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ΠΕΡΙΛΗΨΗ 
 

Η Νοηματική γλώσσα αποτελεί τον κύριο τρόπο επικοινωνίας για άτομα που είναι κωφά 
ή αντιμετωπίζουν προβλήματα στην ακοή. Η αναπαράσταση της Νοηματικής γλώσσας 
αποτελεί μια πολύπλοκη διαδικασία, η οποία εμπλέκει ανθρώπινες δραστηριότητες που 
απαιτούν πολύ χρόνο. Για να αντιμετωπίσουμε αυτήν την πρόκληση, προτείνουμε μια 
αυτοματοποιημένη μέθοδο που να αντιστοιχεί τις αρθρώσεις του σκελετού σε κινήσεις του 
Avatar στον χώρο νοηματισμού, χρησιμοποιώντας προηγμένες τεχνικές βαθιάς μάθησης. 
Αυτή η αντιστοίχιση επιτυγχάνεται με την ακριβή εξαγωγή συντεταγμένων 3Δ αρθρώσεων 
του σώματος από βίντεο, χρησιμοποιώντας τελευταίας τεχνολογίας αλγόριθμους για την 
εκτίμηση της ανθρώπινης πόζας. Στη μελέτη μας, εξετάζουμε συγκεκριμένες προσεγγίσεις 
που εντοπίζουν τα 2Δ σημεία του σκελετού από βίντεο και στην συνέχεια τα μετατρέπουν 
στο 3Δ χώρο, τις οποίες αξιολογούμε σε ένα μικρό συνθετικό σύνολο δεδομένων που 
περιλαμβάνει πέντε βίντεο με το avatar Paula. Η έρευνα μας επικεντρώνεται στις κινήσεις 
των χεριών, δίνοντας έμφαση στους ώμους, τους αγκώνες και τους καρπούς, 
αναγνωρίζοντας τη σημασία τους στην κατανόηση της νοηματικής γλώσσας. Λόγω της 
εκπαίδευσης των αξιολογημένων μεθόδων σε γενικά σύνολα δεδομένων και όχι σε 
συγκεκριμένα για τη νοηματική γλώσσα, κάναμε ορισμένες προσαρμογές προκειμένου 
να επιτύχουμε την αντιστοίχιση των σημείων του σκελετού. Επίσης, παρέχουμε μια 
ολοκληρωμένη ανάλυση των πλεονεκτημάτων και των αδυναμιών για κάθε μέθοδο και 
αναφέρουμε συγκεκριμένα μοτίβα της απόδοση τους που παρατηρήθηκαν σε κάθε άξονα. 
Σημαντικό είναι ότι η προσέγγιση που χρησιμοποιεί το μοντέλο BlazePose του Mediapipe 
για την εκτίμηση της 2Δ πόζας και το VideoPose3D για την 3Δ ανακατασκευή, υπερτερεί 
των υπολοίπων, επιτυγχάνοντας ένα μέσο σφάλμα αρθρώσεων (MPJPE) ίσο με 72.2 
χιλιοστά. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Όραση Yπολογιστών 
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Εκτίμηση ανθρώπινης πόζας, 3Δ ανακατασκευή, αναπαράσταση 

νοηματικής γλώσσας, κίνηση Avatar 



ABSTRACT 
 

Sign Language constitutes the primary means of communication for the deaf and hard-
of-hearing individuals. Sign Language Representation is a complex task, which involves 
human labor-intensive processes. To address this challenge, we propose an automated 
method that maps skeleton keypoints to avatar motions by leveraging advanced deep 
learning approaches. This mapping can be achieved by extracting accurate 3d body joints 
coordinates from monocular videos using state-of-the-art human pose estimation 
algorithms. In our study, we investigate certain approaches which detect the 2D body 
joints in videos and subsequently convert them into 3D space, evaluated on a small 
synthetic dataset of five videos, featuring the Paula avatar. Our work focuses on arm 
motions, emphasizing on keypoints related to shoulders, elbows, and wrists, 
acknowledging the significance of their movements in sign language understanding. Due 
to the training of evaluated methods on generic dataset rather than those specific to sign 
language, we had to make certain adjustments to ensure the accordance of skeleton 
keypoints. We provide a comprehensive analysis of the benefits and drawbacks of each 
method and report special patterns of performance on different axes. Notably, the 
approach, which uses the BlazePose of Mediapipe as the 2D detector and the 
VideoPose3D for 3D reconstruction, outperforms its competitors, achieving an average 
Mean Per Joint Position Error (MPJPE) of 72.2 mm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUBJECT AREA: Computer Vision 
KEYWORDS: human pose estimation, 3D reconstruction, sign language representation, 

avatar motion 
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1 INTRODUCTION 
 
1.1 Motivation  
According to the World Federation of the Deaf, there are over 70 million deaf people 
worldwide [1], [2]. In addition about 430 million people need rehabilitation because of  
hearing loss [3]. This includes those who primarily use sign language to communicate. 
Sign languages are visual and manual systems of communication used by individuals 
who are deaf and hard of hearing. They are natural languages that incorporate hand 
movements, facial expressions, body postures, and other non verbal elements to convey 
meaning [4]. Sign languages are also distinct from spoken languages and are 
independent and unique to each country or region. Similar to spoken languages across 
the globe there exist sign languages, such as Greek Sign Language (GSL), British Sign 
Language (BSL), American Sign Language (ASL), among others. Each sign language 
has its unique grammar rules, vocabulary, and cultural idiosyncrasies [5].  
However, despite being a field of research with tremendous potential for significant impact 
Sign Language Processing (SLP) has not progressed at the same pace, as its spoken 
language counterpart. 
Consequently individuals who use sign language often face communication obstacles. 
These obstacles can pose challenges in accessing information and opportunities to those 
individuals, fact that emphasizes the significance of research and development in the field 
of SLP. Advancements in this domain can significantly contribute to eliminating 
communication barriers and improving the quality of life for members of the sign language 
community. 
To delve deeper into this subject, SLP refers to the field of research and technology that 
focuses on creating methods and systems for analyzing, understanding and generating 
sign language content [6]. It involves utilizing computational techniques such as computer 
vision, machine learning, avatar signing and natural language processing to capture 
interpret and generate sign language data. 
In essence SLP is crucial since it facilitates effective communication while also enhancing 
educational resources and opportunities. Additionally it promotes employment practices 
while ensuring accessibility for all. Moreover it plays a role in preserving cultural identity. 
By leveraging the advancement of technology to bridge communication gaps SLP 
contributes towards building a society that is more inclusive, equitable and accessible for 
individuals with hearing loss. 
 
1.2 Problem definition 
Sign language, being a gestural form of communication heavily utilizes 3D space to 
convey information. Unlike spoken languages that heavily depend on auditory cues, sign 
languages rely on hand movements, body positions and facial expressions in relation to 
the surrounding space. Within the field of SLP various tasks such as sign language 
recognition, translation, representation and resource creation and maintenance play a 
significant role. These tasks involve understanding and processing the cues present in 
sign language through video or image data. 
As mentioned earlier sign language representation is an essential task within the field of 
SLP. It requires employing approaches to capture and represent sign language in a format 
that allows effective analysis, processing and communication [7]. Video recordings are 
commonly used as a method for representing sign language. Additionally other 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 12 

approaches like glosses, written notation systems or avatars are frequently utilized to 
represent sign language data. Each method contributes to achieving the goal of 
facilitating effective communication and understanding of sign language. 
However it's worth noting that the aforementioned methods, for representing sign 
language share a common limitation; they heavily rely on human effort. These methods 
require the involvement of humans (annotators or linguists) who manually transcribe, 
annotate or analyze sign language data. This manual work is time consuming and 
requires expertise. Therefore there is a need for an automated approach that can address 
these challenges effectively. 
In the context of avatar based representation techniques a successful approach would 
involve extracting 3D skeleton joints from videos and using them to animate the avatar 
replicating the corresponding movements. This is where Computer Vision (CV) comes 
into play. It’s a  field dedicated to extracting valuable insights from visual data, including 
both still images and dynamic videos. 
Computer vision algorithms specifically designed for pose estimation can be utilized to 
track and recognize hand movements identify facial expressions analyze body postures 
and extract spatial and temporal information from sign language videos. By leveraging 
these computer vision techniques, SLP systems can automatically recognize signs while 
interpreting the grammatical and semantic aspects of sign language. Consequently the 
task of sign language representation can be approached as both a computer vision 
problem and a human pose estimation problem effectively. 
 
1.3 Contribution 
Our thesis makes a versatile contribution in several areas. Firstly recognizing the 
importance and complexity of sign language representation, which typically involves 
labor-intensive manual processes, we propose an automated method for mapping signer 
skeleton keypoints to avatar motions. Specifically, we explore existing human pose 
estimation algorithms that can accurately extract 3D joint information from RGB videos 
captured with a single camera. This sets our research apart from previous works, which 
often relied on multiple cameras and depth data to infer 3D poses. 
Secondly, incorporating such an accurate 3D estimator in sign language video processing 
can greatly improve recognition and translation tasks. This advancement enables efficient 
and accurate analysis of sign language videos. Moreover our work extends to creating 
sign language databases which are valuable resources for research and training in this 
field. 
We conducted experiments using continuous sign language videos performed by the 
Paula avatar – an advanced system capable of dynamically generating new signed 
phrases, representing the current state of the art in this field. We present the results and 
findings obtained from these experiments. Utilizing Paula as an avatar allows for 
consistent evaluation and comparison across different scenarios and approaches, within 
sign language processing. 
In general our thesis seeks to enhance sign language representation, recognition, 
translation and corpora creation through automated methods and thorough 
experimentation using Paula as the reference avatar. 
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1.4 Structure 
In Chapter 2 we introduce the background of sign language representation methods and 
human pose estimation algorithms and we investigate representative, previously 
published works in these fields. 
In Chapter 3 we present the experimental setup used for conducting the research, 
including details about the models utilized and how Paulas videos were selected and 
prepared for analysis. 
In Chapter 4 we study the qualitative and quantitative results we obtain and discuss the 
findings in relation to our research objectives. 
In Chapter 5 we summarize our findings and present our conclusions based on the 
analysis. We also discuss any limitations that we encountered during our study. 
In Chapter 6 we suggest areas of improvement and future research directions and Identify 
opportunities for further development and exploration within the field.  
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2 BACKGROUND 
 
This chapter starts with a brief introduction to Sign Language Processing (SLP). We 
explore the key tasks within SLP and place particular emphasis on sign language 
representation methods thoroughly analyzing their benefits and drawbacks. After that we 
move on to pose estimation field giving important background information and conducting 
a thorough review of state of the art models used in this field. 
 
2.1 Sign language processing  
SLP is a field that combines disciplines to develop methods and systems for analyzing, 
understanding and generating sign language. This involves utilizing techniques such as 
computer vision, machine learning and natural language processing. These approaches 
aim to capture, interpret, and generate sign language data, making communication more 
feasible and accessible for the deaf and hard of hearing communities. 
To gain a clearer understanding of sign language processing, it's helpful to explore the 
tasks associated with it. SLP comprises several important tasks [22]: 
Sign Language Recognition focuses on creating algorithms and models that can 
automatically recognize and interpret signs, from video or image data [8]. It typically 
involves detecting and tracking hand and body movements analyzing handshapes and 
facial expressions and mapping them to signs.  
Sign Language Translation aims to convert sign language into spoken or written language 
[9] [10]. It entails comprehending the meaning of signs and generating textual or spoken 
translations. To accomplish this task we need to bridge the gap between sign language 
and spoken language by considering their different structures, meanings and cultural 
subtleties. 
Sign language production involves converting text or spoken language into sign language 
[11]. This allows individuals who primarily communicate through sign language to express 
themselves to non-signers or create sign language content. 
Sign language detection focuses on recognizing of signing activity in visual contexts [12]. 
Its main objective is to determine if a person is using sign language in a video by 
identifying specific hand and body movements or facial expressions associated with sign 
language communication. Sign language detection serves as an initial step in developing 
systems that can interpret and respond to sign language automatically. 
Sign language identification goes beyond detection and aims to recognize and 
differentiate between different types of sign languages or variations [13]. This involves 
determining whether the signer is using American Sign Language (ASL) British Sign 
Language (BSL) or another regional sign language. The accurate identification of the sign 
language being used is crucial for providing precise translation and interpretation 
services. 
Sign language segmentation refers to the process of breaking down sequences of signs 
into meaningful units [14]. This task requires identifying the boundaries, between signs, 
gestures or expressions within a signing sequence. Accurate segmentation plays a vital 
role in various tasks such as sign language recognition, translation, and production since 
it enables the system to process and analyze signs effectively. 
Sign language corpora creation involves gathering, annotating and organizing datasets 
comprising sign language videos, annotations and linguistic information [15]. These 
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corpora are worthwhile resources for training and evaluating SLP systems as well as 
conducting linguistic research. Developing comprehensive and diverse sign language 
corpora is vital, for advancing the accuracy and reliability of sign language recognition 
and translation models. Additionally it contributes to the exploration of sign languages 
and their linguistic characteristics. 
Sign language representation refers to the methods and systems used for capturing, 
conveying and interpreting sign language. It involves converting sign language 
expressions into a format that can be analyzed, processed and communicated through 
different means. This can be accomplished with the following approaches:  

Gloss is a technique that represents sign language using written or printed words from a 
language (Figure 1). It employs a system of symbols or abbreviations to indicate signs, 
fingerspelling and grammatical elements in sign languages. Previous works like [16] and 
[17] have provided guidelines for gloss annotation; however there is currently no 
established protocol for gloss annotation.  
Videos offer a representation of sign language by capturing the movements and gestures 
of signers. Video recordings of sign language performances, conversations or 
instructional content enable comprehension of sign language communication. Videos are 
extensively employed in sign language learning, interpreter training and multimedia 
applications. 
Written Notation Systems aim to capture the spatial and temporal aspects of sign 
languages using written symbols, diagrams or annotations. These systems provide a 
standardized way to transcribe and represent signs along, with their movements. 
Examples include Stokoe notation, HamNoSys [19], and SignWriting [20] (Figure 2). 
 

 
Figure 2: Example of HamNoSys notation system 

3D Motion Capture is used to track the movements of signers using equipment like 
multiple cameras or depth sensors. This method captures positions and orientations of 
body parts and gestures in three dimensional space. Its applications include research on 
sign language recognition systems, animation and virtual reality. 
Pose Estimation algorithms analyze video or image data to estimate the positions and 
orientations of body parts such as hands, arms and face. These algorithms use computer 
vision techniques like deep learning models for extracting and tracking relevant body 

 
Figure 1: Illustration of Sentence-to-Gloss conversion. 
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keypoints [23] [24] [25]. Pose estimation finds its application in  a plethora of interactive 
sign language technologies. 
Avatar or animation based representations: Another approach involves creating 
characters or avatars that mimic sign language movements and gestures. These 
representations can be generated using motion capture data, animation techniques or 
manually created by artists. Avatars and animations are commonly used for purposes, 
like sign language interpretation services and educational resources [7] [26]. 
Different methods of representation have their advantages and the choice of method 
depends on the specific goals, requirements and limitations of the task. Selecting the 
appropriate representation method is crucial for the accurate analysis and interpretation 
of sign language. 
Undoubtedly SLP involves a range of technologies that underline its inherent complexity. 
This complexity emphasizes the importance of adopting an interdisciplinary approach to 
address the various challenges within this field [27]. Therefore by bringing together 
experts from disciplines such as deaf culture, linguistics, computer vision, NLP, machine 
translation, computer graphics and human computer interaction, we can gain 
comprehensive insights and develop practical solutions that tackle the complex 
challenges in SLP. Through this effort across disciplines we can consider the needs of 
the sign language community and  result in effective technologies and services that 
promote inclusivity and accessibility. Ultimately embracing a such approach allows us to 
make meaningful advancements with tangible real world impact. This benefits sign 
language users, by fostering accessibility and promoting communication equality. 

 

2.2 Human pose estimation  
Human pose estimation (HPE) is defined as the positioning of human joints, like 
shoulders, elbows, wrists, etc, in images or videos. HPE is used in a plethora of real-
world applications across different areas, such as healthcare, sports analytics, robotics 
and gaming. It comprises techniques used to detect and track humans and recognize 
their actions [28]. Although it has received much attention in the computer vision 
community for decades, it still remains a challenging task. Intricate body postures, 
occlusions, changes in lighting conditions and clothing are some of the issues that reveal 
the complexity of HPE task .  
Moreover, HPE can be categorized into two main categories based on the output space: 

•  2D HPE: Involves estimation of the two-dimensional (2D) coordinates (x, y) of 
keypoints in an image or video. 

•  3D HPE:  Aims to estimate the three-dimensional (3D) coordinates (x, y, z) of 
joints or landmarks in an image or video, i.e. it also provides depth information. 
 

2.2.1 Human body modeling, datasets and evaluation metrics 
Before presenting the most important works in this area, we provide information on the 
modeling of the human body. In general, due to the complex structure of the human 
body, different models were adopted by the HPE methods [29][DK1]. However, the two 
most frequently employed models are the skeleton and shape models. Additionally, in a 
recent study [30][DK2], a surface-based representation, called DensePose, was 
proposed.  
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Figure 3: Human Body modeling - Skeleton (left), Shape (center) and Surface (right) models. 

In skeleton-based model, the human body is treated as a tree structure [31][DK3] which 
consists of many keypoints and edges that connect the natural adjacent joints as 
illustrated in Figure 3-left. Regarding the shape model, researchers have adopted the 
skinned multi-person linear (SMPL) model [32][DK4], as depicted in Figure 3-center. In 
this model, the human skin is represented as a triangulated mesh containing 6890 
vertices which is parameterized by both shape and pose parameters. On the other 
hand, DensePose was created to represent the human body in a denser structure since 
the sparse correspondence of the image and keypoints might not suffice to accurately 
capture the configuration of the human body (see Figure 3-right).  
 
Consequently, a new dataset called DensePose-COCO has been developed, which 
demonstrates the dense correspondences between image pixels and a surface-based 
representation of the human body. This dataset consists of 50K properly annotated 
images of COCO (Common Objects in Context) dataset [33], a widely used dataset for 
various tasks including Keypoint Detection. COCO comprises more than 200,000 
images and 250,000 person instances labeled with keypoints. It employes the skeleton-
based model with 17 keypoints. In the 3d HPE field, Human3.6M [34][DK5] is one of the 
most extensive motion capture datasets which consists of 3.6 million human poses, 
each accompanied by corresponding image. Similar to COCO, it adopts the skeleton 
model comprising 17 keypoints. However, it's worth noting that the configuration of 
these keypoints differ slightly from those in the COCO dataset as illustrated in Figure 4. 
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Furthermore, a frequently used metric in 2D HPE is the Percentage of Correct Keypoints 
(PCK) [35][DK6] which measures the percentage of correctly detected keypoints 
compared to the ground truth. An estimated keypoint is regarded correct if its distance 
from the corresponding ground truth falls below a predefined threshold.  
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Where: 

• 𝑁𝑁 is the total number of keypoints. 
• 𝑝𝑝𝑖𝑖 is the predicted 2D position of the i-th keypoint. 
• 𝐺𝐺𝑖𝑖 is the ground truth 2D position of the i-th keypoint. 
• 𝑇𝑇 is the defined distance threshold. 

 
Another evaluation metric which is commonly used in 3D HPE is the Mean Per Joint 
Position Error (MPJPE). It measures the average Euclidean distance between 
corresponding predicted joints and the ground truth.  
 

 

Figure 4: Keypoints in Coco (left) and H36m format (right). 
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Where: 

• 𝑁𝑁 is the total number of joints. 
• 𝑝𝑝𝑖𝑖 is the predicted 3D position of the i-th joint. 
• 𝐺𝐺𝑖𝑖 is the ground truth 3D position of the i-th joint. 

 
 

2.2.2 Human Pose Estimation Methods 
After the rise of deep learning in recent years, the field of HPE has also undergone earth-
shaking changes. However, before deep learning, other traditional approaches were 
being used to face that problem. Specifically, in the 2D HPE concept, a classical approach 
is the Pictorial Structures [DK7](PS) model [36]. In this framework, the basic idea is to 
represent an object like human body as a collection of its parts. The parts are not 
considered rigidly fixed in place and they can move or deform relative to each other. 
Therefore, a body transformation is treated as a set of local part deformations. Human 
structure is represented as a graph and each node corresponds to a part. In Figure 5, 
springs show the spatial relations between limbs and an appearance model is used for 
each part. The model tries to find the arrangement of parts and connections that best 
matches the human body in the image.  

 
Figure 5:  Pictorial Structures Model connects rigid body parts together through the 

use of springs to create a tree-like structure of the entire body 

However, the optimization method used, depends on initial solutions and doesn’t 
guarantee finding the global optimal solution. Felzenszwalb et al. utilized the probability 
statistical model to overcome this limitation [37]. Nevertheless, this approach was 
struggling to capture the connections between occluded parts. To solve these issues, 
Andriluka [38] proposed a generic approach based on the PS model.  
Another well-known classical approach is the Deformation Part model (DPM) which was 
introduced by Felzenszwalb [39]. In this framework, the human structure is represented 
as a star one which involves a root filter, part detectors and a part deformation model. 
[40][DK8](see Figure 6). The limitations of this model are due to the fact that it focuses on 
modeling the spatial relationships between body parts without explicitly taking into 
account changes caused by rotation, scale or size variations. To address these problems, 
Yang and Ramanan use a mixture model of parts to represent complex object structures, 
known as the Flexible Mixtures-of-Parts model (FMP) [41]. [DK9] FMP builds upon the 
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ideas of DPM incorporating features which increase the versatility of how parts can be 
arranged handle variations in rotation and scale. 

 

Figure 6: The template of the DPM and the Detection Result - (a) the Root filter; (b) the part 
Detection; (c) the Deformation model; (d) the Sample of the Detection and pose estimation.  

In 2014, Toshev proposed DeepPose, the first major method for HPE based on Deep 
Neural Networks (DNNs) [42][DK10]. In this work, pose estimation was considered as a 
DNN-based regression problem. Specifically, DeepPose leverages the power of 
convolutional neural networks (CNNs) to achieve accurate posture estimation even if 
several joints are not directly visible in the images since CNNs inherently have the ability 
to reason about poses in a holistic manner. Moreover, a significant innovation of 
DeepPose is its progressive refinement of pose estimation, as illustrated in Figure 7.  

 
Figure 7: Left: General view of the DeepPose architecture. Right: The refinement stage where a 

regressor is applied on a cropped image to refine the prediction from the previous stage. 

A different approach which implements heatmap regression, is introduced by Tompson 
[43][DK11]. This method, instead of indicating directly the body joints as in the previous 
work, estimates the probability of a keypoint occurring in each pixel of the image and its 
output is a heatmap showing these probabilities. As shown in Figure 8, the framework 
[DK12]comprises the coarse heat-map model for coarse localization, the component for 
extracting and cropping convolutional features at defined (x, y) positions for each joint 
and an extra convolutional model for fine-tuning. 
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Figure 8: Overview of cascaded architecture 

In 2016, Wei et al. harnessing the power of Pose Machines, introduced a novel framework 
called Convolutional Pose Machines (CPMs) [44][DK13]. A Pose machine comprise the 
image feature computation stage followed by a sequence of prediction stages (Figure 9a 
and 7b). CPMs is end-to-end framework which integrates convolutional networks into the 
Pose Machine model, capturing long-range dependencies between image and multi-part 
cues. The stacked convolutional networks as depicted (Figure 9), operate on belief maps 
from previous stages, progressively improving the precision of part location predictions. 
 

 
Figure 9: Overview of CPMs architecture 

In contrast with the aforementioned works which handle the single person pose 
estimation, OpenPose is a real time approach which achieves pose estimation of multiple 
people in an image [31]. It utilizes a nonparametric representation, known as Part Affinity 
Fields (PAFs), to learn to connect body parts with individuals in the image. PAFs are a 
set of 2d vectors that model the relationships between different body limbs, indicating the 
orientation and the strength of this affinity.  
As illustrated in Figure 10, OpenPose starts by taking the entire image as input. This 
image, which can contain more than one person, is processed using a CNN to create 
confidence maps for body parts detection. In addition to confidence maps, CNNs 
estimate a set of PAFs that denotes the level of association between parts. In the next 
step, bipartite graphs are performed between the associated parts of the body. 
Depending on the PAF values, weaker connections in bipartite graphs are removed and 
finally, by assembling them into whole-body poses, the skeleton of each person in the 
image is constructed.  
 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 22 

OpenPose is the first bottom-up real-time multi-person framework to simultaneously 
detect human body, hand, foot, and facial landmarks.  

 
Figure 10:  OpenPose pipeline. 

In 2017, He et al introduced a conceptually simple and flexible framework for object 
instance segmentation, called Mask R-CNN [45]. It extends the well-known Faster R-
CNN, designed primarily for object detection (Figure 11-left), by adding a third distinct 
branch that outputs a binary mask for each Region of Interest (RoI). These pixel-wise 
segmentation masks indicate which pixels belong to the object and which do not and 
encode the semantic information about its spatial structure. 
Moreover, Mask R-CNN can be extended to HPE. The main differences of the Mask R-
CNN are the output size and the way of encoding keypoints within the keypoint mask. As 
illustrated in Figure 11 (right), Mask R-CNN predicts 17 (one for each keypoint) one-hot 
56 x 56 binary masks where only one pixel is labeled as foreground. This extension of 
Mask R-CNN is known as Keypoint R-CNN and is included in Facebook’s AI library, 
Detectron2. 

 
Figure 11: Architectures of Mask R-CNN (left) and Keypoint R-CNN (right). 
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In contrast with 2D HPE, reconstructing a 3D human pose from a monocular image have 
to overcome a fundamental challenge that different 3D poses can correspond to the same 
2D image. Motivated by the rapid advancement of 2D HPE algorithms, many studies have 
tried to leverage the promising 2d HPE results for 3D HPE. Indeed, Martinez et al. [46] 
introduced a simple yet highly effective baseline for lifting 2d poses into 3d space. As 
illustrated in Figure 12, the model takes as input the 2d coordinates of keypoints, parses 
them through a deep, multilayer neural network and outputs the corresponding 3d 
coordinates.  

On the other hand, in the context of 3D HPE from a sequence of monocular images, 
the exploitation of temporal information is an efficient technique for reducing the inherent 
depth ambiguity. Therefore, Pavllo et al. [47] proposed a fully convolutional model to learn 
long-term information. Particularly, VideoPose3D, as it’s called, employs dilated temporal 
convolutions over 2d keypoints to predict 3d positions Figure 13.  

 
Figure 13: VideoPose3D architecture 

Another interesting work which is designed to estimate both 2D and 3D human pose from 
a single monocular (2D) image or video, is the BlazePose [48]. As depicted in Figure 14, 
it comprises two models: the pose detector and the pose tracker. Specifically, the detector 
is used to identify the ROI where the human is located and afterwards the tracker predicts 
the coordinates of 33 keypoints. In video cases, the detector is applied only to the first 
frame since for subsequent frames, the ROI were derived from the previous frames. 
BlazePose employs heatmaps and regression techniques, as shown in Figure 15, to 
predict the 2D keypoints and then extends this information to estimate the 3D pose. To 
estimate the full 3D body pose in images or videos, BlazePose uses GHUM, a 3D human 
shape modeling pipeline [49]. 

 
Figure 14: Inference pipeline of BlazePose. 

 

Figure 12: Overview of network architecture.  
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Figure 15: BlazePose architecture 
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3 Experiments 
 
In this chapter, we discuss our experiments conducted on Continuous Sign Language 
(CSL). Due to limited computational resources and the unavailability of considerable 
datasets it is not practical to train models from scratch. Instead we have chosen to focus 
on evaluating existing state of the art models. By utilizing pre trained models we can 
assess their performance and capabilities on specific sign language videos. This 
approach enables us to make comparisons and gain valuable insights. While training 
models from scratch may be preferable evaluating existing models provides meaningful 
information without requiring extensive training efforts. 
3.1 Data 
This approach allows us to maximize the use of resources while still gaining valuable 
insights into the effectiveness of sign language processing models. As a result we 
conducted experiments using a synthetic dataset consisting of five videos featuring an 
avatar named Paula specifically selected for evaluation purposes. 
Paula developed at DePaul University1 [50] and enhanced within the EASIER project by 
ATHENA/ILSP, is a computer-based sign language avatar initially designed for teaching 
sign language to hearing adults. This avatar takes string of glosses of sign languages 
including ASL (American), LSF (French), DGS (German), DSGS (Swiss-German), and 
GSL (Greek) sign languages, then applies morphological adjustments determines 
appropriate phonemes and timing and combines these elements to create a 3D animation 
featuring the avatar. Over time significant efforts have been made to improve the realism 
and expressiveness of Paula. 

Several notable advancements have been made in this regard, including refining eyebrow 
movements in order to achieve a more natural appearance [51] enhancing animation 
smoothness while avoiding robotic motions [52] and enabling simultaneity [53]. 
Additionally adaptations have been made to make Paula compatible, with sign language 
notation systems like Azee [54] further enhancing mouth animations [55] [56]. The latest 
advancements include incorporating layered facial textures and makeup [57]. These 
ongoing developments constantly enhance the authenticity and adaptability of the Paula 
avatar in sign language communication. 

In our research videos Paula demonstrates GSL by showcasing a range of complex 
signs, including phonological signs with occlusions. Although the videos capture the 
whole body of Paula, only her upper body is in motion while her lower body remains still. 
We chose to use full body videos because the evaluated models were trained on data 
that encompasses the full body. 

These videos are accompanied by ground truth data which provides precise world 
coordinates (x, y, z) for 14 primary skeleton keypoints in each frame. The arrangement 
of these keypoints can be seen in Figure 16. The ground truth data used in our 
experiments was preciously collected by a team at DePaul University ensuring accuracy 
and reliability of the keypoints position. Additionally detailed information about camera 
setup and characteristics such as intrinsic camera parameters has been provided.  

Although the dataset is not extensive enough it serves as a controlled environment for 
evaluating the effectiveness and abilities of the tested models. The use of this dataset 

 
1 http://asl.cs.depaul.edu 

http://asl.cs.depaul.edu/


Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 26 

allows us to make meaningful comparisons and draw introductory conclusions. These 
experiments conducted on Paulas videos provide valuable insights as a starting point, 
which can pave the way for further advancements, in sign language processing. 

By using this synthetic dataset, we aim to make meaningful comparisons and draw initial 
conclusions that can guide further research in sign language representation and 
recognition. As a starting point, these experiments on Paula's videos offer valuable 
insights that can lay the foundation for future work and potential advancements in sign 
language processing. 
 

 
3.2 Evaluation: Design and Methods 
As detailed in Table 1, we constructed and evaluated four approaches by combining state-
of-the-art pretrained models in HPE. All approaches in our experiments involve a two-
step process; initially estimate the 2D skeleton in image space taking as input an rgb 
video and then reconstruct it in 3D space utilizing the predicted 2D keypoints from the 
previous step.  
To ensure a proper configuration and smooth integration into a unified pipeline we need 
to apply certain adjustments since each model has its own input and output setup. These 
modifications were necessary in order to facilitate the evaluation and comparison of four 
approaches in our experiments. 
Specifically the first approach employs the OpenPose framework to estimate the 2D 
coordinates of keypoints in the H3.6m format. Unfortunately OpenPose does not provide 
predictions for the Midhip and Spine keypoints. To address this incompatibility issue with 
the h36m format we artificially generated these keypoints by leveraging information from 
adjacent ones. We define the Midhip as the midpoint between the right and left hip while 
the Spine as the midpoint between the Thorax and Midhip keypoints. In 3D reconstruction 
step, a pretrained model from Videopose3D framework was applied to predict the 
coordinates of the keypoints in 3D space in the same format (H3.6m). 
The next two approaches are quite similar. Both approaches share the input and output 
format (COCO) at both stages and utilize the same  pretrained model for 3D 
reconstruction. The main difference between these two approaches lies in their 2D 
detectors. Specifically the "Detectron" approach uses the Keypoint R-CNN model from 
the Detectron2 library while the "MpCoco" approach utilize the BlazePose from Mediapipe 
framework. 

Table 1: Overview of Evaluated Approaches 

Approach 2D Detector 2D keypoints 
format (input) 3D Reconstruction 3D keypoints 

format (output) 

OpenPose OpenPose H36m 
Videopose3D 

(pretrained_h36m_cpn.bin) 
H36m 

Detectron Keypoint-RCNN COCO 
Videopose3D 

(pretrained_h36m_Detectron_coco.bin) 
H36m 

MpCoco BlazePose COCO 
Videopose3D 

(pretrained_h36m_Detectron_coco.bin) 
H36m 

Mp3D BlazePose COCO BlazePose (GNUM) H3.6m 
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The last approach, called “Mp3D” relies exclusively on the mediapipe framework  in both 
the first and second stages. In this approach, for consistent configuration of 3D output 
(H3.6m),  apart from Midhip and Spine, Thorax and Headtop are artificially generated by 
using information from neighboring keypoints. It is important to note that our analysis 
primarily focuses on arm trajectory and therefore these extra keypoints do not affect our 
results. 
Indeed, studying the trajectory of arm joints in sign language is crucial for advancing sign 
language technologies. Analyzing movements of arm joints like shoulders, elbows and 
wrists plays an important role in improving sign language recognition systems and 
developing natural and expressive representation since they convey meaningful 
information. Given the importance of arm trajectory analysis, we have decided to narrow 
down our research scope to analyze primarily the movements of the arms. This allows us 
to delve deeper into this aspect. However, we acknowledge that a thorough 
understanding of sign language demands the comprehensive study of facial expressions 
and finger movements as well and we opt to leave it for future work, since it deserve a 
separate dedicated research.  
In addition we have opted to employ a right hand coordinate system where the X axis 
represents the width, pointing towards the left, the Y axis represents the depth pointing 
towards the camera while the Z represents the height pointing upwards (Figure 16). 
 

  

 

Figure 16: The upper body keypoints are indicated by the pink dots and serve as the reference 
points for the Ground Truth data. Additionally, the white segments emphasize the keypoints 

associated with the arms. 
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4 RESULTS 
 
In this chapter, we delve into our comprehensive analysis. As previously indicated, our 
analysis is centered around arm movements, with particular emphasis on the six 
keypoints: R/L Shoulder, R/L Elbow, and R/L Wrist. For the sake of brevity, we provide 
commentary and visually insightful diagrams for the most notable cases where error 
peaks are observed while the remaining results can be located in Appendix. 

 
Figure 17: Screenshot captured from the videos of the H36M dataset. The arrow points to the 

Thorax keypoint. 

Prior to presenting the results, it is essential to acknowledge some adjustments in order 
to ensure the accordance of skeleton keypoints 2. In terms of 2D detections, particularly 
within the OpenPose approach, there exists a notable divergence in the predicted Thorax 
keypoint. It is positioned above the corresponding keypoint used during training (Figure 
17). As demonstrated in Figure 18, this disparity leads to the visual outcome of the 
predicted 3D skeleton appearing elevated. Consequently, rectifying this by lowering the 

 
2 Quantitative results without applying arrangements can be found in Appendix.   

  
Figure 18: OpenPose Approach - Before (left) and after (right) 2D Thorax keypoint correction. In 
the 3D plots, the real skeleton is illustrated in green/yellow, while the predicted one is shown in 

black/red. 
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Thorax keypoint to the level of the shoulders, akin to the training data, yields a substantial 
reduction in error of approximately 8-10 mm within 3D space. 
In the realm of 3D reconstruction, especially within the approaches that employ the 
COCO skeleton in their 2D detection stage (such as Detectron, MpCoco, Mp3D), a 
consistent error pattern is observable across all analyzed videos. To be specific, the 
predicted 3D skeleton consistently appears lower than the actual skeleton. 
To address this systematic error, a potential solution involves raising the mid hip joint by 
approximately 6cm. This is due to the fact that the predicted 3D skeleton is dependent on 
the position of the mid hip joint. This heuristic adjustment would effectively elevate the 
entire skeleton, resulting in a reduction of the MPJPE by approximately 35-40 mm (Figure 
19. By aligning the predictions more accurately with the real-world skeleton, this 
corrective action can significantly enhance the overall accuracy of the model's 3D 
reconstructions. 
 

  
Figure 19: MpCoco approach - Before (left) and after (right) 3D midhip joint elevation. 

 
Considering the insights gained from the above observations and implementing the 
necessary corrections, we proceed with our analysis.  
 
 
4.1 Video1  
Starting with the error analysis of the video1, it is evident that the OpenPose, Detectron, 
and MpCoco approaches follow a similar pattern throughout the entire video. The Figure 
20 clearly illustrates two prominent peaks in errors, occurring specifically on the 66th and 
104th frames. Notably, the Mp3D approach deviates from this trend, as it additionally 
displays relatively elevated errors on intermediate frames. 
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In particular, on the 66th frame when Paula is crossing her wrists (Figure 21-left), the 
notably elevated average error can be attributed primarily to the inaccurate prediction of 
the left wrist and, to a lesser extent, the left elbow along the y-axis (Figure 22). The 
disparity between the predicted and actual skeleton is clearly evident in Figure 24.   

 

 
Figure 20: The average error of the six examined keypoints for different approaches across the 

sequence of frames. 

   
Figure 21:  The 66th (left), 78th (center) and 104th frame (right) of the Video1. 

 
Figure 22: Joint Component Errors on 66th frame for various approaches. 
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Furthermore, on the 104th frame, when Paula raises her arms to shoulder level (Figure 
21-right), all approaches struggle to accurately predict the left and right elbow positions 
along the y-axis (Figure 23). Additionally, a minor error is observable in the z-component 
of her wrists across most approaches, except for OpenPose. However, OpenPose's 
predictions for the x-direction of both elbows and wrist are notably inaccurate. Figure 25 
visually demonstrates that the predicted skeleton's arms appear to be spread wider apart 
than in reality. 
Regarding observed errors of Mp3D approach on 75th-90th frames corresponding to 
Paula's movement as illustrated in figure (Figure 21-center), it is struggling to estimate 
the y coordinate of both elbows and wrists (Figure 26 & Figure 27). 

  
Figure 24:  Comparison of approaches with Ground Truth on 66th frame. Left View (left): The left 

elbow is illustrated with circle and the left wrist with triangle - Front View (right). 

 

 
Figure 23: Joint Component Errors on 104th frame for various approaches 
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Figure 26:  Joint component error of Mp3D approach across the sequence of frames.  

 

 
 

 
 

Figure 25:  Comparison of approaches with Ground Truth on 104th frame. Right View (left): 
Right Elbow (circle) and Left Elbow (triangle) - Front View (right). 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 33 

 
4.2 Video2  
In the context of video2, upon observing the Figure 28, it becomes evident that there are 
two distinct segments within the videos where most of our approaches exhibit a 
substantial error of around 100 mm. To be precise, from 10th to the 30th frame when Paula 
points towards the camera with her right index finger (see Figure 29-left), a pronounced 
error surfaces in predicting the position of the right wrist. With regards to the approaches, 
except for OpenPose, this error manifests mainly in the z-coordinate (Figure 30). 
However, for OpenPose, the error is observed in the y-coordinate of the right wrist (Figure 
31). Moreover, in the case of OpenPose, the error in the y-component of the right elbow 
also contributes to the overall mean error. 

 
Figure 27: Comparison of Mp3D approach with Ground Truth on 78th frame.  

 
Figure 28: The average error of the six examined keypoints for different approaches across the 

sequence of frames. 

 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 34 

 

During the 58th frame, as Paula moves both her hands, only the Mp3D approach 
achieves a low error score (Figure 28). In contrast, the other approaches exhibit a high 
error rate, primarily attributed to the inaccurate prediction of the right wrist in the y 
dimension (Figure 33). Furthermore, OpenPose encounters challenges in accurately 
reconstructing the right elbow, as evidenced by elevated errors in both the x and y 
dimensions.  
It is worth noting the elevated error observed in the Mp3D approach during the interval of 
the 38th to 48th frame when Paula lowers her right hand (Figure 29-center). During this 
sequence, the Mp3D approach struggles to accurately predict the position of the right 
wrist in both the y and z dimensions (Figure 32). 

   
Figure 29: The 12th (left), 44th (center) and 58th frame (right) of the Video2. 

 
Figure 30: Right wrist z-component error for different approaches across the sequence of 

frames. 

 
Figure 31: Joint components error for OpenPose across the sequence of frames. 

/ 

/ 
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4.3 Video3  

 

Figure 34: The average error of the six examined keypoints for different approaches 
across the sequence of frames. 

 
Figure 32: Joint components error for Mp3D across the sequence of frames. 

 
Figure 33: Joint Component Errors on 58th frame for various approaches 
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The case of video3 presents an intriguing pattern. As illustrated in Figure 34, beyond the 
70th frame, there is a noticeable increase in error for the OpenPose and Mp3D 
approaches, while the Detectron and MPCOCO approaches display a decrease in error. 
Particularly, Figure 35-left illustrates that within this timeframe, Paula raises her right hand 
to the level of her eyes. In the case of OpenPose, the error originates from the inaccurate 
prediction of the z-coordinate of the right wrist (Figure 37). This significant error could be 
attributed to the fact that the nose is reconstructed much higher than its actual position in 
reality, as shown in Figure 38.  

Conversely, in the Mp3D approach, the elevated error is mainly due to the incorrect 
prediction of the y-coordinate of the right elbow (Figure 36, Figure 38). Furthermore, 
Figure 36 reveals a notable increase in error in the y-dimension of the left wrist, 
particularly on the last frames. This is intriguing considering the left wrist remains 
relatively stationary throughout the entire video. 

  
Figure 35: The 80th (left) and 145th frame (right) of the Video4. 

 
Figure 36: Joint components error for Mp3D across the sequence of frames. 
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Figure 37: Joint components error for OpenPose across the sequence of frames. 

 

  
Figure 38: Comparison of Mp3D and OpenPose approaches with Ground Truth on 82nd (left) 

and 106th frame (right) . 

 
  

NOSE NOSE 
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4.4 Video4 
In this video, a peak in the total error is evident on the 80th frame (Figure 39). During this 
frame, Paula positions her right wrist in front of her thorax (Figure 40-left) and notably, 
none of the four approaches accurately predicted the z-component of the right wrist 
(Figure 41). Additionally, the Mp3D approach encountered even more significant 
difficulties in estimating the y-dimension location of the right elbow and left wrist. Similarly, 
both the MpCoco and Detectron approaches displayed suboptimal predictions in the z-
direction for the left wrist and right elbow joints as well. Furthermore, OpenPose 
reconstructed the elbows wider than their actual position, leading to errors in the x-
dimension (Figure 43).  

 

  
Figure 40 : The 80th (left) and 145th frame (right) of the Video4. 

 
For OpenPose, this pattern of errors is observed on the 145th frame as well (Figure 44). 
Moreover, the Mp3D approach exhibits a substantial error on this frame. As evident in 
Figure 44, the predicted positions of the right elbow and left wrist are noticeably closer to 
the body. For the former, the error is apparent in the x-dimension, while for the latter, it 
relates to the y-dimension (Figure 42).  

 
Figure 39: The average error of the six examined keypoints for different approaches across the 

sequence of frames. 
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Figure 41: Joint Component Errors on 80th frame for various approaches 

 

Figure 42: Joint components error for Mp3D across the sequence of frames. 

 

Figure 43: Joint components error for OpenPose across the sequence of frames 

 

  

/ 

/ 
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4.5 Video5 

In this video, it's important to highlight two specific intervals during which both OpenPose 
and Mp3D approaches display prominent peaks in error analysis (Figure 45). Firstly, the 
initial interval between the 15th and 30th frames, during which Paula raises her right arm 
to the level of her thorax (Figure 46-left), results in a significant error in the prediction of 
the right wrist's y-component for both approaches (Figure 47 & Figure 48).  

 
Figure 44:Comparison of Mp3D and OpenPose approaches with Ground Truth on 145th frame. 

 

Figure 45: The average error of the six examined keypoints for different approaches across the 
sequence of frames. 
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Moving further into the video, when Paula elevates her right hand above her right 
shoulder, as illustrated in the Figure 45-right, both approaches encounter difficulties in 
accurately estimating the y-coordinate of the right elbow. Notably, OpenPose exhibits 
suboptimal predictions for the z-coordinate of the right wrist, while Mp3D struggles with 
the y-coordinate of the left wrist. These discrepancies for both approaches are visually 
represented in Figure 50. 

   
Figure 46: The 24th (left), 40th (center) and 184th frame (right) of the Video5. 

 
Figure 47: Joint components error for OpenPose across the sequence of frames. 
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Additionally, there is another notable peak in error for the OpenPose approach on the 
40th frame when Paula points to her left side Figure 46-center). This error is primarily 
attributed to inaccuracies in the z-coordinate prediction of her left wrist (Figure 47). A 
closer examination reveals that this error originates from inaccurate estimations during 
the 2D detection stage. As depicted in Figure 49, OpenPose exhibits difficulties in 
accurately detecting the left wrist for several frames. 
 

  

 
Figure 48: Joint components error for Mp3D across the sequence of frames. 

  
Figure 49: Comparison of OpenPose 2D 
Detections with Ground Truth. Notably, a 

significant error concerning the left wrist is 
highlighted. 

Figure 50: Comparison of Mp3D and 
OpenPose approaches with Ground Truth 

on 184th frame. 
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4.6 Aggregated analysis 
 
After providing a detailed qualitative analysis for each video individually and discussing 
the relevant diagrams, we proceed to present the comprehensive quantitative results in 
both Table 2 and Table 3.  
Table 2: MPJPE for each approach across all videos. The columns labeled x, y, and z represent the 

average error observed along each respective axis. All values are in millimeters (mm).  
Videos EUDs1 EUDs2 EUDs3 EUDs4 EUDs5 

Approaches MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z 

OpenPose 91 59 37 45 78 53 33 33 101 57 39 61 80 51 25 47 96 58 48 40 

Detectron 73 30 38 44 81 33 35 56 78 32 43 43 75 33 32 50 83 33 47 49 

MpCoco 70 29 42 35 72 31 38 41 75 31 46 35 72 33 38 38 72 32 45 35 

Mp3D 104 34 73 48 82 31 42 47 101 34 69 42 87 32 54 43 95 30 62 45 

  
Table 3: Aggregate errors averaged across all videos. 

Approach MPJPE X Y Z 
OpenPose 89.2 55.6 36.4 45.2 
Detectron 78 32.2 39 48.4 
MpCoco 72.2 31.2 41.8 36.8 
Mp3D 93.8 32.2 60 45 

 
We initiate the discussion with the MpCoco approach, which demonstrates superior 
performance compared to its counterparts, achieving the lowest MPJPE on every video. 
The aggregated MPJPE across all videos is noted to be 72.2 mm. Analyzing the 
dimensions separately, it is evident that MpCoco consistently yields the lowest error on 
the x and z dimensions as well, with aggregated errors of 31.2 mm and 36.8 mm, 
respectively. 
Next in line is the Detectron approach, which closely follows MpCoco's performance with 
an aggregated error of 78 mm. While it maintains a comparable level of excellence, even 
surpassing MpCoco in certain cases, along the x and y dimensions, it exhibits a relatively 
higher error in the z dimension. Specifically, it records the highest error in comparison to 
all approaches for the z dimension, with an aggregated error of 48.4 mm. 
Securing the third position is the OpenPose approach, with an aggregated error of 93.8 
mm. An intriguing aspect of OpenPose's performance is its remarkable accuracy in the 
y-dimension across most videos, outperforming the second-best approach (Detectron) 
by a margin of 2.6 mm (with an error of 36.4 mm). However, in the x-dimension, 
OpenPose displays the highest error among all approaches, which ultimately contributes 
to its elevated total error. 
The final position is occupied by the Mp3D approach, registering a total error of 93.8 mm. 
Evidently, this substantial error can be attributed to its notable error in the y-dimension, 
which reaches 60 mm, the highest among all approaches. Nevertheless, the Mp3D 
approach demonstrates commendable performance in the x and z dimensions, 
particularly excelling in the x-dimension with a marginal difference of only 1.0 mm from 
the best approach (with an error of 32.2 mm).  
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5 CONCLUSIONS 
 
In this thesis, we extensively studied the problem of sign language representation. 
Acknowledging its importance and complexity, which demands labor-intensive manual 
processes, we propose an automated method for mapping skeleton keypoints to avatar 
motions. Our rationale relies on the fact that an accurate 3D HPE technique from a video 
can be utilized to animate the avatar, reproducing the corresponding sign. In particular, 
we evaluated four approaches which involve state-of-the-art HPE algorithms to “lift” 2D 
body joint locations to the 3D plane. 
We conducted our experiments on a small synthetic dataset consisting of five videos 
featuring the Paula avatar. Our research is focused on studying the trajectory of arm joints 
i.e., R/L Shoulder, R/L Elbow, and R/L Wrist, since their movements convey essential 
information for sign language understanding. Due to the fact that the evaluated algorithms 
have been trained on generic dataset and have specific skeleton configurations, we had 
to make certain adjustments for achieving accordance of skeleton keypoints.  
Among the evaluated methods, MpCoco emerges as the frontrunner in terms of 
performance. Demonstrating consistent superiority across all videos, it showcases an 
impressive ability to minimize errors across different axes. This reliability positions 
MpCoco as a formidable contender for accurate pose estimation. 
The analysis reveals that Detectron delivers a competitive performance, although slightly 
trailing behind MpCoco. This disparity can be attributed to the notable edge that 
Mediapipe holds in 2D pose estimation, which indirectly influences Detectron's 
performance. This observation underscores the interconnectedness of different stages in 
pose estimation. 
OpenPose's performance unfolds as a story of axis-specific competency. It excels in 
depth estimation along the y-axis, showcasing commendable proficiency. However, its 
performance falters on the x-axis, where the predicted skeleton tends to diverge from the 
actual ground truth, hinting at potential challenges in width estimation. 
Mp3D's performance varies significantly across different dimensions. While it attains 
notable accuracy on the x-axis, indicating precision in width estimation, its performance 
suffers on the y-axis (depth). This is because y-coordinate is derived from synthetic data 
using the GHUM model, fitted via an algorithm to the 2D key point projection. Therefore, 
the y-coordinate doesn't represent exact distance but rather it provides relative depth 
information within an image. 
In summation, our analysis provides a comprehensive view of the strengths and 
limitations of each method. The distinct patterns of performance on different axes 
underscore the complexity of accurate pose estimation and offer a roadmap for further 
advancements in the field. The outcomes of this analysis serve as a foundation for 
refining methodologies and steering the evolution of sign language representation 
technology. 
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6 FUTURE WORK 
 
First and foremost, the scope of analysis can be extended to capture the entirety of the 
upper body, including facial and finger landmarks. By incorporating these extra keypoints 
into our analysis we can achieve a more comprehensive understanding of sign language 
gestures and expressions. This broader perspective could illuminate the interplay 
between different components of the upper body in signing space. 
Moreover, we observed that several failures in our findings are caused by disparities in 
motion capture data. There was no absolute correspondence of keypoints between the 
training and the test dataset. To address this, one promising direction is to train or fine 
tune models using avatar data. This strategy has the potential to improve prediction 
accuracy and leveraging the flexibility of avatar data allows us to tailor our models to 
better align with sign language motions intricacies in real world scenarios. 
In addition to error analysis, as presented in this research, exploring the aspect of sign 
perception is vital in drawing any conclusion in SLP. Conducting studies to investigate 
how human signers perceive and interpret signs predicted by the developed approaches 
can provide valuable information which cannot be extracted from an error analysis. For 
instance, a subtle discrepancy in movement (low error) may lead to a different  meaning 
(and vice versa). Therefore, taking into account the aspect of sign perception, we can 
refine our models and their applications resulting in more accurate and meaningful 
representations of sign language gestures. 
In conclusion these future paths have the potential to improve the precision and real world 
applicability of the proposed approaches. By exploring the whole range of upper body 
movements, refining models using data driven techniques and receiving feedback from 
human signers we can obtain a more comprehensive understanding of sign language 
technologies. 
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ABBREVIATIONS – ACRONYMS 
 

SLP Sign Language Processing 

HPE Human Pose Estimation 
GSL Greek Sign Language 
ASL American Sign Language 

LSF French Sign Language 
DGS German Sign Language 

DSGS Swiss-German Sign Language 
FMP Flexible Mixtures-of-Parts model 
DPM Deformation Part Model 

DNN Deep Neural Networks 
PAF Part Affinity Fields 

R-CNN Region-based Convolutional Neural Networks 
CPM Convolutional Pose Machines 

GHUM Generative 3D Human Shape and Articulated Pose Models 
MPJPE Mean Per Joint Position Error 

GT Ground Truth 

COCO Common Objects in Context 
H36m Human 3.6 million  
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APPENDIX 
 
In this section, we provide the remaining diagrams that were not included in chapter 4. 
We exclude those that related to shoulders, as the observed error was consistently low 
in the majority of cases.  
Code, data, models and supplementary materials associated with our research are 
available on my GitHub repository: https://github.com/JKaraman93/2dTo3d_Paula . 
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Video2: 
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Results (without adjustments) 
 

Videos EUDs1 EUDs2 EUDs3 EUDs4 EUDs5 

Approaches MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z MPJPE X Y Z 

OpenPose 96 34 49 62 89 29 47 53 106 33 40 82 94 27 41 70 104 35 60 60 

Detectron 120 30 38 69 131 33 35 117 122 32 43 104 124 33 32 111 130 33 47 110 

MpCoco 113 29 42 94 117 31 38 102 115 31 46 93 115 33 38 98 115 32 45 95 

Mp3D 123 34 73 69 103 31 42 71 115 34 69 60 104 32 54 62 113 30 62 68 

 
Approach MPJPE X Y Z 

OpenPose 97.8 31.6 47.4 65.4 
Detectron 125.4 32.2 39 102.2 
MpCoco 115 31.2 41.8 96.4 
Mp3D 111.6 32.2 60 66 

 

 
  



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 51 

 

REFERENCES 
 
[1] “World Health Organization. 2021. ‘Deafness and Hearing Loss.’”, [Online]. 
Available: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss 
[2] “World Federation of the Deaf. 2022. ‘World Federation of the Deaf - Our Work.’”, 
[Online]. Available: https://wfdeaf.org/our-work/ 
[3] “United Nations. 2022. ‘International Day of Sign Languages.’”, [Online]. Available: 
https://www.un.org/en/observances/sign-languages-day 
[4] D. Brentari, "Sign Language Phonology," in The Handbook of Phonological Theory, 
J. Goldsmith, J. Riggle, and A. C. L. Yu, Eds. [Online]. Available: 
https://doi.org/10.1002/9781444343069.ch21, 2011. 
[5] W. Sandler and D. Lillo-Martin, Sign Language and Linguistic Universals. 
Cambridge: Cambridge University Press, 2006. 
[6] K. Yin, A. Moryossef, J. Hochgesang, Y. Goldberg, and M. Alikhani, "Including 
Signed Languages in Natural Language Processing," in Proceedings of the 59th Annual 
Meeting of the Association for Computational Linguistics and the 11th International Joint 
Conference on Natural Language Processing (Volume 1: Long Papers), Aug. 2021, pp. 
7347-7360, Online. DOI: 10.18653/v1/2021.acl-long.570. Available: 
https://aclanthology.org/2021.acl-long.570 
[7] R. J. Wolfe, J. C. McDonald, T. Hanke, S. Ebling, D. Van Landuyt, F. Picron, V. 
Krausneker, E. Efthimiou, E. F. Fotinea, and A. Braffort, "Sign Language Avatars: A 
Question of Representation," Inf., vol. 13, p. 206, 2022. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:248281127.  
[8] N. Adaloglou, T. Chatzis, I. Papastratis, A. Stergioulas, G. Th. Papadopoulos, V. 
Zacharopoulou, G. J. Xydopoulos, K. Atzakas, D. Papazachariou, and P. Daras, "A 
Comprehensive Study on Deep Learning-Based Methods for Sign Language 
Recognition," IEEE Transactions on Multimedia, vol. 24, pp. 1750-1762, 2021. [Online]. 
Available: https://api.semanticscholar.org/CorpusID:234354860. 
[9] M. De Coster, D. Shterionov, M. Van Herreweghe, and J. Dambre, "Machine 
Translation from Signed to Spoken Languages: State of the Art and Challenges," ArXiv, 
vol. abs/2202.03086, 2022. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:246634045. 
[10] N. C. Camgöz, O. Koller, S. Hadfield, and R. Bowden, "Sign Language 
Transformers: Joint End-to-End Sign Language Recognition and Translation," 2020 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10020-
10030, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:214728269. 
[11] R. Rastgoo, K. Kiani, S. Escalera, and M. Sabokrou, "Sign Language Production: 
A Review," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
Workshops (CVPRW), pp. 3446-3456, 2021. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:232417318. 
[12] Moryossef, I. Tsochantaridis, R. Aharoni, S. Ebling, and S. Narayanan, "Real-Time 
Sign Language Detection using Human Pose Estimation," ArXiv, vol. abs/2008.04637, 
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221095609. 
[13] D. D. Monteiro, C. M. Mathew, R. Gutierrez-Osuna, and F. M. Shipman, "Detecting 
and Identifying Sign Languages through Visual Features," 2016 IEEE International 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 52 

Symposium on Multimedia (ISM), pp. 287-290, 2016. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:13552976. 
[14] M. De Sisto, D. Shterionov, I. Murtagh, M. Vermeerbergen, and L. Leeson, 
"Defining meaningful units. Challenges in sign segmentation and segment-meaning 
mapping (short paper)," in Proceedings of the 1st International Workshop on Automatic 
Translation for Signed and Spoken Languages (AT4SSL), Aug. 2021, pp. 98-103, Virtual. 
DOI: 10.18653/v1/2021.mtsummit-at4ssl.11. Available: 
https://aclanthology.org/2021.mtsummit-at4ssl.11. 
[15] T. A. Johnston, "From archive to corpus: transcription and annotation in the 
creation of signed language corpora," in Proceedings of the Pacific Asia Conference on 
Language, Information and Computation, 2008. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:1266398. 
[16] J. Mesch and L. Wallin, "Gloss annotations in the Swedish Sign Language 
Corpus," International Journal of Corpus Linguistics, vol. 20, pp. 102-120, 2015. [Online]. 
Available: https://api.semanticscholar.org/CorpusID:62241141. 
[17] T. E. Johnston, "Auslan Corpus Annotation Guidelines," 2013. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:201605087. 
[18] W. C. Stokoe Jr, "Sign Language Structure: An Outline of the Visual 
Communication Systems of the American Deaf," Journal of Deaf Studies and Deaf 
Education, vol. 10, no. 1, pp. 3-37, 2005. 
[19] S. Prillwitz and H. Zienert, “Hamburg Notation System for Sign Language: 
Development of a Sign Writing with Computer Application.,” in Proceedings of the 3rd 
European Congress on Sign Language Research, 1990, pp. 355–79. 
[20] V. Sutton, "Lessons in Sign Writing," SignWriting, 1990. 
[21] B. Garcia and Marie-Anne Sallandre, “Transcription systems for sign languages: a 
sketch of the different graphical representations of sign language and their 
characteristics,” 2013, doi: 10.13140/RG.2.1.4760.2404. 
[22] Moryossef and Y. Goldberg, "Sign Language Processing," [Online]. Available: 
https://sign-language-processing.github.io/, 2021. 
[23] M. Parelli, K. Papadimitriou, G. Potamianos, G. Pavlakos, and P. Maragos, 
"Exploiting 3D Hand Pose Estimation in Deep Learning-Based Sign Language 
Recognition from RGB Videos," in ECCV Workshops, 2020. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:230795205. 
[24] M. Parelli, K. Papadimitriou, G. Potamianos, G. Pavlakos, and P. Maragos, 
"Spatio-Temporal Graph Convolutional Networks for Continuous Sign Language 
Recognition," in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 8457-8461, 2022. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:249437248. 
[25] M. Ivashechkin, O. A. Mendez Maldonado, and R. Bowden, "Improving 3D Pose 
Estimation For Sign Language," in 2023 IEEE International Conference on Acoustics, 
Speech, and Signal Processing Workshops (ICASSPW), pp. 1-5, 2023. [Online]. 
Available: https://api.semanticscholar.org/CorpusID:260387723. 
[26] R. Wolfe, J. McDonald, E. Efthimiou, E. Fotinea, F. Picron, D. Van Landuyt, T. 
Sioen, A. Braffort, M. Filhol, S. Ebling, T. Hanke, and V. Krausneker, "The myth of signing 
avatars," Proceedings of the 1st International Workshop on Automatic Translation for 
Signed and Spoken Languages (AT4SSL), Aug. 2021, pp. 33-42. 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 53 

[27] D. Bragg, O. Koller, M. Bellard, L. Berke, P. Boudreault, A. Braffort, N. K. Caselli, 
M. Huenerfauth, H. Kacorri, T. Verhoef, C. Vogler, and M. R. Morris, "Sign Language 
Recognition, Generation, and Translation: An Interdisciplinary Perspective," Proceedings 
of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, 
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:201645446. 
[28] Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM 
Computing Surveys, 43: 194–218. doi: 10.1145/1922649.1922653. 
[29] J. Wang, S. Tan, X. Zhen, S. Xu, F. Zheng, Z. He, and L. Shao, "Deep 3D human 
pose estimation: A review," Comput. Vis. Image Underst., vol. 210, p. 103225, 2021. 
[Online]. Available: https://api.semanticscholar.org/CorpusID:236241840. 
[30] R. A. Güler, N. Neverova, and I. Kokkinos, "DensePose: Dense Human Pose 
Estimation in the Wild," 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 7297-7306, 2018. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:13637778. 
[31] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, "OpenPose: Realtime 
Multi-Person 2D Pose Estimation Using Part Affinity Fields," arXiv preprint 
arXiv:1812.08008, 2018. 
[32] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, "SMPL: A 
Skinned Multi-Person Linear Model," ACM Trans. Graph. (TOG), vol. 34, no. 6, p. 248, 
2015. 
[33] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and 
C. L. Zitnick, "Microsoft COCO: Common Objects in Context," in European Conference 
on Computer Vision, 2014. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:14113767. 
[34] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, "Human3.6M: Large Scale 
Datasets and Predictive Methods for 3D Human Sensing in Natural Environments," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 2014. 
[35] Y. Yang and D. Ramanan, "Articulated Human Detection with Flexible Mixtures of 
Parts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2878-2890, 2012. 
[36] Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of 
pictorial structures. IEEE Transactions on Computers, C22, 67–92. 
[37] Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial structures for object 
recognition. International Journal of Computer Vision, 61, 55–79. doi: 
10.1023/B:VISI.0000042934.15159.49. 
[38] Andriluka, M., Roth, S., & Schiele, B. (2009). Pictorial structures revisited: People 
detection and articulated pose estimation. Paper presented at the 2009 IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR 
Workshops 2009, June 20, 2009 - June 25, 2009, Miami, FL, United states 
[39] Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained, 
multiscale, deformable part model. Paper presented at the 26th IEEE Conference on 
Computer Vision and Pattern Recognition, CVPR, June 23, 2008 - June 28, 2008, 
Anchorage, AK, United states. 
[40] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object 
Detection with Discriminatively Trained Part-Based Models," IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010. doi: 
10.1109/TPAMI.2009.167. 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 54 

[41] C. Wang, Y. Wang, and A. L. Yuille, "An Approach to Pose-Based Action 
Recognition," in Proceedings of the 26th IEEE Conference on Computer Vision and 
Pattern Recognition, CVPR 2013, June 23, 2013 - June 28, 2013, Portland, OR, United 
States. 
[42] A. Toshev and C. Szegedy, "DeepPose: Human Pose Estimation via Deep Neural 
Networks," in Proceedings of the 27th IEEE Conference on Computer Vision and Pattern 
Recognition, CVPR 2014, June 23, 2014 - June 28, 2014, Columbus, OH, United States. 
[43] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, "Efficient Object 
Localization Using Convolutional Networks," 2015 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), pp. 648-656, 2014. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:206592615. 
[44] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, "Convolutional Pose 
Machines," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 4724-4732, 2016. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:163946. 
[45] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, "Mask R-CNN," 2017. [Online]. 
Available: https://api.semanticscholar.org/CorpusID:54465873. 
[46] J. Martinez, R. Hossain, J. Romero, and J. Little, "A Simple Yet Effective Baseline 
for 3D Human Pose Estimation," 2017 IEEE International Conference on Computer 
Vision (ICCV), pp. 2659-2668, 2017. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:206771080. 
[47] D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, "3D Human Pose Estimation 
in Video With Temporal Convolutions and Semi-Supervised Training," 2019 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7745-7754, 2018. 
[Online]. Available: https://api.semanticscholar.org/CorpusID:53806352. 
[48] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. L. Zhu, F. Zhang, and M. 
Grundmann, "BlazePose: On-device Real-time Body Pose Tracking," arXiv preprint 
arXiv:2006.10204, 2020. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:219793039. 
[49] H. Xu, E. G. Bazavan, A. Zanfir, W. T. Freeman, R. Sukthankar, and C. 
Sminchisescu, "GHUM & GHUML: Generative 3D Human Shape and Articulated Pose 
Models," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 6183-6192, 2020. [Online]. Available: 
https://api.semanticscholar.org/CorpusID:219964093. 
[50] M. J. Davidson, “PAULA: A Computer-Based Sign Language Tutor for Hearing 
Adults”. 
[51] R. Wolfe, P. Cook, J. C. McDonald, and J. Schnepp, “Linguistics as structure in 
computer animation: Toward a more effective synthesis of brow motion in American Sign 
Language”. 
[52] J. McDonald et al., “An automated technique for real-time production of lifelike 
animations of American Sign Language,” Univers. Access Inf. Soc., vol. 15, no. 4, pp. 
551–566, Nov. 2016, doi: 10.1007/s10209-015-0407-2. 
[53] J. McDonald, R. Wolfe, S. Johnson, S. Baowidan, R. Moncrief, and N. Guo, “An 
Improved Framework for Layering Linguistic Processes in Sign Language Generation: 
Why There Should Never Be a ‘Brows’ Tier,” in Universal Access in Human–Computer 
Interaction. Designing Novel Interactions, M. Antona and C. Stephanidis, Eds., in Lecture 



Mapping of skeleton keypoints to avatar motions in signing space 

D. Karamanidis 55 

Notes in Computer Science, vol. 10278. Cham: Springer International Publishing, 2017, 
pp. 41–54. doi: 10.1007/978-3-319-58703-5_4. 
[54] M. Filhol, J. McDonald, and R. Wolfe, “Synthesizing Sign Language by Connecting 
Linguistically Structured Descriptions to a Multi-track Animation System,” in Universal 
Access in Human–Computer Interaction. Designing Novel Interactions, M. Antona and C. 
Stephanidis, Eds., in Lecture Notes in Computer Science, vol. 10278. Cham: Springer 
International Publishing, 2017, pp. 27–40. doi: 10.1007/978-3-319-58703-5_3. 
[55] R. Johnson, M. Brumm, and R. Wolfe, “An Improved Avatar for Automatic Mouth 
Gesture Recognition”. 
[56] R. Wolfe et al., “Supporting Mouthing in Signed Languages: New innovations and 
a proposal for future corpus building”. 
[57] R. Wolfe, E. Jahn, R. Johnson, and J. C. McDonald, “The case for avatar makeup”. 


	1 INTRODUCTION
	1.1 Motivation
	1.2 Problem definition
	1.3 Contribution
	1.4 Structure

	2 BACKGROUND
	2.1 Sign language processing
	2.2 Human pose estimation
	2.2.1 Human body modeling, datasets and evaluation metrics
	2.2.2 Human Pose Estimation Methods


	3 Experiments
	3.1 Data
	3.2 Evaluation: Design and Methods

	4 RESULTS
	4.1 Video1
	4.2 Video2
	4.3 Video3
	4.4 Video4
	4.5 Video5
	4.6 Aggregated analysis

	5 CONCLUSIONS
	6 FUTURE WORK
	ABBREVIATIONS – ACRONYMS
	APPENDIX
	REFERENCES

