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NEPIAHWH

H Nonuartikr) yA\wooa atroTeAei ToOv KUPIO TPOTTO ETTIKOIVWVIAG yIa ATOPA TTOU €ival Kwd
N avtigeTwiidouv TpoAfuata otnv akor). H avamapdotacn tng NonuarikAg yAwooag
atroTeAE pia TTOAUTTAOKN diadikaaoia, n otroia eUTTAEKEI avBpwWTTIVEG dPACTNPIOTNTEG TTOU
ATTAITOUV TTOAU XpOvo. MNa va avTIETWITIOOUYE AUTAV TNV TTPOKANCN, TTPOTEIVOUNE HIa
auTopaToTTOINUEVN MEBODO TTOU VA AVTIOTOIXEN TIC APOPWOEIG TOU OKEAETOU OE KIVHOEIG TOU
Avatar 0ToV XWpPO VONUATIOPOU, XPNOIMOTIOIWVTAG TIPONYUEVEG TEXVIKEG BaBIAg pdénong.
AUTA N avTIOTOIXION ETTITUYXAVETAI UE TNV AKPIPH e€aywyn cuvTeTayuévwy 3A apBpwoewv
TOU CWHATOG ATTO PBiVTED, XPNOIMOTIOIWVTAG TEAEUTAIOG TEXVOAOYIOG aAyOpIBUOUG yia TNV
EKTIMNON TNG avBpWTTIVNG TTOLAG. ZTN MEAETN MOG, ECETACOUE OUYKEKPIPEVES TTPOOEYYIOEIG
TTOU €VTOTTICOUV Ta 2A OnuEia TOU OKEAETOU ATTO BIVTEO KAl OTNV OUVEXEIQ T UETATPETTOUV
o1o 3A XWpo, TIG OTToiEG agloAoyoUuue 0€ €va PIKPO OUVOETIKGO OUVOAO OedOMEVWV TTOU
TepIhapBavel Tévte Bivreo ue 1o avatar Paula. H €pguva pag TTIKEVTPWVETAI OTIG KIVAOEIG
TWV XEPIWV, OivovTiag £u@acn OTOUG WHOUG, TOUG AYKWVEG Kal TOUG KapTroug,
avayvwpidovtag Tn onuacia Toug 0TV Katavonon tng Vonuarikng YAwooag. Aoyw Tng
ektTaideuong Twv aglohoynuévwy peBOdWV Ot YeVIKA OUVOAQ dedouévwy Kal Ol O€
OUYKEKPIMEVA YIA TN VONUATIKI YAWOOQ, KAVAPE OPICUEVEG TTPOCAPUOYES TTPOKEIUEVOU
va E€MTUXOUUE TNV QVTIOTOIXION TWV ONMPEIWV TOU OKEAETOU. ETTiONG, TTapéXOUME HIa
OAOKANPwWHEVN avAAuon TwV TTAEOVEKTNUATWY KAl TWV adUVANIWY YIa KABe pEBodo Kal
QAVOQEPOUHE CUYKEKPIPEVA WOTIRa TNG atTOd00N TOUG TTOU TTapaTnPhOnkav o€ K&Be agova.
2nMavTiké gival OTI N TTPOCEYYION TTOU XpnoldoTrolei To JovTEAo BlazePose Tou Mediapipe
yla Tnv ekTipnon 1ng 2A 1médag kai 1o VideoPose3D yia Tnv 3A avakaTaoKeUr, UTTEPTEPEI
TWV UTTOAOITTWYV, ETTITUYXAVOVTAG £va hNECO o@aApa apBpwoewv (MPJPE) ico pe 72.2
XIANIOOTA.

OEMATIKH NEPIOXH: Opaon YtoAoyioTwv

AEZEIZ KAEIAIA: EkTipnon avBpwrivng T6dag, 3A avakaTaoKeun, avammapdoTaon
vonuartikng YAwooaog, Kivnon Avatar



ABSTRACT

Sign Language constitutes the primary means of communication for the deaf and hard-
of-hearing individuals. Sign Language Representation is a complex task, which involves
human labor-intensive processes. To address this challenge, we propose an automated
method that maps skeleton keypoints to avatar motions by leveraging advanced deep
learning approaches. This mapping can be achieved by extracting accurate 3d body joints
coordinates from monocular videos using state-of-the-art human pose estimation
algorithms. In our study, we investigate certain approaches which detect the 2D body
joints in videos and subsequently convert them into 3D space, evaluated on a small
synthetic dataset of five videos, featuring the Paula avatar. Our work focuses on arm
motions, emphasizing on keypoints related to shoulders, elbows, and wrists,
acknowledging the significance of their movements in sign language understanding. Due
to the training of evaluated methods on generic dataset rather than those specific to sign
language, we had to make certain adjustments to ensure the accordance of skeleton
keypoints. We provide a comprehensive analysis of the benefits and drawbacks of each
method and report special patterns of performance on different axes. Notably, the
approach, which uses the BlazePose of Mediapipe as the 2D detector and the
VideoPose3D for 3D reconstruction, outperforms its competitors, achieving an average
Mean Per Joint Position Error (MPJPE) of 72.2 mm.

SUBJECT AREA: Computer Vision

KEYWORDS: human pose estimation, 3D reconstruction, sign language representation,
avatar motion
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TNV dIEUBUVTPIa epeuvWyV OTO lvoTiTouTo ETregepyaaiag Tou Adyou Tou E.K. ABnvd, EAEvn
EuBupiou. H kaBodAynon kai n utrooThpIE TNG o€ OAa Ta oTAdIa TNG £PEUVAG POoU ATAV
QVEKTIUNTN. ETTioNg, €ipal euyvwuwy yia TIG EI0NYAOEIG KAl TIG CUPPBOUAEG TTOU pou €dwOE
n S1EUBUVTPIA EPEUVWIV OTO AVTIKEINEVO « TexvoAoyieg Pwvrg kal NonuaTikig MNwooag yia
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Mapping of skeleton keypoints to avatar motions in signing space

1 INTRODUCTION

1.1 Motivation

According to the World Federation of the Deaf, there are over 70 million deaf people
worldwide [1], [2]. In addition about 430 million people need rehabilitation because of
hearing loss [3]. This includes those who primarily use sign language to communicate.

Sign languages are visual and manual systems of communication used by individuals
who are deaf and hard of hearing. They are natural languages that incorporate hand
movements, facial expressions, body postures, and other non verbal elements to convey
meaning [4]. Sign languages are also distinct from spoken languages and are
independent and unique to each country or region. Similar to spoken languages across
the globe there exist sign languages, such as Greek Sign Language (GSL), British Sign
Language (BSL), American Sign Language (ASL), among others. Each sign language
has its uniqgue grammar rules, vocabulary, and cultural idiosyncrasies [5].

However, despite being a field of research with tremendous potential for significant impact
Sign Language Processing (SLP) has not progressed at the same pace, as its spoken
language counterpart.

Consequently individuals who use sign language often face communication obstacles.
These obstacles can pose challenges in accessing information and opportunities to those
individuals, fact that emphasizes the significance of research and development in the field
of SLP. Advancements in this domain can significantly contribute to eliminating
communication barriers and improving the quality of life for members of the sign language
community.

To delve deeper into this subject, SLP refers to the field of research and technology that
focuses on creating methods and systems for analyzing, understanding and generating
sign language content [6]. It involves utilizing computational techniques such as computer
vision, machine learning, avatar signing and natural language processing to capture
interpret and generate sign language data.

In essence SLP is crucial since it facilitates effective communication while also enhancing
educational resources and opportunities. Additionally it promotes employment practices
while ensuring accessibility for all. Moreover it plays a role in preserving cultural identity.
By leveraging the advancement of technology to bridge communication gaps SLP
contributes towards building a society that is more inclusive, equitable and accessible for
individuals with hearing loss.

1.2 Problem definition

Sign language, being a gestural form of communication heavily utilizes 3D space to
convey information. Unlike spoken languages that heavily depend on auditory cues, sign
languages rely on hand movements, body positions and facial expressions in relation to
the surrounding space. Within the field of SLP various tasks such as sign language
recognition, translation, representation and resource creation and maintenance play a
significant role. These tasks involve understanding and processing the cues present in
sign language through video or image data.

As mentioned earlier sign language representation is an essential task within the field of
SLP. It requires employing approaches to capture and represent sign language in a format
that allows effective analysis, processing and communication [7]. Video recordings are
commonly used as a method for representing sign language. Additionally other
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approaches like glosses, written notation systems or avatars are frequently utilized to
represent sign language data. Each method contributes to achieving the goal of
facilitating effective communication and understanding of sign language.

However it's worth noting that the aforementioned methods, for representing sign
language share a common limitation; they heavily rely on human effort. These methods
require the involvement of humans (annotators or linguists) who manually transcribe,
annotate or analyze sign language data. This manual work is time consuming and
requires expertise. Therefore there is a need for an automated approach that can address
these challenges effectively.

In the context of avatar based representation techniques a successful approach would
involve extracting 3D skeleton joints from videos and using them to animate the avatar
replicating the corresponding movements. This is where Computer Vision (CV) comes
into play. It's a field dedicated to extracting valuable insights from visual data, including
both still images and dynamic videos.

Computer vision algorithms specifically designed for pose estimation can be utilized to
track and recognize hand movements identify facial expressions analyze body postures
and extract spatial and temporal information from sign language videos. By leveraging
these computer vision techniques, SLP systems can automatically recognize signs while
interpreting the grammatical and semantic aspects of sign language. Consequently the
task of sign language representation can be approached as both a computer vision
problem and a human pose estimation problem effectively.

1.3 Contribution

Our thesis makes a versatile contribution in several areas. Firstly recognizing the
importance and complexity of sign language representation, which typically involves
labor-intensive manual processes, we propose an automated method for mapping signer
skeleton keypoints to avatar motions. Specifically, we explore existing human pose
estimation algorithms that can accurately extract 3D joint information from RGB videos
captured with a single camera. This sets our research apart from previous works, which
often relied on multiple cameras and depth data to infer 3D poses.

Secondly, incorporating such an accurate 3D estimator in sign language video processing
can greatly improve recognition and translation tasks. This advancement enables efficient
and accurate analysis of sign language videos. Moreover our work extends to creating
sign language databases which are valuable resources for research and training in this
field.

We conducted experiments using continuous sign language videos performed by the
Paula avatar — an advanced system capable of dynamically generating new signed
phrases, representing the current state of the art in this field. We present the results and
findings obtained from these experiments. Utilizing Paula as an avatar allows for
consistent evaluation and comparison across different scenarios and approaches, within
sign language processing.

In general our thesis seeks to enhance sign language representation, recognition,
translation and corpora creation through automated methods and thorough
experimentation using Paula as the reference avatar.

D. Karamanidis 12



Mapping of skeleton keypoints to avatar motions in signing space

1.4 Structure

In Chapter 2 we introduce the background of sign language representation methods and
human pose estimation algorithms and we investigate representative, previously
published works in these fields.

In Chapter 3 we present the experimental setup used for conducting the research,
including details about the models utilized and how Paulas videos were selected and
prepared for analysis.

In Chapter 4 we study the qualitative and quantitative results we obtain and discuss the
findings in relation to our research objectives.

In Chapter 5 we summarize our findings and present our conclusions based on the
analysis. We also discuss any limitations that we encountered during our study.

In Chapter 6 we suggest areas of improvement and future research directions and Identify
opportunities for further development and exploration within the field.
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2 BACKGROUND

This chapter starts with a brief introduction to Sign Language Processing (SLP). We
explore the key tasks within SLP and place particular emphasis on sign language
representation methods thoroughly analyzing their benefits and drawbacks. After that we
move on to pose estimation field giving important background information and conducting
a thorough review of state of the art models used in this field.

2.1 Sign language processing

SLP is a field that combines disciplines to develop methods and systems for analyzing,
understanding and generating sign language. This involves utilizing techniques such as
computer vision, machine learning and natural language processing. These approaches
aim to capture, interpret, and generate sign language data, making communication more
feasible and accessible for the deaf and hard of hearing communities.

To gain a clearer understanding of sign language processing, it's helpful to explore the
tasks associated with it. SLP comprises several important tasks [22]:

Sign _Language Recognition focuses on creating algorithms and models that can
automatically recognize and interpret signs, from video or image data [8]. It typically
involves detecting and tracking hand and body movements analyzing handshapes and
facial expressions and mapping them to signs.

Sign Language Translation aims to convert sign language into spoken or written language
[9] [10]. It entails comprehending the meaning of signs and generating textual or spoken
translations. To accomplish this task we need to bridge the gap between sign language
and spoken language by considering their different structures, meanings and cultural
subtleties.

Sign language production involves converting text or spoken language into sign language
[11]. This allows individuals who primarily communicate through sign language to express
themselves to non-signers or create sign language content.

Sign language detection focuses on recognizing of signing activity in visual contexts [12].
Its main objective is to determine if a person is using sign language in a video by
identifying specific hand and body movements or facial expressions associated with sign
language communication. Sign language detection serves as an initial step in developing
systems that can interpret and respond to sign language automatically.

Sign_language identification goes beyond detection and aims to recognize and
differentiate between different types of sign languages or variations [13]. This involves
determining whether the signer is using American Sign Language (ASL) British Sign
Language (BSL) or another regional sign language. The accurate identification of the sign
language being used is crucial for providing precise translation and interpretation
services.

Sign language segmentation refers to the process of breaking down sequences of signs
into meaningful units [14]. This task requires identifying the boundaries, between signs,
gestures or expressions within a signing sequence. Accurate segmentation plays a vital
role in various tasks such as sign language recognition, translation, and production since
it enables the system to process and analyze signs effectively.

Sign language corpora creation involves gathering, annotating and organizing datasets
comprising sign language videos, annotations and linguistic information [15]. These
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corpora are worthwhile resources for training and evaluating SLP systems as well as
conducting linguistic research. Developing comprehensive and diverse sign language
corpora is vital, for advancing the accuracy and reliability of sign language recognition
and translation models. Additionally it contributes to the exploration of sign languages
and their linguistic characteristics.

Sign language representation refers to the methods and systems used for capturing,
conveying and interpreting sign language. It involves converting sign language
expressions into a format that can be analyzed, processed and communicated through
different means. This can be accomplished with the following approaches:

Sentence: "I LIKE TO DANCE"

Gloss: "I DANCE LIKE"

Figure 1: lllustration of Sentence-to-Gloss conversion.

Gloss is a technique that represents sign language using written or printed words from a
language (Figure 1). It employs a system of symbols or abbreviations to indicate signs,
fingerspelling and grammatical elements in sign languages. Previous works like [16] and
[17] have provided guidelines for gloss annotation; however there is currently no
established protocol for gloss annotation.

Videos offer a representation of sign language by capturing the movements and gestures
of signers. Video recordings of sign language performances, conversations or
instructional content enable comprehension of sign language communication. Videos are
extensively employed in sign language learning, interpreter training and multimedia
applications.

Written Notation Systems aim to capture the spatial and temporal aspects of sign
languages using written symbols, diagrams or annotations. These systems provide a
standardized way to transcribe and represent signs along, with their movements.
Examples include Stokoe notation, HamNoSys [19], and SignWriting [20] (Figure 2).

"&/rox'g )([%H@,:H_ bears
&,25 FQOu){[\": 3[}(n2]][)‘n H|19][¢ Hg;] Goldilocks

somewhere
DA 7 ol &HL; ] wandering

t &’[A‘)?‘)G][ 'L ?‘ﬁ3 JX[:[[HQH119]+?‘Q5]] deep forest

somewhere

G.LAQ = al B re It 'ZHA]E wandering

Figure 2: Example of HamNoSys notation system

3D Motion Capture is used to track the movements of signers using equipment like
multiple cameras or depth sensors. This method captures positions and orientations of
body parts and gestures in three dimensional space. Its applications include research on
sign language recognition systems, animation and virtual reality.

Pose Estimation algorithms analyze video or image data to estimate the positions and
orientations of body parts such as hands, arms and face. These algorithms use computer
vision techniques like deep learning models for extracting and tracking relevant body
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keypoints [23] [24] [25]. Pose estimation finds its application in a plethora of interactive
sign language technologies.

Avatar or animation based representations: Another approach involves creating
characters or avatars that mimic sign language movements and gestures. These
representations can be generated using motion capture data, animation techniques or
manually created by artists. Avatars and animations are commonly used for purposes,
like sign language interpretation services and educational resources [7] [26].

Different methods of representation have their advantages and the choice of method
depends on the specific goals, requirements and limitations of the task. Selecting the
appropriate representation method is crucial for the accurate analysis and interpretation
of sign language.

Undoubtedly SLP involves a range of technologies that underline its inherent complexity.
This complexity emphasizes the importance of adopting an interdisciplinary approach to
address the various challenges within this field [27]. Therefore by bringing together
experts from disciplines such as deaf culture, linguistics, computer vision, NLP, machine
translation, computer graphics and human computer interaction, we can gain
comprehensive insights and develop practical solutions that tackle the complex
challenges in SLP. Through this effort across disciplines we can consider the needs of
the sign language community and result in effective technologies and services that
promote inclusivity and accessibility. Ultimately embracing a such approach allows us to
make meaningful advancements with tangible real world impact. This benefits sign
language users, by fostering accessibility and promoting communication equality.

2.2 Human pose estimation

Human pose estimation (HPE) is defined as the positioning of human joints, like
shoulders, elbows, wrists, etc, in images or videos. HPE is used in a plethora of real-
world applications across different areas, such as healthcare, sports analytics, robotics
and gaming. It comprises techniques used to detect and track humans and recognize
their actions [28]. Although it has received much attention in the computer vision
community for decades, it still remains a challenging task. Intricate body postures,
occlusions, changes in lighting conditions and clothing are some of the issues that reveal
the complexity of HPE task .

Moreover, HPE can be categorized into two main categories based on the output space:

e 2D HPE: Involves estimation of the two-dimensional (2D) coordinates (X, y) of
keypoints in an image or video.

e 3D HPE: Aims to estimate the three-dimensional (3D) coordinates (X, y, z) of
joints or landmarks in an image or video, i.e. it also provides depth information.

2.2.1 Human body modeling, datasets and evaluation metrics

Before presenting the most important works in this area, we provide information on the
modeling of the human body. In general, due to the complex structure of the human
body, different models were adopted by the HPE methods [29]iok1). However, the two
most frequently employed models are the skeleton and shape models. Additionally, in a
recent study [30]iok2), a surface-based representation, called DensePose, was
proposed.
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Figure 3: Human Body modeling - Skeleton (left), Shape (center) and Surface (right) models.

In skeleton-based model, the human body is treated as a tree structure [31]iok3 which
consists of many keypoints and edges that connect the natural adjacent joints as
illustrated in Figure 3-left. Regarding the shape model, researchers have adopted the
skinned multi-person linear (SMPL) model [32]iok4), as depicted in Figure 3-center. In
this model, the human skin is represented as a triangulated mesh containing 6890
vertices which is parameterized by both shape and pose parameters. On the other
hand, DensePose was created to represent the human body in a denser structure since
the sparse correspondence of the image and keypoints might not suffice to accurately
capture the configuration of the human body (see Figure 3-right).

Consequently, a new dataset called DensePose-COCO has been developed, which
demonstrates the dense correspondences between image pixels and a surface-based
representation of the human body. This dataset consists of 50K properly annotated
images of COCO (Common Objects in Context) dataset [33], a widely used dataset for
various tasks including Keypoint Detection. COCO comprises more than 200,000
images and 250,000 person instances labeled with keypoints. It employes the skeleton-
based model with 17 keypoints. In the 3d HPE field, Human3.6M [34]ioks] is one of the
most extensive motion capture datasets which consists of 3.6 million human poses,
each accompanied by corresponding image. Similar to COCO, it adopts the skeleton
model comprising 17 keypoints. However, it's worth noting that the configuration of
these keypoints differ slightly from those in the COCO dataset as illustrated in Figure 4.
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o COCO © H36m

Figure 4: Keypoints in Coco (left) and H36m format (right).

Furthermore, a frequently used metric in 2D HPE is the Percentage of Correct Keypoints
(PCK) ![35]\[DK6] which measures the percentage of correctly detected keypoints
compared to the ground truth. An estimated keypoint is regarded correct if its distance
from the corresponding ground truth falls below a predefined threshold.

. — G
1 N 1, if Ilpl l” <
PCK = NZ head or torso length
=110, otherwise
Where:

e N is the total number of keypoints.
e p; is the predicted 2D position of the i-th keypoint.
e (; is the ground truth 2D position of the i-th keypoint.
e T is the defined distance threshold.

Another evaluation metric which is commonly used in 3D HPE is the Mean Per Joint
Position Error (MPJPE). It measures the average Euclidean distance between
corresponding predicted joints and the ground truth.
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N
1
MPJPE = Nzl Ipi = Gll
=

Where:

e N is the total number of joints.
e p; is the predicted 3D position of the i-th joint.
e (; is the ground truth 3D position of the i-th joint.

2.2.2 Human Pose Estimation Methods

After the rise of deep learning in recent years, the field of HPE has also undergone earth-
shaking changes. However, before deep learning, other traditional approaches were
being used to face that problem. Specifically, in the 2D HPE concept, a classical approach
is the |Pictorial Structures [pk7)(PS) model [36]. In this framework, the basic idea is to
represent an object like human body as a collection of its parts. The parts are not
considered rigidly fixed in place and they can move or deform relative to each other.
Therefore, a body transformation is treated as a set of local part deformations. Human
structure is represented as a graph and each node corresponds to a part. In Figure 5,
springs show the spatial relations between limbs and an appearance model is used for
each part. The model tries to find the arrangement of parts and connections that best
matches the human body in the image.

MOUTH

Figure 5: Pictorial Structures Model connects rigid body parts together through the
use of springs to create a tree-like structure of the entire body

However, the optimization method used, depends on initial solutions and doesn’t
guarantee finding the global optimal solution. Felzenszwalb et al. utilized the probability
statistical model to overcome this limitation [37]. Nevertheless, this approach was
struggling to capture the connections between occluded parts. To solve these issues,
Andriluka [38] proposed a generic approach based on the PS model.

Another well-known classical approach is the Deformation Part model (DPM) which was
introduced by Felzenszwalb [39]. In this framework, the human structure is represented
as a star one which involves a root filter, part detectors and a part deformation model.
![40]\[DKs](see Figure 6). The limitations of this model are due to the fact that it focuses on
modeling the spatial relationships between body parts without explicitly taking into
account changes caused by rotation, scale or size variations. To address these problems,
Yang and Ramanan use a mixture model of parts to represent complex object structures,
known as the Flexible Mixtures-of-Parts model (FMP) ![41]. ‘[DKQ] FMP builds upon the
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ideas of DPM incorporating features which increase the versatility of how parts can be
arranged handle variations in rotation and scale.

(@) (b) (c) @

Figure 6: The template of the DPM and the Detection Result - (a) the Root filter; (b) the part
Detection; (c) the Deformation model; (d) the Sample of the Detection and pose estimation.

In 2014, Toshev proposed DeepPose, the first major method for HPE based on Deep
Neural Networks (DNNs) [42]pkia). In this work, pose estimation was considered as a
DNN-based regression problem. Specifically, DeepPose leverages the power of
convolutional neural networks (CNNs) to achieve accurate posture estimation even if
several joints are not directly visible in the images since CNNs inherently have the ability
to reason about poses in a holistic manner. Moreover, a significant innovation of
DeepPose is its progressive refinement of pose estimation, as illustrated in Figure 7.

Initial stage Stage s

Haifs T,

- DNN-based refiner

320 x 220

DMNM-based regressor

send refined values
to next stage

(x=), y 1))

(. y1)

Figure 7: Left: General view of the DeepPose architecture. Right: The refinement stage where a
regressor is applied on a cropped image to refine the prediction from the previous stage.

A different approach which implements heatmap regression, is introduced by Tompson
[43]iok111. This method, instead of indicating directly the body joints as in the previous
work, estimates the probability of a keypoint occurring in each pixel of the image and its
output is a heatmap showing these probabilities. As shown in Figure 8, the framework\
[pk1zjcomprises the coarse heat-map model for coarse localization, the component for
extracting and cropping convolutional features at defined (x, y) positions for each joint
and an extra convolutional model for fine-tuning.
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Figure 8: Overview of cascaded architecture

In 2016, Wei et al. harnessing the power of Pose Machines, introduced a novel framework
called Convolutional Pose Machines (CPMs) [44]iok13.. A Pose machine comprise the
image feature computation stage followed by a sequence of prediction stages (Figure 9a
and 7b). CPMs is end-to-end framework which integrates convolutional networks into the
Pose Machine model, capturing long-range dependencies between image and multi-part
cues. The stacked convolutional networks as depicted (Figure 9), operate on belief maps
from previous stages, progressively improving the precision of part location predictions.
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Figure 9: Overview of CPMs architecture

In contrast with the aforementioned works which handle the single person pose
estimation, OpenPose is a real time approach which achieves pose estimation of multiple
people in an image [31]. It utilizes a nonparametric representation, known as Part Affinity
Fields (PAFs), to learn to connect body parts with individuals in the image. PAFs are a
set of 2d vectors that model the relationships between different body limbs, indicating the
orientation and the strength of this affinity.

As illustrated in Figure 10, OpenPose starts by taking the entire image as input. This
image, which can contain more than one person, is processed using a CNN to create
confidence maps for body parts detection. In addition to confidence maps, CNNs
estimate a set of PAFs that denotes the level of association between parts. In the next
step, bipartite graphs are performed between the associated parts of the body.
Depending on the PAF values, weaker connections in bipartite graphs are removed and
finally, by assembling them into whole-body poses, the skeleton of each person in the
image is constructed.
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OpenPose is the first bottom-up real-time multi-person framework to simultaneously
detect human body, hand, foot, and facial landmarks.

(b) Part Confidence Maps

(c) Part Affinity Fields

(&) Parsing Results

(a) Input Lmage (d) Bipartite Matching

Figure 10: OpenPose pipeline.

In 2017, He et al introduced a conceptually simple and flexible framework for object
instance segmentation, called Mask R-CNN [45]. It extends the well-known Faster R-
CNN, designed primarily for object detection (Figure 11-left), by adding a third distinct
branch that outputs a binary mask for each Region of Interest (Rol). These pixel-wise
segmentation masks indicate which pixels belong to the object and which do not and
encode the semantic information about its spatial structure.

Moreover, Mask R-CNN can be extended to HPE. The main differences of the Mask R-
CNN are the output size and the way of encoding keypoints within the keypoint mask. As
illustrated in Figure 11 (right), Mask R-CNN predicts 17 (one for each keypoint) one-hot
56 x 56 binary masks where only one pixel is labeled as foreground. This extension of
Mask R-CNN is known as Keypoint R-CNN and is included in Facebook’s Al library,
Detectron2.
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Figure 11: Architectures of Mask R-CNN (left) and Keypoint R-CNN (right).
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In contrast with 2D HPE, reconstructing a 3D human pose from a monocular image have
to overcome a fundamental challenge that different 3D poses can correspond to the same
2D image. Motivated by the rapid advancement of 2D HPE algorithms, many studies have
tried to leverage the promising 2d HPE results for 3D HPE. Indeed, Martinez et al. [46]
introduced a simple yet highly effective baseline for lifting 2d poses into 3d space. As
illustrated in Figure 12, the model takes as input the 2d coordinates of keypoints, parses

them through a deep, multilayer neural network and outputs the corresponding 3d
coordinates.

x2
\m‘ Batch norm r
- Linsar Linear ®__' [
> 1004 RELU 102‘1 RELU
Dropout 0.5 Dropout 0.5 I

Figure 12: Overview of network architecture.

On the other hand, in the context of 3D HPE from a sequence of monocular images,
the exploitation of temporal information is an efficient technique for reducing the inherent
depth ambiguity. Therefore, Pavllo et al. [47] proposed a fully convolutional model to learn
long-term information. Particularly, VideoPose3D, as it’s called, employs dilated temporal
convolutions over 2d keypoints to predict 3d positions Figure 13.
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Figure 13: VideoPose3D architecture

Another interesting work which is designed to estimate both 2D and 3D human pose from
a single monocular (2D) image or video, is the BlazePose [48]. As depicted in Figure 14,
it comprises two models: the pose detector and the pose tracker. Specifically, the detector
is used to identify the ROl where the human is located and afterwards the tracker predicts
the coordinates of 33 keypoints. In video cases, the detector is applied only to the first
frame since for subsequent frames, the ROI were derived from the previous frames.
BlazePose employs heatmaps and regression techniques, as shown in Figure 15, to
predict the 2D keypoints and then extends this information to estimate the 3D pose. To
estimate the full 3D body pose in images or videos, BlazePose uses GHUM, a 3D human
shape modeling pipeline [49].

Pose detector 2
y a"f'é’nost’
ey,

Image
Frame #1 > Pose
Tracker
+ Pose alignment
Image Pose
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Figure 14: Inference pipeline of BlazePose.
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Figure 15: BlazePose architecture
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3 Experiments

In this chapter, we discuss our experiments conducted on Continuous Sign Language
(CSL). Due to limited computational resources and the unavailability of considerable
datasets it is not practical to train models from scratch. Instead we have chosen to focus
on evaluating existing state of the art models. By utilizing pre trained models we can
assess their performance and capabilities on specific sign language videos. This
approach enables us to make comparisons and gain valuable insights. While training
models from scratch may be preferable evaluating existing models provides meaningful
information without requiring extensive training efforts.

3.1 Data

This approach allows us to maximize the use of resources while still gaining valuable
insights into the effectiveness of sign language processing models. As a result we
conducted experiments using a synthetic dataset consisting of five videos featuring an
avatar named Paula specifically selected for evaluation purposes.

Paula developed at DePaul University! [50] and enhanced within the EASIER project by
ATHENAV/ILSP, is a computer-based sign language avatar initially designed for teaching
sign language to hearing adults. This avatar takes string of glosses of sign languages
including ASL (American), LSF (French), DGS (German), DSGS (Swiss-German), and
GSL (Greek) sign languages, then applies morphological adjustments determines
appropriate phonemes and timing and combines these elements to create a 3D animation
featuring the avatar. Over time significant efforts have been made to improve the realism
and expressiveness of Paula.

Several notable advancements have been made in this regard, including refining eyebrow
movements in order to achieve a more natural appearance [51] enhancing animation
smoothness while avoiding robotic motions [52] and enabling simultaneity [53].
Additionally adaptations have been made to make Paula compatible, with sign language
notation systems like Azee [54] further enhancing mouth animations [55] [56]. The latest
advancements include incorporating layered facial textures and makeup [57]. These
ongoing developments constantly enhance the authenticity and adaptability of the Paula
avatar in sign language communication.

In our research videos Paula demonstrates GSL by showcasing a range of complex
signs, including phonological signs with occlusions. Although the videos capture the
whole body of Paula, only her upper body is in motion while her lower body remains still.
We chose to use full body videos because the evaluated models were trained on data
that encompasses the full body.

These videos are accompanied by ground truth data which provides precise world
coordinates (x, y, z) for 14 primary skeleton keypoints in each frame. The arrangement
of these keypoints can be seen in Figure 16. The ground truth data used in our
experiments was preciously collected by a team at DePaul University ensuring accuracy
and reliability of the keypoints position. Additionally detailed information about camera
setup and characteristics such as intrinsic camera parameters has been provided.

Although the dataset is not extensive enough it serves as a controlled environment for
evaluating the effectiveness and abilities of the tested models. The use of this dataset

1 http://asl.cs.depaul.edu
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allows us to make meaningful comparisons and draw introductory conclusions. These
experiments conducted on Paulas videos provide valuable insights as a starting point,
which can pave the way for further advancements, in sign language processing.

By using this synthetic dataset, we aim to make meaningful comparisons and draw initial
conclusions that can guide further research in sign language representation and
recognition. As a starting point, these experiments on Paula's videos offer valuable
insights that can lay the foundation for future work and potential advancements in sign
language processing.

Table 1: Overview of Evaluated Approaches
2D keypoints

3D keypoints

Approach 2D Detector 3D Reconstruction

format (input) format (output)

Videopose3D

OpenPose OpenPose H36m ) ) H36m

(pretrained_h36m_cpn.hin)

) Videopose3D

Detectron § Keypoint-RCNN COCO ] ) H36m

(pretrained_h36m_Detectron_coco.bin)

Videopose3D

MpCoco BlazePose COCO H36m

(pretrained_h36m_Detectron_coco.bin)

Mp3D BlazePose COCO BlazePose (GNUM) H3.6m

3.2 Evaluation: Design and Methods

As detailed in Table 1, we constructed and evaluated four approaches by combining state-
of-the-art pretrained models in HPE. All approaches in our experiments involve a two-
step process; initially estimate the 2D skeleton in image space taking as input an rgb
video and then reconstruct it in 3D space utilizing the predicted 2D keypoints from the
previous step.

To ensure a proper configuration and smooth integration into a unified pipeline we need
to apply certain adjustments since each model has its own input and output setup. These
modifications were necessary in order to facilitate the evaluation and comparison of four
approaches in our experiments.

Specifically the first approach employs the OpenPose framework to estimate the 2D
coordinates of keypoints in the H3.6m format. Unfortunately OpenPose does not provide
predictions for the Midhip and Spine keypoints. To address this incompatibility issue with
the h36m format we artificially generated these keypoints by leveraging information from
adjacent ones. We define the Midhip as the midpoint between the right and left hip while
the Spine as the midpoint between the Thorax and Midhip keypoints. In 3D reconstruction
step, a pretrained model from Videopose3D framework was applied to predict the
coordinates of the keypoints in 3D space in the same format (H3.6m).

The next two approaches are quite similar. Both approaches share the input and output
format (COCO) at both stages and utilize the same pretrained model for 3D
reconstruction. The main difference between these two approaches lies in their 2D
detectors. Specifically the "Detectron” approach uses the Keypoint R-CNN model from
the Detectron2 library while the "MpCoco" approach utilize the BlazePose from Mediapipe
framework.
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The last approach, called “Mp3D” relies exclusively on the mediapipe framework in both
the first and second stages. In this approach, for consistent configuration of 3D output
(H3.6m), apart from Midhip and Spine, Thorax and Headtop are artificially generated by
using information from neighboring keypoints. It is important to note that our analysis
primarily focuses on arm trajectory and therefore these extra keypoints do not affect our
results.

Indeed, studying the trajectory of arm joints in sign language is crucial for advancing sign
language technologies. Analyzing movements of arm joints like shoulders, elbows and
wrists plays an important role in improving sign language recognition systems and
developing natural and expressive representation since they convey meaningful
information. Given the importance of arm trajectory analysis, we have decided to narrow
down our research scope to analyze primarily the movements of the arms. This allows us
to delve deeper into this aspect. However, we acknowledge that a thorough
understanding of sign language demands the comprehensive study of facial expressions
and finger movements as well and we opt to leave it for future work, since it deserve a
separate dedicated research.

In addition we have opted to employ a right hand coordinate system where the X axis
represents the width, pointing towards the left, the Y axis represents the depth pointing
towards the camera while the Z represents the height pointing upwards (Figure 16).

Left Shoulder

Upper Spine
Left Elbow

Waist

Right  Left Hip [ Left Wrist
Hip

Figure 16: The upper body keypoints are indicated by the pink dots and serve as the reference
points for the Ground Truth data. Additionally, the white segments emphasize the keypoints
associated with the arms.
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4 RESULTS

In this chapter, we delve into our comprehensive analysis. As previously indicated, our
analysis is centered around arm movements, with particular emphasis on the six
keypoints: R/L Shoulder, R/L Elbow, and R/L Wrist. For the sake of brevity, we provide
commentary and visually insightful diagrams for the most notable cases where error
peaks are observed while the remaining results can be located in Appendix.

Figure 17: Screenshot captured from the videos of the H36M dataset. The arrow points to the
Thorax keypoint.

GT (gr/yel) vs Reconstruction (r/b) GT (grfyel) vs Reconstruction (r/b)

o Openpose ° Openpose

2D 3D 2D 3D

Figure 18: OpenPose Approach - Before (left) and after (right) 2D Thorax keypoint correction. In
the 3D plots, the real skeleton is illustrated in green/yellow, while the predicted one is shown in
black/red.

Prior to presenting the results, it is essential to acknowledge some adjustments in order
to ensure the accordance of skeleton keypoints 2. In terms of 2D detections, particularly
within the OpenPose approach, there exists a notable divergence in the predicted Thorax
keypoint. It is positioned above the corresponding keypoint used during training (Figure
17). As demonstrated in Figure 18, this disparity leads to the visual outcome of the
predicted 3D skeleton appearing elevated. Consequently, rectifying this by lowering the

2 Quantitative results without applying arrangements can be found in Appendix.
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Thorax keypoint to the level of the shoulders, akin to the training data, yields a substantial
reduction in error of approximately 8-10 mm within 3D space.

In the realm of 3D reconstruction, especially within the approaches that employ the
COCO skeleton in their 2D detection stage (such as Detectron, MpCoco, Mp3D), a
consistent error pattern is observable across all analyzed videos. To be specific, the
predicted 3D skeleton consistently appears lower than the actual skeleton.

To address this systematic error, a potential solution involves raising the mid hip joint by
approximately 6¢cm. This is due to the fact that the predicted 3D skeleton is dependent on
the position of the mid hip joint. This heuristic adjustment would effectively elevate the
entire skeleton, resulting in a reduction of the MPJPE by approximately 35-40 mm (Figure
19. By aligning the predictions more accurately with the real-world skeleton, this
corrective action can significantly enhance the overall accuracy of the model's 3D
reconstructions.

GT (gr/yel) vs Reconstruction (r/b) GT (gr/yel) vs Reconstruction (r/b)

Figure 19: MpCoco approach - Before (left) and after (right) 3D midhip joint elevation.

Considering the insights gained from the above observations and implementing the
necessary corrections, we proceed with our analysis.

4.1 Videol

Starting with the error analysis of the videol, it is evident that the OpenPose, Detectron,
and MpCoco approaches follow a similar pattern throughout the entire video. The Figure
20 clearly illustrates two prominent peaks in errors, occurring specifically on the 66th and
104th frames. Notably, the Mp3D approach deviates from this trend, as it additionally
displays relatively elevated errors on intermediate frames.

D. Karamanidis 29



Mapping of skeleton keypoints to avatar motions in signing space

Mean error per frame
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Figure 20: The average error of the six examined keypoints for different approaches across the
sequence of frames.

Figure 21: The 66™ (left), 78" (center) and 104" frame (right) of the Video1.

In particular, on the 66th frame when Paula is crossing her wrists (Figure 21-left), the
notably elevated average error can be attributed primarily to the inaccurate prediction of
the left wrist and, to a lesser extent, the left elboow along the y-axis (Figure 22). The
disparity between the predicted and actual skeleton is clearly evident in Figure 24.
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Figure 22: Joint Component Errors on 66th frame for various approaches.
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Error per component of joint on frame : 104
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Figure 23: Joint Component Errors on 104th frame for various approaches

Furthermore, on the 104th frame, when Paula raises her arms to shoulder level (Figure
21-right), all approaches struggle to accurately predict the left and right elbow positions
along the y-axis (Figure 23). Additionally, a minor error is observable in the z-component
of her wrists across most approaches, except for OpenPose. However, OpenPose's
predictions for the x-direction of both elbows and wrist are notably inaccurate. Figure 25
visually demonstrates that the predicted skeleton's arms appear to be spread wider apart
than in reality.

Regarding observed errors of Mp3D approach on 75"-90™" frames corresponding to
Paula's movement as illustrated in figure (Figure 21-center), it is struggling to estimate
the y coordinate of both elbows and wrists (Figure 26 & Figure 27).
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Figure 24: Comparison of approaches with Ground Truth on 66™" frame. Left View (left): The left
elbow is illustrated with circle and the left wrist with triangle - Front View (right).
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Figure 25: Comparison of approaches with Ground Truth on 104th frame. Right View (left):
Right Elbow (circle) and Left Elbow (triangle) - Front View (right).
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Figure 26: Joint component error of Mp3D approach across the sequence of frames.
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Figure 27: Comparison of Mp3D approach with Ground Truth on 78th frame.

4.2 Video2

In the context of video2, upon observing the Figure 28, it becomes evident that there are
two distinct segments within the videos where most of our approaches exhibit a
substantial error of around 100 mm. To be precise, from 10™ to the 30" frame when Paula
points towards the camera with her right index finger (see Figure 29-left), a pronounced
error surfaces in predicting the position of the right wrist. With regards to the approaches,
except for OpenPose, this error manifests mainly in the z-coordinate (Figure 30).
However, for OpenPose, the error is observed in the y-coordinate of the right wrist (Figure
31). Moreover, in the case of OpenPose, the error in the y-component of the right elbow
also contributes to the overall mean error.
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Figure 28: The average error of the six examined keypoints for different approaches across the
sequence of frames.
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Figure 29: The 121" (left), 44" (center) and 58th frame (right) of the Video2.

During the 58th frame, as Paula moves both her hands, only the Mp3D approach
achieves a low error score (Figure 28). In contrast, the other approaches exhibit a high
error rate, primarily attributed to the inaccurate prediction of the right wrist in the y
dimension (Figure 33). Furthermore, OpenPose encounters challenges in accurately
reconstructing the right elbow, as evidenced by elevated errors in both the x and y
dimensions.

It is worth noting the elevated error observed in the Mp3D approach during the interval of
the 38th to 48th frame when Paula lowers her right hand (Figure 29-center). During this
sequence, the Mp3D approach struggles to accurately predict the position of the right
wrist in both the y and z dimensions (Figure 32).
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Figure 30: Right wrist z-component error for different approaches across the sequence of
frames.
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Figure 31: Joint components error for OpenPose across the sequence of frames.
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4.3 Video3
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Figure 34: The average error of the six examined keypoints for different approaches
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The case of video3 presents an intriguing pattern. As illustrated in Figure 34, beyond the
70th frame, there is a noticeable increase in error for the OpenPose and Mp3D
approaches, while the Detectron and MPCOCO approaches display a decrease in error.
Particularly, Figure 35-left illustrates that within this timeframe, Paula raises her right hand
to the level of her eyes. In the case of OpenPose, the error originates from the inaccurate
prediction of the z-coordinate of the right wrist (Figure 37). This significant error could be
attributed to the fact that the nose is reconstructed much higher than its actual position in
reality, as shown in Figure 38.

Conversely, in the Mp3D approach, the elevated error is mainly due to the incorrect
prediction of the y-coordinate of the right elbow (Figure 36, Figure 38). Furthermore,
Figure 36 reveals a notable increase in error in the y-dimension of the left wrist,
particularly on the last frames. This is intriguing considering the left wrist remains
relatively stationary throughout the entire video.

Figure 35: The 80th (left) and 145th frame (right) of the Video4.
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Figure 36: Joint components error for Mp3D across the sequence of frames.
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Component error per frame
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Figure 37: Joint components error for OpenPose across the sequence of frames.
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Figure 38: Comparison of Mp3D and OpenPose approaches with Ground Truth on 82nd (left)
and 106th frame (right) .
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4.4 Video4

In this video, a peak in the total error is evident on the 80th frame (Figure 39). During this
frame, Paula positions her right wrist in front of her thorax (Figure 40-left) and notably,
none of the four approaches accurately predicted the z-component of the right wrist
(Figure 41). Additionally, the Mp3D approach encountered even more significant
difficulties in estimating the y-dimension location of the right elbow and left wrist. Similarly,
both the MpCoco and Detectron approaches displayed suboptimal predictions in the z-
direction for the left wrist and right elbow joints as well. Furthermore, OpenPose
reconstructed the elbows wider than their actual position, leading to errors in the x-
dimension (Figure 43).
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Figure 39: The average error of the six examined keypoints for different approaches across the
sequence of frames.

Figure 40 : The 80th (left) and 145th frame (right) of the Video4.

For OpenPose, this pattern of errors is observed on the 145th frame as well (Figure 44).
Moreover, the Mp3D approach exhibits a substantial error on this frame. As evident in
Figure 44, the predicted positions of the right elbow and left wrist are noticeably closer to
the body. For the former, the error is apparent in the x-dimension, while for the latter, it
relates to the y-dimension (Figure 42).
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Figure 43: Joint components error for OpenPose across the sequence of frames
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Figure 44:Comparison of Mp3D and OpenPose approaches with Ground Truth on 145" frame.
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Figure 45: The average error of the six examined keypoints for different approaches across the
sequence of frames.

In this video, it's important to highlight two specific intervals during which both OpenPose
and Mp3D approaches display prominent peaks in error analysis (Figure 45). Firstly, the
initial interval between the 15th and 30th frames, during which Paula raises her right arm
to the level of her thorax (Figure 46-left), results in a significant error in the prediction of
the right wrist's y-component for both approaches (Figure 47 & Figure 48).
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Figure 46: The 24th (left), 40th (center) and 184th frame (right) of the Video5.

Moving further into the video, when Paula elevates her right hand above her right
shoulder, as illustrated in the Figure 45-right, both approaches encounter difficulties in
accurately estimating the y-coordinate of the right elbow. Notably, OpenPose exhibits
suboptimal predictions for the z-coordinate of the right wrist, while Mp3D struggles with
the y-coordinate of the left wrist. These discrepancies for both approaches are visually
represented in Figure 50.
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Figure 47: Joint components error for OpenPose across the sequence of frames.
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Figure 48: Joint components error for Mp3D across the sequence of frames.

Additionally, there is another notable peak in error for the OpenPose approach on the
40th frame when Paula points to her left side Figure 46-center). This error is primarily
attributed to inaccuracies in the z-coordinate prediction of her left wrist (Figure 47). A
closer examination reveals that this error originates from inaccurate estimations during
the 2D detection stage. As depicted in Figure 49, OpenPose exhibits difficulties in
accurately detecting the left wrist for several frames.
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Figure 49: Comparison of OpenPose 2D Figure 50: Comparison of Mp3D and
Detections with Ground Truth. Notably, a OpenPose approaches with Ground Truth
significant error concerning the left wrist is on 184th frame.
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4.6 Aggregated analysis

After providing a detailed qualitative analysis for each video individually and discussing
the relevant diagrams, we proceed to present the comprehensive quantitative results in
both Table 2 and Table 3.

Table 2: MPJPE for each approach across all videos. The columns labeled x, y, and z represent the
average error observed along each respective axis. All values are in millimeters (mm).

Videos EUDs1 EUDs2 EUDs3 EUDs4 EUDs5
Approaches | MPJPE | X | Y | Z | MPJPE | X | Y | Z |MPJPE | X |Y | Z |MPJPE | X |Y | Z | MPJPE | X |Y |Z
OpenPose 91 59 |37 |45 78 533333 101 |[57|39|61 80 51|25 |47 96 58|48 |40
Detectron 73 30|38 |44 81 33|35|56 78 32|43 |43 75 33|32 |50 83 334749
MpCoco 70 29142 |35 72 31|38 |41 75 31|46 |35 72 33|38|38 72 32145|35

Mp3D 104 [34|73|48 82 31|42 |47 101 (34|69 |42 87 32|54 |43 95 30|62 |45

Table 3: Aggregate errors averaged across all videos.
Approach MPJPE X Y z
OpenPose 89.2 55.6 36.4 45.2
Detectron 78 32.2 39 48.4
MpCoco 72.2 31.2 41.8 36.8
Mp3D 93.8 32.2 60 45

We initiate the discussion with the MpCoco approach, which demonstrates superior
performance compared to its counterparts, achieving the lowest MPJPE on every video.
The aggregated MPJPE across all videos is noted to be 72.2 mm. Analyzing the
dimensions separately, it is evident that MpCoco consistently yields the lowest error on
the x and z dimensions as well, with aggregated errors of 31.2 mm and 36.8 mm,
respectively.

Next in line is the Detectron approach, which closely follows MpCoco's performance with
an aggregated error of 78 mm. While it maintains a comparable level of excellence, even
surpassing MpCoco in certain cases, along the x and y dimensions, it exhibits a relatively
higher error in the z dimension. Specifically, it records the highest error in comparison to
all approaches for the z dimension, with an aggregated error of 48.4 mm.

Securing the third position is the OpenPose approach, with an aggregated error of 93.8
mm. An intriguing aspect of OpenPose's performance is its remarkable accuracy in the
y-dimension across most videos, outperforming the second-best approach (Detectron)
by a margin of 2.6 mm (with an error of 36.4 mm). However, in the x-dimension,
OpenPose displays the highest error among all approaches, which ultimately contributes
to its elevated total error.

The final position is occupied by the Mp3D approach, registering a total error of 93.8 mm.
Evidently, this substantial error can be attributed to its notable error in the y-dimension,
which reaches 60 mm, the highest among all approaches. Nevertheless, the Mp3D
approach demonstrates commendable performance in the x and z dimensions,
particularly excelling in the x-dimension with a marginal difference of only 1.0 mm from
the best approach (with an error of 32.2 mm).
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5 CONCLUSIONS

In this thesis, we extensively studied the problem of sign language representation.
Acknowledging its importance and complexity, which demands labor-intensive manual
processes, we propose an automated method for mapping skeleton keypoints to avatar
motions. Our rationale relies on the fact that an accurate 3D HPE technique from a video
can be utilized to animate the avatar, reproducing the corresponding sign. In particular,
we evaluated four approaches which involve state-of-the-art HPE algorithms to “lift” 2D
body joint locations to the 3D plane.

We conducted our experiments on a small synthetic dataset consisting of five videos
featuring the Paula avatar. Our research is focused on studying the trajectory of arm joints
i.e., R/L Shoulder, R/L Elbow, and R/L Wrist, since their movements convey essential
information for sign language understanding. Due to the fact that the evaluated algorithms
have been trained on generic dataset and have specific skeleton configurations, we had
to make certain adjustments for achieving accordance of skeleton keypoints.

Among the evaluated methods, MpCoco emerges as the frontrunner in terms of
performance. Demonstrating consistent superiority across all videos, it showcases an
impressive ability to minimize errors across different axes. This reliability positions
MpCoco as a formidable contender for accurate pose estimation.

The analysis reveals that Detectron delivers a competitive performance, although slightly
trailing behind MpCoco. This disparity can be attributed to the notable edge that
Mediapipe holds in 2D pose estimation, which indirectly influences Detectron's
performance. This observation underscores the interconnectedness of different stages in
pose estimation.

OpenPose's performance unfolds as a story of axis-specific competency. It excels in
depth estimation along the y-axis, showcasing commendable proficiency. However, its
performance falters on the x-axis, where the predicted skeleton tends to diverge from the
actual ground truth, hinting at potential challenges in width estimation.

Mp3D's performance varies significantly across different dimensions. While it attains
notable accuracy on the x-axis, indicating precision in width estimation, its performance
suffers on the y-axis (depth). This is because y-coordinate is derived from synthetic data
using the GHUM model, fitted via an algorithm to the 2D key point projection. Therefore,
the y-coordinate doesn't represent exact distance but rather it provides relative depth
information within an image.

In summation, our analysis provides a comprehensive view of the strengths and
limitations of each method. The distinct patterns of performance on different axes
underscore the complexity of accurate pose estimation and offer a roadmap for further
advancements in the field. The outcomes of this analysis serve as a foundation for
refining methodologies and steering the evolution of sign language representation
technology.
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6 FUTURE WORK

First and foremost, the scope of analysis can be extended to capture the entirety of the
upper body, including facial and finger landmarks. By incorporating these extra keypoints
into our analysis we can achieve a more comprehensive understanding of sign language
gestures and expressions. This broader perspective could illuminate the interplay
between different components of the upper body in signing space.

Moreover, we observed that several failures in our findings are caused by disparities in
motion capture data. There was no absolute correspondence of keypoints between the
training and the test dataset. To address this, one promising direction is to train or fine
tune models using avatar data. This strategy has the potential to improve prediction
accuracy and leveraging the flexibility of avatar data allows us to tailor our models to
better align with sign language motions intricacies in real world scenarios.

In addition to error analysis, as presented in this research, exploring the aspect of sign
perception is vital in drawing any conclusion in SLP. Conducting studies to investigate
how human signers perceive and interpret signs predicted by the developed approaches
can provide valuable information which cannot be extracted from an error analysis. For
instance, a subtle discrepancy in movement (low error) may lead to a different meaning
(and vice versa). Therefore, taking into account the aspect of sign perception, we can
refine our models and their applications resulting in more accurate and meaningful
representations of sign language gestures.

In conclusion these future paths have the potential to improve the precision and real world
applicability of the proposed approaches. By exploring the whole range of upper body
movements, refining models using data driven techniques and receiving feedback from
human signers we can obtain a more comprehensive understanding of sign language
technologies.

D. Karamanidis 45



Mapping of skeleton keypoints to avatar motions in signing space

ABBREVIATIONS — ACRONYMS

SLP Sign Language Processing
HPE Human Pose Estimation
GSL Greek Sign Language
ASL American Sign Language
LSF French Sign Language
DGS German Sign Language
DSGS Swiss-German Sign Language
FMP Flexible Mixtures-of-Parts model
DPM Deformation Part Model
DNN Deep Neural Networks
PAF Part Affinity Fields
R-CNN Region-based Convolutional Neural Networks
CPM Convolutional Pose Machines
GHUM Generative 3D Human Shape and Articulated Pose Models
MPJPE Mean Per Joint Position Error
GT Ground Truth
COCO Common Objects in Context
H36m Human 3.6 million

D. Karamanidis
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APPENDIX

In this section, we provide the remaining diagrams that were not included in chapter 4.
We exclude those that related to shoulders, as the observed error was consistently low
in the majority of cases.

Code, data, models and supplementary materials associated with our research are
available on my GitHub repository: https://github.com/JKaraman93/2dTo3d_Paula .
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