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Abstract 
 
 

In recent decades, there has been a rapid advancement in the utilization of Earth 

Observation (EO) data in geology, driven by a growing interest in its application to identify 

potential sites associated with hydrothermal alteration and ore deposits.  This 

development has garnered increasing attention due to its potential for substantial time 

and cost savings. In the present study, the target of interest is a small island called 

Koutala near the city of Lavrion (Attiki, Greece) and the aim is (a) to identify granitoid 

intrusions and schist formations on its surface and (b) to detect the associated alteration 

minerals. To this end, two high-resolution satellite datasets depicting the area of interest, 

taken from the Sentinel-2 and WorldView-3 missions, are utilized (the data sets differ in 

their spatial and spectral characteristics). Two different machine learning methods, 

namely clustering and spectral unmixing, were applied to extract geological information 

from the island. 

Clustering was applied to both datasets to delineate regions with similar spectral 

signatures, aiming to identify granitoid and schist formations, as is referred on previous 

research insights [1]. In this framework, a novel clustering algorithm named SHC was 

introduced. SHC has been tailored especially for multispectral data. It takes advantage of 

the derivative of each pixel’s spectral signature, and outperforms traditional off-the-shelf 

clustering algorithms, like K-means and hierarchical methods. The SHC algorithm 

demonstrated improved accuracy in identifying granitoid intrusion areas, especially in the 

challenging lower spatial resolution context of the Sentinel-2 dataset and in general yield 

to more homogeneous clusters (in terms of spectral characteristics). 

Additionally, various linear spectral unmixing methods were explored in the Sentinel-2 

dataset, taking into account its larger number of spectral bands and spectral positions 

compared to WorldView-3 data, to detect the associated alteration minerals on the 

surface of the island. Despite the dataset's relatively low spatial resolution for this type of 

study, alteration minerals with high probability of presence (having as reference previous 

search insights [1]) were accurately identified by most algorithms. 
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Περίληψη  

 

Τα τελευταίες δεκαετίες, υπήρξε μια γρήγορη πρόοδος στην επεξεργασία δορυφορικών 

δεδομένων Παρατήρησης της Γης στη γεωλογία, οδηγούμενη από το αυξανόμενο 

ενδιαφέρον για την εφαρμογή τους στην αναγνώριση πιθανών θέσεων που σχετίζονται 

με την υδροθερμική εξαλλοίωση και την παρουσία ορυκτών υδροθερμικής εξαλλοίωσης. 

Αυτή η μέθοδος έχει κερδίσει αυξανόμενη προσοχή λόγω της δυνατότητας που 

προσφέρει εξοικονόμησης χρόνου και πόρων. Στην παρούσα μελέτη, το αντικείμενο 

ενδιαφέροντος είναι το μικρό νησί που ονομάζεται Κουτάλα κοντά στην πόλη του Λαυρίου 

και ο στόχος είναι (α) η αναγνώριση γρανιτικών διεισδύσεων και σχιστόλιθου στο νησί και 

(β) η ανίχνευση των σχετικών ορυκτών εξαλλοίωσης. Για τον σκοπό αυτό, 

χρησιμοποιούνται δύο σύνολα υψηλής χωρικής ανάλυσης δεδομένων από τις 

δορυφορικές αποστολές Sentinel-2 και WorldView-3  που απεικονίζουν την περιοχή 

ενδιαφέροντος (τα δεδομένα διαφέρουν στα χωρικά και φασματικά χαρακτηριστικά τους). 

Δύο διαφορετικές μέθοδοι μηχανικής μάθησης εφαρμόστηκαν για την εξαγωγή 

γεωλογικών πληροφοριών από το νησί: η ομαδοποίηση (clustering) και ο φασματικός 

διαχωρισμός (spectral unmixing).  

Το clustering εφαρμόστηκε και στους δύο τύπους δεδομένων με στόχο να ανιχνευτούν 

περιοχές με παρόμοιες φασματικές υπογραφές που αντιστοιχούν σε γρανιτικές 

διεισδύσεις και σχιστόλιθους, όπως έχει αναφερθεί σε προηγούμενες έρευνες [1]. Σε αυτό 

το πλαίσιο, ένας νέο αλγόριθμος clustering με την ονομασία SHC υλοποιήθηκε. Ο SHC 

έχει σχεδιαστεί ειδικά για πολυφασματικά δεδομένα. Εκμεταλλεύεται την παράγωγο της 

φασματικής υπογραφής κάθε εικονοστοιχείου (pixel) και υπερέχει των παραδοσιακών 

αλγορίθμων clustering, όπως o K-means και οι ιεραρχικές μέθοδοι. Ο αλγόριθμος SHC 

επέδειξε βελτιωμένη ακρίβεια στην αναγνώριση περιοχών με γρανίτη, λαμβάνοντας 

υπόψη την σχετικά χαμηλή χωρική ανάλυση των δεδομένων Sentinel-2 για τέτοιου τύπου 

μελέτες και γενικά είχε ως αποτέλεσμα πιο ομοιόμορφα  cluster (όσον αφορά τα 

φασματικά χαρακτηριστικά τους).  

Επιπλέον, εξερευνήθηκαν διάφορες μέθοδοι spectral unmixing στα δεδομένα Sentinel-2, 

λαμβάνοντας υπόψη τον μεγαλύτερο αριθμό φασματικών καναλιών σε διαφορετικές 



 

 

θέσεις σε σύγκριση με τα δεδομένα WorldView 3 VNIR, για την ανίχνευση των ορυκτών 

εξαλλοίωσης στο νησί. Παρά τη χαμηλή χωρική ανάλυση των δεδομένων Sentinel-2 για 

τέτοιου τύπου μελέτες, τα ορυκτά εξαλλοίωσης με υψηλή πιθανότητα παρουσίας στην 

επιφάνεια του νησιού αναγνωρίστηκαν με ακρίβεια από τους περισσότερους 

αλγορίθμους, με βάση προηγούμενες έρευνες [1]. 

 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική μάθηση σε δορυφορικά δεδομένα  

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ομαδοποίηση, Φασματικός διαχωρισμός, Sentinel-2, 

WorldView-3 VNIR 
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1. Introduction 

 

According to the United States Geological Survey “Remote sensing is the process of 

detecting and monitoring the physical characteristics of an area by measuring its reflected 

and emitted radiation at a distance (typically from satellite or aircraft). Special cameras 

collect remotely sensed images, which help researchers "sense" things about the Earth” 

[2]. According to [3], the benefits of the use of remote sensing are (among others) the 

ability “to collect information over large spatial areas; to characterize natural features or 

physical objects on the ground; to observe surface areas and objects on a systematic 

basis and monitor their changes over time; and the ability to integrate this data with other 

information to aid decision-making”. 

Machine learning is the process of extracting information from the data in an automated 

way. It is a branch of the Artificial Intelligence field and, nowadays, it is used in almost 

any sector of the human activity. Machine learning algorithms, offer valuable capabilities 

for analyzing vast areas, including object classification, detection of temporal changes, 

data fusion, cloud removal, and spectral analysis using satellite or aerial imagery [4]. 

Machine learning has dynamically entered to the remote sensing area, in order to aid to 

the more effective and reliable processing of the huge amount of data gathered in various 

remote sensing contexts, most of them depicting the earth's surface. The essential aim 

of machine learning in the remote sensing framework is the recognition of patterns, by 

identifying/highlighting both more obvious and less obvious feature correlations in the 

data. This aids end-users in comprehending collected data and finding advanced 

solutions in solving problems related to natural environment (e.g., agricultural areas 

classification, lithological classification/identification). 

Referring to satellite data, there are several types of them, such as the optical 

hyperspectral/multispectral1 imaging systems (e.g. Sentinel-2, WorldView-3, ASTER, 

Landsat series, Hyperion, EnMAP). These datasets have different spectral and spatial 

resolutions, offering the potential to extract information about the composition and 

 
1 The main difference between multispectral and hyperspectral is the number of bands and the spectra of 
electromagnetic radiation that each band contains. 
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characteristics of various materials. [5] 

The majority of the machine learning techniques that are used in remote sensing data, 

are applied on the image pixels. 

Two famous machine learning techniques (that are also used in remote sensing) are 

clustering and spectral unmixing.  

Clustering is the process of grouping more similar objects into the same group and less 

similar objects into different groups, according to a predetermined proximity measure [6]. 

The goal of applying clustering in remote sensing data is to identify homogenous areas 

in the image.  

On the other hand, spectral unmixing relies on the assumption that the spectral signature 

of a specific pixel in a remote sensing image is a combination/mix of the (spectral 

signatures of the) materials that lie in the area of interest. The aim is to identify for each 

pixel in an image, the degree to which (the spectral signature of) each material contributes 

to the formation of (the spectral signature of) the pixel. [7] 

The approach allows for a quantitative analysis of the materials met in the image. 

The present study focuses on a geological application on a small island, called Koutala 

(Lavrio, Attiki, Greece), utilizing multispectral Sentinel-2 and WorldView-3 VNIR (Visible 

– Near Infrared) remote sensing data. The aim of this study is to investigate the capability 

of such data (a) to identify/discriminate granitoid intrusions and schist formations on the 

island and (b) to map related hydrothermal alteration minerals distributed on the surface 

of the island, using clustering and spectral unmixing methods respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data 
 

 

K. Tsamkosoglou                                                                                                                                                                                  16 
  

 

2. Materials 
 

In this chapter, the study area for our application is first introduced. Then, some general 

information about the nature of the Sentinel-2 and WorldView-3 VNIR data utilized in this 

study is provided. In parallel, the Sentinel-2 and WolrdView-3 VNIR images depicting the 

Koutala islet are also given. 

 

 2.1 Study area 

The islet of “Koutala” is located about 5 km NNE of the city of Lavrion (Fig. 1). The islet 

has a form of a rocky promontory, forming a characteristic tombolo feature with the 

mainland (in coastal geomorphologic terms). Its size is about 240 m in E-W by 40- 60 m 

in the N-S direction. [1] 

 

 
Figure 1: Location of the study area: (a) Lavrion area in Attica (Greece) (red rectangle); (b) Koutala 

islet in Lavrion area (yellow rectangle). Background image from Google Earth. (Source: [1]). 
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2.2 Satellite Data 

A multispectral image comprises several image layers captured from the same scene, 

with each layer acquired within a specific wavelength band. [8] 

In this study Sentinel-2 and WorldView-3 VNIR data were used. Table 1 presents the 

spectral characteristics of the two sensors.  

 

Sentinel-2 Worldview-3 VNIR 

Band 

(Sb) 

Centre 

(nm) 

Width 

(nm) 

Res. 

(m) 

Band 

(Wb) 

Centre 

(nm) 

Width 

(nm) 

Res. 

(m) 

1 443 20 10 1 425 50 1.33 

2 490 65 10 2 480 60 1.33 

3 560 35 10 3 545 70 1.33 

    4 605 40 1.33 

4 665 30 10 5 660 60 1.33 

5 705 15 10     

6 740 15 10 6 725 40 1.33 

7 783 20 10     

8 842 115 10 7 832 125 1.33 

8A 865 20 10     

9 940 20 10 8 950 180 1.33 

11 1610 90 10     

12 2190 180 10     

Table 1: Spectral characteristics of Sentinel-2 and WorldView-3 VNIR data. For each spectral band, 
its center, width and resolution are provided. 

 

 

2.2.1 Sentinel-2 

Sentinel-2 mission provides high-resolution, multi-spectral imaging with a wide swath. It 

is designed to support Copernicus Land Monitoring initiatives, encompassing the 

assessment of vegetation, soil, and water coverage, in addition to the observation of 

inland waterways and coastal regions. The Sentinel-2 MultiSpectral Instrument (MSI) 

captures information in 13 spectral bands, from which four bands have a 10-meter spatial 

resolution, six bands have a 20-meter spatial resolution, and three bands have a 60-meter 
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spatial resolution. [9] 

The image that we used in our study is a Sentinel-2 Level 2A (atmospherically corrected) 

image with 12 bands (dimensions) resampled to 10m acquired on 19 July 2022 (Fig. 2) 

The image was subset to the area of interest with totally 832 pixels, while the pixels 

corresponding to the sea were masked. (Fig. 3). The number of unmasked pixels is 144 

in total, and further processing is exclusively focused on them. 

 

 
Figure 2: True color composite of the Sentinel-2 image of the study area. 
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Figure 3: Masked, subset pseudo-color composition of the Sentinel-2 subset image of the 

Koutala islet. Bands 2,3,4 were used to construct the pseudo color composition 
respectively. 

 
 

2.2.2 WorldView-3 

WorldView-3, owned by DigitalGlobe, is a commercial Earth observation satellite. It offers 

various imaging capabilities, including panchromatic imagery with a resolution of 0.31 

meters (VNIR), eight-band multispectral imagery at 1.24 meters resolution (VNIR), 

shortwave infrared imagery at a resolution of 3.7 meters (SWIR), and provides CAVIS 

data (Clouds, Aerosols, Vapors, Ice, and Snow) at a resolution of 30 meters. [10] 

In our study, the image used has 8 spectral bands in the Visible-Near infrared region of 

the E/M spectrum (VNIR) and 1.33m spatial resolution, and was acquired on 15 January 

2022 (Fig.4). 

This image underwent atmospheric correction and then subset to our specific area of 

interest with a total of 20496 pixels. As in the case of the Sentinel-2 image, all the pixels 

representing the sea were appropriately masked and excluded from subsequent analysis. 

The remaining pixels were 6510 in total after the masking. (Fig.5) 
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Figure 4: True color composite of the WoldView-3 VNIR image used in this study. 

 
Figure 5: Masked, subset true color composition of the WorldView-3 VNIR image. Bands 

4,3,2 were used to construct the color composition, respectively. 
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3 Methods 
 

In this section the methods that were used in this study are described.  

 

3.1 The concept of the spectral signature 

An important concept in this type of applications is that of the spectral signature. A 

spectral signature (sometimes called pixel spectrum) refers to the fluctuation in 

reflectance exhibited by a material in different (consecutive) wavelengths. It essentially 

represents the reflectance variation as a function of wavelength [11] (Fig.6). Usually, it is 

depicted as a continuous line connecting consecutive band reflectance values. 

 
Figure 6: A pixel spectral signature example: black crosses correspond to the wavelength (x axis) 

and the corresponding reflectance value (y axis) of a Sentinel-2A image. 

 
 

3.2 Continuum removal on reflectance spectra 

The continuum removal method is a technique that standardizes reflectance spectra, 

enabling the comparison of individual absorption features from a consistent baseline. In 

this process, the initial and final spectral data values are set to 1.0, ensuring that the first 

and last bands in the resultant continuum-removed spectrum have this standardized 

value. 

More specifically, for each image pixel, its continuum is removed by dividing the original 

spectrum with the continuum curve: 
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𝑆𝑐𝑟 =
𝑆

𝐶
 

where: 𝑆𝑐𝑟 = Continuum-removed spectrum, 𝑆 = Original spectrum, 𝐶 = Continuum curve 

(Fig. 7) [12] 

 

 
Figure 7: Reflectance spectrum with the continuum and the continuum-removed spectrum 

(Source: [12]). 

 

In our case 1 − 𝑆𝑐𝑟, values are used so the first band and the last band have value zero. 

 
 

3.3 Spectral signature derivative calculation 

The derivative of a spectral signature is a vector that represents the rate of change of the 

reflectance value from one band to its next one. This can help us to recognize the rate of 

change of the reflectance values within a spectral signature. Among the various 

approaches that can be used to arithmetically approximate the derivative, in this work the 

derivative of an 𝑛-dimensional spectral signature vector �⃗� = (𝑥1, 𝑥2, . . , 𝑥𝑛) is approximated 

by the (𝑛 − 1) dimensional vector (Fig.8) : 

�⃗⃗� = (𝑥2 - 𝑥1, .. 𝑥𝑛 - 𝑥𝑛−1)  
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Figure 8 : Derivative of a Sentinel-2 spectral pixel. On left side of the figure a continuum 
removed spectral pixel (𝟏 − 𝑺𝒄𝒓  ) is shown and on the right side the respected derivative of 
this spectral pixel. On x-axis the number of band and on y-axis the respected reflectance 

value are presented. 

 
 

3.4 Fréchet distance between curves 

In the field of mathematics, the Fréchet distance is a metric for assessing the likeness 

between curves, considering both the arrangement and sequence of points along these 

curves. This distance metric is named in honor of Maurice Fréchet. An intuitive definition 

of the Fréchet distance is the following: An individual walks along a finite curved route, 

accompanied by their leashed dog, which follows a distinct finite curved path. Both the 

person and the dog can adjust their speeds to maintain some slack in the leash, but 

neither can reverse direction. The Fréchet distance between these two curves quantifies 

the length of the shortest leash necessary for both the person and the dog to complete 

their respective paths from beginning to end. It is important to note that this definition 

remains symmetric regardless of whether the dog is leading or following its owner.  

The discrete Fréchet distance, sometimes referred to as the coupling distance, serves as 

an approximation of the Fréchet metric but is specifically tailored for polygonal curves. In 

the context of the discrete Fréchet distance, only the positions of the leash matter when 

its endpoints are positioned at the vertices of the two polygonal curves, never within the 

interior of an edge. This unique characteristic enables the computation of the discrete 

Fréchet distance using a straightforward dynamic programming algorithm, making it 

possible to calculate it in polynomial time.  [13] 

To visualize this concept figure 9 displays two polygonal curves, namely [𝑎1, 𝑎2, 𝑎3] and 

[𝑏1, 𝑏2]. We can identify two possible couplings between these curves: 
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[𝑏1 𝑎1, 𝑏2 𝑎2, 𝑏2 𝑎3] and [𝑏1 𝑎1, 𝑏1 𝑎2, 𝑏2 𝑎3]. It's important to note that these couplings 

must adhere to the requirement that the endpoints of both polygonal curves coincide, 

respecting the order of the points and preventing backward movement. 

The discrete Fréchet distance is determined by selecting the smallest of the maximum 

pairwise distances within these couplings. In the provided example, the maximum 

distance found in both couplings occurs at 𝑏2 𝑎3, which is equal to two units. 

Consequently, the minimum of these two maximum distances is also two units. [14] 

 

 
Figure 9: Example of discrete Fréchet distance. 

 
 

3.5 Clustering algorithms 

As it has been also stated in the introduction, the aim of a clustering algorithm is to assign 

more similar data vectors to the same group and less similar data vectors to different 

groups (in terms of a predetermined proximity measure). Clustering algorithms can be 

roughly categorized as either hierarchical or partitional. In hierarchical algorithms, clusters 

are built step by step, building upon previously formed clusters. On the other hand, 

partitional algorithms produce a single clustering for the data set of interest and (most of 

them) are less computationally demanding, compared to the hierarchical algorithms. 

 

3.5.1 Partitional Algorithm - K-means 

A celebrated paradigm of partitional algorithms that is used very often in practice 

(although its age exceeds the six decades) is the K-means algorithm. This algorithm 

represents each cluster with a representative vector (also called, representative, or 
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center, or centroid of the cluster) and its aim is to place each such representative to a 

region that is dense in data. Then, it assigns each data point to the cluster whose center, 

is closest to it, in terms of the squared Euclidean distance measure. It turns out that the 

centroid represents the average position of all the data points within the cluster. This 

means that for each dimension, the centroid's coordinates are calculated as the arithmetic 

mean of all the corresponding coordinates of the points in the cluster. The algorithm is 

described below: 

Let 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑛)  be the set of data points and 𝑉 = (𝑣1, 𝑣2, … 𝑣𝑐) be the set of centers. 

• Initialize randomly the 𝑐 cluster centers. 

• (A) Compute the distances of each data point from all the cluster centers. 

• Assign each data point 𝒙𝑖 to the cluster 𝐶𝑗 whose center is closest to 𝒙𝑖 . 

• Reestimate the cluster center 𝑣𝑗 of each cluster 𝐶𝑗 using the formula: 

𝑣𝑗 =
1

𝑛𝑗
∑ 𝑥𝑖

𝒙𝑖∈𝐶𝑗

 

where, 𝑛𝑗 is the number of data points in cluster 𝐶𝑗. 

• Repeat from step (A), until no data point is reassigned to a different cluster. [6] 

 
 
 

3.5.2 Hierarchical Algorithms 

The hierarchical algorithms, produce sequentially a hierarchy of clusterings. They are 

further divided into agglomerative and divisive clustering algorithms. 

Agglomerative clustering algorithms: In the case, the initial clustering consists of 𝑁 

clusters (each one containing a single data point) and the algorithm proceeds in the 

definition of the next clusterings, by merging at each level of the hierarchy the two most 

similar clusters, until the final clustering consisting of a single cluster (the whole dataset) 

is reached. 
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In more detail, the agglomerative hierarchal algorithms have the following steps:  

1. Initialization: The initial clustering (0-th clustering level) consist of 𝑁 clusters, each 

one containing a single data vector. 

(A) At the 𝑡-th clustering level: 

2. Pairwise Distance Calculation: Compute the distance between all pairs of 

clusters. This often involves the use of distance metrics like Euclidean distance or 

Manhattan distance, or another distance metric. 

3. Merging the Closest Clusters: Identify the two clusters that are closest to each 

other and merge them into a single cluster. 

4. Updating the Distance Matrix: After the merging, update the distance matrix2 to 

include the distances between the newly formed cluster and each one of the 

remaining clusters. The method for updating distances depends on the chosen 

linkage criterion, such as single linkage, complete linkage, or average linkage that 

are described in detail below.  

5. Iteration: Go to (A), until a predetermined stopping condition is met. This condition 

can involve achieving a specified number of clusters, reaching a distance threshold 

beyond which clusters are not merged, or another criterion tailored to the problem 

under study. 

6. Output: The result of agglomerative clustering is typically represented as a 

dendrogram, a tree-like structure illustrating the sequence of cluster mergers 

(Fig.10). To obtain the desired number of clusters, one should cut the dendrogram 

at an appropriate level.  

 

 

 

 
2 The matrix that contains the distances of all pairs of clusters. 
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Figure 10: Example of a dendrogram. On the left side, the dataset is displayed. On the right side, 
the dendrogram is depicted along with the corresponding distances. The dendrogram is cut when 

the distance reaches 9.1, resulting in the formation of two clusters. 

 

Divisive hierarchical clustering: Αlgorithms of this kind proceed in the opposite way 

compared to the agglomerative ones. They start with the single cluster clustering and 

proceed by dividing at each level the cluster with the smallest internal coherence.  

 

The divisive hierarchal algorithms have the following steps: 

1. Initialization: The initial clustering (0-th clustering level) consist of a single cluster, 

which is actually the whole data set. 

(A) At the 𝑡-th clustering level: 

2. Pairwise Distance Calculation: For each cluster, determine its partition to two 

sub-clusters, so that these sub-clusters to have the maximum possible dissimilarity 

(or minimum possible similarity). 

3. Cluster Splitting: Among all the clusters at the current clustering level, select the 

one whose associated two sub-clusters exhibit the maximum possible dissimilarity 

and replace it with its two subclsuters. Thus, the resulting clustering has now one 

cluster more than the previous clustering. 
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4. Iteration: Go to (A), until a predetermined stopping condition is met. This condition 

can involve achieving a specified number of clusters, reaching a distance threshold 

beyond which clusters are not merged, or another criterion tailored to your 

problem. 

In hierarchical algorithms, a pivotal concept lies in determining how to calculate the 

distance between clusters as the algorithm progresses. Various methods have been 

devised to address this issue, with the most prevalent types being: 

 

• Maximum or complete linkage clustering: The algorithm calculates all 

dissimilarities between each element in cluster 1 and every element in cluster 2, 

selecting the highest value (i.e., maximum) from these dissimilarities to represent 

the distance between the two clusters. This approach often leads to the formation 

of more compact clusters. 

• Minimum or single linkage clustering: The algorithm calculates all pairwise 

dissimilarities between the elements in cluster 1 and those in cluster 2, choosing 

the smallest dissimilarity as the linkage criterion. This method often results in the 

formation of elongated, less compact clusters. 

• Mean or average linkage clustering: The algorithm computes dissimilarities 

between all pairs of elements in cluster 1 and cluster 2, using the average of these 

dissimilarities as the measure of distance between the two clusters. 

• Centroid linkage clustering: It calculates the dissimilarity between the centroid 

of cluster 1 and the centroid of cluster 2. 

• Ward’s minimum variance method: It aims to minimize the increase in variance 

within the newly formed cluster when two clusters are merged. This method is 

known for producing relatively balanced and compact clusters. [6] 
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3.6 Unmixing spectral signature algorithms 

In both multispectral and hyperspectral imagery, the spectral signature of a single pixel 

usually corresponds to a mixture of reflectance spectra from multiple materials 

(endmembers), with the mixture coefficients (each one associated with a material) 

indicating the relative contribution of each constituent material to the formation of the pixel 

spectral signature. These coefficients offer insight into the abundances of the composing 

materials within the pixel. 

 

3.6.1 Linear unmixing 

The linear unmxing is based on the assumption that each mixed pixel is expressed as a 

linear combination of 𝑛 endmembers weighted by their corresponding abundances. A 

spectral image of 𝑘 pixels and 𝑏 bands can be represented as a 𝑏 × 𝑘 matrix, whose 

columns are the spectral signatures of the pixels (the rows corresponding to the spectral 

bands), that is: 

𝑌 = (𝑦1, 𝑦2, … 𝑦𝑘)  ∈ 𝑅𝑏×𝑘 

Then (according to the linear mixing hypothesis) 

𝑌 = 𝛩 ∙ 𝑊 + 𝐸 

where 𝛩 is a 𝑏 × 𝑛 matrix whose columns are the spectral signatures of the 𝑛 materials,  

𝑊 = (𝑤1, 𝑤2, … 𝑤𝑛) is a 𝑛 × 𝑘 matrix, whose 𝑗-th row is the abundance vector associated 

with the 𝑗-th pixel and E is a 𝑏 × 𝑘 matrix which represents the noise. 

Linear unmixing typically involves three primary stages: first, estimating the number of 

endmembers; second, extracting the spectral signatures of these endmembers; and 

finally, estimating the abundances of these endmembers within each pixel (Fig.11) [15]. 

 
 
 
 



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data 
 

 

K. Tsamkosoglou                                                                                                                                                                                  30 
  

 

 

Figure 11: Linear unmixing method visualization. This method can be applied to both 
multispectral and hyperspectral data. 

 
 

3.6.2 Nonlinear unmixing 

The linear mixture model has demonstrated very good performance in situations where 

the Earth's surface exhibits extensive, well-defined regions with distinct endmembers. 

However, its effectiveness diminishes in scenarios characterized by intricate geometric 

structures and/or intimate mixtures. In such cases, incident light rays can interact with 

multiple pure materials within a pixel before reaching the sensor, resulting in reflectance 

spectra that are highly non-linear mixtures of the individual endmember reflectances. In 

such cases, the linear mixing hypothesis is not valid, and one should resort to nonlinear 

models. [16] 
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4. Methodology 

 

In our geological application, we considered two distinct problems. 

The first one has to do with the identification of homogeneous regions on the island 

(granitoid intrusions and schist formations). This problem has been tackled via a novel 

clustering approach to group the pixels associated to the island into clusters based on 

common pixel spectral signature characteristics. 

The second problem has to do with the. In this case the linear spectral unmixing approach 

has been utilized. 

 
 

4.1 Clustering 

In our study, a novel clustering methodology has been developed, tailored to the 

specificity of the problem under consideration. In particular, the Sentinel-2 dataset 

consists of mixed pixel spectral signatures in a small area combined with significant 

spatial heterogeneity. Moreover, traditional clustering algorithms treat the pixel spectral 

signature as a whole and do not focus exclusively on specific spectral characteristics 

within the signature (e.g. absorptions) that are indicative of the presence of a specific 

material. In the sequel, a new methodology is presented, where the pixel spectral 

signatures are transformed, in order to better highlight the differences between different 

materials. 

The algorithm comprises a two-step clustering procedure. First, a sequential algorithm is 

employed to cluster the pixels into  𝑐′ groups based on their spectral derivatives. The 

resulting clustering by this algorithm is next fed to the second algorithm, which is of 

hierarchical nature. As is well known, the latter algorithm (as all hierarchical clustering 

algorithms) requires the calculation of the distances between any pair of clusters, 𝐶𝑞 ,  𝐶𝑟 

resulted from the sequential algorithm. To this end, the 𝑙1 distances among the spectral 

derivatives of all possible pairs of pixels (𝑝𝑖𝑥𝑒𝑙𝑖, 𝑝𝑖𝑥𝑒𝑙𝑠), 𝑑1(𝑝𝑖𝑥𝑒𝑙𝑖, 𝑝𝑖𝑥𝑒𝑙𝑠), with 𝑝𝑖𝑥𝑒𝑙𝑖 ∈ 𝐶𝑞 

and 𝑝𝑖𝑥𝑒𝑙𝑠 ∈ 𝐶𝑟 are calculated and the maximum of them defines the dissimilarity between 

𝐶𝑞 ,  𝐶𝑟. The produced 𝑐′ × 𝑐′ (symmetric) distance matrix (whose (𝑞, 𝑟) element is the 

distance between the clusters 𝐶𝑞 and  𝐶𝑟) is fed to a hierarchical algorithm, along with the 



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data 
 

 

K. Tsamkosoglou                                                                                                                                                                                  32 
  

 

desired number of final clusters, 𝑐. In our implementation the Ward algorithm has been 

used. Due to the two-step clustering approach in the algorithm, we called the algorithm 

Sequential Hierarchical Clustering (SHC) (see its flowchart in Fig.12) 

 
 

 
Figure 12: Flow chart of the SHC algorithm. 

 

In the sequel, the proposed clustering methodology is described in detail. 
 

4.1.1 Sequential clustering 

The sequential clustering step of the SHC methodology takes a matrix 𝐴 of size 𝑏 × 𝑛 as 

input, where 𝑛 is the number of pixel spectral signatures of the pixels, and 𝑏 is the number 

of bands characterizing each pixel spectral signature �⃗⃗�𝑘 = [𝑥1, … , 𝑥𝑏]𝑇. 

𝐴 = [

𝑥1,1 , 𝑥1,2, . . , 𝑥1,𝑛 
…

𝑥𝑏,1, 𝑥𝑏,2, . . , 𝑥𝑏,𝑛 
] 

In this study 𝑛 is the number of the unmasked pixels. 

The first step in the SHC algorithm is to create the derivative matrix 𝐷 of size (𝑏 − 1) × (𝑛) 

from the 𝐴 matrix. To create the derivative matrix, we approximate the derivative of each 

spectral pixel vector �⃗⃗�𝑘 as the vector containing the differences between the values of 
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consecutive spectral bands. This, gives raise to the following derivative matrix: 

𝐷 = [

𝑥2,1 − 𝑥1,1 ⋯ 𝑥2,𝑛 − 𝑥1,𝑛

⋮ ⋮ ⋮
𝑥𝑏,1 − 𝑥𝑏−1,1 ⋯ 𝑥𝑏,𝑛 − 𝑥𝑏−1,𝑛

]  

After the calculation of the derivative matrix, the clustering process starts. The first vector 

from the derivative array is assigned to the first cluster. Each next point is assigned to 

one of the currently formed clusters, say 𝐶𝑗, if it has the same form of derivative with one 

of points belonging to 𝐶𝑗, otherwise a new formed cluster is created. The procedure 

continues sequentially for all the remaining points. 

 
 

SHC Algorithm step-1 Sequential clustering 

1: 𝑚 = 1 number of clusters 
2: Assign the first point to the cluster 𝐶𝑚 = { 𝑥⃗⃗⃗⃗ 1} 
3: for 𝑖 =  2, . . . 𝑁 . . . do 

4:  for 𝑗 =  1, . . . 𝑚 . . . do 

5:  if �⃗⃗�𝑖 has the same spectral form with a  �⃗⃗⃗⃗�𝑘: ∈ 𝐶𝑗 then 

6:    𝐶𝑗:  = 𝐶𝑗 ∪ {�⃗⃗�𝑖} 

7:    break 
8:   Else 
9:    if 𝑗 = 𝑚 then 

             10     𝑚 =  𝑚 + 1 

             11:     𝐶𝑚 = {�⃗⃗�𝑖} 
             12:    end if     
             13:   end if 

            14:    end for 
             15:end for 

 

 

To compare the spectral form between two spectral pixels �⃗⃗�𝑖, �⃗⃗�𝑗 we utilize their spectral 

derivatives 𝐷𝑖 = [𝐷𝑖1, … , 𝐷𝑖,𝑏−1]
𝑇
, 𝐷𝑗 = [𝐷𝑗1, … , 𝐷𝑗,𝑏−1]

𝑇
. 

The vectors �⃗⃗�i and �⃗⃗�j are considered spectrally similar if the respective values of 

Dik and Djk are of the same sign, for 𝑘 = 1, … , 𝑏 − 1. However, apart from the sign 

of Dik and Djk, their size should also be taken into account, since differences 

between near zero values are not considered as indication of dissimilarity. In the 

light of this observation, we consider that we have similarity in the following cases:  

• Both Dik and Djk have the same sign and their sizes, |Dik| and |Djk|, are “large” 
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(greater than a user-defined threshold, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1). 

• Both Dik and Djk have the same sign, their sizes, |Dik| and |Djk|, are “small” 

(less than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1) and their 𝑙1 distance is “small” (less than a user-defined 

threshold, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2). 

• The size of both Dik and Djk is “small” (less than a user-defined threshold, 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3). 

If any other case occurs for any pair Dik and Djk, 𝑘 = 1, … , 𝑏 − 1, we consider that 

�⃗⃗�i and �⃗⃗�j are spectrally dissimilar. 

Increasing the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 in the SHC algorithm results in more clusters, while 

increasing the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2 and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 results in fewer clusters. 

The above rationale is summarized to the next pseudocode algorithm. 

 
 

 

 SHC Algorithm step-1 Spectral form similarity 

1:  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑡𝑟𝑢𝑒 

2:    for 𝑘 =  1, . . . 𝑏 − 1 . .. do 
3: if ( 𝐷𝑖𝑘  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 and 𝐷𝑗𝑘 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1) 

4:           or (𝐷𝑖𝑘 < −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1  
5:   and 𝐷𝑗𝑘  <  −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1) then 

6:  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∧  𝑡𝑟𝑢𝑒 
7: Else if (0 < 𝐷𝑖𝑘 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 and 0 < 𝐷𝑗𝑘  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 and 

8:                       𝑑1(𝐷𝑖𝑘, 𝐷𝑗𝑘)  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2) 

9:             or (−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 < 𝐷𝑖𝑘  <  0 and −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 < 𝐷𝑗𝑘  <  0 and 

10:                        𝑑1(𝐷𝑖𝑘, 𝐷𝑗𝑘) <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2) then 

11:  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∧  𝑡𝑟𝑢𝑒 
12:        Else if |𝐷𝑖𝑘| <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 and  |𝐷𝑗𝑘|  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 then 

13:  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∧  𝑡𝑟𝑢𝑒 
14:  Else 
15:   𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ∧  𝑓𝑎𝑙𝑠𝑒 
16: 
17: end if 
18: end for 
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4.1.2 Hierarchical clustering 

The hierarchical clustering component of the SHC algorithm takes as input the 𝑐′ clusters 

formed by the sequential algorithm, along with the labels of clusters to which each spectral 

signature belongs, and the desired final number of clusters, 𝑐. Each cluster, 𝐶𝑗, is 

represented as a matrix with dimensions 𝑏 × 𝑛𝑗, where 𝑛𝑗 is the number of pixels within 

𝐶𝑗, and 𝑏 is the number of bands. The cluster labels are represented by a 𝑛-dimensional 

vector, so that its i-th position containing the label of the cluster to which the data vector 

𝒙𝑖 belongs. 

The algorithm starts by calculating the distance matrix between the clusters taken as an 

input. To calculate the distance between two clusters, the algorithm utilizes the maximum 

𝑙1 distance of the derivative vectors between all pair of pixels belonging to the respective 

clusters (see Box below).  

 

 SHC Algorithm step-2 Distance between clusters 𝐶𝑗 and 𝐶𝑘, 𝑗, 𝑘 = 1, … , 𝑐′ 

1: Calculate the derivative 𝑏 × 𝑛𝑗  matrix 𝐷𝑗 (the derivative vectors of the pixels in 

clusters 𝐶𝑗 are in the columns of 𝐷𝑗).  

2: Calculate the derivative matrix 𝐷𝑘 with 𝑏 × 𝑛𝑘 dimensions (the derivative vectors 

of the pixels in clusters 𝐶𝑘 are in the columns of 𝐷𝑘).  

3: Initialize (𝑛𝑗 ∙ 𝑛𝑘)dimensional vector 𝑃 to zero 

4: 𝑚 =  1 
5: for 𝑖 =  1, . . . 𝑛𝑗  do 

6:  for 𝑠 =  1, . . . 𝑛𝑘 do 

7  distance =  0 
8  for 𝑟 =  1, . . . 𝑏 do 

9   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  + |𝐷𝑖𝑟 − 𝐷𝑠𝑟| 
10  end for 
11:  𝑃(𝑚)  =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
12:  𝑚 =  𝑚 + 1 
13: end for 
14: end for 

15: 𝑑(𝐶𝑗, 𝐶𝑘) = max 𝑃 
 

 

After constructing the distance matrix of size 𝑐′ × 𝑐′ (𝑐′ is the number of clusters resulted 

from the sequential algorithm), the SHC algorithm proceeds with the execution of a 

hierarchical algorithm taking into account the desired final number of clusters, 𝑐. Following 

the execution of the hierarchical algorithm, a 𝑐′- dimensional vector is returned as output 
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containing the new labels of clusters in which each cluster from the first clustering refers 

to (in total 𝑐 different cluster labels). The final step of the algorithm involves creating the 

final clustering of the points by combining the vector with the cluster labels from the first 

clustering (sequential algorithm) and the vector with the cluster labels from the second 

clustering (hierarchical algorithm) (see Box below). 

 

 SHC Algorithm step-2 Combine clusterings to create the final clustering 

1: Input: an 𝑛-dimensional vector 𝑆 (its 𝑖-th element is the cluster label of the cluster 
where the 𝑖-th data vector has been assigned from the sequential clustering). 
2: Input: A 𝑐′-dimensional vector 𝐻 where 𝑐′ is the number of clusters from the 
sequential clustering (its 𝑗-th element is the cluster label of the cluster where the 𝑗-
th cluster resulted from the sequential algorithm. The value of the cluster label has 
been assigned from the output of hierarchical algorithm and there are in total c 
different cluster labels) 
3: Initialize the 𝑛-dimensional vector 𝑃 to zero 

4: for 𝑖 =  1, . . . , 𝑐 do 
5:  Determine the positions j of H for which H(j) = i and accumulate their 

respective position indexes into a vector 𝐿  
6  for 𝑗 =  1, . . . , 𝑠𝑖𝑧𝑒(𝐿) do 

7:     Determine the positions 𝑞 of 𝑆 for which 𝑆(𝑞) = 𝐿(𝑗) and 
accumulate their respective position indexes into a vector 𝑊  

9:   for 𝑚 =  1, . . . , 𝑠𝑖𝑧𝑒(𝑊) do 
10:   𝑃(𝑊(𝑚)) = 𝑖    
11:   end for 
12:  end for 
13: end for 

 
  
 
 

4.2 Spectral Unmixing 

The second problem considered in this work, which has to do with the potential detection 

of alteration minerals, only established linear spectral unmixing methods were employed, 

to determine the mineral abundances in the pixels on the island.  

Spectral unmixing was exclusively performed on the Sentinel-2 dataset due to the 

presence of a greater number of spectral bands, including two shortwave (SWIR) bands 

(11, 12). In a future work the spectral unmixing can be investigated into the World-View-

3 dataset as well. 
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4.2.1 Endmembers definition 

The endmembers used were selected from the USGS spectral library resampled to the 

Sentinel-2 spectral bands. The minerals selected as endmembers are (i) muscovite, (ii) 

chlorite, (iii) goethite, and (iv) pyrochroite. This choice is based on prior research, which 

provides evidence of the presence of these minerals on the island [1]. The table below 

illustrates the (a) reflectance and (b) the continuum removed spectral signatures of the 

four endmembers that have been resampled to the Sentinel-2 spectral bands. 

 

Endmember Sentinel-2 spectra Sentinel-2 - continuum 

removed (1- Scr), spectra 
 

Muscovite 

  
Chlorite 

  
Goethite 
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Pyrochroite 

  
Table 2: Reflectance and corresponding continuum removed (1- Scr) spectral signatures of the 

mineral endmembers used in this study. 

 

 

4.2.2 Linear Unmixing methods 

Given that each pixel in spectral image y⃗⃗= [𝑥1, … , 𝑥𝑏]𝑇 can be described as  y⃗⃗⃗ = ∑ 𝑤𝑖
𝑝
𝑖=1  ∗

 �⃗⃗⃗�𝑖   where �⃗⃗⃗�𝑖 represents the 𝑖-th endmember, 𝑤𝑖 is the abundance of each endmember, 

𝑏 is the number of bands and 𝑝 is the number of the endmembers our objective is to 

calculate the abundance values 𝑤𝑖 for each pixel.  

Using the least squares cost function, we can model the problem using the formula where 

n is the number of the total pixels: 

𝐽 =  ∑(�⃗⃗⃗�
𝑖
 − ∑ 𝑤𝑗  ∗�⃗⃗⃗�𝑗

𝑝

𝑗=1

 )

𝑛

𝑖=1

 2 

where J should be minimized respect to the 𝑤𝑗, .. , 𝑤𝑝 for every �⃗⃗⃗�
𝑖
 

The solution of this problem can be expressed using matrices with the formula: 

W =  ( 𝛩𝛵 ∗  Θ) −1 𝛩𝛵 ∗  Υ 

where: 

• 𝛩 is a 𝑏 ×  𝑝 matrix containing all the θ endmembers vectors. 

• 𝑌 is 𝑏 ×  𝑛 matrix containing all the y pixel vectors. 

• 𝑊 is 𝑝 ×  𝑛 matrix containing the abundances values for each pixel. 

Due to the specific characteristics of the problem, the abundance values are expected to 

be greater or equal than zero, and their sum should equal 1. In the case of a least squares 

solution, any abundance values that turn out to be negative are typically modified to be 
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zero. This adjustment ensures that the abundance values remain non-negative, adhering 

to the constraints imposed by the problem's nature. 

By imposing constraints on the objective function 𝐽 to ensure that abundances sum to one 

and are non-negative, the problem can be solved effectively using iterative methods. 

More specifically, the interior-point optimization algorithm [17] of MATLAB function 

fmincon was used to solve the problem. 

Finally, to mitigate the risk of overfitting, the problem can also be addressed using Lasso 

regularization [18]. This regularization technique helps prevent overfitting by incorporating 

a penalty term into the optimization formula: 

𝐽 =  ∑(�⃗⃗⃗�
𝑖
 − ∑ 𝑤𝑗  ∗�⃗⃗⃗�𝑗

𝑝

𝑗=1

 )

𝑛

𝑖=1

 2  +  𝜆 ∑ |𝑤𝑗|

𝑝

𝑗=1

 

The problem was solved using the lasso MATLAB function and the selection of the 𝜆 

value was guided by the condition that the solution maintains abundance values greater 

or equal than zero while ensuring that the norm of the abundance values is maximized 

among various choices of 𝜆. This approach helps strike a balance between 

regularization to prevent overfitting and retaining physically meaningful abundance 

values during the spectral unmixing process. 

In the following table the methods used for the unmixing process are summarized. 

 

Method Constraint Abbreviation 

Least squares No constraint U-LS 

Least squares Non negativity constraint N-LS 

Least squares Sum to 1 constraint S-LS 

Least squares Non negativity constraint 
and Sum to 1 constraint 

NS-LS 

Lasso l1-norm LASSO 
Table 3: Overall methods used for the lineal spectral unmixing, along with their abbreviations. 
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5. Results 
 

In this chapter the results from the applied machine learning methods (clustering and 

spectral unmixing) on the two problems ((a) identification and mapping of granitoid 

intrusions and schist formations and (b) detection for alteration minerals in Koutala islet 

will be demonstrated. 

 

5.1 Identification of granitoid intrusions and schist formations (Clustering 
approach) 

In this section, the results generated by the SHC algorithm will be presented, 

encompassing both the reflectance and continuum-removed spectral cases. For 

benchmarking purposes, the results obtained from the K-means algorithm and the 

hierarchical complete link algorithm using the Fréchet distance as distance metric will also 

be demonstrated. Given the large volume of results, only a subset of the results will be 

presented and highlighted. 

 

5.1.1 Sentinel-2 dataset 

The SHC algorithm was executed with specific threshold values as follows: 

• For the reflectance spectra case, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2 were set to 

0.005, and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 was set to 0.002.3 

• In the continuum removal spectra case, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 was assigned a value of 

0.004, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 were set to 0.002. 

For both the reflectance and continuum removal spectra cases, the K-means algorithm 

was executed 1000 times, each time with different initial cluster center configurations. 

The best solution was selected by identifying the run that resulted in the minimum value 

of its associated cost function. The results are shown in table 4. 

 
 
 
 
 

 

 
3 Recall that these thresholds are in the part of the algorithm. 
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 Sentinel-2 spectra Sentinel-2 - continuum removed (1- 
Scr), spectra 

K-means 

 
21 clusters 

 
25 clusters 

Hier-Fréchet 
 

 
26 clusters 

 
27 clusters 

SHC algorithm 
 
 
 
 
 

 
29 clusters 

 
28 clusters 

Table 4: A sample with the best clustering results for the Sentinel-2 dataset. The numbers 
at each pixel represent the corresponding cluster label from the output each algorithm. 

 

5.1.2 WorldView-3 VNIR dataset 

All the algorithms in the WorldView-3 VNIR dataset were run only for the reflectance 

spectra since the results from the clustering methods seems to recognize the granitoid 

clusters (as discussed in the following chapter) without the need of the continuum-

removed procedure. 

The SCH algorithm was executed using 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_2 values equal to 0.04 

and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_3 value equal to 0.002.  
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The K-means algorithm was executed 100 times for this dataset, primarily due to the 

increased time complexity resulting from the large number of pixels involved in this case. 

The relative results are shown in table 5. 

 

 WorldView-3 VNIR 

K-means 

 
8 clusters 

Hier-Fréchet 
 

 
8 clusters 

SHC algorithm 
 
 
 
 
 
 

 
8 clusters 

Table 5: A sample with the best clustering results for the WorldView-3 VNIR case. 
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5.2 Detection for alteration minerals (Spectral unmixing approach) 

In this section the results of all the spectral unmixing methods that mentioned in the table 

3, are demonstrated. However, the focus will be primarily on the results obtained from 

these algorithms when applied on the Sentinel-2 dataset. This emphasis to the Sentinel-

2 dataset is due to the larger number of spectral bands and their positioning in the spectral 

spectrum, compared to the WorldView-3 VNIR dataset. 

In future research the spectral unmixing in the WorldView-3 VNIR data could also be 

examined as well. 

 

5.2.1 Sentinel-2 dataset 
 

 Muscovite Chlorite Goethite Pyrochroite 
U-LS 

 
Values range 0 - 0.6 

 
Values range 0 - 2 

 
Values range 0 - 0.9 

 
Values range 0 - 0 

LASS
O 

 
Values range 0 - 0 

 
Values range 0 - 0 

 
Values range 0 - 0.16 

 
Values range 0 - 0 

NS-LS 

 
Values range 0 – 0.6 

 
Values range 0 – 0.25 

 
Values range 0 - 0.45  

Values range 0 - 45 
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S-LS 

 
Values range 0 – 0.6 

 
Values range 0 – 0.35 

 
Values range 0 – 0.9 

 
Values range 0 – 2 

N-LS 

 
Values range 0 – 0.9 

 
Values range 0 – 0.5 

 
Values range 0 – 1  

Values range 0 – 0.9 
Table 6: Spectral unmixing results for the Sentinel-2 reflectance image. The abundance value for 

each pixel is represented with a color ranging from light blue (low abundance value) to yellow 
(high abundance value). Pixels in dark blue correspond to zero abundances. The number at each 

pixel corresponds to the corresponding cluster label from the output of the SHC algorithm. 

 

 Muscovite Chlorite Goethite Pyrochroite 
U-LS 

 
Values range 0 – 9 

 
Values range 0 – 0.6 

 
Values range 0 – 0.6 

 
Values range 0 – 3.5 

LASSO 

 
Values range 0 – 2 

 
Values range 0 – 0.4  

Values range 0 – 0.6 
 

Values range 0 – 2.5 
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NS-LS 

 
Values range 0 – 0.9 

 
Values range 0 – 0.08 

 
Values range 0 – 4 x 10-6 

 
Values range 0 – 3.5 x 10-6 

S-LS 

 
Values range 0 – 4 

 
Values range 0 – 0.9 

 
Values range 0 – 0.3 

 
Values range 0 – 1.4 

N-LS 

 
Values range 0 – 10 

 
Values range 0 – 2 

 
Values range 0 – 0.15 

 
Values range 0 – 0.25 

Table 7: Spectral unmixing results for the Sentinel-2 continuum removed image (1- Scr).  with a color ranging 
from light blue (low abundance value) to yellow (high abundance value). Pixels in dark blue correspond to 

zero abundances. The number at each pixel corresponds to the corresponding cluster label from the output 
of the SHC algorithm. 
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6. Discussion 
 

In this section, the results derived from the machine learning methods applied on the 

Sentinel-2 and WorldView-3 VNIR datasets depicting the Koutala island will be discussed 

and analyzed. 

 
 

6.1 Identification of granitoid and schist formations (Clustering approach) 

To validate the results of the clustering for this problem, external information from 

previous research is utilized [1]. This additional information is crucial for assessing the 

accuracy and relevance of the clustering outcomes. The island contains granitoid 

intrusions in two separate areas, and it's expected that pixels within each of these 

locations should ideally belong to the same cluster. (Fig.13) However, due to the 

significant heterogeneity within the granitoid areas, it is possible for pixels in these regions 

to be clustered into different groups. This heterogeneity can pose a challenge for the 

clustering process.  

 
 

 
Figure 13: Google Earth high resolution image of the island. With the red rectangles the 

distinct locations of the granitoids are shown. 
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6.1.1 Sentinel-2 dataset 

To validate the obtained clustering results using the Sentinel-2 image, the related RGB 

image (Fig.3) is superimposed to match the Google Earth imagery, and the pixels 

corresponding to the locations of granitoid intrusion are extracted. The red rectangles in 

the RGB image shown in figure 14, are used to indicate the actual locations of the pixels 

in the Sentinel-2 image, helping to establish the correspondence between the two images. 

 

 
Figure 14: RGB-image (produced by the Sentinel-2 image) georeferenced to match the 
Google earth image. With the red rectangles the granitoid locations are depicted in the 

Sentinel-2 image. Slight displacements between the background image and the Sentinel-2 
image are due to differences in the georeferenced systems and to the very high difference 

between the spatial resolution between the Sentinel-2 and Google Earth image.  

 

The granitoid pixels in the Sentinel-2 image are summarized in the following table: 

 

Left granitoid area Right granitoid area 

(14,10) (16,22) 

(14,11) (16,23) 

(14,12) (16,24) 

 (16,25) 

 (17,22) 

 (17,23) 



Lithological mapping of Koutala island (Lavrio, Attiki) using machine learning methods on multispectral data 
 

 

K. Tsamkosoglou                                                                                                                                                                                  48 
  

 

 (17,24) 

 (17,25) 

Table 8: Sentinel-2 image granitoid pixels locations. Each (row, column) position corresponds to a 
single pixel in the displayed image. For example, the position (14,10) corresponds to the pixel at 

row 14, column 10 in the image. 

 

The signatures of the granitoid pixels are demonstrated in the following table 9 both for 

the reflectance and continuum removal spectral values. The observation of common 

spectral characteristics within the pixels in the western granitoid area (whose spectral 

signatures are denoted with a red line in table 9) supports the expectation that they lie in 

the same cluster. On the other hand, the pixels in the eastern granitoid area (whose 

spectral signatures are denoted with a blue line in table 9) exhibit spectral variations, 

indicating the potential need for multiple distinct clusters to accurately represent the 

diversity within this region. 

 

Sentinel-2 spectra Sentinel-2 - continuum removed (1- Scr), 
spectra 

  
Table 9: Spectral signatures of granitoid pixels for both reflectance and continuum-

removed spectral values. The red lines represent the signatures of the granitoid pixels in 
the western area whereas the blue lines the signatures of the granitoid pixels in the 

eastern area of the island. Some pixels share the same signature so a line can represent 
one or more pixels.  

  

6.1.1.1 Reflectance spectra 

In this section, the results from the clustering in the reflectance spectra case will be 

discussed and analyzed. In order to validate the results, a table is provided for each 

clustering method, that includes the number of granitoid pixels and the number of the 

non- granitoid pixels at the clusters containing them. Additionally, a table is presented for 
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each clustering method, indicating the cluster label associated with each granitoid cluster. 

Finally, a table showing the spectral pixels for these cluster labels is demonstrated. These 

tables contribute to the comprehensive analysis and validation of the clustering outcomes.  

 
 

K-means 
 
 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

5 23 

2 7 

1 6 

3 4 
Table 10: K-means - reflectance spectra - granitoid pixels vs non granitoid pixels at the clusters. 

 
 
 

Cluster label Granitoid pixels in the cluster 

12 (14,10) (14,11) (14,12) (16,22) (16,23) 

21 (16,24) (16,25) 

7 (17,22) 

14 (17,23) (17,24) (17,25) 
Table 11: K-means - reflectance spectra - granitoid pixels positions at the clusters. 

 
 

Cluster label Signatures 

12 
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21 

 
7 

 
14 

 
Table 12: K-means - reflectance spectra – signatures of clusters containing granitoid pixels.  

Each distinct spectral signature within a cluster is represented by a unique color. 
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As we can see from tables 10, 11, 12 the K-means failed to isolate the granitoid pixels 

into separate clusters. The cluster 12 for example contains many spectral pixels that 

they don’t have similar spectral form especially in the band 8. The cluster 14 seems to 

have the most common spectral signatures among the other clusters. 

 
 

 
Hier-Fréchet 

 
 
 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

1 2 

4 7 

2 2 

1 8 

3 1 
Table 13: Hier-Fréchet – reflectance spectra - granitoid pixels vs non granitoid pixels at the 

clusters. 

 
 

Cluster label Granitoid pixels in the cluster 

7 (14,10)  

2 (14,11) (14,12) (16,22) (16,23) 

23 (16,24) (16,25) 

9 (17,22) 

11 (17,23) (17,24) (17,25) 
Table 14: Hier-Fréchet – reflectance spectra - granitoid pixels positions at the clusters. 

 

Cluster label Signatures 

7 
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2 

 
23 

 
9 
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11 

 
Table 15: Hier-Fréchet – reflectance spectra – signatures of clusters containing granitoid pixels. 

Each distinct spectral signature from the pixels is represented by a unique color. 

 

The results from the hierarchical complete link algorithm using as distance metric the 

Fréchet distance seem to be better than the K-means corresponding ones, since the 

pixels have more similar spectral signatures at the clusters formed. Another observation 

is that at clusters 7, 23 where the spectral patterns are similar in these clusters, the 

granitoid pixels are recognized together with non-granitoid pixels. This depicts the 

complexity of the problem since some non-granitoid pixels share the same spectral 

signature pattern with the granitoid pixels. In cluster 11, the granitoid pixels are more 

numerous compared to the non-granitoid pixels. However, it appears that the clustering 

results are not optimal, as clusters like the one labeled 2 or 9 consist of pixels with varying 

spectral patterns. This inconsistency suggests that the clustering method may not 

effectively capture the desired differentiations in the data. 

 

SHC algorithm 
 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

1 14 

2 5 

2 4 

2 2 

1 1 

3 5 
Table 16: SHC algorithm - reflectance spectra- granitoid pixels vs non granitoid pixels at the 

clusters. 
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Cluster label Granitoid pixels in the cluster 

25 (14,10)  

10 (14,11) (14,12) 

16 (16,22) (16,23) 

2 (16,24) (16,25) 

3 (17,22) 

12 (17,23) (17,24) (17,25) 
Table 17: SHC algorithm - reflectance spectra- granitoid pixels positions at the clusters. 

 
 
 
 

 

Cluster label Signatures 

25 

 
10 
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16 

 
2 

 
3 
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12 

 
Table 18: SHC algorithm - reflectance spectra- signatures of clusters containing granitoid pixels. 

Each distinct spectral signature within a cluster is represented by a unique color. 

 
 

Comparing visually the tables with the signatures of clusters containing granitoid pixels, 

the first observation from the clustering results of the SHC algorithm is that all formed 

clusters that contain granitoid pixels consist of pixels with more similar signatures, 

compared to the clusters produced by the previous methods. This is probably due to the 

fact that instead of using individual band reflectance values within the algorithm 

procedure, we use their derivatives at the two steps of the SHC algorithm. Two of the 

pixels of the western granitoid area (14,11) and (14,12) were grouped into the same 

cluster with some other non-granitoid pixels near to them (see table 4). The pixel (14,10) 

was grouped wrongly to another cluster. The clustering of eastern granitoid area resulted 

in smaller granitoid clusters, with some pixels within the same cluster located near each 

other in the granitoid area (cluster labels: 16, 2), while others are positioned farther away 

from the granitoid area (cluster labels: 12, 3) (see table 4). Despite these spatial 

variations, the spectral signatures within these clusters are quite similar, underscoring the 

complexity of the area, the possibility of more than one granitoid intrusions and the 

challenge of accurately clustering pixels in a granitoid area with Sentinel-2 data. 
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6.1.1.2 Continuum-removed spectra 
 
 

K-means 
 
 
 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

2 25 

4 10 

2 5 

3 2 
Table 19: K-means - continuum removed spectra - granitoid pixels vs non granitoid pixels at the 

clusters. 

 
 

Cluster label Granitoid pixels in the cluster 

11 (14,10) (17,22) 

19 (14,11) (14,12) (16,22) (16,23) 

14 (14,11) (14,12) (16,22) (16,23) 

8 (17,23) (17,24) (17,25) 
Table 20: K-means - continuum removed spectra - granitoid pixels positions at the clusters. 

 
 

Cluster label Signatures 

11 
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19 

 
14 

 
8 

 
Table 21: K-means – continuum removed spectra – signatures of clusters containing granitoid 

pixels. Each distinct spectral signature within a cluster is represented by a unique color. 
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Observing the signatures of clusters containing the granitoid pixels it is evident that the 

K-means algorithm again failed to distinct signatures with common patterns at the clusters 

and hence distinguish granitoid clusters. 

 

 
Hier-Fréchet 

 
 
 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

1 6 

2 7 

2 3 

2 5 

1 18 

3 0 
Table 22: Hier-Fréchet – continuum removed spectra - granitoid pixels vs non granitoid pixels at 

the clusters. 

 

Cluster label Granitoid pixels in the cluster 

6 (14,10)  

20 (14,11) (14,12) 

13 (16,22) (16,23) 

23 (16,24) (16,25) 

9 (17,22) 

1 (17,23) (17,24) (17,25) 
Table 23: Hier-Fréchet – continuum removed spectra - granitoid pixels positions at the clusters. 

 

Cluster label Signatures 

6 
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20 

 
13 

 
23 
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9 

 
1 

 
Table 24: Hier-Fréchet – continuum removed spectra – signatures of clusters containing granitoid 

pixels. Each distinct spectral signature within a cluster is represented by a unique color. 

 

 

It seems that the Hier-Fréchet algorithm demonstrates improved outcomes compared to 

K-means algorithm in terms of the similarity observed within the clusters when examining 

their spectral signatures. Nevertheless, it remains evident that the clusters do not exhibit 

identical signature patterns. For instance, in cluster label 1, despite the algorithm grouping 

pixels from the eastern granitoid area into a single cluster, these signatures do not share 

the same pattern. The explanation of potentially more than one granitoid intrusions is to 

be examined in the future. 
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SHC algorithm 
 

 

Number of granitoid pixels in the cluster Number of non- granitoid pixels in the cluster 

3 2 

2 6 

1 13 

1 1 

1 3 

2 7 

1 1 
Table 25: SHC algorithm - continuum removed spectra - granitoid pixels vs non granitoid pixels at 

the clusters. 

 
 

Cluster label Granitoid pixels in the cluster 

14 (14,10) (14,11) (14,12) 

13 (16,22) (16,23) 

2 (16,24) 

1 (16,25) 

3 (17,22) 

27 (17,23) (17,24) 

15 (17,25) 
Table 26: SHC algorithm - continuum removed spectra - granitoid pixels positions at the clusters. 

 
 

 

Cluster label Signatures 

14 
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13 

 
2 

 
1 
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3 

 
27 

 
15 

 
Table 27: SHC algorithm – continuum removed spectra- signatures of clusters containing 

granitoid pixels. Each distinct spectral signature within a cluster is represented by a unique color. 
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Like the reflectance spectra case the SHC algorithm seems to have the best results in 

returning clusters with common spectral signature patterns than the previous algorithms. 

The SHC algorithm was the only algorithm that was able to successfully distinguish the 

western granitoid area, even though some non-granitoid pixels were present, sharing a 

similar signature pattern. Compared with the reflectance case, this can be explained by 

the fact that the normalized reflectance values of these granitoid pixels share the same 

pattern, whereas in the reflectance data, they differ at band 1 (the first band and last band 

in the continuum removal procedure have 0 value). This explains why these pixels are 

within the same cluster from the output of the sequential algorithm (first step) where the 

shape of the spectral forms is compared. The appearance of the non-granitoid pixels into 

this cluster could happen due to the low spatial resolution Sentinel-2 data (10𝑚), which 

has as an effect the formation of a mixed common signature pattern for a large area 

(100𝑚2). Another observation is that all the pixels in cluster 2 exhibit the same signature 

pattern; however only one granitoid pixel belongs to the cluster. This reflects again the 

effect of the low spatial resolution into the clustering results. Finally, in some clusters 

(cluster labels: 1, 13, 15) the signatures differ only in one band, which could be explained 

by the fact that in the second step of the algorithm the pixels are clustered based on the 

sum of the absolute differences of all the corresponding coordinates of the derivative 

signatures between two pixels, which is minimal between these pixels. 
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6.1.2 WorldView-3 VNIR dataset 

Due to the significantly higher spatial resolution offered by the WorldView-3 VNIR image 

compared to the Sentinel-2 image, the validation of clusters is achieved primarily through 

visualization rather than pixel-by-pixel verification (Fig.15). To capture the signature 

patterns in the granitoid areas, a subset of pixels from these regions is utilized. This 

sample aids in capturing and analyzing the spectral patterns present in the granitoid areas 

within the higher-resolution WorldView-3 VNIR dataset. Lastly, a sample of pixels in non- 

granitoid areas is utilized as well to compare the signature patterns with the granitoid 

areas. (Fig.16) From figure 16, it is evident that the granitoid areas exhibit a similar 

signature pattern, with minor differences primarily observed in bands 6, 7, and 8. 

However, these small variations in bands 6,7 and 8 are small indicating that both granitoid 

areas share some common mineralogical compositions. Conversely, the non- granitoid 

pixels exhibit minimal variations across all bands, and, despite apparent similarities in 

signature patterns with the granitoid pixels across many bands, the noticeable differences 

in the reflectance values indicate a differentiation in their pattern. 

 

 
Figure 15: WorldView-3 VNIR masked RGB image where the red squares represent the 

granitoid areas. 
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Figure 16: Signatures of granitoid and non- granitoid pixels of the WorldView-3 VNIR 

image. The red lines represent the signatures of the granitoid pixels in the western area of 
the islet whereas the blue lines the signatures of the granitoid pixels in the eastern area. 
The green lines represent pixels in the center of the island where no granitoid intrusions 

were detected. 

 

 

From the information presented in table 5, all the algorithms successfully identified the 
granitoid area. Here below, some more specific observations are provided for each 
algorithm: 

• K-means algorithm: Associates the granitoid area with cluster label 7, along with 
some pixels located near the sea, possibly indicating some misclassifications or 
mixed pixels. 

• Hierarchical Hier-Fréchet-based algorithm: Associates the granitoid area with two 
separate clusters (cluster label 6, cluster label 7). This split of the area into two 
clusters is probably due to spectral variations within the granitoid area. 
Additionally, some pixels across the island were included in these clusters. 

• SHC algorithm: Provides a more accurate delineation of the granitoid area, 
compared with the previous algorithms, covering the entire area (cluster label 3). 
However, there are still some pixels across the island, which are grouped within 
the same cluster as the granitoid area because they share the same signature 
pattern with the granitoid pixels. 
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Cluster K-means Hier- Fréchet SHC 

Cluster 1 

 

Values range 
0 – 0.45 

 
Values range 

0.2 – 0.45 

 
Values range 

0 – 0.4 
Cluster 2 

 
Values range 

0 – 0.12 

 
Values range 

        0 – 0.45 

 
Values range 

0 – 0.4 
Cluster 3 

 
Values range 

0.03 – 0.3 

 
Values range 

        0 – 0.1 

 
Values range 

0 – 0.35 
(Granitoid) 

Cluster 4 

 
Values range 

0 – 0.25 

 
Values range 

0 – 0.2 

 
Values range 

0.2 – 0.55 
Cluster 5 

 
Values range 

0.1 – 0.4 

 
Values range 

0 – 0.4 

 
Values range 

0 – 0.45 
Cluster 6 

 
Values range 

0.25 – 0.55 

 
Values range 

0 – 0.35 
(Granitoid) 

 
Values range 

0 – 0.45 
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Cluster 7 

 
Values range 

0.03 – 0.35 
 (Granitoid) 

 
Values range 

0 – 0.3 
(Granitoid) 

 
Values range 

0 – 0.45 

Cluster 8 

 
Values range 

0 – 0.2 

 
Values range 

0.44 – 0.56 

 
Values range 

0 – 0.45 

Table 28: Signatures of clusters of all the algorithms in the WorldView-3 VNIR dataset. 

Comparing the signatures obtained from the clusters formed by the algorithms (table 28): 

• SHC algorithm: Shows the most consistent and common patterns across clusters, 

indicating a higher level of similarity among the signatures of pixels within each 

one of them. This suggests a better overall performance in capturing shared 

spectral patterns within clusters, due to the two step SHC algorithm and the fact 

that the derivatives of the spectral signatures of each pixel are utilized. 

• K-means algorithm: Exhibits good performance in preserving common patterns 

among clusters, but noticeable errors are evident in cluster 5, indicating some 

discrepancies or misclassification in this particular cluster. 

• Hierarchical Hier-Fréchet-based algorithm: Displays the least favorable 

performance among the algorithms in terms of signature patterns. In clusters like 

2, 5, and 6, the signatures do not exhibit the same pattern, indicating challenges 

or limitations in accurately delineating clusters based on spectral similarities. 

It is important to mention that the SHC algorithm was executed with a higher threshold 

value (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 set to 0.04) in order to achieve satisfactory results in the WorldView-

3 VNIR dataset. This adjustment from the significantly lower value threshold used in the 

Sentinel-2 dataset suggests that the choice of the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_1 plays a crucial role in 

effectively differentiating pixels into distinct clusters and it should be adjusted based on 

the distribution of the reflectance values on the corresponding dataset. 
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6.2 Detection for alteration minerals (Spectral unmixing approach) 

The spectral unmixing technique was used to correlate specific locations on the island 

with various minerals. To validate these findings, information from previous research 

regarding the distribution of each mineral across the island was employed. [1]. 

 

 
Table 29: Mineralogy of the lithologies present in the study area according to XRD analysis results on the four 

samples collected in the field.(Source: [1]). 

 
 

The observations from the provided information indicate the presence of muscovite 

(micas) across the entire island. Chlorite is widespread throughout the island except in 

the areas where schist contacts with granodiorites occur. Additionally, the minerals 

goethite and Mn-oxides (representing pyrochroite) are exclusively found at the 

boundaries where schist meets granodiorites. 

 

 

6.2.1 Reflectance spectra 

Relating the results obtained from various spectral unmixing methods with mineral 

presence, the following observations can be extracted: 

• The U-LS method accurately identified muscovite and chlorite across the entire 

island, although with some pixels being near the sea. However, it unexpectedly 

found goethite spread throughout the island rather than in contacts, which requires 
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further investigation. Pyrochroite was not detected despite its anticipated presence 

at the schist contacts with granodiorites. 

• The LASSO method failed to detect muscovite, chlorite, and pyrochroite, with only 

small amounts of goethite found, which is in partial agreement with [1]. 

• The NS-LS algorithm identified muscovite across the island and chlorite only on 

the west side. It also found goethite mainly in pixels near the sea, conflicting with 

the expected distribution. Finally, pyrochroite was detected across the entire 

island, contradicting prior research. 

• Both the S-LS and the N-LS methods yielded results like the NS-LS approach. 

Considering the previous research, the U-LS method provides the most plausible 

outcomes by correctly identifying muscovite and chlorite across the island. 

However, it failed to identify pyrochroite, possibly due to its small spatial 

appearance. The unexpected presence of goethite beyond the schist contacts with 

granodiorites warrants further investigation. 

 
 

6.2.2 Continuum-removed spectra 

In the continuum-removed spectra case, the results differ notably from the reflectance                 

spectra case across various algorithms: 

• The U-LS method identified muscovite across the entire island, but with higher 

abundance values compared to the reflectance case. However, as in the previous 

case some pixels near the sea are shown to contain muscovite. Chlorite is not 

detected on the island. Goethite and pyrochroite results seem reasonable, 

observed with low abundances near schist contacts and at smaller appearances 

elsewhere. 

• The LASSO method shows similar outcomes with the U-LS method, with 

differences observed in the abundance value of muscovite in each pixel. Moreover, 

fewer pixels containing pyrochroite were found compared to the U-LS method. 

• The NS-LS method identifies muscovite across the island. Small portions of 

chlorite are found on the west side, but with very low abundance values. The 

abundance values of goethite and pyrochroite are even smaller than chlorite in 
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pixels where these minerals are detected. 

• The S-LS method detects muscovite and chlorite across the entire island, whereas 

goethite is observed near the sea. Pyrochroite was found on east side but not at 

pixels near the eastern granitoid area as expected. On the west side of the island 

the pyrochroite was found in reasonable areas with the previous research but with 

higher abundance values than chlorite which contradicts the samples analysis in 

the previous research [1]. 

• The NS-LS method found muscovite and chlorite widely across the island with 

higher abundances than every other method. Muscovite and pyrochroite were 

found mostly at pixels near the sea but in very small abundances. 

Considering the continuum-removed case, the NS-LS method appears to provide the 

most reasonable results in terms of previous chemical analysis [1]. Muscovite and chlorite 

are found across the island as expected, although goethite and pyrochroite are identified 

with small portions at unexpected locations, necessitating further investigation. 

 

Considering the results obtained from both the reflectance and continuum removed 

cases, it is evident that none of the methods succeeds to accurately reproduce the 

expected results based on the previous research (table 28). A possible explanation of this 

problem is the low spatial and spectral resolution of the Sentinel-2 image for this type of 

studies, which poses challenges in accurately identifying these minerals. Additionally, the 

variations in results among the different methods further emphasize the complexity and 

difficulty of accurately resolving this problem with the available data and methods. 

However, it is important to mention that the minerals that exhibit high abundances in the 

island (muscovite, chlorite) are successfully identified by most of the algorithms. 
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7. Conclusion 
 
 

The aim of this study was (a) to identify granitoid and schist formations in it and (b) to 

detect alteration minerals on the island of Koutala using EO data. Two different datasets 

(Sentinel-2, WorldView-3 VNIR) on the Koutala island were utilized, with different spatial 

and spectral resolutions. Two different machine learning methods (clustering, spectral 

unmixing) were used to extract the results from the two datasets. Additionally, the 

continuum removal procedure was also applied to compare spectral patterns (e.g. 

absorptions) from a common baseline.  

Clustering was applied to both datasets to delineate regions with similar spectral 

signatures, aiming to identify granitoid intrusions and schist formations, as is referred on 

previous research insights [1] (aim (a)). A new novel clustering algorithm named SHC 

designed especially for spectral data was introduced due to the inability of common off-

the-shelf clustering algorithms (K-means, hierarchical methods) to provide accurate 

results. In general, the SHC algorithm yielded to better results than the other algorithms, 

based on visual comparisons of pixel spectral signature patterns of pixels within the 

clusters. This underlines the significance of spectral analysis using the derivative of a 

pixel within both two steps of SHC. The SHC algorithm was the only algorithm that was 

able to identify one out of the two granitoid areas into the Sentinel-2 dataset, while none 

of the algorithms accurately detected the granitoid clusters. The difficulty is probably due 

to the low spatial resolution of this dataset, which results to mixed pixel signatures. In the 

case of World-View-3 VNIR dataset, all the algorithms successfully identified the granitoid 

areas, highlighting the importance of high spatial resolution. However, the SHC algorithm 

identified more accurately the granitoid areas than the other algorithms when comparing 

the spectral signatures of pixels in the granitoid clusters. In general, the SHC algorithm 

exhibited more ”coherent” clusters compared with the clusters produced by other 

algorithms. 

Spectral unmixing was used to detect alteration minerals on Koutala island. It was applied 

exclusively on the Sentinel-2 dataset, given its larger number of spectral bands 

(compared to WorldView-3 VNIR dataset).  
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Various linear unmixing methods were employed for spectral unmixing by applying or not 

various constraints, such as the sum-to-one constraint, the non-negativity constraint, or 

other constraints (e.g., as in the Lasso case). The results indicated that despite the low 

spatial resolution of the Sentinel-2 dataset, the alteration minerals with high degree of 

appearance in the island (such as muscovite and chlorite) were identified quite accurately 

by most algorithms. This can be attributed to the fact that mixed signatures in a dataset 

with low spatial resolution are primarily influenced by minerals with high abundance. 

The most favorable outcomes were obtained from the U-LS method for the reflectance 

spectra case and the NS-LS method for the continuum-removed spectra case (1- Scr), as 

compared to the results of a previous chemical analysis conducted on the island [1].  

In future studies, the potential of spectral unmixing could be further examined in the 

WorldView-3 VNIR dataset, where clustering results using this dataset were more 

accurate due to higher spatial resolution compared with the Sentinel-2 corresponding 

one. Finally, it is worth investigating in the future the relations between the distribution of 

alteration minerals extracted from the unmixing procedure with the generated clusters 

from clustering. 
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8. Data and code availability 
 

The datasets and the related code are available at: 
https://github.com/kostsamko/clustering_koutala 
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