
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΓΛΩΣΣΙΚΗ
ΤΕΧΝΟΛΟΓΙΑ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

DistilBERT-EL-KLD: Απόσταξη Γνώσης και Μοντελοποίηση της
Ελληνικής Γλώσσας

Αθανάσιος Σ. Κουρσάρης

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής, ΕΚΠΑ

ΑΘΗΝΑ

ΜΑΡΤΙΟΣ 2024

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

INTERDEPARTMENTAL PROGRAM OF POSTGRADUATE STUDIES IN
LANGUAGE TECHNOLOGY

MASTER’S THESIS

DistilBERT-EL-KLD: Knowledge Distillation and Greek Language
Modeling

Athanasios S. Koursaris

Supervisor: Manolis Koubarakis, Professor, NKUA

Athens

MARCH 2024

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

DistilBERT-EL-KLD: Απόσταξη Γνώσης και Μοντελοποίηση της
Ελληνικής Γλώσσας

Αθανάσιος Κουρσάρης
S.N.: 7115182100014

Επιβλέπων: Μανόλης Κουμπαράκης, Καθηγητής, ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ
ΕΠΙΤΡΟΠΗ:

Μανόλης Κουμπαράκης, Καθηγητής, ΕΚΠΑ
Ιωάννης Παναγάκης, Αναπληρωτής Καθηγητής, ΕΚΠΑ
Σωκράτης Σοφιανόπουλος Συνεργαζόμενος Ερευνητής,
ΙΕΛ

Μάρτιος 2024

MASTER’S Thesis

DistilBERT-EL-KLD: Knowledge Distillation and Greek
Language Modeling

Athanasios S. Koursaris
S.N.: 7115182100014

Supervisor: Manolis Koubarakis, Professor, NKUA

EXAMINATION
COMMITTEE:

Manolis Koubarakis, Professor, NKUA
Ioannis Panagakis, Associate Professor, NKUA
Sokratis Sofianopoulos, Associate Researcher, ILSP

March 2024

ΠΕΡΙΛΗΨΗ

Σκοπός της εν λόγω διπλωματικής εργασίας είναι η ανάπτυξη, εκπαίδευση και
αξιολόγηση ενός μοντέλου DistilBERT, εξειδικευμένου αποκλειστικά στην Ελληνική
γλώσσα. Μετά από εμβριθή ανασκόπηση του θεωρητικού υποβάθρου (κλασική
μηχανική μάθηση, βαθιά μάθηση και νευρωνικά δίκτυα) με σκοπό να καταστεί
αντιληπτή η αρχιτεκτονική των νευρωνικών δικτύων της οικογένειας των δικτύων
μετασχηματιστών (Transformers) και συγκεκριμένα των μοντέλων BERT και
DistilBERT, περιγράφεται αναλυτικά η διαδικασία ανάπτυξης και προεκπαίδευσης του
μοντέλου σε μεγάλα σώματα ελληνικών κειμένων (OSCAR, Wikipedia, Europarl)
μέσω της διαδικασίας Απόσταξης Γνώσης, καθώς και της περαιτέρω εκπαίδευσης σε
διεργασίες φυσικής γλώσσας, όπως η Αναγνώριση Επώνυμων Οντοτήτων (NER), η
αυτοματοποιημένη Αναγνώριση Μερών του Λόγου (PoS Tagging), καθώς και η
διαδικασία Διεξαγωγής Συμπερασμάτων σε Φυσική Γλώσσα (NLI). Η τεχνική της
απόσταξης γνώσης, η οποία αποτελεί μία μορφή συμπίεσης των παραμέτρων ενός
νευρωνικού δικτύου, φαίνεται να συμβάλλει καταλυτικά στη δημιουργία μοντέλων
βαθιάς μάθησης, τα οποία αν και, συγκρινόμενα με συγγενικά μοντέλα, είναι κατά
πολύ ταχύτερα και πιο οικονομικά από υπολογιστική άποψη, δεν παρουσιάζουν
μεγάλες απώλειες όσον αφορά την ακρίβεια σε διεργασίες Επεξεργασίας Φυσικής
Γλώσσας. Το μοντέλο που αναπτύχθηκε στα πλαίσια αυτής της διπλωματικής
εργασίας (DistilBERT-EL-KLD), το οποίο αποτελεί συμπιεσμένη μορφή του
GREEK-BERT, έχει τη δυνατότητα να παράγει αποτελέσματα απολύτως συγκρίσιμα
με αυτά του προκατόχου του.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη, Επεξεργασία Φυσικής Γλώσσας
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συμπίεση, απόσταξη γνώσης, νευρωνικά δίκτυα, βαθιά μάθηση,

ταξινόμηση

ABSTRACT

The purpose of the following thesis is the implementation, pre-training, fine-tuning,
and evaluation of a DistilBERT model specialized in the Modern Greek Language.
After an in-depth examination of the theoretical background in classical Machine
Learning and Deep Learning with Neural Networks with the purpose of
understanding the inner workings of Transformer Neural Networks and especially
BERT and DistilBERT, what follows is the detailed description of the development
process concerning such a model, from its pretraining on large Modern Greek
Language Corpora, to its fine-tuning and evaluation on downstream Natural
Language Processing Tasks, such as Named Entity Recognition, Part of Speech
Tagging, as well as Natural Language Inference. The Knowledge Distillation
technique seems to play a paramount role in the creation of models that appear to
be faster and relatively computationally inexpensive when compared to other larger
similar architectures, yet they seem to exhibit rather insignificant downgrades, if any,
when it comes to accuracy. The model developed for the purposes of this thesis
(DistilBERT-EL-KLD), being a compressed version of GREEK-BERT, appears to
exhibit very similar performance and output results to those of its predecessor.

SUBJECT AREA: Artificial Intelligence, Natural Language Processing
KEYWORDS: compression, knowledge distillation, neural networks, deep learning,

classification

To Ellie, because living with someone who’s writing a master’s thesis can be as hard
as writing one yourself.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Professor Manolis
Koubarakis whose constant guidance shed light on topics that seemed daunting
during the early stages of research. I would also like to thank my family and close
friends for showing keen interest in my research and providing their support at every
step.

TABLE OF CONTENTS

PROLOGUE.. 15

1. INTRODUCTION.. 17

1.1 Machinery, Intelligence, and Cognition...17

1.2 Machine Learning... 18
1.2.1 General Overview..18
1.2.2 Types of Machine Learning Systems.. 19

1.3 Deep Learning... 21

1.4 Sequence Models: Recurrent Neural Networks... 23
1.4.1 RNN Variants...24

1.5 Summary... 26

2. NLP AND TRANSFORMER ARCHITECTURES...27

2.1 Natural Language Processing... 27

2.2 Transformers... 29

2.3 BERT-based Architectures...31
2.3.1 The Original BERT Model..32
2.3.2 GREEK-BERT... 34
2.3.3 DistilBERT and Knowledge Distillation..35

2.4 Summary..37

3. DISTILBERT-EL-KLD.. 38

3.1 Research and Development...38
3.1.1 Motivation.. 38
3.1.2 Tools and Resources...38
3.1.3 Pretraining Corpora... 39
3.1.4 Preprocessing and Tokenization... 39
3.1.5 Pretraining... 41

3.2 Fine-Tuning on Downstream NLP Tasks...44
3.2.1 General Assumptions.. 44
3.2.2 PoS Tagging.. 45
3.2.3 Named Entity Recognition...49
3.2.4 Natural Language Inference..52

https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.19c6y18
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.3tbugp1
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.147n2zr
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.nmf14n
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.147n2zr
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.qsh70q

3.3 Summary.. 55

4. CONCLUSION... 56

LIST OF ABBREVIATIONS...57

REFERENCES.. 59

https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2grqrue
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.37m2jsg
https://docs.google.com/document/d/1sCUzkjRSU1RrN6cqbFn4_qtApb7yhfiZ/edit#heading=h.2lwamvv

LIST OF FIGURES
Figure 1: Comparison between ML and traditional programming 18
Figure 2: The ML Project Lifecycle 19
Figure 3 : The Perceptron 21
Figure 4: Typical Feed-Forward Neural Network 22
Figure 5: Recurrent Neural Network 23
Figure 6: Anatomy of a LSTM cell 24
Figure 7: Anatomy of a GRU cell 25
Figure 8: Encoder-Decoder Architecture 25
Figure 9: Word Embeddings in a 2-dimensional space 28
Figure 10: Main mathematical operations in Transformers(from paper [28]) 30
Figure 11: Encoder-Decoder Transformer architecture (from paper [28]) 30
Figure 12: Overview of the Masked Language Modeling Task 32
Figure 13: Overview of the Next Sentence Prediction Task 33
Figure 14: Example of WordPiece Tokenization 33
Figure 15: Calculating DistilBERT’s pretraining loss 36
Figure 16: Sample of the GREEK-BERT Tokenizer vocabulary file 41
Figure 17: Learning Curve for DistilBERT-EL-KLD 44
Figure 18: Example of the GUDT Corpus 45
Figure 19: Preprocessed sample of the Greek SpaCy NER corpus 50
Figure 20: Sample from the NER Dataset by A. Romanou 50
Figure 21: Example of the Greek Portion of the MultiNLI corpus 53

LIST OF TABLES
Table 1: Pretraining Arguments for Greek-BERT 42
Table 2: Pretraining Arguments for DistilBERT-EL-KLD 43
Table 3 : List of Labels in the GUDT Corpus 46
Table 4: Fine-Tuning Arguments for the PoS Tagging Task 47
Table 5: Per-Class Evaluation Metrics on the PoS Tagging Task 48
Table 6: Head To Head Comparison on the PoS Tagging Task 49
Table 7: List of Labels Used for the NER Task 51
Table 8: Fine-Tuning Arguments for the NER Task 51
Table 9: Per-Class Evaluation Metrics for the NER Task 52
Table 10: Head To Head Comparison on the NER Task 52
Table 11: Fine-Tuning Arguments for the NLI Task 54
Table 12: Per-Class Evaluation Metrics for the NLI Task 54
Table 13: Head To Head Comparison on the NLI Task 55

PROLOGUE

The recent advent of Large Language Models (LLMs) [30] has cemented the ubiquity
of AI in a plethora of everyday life scenarios. Even though applications powered by
all manner of deep learning models have existed for quite some time (be it smart
assistants, machine translation systems or biometric security applications such as
face detection for smartphones), harnessing the power of Natural Language
Processing has been greatly simplified, since the manner of interaction with
(seemingly at least) intelligent general-purpose models can be performed by means
of a simple graphical interface, not dissimilar to that of a search engine. Models like
GPT-4, Llama 2 and Google Bard have been trained on vast natural language
corpora, starting from the task of text generation. Their implementation has proven to
entail solutions for more basic problems, like text classification or machine
translation, raising the question whether smaller, more-domain specific models have
any place in the current landscape in the field of Artificial Intelligence at all.

However, LLMs do not come without significant downsides, pertaining both to their
architecture as well as their various implementations per se. Large Language Models
dwarf previous NLP models in sheer size of parameters [30]. Even when comparing
GPT-4 with previous transformer architectures: when one puts its 1.7 trillion
parameters next to BERT’s 110 million, the difference is apparent at first glance [4].
This difference in parameter size comes with significant hurdles, such as an
exponential growth of requirements both in training time and resources. Other
problems rise from the nature of the corpora. Again, the magnitude of said corpora
renders LLMs extremely efficient in general-purpose tasks, but sometimes the
answer to a given prompt might be fictitious or biased, a phenomenon widely
referred to as “hallucination”. Domain adaptation also remains a difficult task, due to
computational requirements, as well as licensing issues, since not all LLMs have
been open-sourced for the time being. Another significant issue with LLMs is the
environmental cost of their training and benchmarking as well the massive data
storage involved in the process, since it requires the full power of a multitude of
GPUs and CPUs, which leads to high levels of electrical draw and heat exhaust [22].
The carbon footprint of LLMs should raise questions concerning the minimization of
said requirements.

A more specific problem is the way LLMs handle different languages. Human-like
performance can be observed in a multitude of English Language tasks as well as
other popular languages, such as Spanish, but when prompted to produce less
popular and confined languages such as Greek, the outputs come with significant
flaws, stemming directly from the given language’s linguistic complexity and various
systems pertaining to tenses, cases, figurative speech and much more.

Even so, LLMs have found their place in the industry and have proven their utility on
multiple occasions. Nevertheless, there are still ways to achieve human-like
performance with much smaller models. Transfer Learning and fine-tuning
open-source models on more contained and focused corpora has facilitated
overcoming the challenge of domain adaptation in tasks, such as Text Classification,
Named Entity Recognition, Machine Translation and more [4]. The DistilBERT
model, whose number of parameters is as low as 65 million can be proven a viable
solution for these tasks [22]. Trained by distilling the knowledge [10] of the

A. Koursaris 15

significantly more-computationally intensive (yet much smaller in size than an LLM)
BERT model, DistilBERT is presented as a faster, computationally cheaper and more
portable solution, since it can be utilized for inference even in smart devices. What
follows is the rigorous description of an attempt to adapt the base-uncased version of
the DistilBERT model for the Greek Language by distilling the knowledge of the
original GREEK-BERT model, as well as fine-tuning it for a plethora of tasks, such as
Part-of-Speech Tagging, Named Entity Recognition and Natural Language Inference
and finally, comparing its performance to that of the original GreekBERT [15]. An
attempt will also be made to give context regarding the Transformer Neural Network
architecture that powers all of the aforementioned models, as well as its place in the
larger fields of Deep Learning and AI.

A. Koursaris 16

1. INTRODUCTION

The following section attempts to provide a high-level overview on the history of the
field of Artificial Intelligence and in particular, Machine Learning, mainly focusing on
the Deep Learning Revolution as heralded by Artificial Neural Networks and RNN
architectures, the latter being the dominant architecture in NLP up to the advent of
the Transformers.

1.1 Machinery, Intelligence and Cognition

Are machines capable of producing original thought? In the 19th Century, Ada
Lovelace’s remarks on Charles’s Babbage’s analytical engine, hailed by some as the
world’s first mechanical computer, due to its ability to perform simple mathematical
operations, present a rather grim and apprehending outlook on the matter: The
Analytical Engine has no pretensions whatever to originate anything she claims [1].
This outlook would later be challenged by pioneers in the emerging field of computer
science, namely Alan Turing, whose Turing Test, appearing as early as 1950 [28],
still stands out as one of the first evaluation methods concerning what is now called
“Human-like performance”. Simplistic, yet quite intuitive, the Turing Test was the first
method of determining whether a computer possesses the ability to demonstrate
human intelligence and was the first widely known comparison ever made between
machine and man.

This was only the beginning, since the publication of Turing’s paper Computing
Machinery and Intelligence was only a handful of years apart from the Dartmouth
Workshop, brainchild of Mathematician John McCarthy, considered by many to be
the starting point of the field of Artificial Intelligence. In short, the proposal made by
the conference is that every aspect of learning or any feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it [19].
The given goal could not be achieved over the span of a single summer, but the
conference drew mass attention and helped plant the seeds of the AI Revolution still
experienced today. The first approach regarding the automation of intellectual tasks,
as proposed by the Dartmouth Workshop, was hardcoding a vast set of rules that
could handle every scenario in said tasks. This approach, today known as Symbolic
AI [19], was the dominant method until the 1980s and the expert systems that came
into fruition during the 1980s are closely associated with it. Systems based on
symbolic approaches were proven to handle well-defined problems associated with a
rigid set of rules, for example simulating games such as chess or Go [6]. Complex
problems such as Computer Vision and Natural Language Processing would remain
unsolved, until the advent of a new programming paradigm that does away with
sheer determinism.

A. Koursaris 17

1.2 Machine Learning

A possible answer to what Alan Turing calls Lady Lovelace’s Objection [28] came in
the form of Machine Learning. This new paradigm eschews the traditional approach
of writing a program, i.e. designing a set of hand-crafted step-by-step instructions for
the computer to follow, in order to produce a desirable output, and instead favors the
approach of training a system from data. Instead of rules, the computer is presented
with the correct inputs and outputs of a program performing a given task, and utilizes
algorithms that enable it to draw patterns and statistical structures from said inputs
and outputs [13].

Figure 1: Comparison between ML and traditional programming

1.2.1 General Overview

A more engineering-oriented definition of the concept is as follows [1]:

A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P,
improves with experience E.

Even though algorithms used in Machine Learning have been around since the early
days of the field of AI, it was only during the late 1980s and early 1990s that ML
approaches started to take off, due to the wider availability of computational
resources as well as the easier accessibility to data. To summarize, the key
components of each ML system are the following [6]:

● Input data used for training, e.g. movie reviews in a sentiment classification
task

● Expected Output data, e.g. a set of labels describing the relative positivity or
negativity of said reviews.

● A model used for inference, i.e. whenever the model is given a set of reviews,
it produces a set of labels.

● A metric used to evaluate the model’s performance, usually a loss function
able to measure the degree of mistaken or undesirable inference made by the

A. Koursaris 18

model. The main objective of training a ML system is to minimize the loss
function.

All ML systems are associated with a life cycle [12], which entails continuous
optimization through data collection and processing, model design, training,
evaluation and monitoring. High performance is not always guaranteed and the task
at hand has to be continuously reframed and reexamined.

Figure 2: The ML Project Lifecycle

Today Machine Learning systems are able to tackle a plethora of problems, such as
Image Recognition, Object Detection, Named Entity Recognition, Clustering and
much more [14] .

1.2.2 Types of Machine Learning Systems

Machine Learning Systems can be broken down into various categories, based on a
number of criteria [6].

● Supervised learning: This approach entails the inclusion of the desired
output in the training set, often called labels. A typical supervised learning
task is Classification [13]. In classification tasks, the model is provided with
the goal of mapping an input into a discrete (non-decimal) output, often called
a class. A typical example would be sentiment classification, where given an
example film review, the model should infer whether the review is positive or
negative (each sentiment given by the numbers 0 and 1 respectively). This is
an example of binary classification, but classification can also be multiclass,
i.e. the number of classes is a result of the very nature of the task at hand.
Another supervised learning task would be Regression [13], where the model
attempts to predict a target continuous numeric value. Regression could be

A. Koursaris 19

used for price or stock prediction based on a set of features, e.g. the price of a
house based on the number of bedrooms and its area in square meters.
Common Classification algorithms include Logistic Regression, Naive Bayes
and Support Vector Classifiers, while for Regression, Linear, Lasso and Ridge
Regression are often used [6] .

● Unsupervised Learning: In unsupervised learning tasks, the input data is
unlabeled [6] and the system attempts to infer without the desired outputs or
any human intervention whatsoever. A common example of unsupervised
learning is clustering. This task is an attempt to group similar data points, for
example divide a company’s customer base in groups based on age,
residence or common interests. Tasks related to clustering are Dimensionality
Reduction, which aims to simplify data without the excessive loss of
information, as well as Anomaly Detection, often used for preventing
fraudulent transactions: The system is given only the data points pertinent to
normal transaction, and detects anomalies based on, for example, the amount
of a potential fraudulent transaction. Common clustering algorithms include
K-Means and DBSCAN [6], both of them based on data point density in a
geometric space.

● Semi-Supervised Learning: Labeling data can prove to be a time and
resource-consuming task, and one is often presented with datasets that are
partly labeled. Face recognition can work in a semi-supervised manner. When
given an amount of images of the same person, labeling the person in one
image alone can potentially be enough for the algorithm to cluster it along with
the rest of the (unlabeled) images of the same person. This means that both
supervised and unsupervised methods can work in tandem [1].

● Self-Supervised Learning: Generating a labeled dataset from an unlabeled
dataset is always a viable approach to any given task. Once labeled, a
supervised learning approach can be implemented [6]. This approach is also
used in image recognition, where each training image is partially masked and
the model is trained to reconstruct the original image. The masked images are
used as inputs, while the original images are used as labels. This kind of
image reconstruction, when applied, say, to a dataset containing unlabeled
pictures of pets, is able to lead to the development of a model that can
discriminate between the various species.

● Reinforcement Learning: Approaches such as this [26], involve an agent
that can observe its current environment, and perform various actions that can
lead to rewards or penalties. The agent must become acquainted with the
best strategy that is able to ensure the highest possible reward, ultimately
called a policy. Reinforcement learning is often used in robotics in order to
perform basic tasks (e.g. lift an item or walk) as well as in programs such as
DeepMind’s AlphaGo [6], which formed its policy by analyzing millions of Go
games and playing against itself.

As far as Classical Machine Learning is concerned, i.e. algorithms associated with
supervised or unsupervised learning, a major drawback can be observed, closely

A. Koursaris 20

associated with data preparation and processing. In order to maximize the inferential
capacity of a given model, the training samples have to be transformed into
meaningful sets of features (Recall that the price of a house can be calculated given
its size etc). This process, called feature engineering [13], can prove to be both
challenging and time consuming. Recent advancements in hardware, however, have
presented a more viable solution: Artificial Neural Networks.

1.3 Deep Learning

The McCulloch-Pitts artificial neuron, a concept that has existed since 1943 [19] and
inspired by neuroscience, could be considered as the first forerunner of the whole
field of Deep Learning. Originally intended as an insight on the exact way of how
biological neurons and synapses process information, by working in tandem to
perform multiple computations based on propositional logic. However, given our
current (yet very imperfect) understanding of the inner workings of the brain, one
should consider biological and artificial neurons similar in name only. Nevertheless,
the impact of the artificial neuron should by no means be underestimated, since in
1957 it gave rise to Frank Rosenblatt’s Perceptron [19], it being one of the earliest
examples of binary classification systems. Here, a slightly modified version of the
artificial neuron is employed: The neuron applies a simple linear transformation to
the numeric inputs, consisting of a dot product of a weight vector w with the inputs x
and the addition of a bias b, like so (see eq. 1) [6] :

wT⋅x+b (1)

After the linear transformation, a step function is applied. A common step function is
the Heaviside step function, setting a threshold for determining the decision
boundaries concerning each of the 2 classes. The following is a high level layout of a
perceptron:

Figure 3: The Perceptron

Given that the Perceptron pertains to binary classification tasks, modern iterations
have replaced the step function with the logistic (sigmoid) function [3], also used in

A. Koursaris 21

Logistic Regression. Generally, a perceptron can be organized by one or more
artificial neurons, organized in a single layer, where every neuron (or node) is
connected with every given input, such that the layers have taken the name Dense
or fully-connected [7]. Modern neural architectures support the inclusion of multiple
layers. Architectures such as these are often cited as Multi-layer Perceptrons or
Deep Neural Networks (DNNs) [7]. Hence, the name Deep Learning stems purely
from the layout of such architectures, consisting of an input layer, multiple hidden
layers and an output layer. Computer Vision tasks are able to give a very helpful
intuition behind the inner machinations of a Deep Neural Network [6]. The Network
learns to discern smaller pieces of information when the input is propagated through
the lower layers of the architecture (edges, corners) and slowly builds towards
recognizing larger units (faces, buildings) in the final layers. This is how Deep
Learning revolutionizes data processing, since feature extraction happens while
information is propagated through the layers.

Figure 4: Typical Feed-Forward Neural Network

In order for a neural network to realize its full potential, a simple forward propagation
will not suffice. Ever since the 1960s several researchers have entertained the idea
of implementing some form of gradient-based optimization for MLPs. Seppo
Linnainmaa’s 1970 thesis [19] gave rise to the reverse-mode automatic
differentiation. Through the implementation of this algorithm, the network gains the
ability to perform gradient computation with respect to the model’s parameters
(weights and biases). The gradients can be used for performing a gradient descent
step, which in itself can be used to describe how the network error varies when its
parameters are tuned to a certain direction, thus providing an opportunity to adjust
the coefficients in a way that minimizes the loss function. This combination of
reverse-mode autodiff and gradient descent are implemented in an algorithm called
backpropagation [13]. To summarize, predictions on the inputs as well as calculation
of the total loss are made during the forward pass, while during the backward pass
the algorithm measures the error contribution from each parameter and adjusts
weights and biases to reduce the error (gradient descent step).

A. Koursaris 22

The implementation of the logistic function as opposed to the step function was done
in the context of better accommodating the backpropagation algorithm in neural
networks. The logistic function constantly has a well-defined non-zero derivative in
contrast to the step function’s flat segments. Other functions that work well in tandem
with backprop are the hyperbolic tangent (tanh) and the Rectified Linear Unit (ReLU)
[7]. Functions such as these are used as activation functions in the hidden layers of
a neural network and are applied subsequently to the linear transformation occurring
in each layer.

Neural Network architectures would eventually mature according to the needs and
specifications of a given task. While Convolutional Neural Networks would later
come to the aid of the booming field of Computer Vision, other tasks favored a more
sequential way as far as processing information is concerned.

1.4 Sequence Models: Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is a broad category of neural networks that is
able to analyze time series data, e.g. the hourly temperature in a certain area. RNNs
can work on sequences of arbitrary lengths, while ANNs and DNNs work with
samples of fixed input. Said sequences are processed by way of iteration through
the sequence elements as well as maintaining a state containing insights relative to
already processed information, i.e. RNN nodes are built on an internal loop. An RNN
comprising a single node receives inputs, processes them and passes the inputs
back to itself. More specifically, at each timestep t, the neuron receives the input x(t),
while also receiving its own predictions from the previous timestep, ŷ(t-1). This
process is called unrolling the network through time. Every neuron has two sets of
weights: one for the input x(t), and another for the predictions of the previous timestep
ŷ(t-1) as well as a singular bias b. The weights, given with the notation Wx and Wŷ
are matrices, and the bias b is a vector [7].

Figure 5: Recurrent Neural Network

RNNs typically receive a sequence of inputs and produce a sequence of outputs.
Each individual cell state at time step t is a function of the timestep inputs, as well as
the state at the previous timestep (see eq. 2) [13]:

h(t) = 𝒇(x(t), h(t-1)) (2)

A. Koursaris 23

Training RNNs is done using a strategy called backpropagation through time, where
the forward pass occurs within the unrolled network. What follows is the calculation
of the loss function regarding all timesteps (see eq. 3):

ℒ(Y(0), Y(1), …, Y(t)) (3)

The gradients of the loss are then propagated backward through the unrolled
network. At the end of that phase, an optimization step can be taken in a way
identical to that of regular ANNs. However issues, such as vanishing and exploding
gradients, arise during backpropagation, stemming from the gradients growing or
diminishing excessively (below or above 0 respectively). Issues such as these are
mitigated by implementing techniques such as gradient clipping [6].

1.4.1 RNN Variants

Transformations during data propagation through an RNN can lead to information
loss between timesteps. Given an adequate amount of timesteps, information
retention pertaining to the initial input state can be scarce or nonexistent.
Architectures such as the LSTM (Long-short Term Memory) and the GRU (Gated
Recurrent Unit) can handle such issues to the degree of substituting regular RNNs in
a plethora of tasks [7].

Proposed in 1997 as a means of combating the issue of vanishing gradients [6] and
gradually improved over the course of time, the LSTM is able to detect longer-term
patterns in data, while leading to better convergence. Not quite dissimilar to a regular
RNN cell, an LSTM cell’s state is dependent on two different states, the hidden state
h(t) as well as the cell state c(t). Both states are represented as vectors and are
intuitively related to short term and long term memory respectively.

The LSTM cell is composed of a main layer that has the role of analyzing the inputs
and the previous hidden state, much like a regular RNN. However, it also comprises
three gate controller layers [13], whose activation or lack thereof is controlled by a
Logistic Regression function (if the output is 0 every respective gate is closed, while
if the output is 1 it remains open). The forget gate (f(t)) controls the parts to be erased
from the long-term state h(t) , the input gate (i(t)) controls which parts of the main layer
output should be added to the long-term state, and the output gate (y(t)), which
controls the parts to be output at the current timestep both to h(t) and y(t).

Figure 6: Anatomy of a LSTM cell

A. Koursaris 24

GRUs were introduced later in 2014 as a simplified version of the LSTM that displays
quite similar performance to its more complicated counterpart. In a GRU cell, both
state vectors are merged into a singular vector h(t), while a singular gate controller z(t)
controls both the forget and input gate. The output gate is also absent, since the full
state vector is the output of every timestep [7]. Even so, a new gate controller r(t)
controls the part of the previous state to be shown in the main layer.

Figure 7: Anatomy of a GRU cell

Other techniques that have facilitated the improvement of RNN architecture are the
Bidirectional RNN, that enables unrolling the RNN in both directions (forward and
backwards in time), thus mitigating memory loss, and the encoder-decoder
architecture composed of 2 RNNs working in tandem [13]. The former, namely the
Encoder outputs a context vector, intuitively the gist of the inputs, which is
propagated into the latter, the Decoder that yields the recurrent outputs. Most
Encoder-Decoder architectures are further enhanced by the usage of an attention
mechanism, essentially a layer that applies attention weights to the parts of the input
that seem to be of the most significance [1].

Figure 8: Encoder-Decoder Architecture

Encoder-Decoder architectures are one of the many factors that have recently
revolutionized tasks such as machine translation as well as the field of Natural
Language Processing in general.

A. Koursaris 25

1.5 Summary

Examining past efforts, one can only realize that precursors to the architectures used
to tackle modern problems such as machine translation have been available for
years. Machine Learning and in particular Neural Networks might have been a well
established solution in tackling modern AI-related tasks, but it was only through
high-quality datasets available over the itnernet, as well as rapid advancements in
hardware that the Deep Learning Revolution could come into full fruition. The next
chapter examines a rich and diverse field that has greatly benefitted from the Deep
Learning boom: Natural Language Processing.

A. Koursaris 26

2. NLP AND TRANSFORMER ARCHITECTURES

The current chapter examines the evolution of the field of Natural Language
Processing, a field of research that is not exclusively tied to, but has benefited a
great deal from the field of Deep Learning. Great emphasis is given to concepts,
such as Word Embeddings, and transformer architectures, such as BERT -currently
considered as state-of-the art in natural language tasks- are introduced, specifically
Greek-BERT, the DistilBERT architecture, as well as Knowledge Distillation that
powers it.

2.1 Natural Language Processing

Even today, one of the most challenging tasks in the field of Artificial Intelligence is
the understanding and generation of human natural language by computers. The
main challenge of the field of Natural Language Processing (NLP) is that contrary to
programming languages, human language rules fluctuate and evolve according to
utility and usage. This kind of constant flux and evolution along with phenomena
such as figurative speech, grammatical and syntactic ambiguity and regional variety,
have given rise to a thriving interdisciplinary field, where computer science,
linguistics and mathematics work in tandem to serve a common purpose. Given the
abundance of text data over the internet, NLP might be more relevant than ever.

Symbolic AI approaches [6] to NLP were naturally the first step in creating systems
facilitating Natural Language Understanding (NLU) and Natural Language
Generation (NLG) [14]. Initial attempts to hard code the ruleset of a language in a
programming language like LISP were met with partial success at best, while the first
attempts in Machine Translation, a brainchild of the Cold War itself (Russian to
English translations were thought to be a very valuable tool), were very limited both
in performance as well as capability. The field of Applied Linguistics saw the
collaboration of both engineers and linguists in creating the first simple chatbots: The
ELIZA program, which came into fruition during the 1960s, utilized pattern matching
to generate rather simplistic responses to textual prompts [19].

During the late 1980s and the 1990s, the availability of better hardware as well as
the ubiquity of data started giving rise to more automated approaches [7]. Classical
Machine Learning approaches seemed to be the go-to approach. Decision Trees
seemed to be the natural next step to hard-coding and rules such as if statements,
until more statistical methods like logistic regression came into the foreground [19].
Evolution was rather slow until the 2010s when rigorous feature engineering was
abandoned in favor of Recurrent Neural Networks and in particular LSTM
architectures.

Aside from other preprocessing steps, such as tokenization (converting the text into
tokens, intuitively a list of words) or standardization (lowercasing, deaccenting,
stemming, lemmatization). An important feature of NLP approaches is that due to the
inability of machine learning algorithms to process raw text, said text has to be
transformed into meaningful representations. Chunks of texts such as words,
sentences, or paragraphs need to be vectorized. A popular method is that of word
embeddings, implemented by algorithms such as GloVe, Word2Vec and FastText

A. Koursaris 27

[14]. Algorithms such as these enable the representation of a given word as a vector
with certain dimensionality and are able to capture a significant portion of a word’s
semantic or syntactic capabilities.

Figure 9: Word Embeddings in a 2-dimensional space

Dimensionality reduction in a 2-dimensional space [13], shows that the semantic
difference between the vector representations of the words “woman” and “man” is
analogous to that of “queen” and “king”. The same goes for the syntactic difference
between “big” and “biggest”, and “small” and “smallest” [14]. What follows is a
non-exhaustive list of common tasks involving NLP and word embeddings [6]:

● Text Classification: Assignment of a particular class to a given text.
Instances of Text Classification come in the form of Sentiment Analysis (is a
review positive or negative?), Content Filtering (Spam Detection, Abuse
Detection).

● Token Classification: Assigning a class to every particular token in a given
text. Notable examples include Named Entity Recognition (is a particular word
a person, location or organization?) and Part-of-Speech Tagging (is a
particular word a noun a verb or an adposition?).

● Language Modeling: Given a partly masked or incomplete sequence of
tokens, predict the tokens that fit best in completing the sequence. Instances
of Language Modeling include Masked Language Modeling and Text
Generation as implemented by LLMs.

● Speech Recognition and Speech-to-Text: Given an audio file, yield the
transcript of the text uttered within the duration of said audio in a written
format or vice versa.

● Automatic Summarization: Given an input text, yield a summary containing
only the most important chunks (sentences) with regard to the topic.
Summarizations can be both extractive (keeping only certain sentences from
the main text) and abstractive (distilling the basic idea of the text itself).

● Question Answering: Given an input natural language question, yield the
correct answer. Question answering systems can be both extractive (keeping
only the correct answer within a span of text) or graph-based (given a natural

A. Koursaris 28

language question, convert certain text spans into meaningful information
within a certain graph, i.e. an entity and a relation).

● Machine Translation: Translate an input sequence from one language to
another, e.g. from English to Spanish.

Tasks such as Machine Translation have proven to be a catalyst when it comes to
the evolution of the field. From the first imperfect statistical endeavors, to the
Encoder-Decoder architecture along with the implementation of the attention
mechanism, Machine Translation has proven to be a quite challenging task, due to
vast differences when it comes to grammatical and syntactical structures between
languages. A giant leap forward would happen in 2017, when recurrence was
completely abandoned and attention proved to be the most valuable component.

2.2 Transformers

In 2017 Vashwani et al. published the seminal paper Attention is all You Need [28].
The paper heralded the advent of the Transformer architecture that is the core of all
current Large Language Model architectures. Built with the Machine Translation task
in mind and similar to previous NMT architectures, the Transformer comprises an
Encoder and a Decoder, but eschews recurrent layers in favor of multi-head
attention. Hence all layers in the transformer are composed of numerous Multi-Head
Attention Layers, with a Dense layer following in sequence after each attention layer.
Multi-Head Attention is based on simple scaled dot-product attention, given by the
following formula, intuitively mapping a query to sets of key-value pairs (see eq. 4):

Where Q, K and V stand for Query, Key and Value respectively, each of them a
matrix of weights with a dimension of batch_size * sequence_length *
embedding_dimension. Multi-Head attention allows for the linear projection of the
Queries, Keys and Values according to the number of the model’s Attention Heads,
i.e. a Transformer architecture with 3 attention heads calls for the initialization of
three different query, key and value matrices per Multi-Head Attention layer. The dot
product of the queries and keys is scaled by the square root of the dimensions of the
keys matrix, run through a softmax function and finally multiplied by the value weight
matrix [22].

A. Koursaris 29

Figure 10: Main mathematical operations in Transformers (from paper [28])

Long range dependencies are captured by Positional Encodings, that represent the
position of words within a sequence. Influenced by Digital Signal Processing and
generated by using sine and cosine functions, Positional Encodings are dense
vectors, much like word embeddings, and each positional encoding is summed with
its corresponding word embedding, thus maintaining a semblance of word order
even without recurrence [28].

Figure 11: Encoder-Decoder Transformer architecture (from paper [28])

A. Koursaris 30

The original Transformer architecture was composed of 6 transformer blocks, each
of them with an encoder as well as a decoder. The Encoder comprises a single
attention layer followed by a linear network, both of them having a Normalization
layer (LayerNorm) after them. When it comes to the Transformer Encoder, its
Multi-Head Attention Layer performs an update on each word representation, with
attention weights enriching the initially vague representations of words. The final
output of the encoder is produced after traversing the FFN that is next in the
sequence (composed of 2 dense layers, the former having a ReLU activation, the
latter having no activation at all). followed by the LayerNorm. The input sequence
(x1,...,xn) - in machine translation that would be the sentence in the source language -
is turned into meaningful representations (z1,..zn). The output is then fed to the
decoder’s attention layers [22].

The decoder’s lower attention layers perform the exact same function, but when
processing each embedding it avoids processing the following ones, i.e. when
processing the word “ate” in the sentence the cat ate the mouse, the layer focuses
on “ate” and the words that come before it, a technique called Masked Multi-Head
Attention. The upper decoder attention layer, along with the output of the previous
layers receives the encoder output by means of a residual connection so as to apply
cross-attention. Intuitively in the context of Machine Translation this means that
during the generation of the words of the target sequence, the transformer attends to
the words of the sequence in its source language as well as the words of the target
sequence that have already been generated. When given two sentences “The cat
ate the mouse” (source) and “Η γάτα έφαγε το ποντίκι” (target), when generating the
word “ποντίκι”, cross-attention pays as much attention to the word “το” as well as the
word “mouse” [21].

Finally after traversing a final DNN followed by a LayerNorm, the output is run
through a softmax activation and the final probabilities of the output sequence
(ŷ1,...,ŷn) are returned, which in the task of machine translation would be the words of
the target sequence. Aside from achieving state-of-the-art performance, transformer
architectures enable better parallelization, while also reducing training time. Over
time, the original transformer architecture would be refined and improved upon
through Sequence-to-Sequence models like T5, Decoder models like GPT, as well
as Encoder-only models like BERT [26].

2.3 BERT-based Architectures

Bidirectional Encoder Representations from Transformers (BERT) is a language
model developed by Google, with the paper releasing in 2018 [4]. Like the name
suggests, BERT is an encoder-only architecture, with the bidirectional element
stemming from the fact that the encoder itself does not possess any Masked
Multi-Head Attention Layers, a feature inherent in the original Transformer Decoder,
as well as Decoder models, such as GPT [26]. BERT demonstrated the efficiency in
pretraining a language model in a massive corpus, then using the pretrained model
for inference on downstream tasks, such as text or token classification, in a process
called fine-tuning, essentially an instance of Transfer Learning [7].

A. Koursaris 31

2.3.1 The Original BERT Model

The original BERT model was pretrained on BookCorpus (800M words) and
Wikipedia (2,500M words). The process of pretraining entails two different tasks [4]:

Masked Language Modeling (MLM): Each word in every sentence of the corpus
has a 0.15 probability of being masked. The model is trained to predict the masked
tokens given an input sentence. For example, in a sentence such as The [MASK] ate
the mouse, the model tries to complete the sentence by inferring that the masked
word is cat [4].

Figure 12: Overview of the Masked Language Modeling Task

Next Sentence Prediction (NSP): BERT is trained in predicting whether two
sentences are actually consecutive in the corpus or not, essentially a binary
classification problem. For example, given the sentences the cat is sleeping and it’s
snoring loudly, the model has to predict whether the sentences being consecutive is
logical or not. More recent research has shown that NSP does not have the same
importance as MLM during pretraining and has been rarely implemented in later
architectures [17]. Even so, it seems to facilitate the model’s inferential capability
when fine-tuning on tasks such Natural Language Inference, where inter-sentential
dependencies seem to matter the most [4].

A. Koursaris 32

Figure 13: Overview of the Next Sentence Prediction Task

The model is trained simultaneously on both MLM and NSP. Specifically for the NSP
task, as seen in the figure above, a [CLS] token is inserted at the start of every input
and the corresponding output, propagated by a linear binary classification
Feed-Forward Network, often called a classification head is the prediction, i.e. where
the sequence of sentences is logical or not, them separated by the special [SEP]
token. In the case of MLM, the loss is computed only on the masked tokens, and in
the case of NSP, only on the prediction of the classification head. After pretraining,
the model is fine-tuned on different tasks, retaining the pretraining weights, with the
only modification being a brand new classification head [4].

BERT comes in a variety of architectures, such as BERT-Base and BERT-Large,
composed of 12 and 24 stacked encoder layers respectively. The base model has a
hidden dimensionality of 724, while the large model has a hidden dimensionality of
1024. They also come in cased and uncased versions, i.e. taking into account or
ignoring letter casing. BERT has a vocabulary of 30,000 tokens, created via the
implementation of the WordPiece tokenization algorithm as a means to handle OOV
(out-of-vocabulary) words. What this means, essentially, is that if the BERT
Tokenizer does not recognize a word, it breaks it down into smaller sub-word units
[4, 14].

Figure 14: Example of WordPiece Tokenization

A. Koursaris 33

Being an encoder model, BERT has an affinity in classification and extractive
question answering tasks, but lacks the capabilities of decoder model in
Sequence-to-Sequence tasks, such as summarization or machine translation, or
even text generation which was greatly refined by the GPT architectures [26]. Even
so, it sparked an avalanche of transformer encoder models greatly influenced by it.
While some of them were focused on robust pretraining and optimization, some of
them were more in tune with the linguistic capabilities hidden in the pretraining
process.

2.3.2 GREEK-BERT

Language-specific iterations of BERT had to be developed in order to mitigate the
fact that the original BERT model was pretrained in an exclusively English language
corpus. Multilingual models such as M-BERT were trained on multiple language
iterations of the Wikipedia corpus (104 languages) [26], but given the fact that such
an attempt is prone to language-specific biases, due to the distribution of the
availability of Wikipedia texts in different languages itself being highly uneven,
monolingual models were the next logical step [18].

Like CamemBERT for French or GottBERT for German, GREEK-BERT was a
proposed answer to the necessity of a language model designed specifically for
modern Greek. Released in 2018 by a team of researchers affiliated with the Athens
University of Economics and Business, GREEK-BERT was based on the
BERT-base-uncased architecture, having 12 stacked encoder layers and attention
heads, and a hidden size of 768. The vocabulary size is slightly increased, it being at
35,000 tokens, generated by training a SentencePiece tokenizer. Pretraining came
down to the tasks of MLM and NSP, with the pretraining corpus having a size of
approximately 29GB. The corpus consisted of the Greek part of WIkipedia (730 MB
in size, consisting of approximately 0.08B tokens), the Greek translation of the
European Parliamentary Proceedings Corpus (Europarl, it being around 380MB, and
0.04B tokens long), and finally the majority of the corpus was made up of OSCAR, a
relatively cleaned and preprocessed version of the Common Crawl, consisting of
articles scraped directly from web pages (27GB, 2.92B tokens) [16].

What follows is the evaluation and benchmarking in 3 downstream tasks on smaller
Modern Greek corpora: Part-of-Speech Tagging, Named Entity Recognition and
Natural Language Inference. GREEK-BERT outperformed previous architectures in
all tasks but POS-tagging in spite of attaining an accuracy of over 98%. NER
accuracy levels ranged from 84.7 to 86.7%, as well as approximately 78-79% for
NLI.

The GREEK-BERT model was one of the main influences in designing the
architecture later proposed in the context of the present thesis. However, when it
comes to identifying its key component, one has to examine a very different
implementation of the BERT architecture.

A. Koursaris 34

2.3.3 DistilBERT and Knowledge Distillation

BERT-based architectures have a significant downside pertinent to their sheer size in
parameters. Overly long training times as well as constantly rising demands in
computational power, have rendered large models such as these not always viable
for users outside the boundaries of well-funded research projects or large
corporations. Recall that the original transformer architecture was trained on 8 P100
GPUS, while the base BERT model was pretrained on 4 Google Cloud TPUs (16
TPU chips in total). The cost of such processes can rise to hundreds of thousands of
dollars and the subsequent energy consumption is very detrimental to the
environment to say the least [26].

For such reasons, attempts have been made in democratizing and downsizing
language models, as well as improving data-driven efficiency. Towards the end of
2019, Victor Sanh and a team of researchers associated with the Hugging Face
platform released DistilBERT, a smaller, cheaper alternative to the BERT architecture
that is able to retain a staggering amount of the original model’s performance
capabilities. More specifically, DistilBERT is able to retain 97% of the original model’s
performance, while being 60% faster and reducing the number of parameters by
40% (66M parameters as opposed to BERT’s 110M) [23].

That level of compression is owed to a technique named Knowledge Distillation,
where a student model (here DistilBERT) is trained in reproducing the behavior of a
larger counterpart, called the teacher (in our case the original BERT model). The
main idea stems from the fact that during supervised learning, a standard objective
is the minimization of the cross-entropy between a model’s predicted labels and the
one-hot empirical distribution of said labels, i.e. softmax probabilities on incorrect
classes should have a tendency towards 0. Knowledge Distillation comes [10] in a
variety of implementations showing differences in the usage of a specific distillation
algorithm, as well as loss calculation and teacher-student architecture. Popular types
of Knowledge Distillation (KD) include [10, 26]:

● Response-based Distillation: The student is trained to mimic the predictions
of the teacher model by minimizing the difference between the predicted
outputs. During the distillation process, the teacher generates soft labels, e.g.
softmax probabilities over specific classes. The student model is trained to
predict the same soft labels as the teacher model by minimizing a loss
function between their predicted outputs.

● Feature-based Distillation: The teacher model is first trained on the training
data to learn all relevant task-specific features. The student is then trained to
learn the same features by minimizing the distance between the features
learned by student and teacher respectively. Teacher representations are
extracted from an intermediate layer and used as targets for the model.
Popular loss functions include the Mean Squared Error (MSE) as well as the
Kullback-Leibler Divergence (KLD) [26].

● Relation-based Distillation: The teacher model generates a set of
relationship tensors that capture dependencies between inputs and outputs.
The student is then trained in learning the relationship tensors by minimizing a

A. Koursaris 35

loss function that measures the difference between the relationship tensors
between teacher and student.

● Adversarial Distillation: Commonly used in Generative Adversarial
Networks (GANs). The adversarial (student) network is trained to generate
training samples that might prove difficult for the teacher to classify correctly.
Synthetic data such as this is generated by the addition of perturbations to the
original training samples. The student is then trained to classify both the
original and synthetic data.

Other KD types include Offline and Online Distillation, Multi-Teacher and
Cross-Modal Distillation techniques. Below we can see the type of KD applied
specifically during the pretraining phase of the DistilBERT model.

Figure 15: Calculating DistilBERT’s pretraining loss

Pretraining consists of a singular task, i.e. Masked Language Modeling (MLM) on the
Toronto Book Corpus [23]. Student initialization was made possible due to the
common dimensionality between teacher and student. Τhe student model’s
performance is measured using a distillation loss over the soft target probabilities of
the teacher, i.e. the model essentially measures the difference between the softmax
probabilities calculated by teacher and student respectively (see eq. 5):

Where ti and si refer to the probability outputs of the teacher and student models
respectively. Influenced by Geoff Hinton’s insights on Knowledge Distillation for the
field of computer vision a softmax-temperature was also implemented for calculating
the soft targets of a vector z hard target:

Where temperature T controls the smoothness of the output distribution and zi is the
model score for every class i (see eq. 6). The temperature is applied to both student
and teacher, while at inference, T is set to 1 to recover a standard softmax. The final

A. Koursaris 36

training loss is calculated by a linear combination of the distillation loss Lce as well as
the pretraining loss on the MLM task itself, LMLMand finally adding a cosine
embedding loss (Lcos) in order to align the direction of the hidden states vectors
between student and teacher [23].
As mentioned above, benchmarks on datasets such as General Language
Understanding (GLUE), as well as the Stanford Question Answering Dataset
(SQUAD), show that the DistilBERT model retains 97% of the original BERT model’s
accuracy. Models such as these, where lower computational necessities and smaller
training times come at the cost of sacrificing a meager amount of performance are
perfect candidates for domain adaptation. What follows is a rigorous description of
the design, implementation and evaluation of a similar architecture developed
specifically for the Greek language.

2.4 Summary

Transformer-based architectures have been solidified as the dominant option in
NLP-related tasks, due to their significant accuracy and speed, when compared to
previous RNN architectures. Furthermore, techniques, such as Knowledge
Distillation appear to be a viable form of compression, that decreases hardware
requirements, increases speed and keeps a great deal of a decompressed model’s
accuracy intact. This advantage will be leveraged when training a distilled
transformer encoder model for the Greek language.

A. Koursaris 37

3. DISTILBERT-EL-KLD

Attempts have been made to develop Language Models for the Greek language.
One such model is GREEK-BERT, used for a plethora of NLU tasks. Here, the
original GREEK-BERT architecture is used as a basis for the development of a
DistilBERT model specialized in Greek.

3.1 Research and Development

The model presented in the current thesis, namely DistilBERT-EL-KLD, is an attempt
in creating an end-to-end infrastructure, starting from the very selection of the
training corpora, to pretraining via a popular Knowledge Distillation method, and
finally the evaluation and benchmarking on the same corpora as GREEK-BERT.

3.1.1 Motivation

Even though architectures attempting to expand upon the original iteration of
GREEK-BERT, have already been implemented, some of them being DistilBERT
architectures, like the distilbert-base-el-cased architecture [11], developed among a
plethora of multilingual distilled versions of BERT, this attempt differs from many of
them in implementing the Kullback-Leibler Divergence (KLD) loss [26], contrary to
the original distillation loss used by Sanh et al. [23] as well as using only a fraction of
the original GREEK-BERT training corpus as measured in sheer size.

3.1.2 Tools and Resources

Pretraining was performed on an HPC node provided by the Cyprus Institute’s
preparatory access program1, according to which, researchers can obtain completely
free access on a high performance computer for tasks such as scalability testing and
model training, for a finite amount of CPU and GPU hours. For the purposes of the
current research, we utilized a node with 4 A100 GPUs, while being given 1000 GPU
hours for pretraining purposes. For the downstream tasks, the T4 virtual GPU (16
GB) provided by Google Colab notebooks proved to be more than sufficient for the
tasks, and fine-tuning relied solely on it.

Aside from a few bash scripts made specifically to schedule pretraining-associated
tasks within the linux server, model design, training and evaluation was done by
utilizing the Python programming language. Python’s higher level APIs, such as
PyTorch and Tensorflow, as well as a very active community make it a perfect
candidate for Data Science and Artificial Intelligence research projects. The
undertaking was carried through the usage of the PyTorch deep learning framework,
developed by Meta AI, and was greatly facilitated by Hugging Face’s Transformers,
Datasets and Accelerate libraries [10]. The Hugging Face community has given way
to the democratization of AI tools and methods by enabling users and researchers
alike to implement deep learning models in a few lines of code, as well as providing
memory-efficient ways in handling large corpora in addition to simplifying
parallelization and training on multiple devices. The Pandas API was also used for

1 https://castorc.cyi.ac.cy/access-to-resources/preparatory-access

A. Koursaris 38

data exploration, preprocessing and analysis, while graphs used in the section were
generated by Matplotlib.

3.1.3 Pretraining Corpora

Datasets used for pretraining were essentially more recent versions (as of April
2023) of the ones used for pretraining the original GREEK-BERT architectures [16].
The initial corpus comprises the Greek section of Wikipedia [29], the Greek
translation of Europarl [15], as well as the Greek rendition of OSCAR [24], a
normalized (to some degree) iteration of the Common crawl corpus. However, only a
small fraction of the given corpus was utilized during pretraining. After data selection
and preprocessing, we were left with Wikipedia (464.1MB), Europarl (370.8MB) and
the first 8 shards of OSCAR out of the original 70 (3.78GB, each individual shard
averaging at around 480MB - the original size of the corpus in its entirety was
78.3GB, with over 5B tokens). Note that the sizes refer to the file after rigorous
preprocessing. Especially the OSCAR shards were vastly downsized due to them
being web-scraped content that contained a lot of noise text.

3.1.4 Preprocessing and Tokenization

Generally, the process consists of a universal pipeline with slight corpus-specific
variations. Cleanup techniques are both intersentential, as well as intrasentential,
with a mixture of regex-based substitutions and statistical-based sentence removal
methods being applied. For correctly parsing the input text into sentences, a
modification had to be made on the base NLTK sentence tokenizer, so as to
accommodate symbols such as ; and · (greek ano teleia) considered to be strong
punctuation markers and thus sentence delimiters in the Greek language. The
tokenizer was also modified so as not to split sentences in abbreviations, such as
“π.χ.” or “κ.ο.κ”, that contain symbols that could erroneously be considered strong
punctuation themselves. The initial text was broken down into articles, for Wikipedia
and OSCAR (the former’s articles being separated by HTML <doc></doc> tags and
the latter being available in a JSON format, with each article stored within a
“Content” key), while the Europarl corpus was already broken down into sentences,
separated by a newline character. General preprocessing steps include the following:

● Removal of accents

● Lowercasing

● Removal of HTML tags, especially on OSCAR and Wikipedia

● Removal of hyperlinks (indicated by the https:// pattern)

● Removal of emails and internet usernames (indicated by the @ character)

● Removal of parentheses

● Removal of trailing spaces left and right of each text chunk

A. Koursaris 39

● Removal of spaces before punctuation characters

● Deduplication of consecutive punctuation characters, newlines and spaces

● Initial removal of all newline characters

● Removal of articles/Europarl sentences that have a very low count of Greek
alphabetic characters. Specifically, a textual chunk is removed if 50% or less
of its alphabetic characters are Greek.

● Removal of sentences that have a very low count of alphabetic characters.
Specifically, if less than 50% of a sentence’s tokens is completely composed
of alphabetic characters, the sentence is removed.

● Removal of all overly short sentences, i.e. those that contain 5 tokens or less:
in Wikipedia, those could be articles consisting only of the title, or
disambiguation pages.

● Regarding the OSCAR corpus, sentences with certain keywords were
removed: words such “σχόλια”, “δημοσιεύτηκε”, “προβολές” and “e-mail” often
belong to textual chunks associated with a website’s metadata,
advertisements, contact information or comment sections, and thus
considered too noisy to be included in the training dataset.

● Emojis and non-ASCII characters were also removed with the help of the
original GreekBERT’s normalization helper functions.

The NLTK sentence tokenizer outputs lists whose elements are an input text’s
individual sentences. In between those sentences, the newline character was added,
so as to feed the pretraining model architecture with small logical segments of texts
that were mostly devoid of random noise. The corpus shards were saved in .txt
format. For tokenization purposes during pretraining, the original GREEK-BERT
vocabulary was used [16], it being composed of 35,000 BPEs extracted by means of
the sentencepiece tokenization library.

A. Koursaris 40

Figure 16: Sample of the GREEK-BERT Tokenizer vocabulary file

The vocabulary is composed of individual words in their entirety as well as sub-word
segments as a means of handling OOV word instances. The completion of the
preprocessing pipeline signals the start of the most computationally intensive task
required in developing a model, that being pretraining.

3.1.5 Pretraining

Pretraining was done exclusively on the Masked Language Modeling task, following
in the footsteps of the original DistilBERT paper. The original GREEK-BERT model
was used as the teacher, and the exact same vocabulary was used for encoding and
tokenization [16]. Wikipedia, Europarl and the seven first parts of the OSCAR corpus
were used as a training set, and the eight OSCAR shards alone as a validation set.
Due to differences in the training data being used, it was deemed necessary for the
GREEK-BERT model to be fine-tuned on the masked language modeling task. The
number of sentences was approximately 9M.

GREEK-BERT was pretrained for 80000 steps, with a masking probability set at
0.15, much like the original BERT. Sequences were padded and truncated to a token
length of 512. Training was conducted by utilizing the Hugging Face Trainer API [10].
The training arguments are listed below.

A. Koursaris 41

Table 1: Pretraining Arguments for GREEK-BERT

Argument Value

per_device_train_batch_size 16

per_device_eval_batch_size 16

learning_rate 5e-5

weight_decay 0.01

evaluation_strategy “steps”

max_steps 80000

eval_steps 5000

GREEK-BERT ran for 80000 training steps over the course of approximately 36
hours. Evaluation was performed every 5000 training steps on a small subset of the
corpus, namely 5000 training samples. Taking into account gradient accumulation
and multiple GPUs, an effective batch size of 256 was achieved. Initial training loss
(step 5000) was 1.95, while being 1.79 at the end of pretraining. Validation loss was
1.86 and 1.69 during the start and the end of the pretraining process respectively.
Convergence was fast, since the updated corpus is not extremely different to that of
its counterpart used by the original GREEK-BERT model. The final loss values are
not that impressive, but would prove more than sufficient in order to get satisfying
results on the downstream tasks.

Next, pretraining was performed using knowledge distillation. One significant
modification is that the knowledge distillation loss function implemented is the
Kullback-Leibler divergence [26], efficient in measuring the distance between 2
distributions, thus giving insight to the difference between the softmax probability
outputs of teacher and student respectively (see eq. 7 below).

ytrue being the soft probabilities of the student and ypred those of the teacher. Each of
the distributions were scaled by a factor T (temperature), set to 2 during pretraining.
Loss output is finally scaled by the square of the temperature in order to soften the
distributions even further. The final loss is a linear combination between the KLD loss
output and the actual cross entropy loss output by the student model modified by
weights alpha. The final loss function was as follows (see eq. 8:

Loss = a * Lossce+ (1 - a) * LossKD (8)

A. Koursaris 42

During pretraining, alpha was set to 1 so as to result in an unweighted loss function.
Cosine embedding loss was not utilized since it proved to be inconsequential during
the initial phases of pretraining [26].

Training lasted about 33000 steps, a little more than 2.5 iterations of the whole
corpus. The process lasted about 10 days and 15 hours, with the trainer performing
approximately 35,000 steps every 24 hours. Pretraining arguments were set
accordingly.

Table 2: Pretraining Arguments for DistilBERT-EL-KLD

Argument Value

alpha 0.5

temperature 2

per_device_train_batch_size 16

per_device_eval_batch_size 16

gradient_accumulation_steps 2

evaluation_strategy “steps”

learning_rate 1e-4

weight_decay 1e-5

max_steps 330000

eval_steps 5000

Training time was considerably longer, and thus benefitted from a more aggressive,
higher learning rate, as well as more conservative, lower weight decay rate. By
default, the AdamW optimizer was utilized for optimization purposes. With gradient
accumulation and multiple GPUs considered, an effective batch size of 128 was
reached. The final checkpoint of the fine-tuned GreekBERT model was used as an
initialization point for the teacher model, and the distilbert-base-uncased model from
Hugging Face [10] was used as the initialization of the student. Initial training loss
was at 5.67, while initial validation loss was at 4.51. During the final training step,
training loss was at 2.12, and validation loss at 2.03.

A. Koursaris 43

Figure 17: Learning Curve for DistilBERT-EL-KLD

One must keep in mind that results are far from ideal, since when given ample
training time and resources, there is more room for implementing different
parameters, redesigning training pipelines, or simply training for a longer period of
time in order to minimize the loss function even further. Nevertheless, as we will see
further, the current pretraining method was enough to make our model a very viable,
low-cost alternative to the original GREEK-BERT when fine-tuning in downstream
tasks.

3.2 Fine-Tuning on Downstream NLP Tasks

The tasks chosen for evaluating the pretrained model are identical to those used in
evaluating the original GREEK-BERT architecture. The three tasks, namely
Part-of-Speech (PoS) tagging, Named Entity Recognition (NER), as well as Natural
Language Inference, were performed on smaller Greek corpora that were
themselves built from raw input data, preprocessed and cleaned.

3.2.1 General Assumptions

Evaluation was performed by using the poseval and seqeval metrics for POS-tagging
and NER respectively [10], while results on the NLI task were given by Scikit-Learn’s
classification_report function. Metrics include precision, recall and F1-Score (it being
the harmonic mean between precision and recall), as well as overall accuracy:

A. Koursaris 44

In all cases, both class-specific and overall scores were acquired and will be
displayed along with those of the original GREEK-BERT in order to compare them
and draw conclusions. Generally, the DistilBERT-EL-KLD proved to be very close to
the original GREEK-BERT’s performance benchmark, except maybe for NLI where
the gap between the 2 different models starts to widen. Even so, the
DistilBERT-EL-KLD proved to be by far the fastest option of the 2, and certainly the
least computationally expensive. For fine-tuning purposes the Google Colaboratory
virtual environment was used, as well as the T4 GPU that is provided for free.

3.2.2 POS-Tagging

Part-of-Speech tagging was conducted using the Greek Universal Dependencies
Treebank (GUDT) corpus, developed by the Institute of Language and Speech
processing of the “Athena” research center [20]. The dataset is split in train,
development and test sets, containing 1,622, 403 and 456 sentences each. Each
sentence has been annotated by tags corresponding to individual tokens. Each of
these tags represents a token’s part of speech, e.g. verb, noun etc. Along with the
POS-tagging sections, the dataset contains syntactic annotation, that we’ve elected
to ignore. The dataset files come in CONLL-U format. Each individual file comprises
a number of sentences, denoted by a sent_id.

Figure 18: Example of the GUDT Corpus

Exactly below the ID, is the full text. Instead of the full text, each individual token
could be extracted, located in the second column right below it, next to their
respective numbers. Columns are separated by tab (\t) characters and two columns
to the left, there is a list of PoS tags, corresponding to each individual token.
Following is a list of all POS tags used in the dataset.

A. Koursaris 45

Table 3: List of Labels in the GUDT Corpus

Fine-Tuning was performed over 312 steps, once again through Hugging Face’s
Trainer API and the DataCollatorForTokenClassification class provided specifically
for tasks such as this. Evaluation was performed every 70 steps on the development
set. The following arguments were used.

A. Koursaris 46

ADJ Adjectives: καλός, κακός, όμορφος, άσχημος

ADP Adpositions, i.e. prepositions: αντί, κατά, προς

ADV Adverbs: έτσι, ομοίως, πριν

AUX Auxiliary Verbs: έχω (as in έχω έρθει)

CCONJ Coordinating conjunction: και, παρά (as in καλύτερα
εγώ παρά εσύ)

DET Determiners, i.e articles: ο, η, το

NOUN Nouns: μαθητής, στρατιώτης, γιατρός

NUM Numerals: ένα, δύο

PART Particles: όχι, δεν, μην

PRON Pronouns: αυτός, εκείνος, οποίος

PUNCT Punctuation: .,!;

SCONJ Subjunctive Conjunction: ότι, όταν (as in μου είπε ότι
θα φύγει)

VERB Verbs: κάνω, τρέχω παίζω

X Foreign words: Μάντσεστερ, Λιγκ, Ίντερνετ

Table 4: Fine-Tuning Arguments for the PoS Tagging Task

Argument Value

per_device_train_batch_size 16

per_device_train_eval_size 16

learning_rate 1e-4

weight_decay 1e-4

eval_steps 70

Fine-Tuning was completed in 61 seconds. After the training process, validation loss
was at 0.09. The trained weights were then used to predict the classes of the unseen
test set. Test loss was at 0.08, and test accuracy was at 97.7%, incredibly close to
GREEK-BERT’s 98.1%. Thus, DistilBERT’s promise of retaining at least 97% of its
larger counterpart’s accuracy is proven very true for this task. The board below
indicates the per-class performance score in terms of precision, recall and F1.

A. Koursaris 47

Table 5: Per-Class Evaluation Metrics on the PoS Tagging task

Label Precision Recall F1 Score

ADJ 0.942 0.963 0.952

ADP 0.998 0.995 0.997

ADV 0.954 0.969 0.961

AUX 0.998 1.000 0.999

CCONJ 0.984 0.994 0.989

DET 0.996 0.997 0.997

NOUN 0.975 0.978 0.977

NUM 0.927 0.897 0.912

PART 1.000 1.000 1.000

PRON 0.994 0.973 0.983

PROPN 0.850 0.837 0.843

PUNCT 1.000 1.000 1.000

SCONJ 1.000 0.989 0.994

VERB 0.996 0.987 0.991

X 0.752 0.693 0.721

macro avg 0.958 0.951 0.954

weighted avg 0.977 0.977 0.977

A. Koursaris 48

The following board compares the 2 models with regard to their F1 scores per class.

Table 6: Head To Head Comparison on the PoS Tagging Task

Label GREEK-BERT DistilBERT-EL-KLD

ADJ 95.6 95.2

ADP 99.7 99.7

ADV 97.2 96.1

AUX 99.9 99.9

CCONJ 99.6 98.9

DET 99.8 99.7

NOUN 97.9 97.7

NUM 92.7 91.2

PART 100.0 100.0

PRON 98.8 98.3

PROPN 86.0 84.3

PUNCT 100.0 100.0

SCONJ 99.4 99.4

VERB 99.3 99.1

X 77.3 72.1

Aside from the X class, which does not refer to regular Greek vocabulary words, F1
scores appear to be very close to each other, constantly maintaining a gap of less
than 2%. The models also seem to have identical performance on classes such as
SCONJ, PART and ADP. Also, DistilBERT’s (61 seconds) runtime is significantly
faster when compared to that of GREEK-BERT (3 minutes).

3.2.3 Named Entity Recognition

The task of tagging named entities proved to be quite harder for both the original
GREEK-BERT model as well as its student. For the purposes of this task, we had to
utilize a combination of 2 datasets with completely different formats, thus requiring
significantly different preprocessing pipelines. The first dataset, created by I. Darras
[8], comes in JSONL format. From all the different keys located in each individual
JSON, we only elected to keep spans and text. The spans element contained the

A. Koursaris 49

label of each NER in question, the starting and end position of the entity in the text
(measured in characters), as well as an “answer” element, taking the values of either
accept or ignore. The “ignore” tag seemed to be reserved for cases where the
named entity was wrongly tagged, for example there were cases where a comma
character was tagged as a person, location or organization. After selecting the
following elements, the initial dataset (after retrieving the named entity text through
the given indices) looked like this:

Figure 19: Preprocessed sample of the Greek SpaCy NER corpus

The second dataset, compiled by A. Romanou2, came in a CONLL-U format not
dissimilar to the UD dataset examined in the previous task. We elected to keep the
tokens of each individual text, as well as the NameType element along with the
corresponding tag.

Figure 20: Sample from the NER Dataset by A. Romanou

The dataset provided by Romanou was split into train, dev and test files. Darras’
dataset was split into 3 files, also used as training, dev and test sets. After removing
duplicates, and keeping only entities with the tags LOC, PERSON, GPE (them being
the only common ones across the 2 datasets, LOC labels were renamed to GPE
because they technically represent the same objects), the final dataset used for
training and evaluation contained a training set of 1,622 sentences, the development
set of 404 sentences, and finally the test set of 456 sentences. Essentially the label
set consisted of 7 classes, each of them having the suffix B- when being the first
token in a named entity, or I- in all other cases (IOB scheme).

2 Special Thanks to Despina-Athanasia Pantazi for the provision of the dataset, since it is no longer
available online.

A. Koursaris 50

Table 7: List of Labels Used for the NER Task

B-ORG, I-ORG Organizations, such as institutions, sports teams, companies
etc: Παναθηναϊκός, Microsoft, Ευρωπαϊκή Ένωση

B-GPE, I-GPE Geopolitical Entities, i.e. countries, continents, cities: Αθήνα,
Ελλάδα, Ευρώπη

B-PERSON,
I-PERSON

Names belonging to people: Παπαδόπουλος, Van Gogh

O Not a named entity. Ignored during the evaluation process.

Training was performed over 208 steps (2 epochs), with 2 intermittent evaluation
steps, one at step 104, and one at the end. Fine-tuning lasted about 140
seconds.The following table describes the training arguments used on the Trainer
API.

Table 8: Fine-Tuning Arguments for the NER Task

Argument Value

per_device_train_batch_size 16

per_device_eval_batch_size 16

num_training_epochs 2

learning_rate 1e-4

weight_decay 1e-4

evaluation_strategy “steps”

eval_steps 104

At the end of the training process, validation loss was about 0.35. On the unseen test
set, overall F1 score was at 89%, surpassing the original GREEK-BERT’s 85.7. This
can be attributed to different methods of preprocessing used by the original
GREEK-BERT research team, which could have led to the inclusion of some data
that could be considered noise (recall that certain commas were tagged as named
entities).

A. Koursaris 51

Table 9: Per-class Evaluation Metrics for the NER Task

Label Precision Recall F1

test_GPE 0.917 0.934 0.926

test_ORG 0.825 0.801 0.813

test_PERSON 0.878 0.894 0.886

macro_avg 0.887 0.893 0.890

In order to increase fairness, a class-based metrics comparison will be made
between the current model, as well as the original GREEK–BERT architecture
fine-tuned on the current iteration of the dataset.

Table 10: Head To Head Comparison on the NER Task

Label DistilBERT-EL-KLD GREEK-BERT
(fine-tuned)

GREEK-BERT
(original)

GPE 92.6 93.7 88.8

PERSO
N

88.6 93.4 88.4

ORG 81.3 86.8 69.6

It seems that our model is lacking only in predicting ORG values, which could be
attributed to a lot of them encapsulating instances of the other 2 labels (for example
Μάντσεστερ should be tagged as a GPE, but Μάντσεστερ Γιουνάιτεντ as an ORG)
[16]. Either way overall accuracy for the new GREEK-BERT iteration is 96.4%, and a
2% overall gap between the 2 models is completely logical. Our model still displays
the superior runtime, running over the course of 2 minutes and 20 seconds, while the
original Greek-BERT architecture takes about 4 minutes and 20 seconds to complete
training.

3.2.4 Natural Language Inference

For the final task of Natural Language Inference (NLI), we utilized the Greek portion
of the MultiNLI dataset, a multilingual version of the English XNLI corpus [2]. Data
preparation and preprocessing was less complicated than that of the previous 2
tasks, since the dataset comes in .tsv format. The task is to predict whether a
sequence of 2 sentences (a premise and a hypothesis) expresses some kind of
entailment or contradiction (if any, if not the relationship is tagged as neutral). This is
a sequence classification task as opposed to the previous ones, them being
examples of token classification, and having to do with the logic behind a sequence
of sentences, it could be seen as a task not too dissimilar to the Next Sentence

A. Koursaris 52

Prediction (NSP) task. The significant downside of the dataset is that the multilingual
corpus was generated through NMT methods applied on the original English corpus.
That means that the quality of some of the sentences could be dubious and very
divergent from the intended translations when generated by actual human native
speakers.

Figure 21: Example of the Greek Portion of the MultiNLI corpus

The dataset was split into training, development and validation sets. The
development and validation sets had multiple label annotations for every given
sequence (5 in number). In every case, the label that had the majority vote was
selected, and if 2 labels had the same amount of votes, the one that appeared first
was selected. In the development and test sets, there was also a column match
indicating whether the produced sentences in the sequence actually matched or not
(some of them, when put in a sequence did not make sense at all and were filtered
out).There The training set was composed of 392702 training samples, the
development set consisted of 2312 samples, and the test set consisted of 4666
samples. Training lasted for exactly 2 hours, performing 24544 training steps over 2
epochs and hyperparameters during training were the following:

A. Koursaris 53

Table 11: Fine-Tuning arguments for the NLI Task

Argument Value

per_device_train_batch_size 32

per_device_eval_batch_size 32

num_train_epochs 2

learning_rate 1e-4

weight_decay 1e-4

evaluation_strategy “steps”

evaluation_steps 1000

hidden_dropout_prob 0.2

attention_probs_dropout_prob 0.2

The dropout probability of the initial model configuration was raised to 0.2 from the
original 0.1, since it helped in the accuracy metric increasing by 1-2%. Validation and
Test loss were both at around 0.63. Evaluation was performed by using simple
classification metrics such as precision, recall and F1 score (macro average)
functions - both overall and per class- provided by the scikit-learn library. An overall
accuracy of 73.5 shows, for the first time, a larger gap between our model and the
original GREEK-BERT, which attained an accuracy of 78.6. That 5% gap could either
be attributed to the poor quality of the training data, being an AI-generated dataset,
but it might also signify the need of knowledge distillation training in the Next
Sentence Prediction task, through which out model might be able to draw patterns
regarding longer-range (intersentential) dependencies.

Table 12: Per-Class evaluation metrics for the NLI Task

Label Precision Recall F1

Neutral 68.9 72.5 70.1

Entailment 80.0 69.8 72.6

Contradiction 74.7 80.5 76.8

macro_avg 74.5 74.2 74.2

A closer look at the performance (with regards to the F1-score) of both models
might shed more light on the matter.

A. Koursaris 54

Table 13: Head To Head Comparison on the NLI Task

Label DistilBERT-EL-KLD Greek-BERT

Neutral 70.1 75.9

Entailment 72.6 78.8

Contradiction 76.8 81.2

Evidently, just like the teacher before it, the student model generalizes better on
sequences that imply contradiction and falls short when the relationship is
completely neutral. Our model is constantly about 5% behind, but even so the
performance, considering the difficulty of the task as well as the data at hand is
adequate, especially given that during knowledge distillation a certain portion of the
teacher model’s performance has to be downsized. The only clear advantage is that
of training speed, since the original GREEK-BERT has to be trained for about 3
hours in order to perform the same task.

3.3 Summary

The full development of DistilBERT-EL-KLD was thoroughly examined: from the
selection of the pretraining corpora, to preprocessing, to MLM-based pretraining with
Knowledge Distillation and finally fine-tuning on NLU tasks, such as PoS-Tagging,
NER and NLI. The model appears to be significantly faster and computationally
inexpensive than its decompressed counterpart, while also appearing to preserve the
original model’s accuracy on all tasks, except maybe on the NLI task, even though it
does not fail in achieving a quite satisfactory performance in general.

A. Koursaris 55

4. CONCLUSION

The experiments conducted above were able to provide a more thorough
understanding on the inner workings of language models. Even when aiming at
reducing parameter size and computational needs, one has to take into account that
the undertaking still has very considerable requirements, concerning time and
resources alike. But the argument still remains: not every single natural language
understanding or generation task requires a large language model. Training and
evaluation of the DistilBERT-EL-KLD model have demonstrated that smaller models
can be pretrained on a relatively small amount of data, also allowing for faster
deployment and evaluation, while retaining human-level performance for a plethora
of tasks. Any kind of initial inefficiency can be mitigated through further pretraining or
fine-tuning with a specific purpose, but state-of-the art performance has also shown
that even on fine-tuning tasks, the quality of the input data plays a paramount role on
the model’s performance. With time, larger datasets and even higher quality data will
be available in many written natural languages, thus leading to even more
improvement in model inference and evaluation. The goal of the democratization of
AI seems now more attainable than ever, especially for simple tasks like text
classification. With smaller architectures enabled by Knowledge Distillation, as well
as repositories such as Hugging Face, the future looks very bright for the field, and
one might even entertain the thought that given a home computer and an internet
connection, anyone can develop their very own language model.

A. Koursaris 56

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BERT Bidirectional Encoding
Representations from Transformers

CoNLL Computational Natural Language
Learning

DNN Deep Neural Network

GPT Generative Pretrained Transformer

GRU Gated Recurrent Unit

HPC High Performance Computer

I-O-B Inside-Outside-Beginning

KLD Kullback-Leibler Divergence

LLM Large Language Model

LSTM Long Short Term Memory

ML Machine Learning

MLM Masked Language Modeling

NER Named Entity Recognition

NLG Natural Language Generation

NLI Natural Language Inference

NLP Natural Language Processing

NLU Natural Language Understanding

NMT Neural Machine Translation

NSP Next Sentence Prediction

PoS Part of Speech

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

A. Koursaris 57

A. Koursaris 58

LIST OF REFERENCES

[1] F. Chollet, Deep Learning with Python, Manning, 2021.

[2] A. Conneau et al., XNLI: Evaluating Cross-lingual Sentence Representations, in: E. Riloff, D.
Chiang, Julia Hockenmaier, J. Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018, pp. 2475-2485.

[3] M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for machine learning, Cambridge University
Press.

[4] J. Devlin, M. Chang, K. Lee, K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding, in: J. Burstein, C. Doran, and T. Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
Association for Computational Linguistics, 2019, pp. 4171-4186.

[5] D. Foster, Generative Deep learning: Teaching Machines to Paint, Write, Compose, and Play,
O’Reilly, 2023.

[6] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems, O’Reilly, 2019.

[7] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.

[8] Google Summer of Code 2018 Project - spaCy now speaks Greek, GitHub,
https://github.com/eellak/gsoc2018-spacy [Online; Accessed 15/03/2024]

[9] J. Grus, Data Science From Scratch: First Principles with Python, O’Reilly, 2019.

[10] G. E. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network, ArXiv (Cornell
University), 2016.

[11] Hugging Face. (n.d.). Hugging Face – On a mission to solve NLP, one commit at a time, [Online;
Accessed 15/03/2024]

[12] C. Huyen, Designing machine learning systems: An Iterative Process for Production-Ready
Applications, O’Reilly, 2022.

[13] G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor, An introduction to statistical learning: with
Applications in Python, Springer, 2013.

[14] D. Jurafsky, J. H. Martin, Speech and Language Processing : An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition, Pearson, 2014.

[15] P. Koehn, Europarl: A Parallel Corpus for Statistical Machine Translation, in: Conference
Proceedings: the tenth Machine Translation Summit, Asia-Pacific Association for Machine Translation,
Phuket, Thailand, 2005, pp. 79–86.

[16] J. Koutsikakis, I. Chalkidis, P. Malakasiotis, I. Androutsopoulos. GREEK-BERT: the Greeks
visiting Sesame street, in: Constantine D. Spyropoulos, I. Varlamis, I. Androutsopoulos, and P.
Malakasiotis,(eds.), 11th Hellenic Conference on Artificial Intelligence, Athens, Greece, 2020.

[17] Y. Liu, M. Ott, N. Goyal, J. Du, M. S. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V.
Stoyanov, RoBERTa: A Robustly Optimized BERT Pretraining Approach, ArXiv (Cornell University),
2019 pp. 110–117.

A. Koursaris 59

https://github.com/eellak/gsoc2018-spacy

[18] L. Martin, B. Muller, P. J. O. Suárez, Y. Dupont, L. Romary, É. V. de la Clergerie, D. Seddah, & B.
Sagot, CamemBERT: a Tasty French Language Model, in: D. Jurafsky, J. Chai, N. Schluter, J.
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2020, pp. 7203–7219.

[19] P.R Norvig, S. Russell, Artificial intelligence: A Modern Approach, Global Edition, Pearson, 2021.

[20] P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papageorgiou, and S. Piperidis, Theoretical and
Practical Issues in the Construction of a Greek Dependency Treebank, in: Proceedings of The Fourth
Workshop on, Treebanks and Linguistic Theories (TLT 2005), M. Civit, S. K., and M. A. Marti (eds.).
Universitat de Barcelona, Barcelona, Spain, 2005, pp. 149–160.

[21] D. Rothman, A. Gulli, Transformers for Natural Language Processing, Packt, 2022.

[22] A. Rush, The Annotated Transformer, in: Proceedings of Workshop for NLP Open Source
Software, Melbourne, Australia, Association for Computational Linguistics, 2018, pp. 52-60.

[23] V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, A Distilled Version of BERT: Smaller,
Faster, Cheaper and Lighter, ArXiv (Cornell University), 2019.

[24] OSCAR: A Clean Version of the Common Crawl, https://oscar-project.org/ [Online; Accessed
18/03/2024]

[25] R. S Sutton, & A. Barto, Reinforcement learning: an introduction, MIT Press, 2018.

[26] L. Tunstall, L. von Werra, T. Wolf, Natural Language Processing with Transformers, Revised
Edition, O’Reilly, 2022.

[27] A. M. Turing, Computing Machinery and Intelligence, in: Mind vol. 49, 1950, pp. 433–460.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin, Attention is All You Need, in: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4, Long Beach, CA,
USA, 2017, pp. 5998–6008.

[29] Wikipedia, Hellenic languages — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Hellenic%20languages&oldid=1033038922, 2024. [Online;
Accessed 15/03/2024]

[30] G. Yenduri. M. Ramalingam, C. S. G, Y. Supriya, G. Srivastava, P. K. R. Maddikunta, D. R. G, R.
H. Jhaveri, B. Prabadevi, W. Wang, A. V Vasilakos, T. R. Gadekallu, Generative Pre-trained
Transformer: a Comprehensive Review on Enabling Technologies, Potential Applications, Emerging
Challenges, and Future directions, ArXiv (Cornell University), 2023.

A. Koursaris 60

