is applied to the regions 

of interest using kernel sizes of (11,11) or (21,21). Gaussian blurring is 

employed to mitigate noise and reduce image detail, with the degree of blurring 

contingent upon the standard deviation of the Gaussian kernel. This standard 

deviation is indirectly influenced by the chosen ‘kernel_size’, where larger 

kernel_sizes lead to more pronounced blurring effects. 

Subsequently, we procced to generate new predictions using our model, where 

the input to the model is the transformed images. It is anticipated that these 

predictions will exhibit variations, given that the pixels identified as crucial by 

Grad-Cam have undergone transformations. This iterative process is applied 

across all classes. For each image in the test dataset, we extract the 

corresponding heatmaps and predictions. The image is modified exclusively for 

the classes predicted by the model for that specific image, and fresh predictions 
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are generated for all classes. The subsequent step involves calculating the 

difference between the original prediction from the initial image and the 

prediction from the transformed image (prediction_original - 

prediction_tansformed). Ultimately, the mean values of the prediction 

differences are computed for each class across various percentages (0.02, 

0.05, 0.1, 0.2 and 0.5). Figure 31 showcases an example of a transformed 

image for illustration. 

 

 

Figure 31: Mean and Gaussian Transformed Images with 10% replacement of the most 

important pixels. 

In the set of Figure 32 presented below, the plots depict the resultant variations 

in predictions for the transformed images at each percentage. Each figure 

showcases the transformation of images based on the class indicated in the 

title. For instance, in Figure 32a, the transformed images correspond to class 0 

(‘Aortic Enlargement’), signifying that the images have been transformed based 

on the heatmaps derived from this class. Additionally, the predictions for the 

new images are displayed for various percentages.  

 

 

a 
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Figure 32: Transformed Images predictions in various percentages. Transformations: 

Mean, Gaussian Blur (kernel_size = (11,11), Gaussian Blur (kernel_size = (21,21). Each 

letter (a-g) gives a transformation based on the heatmaps of following classes: (a) 0 – 

‘Aortic Enlargement’, (b) 3 – ‘Cardiomegaly’, (c) 7 – ‘Lung Opacity’, (d) 10 – ‘Pleural 

Effusion’, (e) 11 – ‘Pleural Thickening’, (f) 13 – ‘Pulmonary Fibrosis’, (g) 14 – ‘No-Finding’. 

In the y-axis of the above plots the difference in the prediction is presented (poriginal – 

preplaced). The more the increase in the prediction the more the reduction of preplaced). 

In the plots shown in Figure 32 a to g, several noteworthy observations can be 

made. Firstly, examining Figure 32a, reveals a slight decrease (~0.1) in the 

prediction of the ‘Aortic Enlargement’ class following pixel replacement, 

observed in both mean and Gaussian transformations. Similarly, modest 

reductions in prediction are observed in the ‘Pleural Effusion’ and ‘Pulmonary 

Fibrosis’ classes. Notably, the classes ‘Cardiomegaly’, ‘Lung Opacity’ and 

‘Pleural Thickening’ appear unaffected by this transformation. Lastly, it is 

important to highlight that the ‘No Finding’ class demonstrates an increase in 

prediction. 

Regarding ‘Cardiomegaly’, we note a slight reduction in prediction (0.05 - 0.1) 

with the maximum decrease reaching in the percentage of 0.2 in mean 

transformation. Additionally, in Gaussian transform, the reduction in prediction 
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is even smaller. Similar patterns are observed for the other classes, as 

mentioned earlier. 

In the Figure 32c, where the images are transformed based on the heatmaps 

generated from the ‘Lung Opacity’ class, a more substantial reduction (0.1 - 

0.2) is observed for this class. Simultaneously, ‘Aortic Enlargement’ and 

‘Cardiomegaly’ classes show an increase in their prediction. The remaining 

classes exhibit consistent behaviour with the previous cases. 

For ‘Pleural Effusion’, the predictions align with expectations as we increment 

the pixel replacement percentage. A proportional rise in reduction of prediction 

probability is evident (mean: 0.4 - 0.6, Gaussian: 0.3 - 0.4). Conversely, ‘Aortic 

Enlargement’ and ‘Cardiomegaly’ exhibit an increase in their probabilities, 

notably with ‘Cardiomegaly’ experiencing a 0.4 increment. Other classes 

appear to be less significantly impacted by this transformation.  

For ‘Pleural Thickening’, a marginal reduction in prediction (~0.1) is noted, while 

other classes exhibit the same behavior as observed in previous cases. A 

similar pattern is observed when adjusting the image based on the ‘Pulmonary 

Fibrosis’ class, with a more substantial reduction (~0.3). In both instances, there 

appears to be an inverse proportional relationship between the percentage 

increase and the probability of reduction. 

In the case of the ‘No-Finding’ class, the observed behavior aligns precisely 

with expectations. A substantial reduction in the prediction of this class (0.5-1) 

is evident, demonstrating a proportional relationship with the percentage 

increase. Concurrently, the other classes display a noteworthy increase in their 

probabilities (0.5-1), also exhibiting a proportional relationship with the 

percentage rise. This suggests that the model, upon detecting features 

indicative of non-normal chest X-rays, shifts its focus towards assessing the 

likelihood of various diseases.  

In conclusion, we can infer that for ‘Aortic Enlargement’ and ‘Cardiomegaly’, a 

slightly larger increase in the reduction was anticipated, particularly for 

‘Cardiomegaly’, which appears to be the class least impacted by the 

transformations. Interestingly, these two classes demonstrate an increase in 

predictions when images are transformed based on the heatmaps generated 
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by the remaining classes. Conversely, ‘Pleural Thickening’ and ‘Lung Opacity’ 

emerge as the two classes least affected by transformations based on the 

heatmaps of other classes. Both ‘Pleural Effusion’ and Pulmonary Fibrosis’ 

exhibit a reduction in predictions, demonstrating consistent behavior when 

images based on other classes are modified, they keep reducing their 

prediction. The behavior of ‘Non-Finding’ aligns with expectations, representing 

the most anticipated response among all the classes.  

It is important to consider that chest X-ray pathologies may overlap, meaning 

that a reduction in the prediction of one class could lead to a corresponding 

decrease in another class or vice versa. It should also be mentioned that class 

‘Pleural Thickening’, as observed in the heatmaps earlier, is not well-localized 

even when predicted accurately, encompassing a broad region of the image. 

Additionally, it is worth mentioning that employing a larger kernel size, which 

increases noise in Gaussian blurring, does not significantly alter the behavior 

of the model.   
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6. CONCLUSION 

Chest X-rays play a crucial role in diagnosing chest abnormalities and serve as 

an essential tool for this purpose. In recent years, extensive research has been 

conducted to create datasets and develop pipelines for the accurate 

classification and localization of these abnormalities. Distinguishing between 

different abnormalities is a challenging task due to the overlapping nature of 

these diseases. Moreover, to create an effective tool to assist medical 

professionals in disease diagnosis, it is imperative to understand the reasons 

behind a model’s decision. Therefore, it is crucial to experiment with various 

explainability methods and integrate them into clinical routines. This ensures 

that healthcare professionals have access to these tools, providing valuable 

insights into the model’s decision-making process.  

In this research, we utilized the VinDr [8] dataset, encompassing a range of 

abnormalities, to conduct experiments focused on classifying distinct 

abnormalities. We employed Grad-Cam as an explainability method to 

elucidate the reasons behind the model’s outcomes. Subsequently, we 

conducted various experiments to evaluate the effectiveness of this method and 

gauge the robustness of the model based on the results obtained from the 

explainability analysis. 

From the obtained results, it is evident that the model does not achieve a 

satisfactory F1 score for all classes. Notably, classes such as ‘Aortic 

Enlargement’ and ‘Cardiomegaly’ exhibit a respectable F1 score (0.86 and 0.83 

respectively). These classes demonstrate greater stability as they appear in the 

same region in the chest X-ray with consistent shapes and sizes. The model 

effectively predicts these classes, and the resulting heatmaps show a 

satisfactory alignment with the bounding boxes provided by the annotators (IoU: 

0.201 and 0.237 respectively). 

The remaining classes exhibit lower F1 scores, with ‘Lung Opacity’ and 

‘Pulmonary Fibrosis’ showing the lowest values. The resulting heatmaps 

generated by Grad-Cam are confusing. The model appears to face challenges, 

particularly in localizing the class ‘Pleural Thickening’, placing it across a broad 

region of chest X-rays. Heatmaps for ‘Lung Opacity’ and ‘Pleural Effusion’ 
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exhibit more consistent alignments with the disease regions when predicted 

correctly. While minimal overlap is observed for ‘Lung Opacity’ and ‘Pleural 

Effusion’, IoU metrics are disappointing for ‘Pleural Thickening’ and ‘Pulmonary 

Fibrosis’. It is crucial to note that these diseases are annotated by different 

radiologists. There are instances where only one radiologist labels the chest X-

ray with the disease, while others do not, or different radiologists identify diverse 

regions for the disease, particularly in the case of ‘Pleural Thickening’. This 

diversity in annotation practices adds complexity, making it more challenging 

for the model to accurately predict these abnormalities.  

Finally, it should be mentioned that healthy chest X-rays exhibit the highest F1 

scores (0,96), and the corresponding heatmaps present a stable behaviour. In 

most instances, both lungs are highlighted, or specific regions below the letters 

indicating the right or left side of the chest X-ray. Furthermore, it is observed 

from the heatmaps that the model successfully localizes the diseased regions 

of chest X-rays, but encounters difficulty in distinguishing between the various 

abnormalities. 

As for the importance of pixel analysis, the expectation is that by replacing part 

of the most crucial pixels, as identified by the Grad-Cam generated heatmaps, 

the probability of prediction for each class should decrease. From the 

conducted experiments, we observe a slight reduction in the prediction 

probability for classes ‘Aortic Enlargement’ and ‘Cardiomegaly’, although not as 

significant as anticipated. Conversely, classes such as ‘Pleural Effusion’, ‘Lung 

Opacity’ and ‘Pulmonary Fibrosis’ exhibit a more pronounced reduction in 

prediction probability. ‘Pleural Thickening’ appears to be the least affected by 

the altered figures. The class exhibiting the anticipated behaviour is ‘No-

Finding’, where a proportional increase in reduction to the prediction probability 

is observed with the rising percentage of replaced pixels, while simultaneously, 

the remaining classes show an increase in their prediction. 

As evident from the above results, it is once again underscored that chest X-

ray classification is a challenging task and further research should be done. 

First, addressing the need for a more balanced dataset is imperative, as 

numerous classes are excluded due to dataset imbalance, a challenge 

persisting in our research too. Despite the recent publication of several 
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datasets, achieving balance remains difficult. It could also be possible to check 

the robustness of the model in different datasets. Conducting additional 

experiments is essential for enhancing accuracy and F1 scores, instilling 

greater confidence in the results obtained from explainability methods. 

The utilization of explainability methods is crucial and exploring additional 

methods or combinations of explainable artificial intelligence (XAI) techniques 

is recommended. Optimal evaluation by experts is a pivotal initial step for an 

XAI method, offering insights into its effectiveness. However, more rigorous 

sanity checks are warranted to assess these methods thoroughly. One 

proposed sanity check involves training a model with the transformed images 

from the pixel importance analysis and evaluating the new predictions derived 

from these images, as suggested Hook et al. [39]. 

In conclusion, this research underscored the utility of Grad-Cam in chest X-ray 

analysis, leading to valuable insights into various abnormalities and highlighting 

challenges encountered, including the nuanced nature of certain diseases and 

variations in annotations form different radiologists. XAI methods are essential 

for introducing Deep Learning algorithms in medical domain, consequently 

evaluation techniques should be developed to assess the performance of these 

methods. This research performed different experiments for the evaluation with 

some interesting findings. These findings suggest that further investigation and 

additional experiments are imperative to deepen our understanding and refine 

the methodologies employed. 
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ABBREVATIONS 

XAIs eXplainable Artificial Intelligence 

DNNs Deep Neural Networks 

CNNs Convolutional Neural Networks 

ReLU Rectified Linear Unit 

RGB Red-Green-Blue 

ResNets Residual Networks 

CAM Class Activation Map 

Grad-CAM Gradient-weighted Class Activation Map 

IG Integrated Gradients 

LRP Layer-wise Propagation 

DeconvNet Deconvolution Network 

jpg Joint Photographic Experts Group 

PIL Python Imaging Library 

SGD Stochastic Gradient Descent 

AUC Area Under the Curve 

IoU Intersection over Union 

CXR Chest X-rays 

MRI  Magnetic Resonance Image 

NLP Natural Language Processing 
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