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ABSTRACT

This thesis implements support for mapping Kotlin source code elements to the corres-
ponding (Java) bytecode that is emitted from the Kotlin compiler. This is achieved via
a plug-in in the Kotlin compiler that intervenes during compilation and processes the in-
termediate representation (IR) to recover the bytecode produced in this phase in and its
relation to the source code elements. The results of this plugin can be used to present
results of bytecode static analysis over source code in an IDE.

SUBJECT AREA: Program analysis

KEYWORDS: static program analysis, intermediate representation, Kotlin compiler
plug-ins



ΠΕΡΙΛΗΨΗ

Αυτή η πτυχιακή υλοποιεί την αντιστοίχηση των αντικειμένων του πηγαίου κώδικα με το
αντίστοιχο (Java) bytecode που παράγεται από τον μεταγλωττιστή της Kotlin. Αυτό επι-
τυγχάνεται με τη δημιουργία ενός plugin για τον μεταγλωττιστή της Kotlin που επεμβαίνει
κατά τη μεταγλώττιση και επεξεργάζεται την ενδιάμεση αναπαράσταση (IR) για να ανακτή-
σει το bytecode που κατασκευάζεται και τη σχέση του με τα στοιχεία του πηγαίου κώδικα.
Τα αποτελέσματα αυτού του plugin μπορούν να χρησιμοποιηθούν για την παρουσίαση
των αποτελεσμάτων της στατικής ανάλυσης του bytecode πάνω από τον πηγαίο κώδικα
oλοκληρωμένο περιβάλλον ανάπτυξης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: στατική ανάλυση, ενδιάμεση αναπαράσταση, επεκτάσεις
μεταγλωττιστή Kotlin
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PREFACE

This thesis aims to access the Kotlin compiler tomaintain a source-to-bytecode correspondence
and report results that cannot be easily traced back to the source code in the form of
metadata. It was developed as my undergraduate thesis for the conclusion of my studies
at the Department of Informatics and Telecommunications of the University of Athens.
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1. INTRODUCTION

In computer science, static program analysis refers to the process of reasoning about the
behavior of computer programs solely based on their code, without executing them. This
approach stands in contrast to dynamic program analysis, which is conducted during the
program’s execution to observe its behavior.

Static program analysis [1] is typically conducted at the source code level, providing valu-
able insights into the behavior and structure of a program. However, a significant chal-
lenge arises when access to the complete program is restricted. This issue often occurs
when certain segments of the program’s source code are inaccessible. A typical scenario
is when a program relies on third-party binary libraries that are not accompanied by the
corresponding source code. In such instances, conducting comprehensive static analysis
becomes difficult, as the analysis tool lacks insight into the internal operations of these
external dependencies. As a result, this can limit how deeply and accurately the analysis
is done, possibly causing important parts of the program’s functionality to be missed.

An alternative approach to overcome this issue is to conduct program analysis on pro-
grams represented at a lower level, such as binary/native code or intermediate repres-
entations such as Java bytecode or .NET Common Intermediate Language (CIL). While
this method provides a more accurate reflection of the program’s behavior as a whole and
can capture additional properties, the outcomes are often less visually appealing. This is
because low-level elements such as compiler-generated names and complex structures
can complicate the reports generated by low-level static analyzers.

Doop [2], is a static analysis tool designed specifically for programs in the form of Java
bytecode. It is a mature tool capable of reasoning about fundamental properties of pro-
grams and has been the basis of more complex applications [3], [4]. However, it’s import-
ant to note that its results concern low-level bytecode elements rather than source code
constructs. Consequently, these results may not be immediately applicable in contexts
such as integrated development environments (IDEs).

Tomaintain the correspondence between the source code and bytecode, the doop-jcplugin
was previously developed [5]. While this plugin proved beneficial, it encountered chal-
lenges due to its reliance on the undocumented and frequently evolving internals of the
Java compiler (javac).

This present work aims to adopt a similar approach as the doop-jcplugin, but within the
context of Kotlin. Kotlin, a JVM-based language that is targeted at replacing signific-
ant uses of the Java language (such as Android app development [6]), offers a well-
documented and mature compiler framework. This framework is notably more conducive
to integration with intermediate representation (IR) plugins, providing a more stable found-
ation for our analysis.

. The rest of this thesis is structured as follows:

• Chapter 2 gives necessary background about Kotlin and its compiler infrastructure,
the visitor pattern that will be used, plus the code metadata model that we will use.

• Chapter 3 describes our implementation.

E. Evangelinou 11
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• Chapter 4 addresses a significant real-world concern: partial programs.

• Chapter 5 concludes this thesis and describes future work.

E. Evangelinou 12
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2. BACKGROUND(KOTLIN COMPILER + CLYZE)

2.1 Kotlin

Kotlin is an open-source, statically typed programming language that runs on the Java Vir-
tual Machine (JVM) and can also be compiled to JavaScript or native code. It is supported
developed by JetBrains, the creators of IntelliJ IDEA, and was first released in 2011. Kotlin
is designed to be fully interoperable with Java, allowing both languages to coexist within
the same project seamlessly. It is endorsed by Google as an official language for Android
development.

One of Kotlin’s key benefits it its multiplatform capabilities. By supporting multiplatform
programming it reduces the needed time to write and maintain the same code in different
platforms while retaining the flexibility and benefits of native programming.Overall,Kotlin
is designed to be a more modern, concise, and expressive language compared to Java.
It addresses some of Java’s limitations and aims to make development more enjoyable
and less error-prone.

2.2 Visitor Pattern

The Visitor pattern [7] is a software design patern that allows algorithms to be seperated
from structures. This separation enables the addition of new functionalities to existing
object structures without necessitating changes to the structure itself. Consequently, it
becomes easier to incorporate new operations regularly and in a more organized manner,
as they can be managed centrally in a single location.

A Visitor class can execute all relevant specializations of a virtual function by taking the
instance reference as input and implementing the goal through double dispatch. By intro-
ducing a seperate Visitor object responsible for implementing operations to be executed
on elements within an object structure, clients navigate through the object structure and
subsequently invoke a dispatching operation that accepts a visitor on an element. This
dispatching operation delegates the request to the Visitor object that has been accepted.
Subsequently, the Visitor object executes the operation on the element. This approach
enables the creation of new operations independently from the classes within an object
structure, achieved by introducing new Visitor objects.

2.3 Kotlin IR

Kotlin IR, or Kotlin Intermediate Representation, is the new internal representation used by
the Kotlin compiler during the parsing of Kotlin source files. This representation is used to
transform the code and then it is translated by the compiler backend into platform-specific
representations. This approach facilitates the sharing of lowerings across all compiler
backends in Kotlin, enabling developers to create a single compiler plugin that functions
universally across platforms, eliminating the need for individual transformations for each
platform-specific representation.

E. Evangelinou 13
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Kotlin IR [8] is an abstract syntax tree for representing Kotlin code. Every parents, siblings,
and children node in the Kotlin IR syntax tree implements an IrElement. Elements of the
syntax tree represent things like modules, packages, files, classes, properties, functions,
parameters, if statements, function invocations, and much more. To navigate this Ir tree
the visitor patern can be used. Specifically IrElementVisitor interface is implemented to
allow the navigation of Kotlin IR tree, with the appropriate function being called when vis-
iting that type of element.

Figure 2.1: IrElementVisitor

In more detail, IrElement is the base interface for all IR elements, and all the functions in
IrElementVisitor eventually delegate to this visitElement function. This visitElement func-
tion is the only function which does not have a default implementation, it helps enable
recursion to children of each element. The IR element visitor also provides the accept func-
tion that is goint to call the appropriate visitor function. This polymorphic behavior allows a
caller to properly handle any IrElement simply by calling element.accept(visitor, data). This
behavior of calling the appropriate visitor function is consistent across all element imple-
mentations. The acceptChildren function is also implemented to call the accept function on
each child IrElement it contains. Thismeans that by calling element.acceptChildren(visitor,
data) the visitor will properly handle all children of the element. This leads us to how re-
cursion works with the visitor pattern, making sure all the elements are visited.

2.4 Kotlin Compiler Plugins

In this segment, we present a concise overview of the Kotlin Compiler plugin infrastruc-
ture. A compiler plugin is a capability of kotlinc that empowers developers to execute
code during the compilation process, generating Java bytecode or LLVM IR. This func-
tionality allows for the alteration of functions or classes, offering the capability to address
new classes of metaprogramming problems.

A Kotlin compiler plugin [9] is seperated into two distinct modules: the Gradle module,
serving as the entry point from Gradle, and the Kotlin module, containing the primary lo-
gic. The Gradle module serves as an entry point that allows configuration options via
gradle extensions. Additionally, it provides Kotlin subplugin options and defines the com-
piler plugin’s unique internal key.

E. Evangelinou 14
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Figure 2.2: KotlinCompilerPluginSupportPlugin

The Kotlin module consists of the command-line processor, the component registrar, and,
in the final stage, the compiler extensions that are invoked. Within the command-line pro-
cessor, kotlinc is called, and the arguments are passed through the pipeline.

Figure 2.3: CommandLineProcessor

Following this, the component registrar reads these keys and registers the compiler exten-
sions that are going to be called in the plugin. The component registrar supports various
types of extensions, and many widely-used Kotlin plugins require multiple extensions.

Figure 2.4: ComponentRegistrar

In this particular case, the compiler extension to be called is IrGenerationExtension, de-
signed for accessing and modifying the Intermediate Representation (IR) tree.

E. Evangelinou 15
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Figure 2.5: IrGenerationExtention

2.5 The clyze metadata model

In this section we are going to introduce the clyze metadata model [10] , which is a lib-
rary model that can be used for applications such as code navigation, high-level code
structure analysis, or IDE integration. This tool outputs a JSON mapping of source code
elements that correspond to low-level entities. Those elements are classes, methods,
fields, variables, heap allocations and method invocations, for each of these elements a
unique symbolid is created and static type information metadata is extracted. Some of this
information provided cannot be easily traced back to the source code and that creates the
need for a source-to-bytecode relationship.

E. Evangelinou 16
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3. KOTLIN COMPILER PLUGIN

3.1 Intervene in Kotlin’s compilation process

To access information that is only available within the compiler, we must initiate our own
compilation process by supplying the appropriate arguments to kotlinc before triggering
the compilation. The fields we are interested in setting in the KotlinCompilation class are:

• List of source files to be compiled

• Boolean value of useIr set to true to ensure the compiler uses the IR backend, since
we are overriding the IR element visitor.

• Compiler plugin in the form of the component registrar that registers the
IrGenerationExtension to enable navigation of Kotlin IR.

• Flag indicating whether to inherit the classpath of the current program, provided for
testing purposes.

• Classpath needed to be made available to compilation to resolve dependencies.

After the component registrar sets the correct extension, the IrGenerationExtension has
been extended to override its generate function.

Figure 3.1: Kotlin compiler’s plugin class implementing IrGenerationExtension

This overridden function creates an instance of IrVisitor, passing the output path where
the results will be placed as an argument. Upon the creation of the IrVisitor (Figure 3.2),
it initializes the stacks that will later be used to keep track of the class or function that
contains an element. Additionally, it creates an instance of the printer that will be used to
print the metadata collected after visiting each file. This function also utilizes an instance
of IrModuleFragment to accept the IrVisitor.

Since the IrGenerationExtension has been registered within the component registrar, this
instance will be invoked during compilation when IR code needs to be generated. This
allows us to access information from the compilation process and collect metadata as
required.

E. Evangelinou 17
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Figure 3.2: Kotlin compiler’s plugin class implementing IrElementVisitor

3.2 Output data generated

The Kotlin IR plugin is designed to provide information in the form of metadata for the
elements discovered in the source code. The elements that the plugin reports metadata
for are:

• Declaration of classes

• Declaration of functions

• Declaration of fields

• Declaration of variables

• Method invocations

• Heap allocations

For each of those elements, we implement a class that extends the corresponding class
from the metadata-model library. This information is gathered by overriding the IR ele-
ment visitor functions to visit those elements. For each element encountered, we create
an instance of the respective class we have implemented to process and store the neces-
sary metadata. After the program execution, we utilize the metadata-model’s FileReporter
class to save the reported metadata to .json files. One file is generated for each visited file.
Each .json file contains the metadata collected for the respective file during the execution
of the program.

3.3 Doop

The plugin generates metadata intended for use by Doop [11] to produce analysis results.
Doop consumes this metadata via the –sarif option [12] to produce results in SARIF format.
THe SARIF outputs can then be integrated by installing the SARIF Viewer plugin [13] in
compatible environments such as Visual Studio Code. Consequently, this provides the
option to view the intermediate code annotated with the analysis results.

E. Evangelinou 18
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Figure 3.3: Example of code annotated with analysis results

3.4 KotlinFileInfo

To collect all the necessary metadata for the tracked elements, additional information is
required, which is available within the visitFile method. We override this method and
instantiate a KotlinFileInfo object, which extends FileInfo provided by metadata-model.
This KotlinFileInfo class is designed to store pertinent information that is populated within
the visitFile function. It serves as a field within the IR visitor, accessible from all functions
that are invoked.

The KotlinFileInfo class is initialized with several important attributes: the filename, the
contents of the file, the package name, and the field fileEntry, which is an interface within
the IrFile declaration, containing useful tools. Within this class, methods are implemented
to provide elements with necessary information. A pivotal function of the KotlinFileInfo
class is accessing the contents of the source file, enabling it to determine the position of
an element name within the sources. This capability is particularly valuable when, during
the invocation of a visitor function, only the position of the entire declaration is available.

To accomplish this, in most cases the class initiates a search from the beginning of the de-
claration’s position to identify the keyword used for declaring the element. Subsequently,
it proceeds to locate the beginning of the name from that point onward. By obtaining a
starting offset and the name of an element, it can determine the coordinates of the offset
using Kotlin’s fileEntry interface and return them as the correct position. If the name is
absent, indicating that the element might be compiler-generated and not present in the
sources, the position fields are all set to -1. Additionally, the flag indicating whether this
element exists in the sources can be adjusted accordingly.

Element information is also stored within KotlinFileInfo, as it encapsulates an instance
of the class JvmMetadata, implemented in metadata-model. This JvmMetadata class is
utilized to aggregate all elements, categorized by their type. By the conclusion of the
visitFile function, all elements have been visited, and KotlinFileInfo is ready to provide the
metadata to be added to FileReporter which created the output of the plug in as mentioned

E. Evangelinou 19
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in the previous section.

Figure 3.4: KotlinFileInfo Class

3.5 Classes

In order to gather all necessary information for each class encountered in the sources, IR-
visitor overrides the visitClass method of the IrElementVisitorVoid interface. This method
receives a parameter of type IrClass, containing all essential information regarding the
class declaration. Upon visiting each class, a new instance of the class ”Class” is initial-
ized with all the relevant fields and appended to the classStack at the beginning of the
visitor call, ensuring its availability for elements within the class. Subsequently, before the
visitor call concludes, all the elements within the class are visited and the class instance
can be removed from the stack, as it is no longer required.

Figure 3.5: The visitClass() function of IRvisitor

For every object of this type the name, the packagename and the source filename, saved
in KotlinFileInfo, are set in coresponding fields of the class created to report this declara-
tion. For each class declaration a unique symbol id is generated by appending the class
name to the end of the name for ir serialiation of the parent declaration of this class. The
parent declaration could be the package name, a function or a class, in the case of a nes-
ted class. This name recursively contains the parent name of each parent, starting with
the package name. Metadata collected also include the class’s position, defined by its
starting and ending coordinates, stores the location of the class name within the source
file. The KotlinFileInfo class is employed to determine the precise coordinates because it
allows access to the source file contents, enabling the exclusion of whitespaces and the
declaration keyword indicating whether it’s a class, enum, interface, or object. However,
calculating the position for anonymous classes is an exception, as they lack a name and
the location of keyword ”object” is stored instead in this case.

E. Evangelinou 20
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Athother important class information reported is the kind of the corresponding class that
could represent wether the class is an interface or an enum. Other included attributes
indicate if the class is an inner class, anonymoys or static. Since kotlin does not have the
static keyword that java uses, the static field is filled with the information of wether a class
is a companion object or not. This is the kotlin’s equivalent to creating a static method in
Java. In advance the metadata provided for a class declaration also include characterist-
ics indicating whether the visibility specified for the class is public, private, or protected.
Information indicating an inheritance modifier, which denotes the modality of the class, is
included if it determines that the class is either abstract or final.

3.6 Methods

For methods the process is very similar to the one for classes. The visitFunction method
is overridden and by IrElementVIsitorVoid and methods are saved to functionStack in the
form of Funtion class that is created to hold relevant to every method information. Con-
structors in kotlin are visited by the same visitor with other functions so those are also
processed the same way, constructors can be distinguished by their name that is always
<init>.

Function objects have certain fields in common with class objects. These shared fields
encompass the name of the corresponding declaration, the filename, and information in-
dicating the existence of the item in the source code. In adition, metadata regarding a
function’s visibility or modality is configured in the same manner as described above for
classes. Like other elements, functions also possess a unique symbol ID. In this case,
the ID begins with the parent’s name for its serialization, followed by details regarding the
return type, as well as the parameters of the function along with their respective types.

Additionally, functions are equipped with specific metadata exclusively reported for them.
This metadata outlines the function’s return type, along with information regarding its para-
meters and their corresponding types. Furthermore, there exists a field indicating whether
the function is native, which is equivalent to the ”external” keyword in Kotlin, and is set
accordingly. Moreover, supplementary information is provided for functions, including
whether they are synchronized, synthetic, or static.

As for all other elements, the position of functions in the source file is also retained. To
determine this position, showing the function name, typically we locate the name of the
function by skipping the whitespace after the keyword ”fun.” However, there are exceptions
to this rule. If the function has extension receiver parameters or type parameters, these
are placed after the keyword and before the function name. In such cases, we locate the
name after the position of these factors.

Furthermore, for functions, their outer position is set, comprising the starting position
where the method definition begins and the ending position where the definition ends.
This provides a comprehensive understanding of the function’s placement and structure
within the source code file.

As previously mentioned, constructors are also visited by the same visitor and handled in

E. Evangelinou 21
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the samemanner as functions. However, they possess unique characteristics, particularly
in terms of their name and position. Unlike other functions, the source code position of
constructors cannot be determined in the same manner because they do not have a name
in their function declaration.

In Kotlin, constructors are divided into two categories: primary constructors and secondary
constructors. Primary constructors are declared in the class header, following the class
name and optional type parameters. In this case, the position of the constructor is set to
match the position of the class, and the outer position is also determined by the class’s
start and end offsets.

Secondary constructors, on the other hand, are declared using the keyword ”constructor,”
so their position is indicated by this keyword instead of a name. The outer position is cal-
culated similarly to any other function.

The function stack used to save all the functions also serves for anonymous initializers,
which are analogous to instance initializer blocks. These initializers aren’t reported with
the other metadata; instead, they solely exist in the stack. This arrangement enables the
identification of elements inside these blocks, and the inIIB (in Instance Initializer Block)
value can be set to true.In this scenario, the only values that need to be set are the de-
claring class ID, which is passed to the other elements, and the symbol ID, which is set to
an empty string. Subsequent sections will elucidate how these stack elements are utilized.

In addition to tracking metadata, the Function class also serves another purpose. It con-
tains two maps: one for monitoring heap allocations and another for method invocations
that take place within the function. These maps store the symbol ID of the called function
or the created item and keep track of how many times this item occurs within the function.
This functionality provides insights into memory allocation and method invocation patterns
within the function, aiding in performance analysis and optimization efforts.

3.7 Variables

Another type of metadata we track are variables. Similarly to other elements, a class is
generated to manage variables. This class is instantiated upon encountering a variable
declaration, either through overriding the ”visitVariableDeclaration” method or when visit-
ing a function parameter via the ”visitValueParameter” declaration within the IR Element
visitor. In both scenarios, essential details such as the variable’s name, source file name,
existence in the source code, and variable type are stored. A specific boolean field indic-
ates whether the variable acts as a parameter in a function. The sole other attribute that
holds significance in determining whether it is a parameter is the source code position,
which saves the coordinates of the element’s name. Parameters typically aren’t declared
using the ”var” or ”val” keyword, so this aspect must be disregarded only if it exists between
the start and end offsets of the current declaration.

Other information that we take from the compiler for variables are a boolean value that
shows if the variable is local, the declaring method id of the function that cointains this
variable, retained by the function class instance that is on top of the function stack and the
symbol id of the variable declaration that is created by adding variable’s type and name
at the end of the declaring method id.
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The final piece of information required for variables is whether they reside within a function
or an instance initializer block (IIB). In Kotlin, an IIB is a block declared within a class using
the keyword ”init” followed by curly braces. The code contained within this block becomes
part of the primary constructor, enabling it to execute when the primary constructor is
invoked, as primary constructors cannot contain executable code. Additionally, the code
within all initializer blocks is executed when secondary constructors are invoked, before
their body is executed.

Instance initializer blocks present a unique scenario in the Kotlin IR plugin because the
entities they encompass typically belong to a function as their parent declaration. As
mentioned in the section on functions, the Kotlin compiler traverses instance initializer
blocks using the function ”visitAnonymousInitializer”. To discern whether an element is
located within an initializer block rather than a function, we examine whether the symbol
ID in the metadata saved for the parent function of the element is an empty string. In such
cases, the declaring method ID is also set to an empty string since the element does not
belong to a method. This condition also impacts the symbol ID, which utilizes the symbol
ID of the declaring class instead of the method, preserving the id of the parent element in
the start of the symbol ID.

3.8 Fields

Fields are distinct from variables and are handled separately within the system. They are
handled by a distinct method of their element visitor, and a distinct class named ”Field” is
utilized to process and retain the pertinent metadata. Identification of field elements relies
on their unique symbol IDs, formed by combining the declaring class ID with the field’s
type and name. Supplementary metadata necessary for this data type encompasses:

• the name of the field

• the name of the source file that contains it

• the kotlin type of the field

• the symbol id of the element

• a boolean value indicating whether the field is present in the source code

• details regarding whether the field is static

• the position of the field in the source code

• the id of the declaring class which contains it

3.9 Method Invocations

The plugin alsomonitors everymethod invoked in the source code by overriding both”visitCall”
and ”visitConstructorCall” functions of the visitor, since constructor invocations are visited
by a different method. As a symbol in this source code method invocation has source
filename, the name of the called method, and a flag indicating whether it exists in the
sources. Additionally, the position of this element is reported, displaying either the name
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of the function being called or the class name if the function is a constructor. Furthermore,
the class dedicated to method invocations stores information about the types of paramet-
ers received by the invoced function and the return type of the function that is being called.

In Kotlin, we encounter two distinct types of functions: standalone functions, which exist
independently of any object, and extension functions, that are called on an object. Ex-
tension functions are widely used in Kotlin, including within Kotlin’s standard library. It’s
essential to note that for extension functions, the type of the receiver object is reported by
the plugin as the target type of a method invocation. However, in the case of standalone
functions, this field remains an empty string.

Method invocations also possess a symbol ID, generated based on the ID of its parent ele-
ment, which may be a function or a class when the invocation occurs within an Instance
Initialization Block (IIB). Subsequently, this parent ID is followed by the specification of
the target type and name of the invoked function. Finally, a numerical value is appended,
representing the count of invocations of this particular method within the parent function
or block. This count is calculated internally within the class responsible for documenting
function declarations.

The symbol id of the function where themethod invocation is located is also included as the
invoking method ID. This information is obtained by passing the top function on the stack
to the constructor of the class designed to report method invocations. The last information
needed for this element is a boolean field set of whether this exists inside the init block of
a class, and this process is handled in the same manner as variables. This affects symbol
IDs and InvokingMethodIDs as elaborated in the chapter addressing variable metadata.

3.10 Heap Allocation

Heap allocations are another type of metadata that are being tracked and reported within
Kotlin’s IR plugin. Heap allocations occur when memory is dynamically allocated on the
heap for objects during runtime. This happens every time a constructor is called because
memory is allocated on the heap to store the object that is being created. As mentioned
in the previous section, when extending Kotlin’s IR element visitor, constructor calls are
intercepted and tracked asmethod invocations. Since heap space is allocated in this case,
a new heap allocation element is also generated within the visitConstructorCall function.

Metadata reported for heap allocations are very similar to those reported for method in-
vocations, since hoth types use the same type of expression to take this data from and
also report common elements. Specifically the metadata we record are the following:

• the position of the heap allocation in the source code

• the name of the source file that contains it

• a boolean value indicating whether the element exists in sources

• A boolean value indicating whether the constructor is invoked within an IIB

• the unique symbol ID for heap allocation is generated by combining the ID of the
allocated type with the symbol ID of the parent element, followed by a counter that
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keeps track of how many times this specific type has been allocated inside.

• the allocating type id is the type of the element that is being allocated

• the allocating method id contains the symbol id of the function that allocates this item

• a boolean value representing whether heap allocation is made for an array

3.11 Subtle problems that came up and future work

Throughout this process, certain metadata information proved challenging to locate within
the compiler. One notable example of a subtle issue that presented difficulty was determ-
ining the precise position for each element, ensuring it accurately pointed to the name of
the declaration or expression. Many cases were addressed by comprehending the poten-
tial keywords that could be located between the keyword used to define the element and
its name, thus enabling the identification of the name’s position.

Figure 3.6: A typical kotlin function where the name is right after ”fun” keyword

Figure 3.7: A kotlin function where type parameter and extension receiver parameter are declared
between ”fun” keyword and the function name

Another challenging aspect to handle was determining the position and outer position of
the primary constructor. It was decided that the position should indicate the name of the
class since the primary constructor’s arguments are declared after it. Additionally, unlike
secondary constructors, the primary constructor does not have a body for the outer pos-
ition to point to. In the IR element visitor, when encountering a primary constructor, the
position of the function reflects the declaration of the class instead. Therefore, a decision
was made to maintain the position of the class as the outer position for the primary con-
structor, aligning with what the compiler considers as its position.

Filing the field of whether an element is static poses a challenge in Kotlin due to the ab-
sence of an explicit ”static” keyword, as seen in Java. In Kotlin, companion objects serve
as the equivalent to static classes in Java. Additionally, Kotlin provides the @JvmStatic
annotation, which can be used inside companion objects to create static fields. However,
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Figure 3.8: A class with a primary and a secondary constructor in Kotlin

distinguishing static elements solely based on syntax or keywords is not straightforward
in Kotlin compared to languages like Java. However, within the IrFunction and IrField de-
clarations, there exists a boolean value indicating whether a function or a field is static.
This information is utilized by the plugin. Nonetheless, it’s not guaranteed that this covers
all cases of elements that would be considered static.

Figure 3.9: An example of a static kotlin function that does not set the ”isStatic” boolean field in
function declaration

Lastly, another detail to be noted is that in Kotlin, arrays, for example, can be instantiated
using the class constructor, like any other class. However, they can also be created by
a number of functions when those functions are called. In this case, the plugin will not
record the heap allocation because it treats these array creation functions as any other
function. It is not straightforward to identify which Kotlin functions might involve heap al-
locations to include them in the recording process. Therefore, it remains as future work to
devise a method to also record heap allocations from functions that are used for creating
objects like arrays. This would involve further analysis and possibly extending the plugin’s
capabilities to detect such allocations.

Figure 3.10: Heap allocations using constructor versus library function
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4. HANDLING SOURCE CODE THAT MISSES LIBRARIES

To utilize the Kotlin plugin, a main function is employed. This function leverages ”kotlinc”
to initiate the compilation phase, providing the desired sources for analysis alongside the
Kotlin IR plugin as arguments. The main function accepts input sources in the form of
a .zip file, a .jar file, or a directory containing Kotlin files for which we aim to generate
metadata.

The primary requirement for using this plugin effectively is to have Kotlin sources that
compile successfully. However, this condition can be problematic, especially when ana-
lyzing a single file extracted from a larger project. In such instances, the extracted file may
depend on additional files that are not included, which could result in compilation errors.
This absence of essential files would make it challenging for the compiler to resolve ref-
erences for elements contained in those missing files. As a result, compilation would fail,
preventing the plugin from being executed.

For instance, to analyze a Java library, for which there is both bytecode (JAR file) and
source code available, we must run the Kotlin compiler on the sources, augmented by all
code dependencies (the Java ”classpath”). Since these dependencies may not be readily
available, compilation, and thus source-to-bytecode mapping, will fail.

For instance, to analyze a Kotlin library, for which there is both bytecode (JAR file) and
source code available, we must run the Kotlin compiler on the sources, augmented by all
code dependencies (the Java ”classpath”). Since these dependencies may not be readily
available, compilation, and thus source-to-bytecode mapping, will fail.

The solution to resolve this potential issue involves including a tool called jphantom [14],
which is utilized for Java program complementation. This tool can be enabled by passing
the appropriate argument during execution.

When jphantom is enabled, the bytecode provided as a JAR file argument is enhanced
by creating a new JAR file. This new JAR file includes dummy implementations for every
phantom class identified in the original sources. Phantom classes refer to classes that are
referenced in the sources but lack a corresponding definition. The generated phantom
classes in the produced jar are designed to incorporate all missing fields and methods ref-
erenced in the sources intended for compilation. Additionally, they include a supertype that
respects every type constraint that was identified. By employing this tool, the previously
missing referenced elements are now generated, enabling the successful compilation and
analysis of the code.
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5. CONCLUSIONS AND FUTURE WORK

In this thesis, we introduced a Kotlin Compiler plugin designed to generate metadata with
the aim of preserving a source-to-bytecode correspondence, facilitating static analysis
with tools like Doop. While this plugin represents an initial effort to produce metadata for
fundamental Kotlin elements, there is ample opportunity for future expansion. In future
work the plugin’s capabilities could be enhanced to report metadata for every element
within a valid Kotlin program, ensuring that no source code information is overlooked.

Moving forward, the next steps for this plugin involve addressing and resolving the subtle
issues highlighted in this thesis, thus improving its effectiveness and accuracy. Addi-
tionally, the functionality can be extended to include reporting on string constants and the
usage of elements within the code, similar to what the doop-jcplugin already accomplishes.

Ultimately, this plugin serves as a demonstration of how Kotlin plugins can harness Kotlin
Intermediate Representation (IR) to access vital information within the compiler. Through-
out this thesis, we have provided insights into the workings of this IR and offered guidance
on creating a basic Kotlin plugin.
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ABBREVIATIONS - ACRONYMS

IR Intermediate Representation

IIB Instance Initializer Block
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