
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

Nomothesi@: Migrating the Linked Data into
Elasticsearch

Zacharias Polytseris

Supervisors: Manolis Koubarakis, Professor
Konstantinos Plas, Research Assistant

ATHENS

APRIL 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Nomothesi@: Μετάβαση των Διασυνδεδεμένων
Δεδομένων στην Elasticsearch

Ζαχαρίας Πολυτσέρης

Επιβλέποντες: Μανώλης Κουμπαράκης, Καθηγητής
Κωνσταντίνος Πλας, Βοηθός Ερευνητής

ΑΘΗΝΑ

ΑΠΡΙΛΙΟΣ 2024

BSc THESIS

Nomothesi@: Migrating the Linked Data into Elasticsearch

Zacharias Polytseris
S.N.: 1115201700129

SUPERVISORS: Manolis Koubarakis, Professor
Konstantinos Plas, Research Assistant

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Nomothesi@: Μετάβαση των Διασυνδεδεμένων Δεδομένων στην Elasticsearch

Ζαχαρίας Πολυτσέρης
Α.Μ.: 1115201700129

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανώλης Κουμπαράκης, Καθηγητής
Κωνσταντίνος Πλας, Βοηθός Ερευνητής

ABSTRACT

Themain objective of this thesis was the back-end redevelopment of the Greek Legislation
Platform, Nomothesi@ and an evaluation performance test between the two implement-
ations. The platform used a triple store for legislative RDF data which got replaced with
an Elasticsearch document store in order to scale up, accelerate queries and provide new
features and functionality that take advantage of Elasticsearches’ engine. The most im-
portant step to achieve that was the transformation of the Turtle datasets into structured
JSON documents along with the creation of the new indexes’ context definition. The en-
tirety of the code regarding indexing and searching data had to be reformatted by replacing
the SPARQL queries with the elastic equivalents to maintain existing functionality, result-
ing in a cleaner Nomothesi@ back-end that supports full-text searches, aggregations and
relevance scores.

SUBJECT AREA: Search Engines, Software Engineering, Web Applications

KEYWORDS: Elasticsearch, Indexing, RDF to ndJSON, Full-Text Search, Perform-
ance Testing, REST Services, Linked Open Data

ΠΕΡΙΛΗΨΗ

Ο κύριος στόχος της πτυχιακής εργασίας ήταν η επανάπτυξη του back-end της ελληνικής
πλατφόρμας νομοθεσίας, Nomothesi@, καθώς και ένα τεστ εκτίμησης απόδοσης μεταξύ
των δύο υλοποιήσεων. Η πλατφόρμα χρησιμοποιούσε ένα triple store για νομοθετικά RDF
δεδομένα, το οποίο μεταφέρθηκε στην Elasticsearch για την επιτάχυνση των ερωτημάτων
και την παροχή νέων δυνατοτήτων και λειτουργικότητας που εκμεταλλεύονται τη μηχανή
της Elasticsearch. Το πιο σημαντικό βήμα για την επίτευξη αυτού ήταν η μετατροπή των
συνόλων δεδομένων Turtle σε δομημένα JSON έγγραφα, μαζί με τη δημιουργία του πλαι-
σίου ορισμού των νέων ευρετηρίων. Όλος ο κώδικας που αφορά την αναζήτηση των δε-
δομένων έπρεπε να αναδιαμορφωθεί με την αντικατάσταση των SPARQL ερωτημάτων
με τα αντίστοιχα της Elasticsearch, προκειμένου να διατηρηθεί η υπάρχουσα λειτουργι-
κότητα, με αποτέλεσμα να δημιουργηθεί ένα πιο καθαρό back-end για τη Nomothesi@
που υποστηρίζει αναζητήσεις πλήρους κειμένου, συσσώρευση δεδομένων και βαθμολο-
γίες σχετικότητας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανές Αναζήτησης, Αρχιτεκτονική Λογισμικού, Εφαρμογές
Δικτύου

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Elasticsearch, Indexing, RDF σε ndJSON, Αναζήτηση Κειμένου,
Τεστ Αποδόσεων, REST Υπηρεσίες, Συνδεδεμένα Ανοιχτά
Δεδομένα

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Prof. Manolis Koubarakis for giving me this great
opportunity to work on such a big project and for being patient with me. I'm also extremely
grateful to Prof. Manolis Koubarakis' assistant, Konstantinos Plas who guided and helped
me during the making of this thesis. The project is dedicated to anyone still unprotected
by the existing discrimination laws.

CONTENTS

1. INTRODUCTION 12

1.1 Problem Statement . 12

1.2 Aim and Objectives . 12

1.3 Expected Performance Improvement . 12

2. RELATED WORK 13

2.1 Summary . 13

2.2 Legislation in RDF . 13
2.2.1 Querying Legislation with SPARQL . 13
2.2.2 Legislation and Linked Open Data . 14

2.3 The Old Nomothesi@ . 15

2.4 Introducing Elasticsearch . 15
2.4.1 Elasticsearch with JSON . 16
2.4.2 Legislation in JSON-LD . 16

3. DATASET GENERATION 18

3.1 Choosing a file format . 18

3.2 Serializing to ndJSON . 19

3.3 Dataset Deserialization . 20

4. BACK-END REDEVELOPMENT 23

4.1 Document Indexing . 23

4.2 Elastic Query Builder . 24

4.3 Hits Parser . 25

4.4 SPARQL to Elastic Queries . 25

4.5 Lucene Endpoint . 27

5. NEW ELASTIC FEATURES 28

5.1 Exact Phrase Match . 28

5.2 Field Priority Match . 29

6. QUERY PERFORMANCE TEST 30

6.1 Query Latency . 30

6.2 Response size . 30

7. CONCLUSIONS 32

ABBREVIATIONS - ACRONYMS 33

APPENDICES 33

A. Nomothesi@ Web Application 34

REFERENCES 35

LIST OF FIGURES

3.1 ’RDF data conversion to JSON documents’ 18

4.1 ’Indexing time dependence on bulk size’ . 23
4.2 ’SPARQL query conversion to Elasticsearch DSL’ 24
4.3 ’Elasticsearch Endpoint with Lucene Syntax example’ 27

5.1 ’Use case: retrieve legal documents with the exact word given’ 28
5.2 ’Use case: find the legal document with a given id or FEK code’ 29

LIST OF TABLES

6.1 Time performance results with Elasticsearch implementation. 30
6.2 Response size results with Elasticsearch implementation. 31

Nomothesi@: Migrating the Linked Data into Elasticsearch

1. INTRODUCTION

1.1 Problem Statement

With a fast paced data increase every year in the form of new legislation, search plat-
forms need to maintain a standard of performance. Alongside lawyers, common cit-
izens have started using tools for legislative research, increasing the expected amount
of users and requiring new, complex search features. A platform for legislative search like
Nomothesi@, needs to modernise and adapt to the current society’s demands in order to
educate and raise awareness of law enforcement.

1.2 Aim and Objectives

The main objective of the thesis was the modernisation of Nomothesi@ by replacing
Solr/Lucene as their search engines with Elasticsearch. More specifically, Elasticsearch
would help with the scalability of the platform in order to handle even larger datasets with
ease and it would provide new possibilities for more complex searches and features that
take advantage of its fast text search options.

An additional objective was the practical comparison between the two engines and im-
plementations for a variety of queries to observe if our hypothesis about elasticsearch
performance is correct.

1.3 Expected Performance Improvement

Based on the documentations of each technology, we expect Elasticsearch to perform
better with a larger dataset since it is designed for large scale applications. Even though
they have similar use cases, Elasticsearch should be faster with complex full-text searches
as well as statistical queries because of its automatic data sharding, replication and node
discovery.

Most of the features of Nomothesi@ involve the retrieval of all information related to a
specific Uniform Resource Identifier (URI), either representing a Legal Document or an
Entity. RDF data work exceptionally well with such queries, therefore we expect the old
implementation based on Lucene to be faster or equal to the Elasticsearch implement-
ation. Elasticsearch is not as fast as triple stores for such queries since join operations
are expensive and the use of multiple queries is not recommended. The solution for this
problem that gives Elasticsearch a chance to compete is the deserialization of the JSON
documents. Since we can afford having redundant data, we prefer to merge documents
and fields to reduce the need for relations between them.

Z. Polytseris 12

Nomothesi@: Migrating the Linked Data into Elasticsearch

2. RELATED WORK

2.1 Summary

The thesis was based on a few previous works on the platform Nomothesi@, namely
“Nomothesi@: Greek Legislation Platform” (2014), “Nomothesi@ API: Re-engineering
the Electronic Platform” (2015) and most recently “Re-engineering Nomothesi@ API Web
Application: Improvements and Support of new features” (2018). The platform provided
support for various search filters, retrieval of most recent/viewed legal documents, statist-
ical information in graph form, retrieval of child legislative documents(articles, paragraphs
etc.), a customisable query feature for experienced users and more. The already existing
SPARQL Endpoint was used as a blueprint to maintain any existing functionality with the
Elasticsearch engine while no significant changes were needed for the Structure Model.

2.2 Legislation in RDF

RDF stands for Resource Description Framework. It’s a data model for representing in-
formation on the web, particularly designed for describing resources and their relationships
in a machine-readable format. RDF provides a way to structure and organize data using
triples, which consist of three parts:

1. Subject: The resource being described.

2. Predicate: The property or attribute of the resource.

3. Object: The value of the property or attribute.

Legislative data are commonly distributed in a RDF format. The canonicalization of the
data to a directed graph by the use of RDF allows for compact and encoded datasets
that can be searched partially and in parallel. RDF also provides great flexibility which
is important for legislation due to the vastly wide range of data types and relationships
between entries. Finally, it is not uncommon for different countries to research each other’s
legal documents and therefore a universal and standardized way to represent data, like
RDF, is invaluable.

The global need for legislative tools providing easy and fast search capabilities to citizens
has lead to the birth of many platforms like legislation.gov.uk which use linked data formats
to organise legislative data and metadata.

2.2.1 Querying Legislation with SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a semantic query language for
databases, able to retrieve and manipulate data stored in Resource Description Frame-
work (RDF) format. SPARQL allows for a query to consist of triple patterns, conjunctions,
disjunctions, and optional patterns. Because of that, it is recognized as one of the key
technologies of the semantic web. The main use cases for SPARQL are:

Semantic Web and Linked Data query and retrieve data from interconnectedRDF graphs,
enabling applications to navigate and explore linked data.

Z. Polytseris 13

Nomothesi@: Migrating the Linked Data into Elasticsearch

Metadata Management SPARQL enables efficient querying of this metadata, facilitating
tasks such as resource discovery, classification, and aggregation.

Ontology-based Reasoning SPARQL can be used in conjunction with ontology reason-
ing engines to infer new knowledge from existing RDF data based on semantic rules
defined in ontologies.

Despite the positives of SPARQL, as the datasets become more complex it shows draw-
backs regarding:

Long-Term Maintenance It is hard to reach dynamic data that is updated daily (that is
the nature of legislative data, new documents are uploaded daily).

User Accessibility It has a big learning curve and it is not easy for an average user to
construct a custom query.

2.2.2 Legislation and Linked Open Data

Linked Data is a method of publishing structured data on the web in a way that allows it
to be interlinked and interconnected with other data sources.

Linked Open Data (LOD) is a methodology for publishing and interlinking structured data
on the web according to specific principles and standards. It builds upon the concept of
Linked Data, which was proposed as a way to create a web of data that can be easily
accessed and understood by both humans and machines.

LinkedOpenData (LOD) is commonly used for legislation by platforms similar to Nomothesi@
due to several reasons:

Interoperability Legislation often spans multiple jurisdictions and legal systems. LOD
provides a standardized way to represent and link data across different sources and
formats, enabling interoperability between diverse legal datasets. This interoperabil-
ity facilitates comparisons between different laws, regulations, and legal documents.

Semantic Web Principles LOD adheres to Semantic Web principles, which emphasize
the use of standardized vocabularies (ontologies) and machine-readable formats
(RDF, OWL) to represent and link data on the web. By applying these principles to
legislation, legal documents become more accessible and understandable to both
humans and machines.

Transparency and Accessibility LOD promotes transparency and accessibility by mak-
ing legislative information available in a structured, machine-readable format. This
enables citizens, researchers, policymakers, and developers to access, analyze,
and reuse legal data more easily, fostering greater transparency, accountability, and
civic engagement.

Overall, Linked Open Data offers a powerful framework for representing, publishing, and
interlinking legislative information, thereby enhancing its accessibility, interoperability, and
utility for various stakeholders in the legal domain. Therefore, Nomothesi@benefits greatly
from the maintenance of said principals for its data presentation.

Z. Polytseris 14

Nomothesi@: Migrating the Linked Data into Elasticsearch

2.3 The Old Nomothesi@

The previous version of Nomothesi@ used a number of datasets in Turtle format for its
data. Nomothesi@ uses Semantic Web Technologies by developing and OWL ontology
for Greek Legislation, namely Nomothesia ontology which follows all standards and adopts
the ELI framework.It had implemented both a RDF4J and Lucene index to store the tuples
which then were queried using SPARQL. The fact that both indexes were used, made
the platform complex to maintain or distribute, therefore the need for a single index was
created.

Most queries of the SPARQL Endpoing used by Nomothesi@’s REST API were saved
as String literals which made the code hard to read and maintain. In a later chapter it is
explained how a query builder for Elasticsearch helped with the construction of queries
and the removal of repetitive code.

Nomothesi@ provided the user with search functionalities for greek legislation, eu legis-
lation and entities which consisted of:

• Search legal documents or entities by keywords in their text fields.

• Search legal documents or entities by exact match in various fields.

• Search legal documents or entities by a date range for fields with a date data type.

The user could then view the full details of any result since the SPARQL Endpoint returned
all tuples and relations of the given URI. For legal documents that means retrieving all child
legislative data (such as articles, paragraphs and passages) in a constructed form which
the user then could download in a variety of file formats such as PDF.

2.4 Introducing Elasticsearch

Elasticsearch is an open-source, distributed search and analytics engine built on top of
Apache Lucene. Elasticsearch is designed to handle large volumes of data and provide
near real-time search and analytics capabilities.

Elasticsearch supports the scalability of a platform by:

Horizontal Scalability Users can addmore nodes to an Elasticsearch cluster to distribute
the workload and data across multiple servers. This approach allows the system to
handle increased indexing and search demands by simply adding more hardware to
the cluster.

Sharding Elasticsearch divides data into smaller units called shards. Each shard is a
self-contained index that can be distributed across nodes in the cluster. Sharding
enables parallel processing of data, improving both indexing and search perform-
ance.

Data Partitioning Elasticsearch employs a hash-based distribution mechanism to evenly
distribute data across shards and nodes. This ensures that each node in the cluster
carries a balanced portion of the data, preventing hotspots and optimizing resource
utilization.

Z. Polytseris 15

Nomothesi@: Migrating the Linked Data into Elasticsearch

Elasticsearch is mostly used for text-based search cases. The greater advantage com-
pared to RDF with SPARQL querying is the ability to perform full-text search with flexibility
and speed. Legislative data is vast and mostly consist of text, therefore many use cases
of the platform regarding text-based search can benefit greatly from Elasticsearch.

Elasticsearch can also be used for Analytics. It provides aggregations, which allow users
to perform analytics on their data in real-time. Aggregations can be used to compute
metrics such as counts, sums, averages, percentiles, and more across large datasets,
facilitating data analysis and visualization. This is vital to maintain existing features of
Nomothesi@ and simplify analytics for potential new user needs.

2.4.1 Elasticsearch with JSON

One of the file formats supported by Elasticsearch is JSON (JavaScript Object Notation).
JSON is a lightweight data interchange format that is easy for humans to read and write
and easy for machines to parse and generate. JSON is primarily used to transmit data
between a server and a web application. It is commonly used for REST APIs for several
reasons:

Simple Syntax JSON has a simple and intuitive syntax consisting of key-value pairs and
arrays. This simplicity makes it easy to work with for both developers and machines,
reducing the complexity of parsing and generating JSON data.

Native Support Most modern programming languages have built-in support for parsing
and generating JSON data. This native support simplifies the process of working
with JSON in applications and frameworks, reducing the need for external libraries
or dependencies.

RESTful Principles JSONaligns well with the principles of Representational State Trans-
fer (REST), which emphasize stateless communication, resource-based URLs, and
uniform interfaces. JSON’s simplicity and flexibility make it a natural choice for rep-
resenting resources and their state in RESTful APIs.

2.4.2 Legislation in JSON-LD

Ideally, the new Nomothesi@ platform can benefit from both Elasticsearch and Linked
Open Data principles while maintaining compatibility with the RDF formats that are used
for distributing legislation. This can be achieved by the use of JSON-LD (JSON for Linking
Data).

JSON-LD (JavaScript Object Notation for Linked Data) is a lightweight data interchange
format for expressing Linked Data using JSON. It provides a way to serialize structured
data in a manner that is both human-readable and machine-readable, while also support-
ing the principles of Linked Data, which aim to enable the publishing and interlinking of
structured data on the web. JSON-LD extends JSON by adding context and semantics
to the data, allowing it to be linked to other resources on the web. The key features of
JSON-LD are:

Context JSON-LD documents include a context object that defines the meaning of terms
used within the document. This context provides mappings between JSON keys

Z. Polytseris 16

Nomothesi@: Migrating the Linked Data into Elasticsearch

and their corresponding IRIs (Internationalized Resource Identifiers), as well as ad-
ditional information such as data types and language tags.

Linked Data Principles JSON-LD follows the principles of Linked Data, including the use
of dereferenceable URIs to identify resources, the inclusion of links to related re-
sources, and the use of standard vocabularies and ontologies to describe data.

Interoperability JSON-LD promotes interoperability by providing a standardized way to
represent and exchange Linked Data across different systems and platforms.

The compatibility it has with RDF means that the platform can easily convert existing RDF
datasets to JSON-LD which are then available for insertion into Elasticsearch. Another
significant advantage compared to RDF is the familiarity most users have with JSON and
the readability it provides.

1 {
2 "@context": {
3 "owl": "http://www.w3.org/2002/07/owl#",
4 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
5 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
6 "xsd": "http://www.w3.org/2001/XMLSchema#"
7 },
8 "@graph": [
9 {
10 "@id": "http://el.dbpedia.org/resource/resource_1",
11 "rdfs:label": [
12 {
13 "@language": "en",
14 "@value": "label of resource_1"
15 }
16]
17 }
18]
19 }

Listing 2.1: Example of the content of a JSON-LD file

Z. Polytseris 17

Nomothesi@: Migrating the Linked Data into Elasticsearch

3. DATASET GENERATION

3.1 Choosing a file format

ndJSON (Newline Delimited JSON) [5] is a simple and human-readable data interchange
format that is used for storing structured data as a sequence of JSON objects, separated
by newline characters. Each line in an ndJSON file represents a single, self-contained
JSON object.

ndJSON is a commonly used format for indexing data into Elasticsearch for a couple of
reasons:

• As a line-by-line format, ndJSON is well-suited for streaming large datasets because
it allows the user to read and process data incrementally without loading the entire
dataset into memory. This is especially important when dealing with large volumes
of data that may not fit entirely in memory.

• Elasticsearch provides a Bulk API that allows us to index multiple documents in a
single request. ndJSON is often used to create bulk requests by appending multiple
JSON documents together in a single file. This minimizes the overhead of making
individual HTTP requests for each document and improves indexing efficiency.

Figure 3.1: ’RDF data conversion to JSON documents’

Z. Polytseris 18

Nomothesi@: Migrating the Linked Data into Elasticsearch

3.2 Serializing to ndJSON

An RDF Graph consists of a set of RDF triples, each triple consisting of a subject, a
predicate and an object. A JSON-LD document serializes such a set of RDF triples as a
series of nested data structures. A conforming JSON-LD document consists of a single
JSON object called the root object. Each unique subject in the set of triples is represented
as a key in the root object. No key may appear more than once in the root object. The
value of each root object key is a further JSON object whose keys are the URIs of the
predicates occurring in triples with the given subject. These keys are known as predicate
keys. No predicate key may appear more than once within a single object. The value of
each predicate key is an array of JSON objects representing the object of each serialized
triple.

1 from rdflib import Graph
2 import json
3 from io import StringIO
4 import os
5

6 file_handle = os.open(datasetName + 'ND.json', flags)
7 g = Graph()
8

9 with os.fdopen(file_handle , 'w') as file_obj:
10 g.parse(datasetName + ".ttl")
11

12 ld = g.serialize(format='json-ld')
13 in_json = StringIO(ld)
14 result = [json.dumps(record) for record in json.load(in_json)]
15

16 file_obj.write('\n'.join(result))

Listing 3.1: python serialization script for tuple data

The code creates a Graph out of the tuples and then serializes it in JSON-LD (JSON
for Linking Data) format [4] to merge related tuples into one document and generate the
identifier of each one, namely the URI. Then, each document is printed as one line to
populate the ndJSON file.

The entirety of Nomothesi@’s data consisted of the following datasets in Turtle format:
’dbpedia.ttl’, ’entities.ttl’, ’eu_legislation.ttl’, ’gr_legislation.ttl’, ’kallikratis.ttl’ Each dataset
contained unique data in grouped triplets. For example the entry:

1 <http://legislation.di.uoa.gr/eli/gazette/EUR/2017/070>
2 <http://data.europa.eu/eli/ontology#date_publication > "2017-03-15"^^<http

://www.w3.org/2001/XMLSchema#date> ;
3 <http://data.europa.eu/eli/ontology#title> "EUR/2017/070"@el ;
4 <http://legislation.di.uoa.gr/ontology#eurlex_link > <http://publications.

europa.eu/resource/cellar/55f8ca07 -0949-11e7-8a35-01aa75ed71a1 > ;
5 a <http://legislation.di.uoa.gr/ontology#EUGazette > .

holds the relations of the URI ”<http://legislation.di.uoa.gr/eli/gazette/EUR/2017/070>” and
more specifically the type (EU Gazette), its publication date, its title and its eurlex link. The
main information for this gazette is grouped together nicely as it is, so it is easy to imagine
how the finalized JSON document would look like.

After the serialization to JSON a document with the following fields and values should be
created:

Z. Polytseris 19

Nomothesi@: Migrating the Linked Data into Elasticsearch

1 {
2 "@id": "http://legislation.di.uoa.gr/eli/gazette/EUR/2017/070",
3 "@type": ["http://legislation.di.uoa.gr/ontology#EUGazette"],
4 "http://data.europa.eu/eli/ontology#date_publication": [
5 {
6 "@type": "http://www.w3.org/2001/XMLSchema#date",
7 "@value": "2017-03-15"
8 }
9],
10 "http://data.europa.eu/eli/ontology#title": [
11 {
12 "@language": "el",
13 "@value": "EUR/2017/070"
14 }
15],
16 "http://legislation.di.uoa.gr/ontology#eurlex_link": [
17 {
18 "@id": "http://publications.europa.eu/resource/cellar
19 /55f8ca07 -0949-11e7-8a35-01aa75ed71a1"
20 }
21]
22 }

3.3 Dataset Deserialization

The following is a different example of tuples, containing basic information about a land-
mark, turned into documents:

<http://legislation.di.uoa.gr/eli/pd/1996/295/
article/1/paragraph/1/linea/1/reference/landmark/1>

<http://legislation.di.uoa.gr/ontology#relevant_for>
<http://legislation.di.uoa.gr/entity/landmark/1794> .

<http://legislation.di.uoa.gr/entity/landmark/1794>
a <http://legislation.di.uoa.gr/ontology#Area> .

<http://legislation.di.uoa.gr/eli/pd/1996/295/
article/1/paragraph/1/linea/1/reference/landmark/1>

<http://www.w3.org/2000/01/rdf-schema#label>
"ΘΕΣΗ ΒΟΥΤΣΑΡΑΣ"@el , "AREA OF VOUTSARAS"@en .

As of now, the entirety of the information needed for an entity is not gathered under one
URI. Fields like the label were found by using the entity’s URI to find its reference tuple
and finally get the value from there.

1 SELECT ?label
2 WHERE{
3 ?ref leg:relevant_for <"uri">.
4 ?ref rdfs:label ?label.
5 }LIMIT 1

Listing 3.2: SPARQL Query Sample: getting the label of an entity by its URI

With the current ndJSON documents, since join operations are not supported, the imple-
mentation must either:

Z. Polytseris 20

Nomothesi@: Migrating the Linked Data into Elasticsearch

1. perform two different queries

2. declare a parent/child relationship between documents.

3. declare nested fields

With RDF data, the query is perfectly fast, but the solutions that Elasticsearch provides
are time consuming and costly. More specifically:

1. Large numbers of queries mean the multiplication of time needed for large requests.

2. Parent/child mappings have extra memory overhead, since ES maintains a ”join” list
in memory

3. Updating a single field in a nested document (parent or nested children) forces ES
to re-index the entire nested document. This can be very expensive for large nested
docs

The best solution in this case is to deserialize the ndJSON documents since storage cost is
much cheaper than the computing cost. For this reason a deserializer project was created.
Based on selected fields representing a reference to other documents, the deserializer
follows the below algorithm:

Data: A set of ndJSON files whose rows contain a document
Result: A Deserialized ndJSON file with all documents containing referenced info
/* Iterate through the datasets and map documents based on their URI(@id

field) */
for ds in datasets do

create MAP (key = URI, value = JSON document in ds);
for ds in datasets do

for document in ds do
if document has reference fields then

get reference fields’ ids;
search for ids in MAP;
print result of current document merged with mapped documents;

end
end

end
end

Algorithm 1: Nomothesi@ ndJSON datasets Denormalizer

Z. Polytseris 21

Nomothesi@: Migrating the Linked Data into Elasticsearch

The following constants were created for the implementation of the denormalizer in order
to minimize possible errors and operations on the queries’ hits:

1 // List containing the fields we merge based on.
2 // An example of a field that is not included is eli:has_part to avoid
3 static final List<String> referenceFields = Arrays.asList(
4 "http://www.w3.org/2002/07/owl#sameAs",
5 "http://legislation.di.uoa.gr/ontology#relevant_for",
6 "http://data.europa.eu/eli/ontology#published_in",
7 "http://data.europa.eu/eli/ontology#transposed_by"
8);
9

10 // Specifically for the case of field eli:transposed_by
11 // Only add the following information to generated document
12 private static final List<String> wantedTransByFields = Arrays.asList(
13 "@type",
14 "http://data.europa.eu/eli/ontology#date_publication",
15 "http://data.europa.eu/eli/ontology#id_local",
16 "http://legislation.di.uoa.gr/ontology#published_by"
17);
18

19

20 // Fields and values not merged into the generated document
21 private static final List<String> excludedFromMergeFields = Arrays.asList(
22 "@id",
23 "http://geo.linkedopendata.gr/gag/ontology/has_geometry",
24 "http://data.europa.eu/eli/ontology#date_publication",
25 "http://data.europa.eu/eli/ontology#transposed_by"
26);
27

28 private static final List<String> excludedFromMergeValues = Arrays.asList(
29 "http://legislation.di.uoa.gr/ontology#GovernmentGazette"
30);

Listing 3.3: Denormalizer constants

After the denormalizer project processes all the datasets, the output is a unified data-
set consisting of merged documents ready to be indexed into Elasticsearch. The parent
documents that are referenced are also kept inside the final dataset since not all inform-
ation is merged. For example, the field containing the geometry of a geographical area
is excluded from merge and only kept in the original document since passing it along a
relationship tree would be too much of a memory burden.

Z. Polytseris 22

Nomothesi@: Migrating the Linked Data into Elasticsearch

4. BACK-END REDEVELOPMENT

4.1 Document Indexing

Mapping is the process of defining how a document, and the fields it contains, are stored
and indexed. Each index can be defined by a mapping definition, which contains the
document fields’ data types, metadata and customization. In Elasticsearch, mappings
can be either dynamic, meaning created while indexing documents, or explicit for better
optimization. Nomothesi@’s index is created with an explicit mapping which helps with
the support of different data formats and the exclusion of unused fields when calculating
a document’s score in order to improve query latency.

1 {
2 "mappings": {
3 "properties": {
4 "@id": {
5 "type": "keyword"
6 },
7 "@type": {
8 "type": "keyword"
9 },
10 "http://dbpedia.org/ontology/birthPlace": {
11 "type": "object",
12 "enabled": false
13 },
14 "http://data.europa.eu/eli/ontology#date_signature": {
15 "properties": {
16 "@type": { "type": "keyword" },
17 "@value": { "type": "text" }
18 }
19 },

Listing 4.1: Snipet of Nomothesi@’s index mapping

The platform uses the Bulk API of Elasticsearch for indexing. It enables the platform to
make multiple indexing operations in a single API call.

Figure 4.1: ’Indexing time dependence on bulk size’

20 40 60 80 100 120

50

100

150

200

250

300

350

bulk size [mb]

In
de
xi
ng

tim
e
[s
]

Z. Polytseris 23

Nomothesi@: Migrating the Linked Data into Elasticsearch

Using the Bulk API speeds up the indexing process significantly since the number of re-
quests is divided and the batch of documents is indexed simultaneously thanks to Elastic-
searches’ parallel processing. Multiple threads were also used to increase concurrency.

Elasticsearch limits the maximum size of a HTTP request to 100mb by default so it is
important for the document batches to not exceed that limit. The next logical step was
to construct the batches based on byte size rather than a static size since they can differ
greatly. Documents with geographical data or large text would force the batch size to
shrink and therefore slow down indexing of small documents. Finally, a dynamic approach
is the best safety measure for possible future documents that may break indexing due to
abnormally large sizes.

Elasticsearch suggests to start with a bulk size around 5–15 MB and slowly increase it
until there are no performance gains anymore. Indeed, 15mb gave the best time in the
local environment and no big differences were present even with a larger bulk size.

4.2 Elastic Query Builder

Figure 4.2: ’SPARQL query conversion to Elasticsearch DSL’

The Elasticsearch Java REST Client is a powerful tool that provides flexible and easy to
use solutions for programmatic request generation. In order to reduce redundant code and
increase readability, we created a builder class that takes care of the details of creating
queries or aggregations, the ElasticQueryBuilder.

1 public Query matchQuery(String field, String value) {
2 value = replaceDebugUri(value);
3 String finalValue = value;
4

5 return MatchQuery.of(q -> q
6 .field(field)

Z. Polytseris 24

Nomothesi@: Migrating the Linked Data into Elasticsearch

7 .query(finalValue)
8)._toQuery();
9 }
10

11 public Query booleanQuery(List<Query> queries, ELASTIC_OPERATOR operator) {
12 switch (operator) {
13 case FILTER:
14 return BoolQuery.of(q -> q
15 .filter(queries)
16)._toQuery();
17 case SHOULD:
18 return BoolQuery.of(q -> q
19 .should(queries)
20)._toQuery();
21 case MUST_NOT:
22 return BoolQuery.of(q -> q
23 .mustNot(queries)
24)._toQuery();
25 case MUST:
26 default:
27 return BoolQuery.of(q -> q
28 .must(queries)
29)._toQuery();
30 }
31 }

Listing 4.2: Sample of methods returning different Elastic queries

After any complex query is built, the application can finally create a Search Request with
a variety of configurations like: hits number. field selection for more compact hits. hit
order based on a selected field. skip hits after a selected identifier for batch requests that
retrieve a lot of data.

• Hits number.

• Field selection for more compact hits.

• Hit order based on a selected field.

• Skip hits after a selected identifier for batch requests that retrieve a lot of data.

4.3 Hits Parser

The results of a search request contain a list of hits. Each hit has the information of a
document in JSON form. To create the appropriate model entity from a JSON, the need
for a parser was created. The documents can be mostly categorized as Entities or Legal
Documents and therefore different Parser classes were created.

The Parsers resulted in a fast and straight-forward way of handling data, without the hustle
of iterating through large amounts of tuples.

4.4 SPARQL to Elastic Queries

Converting the queries into Elasticsearch Query DSL (Domain-Specific Language) [3] re-
quired an in-depth knowledge of the possible information within a single document to min-

Z. Polytseris 25

Nomothesi@: Migrating the Linked Data into Elasticsearch

imize the amount of requests needed.
We will now proceed to construct some sample queries to explain the changes made.

1 SELECT *
2 WHERE {
3 OPTIONAL{ <" + uri + "> rdf:type ?type. }
4 OPTIONAL{ ?ref leg:relevant_for <" + uri + ">. ?ref rdfs:label ?reflabel.

FILTER(langMatches(lang(?reflabel), \"el\"))}
5 }

Listing 4.3: Retrieve type/label of entity RDF query

The above query should retrieve all types of the unique identifier given as well as the
label of the one referencing it. After the deserialization, both of these fields should be
in a single document, more specifically one that references the given uri and therefore a
simple Match query should give us exactly that.

1 Query searchQuery = queryBuilder.matchQuery(leg + "relevant_for.@id", uri);

Listing 4.4: Retrieve type/label of entity Elastic DSL query

After creating the query, we can easily pass it into a search request mentioning the specific
fields that need to be retrieved to achieve faster completion times.

Now what if we want to know the type of a Legal Document’s parts? The RDF query would
be as follows:

1 SELECT ?part
2 WHERE {
3 <" + uri + "> eli:has_part+ ?part.
4 ?part rdf:type ?parttype.
5 }

Listing 4.5: Retrieve type of Legal Document’s parts RDF query

In this case, we will not find a document that contains all the info we need since mer-
ging all Legal Documents with their parts would create massive documents and an over-
complicated index context. Therefore, we need to first retrieve the URIs of the Legal
Document’s parts and then, with a second request, get their types. The Terms query is
used to tell Elasticsearch that any of the values provided are equally fitted for a match.

1 Query searchQuery =
2 queryBuilder.booleanQuery(Arrays.asList(
3 queryBuilder.matchQuery("@id", uri),
4 queryBuilder.existsQuery(eli + "has_part")
5), ELASTIC_OPERATOR.MUST);
6

7 /* Get request hit and parse "has_part" field. Save the values (URIs) in a
list */

8

9 Query searchQuery =
10 queryBuilder.booleanQuery(Arrays.asList(
11 queryBuilder.termsQuery("@id", uriList),
12 queryBuilder.existsQuery("@type")
13), ELASTIC_OPERATOR.MUST);

Listing 4.6: Retrieve type of Legal Document’s parts Elastic DSL query

With the above example we can clearly see Elasticsearch’es disadvantage with RDF Data
since multiple queries are needed for a multitude of requests, most noticeably here with
multi-dimensional tree structures like Legal Documents.

Z. Polytseris 26

Nomothesi@: Migrating the Linked Data into Elasticsearch

Regarding statistics queries, Aggregations provided a great way to find numbers of docu-
ments with specific traits. The triple store’s aggregations with the COUNT or GROUP_CONCAT
functions were replaced with the equivalent Elastic Aggregations for Terms or Date His-
tograms. This allowed to maintain fast results when counting documents matching given
terms or within a wanted date range.

4.5 Lucene Endpoint

Nomothesi@ gave the ability to experienced users to write and run custom SPARQL quer-
ies and retrieve results. An equivalent feature is possible with Elasticsearch since it can
parse lucene queries passed to the query_string parameter. Users can write lucene syn-
tax in a text field and get the relevant documents in JSON format. The limitations of the
lucene syntax are the inability to search nested objects or scripted fields.

Figure 4.3: ’Elasticsearch Endpoint with Lucene Syntax example’

Z. Polytseris 27

Nomothesi@: Migrating the Linked Data into Elasticsearch

5. NEW ELASTIC FEATURES

5.1 Exact Phrase Match

In Elasticsearch, the MatchPhrase query is a type of full-text query that is used to search
for exact phrases within text fields. It is designed to match documents where the specified
phrase appears in the text exactly as it is provided in the query from the user. Using the
MatchPhrase Query, the user can now search for hits with the exact phrase in their label
or equivalent main text field. Like other text-based queries in Elasticsearch, the text in the
specified field is tokenized during indexing and searching. However, the match_phrase
query operates on the tokens to maintain the word order.

MatchPhrase is particularly useful when the exact sequence of words matters, such as in
the case of a quote or a specific phrase. Some use cases expected to be covered by this
feature are:

Precision Searching Legal documents often contain precise terminology and language.
An exact phrase search allows users to find specific clauses, definitions, or provi-
sions without sorting through irrelevant results.

Interpretation of Legal Precedents When researching case law or precedent, lawyers
may need to locate instances where a particular phrase or wording has been used
in previous judgments.

Research and Academia Legal scholars and researchers often need to conduct precise
searches to support their academic work or to explore specific legal concepts.

Legal Writing and Drafting When drafting legal documents, lawyers may want to ensure
consistency in language usage or adhere to specific wording used in precedents.

In each of these scenarios, the ability to perform precise searches for exact phrases within
legal documents is crucial for saving time, ensuring accuracy, and supporting informed
decision-making in the legal field.

Figure 5.1: ’Use case: retrieve legal documents with the exact word given’

Z. Polytseris 28

Nomothesi@: Migrating the Linked Data into Elasticsearch

5.2 Field Priority Match

If the user wants to search a phrase in a document, Elaticsearch also provides the Mul-
tiMatch Query. With this functionality, it is now possible to search the same phrase in
multiple valid fields. The MultiMatch Query is particularly useful when searching for a
specific term or phrase across various fields in an Elasticsearch index. This query type is
commonly used in scenarios where a broad search across different fields is needed, such
as titles, descriptions, and content, to find relevant documents.

The MultiMatch query is flexible and supports various options to customize how the search
is conducted. Some of the key features and options of the MultiMatch query include:

• Specifying which fields in the documents will be searched across. This can be done
by providing a list of field names or by using wildcard expressions to match multiple
fields.

• Different weights (boosts) can be assigned to each field to influence the relevance
scoring of the documents. Fields with higher boosts contribute more to the overall
relevance score of a document.

• Elasticsearch supports different match types for the MultiMatch query, including
”best_fields”, ”most_fields”, ”cross_fields”, ”phrase”, and ”phrase_prefix”.

• Skip hits after a selected identifier for batch requests that retrieve a lot of data.

Currently, the platform enables the user to search for legislative data based on the FEK
code or the local id. It is possible that more use cases that can take advantage of Mul-
tiMatch may exist in the future.

Figure 5.2: ’Use case: find the legal document with a given id or FEK code’

Z. Polytseris 29

Nomothesi@: Migrating the Linked Data into Elasticsearch

6. QUERY PERFORMANCE TEST

6.1 Query Latency

The following table shows the Query Latency of the new platform when using Elastic-
search as its search engine. This metric measures the time it takes for a query to be
processed and return results.

page case time processing (sec.)
index - 1.088

legislation
details

eli/pd/2014/69 4.791
constitution (eli/con/2008/1) 16.470

penal code (eli/penalcode/1985/1) 29.406

search

all 0.348
type: decision 1.924

date from 06/2016 to 12/2023 1.868
exact phrase: ”Τεχνολογική Συνεργασία” 0.890
keywords: ”Τεχνολογική Συνεργασία” 2.186

entities all 1.233
type: landmark 0.519

gazette - 24.175
statistics - 7.683

Table 6.1: Time performance results with Elasticsearch implementation.

Observing the query latency of Nomothesi@with Elasticsearch shows that the time search-
ing legislation has a slight deviation based on the filter used. For example, a date range
query is more expensive than a match query based on legislation type. Requests for le-
gislation and entity details are noticeably slower due to the multiple search requests sent
to Elasticsearch in order to retrieve all child documents in full, such as articles of a legal
document.

6.2 Response size

Another useful metric for scalable search engines is the memory needed for the response.
Transmitting larger amounts of data over the network can incur higher costs. Understand-
ing the size of responses is crucial when considering the scalability and cost implications of
an Elasticsearch deployment. Since Nomothesi@ needs to be scalable, a high response
size might lead to the platform being too inefficient after too much data get indexed. With
Elasticsearch, the respose size can be optimized with the fields parameter since it can
filter the source to contain only the fields with needed information.

Z. Polytseris 30

Nomothesi@: Migrating the Linked Data into Elasticsearch

page case response size (bits)
index - 128.400

legislation
details

eli/pd/2014/69 1.993.912
constitution (eli/con/2008/1) 3.568.832

penal code (eli/penalcode/1985/1) 20.129.216

search

all 2.844.992
type: decision 2.999.584

date from 06/2016 to 12/2023 1.666.408
exact phrase: ”Τεχνολογική Συνεργασία” 181.328
keywords: ”Τεχνολογική Συνεργασία” 1.436.584

entities all 1.494.784
type: landmark 1.324.768

gazette - 3.648.000
statistics - 32.031.832

Table 6.2: Response size results with Elasticsearch implementation.

By observing the above table, it can be seen that the size of search is mostly consistent
due to the set cap of 1000 legal documents/entities in the results, unless the query is relat-
ively specific. The legal document details vary greatly since some are larger than others.
Another interesting observation is that the gazette query doesnt return a large result size
even if it is slow in the query latency test. This is due to the small but many queries done
in order to get child document information. Queries that need multiple searches in Elast-
icsearch show the weaknesses of the search engine. Finally, since the statistics screen
needs to process lots of documents, it retrieves a large amount of data and is probably a
good candidate for optimization after the platform scales significantly.

Z. Polytseris 31

Nomothesi@: Migrating the Linked Data into Elasticsearch

7. CONCLUSIONS

Elasticsearch is a powerful tool, capable of hosting large amounts of data while providing
a variety of optimisation options for the improvement of query performance, such as field
exclusion and data sharding. Although legislative data are linked and not an ideal fit for
Elasticsearch, they are ever-expanding and need a scalable search engine that can sup-
port the increasing demand while also providing the possibility to cover new user cases
that were not possible before with the RDF store.

It is expected that the benefits of migrating to Elasticsearch will be more visible in the
future, since with the current dataset size, no significant improvements can be observed.
A larger and more demanding dataset may also create the need for better indexing and
querying strategies, mostly focused on the documents’ deserialization and interconnection
methods.

Finally, the Elasticsearch JAVA API was also a great tool that helped with the development
of clean, readable and reusable code that will most likely make the implementation of
future features or optimizations easier.

Nomothesi@ has the important role of educating and providing professionals and normal
citizens alike with easy access to legislation and keeping up with the ever-expanding de-
mand is crucial. The Elasticsearch back-end will definitely assist with this goal for the
foreseeable years since it was designed to make such future improvements easily imple-
mentable.

Z. Polytseris 32

Nomothesi@: Migrating the Linked Data into Elasticsearch

ABBREVIATIONS - ACRONYMS

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

OWL Web Ontology Language

LOD Linked Open Data

JSON JavaScript Object Notation

JSON-LD JSON for Linking Data

NDJSON Newline Delimited JSON

DSL Domain-Specific Language

TTL Terse RDF Triple Language

URI Uniform Resource Identifier

Z. Polytseris 33

Nomothesi@: Migrating the Linked Data into Elasticsearch

APPENDIX A. NOMOTHESI@ WEB APPLICATION

Nomothesi@ is implemented as a Spring web MVC Project. For the purpose of this thesis
a few dependency versions were upgraded. Additionally, RDF related dependencies were
removed as they were no longer used.

The Elasticsearch version installed for the thesis was 8.3.3. The installation guide for linux
can be found here:
https://www.elastic.co/guide/en/elasticsearch/reference/current/targz.html
To install the needed version, simply change the number used in the relevant commands.

A tool that was used extensively during development was Kibana. Among many things,
it is used to view, query and edit indexes and documents. It is recommended to install
the same version number with Elasticsearch. To install Kibana on linux follow the relevant
guide here:
https://www.elastic.co/guide/en/kibana/current/targz.html

In order to create the ndjson dataset from .ttl files and deploy Nomothesi@ locally, the
repository’s READMY.md steps should be followed. Most importantly, the local folder
containing the finalized dataset batch files should be changed in the application proper-
ties.

Z. Polytseris 34

https://www.elastic.co/guide/en/elasticsearch/reference/current/targz.html
https://www.elastic.co/guide/en/kibana/current/targz.html

Nomothesi@: Migrating the Linked Data into Elasticsearch

BIBLIOGRAPHY

[1] Apache lucene - query parser syntax. URL: https://lucene.apache.org/core/2_9_4/
queryparsersyntax.html.

[2] Elasticsearch java api client. URL: https://www.elastic.co/guide/en/elasticsearch/client/
java-api-client/current/index.html.

[3] Elasticsearch query dsl (domain-specific language). URL: https://www.elastic.co/guide/en/
elasticsearch/reference/current/query-dsl.html.

[4] Json for linking data. URL: https://json-ld.org/.

[5] ndjson format (new line delimeter json). URL: http://ndjson.org/.

[6] Resource description framework (rdf). URL: https://www.w3.org/RDF/.

[7] Sparql 1.1 query language. URL: https://www.w3.org/TR/sparql11-query/.

[8] Apostolopoulos G. Re-engineering nomothesi@ api web application: Improvements and support of new
features. 2018.

[9] Chalkidis I. Nomothesi@: Greek legislation platform. b.sc thesis. national and kapodistrian university of
athens. 2014.

[10] Panagiotis Soursos Manolis Koubarakis Ilias Chalkidis, Charalampos Nikolaou. Modeling and querying
greek legislation using semantic web technologies. 2017.

[11] Soursos P. Nomothesi@ api: Re-engineering the electronic platform. b.sc thesis. national and kapod-
istrian university of athens. 2015.

[12] Manolis Koubarakis/Eleni Tsalapati. M164 - cs2: Knowledge technologies. In Knowledge Represent-
ation and Reasoning for the World Wide Web, i.e., on the research areas of Semantic Web and Linked
Data, 2022-2023. URL: https://cgi.di.uoa.gr/~pms509/lectures.htm.

Z. Polytseris 35

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/current/index.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://json-ld.org/
http://ndjson.org/
https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://cgi.di.uoa.gr/~pms509/lectures.htm

	CONTENTS
	INTRODUCTION
	Problem Statement
	Aim and Objectives
	Expected Performance Improvement

	RELATED WORK
	Summary
	Legislation in RDF
	Querying Legislation with SPARQL
	Legislation and Linked Open Data

	The Old Nomothesi@
	Introducing Elasticsearch
	Elasticsearch with JSON
	Legislation in JSON-LD

	DATASET GENERATION
	Choosing a file format
	Serializing to ndJSON
	Dataset Deserialization

	BACK-END REDEVELOPMENT
	Document Indexing
	Elastic Query Builder
	Hits Parser
	SPARQL to Elastic Queries
	Lucene Endpoint

	NEW ELASTIC FEATURES
	Exact Phrase Match
	Field Priority Match

	QUERY PERFORMANCE TEST
	Query Latency
	Response size

	CONCLUSIONS
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	Nomothesi@ Web Application
	REFERENCES

