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Abstract 
It is currently estimated that human species can be affected by more than 10,000 distinct rare 

diseases. Although each one concerns a small percentage of the world’s population, together 

they can create a huge economic burden. Among this long list of diseases lies idiopathic 

pulmonary fibrosis, the most lethal of the idiopathic interstitial pneumonias. Until now there is 

no curative option other than the scarcely available lung transplantation opportunities. Thus, 

patients are treated with anti-fibrotic agents trading time for often severe side effects. Over the 

next decades, disease burden is estimated to increase due to a pattern of increasing prevalence 

and a bidirectional relationship to COVID-19, necessitating research intensification. 

In this thesis, in silico methods have been utilized in order to propose novel disease biomarkers 

and curative options for pulmonary fibrosis. Towards that goal we have created Fibromine, a 

database of manually curated and consistently re-analyzed omics data, spanning two species 

and numerous experimental setups. Its contents are freely accessible via the homonym online 

application which can also be used for real-time data combination, statistical and visual 

exploration. Subsequently, Fibromine-proposed deregulated features between pulmonary 

fibrosis and control conditions were used for machine learning prioritization of disease 

biomarkers. A short and a long target lists were obtained from SHAP-based explanation of the 

models, containing both well established and interesting novel targets. Both gene lists were 

capable of separating pathological from steady state samples with an at least equal performance 

to that of previously proposed feature sets. Overall, computational analysis has proven capable 

of identifying new promising disease targets once applied on high quality data. Centralization 

of the latter is necessary for future studies acceleration, hypothesis formation and/or validation. 

Moreover, various omics data have been processed for the investigation of pulmonary fibrosis-

related molecules and conditions. Data analysis from control, hepatocellular adenocarcinoma, 

prostate, lung and breast cancer samples described a regulatory link between DNA methylation 

and ENPP2 expression. Deregulated during cancer and measurable through non-invasive 

procedures, this regulatory connection was found of some prognostic value urging for more 

studies on the subject. Subsequently, microbiome exploration from murine gut, liver and lung 

suggested the existence of an axis connecting the three organs. Diet-induced obesity was 

proposed to cause dysbiosis, thus potentially impairing homeostatic balance. Next, 

investigation of the up-regulated lipocalin-2 expression during pulmonary fibrosis suggested 

the molecule in question as a biomarker for lung inflammation and respiratory functional status, 

motivating for further studies. In fibroblasts was found to be crucial for pulmonary fibrosis and 

extracellular matrix invasion. Importantly, targeting Tks5 successfully attenuated pulmonary 

fibrosis via down-regulating podosomes formation, thus arising as a new promising therapeutic 

alternative. In another report, MAP3K8 was revealed to have an anti-fibrotic character via 

mediating inflammation-related processes and Cox-2-mediated PGE2 production. Furthermore, 

examination of COVID-19 data suggested the pathologic nature of ATX/LPA axis and its 

importance for dendritic cells homeostasis which is disrupted during SARS-CoV-2 infection. 

Last, a detailed study recorded the responses of HKC-8 cells post distinct treatments with 176 

stimulants. Among them, LPA acted in a pro-inflammatory fashion indicating a possible 

pathogenic role in chronic kidney disease. 

In total, the above projects created a central high quality database of pulmonary fibrosis omics 

data, proposed new target genes for the treatment of pulmonary fibrosis and have also delved 

deeper into obscure areas of the aforementioned and similar pathologies.  
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Περίληψη 
Σύμφωνα με τις τελευταίες εκτιμήσεις το ανθρώπινο είδος μπορεί να επηρεαστεί από 

περισσότερες από 10.000 διακριτές σπάνιες ασθένειες. Παρότι κάθε μια αφορά ένα μικρό 

ποσοστό του παγκόσμιου πληθυσμού, στο σύνολό τους δημιουργούν ένα μεγάλο οικονομικό 

βάρος. Ανάμεσα τους βρίσκεται και η ιδιοπαθής πνευμονική ίνωση, η πιο θανάσιμη από τις 

ιδιοπαθείς διάμεσες πνευμονοπάθειες. Έως τώρα δεν υπάρχει άλλη θεραπευτική επιλογή πέραν 

των σπάνιων ευκαιριών μεταμόσχευσης πνευμόνων. Έτσι οι ασθενείς λαμβάνουν αντι-

ινωτικούς παράγοντες ανταλλάσσοντας χρόνο με πολλές φορές σοβαρές παρενέργειες. Κατά 

τις επόμενες δεκαετίες το φορτίο της ασθένειας εκτιμάται πως θα αυξηθεί εξαιτίας ενός 

μοτίβου αυξανόμενου επιπολασμού και αμφίδρομης συσχέτισης με την νοσο COVID-19, 

επιβάλλοντας την εντατικοποίηση σχετικών ερευνών. 

Σε αυτή τη διατριβή χρησιμοποιήθηκαν in silico μέθοδοι για την πρόταση καινοτόμων 

βιοδείκτων και θεραπευτικών επιλογών για την πνευμονική ίνωση. Προς αυτό τον στόχο 

δημιουργήσαμε το Fibromine, μια βάση δεδομένων από χειρωνακτικώς σχολιασμένα και 

συνεπώς επαν-αναλυμένα ωματικά δεδομένα που εκτείνονται σε δύο είδη και πολυάριθμες 

πειραματικές διευθετήσεις. Τα περιεχόμενα της είναι δωρεάν προσβάσιμα μέσω της ομώνυμης 

διαδικτυακής εφαρμογής η οποία μπορεί επίσης να χρησιμοποιηθεί για τον συνδυασμό, την 

στατιστική και οπτική εξερεύνηση των δεδομένων σε πραγματικό χρόνο. Ακολούθως, γενετικά 

στοιχεία που προτάθηκαν από το Fibromine ως απορρυθμισμένα μεταξύ πνευμονικής ίνωσης 

και συνθηκών ελέγχου χρησιμοποιήθηκαν για την ιεράρχηση βιοδεικτών χρήσει μηχανιστικής 

μάθησης. Μια βραχέα και μια μακρά λίστα στόχων αποκτήθηκε από εξήγηση των μοντέλων 

με τη χρήση τιμών SHAP, περιλαμβάνοντας τόσο καλώς ορισμένους όσο και ενδιαφέροντες 

νέους στόχους. Και οι δύο λίστες γονιδίων ήταν ικανές να διαχωρίσουν παθολογικά από υγιή 

δείγματα με τουλάχιστον ισάξια επίδοση με αυτή προηγουμένως προταθέντων συνόλων 

γενωμικών χαρακτηριστικών. Εν πολλοίς, η πληροφοριακή ανάλυση αποδείχθηκε ικανή στον 

εντοπισμό νέων πολλά υποσχόμενων παθολογικών στόχων, εφόσον εφαρμοστεί σε υψηλής 

ποιότητας δεδομένα. Η συγκέντρωση των τελευταίων είναι απαραίτητη για την επιτάχυνση 

μελλοντικών μελετών, καθώς και για τον σχηματισμό ή/και την επαλήθευση υποθέσεων. 

Επιπροσθέτως, διάφορα ωματικά δεδομένα έτυχαν επεξεργασίας για την μελέτη συγγενών 

μορίων/συνθηκών της πνευμονικής ίνωσης. Ανάλυση δειγμάτων αναφοράς, προστατικού, 

πνευμονικού, μαστικού και ηπατικού καρκίνου περιέγραψε έναν ρυθμιστικό σύνδεσμο μεταξύ 

DNA μεθυλίωσης και της έκφρασης του ENPP2. Απορρυθμισμένη κατά τον καρκίνο και 

μετρήσιμη μέσω μη επεμβατικών μεθόδων αυτή η ρυθμιστική σύνδεση βρέθηκε να έχει κάποια 

προγνωστική αξία ωθώντας προς νέες έρευνες. Ακολούθως, εξερεύνηση του μικροβιώματος 

εντέρου, ήπατος και πνευμόνων ποντικών πρότεινε την ύπαρξη ενός άξονα μεταξύ των τριών 

οργάνων. Παχυσαρκία επαγόμενη από λιπαρή δίαιτα προτάθηκε πως προκαλεί δυσβίωση και 

πιθανώς διαταραχή της ομοιόστασης. Έπειτα, έρευνα της αυξημένης έκφρασης της lipocalin-

2 κατά την πνευμονική ίνωση πρότεινε το εν λόγω μόριο ως έναν βιοδείκτη της πνευμονικής 

φλεγμονής και των πνευμονικών λειτουργιών, κινητοποιώντας προς περαιτέρω έρευνες. 

Επίσης, ο TSK5 διαμεσολαβούμενος σχηματισμός ποδοσωμάτων από πνευμονικούς 

ινοβλάστες βρέθηκε καίριας σημασίας για την πνευμονική ίνωση και την εισβολή στην 

εξωκυττάρια μήτρα. Η στόχευση του Τks5 σταμάτησε επιτυχώς την πνευμονική ίνωση μέσω 

μειωμένου σχηματισμού ποδοσωμάτων, και έτσι αναδείχθηκε έως μια νέα πολλά υποσχόμενη 

θεραπευτική επιλογή. Σε άλλη αναφορά, το MAP3K8 φανερώθηκε να έχει αντι-ινωτικό 

χαρακτήρα μέσω ρύθμισης φλεγμονωδών διαδικασιών και της Cox-2 διαμεσολαβούμενης 

παραγωγής PGE2. Επιπλέον, εξέταση COVID-19 δεδομένων πρότεινε την παθολογική φύση 

του άξονα ΑΤΧ/LPA και τη σημαντικότητα του για την ομοιόσταση των δενδριτικών 

κυττάρων, η οποία διακόπτεται κατά τη διάρκεια της λοίμωξης με SARS-CoV-2. Τέλος, μια 

αναλυτική μελέτη κατέγραψε τις αποκρίσεις των HKC-8 κυττάρων σε 176 διακριτές επωάσεις. 
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Μεταξύ αυτών το LPA είχε προ-φλεγμονώδη δράση υποδεικνύοντας τον πιθανώς παθογονικό 

ρόλο του στην χρόνια νεφρική νόσο. 

Εντέλει, οι προαναφερθείσες εργασίες δημιούργησαν μια κεντρική, υψηλής ποιότητας βάση 

ωματικών δεδομένων πνευμονικής ίνωσης, πρότειναν νέα γονίδια στόχους για την θεραπεία 

της, ενώ επίσης διείσδυσαν βαθύτερα σε αχαρτογράφητες περιοχές της ανωτέρω παθολογίας. 
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Abbreviations 

Acellular ECM aECM 

Acute exacerbation AE 

Acute lung injury ALI 

Amplicon sequence variants ASVs 

Arachidonic acid AA 

Autotaxin ATX 

Bleomycin BLM 

Canonical correlation analysis CCA 

Connectivity map analysis CMap 

Consensus differentially abundant protein cDEP 

Consensus differentially expressed gene cDEG 

Consensus fold change FCConsensus 

Control diet CD 

Differential expression analysis DEA 

Differentially expressed gene DEG 

Findability, Accessibility, Interoperability and 

Reusability 

FAIR 

Fold change FC 

Gene copy number GCN 

Gene expression omnibus GEO 

Gene ontology GO 

Gene significance GS 

Hematopoietic cells HC 

Hepatocellular carcinoma HCC 

High-fat diet HFD 

Highly variable genes HVG 

Idiopathic pulmonary fibrosis IPF 

Interstitial lung disease ILD 

Lung adenocarcinoma LC 

Lysophosphatidic acid LPA 

Lysophosphatidylcholine LPC 

Machine learning ML 

Matthew’s correlation coefficient MCC 

Module eigengene ME 

Module membership MM 

Monte-Carlo cross validation MCCV 

Mutli-dimensional scaling MDS 

Mutual nearest neighbors MNN 

Next generation sequencing NGS 

Non-hematopoietic cells nHC 

Normalized enrichment score NES 

Pathway analysis PA 

Plasmacytoid dendritic cells pDCs 

Precision cut lung slices PCLS 

Primary normal human lung fibroblasts NHLFs 

Principal component analysis PCA 

Prostaglandin E2 PGE2 

Prostate adenocarcinoma PC 

Pulmonary fibrosis PF 

RNA sequencing RNA-seq 

Shapley additive explanations SHAP 

Shared nearest neighbor SNN 

Single cell RNA sequencing scRNA-seq 

Topological overlap measure TOM 

Transcription factor TF 

Usual interstitial pneumonia UIP 
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1. Introduction 

1.1 Idiopathic Pulmonary Fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a fatal, progressive, fibrotic disease of the lungs with 

unknown etiology. It belongs to the family of interstitial lung diseases (ILDs) and is 

characterized by a usual interstitial pneumonia (UIP) pattern not attributable to any 

environmental or other known factors leading to ILD development (Podolanczuk, Thomson et 

al. 2023). 

From a physiological point-of-view, disease progression leads to gradual decrease in lung 

function capacity, worsening of the related symptoms and finally death due to either respiratory 

failure or existing comorbidities (Lederer and Martinez 2018). The median life expectancy of 

a newly diagnosed person, is rather historically defined to span a period 3 to 5 years post 

diagnosis (Nathan, Shlobin et al. 2011). Nevertheless, per patient disease evolution is very 

heterogeneous, multifactorial and thus greatly unpredictable (Podolanczuk, Thomson et al. 

2023). 

There are multiple IPF risk factors, both genetic and environmental. Mutations of the MUC5B 

promoter (Seibold, Wise et al. 2011, Hancock, Hennessy et al. 2018), variants of TOLLIP 

(Noth, Zhang et al. 2013) and genetic changes near AKAP13 gene 57 (Allen, Porte et al. 2017) 

are only some of the genetic links discovered. Most recently, peripheral leukocyte short 

telomere length has been associated with poor outcomes for immunosuppressed IPF patients 

(Newton, Zhang et al. 2018), while several studies have established an association between 

telomeric DNA maintenance and both the sporadic and the familial forms of IPF (Fingerlin, 

Murphy et al. 2013, Stuart, Choi et al. 2015, Zhang, Povysil et al. 2022). As far as the 

environmental factors are concerned, age (>60 years), male gender, present or past smoking 

and occupational exposures are some of the well-established risk factors (Baumgartner, Samet 

et al. 2000, Kaul, Lee et al. 2021). 

Currently, IPF treatment is based on two anti-fibrotic agents, nintedanib and pirfenidone (King, 

Bradford et al. 2014, Richeldi, du Bois et al. 2014). Those two drugs are able to decelerate 

disease progression and lung failure gradual establishment. Nevertheless, neither of the two 

agents are capable of significantly relieving patient symptoms and unfortunately, most 

recipients discontinue their use due to emerging side effects (Podolanczuk, Thomson et al. 

2023). In addition, the effects of pirfenidone and nintedanib administration are not well known 

and scientists have only recently beginning to assess their impact on acute exacerbations 

(Isshiki, Sakamoto et al. 2021, Urushiyama, Jo et al. 2022). Unfortunately, a usually precarious 

lung transplantation is the only curative option available and yet, it is inaccessible for the vast 

majority of IPF suffering individuals (Antoniou, Tsitoura et al. 2021),  

From an epidemiological point-of-view, IPF is considered to be an orphan disease 

(ORPHA:2032) which, according to the European Union Regulation on Orphan Medicinal 

Products (1999), is any disease that affects less than a single individual per 2000 EU 

inhabitants. Within the first decades of the 21st century, there has been reported a sometimes 

dramatic increase both in the incidence and prevalence of the disease, which cannot be clearly 

attributed to a certain factor (Podolanczuk, Thomson et al. 2023). 

Taking all the above into consideration, the identification of new disease targets and/or 

biomarkers is extremely crucial. 
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1.2 Murine model of IPF 

Multiple animals have been used as a means of studying pulmonary fibrosis (PF). Domesticated 

animals, such as dogs and equines, spontaneously develop PF offering a more natural 

pathological context, but at the same time rendering experiments particularly time consuming 

(Tashiro, Rubio et al. 2017). More importantly, these animal pathologies does not closely 

resemble IPF. Alternative animal models can be established by artificially evoking PF in 

murine species using chemical agents, such as bleomycin and asbestos and even radiation 

(Tashiro, Rubio et al. 2017).  

The bleomycin (BLM) based mouse model is the most widely used one mainly due to its easy 

use, fast development and reproducibility, along with its ability of replicating several of the 

IPF characteristics (Tashiro, Rubio et al. 2017, Barbayianni, Ninou et al. 2018). BLM is a 

mixture of glycopeptides with bacterial origin, clinically used in the battle against cancer 

(Barbayianni, Ninou et al. 2018). While there is a plethora of methods for BLM administration, 

previous findings from our laboratory have shown that oropharyngeal aspiration provides a set 

of advantages including reduction in experimental mortality (Barbayianni, Ninou et al. 2018). 

The model unfolds into three stages: an early inflammatory, a fibrotic and a resolution phase, 

not seen during IPF. Although timing may differ according to dosage and route of 

administration, peak of fibrosis is usually reached by day 14 post-BLM and resolution starts 

from day 21 (Mouratis and Aidinis 2011). Through the secretion of pro-inflammatory and pro-

fibrotic agents, BLM activates fibroblasts and causes, among others, collagen deposition in the 

lungs, thus replicating a set of important IPF milestones (Barbayianni, Ninou et al. 2018). Lack 

of alveolar epithelium hyperplasia and spontaneous resolution in young mice not repeatedly 

treated with BLM constitute some of the most important drawbacks of the model (Mouratis 

and Aidinis 2011, Barbayianni, Ninou et al. 2018). 

1.3 IPF-implicated molecules 

1.3.1 Autotaxin, LPA and IPF 

Autotaxin (ATX; coded by ENPP2) is a glycoprotein of the extracellular space that catalyzes 

the production of lysophosphatidic acid (LPA) via lysophosphatidylcholine (LPC) hydrolysis 

(Ninou, Magkrioti et al. 2018, Magkrioti, Galaris et al. 2019). Previous findings from our 

laboratory indicated that ATX expression is necessary for embryonic development, as it 

regulates the proper formation of vasculature and the neuronal system (Fotopoulou, 

Oikonomou et al. 2010). LPA, the effector of ATX, can be found in most biological fluids, 

primarily following ATX expression pattern (Magkrioti, Galaris et al. 2019). Being 

functionally pleiotropic, LPA mediates several inflammation-implicated processes, such as 

stromal remodeling, immune system regulation and vascular homeostasis (Magkrioti and 

Aidinis 2013, Magkrioti, Galaris et al. 2019).  

ENPP2, the ATX coding gene, is made out of 27 exons and one less introns and is located in 

the 8q24 chromosomal position, the epicenter of frequent cancer-related genetic changes 

(Yang, Lee et al. 2002, Brisbin, Asmann et al. 2011). ENPP2 transcripts are subject to 

alternative splicing with the recorded variants having various stability and expression patterns 

(Giganti, Rodriguez et al. 2008). Apart from the splicing-related regulation, ENPP2 expression 

has been witnessed to be regulated by epigenetic mechanisms (Parris, Kovács et al. 2014). 

Nevertheless, evidence regarding ENPP2 methylation during disease is scarce with ENPP2 
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promoter being hypo-methylated during biliary atresia (Udomsinprasert, Kitkumthorn et al. 

2017) and hyper-methylated in breast carcinoma (Parris, Kovács et al. 2014). 

In several contexts, ENPP2 its products act in a pro-pathologic fashion. Indicatively, increased 

ATX and LPA levels have been detected in many pathologies including IPF, while ATX 

inhibition in animal models diminished disease progression (Oikonomou, Mouratis et al. 2012, 

Ninou, Kaffe et al. 2018, Ninou, Magkrioti et al. 2018, Magkrioti, Galaris et al. 2019). 

Moreover, several pieces of evidence suggest an active role of both ATX and LPA in chronic 

kidney disease (CKD) (Geng, Lan et al. 2012, Zhang, Chen et al. 2016, Zhang, Wang et al. 

2017), a pathology with a dual fibrosis-inflammatory character. Specifically, LPA has been 

witnessed to increase the expression of pro-fibrotic factors from kidney tubular epithelial cells 

(TECs), thus affecting their secretory signature (Pradere, Klein et al. 2007, Geng, Lan et al. 

2012, Sakai, Chun et al. 2017). Increased quantities of ATX have also been described in cancer 

(Peyruchaud, Saier et al. 2020) and interestingly, elevated levels of ATX and LPA in the blood 

have been correlated with cancer invasiveness (Yang, Lee et al. 2002, Benesch, Tang et al. 

2014). In addition, ATX over-expression has been located in cancerous tissues (Memet, 

Tsalkidou et al. 2018). 

1.3.2 Lipocalin 2 and IPF 

Lipocalin 2 (encoded by Lcn2/LCN2) is a 25kDa protein belonging to the lipocalin superfamily 

(Triebel, Bläser et al. 1992, Kjeldsen, Johnsen et al. 1993, Flower, North et al. 2000). Although 

all superfamily members share a highly conserved core tertiary structure that defines their 

ligand-binding site, that of LCN2 is shallower and adequately large to harbor and form bonds 

with macromolecules (Goetz, Holmes et al. 2002). LCN2 can be found in a monomeric or a 

dimeric form and characterization of the its forms in urine, potentially enables the distinction 

between kidney pathologies and urinary tract infections (Cai, Rubin et al. 2010, Mårtensson, 

Xu et al. 2012, Nickolas, Forster et al. 2012). 

LCN2 has two cell surface receptors and interaction with one of them, 24p3R, has been 

interestingly witnessed to promote cancer cells apoptosis via iron depletion (Devireddy, Gazin 

et al. 2005). As far as LCN2 ligands are concerned, the protein’s ability to bind bacterial 

siderophores, small secreted iron chelators (Hider and Kong 2010), has been accidentally 

revealed several years after its initial discovery (Goetz, Holmes et al. 2002). As iron is an 

essential element for both humans and all aerobic microorganisms with very specific 

exceptions (Weinberg 1997, Posey and Gherardini 2000), there is an ongoing “competition” 

between a host and its microbes for iron uptake. The latter attempt to hijack iron using 

siderophores and the former responds with LCN2 secretion in order to neutralize them 

(Fischbach, Lin et al. 2006, Xiao, Yeoh et al. 2017). 

In the context of human lung pathology, LCN2 has been detected in several respiratory diseases 

including chronic obstructive pulmonary disease (COPD) (Eagan, Damås et al. 2010, 

Treekitkarnmongkol, Hassane et al. 2020), ARDS (Kangelaris, Prakash et al. 2015) and viral 

infections, such as SARS-CoV-2 and influenza A (Huang, Li et al. 2022). More importantly, 

bronchial epithelial cells have been witnessed to produce LCN2 during IPF (Ikezoe, Handa et 

al. 2014) which has been linked to both iron homeostasis (Ali, Kim et al. 2020) and microbiome 

regulation (Molyneaux, Cox et al. 2014), processes in which LCN2 is implicated as described 

above. Nevertheless, despite this large volume of data suggesting LCN2 implication in PF, 
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further research is necessary to validate previous findings and dissect the exact mechanism of 

LCN2 action during IPF. 

1.3.3 TKS5, podosomes and IPF 

Lung fibroblasts are central players in PF. They secrete various ECM components including 

collagen, as well as ECM-remodeling enzymes, such as metalloproteinases (MMPs) [4]. The 

exact cell type composition and transcriptional profile of pathogenic fibroblast populations has 

not yet been fully elucidated (see 1.5.3.3 Single cells of the fibrotic mesenchyme), but pro-

fibrotic signals including TGFβ do contribute to their divergent behavior (Penke and Peters-

Golden 2019). During PF, it has been proposed that lung fibroblasts accumulate to fibrotic 

areas as a response to several chemoattractant molecules (Tomasek, Gabbiani et al. 2002, 

Penke and Peters-Golden 2019). This fibrotic hallmark, can be partially supported by the ability 

of lung fibroblasts to invade the ECM, a phenomenon that has been witnessed in both IPF 

patients and animal models of the disease (Li, Jiang et al. 2011, Lovgren, Kovacs et al. 2011, 

Karvonen, Lehtonen et al. 2012).  

Cell invasion is achieved by ECM lysis realized via invadopodia in cancer and podosomes in 

other cell types. Podosomes are built around an actin-enriched core structure surrounded by 

scaffold proteins (Murphy and Courtneidge 2011, Paterson and Courtneidge 2018). TKS5 

(encoded by SH3PXD2A) is an SRC substrate and scaffold protein of podosomes and 

invadopodia discovered several years ago (Lock, Abram et al. 1998, Abram, Seals et al. 2003, 

Seals, Azucena et al. 2005). Interestingly, in vivo Tks5 knockdown resulted in impaired 

tumorigenicity of mouse fibroblasts and thus affecting not only metastasis but also tumor 

growth (Blouw, Seals et al. 2008, Blouw, Patel et al. 2015). In addition, Tks5 has been proposed 

as a prognostic marker in multiple cancer types including lung adenocarcinomas (Li, Chen et 

al. 2013). 

Based on the above findings and given the fact that PF is the primary risk factor for lung cancer 

(Karampitsakos, Tzilas et al. 2017), there is a necessity for a thorough exploration of TKS5 

expression/function during IPF. 

1.3.4 MAP3K8 in inflammation and IPF 

MAP3K8 (or else TPL2) is a member of the MAPK kinase kinase family tasked with the 

activation of multiple downstream molecules, such as ERK and MEK. It can be found in two 

protein isoforms, a shorter and a longer one, each made out of three distinct structural areas. 

From an evolutionary point-of-view, its’ amino acid sequence is highly conserved between 

humans and rodents (Vougioukalaki, Kanellis et al. 2011). Although initially identified as a 

proto-oncogene, rodent Map3k8 has been found to exert both pro- and anti-tumor activity in a 

context-dependent manner. As far as its’ human homologue is concerned, it seems that a 

somatic mutation of the gene does not crucially affect cancer progression. On the other hand, 

increased levels of the MAP3K8 protein levels can have a pro-tumorigenic potential (Gantke, 

Sriskantharajah et al. 2011). 

In the lung, Map3k8 is expressed in high levels and has been shown to protect against 

inflammation (Watford, Wang et al. 2009) and carcinogenesis (Gkirtzimanaki, Gkouskou et al. 

2013). Moreover, MAP3K8-inhibition has been assessed as a protective countermeasure 

against ventilator-induced lung injury with, what seems to be, species-specific results 

(Kaniaris, Vaporidi et al. 2014, Manitsopoulos, Aidinis et al. 2017). As PF is closely related to 
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lung tumors (Karampitsakos, Tzilas et al. 2017), MAP3K8 should be examined as a molecule 

potentially implicated in both pathologies. 

1.3.5 COL1A1 and pulmonary macrophages 

Type I collagen is by far the most abundant protein of the human body. Composed of two α1 

and a single α2 chains, is the primary component of the ECM of multiple tissues, such as the 

muscles and the tendons. In addition, to the provision of mechanical strength as in the 

aforementioned examples, it also architecturally supports parenchymal organs (Stefanovic 

2013). The first chain of the protein is encoded by COL1A1, a gene located on the reverse 

strand of the 17th chromosome. According to Ensembl (GRCh38:CM000679.2) COL1A1 has 

13 transcripts from which only two are transcribed into a protein sequence. COL1A1 

orthologues can be found in 252 species, including 23 primates and 24 rodents and rodent-like 

animals. 

COL1A1 has been implicated in multiple pathologies, rendering it a “usual suspect” in many 

different human disease contexts. Structural and quantitative COL1A1 mutations are 

responsible for a great number of osteogenesis imperfecta cases, a rare skeletal pathology 

(Forlino and Marini 2016). In addition, COL1A1 can function in a pro-tumorigenic function, 

although its exact mechanism of action has not been fully elucidated (Li, Sun et al. 2022). In 

the respiratory system, gene’s mRNA has been detected in bronchoalveolar lavage (BAL) cells 

and has also been measured in increased quantities during IPF (Tsitoura, Wells et al. 2016, 

Tsitoura, Vasarmidi et al. 2019). Recently, at the single cell level, accumulating evidence 

suggest that macrophages contribute to tissue regeneration via collagen production (Pilling, 

Fan et al. 2009, Simões, Cahill et al. 2020), thus necessitating the exploration of their function 

in PF. 

1.4 The microbiome in pulmonary pathologies 

Nowadays, the microbiome populating the animal tissues is recognized as an important factor 

for the regulation of steady state and disease by affecting host processes such as immunity and 

inflammation (Cho and Blaser 2012, Belkaid and Hand 2014). Microbiome is a fragile entity 

that can be affected by many environmental and chemical agents, such as diet and prescribed 

medications, in turn affecting the host himself (Cho and Blaser 2012). Such changes in the 

composition of the microbiome lead to dysbiosis, a condition that has been connected to several 

human diseases, including obesity (Fan and Pedersen 2021).  

Strikingly, dysbiosis can have across-organ effects with changes in the gut microbiome been 

linked to non-alcoholic fatty liver disease (NAFLD) (Zhu, Baker et al. 2013, Jiang, Wu et al. 

2015). Apart from this gut-liver axis manifested between organs in anatomical contact, similar 

axes connecting far apart locations, such as the gut-brain, the liver-lung and the gut-lung axis 

have been proposed (Arteel 2020, Zhang, Li et al. 2020, Morais, Schreiber et al. 2021). The 

latter signaling route has also been related to asthma and COPD (Zhang, Li et al. 2020). 

Moreover, the lungs have recently been found to host their own microbiome which is found 

deregulated during disease, while specific bacteria have been associated with the mortality of 

IPF patients (Mackintosh, Desai et al. 2019). Changes in diet were observed to reduce the risk 

of COPD in a potentially metabolic manner, thus suggesting an active connection between 

brain, lung and liver mediated by microbial metabolites (Young, Hopkins et al. 2015). 

Collectively, microbiome is a significant player in mammal physiology, but its exact role 

during pathology manifestation and progression has not been clearly illustrated. 
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1.5 COVID-19 and IPF 

Firstly described in Wuhan, China as a pneumonia of “unknown cause”, corona virus disease 

2019 (COVID-19) quickly evolved into a pandemic that dramatically affected the lives of 

millions of individuals all over the world (Hu, Guo et al. 2021). This new disease is caused by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has a median infection 

age around 50 years (Hu, Guo et al. 2021). Post-infection symptoms differ with age and pre-

existing comorbidities and include, among others, fever, fatigue, dry cough, headache and chest 

pain, while anosmia, ageusia and other related disorders have been self-reported (Hu, Guo et 

al. 2021, Osuchowski, Winkler et al. 2021). 

Ηypoxaemia is one of the common and severe COVID-19 symptoms which can lead to an 

oxygenation impairment condition known as acute respiratory distress syndrome (ARDS). 

Roughly half of the people suffering by severe COVID-19 develop ARDS which in turn can 

lead to lung fibrosis (Osuchowski, Winkler et al. 2021). Fibrosis hallmarks such as epithelial-

to-mesenchymal transition and increased TGF-β signaling have been observed in severe 

COVID-19 cases, justifying a high rate of PF among COVID-19 autopsies (Osuchowski, 

Winkler et al. 2021). In addition, scRNA-seq revealed many similarities in the transcriptional 

profile of IPF and COVID-19 (Bharat, Querrey et al. 2020, Wu, Yu et al. 2020). In parallel, 

patients suffering from ILDs are more vulnerable to a severe COVID-19 manifestation and 

poor outcomes following SARS-CoV-2 infection (Drake, Docherty et al. 2020, Esposito, 

Menon et al. 2020, Beltramo, Cottenet et al. 2021). Collectively, COVID-19 and IPF, although 

different in nature are highly entangled pathologic conditions necessitating their joint research. 

1.6 Οmics and IPF 

Omics technologies is an umbrella term covering all high-throughput assays that can 

simultaneously measure molecules of the same type from a biological sample (Conesa and 

Beck 2019). Due to the fact that they are able to assess the quantity of all or nearly all elements 

of a given space, such as DNA in transcriptomics, proteins in proteomics or metabolites in 

metabolomics, omics technologies can provide a holistic examination of any given biological 

condition (Conesa and Beck 2019). Such means of molecular spaces exploration create huge 

datasets which in turn require complex computational methods for their handling, storage and 

analysis (Costa 2014). 

Historically beginning from the examination of isolated types of molecules (single-omics), 

multiple molecular entities can nowadays be measured in parallel in the same sample (multi-

omics) creating an ever spherical view of a system (Conesa and Beck 2019). Although, these 

multi-omic datasets require analysis in an integrative fashion, the scientific community is many 

times witnessing the uneven evolution of certain analytical tools in specified niches of research, 

thus unconsciously hindering inter-laboratory data sharing, comparison and interpretation 

(Manzoni, Kia et al. 2018). A possible reason for such cases may be the expensive and 

expertise-demanding nature of creating such multi-omics data collections, the abundant 

presence of which would eventually create the necessity for integrative analysis pipelines 

development.  

1.6.1 Omics technologies in IPF 

Various omics technologies have been recruited for IPF research. While transcriptomics is 

certainly the most widely used discipline spanning from microarrays and RNA-seq 

(Vukmirovic and Kaminski 2018) to scRNA-seq experiments (see 1.6.3 Pulmonary fibrosis at 
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the single cell level), other levels of molecular organization have also been investigated. 

Briefly, in the quest for PF biomarkers multiple studies have examined the proteome of various 

sampling sites including lung, plasma, serum and BAL fluid (Khan, Dasgupta et al. 2021). 

Genomics have also played a crucial role in identifying several disease-implicated genes such 

as TERT and MUC5B (Kan, Shumyatcher et al. 2017). In addition, epigenomics revealed DNA 

methylation changes in the lungs and fibroblasts of IPF patients potentially contributing to the 

disease progression (Kan, Shumyatcher et al. 2017). 

In this thesis, focus is primarily given on transcriptomics datasets and secondly on proteomic 

ones as these two modalities occupy the vast majority of IPF omics space. The following 

sections attempt to shape the PF universe as seen through a transcriptomics and proteomics 

lens, as well as through several dataset integration attempts. 

1.6.2 Setting the standards for transcriptomics data handling 

Following data accumulation from the first high-throughput molecular assays, the scientific 

community realized the need for a new set of guidelines regarding data collection, handling, 

storage and report. Thus, to address limitations in microarray data handling, Brazma and 

colleagues (2001) proposed the Minimum Information About a Microarray Experiment 

(MIAME), a set of guidelines aiming to facilitate the replication, interpretation and automated 

meta-analysis/mining of microarray data (Brazma, Hingamp et al. 2001). Being platform 

independent, content- and not format- restricting, MIAME succeeded in the organization of 

microarray datasets in public repositories, such as the Gene Expression Omnibus (GEO) 

(Barrett, Wilhite et al. 2013), in an at least adequately annotated manner. In the following years, 

as next generation sequencing (NGS) gradually supplanted microarrays, new guidelines 

tailored to this new technology were once again required. To address this gap, Functional 

Genomics Data Society (FGED) published in 2012 the Minimal Information about a high-

throughput Nucleotide SEQuencing Experiment (MINSEQE), aiming to the improvement of 

multi-model high-throughput datasets integration (https://zenodo.org/record/5706412). 

A retrospective evaluation of guidelines implementation infered that publicly accessible 

repositories, including GEO (Barrett, Wilhite et al. 2013), ArrayExpress (Rustici, Kolesnikov 

et al. 2013), DDBJ (Kodama, Mashima et al. 2012) and the later created Sequence Read 

Archive (SRA) (Kodama, Shumway et al. 2012), have embraced both MIAME and MINSEQE 

guidelines, yet with varying compliance rates (Rustici, Williams et al. 2021). Unfortunately, 

although the primary goal of meta-data deposition was largely achieved, there were indications 

that data sharing continues to lack consistency, thus rendering meta-analysis a rather tedious 

process. More specifically, analysis of publicly available datasets deposited from 2009 up to 

2013 in ArrayExpress, GEO or SRA revealed that deposited data lacked crucial information 

concerning variables such as treatment conditions, biological replicates, library preparation and 

data processing protocols (Rustici, Williams et al. 2021). Results of the aforementioned review 

also suggest that in the same period, RNA-seq and microarray datasets had, on average, 2.8 

and 3.6 biological replicates, respectively. As a result, many RNA-seq datasets can support 

very limited statistical analyses. 

In 2014, a workshop held in Netherlands set the foundations for a set of principles that if 

followed promise the increase of Findability, Accessibility, Interoperability and Reusability 

(FAIR) of scholarly data (Wilkinson, Dumontier et al. 2016). According to the observations of 

Wilkinson and colleagues (2016), the existing data ecosystem follows a decentralized 

https://zenodo.org/record/5706412
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trajectory characterized by datasets deposition in smaller repositories, thus intensifying the 

problem of data discovery and reusability. For contexts like that of IPF, FAIR principles are 

not usually met as raw data, metadata and/or the algorithms/pipelines used for their analysis 

are not often carefully recorded. As expected, this holds true especially for datasets published 

prior to the definition of the aforementioned guidelines. 

In total, while the aforementioned endeavors achieved in standardizing some of the high-

throughput (meta-) data handling processes, both proper collection and data re/meta-analysis 

remain a great challenge. 

1.7 Transcriptomics & IPF 

Transcriptomics is the omics discipline targeting on the bulk analysis of RNA molecules. 

Multiple technologies have been developed for accomplishing such a feat, but microarrays and 

RNA sequencing are the most popular (Committee on the Review of Omics-Based Tests for 

Predicting Patient Outcomes in Clinical Trials et al. 2012). Being already in use from the 1980s 

and developed to operate in a highly parallel fashion in the second half of the 1990s, 

microarrays offered from 2001 to 2006 the first genome wide parallel analysis of RNA 

molecules (Goodwin, McPherson et al. 2016, Levy and Myers 2016). Although nowadays 

surpassed by 2nd and 3rd generation sequencing technologies, microarrays had offered a cheaper 

and more robust solution to many DNA and RNA focusing applications for many years (Levy 

and Myers 2016). One of the major microarray limitations emerges from their probe-based way 

of function which preclude their use for data-driven discovery studies (Manzoni, Kia et al. 

2018). On the other hand, RNA-sequencing, a 2nd generation (aka Next Generation Sequencing; 

NGS) sequencing technique, provides an unbiased means of RNA assessment in an ever 

reducing cost (Levy and Myers 2016, Shendure, Balasubramanian et al. 2017). 

Without neglecting its advantages, RNA-sequencing is a bulk sequencing technique produces 

an average gene expression profile across vast amounts of cells, thus hindering the discovery 

of subtle transcriptome differences between different tissue locations and more importantly cell 

types (Olsen and Baryawno 2018). Designed to sequence a small number of rare cells, the first 

developed single cell RNA-sequencing pipeline (Tang, Barbacioru et al. 2009) paved the way 

for the rapid development of multiple sequencing protocols and in silico techniques with an 

ever increasing resolution (Svensson, Vento-Tormo et al. 2018). 

In the following section, we will discuss publications that have used high-throughput 

techniques, attempting a thorough up-to-date recording of the progress made. Research 

deliverables exclusively utilizing low yielding techniques for IPF transcripts assessment, such 

as real time PCR, are reviewed elsewhere (Vukmirovic and Kaminski 2018).  

1.7.1 Microarrays in IPF 

Following the evolution of wet laboratory transcriptomics techniques, gene expression in IPF 

was initially assessed using microarrays. The first studies took place more than 20 years ago 

and revealed extensive differences in the transcriptome of IPF patients and BLM-treated 

rodents compared to their respective controls (Kaminski, Allard et al. 2000, Zuo, Kaminski et 

al. 2002). From that point on, IPF research community has witnessed a progressive 

accumulation of wet laboratory studies revolving around microarray-reported single 

deregulated genes including but not limited to MMP7 (Cosgrove, Schwarz et al. 2002, Zuo, 

Kaminski et al. 2002, Gharib, Altemeier et al. 2013), MMP3 (Yamashita, Dolgonos et al. 2011), 

IGFBP-3/-5 (Pilewski, Liu et al. 2005), osteopontin (Pardo, Gibson et al. 2005), CRLF1 (Kass, 
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Yu et al. 2012), S100A2 (Richards, Kaminski et al. 2012), MMP19 (Yu, Kovkarova-

Naumovski et al. 2012), EGFR (Tzouvelekis, Ntolios et al. 2013), LCLAT1 (Huang, Mathew 

et al. 2014), VCAM1 (Agassandian, Tedrow et al. 2015), FKBP10 (Staab-Weijnitz, Fernandez 

et al. 2015), S1PL (Huang, Berdyshev et al. 2015), caveolin-1 (Wang, Zhang et al. 2006), 

PTPN11 (Tzouvelekis, Yu et al. 2016) and DIO2 (Yu, Tzouvelekis et al. 2018) were 

continuously published. 

Apart from single molecules, microarrays were also used to address changes in signaling 

pathways during fibrosis. To begin with, examination of the effects of IPF drivers, such as 

TGFβ, led to the emergence of several important features including PEDF, SMURF2, BMP4 

and NOX4 (Cosgrove, Brown et al. 2004, Renzoni, Abraham et al. 2004, Hecker, Vittal et al. 

2009). In addition, macrophage-secreted syndecan-2 was distinguished among several TGFβ 

signaling inhibitors as an anti-fibrotic in IPF lungs (Shi, Gochuico et al. 2013). In addition, 

TNFα effects were examined in liaison with those of IFNγ in order to assess the importance of 

Fas in the apoptosis-survival tradeoff of lung fibroblasts (Wynes, Edelman et al. 2011). At the 

same time TNFα has been implicated in regulating the expression of pathologic genomic 

features in human airway smooth muscle cells (Knobloch, Lin et al. 2013). Re-analysis of 

already published microarray data revealed Wnt pathway as one of the most significant for PF 

progression, with LRP5 receptor levels pointing to the need of Wnt evaluation in conjunction 

with TGFβ activation levels (Lam, Herazo-Maya et al. 2014). Validating those findings, the 

enhanced Wnt/β-catenin pathway observed in ABCG2+ mesenchymal progenitor cells (MPC) 

has been connected to various pro-fibrotic changes in the circulatory system (Gaskill, Carrier 

et al. 2017). Extending the findings of pre-clinical trials, IL-4 and IL-13 signaling pathways 

were found to induce similar transcriptional signatures in monocytes, macrophages and 

fibroblasts, while IL-13Ra2 was discovered to act as a decoy receptor in the latter cell type 

(Chandriani, DePianto et al. 2014). Motivated by the synergistic action of TNFα signaling and 

heat shock on the airway epithelium, a research team extended their research to include 

clinically relevant wounds in the equation. As a result, they revealed increased expression of 

FGF1 in response to the synergistic action of heat shock and epithelium wounding, while FGF1 

and HSP70 were also found over-expressed in the fibrotic lung (Scheraga, Thompson et al. 

2016). With a clear interest in the alveolar epithelium, Wasnick and colleagues (2019) 

identified and thoroughly examined Notch1 signaling in both human and murine alveolar 

epithelial cells. Interestingly, enhancement of the Notch1 signaling during fibrosis was held 

responsible for impaired epithelial cells turnover and the abnormal production of surfactant 

protein, thus providing an attractive target for pharmacological intervention (Wasnick, Korfei 

et al. 2019). 

As ageing is closely related to the development of PF (Yanagihara, Sato et al. 2019) several 

studies have employed transcriptomics assays in order to investigate this interlink. First, 

following an observation of abnormal mitochondria in alveolar epithelial type II cells, 

decreased expression of PINK1 has been shown to promote fibrosis via affecting mitophagy in 

the aging lung (Bueno, Lai et al. 2015). Moreover, as ageing-related diseases are characterized 

by an aberrant re-activation of developmental pathways in response to injuries, Chanda and 

colleagues (2016) have identified and transcriptionally characterized a population of 

mesenchymal stromal cells that seemed to participate in such a mechanism. Indeed, TGFβ1 

and SHH signaling pathways were found to suppress FGF10 expression in the aforementioned 



27 
 

cell type of IPF subjects, while enrichment for developmental pathways further supported their 

working hypothesis (Chanda, Kurundkar et al. 2016). 

Deciphering myofibroblast/IPF fibroblasts origin and modus operandi is under active research 

for many years. In 2007, microarrays were used to investigate the mechanisms underlying 

myofibroblasts pathogenicity (Kabuyama, Oshima et al. 2007), while almost in parallel, the 

transcriptome of the same cell type was assessed under different culturing conditions  in an 

attempt to witness any matrix effect on transcriptional control (Larsson, Diebold et al. 2008). 

To unbiasedly characterize the full spectrum of RNAs produced by activated fibroblasts 

Emblom-Callahan and colleagues (2010) juxtaposed primary fibroblasts from IPF and control 

individuals, demonstrating changes in genes related to processes such as protein turnover, 

metabolic pathways and loss of cellular homeostasis (Emblom-Callahan, Chhina et al. 2010). 

Supplementing previous findings, suppression of interferon-stimulating genes was proposed as 

a key characteristic of pathogenic lung fibroblasts (Lindahl, Stock et al. 2013), while increased 

FOXF1 expression has been proposed not as a pro-pathogenic but as a rather compensatory 

mechanism impaired in the fibrotic milieu (Melboucy-Belkhir, Pradère et al. 2014). In an 

attempt to illuminate extracellular matrix (ECM) – fibroblast interactions, cells were cultured 

in decellularized matrix isolated from either IPF or control individuals (Parker, Rossi et al. 

2014). Results suggested that ECM is more important in shaping cultured fibroblasts 

transcriptome irrespective of their cellular origin and that reduced expression of miR-29 is 

responsible for increased ECM proteins concentration. Moreover, examination of cells upon 

isolation and after several culture passages, revealed that the in vivo expression profile of both 

IPF and control fibroblasts was gradually lost during cell culturing and that several of their in 

vivo transcriptomics differences were replaced by others of in vitro origin (Rodriguez, 

Emblom-Callahan et al. 2018). Last, microarrays have been applied for fibroblastic 

transcriptome evaluation following treatment with various agents such as TGFβ, IL1, EGF and 

small molecule inhibitors (Bradley and Barrett 2017). Re-analysis of these data revealed that 

TGFβ1-induced FZD7 is a central node to the regulation of multiple pro-fibrotic features, such 

as ACTA2 and COL1A1 (Guan and Zhou 2017). Apart from the above characteristics, fibrosis-

promoting fibroblasts are highly migratory and invasive, a set of features proposed to be 

mediated by low levels of USP13 (Geng, Huang et al. 2015) and high levels of methylation-

controlled BMPER (Huan, Yang et al. 2015). 

Microarrays were also applied for the characterization and distinction of IPF types/endotypes 

and patients affected by various comorbidities. In 2006, transcriptomics differences related to 

specific biological processes and cell types were revealed between slow and rapid PF 

progressors (Selman, Pardo et al. 2006) and a year later, transcriptomics differences between 

control, familial and sporadic interstitial idiopathic pneumonia were reported (Yang, Burch et 

al. 2007). As far as comorbidities are concerned, different gene signatures were indeed 

witnessed between PF cases with or without pulmonary arterial hypertension (Mura, Anraku 

et al. 2012). Differential expression of cilium genes efficiently separated two molecular 

IPF/UIP sub-phenotypes with an increased expression in the former associated with a more 

intense honeycombing pattern (Yang, Coldren et al. 2013). More importantly, in-parallel 

analysis of transcriptional and clinical data revealed that RXFP1 expression levels could be 

used to predict patients’ response to relaxin-based therapies (Tan, Tedrow et al. 2016).  

In addition, microarrays provided an opportunity to examine the etiology of IPF acute 

exacerbations (AE). Although several hundred deregulated genes were identified between 
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stable and AE-hit patients, including CCNA2 and a-defensins among the top up-regulated, 

neither an infectious nor an inflammatory cause was revealed (Konishi, Gibson et al. 2009). 

Even more interestingly, gene expression patterns during an AE were more similar to those of 

stable IPF samples compared to control lungs. 

PF transcriptome was also set against that of other pathologies. For instance, microarray data 

suggested that progressive and fibrotic pulmonary sarcoidosis is more closely related to 

hypersensitivity pneumonitis than to IPF due to the first’s transcriptome enrichment in immune 

system related genes (Lockstone, Sanderson et al. 2010). In order to pinpoint a biomarker 

signature detectable in peripheral blood, Rosas and colleagues (2008) examined the abundance 

of multiple plasma proteins and identified a combinatorial signature of five, able to distinguish 

patients from control individuals (Rosas, Richards et al. 2008). Moreover, MMP7 and MMP1 

levels were not only sufficient for separating IPF from COPD and sarcoidosis cases, but their 

encoding genes were also found over-expressed in the lungs via microarrays further 

corroborating the importance of these two molecules. Transcriptome comparison between 

samples of pulmonary arterial hypertension and secondary pulmonary hypertension IPF 

patients pinpointed several differences including some of sex-specific nature (Rajkumar, 

Konishi et al. 2010). Microarray analysis of systemic sclerosis samples revealed unique 

molecular profiles both in lung tissue and fibroblasts when compared to IPF (Hsu, Shi et al. 

2011). Non-specific interstitial pneumonia (NSIP) is another lung pathology whose 

transcriptome has been compared to that of IPF (Cecchini, Hosein et al. 2018). More 

specifically, NSIP and IPF have been validated as two molecularly distinct pathologies, while 

researchers have also pinpointed potential biomarkers capable of supporting the 

aforementioned distinction. In parallel, detection of a common signature between IPF and NSIP 

established a potential link of the former with the latter. 

Although most PF-related microarrays focus on protein coding RNAs, there are also others 

examining non-coding transcripts, such as micro (miRNA) and circular (circRNA) RNA 

populations. The first such publication reported a set of 46 differentially expressed non coding 

RNAs, from which let-7d was distinguished as a molecule controlling the levels of ACTA2, 

S100A4 and SFTPC (Pandit, Corcoran et al. 2010). A year later expression of mRNA and 

miRNA pairs was used to distinguish IPF from control individuals and IPF from NSIP patients 

(Cho, Gelinas et al. 2011). Interestingly, miR-23 cluster was proposed to control epithelial-to-

mesenchymal transition, as well. Milosevic and colleagues (2012) examined the regulatory 

effects of TGFβ on the expression and by extension the action of many miRNAs during PF, 

while they also proposed miR-154 being a regulator of fibroblast behavior in IPF (Milosevic, 

Pandit et al. 2012). miRNAs were once more proposed as mediators of TGFβ signaling when 

another research group placed miR-145 as a regulatory node downstream of TGFβ necessary 

for the overexpression of αSMA during PF (Yang, Cui et al. 2013). Apart from validating the 

deregulation of previously reported miRNAs, Huleihel and colleagues (2014) provided proof 

that let-7d induces the production of pro-fibrotic molecules, such as ACTA2 and fibronectin, 

in primary fibroblasts further strengthening the hypothesis of miRNAs implication in fibrotic-

related processes (Huleihel, Ben-Yehudah et al. 2014). On top of previous findings, miR-130b-

3p was found under-expressed in IPF lung samples and subsequent wet laboratory experiments 

suggested that it is involved in not only fibroblast activation but also in epithelial-to-

mesenchymal transition deregulation, thus promoting tissue fibrosis (Li, Geng et al. 2016). Last 

but not least, a specialized microarray assay identified 67 deregulated plasma circRNAs 
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participating in significant signaling pathways such as that of TGFβ, VEGF and Wnt (Li, Wang 

et al. 2018). 

Biomarker hunting is another research field that was boosted by transcriptomics technologies. 

Initially, transcriptomics evidence suggested that peripheral blood transcriptome is not only 

able to distinguish IPF patients from control individuals, but can also reflect disease burden 

(Yang, Luna et al. 2012). A year later, a 52 gene expression signature established through 

peripheral blood mononuclear cells (PBMCs) was used to predict IPF poor outcome (Herazo-

Maya, Noth et al. 2013). Attempting a per time-point comparison of a rat BLM model with the 

actual IPF disease, Bauer and colleagues (2014) identified a set of biomarkers that can be used 

to classify samples into fibrotic or steady state. Fascinatingly, CTHRC1, a gene that emerged 

years later at the single cell level as characteristic of pathologic cell types (Tsukui, Sun et al. 

2020) was listed among the markers (Bauer, Tedrow et al. 2014). Furthermore, gene expression 

patterns were used to identify two distinct types of IPF lung lesions, while MMP3 and CXCL13 

protein product levels were successful in evaluating patients aggregate fibrotic burden 

(DePianto, Chandriani et al. 2015). In a screening of exclusively Japanese lung samples, DSG3 

was proposed as a new biomarker of idiopathic interstitial pneumonia (Horimasu, Ishikawa et 

al. 2017). That same year, microarray analysis of control fibroblasts and of cells from slow and 

rapid progressing IPF subjects led to the suggestion of CCL8 as a biomarker of differential 

diagnosis and patient survival (Lee, Cheong et al. 2017). Interestingly, parallel examination of 

microarray and mass spectrometry data prompted for the use of groups instead of single 

biomarkers for lung disease differential diagnosis (Zhao, Yin et al. 2017). In addition to the 

aforementioned sampling sites, BAL fluid has been used for biomarker discovery, leading to 

the proposal of a 9-genes signature predictive of IPF mortality, especially when combined with 

clinical data. More importantly, discovery of this motif indicated that pulmonary basal cells 

may play an active role in IPF (Prasse, Binder et al. 2018). 

Last, microbiome plays a significant role in many pathogenic contexts, such as in human 

metabolic diseases (Fan and Pedersen 2021), and IPF is no exception. In a study from Huang 

and colleagues (2017) examining PBMC transcriptome data in parallel with 16S rRNA, 

microbiome-host interaction was proposed to affect progression-free survival and fibroblast 

behavior in IPF patients via pattern recognition receptors and immune system signaling 

pathways (Huang, Ma et al. 2017). In addition, persistent dysbiosis of the lower airways has 

been suggested to act as a continuous source of alveolar injury potentially supporting the local 

fibrotic milieu during IPF (Molyneaux, Willis-Owen et al. 2017). 

1.7.2 IPF through next-generation sequencing 

RNA-sequencing does offer a number of advantages over microarrays, such as the 

disengagement from a pre-defined set of RNA-detecting probes and the support of a greater set 

of applications including the examination of alternative splicing. For example, in one of its first 

uses in the context of IPF, RNA-sequencing not only revealed a set of approximately 870 

deregulated genes between fibrotic and control lungs, but it also identified another set of 440 

features subjective to alternative splicing that included COL6A3 and POSTN could be found 

(Nance, Smith et al. 2014). RNA splicing was again examined two years later in COPD, IPF 

and control lung samples where NUMB and PDGFA p53/hypoxia pathway-related genes were 

found more intensely spliced in pathological versus healthy samples (Kusko, Brothers et al. 

2016). Expression analysis of the same data supported the existence of common mechanisms 

in both disease contexts. Moreover, novel differentially expressed alternative transcripts have 
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been identified between IPF and acute lung injury or control cases, as part of a general 

transcriptomics characterization of the three phenotypes (Sivakumar, Thompson et al. 2019). 

Introduction of RNA-seq may have provided new viewing angles over transcriptome, but it did 

not ostracized its predecessor technology which was often used as a golden standard for 

comparison purposes. Thus, RNA-seq findings were cross-validated with those of previously 

published microarrays to corroborate the increased abundance of senescence biomarkers in the 

IPF lungs, with CDKN2A expression positively correlating with pathology severity (Schafer, 

White et al. 2017). Nance and colleagues (2014) have also used previously published array 

datasets to compare their RNA-seq-reported deregulated genes (Nance, Smith et al. 2014). 

From a more technical aspect Vukmirovic and colleagues (2017) showed that high-throughput 

sequencing of RNA molecules from archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF 

tissues is not only plausible but also highly concordant with microarray application on fresh 

frozen samples (Vukmirovic, Herazo-Maya et al. 2017). For validation purposes, RNA-seq and 

microarrays were even applied on the same samples revealing the nowadays widely acceptable 

strong correlation of the two methods’ results (Kusko, Brothers et al. 2016). 

As with microarrays, RNA-sequencing was used multiple times for the examination of single 

molecule effects and the characterization of specific groups of cells. For example, NGS enabled 

the unbiased transcriptome evaluation of a new population of mesenchymal cells proposed to 

give birth to pathogenic lung fibroblasts (Xia, Bodempudi et al. 2014). Moreover, inspired by 

the re-analysis of an older microarray experiment which revealed TAZ as a fibroblast-

implicated gene, RNA-seq examination of a TAZ-siRNA cell line suggested that connective 

tissue growth factor (CTGF) and collagen type I are regulated by TAZ (Noguchi, Saito et al. 

2017). Motivated by the clusterin’s dual role and its cellular localization-dependent expression 

pattern, Habiel and colleagues (2017) re-examined data from a previously characterized 

mesenchymal population (Xia, Bodempudi et al. 2014) and identified a significant down-

regulation of clusterin in fibrotic SSEA4+ cells (Habiel, Camelo et al. 2017). Among the 

deregulated transcripts of the same cells, S100A4 was one of the top over-expressed, while 

downstream experiments implied that S100A4 is responsible for the fibrogenicity of 

mesenchymal progenitor cells (Xia, Gilbertsen et al. 2017). BMP3 was also found deregulated 

during idiopathic interstitial pneumonias and wet laboratory experimentations provided 

hopeful data about its use as an IPF therapeutic target (Yu, Gu et al. 2017). Last, miRNAs have 

also been examined by RNA-seq, with Wang and colleagues very recently proposing that the 

peptide drug DR3penA does alleviate PF via hindering miR-23b-5p expression (Wang, Deng 

et al. 2023).  

Examination of signaling pathways is yet another application that microarrays and NGS 

naturally have in common. Transcriptomics evaluation of lung epithelial cells treated or not 

with TGF-β1 and E2 demonstrated for the first time that the latter regulates chromatin 

remodeling pathways in a TGF-β1-dependent fashion (Smith, Moreno et al. 2018). Several 

other processes negatively regulated by the two aforementioned agents. Focusing in human 

pulmonary fibroblasts signaling, Mukherjee and colleagues (2019) revealed that PTGER2 is 

the most highly expressed prostaglandin receptor in IPF patients. In addition, PTGER2 

expression was reduced in IPF compared to control fibroblasts suggesting an important role in 

the fibrotic context (Mukherjee, Sheng et al. 2019). 
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Adopting an alternative point-of-view, Luzina and colleagues (2018) examined whether 

normal appearing IPF tissue does differ from profoundly scarred areas or healthy lungs. 

Interestingly, based on RNA-seq data they supported that non-scarred IPF areas are actively 

implicated in disease progression, as they are enriched for various extracellular matrix-, 

immune- and inflammation-related mRNAs, similarly to scarred ones, when compared to 

healthy controls (Luzina, Salcedo et al. 2018). In parallel, actively fibrotic tissue areas differed 

from the non-scarred ones in terms of epithelial mucociliary mRNA molecules, thus indicating 

differences of the epithelium between the two tissue types. 

Except for fibroblasts, macrophages have also interested scientists for their potential role in 

PF. Following certain indications about accumulation of activated macrophages in the lower 

parts of the respiratory tree, RNA-seq was used to characterize macrophages isolated from 

whole BAL fluid (Lee, Arisi et al. 2018). More specifically, and validated by downstream 

experimentations, the chemokine- and cytokine-signaling enriched list of differentially 

expressed genes (DEGs) suggested that alveolar macrophages are indeed involved in pro-

inflammatory and tissue remodeling processes. 

1.7.3 Pulmonary fibrosis at the single cell level 

scRNA-seq studies have been primarily used for the examination of both fibrosis and steady 

state at a cellular level. Most have focused on a specific lung compartment, such as the 

epithelium or the stroma while others adopted a more holistic description of the lung. 

1.7.3.1 Single cells of the lung epithelium 

To begin with the lung epithelium, it is known that alveolar epithelial cells type 2 (AT2) trans-

differentiate to type 1 cells (AT1) in order to replenish tissue lost due to lung injury. Impairment 

of this physiological process is nowadays thought to lead to the emergence of pathological cell 

populations which in turn contribute to the development and the establishment of various lung 

fibrotic cases. Adding to this working hypothesis, although examining a very small number of 

cells, one of the first scRNA-seq analyses of the IPF lung was able to identify disease specific 

epithelial cell populations and analyze them transcriptionally so as to identify ‘intermediate’ 

subpopulations characteristic of the fibrotic phenotype (Xu, Mizuno et al. 2017). During the 

same year, the first lung injury response mechanisms shared between epithelial cell types begun 

to emerge (Xi, Kim et al. 2017). In another set of single cells, sub-clustering of alveolar 

epithelial type 2 (AT2) cells revealed a specific group that expressed fibrosis-related genes and 

was located at fibrotic niches of the lung (Joshi, Watanabe et al. 2019). Enriching the ‘impaired 

regeneration’ hypothesis, Wnt/β-catenin has been proposed to induce AT2 cells proliferation 

in response to lung injury (Riemondy, Jansing et al. 2019). Once completed, AT2 cell type 

expansion is halted by an increase in TGFβ that places AT2 cells in cycle arrest. Subsequently, 

withdrawal of both the above signals leads to efficient trans-differentiation into AT1 cells. 

During PF, deregulation of this physiological process maintains high TGFβ levels, thus placing 

all proliferating AT2 cells in a pro-fibrotic, terminal cell cycle arrest status (Riemondy, Jansing 

et al. 2019).  

As it has been repeatedly reported, such as in (Xu, Mizuno et al. 2017, Morse, Tabib et al. 

2019, Habermann, Gutierrez et al. 2020), the proportion of basal, ciliated and goblet cells and 

that of AT2 and AT1 cells has been found elevated and degraded in IPF individuals, 

respectively (Adams, Schupp et al. 2020). Focus on basal cells by the same study, described 

for the first time an IPF-specific pro-fibrotic and senescent population termed ‘aberrant 
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basaloid’ cells, a finding which was further validated by re-analysis of an independent scRNA-

seq dataset (Reyfman, Walter et al. 2018). In a another synchronous study, two populations of 

basaloid lung cells were described: a CD66+ secretory primed (SPB) and a multi-potent one 

(Carraro, Mulay et al. 2020). During IPF, basal cells undergo a biased expansion towards the 

secretory type which is located in MUC5B-rich honeycomb regions and is primed for 

differentiation into secretory cell types. 

Following their previous hypothesis of impaired alveolar epithelial cells differentiation 

(Riemondy, Jansing et al. 2019) researchers from the same lab have provided evidence 

implicating a KRT8hi KRT18hi TGFβhi cluster of epithelial cells in the fibrotic process (Jiang, 

Gil de Rubio et al. 2020), further supporting the existence of a unique IPF AT2 cell state 

(Reyfman, Walter et al. 2018). More specifically, these cells were accumulated at fibroblastic 

foci and KRT8 expression peaked during the initial steps of epithelial differentiation, 

suggesting once again an impaired transition from AT2 to AT1 phenotype. Although not any 

across-species cellular comparison was presented, an independent paper supported the 

existence of a Krt8+ TGFβ-activated AT2 intermediate cell state, corroborating a common 

pathogenic mechanism in both model and actual disease (Strunz, Simon et al. 2020). Another 

piece of evidence was provided by Kobayashi and colleagues (2020) who by examining murine 

lung cells that significantly overlapped with those of (Riemondy, Jansing et al. 2019) they have 

identified a Cldn4+Krt19+Sfn+ Pre-Alveolar Type-1 transitional cell state (PATS). PATS were 

further separated into two groups: a Ctgf+ and a Lgals3+ one, with the former presenting 

several similarities to the Krt8+ cells of (Strunz, Simon et al. 2020). Trajectory analysis applied 

on the above populations suggested that Ctgf+ PATS differentiate into AT1 cells traversing 

through the Lgals3+ group, with TP-53 being an essential signaling component of the process. 

Re-analysis of human data from (Habermann, Gutierrez et al. 2020) identified PATS-like cells 

during IPF thus strengthening the hypothesis of the accumulation of an intermediate state in 

the fibrotic milieu (Kobayashi, Tata et al. 2020).  

In support of an impaired epithelial turnover, Habermann and colleagues (2020) proposed that 

a population of IPF KRT5-/KRT17+ epithelial cells emerge from a transitional AT2 cell state 

and acts in a pro-fibrotic manner via production of various ECM components, including 

collagen (Habermann, Gutierrez et al. 2020). A cell group transcriptionally intermediate of 

AT2 and AT1 cells that resembled the transient cluster described by (Xu, Mizuno et al. 2017) 

was also pinpointed (Habermann, Gutierrez et al. 2020). At the same time, re-analysis of 

(Reyfman, Walter et al. 2018, Morse, Tabib et al. 2019) datasets yielded closely related results.  

Time-point analysis of the BLM model provided evidence supporting the accumulation of 

another AT2-AT1 intermediate cell population in the fibrotic lungs, termed Alveolar 

Differentiation Intermediate (ADI) (Strunz, Simon et al. 2020). These Krt8+ cells expressed 

p53 and NfkB in addition to senescence markers and they were also detected in other disease 

models and in IPF cases (Strunz, Simon et al. 2020). More importantly, trajectory analysis 

pinpointed activated AT2 and fully differentiated AT1 cells as the source and the terminal 

developmental stage of Krt8+ cells, respectively. In comparison with other similar cell types, 

ADI were transcriptionally related to KRT5-/KRT17+ and aberrant basaloid cells described by 

(Adams, Schupp et al. 2020, Mayr, Simon et al. 2021). Interestingly, ADI cells were also 

detected in control lung tissue where they function as homeostatic AT2 and AT1 intermediates. 
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From a more physiological perspective and based on observations from murine lungs, it was 

suggested that the increase of mechanical tension during PF accompanied by an impaired AT2 

to AT1 trans-differentiation process is sufficient to trigger an epithelial Tgfβ activation which 

in turn targets adjacent mesenchymal cells leading to severe fibrosis (Wu, Yu et al. 2020). 

Furthermore, inhibiting Cdc42 expression impaired AT2 to AT1 trans-differentiation thus 

resulting in a human-like periphery to center lung fibrosis establishment. 

One of the factors that most probably contributes to a faulty lung epithelial regeneration is 

senescence. In pursuit of this hypothesis, bulk NGS-inspired signatures of senescent epithelial 

cells anthologized by in vitro experiments were used for the characterization of scRNA-seq 

data (DePianto, Vander Heiden et al. 2021). As a result, a novel senescent population of basal 

cells was discovered, closely resembling the transcriptional profile of terminally differentiated 

cells found in stratified epithelia. In comparison to previous publications, this new group of 

cells has homologues in (Reyfman, Walter et al. 2018, Adams, Schupp et al. 2020, Habermann, 

Gutierrez et al. 2020) datasets, but it is distinct from the aberrant basaloid cells of (Adams, 

Schupp et al. 2020, Habermann, Gutierrez et al. 2020) potentially due to differences in the 

applied computational approaches. Another piece of evidence regarding the importance of 

senescence in PF, came along with the information that early p53 activation targeting can block 

fibrogenesis in murine lungs (Yao, Guan et al. 2020). In this study, AT2 senescence was 

deemed a sufficient process in fibrosis establishment. 

PF diagnosis and monitoring can be an extremely complex process and thus, discovery of 

effective non-invasive methods is highly anticipated. Working towards that goal, Mayr and 

colleagues (2021) have attempted to connect changes in plasma proteome with pathologic 

changes in lung physiology so as to propose a simple assay for assessing PF progression. 

According to their findings, CRTCA1 decreased peripheral levels positively correlated with 

multiple lung function measurements in ILD patients. Interestingly, CRTCA1 origin was traced 

back to the AT2 cells and was connected to a loss of AT2 cell identity during disease 

progression (Mayr, Simon et al. 2021). Moreover, CRTCA1 levels were negatively correlated 

with those of SOX4 whose transcription was shown by (Strunz, Simon et al. 2020) to regulate 

AT2 differentiation process. 

As human and mouse scRNA-seq datasets begun to amass, the first large studies begun to 

emerge. Such a big project was undertaken by Huang and colleagues (2021) with the ultimate 

goal of disentangling the various ‘intermediate’ epithelial cell types previously described in 

human and mouse samples. More specifically, through the integration of multiple publicly-

available scRNA-seq datasets, they demonstrated various differences between human and 

murine intermediate cell types that could be attributed to either murine model limitations or 

inter-species particular characteristics (Huang and Petretto 2021). In addition, IPF AT1 cells 

were more closely related to murine progenitors than to normal AT1 human cells, suggesting 

an incomplete differentiation as a common baseline of fibrotic lungs. Moreover, in contrast to 

the proposal of (Adams, Schupp et al. 2020, Habermann, Gutierrez et al. 2020) that senescence-

related genes emerge only in latter stages of aberrant basaloid cells expansion, Huang and 

Petretto (2021) supported that it may actually play a more active role earlier in the process, 

similarly to PATS of (Kobayashi, Tata et al. 2020). On the other hand, SMAD3-activated TGFβ 

signaling from committed KRT5-/KRT17+ cells is suggested to drive the cells’ pro-fibrotic 

phenotype in accordance to (Yao, Guan et al. 2020) findings. The authors also provide evidence 

that microinjuries in the IPF lung might sustain Notch-signaling in transitional AT2 cells, thus 
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inhibiting their homeostatic developmental course in favor of KRT5-/KRT17+ cells creation 

(Huang and Petretto 2021). Last, an attempt to order all AT2-AT1 intermediate cell states was 

made, with Cdc42-null AT2s (Wu, Yu et al. 2020) being the most remote from the rest of the 

cells and Krt8+ ADI (Strunz, Simon et al. 2020) and DAPT cells (Choi, Park et al. 2020) the 

most closely ‘related’. 

Impaired epithelial turnover seems to be a feature common between several lung pathologies. 

Indicatively, KRT5-/KRT17+ basaloid cells were detected in SSc-ILD samples along with a 

unique transcriptional profile of fibrotic lung AT1 cells further strengthened already existing 

data of a common pathogenic mechanism between lung fibrotic pathologies (Valenzi, Tabib et 

al. 2021). In contrast, non-UIP ILD and IPF alveolar basal cells have been reported to have 

distinct transcriptional profiles (Jaeger, Schupp et al. 2022). The latter had a KRT17hi/PTENlow 

phenotype characteristic of a de-differentiation status and were transcriptionally similar to the 

aberrant basaloid cells described previously (Adams, Schupp et al. 2020, Habermann, Gutierrez 

et al. 2020). Last, pro-fibrotic characteristics of IPF basal cells, such as bronchospheres 

formation, engraftment and proliferation capabilities, were attenuated by SRC-inhibition 

(Jaeger, Schupp et al. 2022). 

Based on previous knowledge that mesenchymal cells do support epithelial cells physiological 

function in the lung, Xie and colleagues (2021) whether pro-fibrotic fibroblasts-produced 

factors are the reason for the impaired epithelium regeneration during PF. Motivated by the 

decreased expression of growth hormone receptor (GHR) in both human and mouse fibrotic 

lungs, which correlates with decreased lung functionality measurements, the authors supported 

that mesenchymal cells supply the lung epithelium with GHR (Xie, Kulur et al. 2021). 

Inhibition of this supply disrupts renewal of the latter leading to fibrosis establishment. Their 

data along with those of (Wu, Yu et al. 2020) shape an epithelium-mesenchyme pro-fibrotic 

signaling loop functionally connecting those two compartments during PF. 

Last, CD274 (PD-L1) which is suggested to regulate fibroblast to myofibroblast trans-

differentiation and collagen deposition, has been found to be specifically expressed by AT2 

cells, aberrant basaloid and KRT5-/KRT17+ cells of the lung (Ahmadvand, Carraro et al. 

2022). FACS enrichment of epithelial cells led to the discovery of a new CD274+ cell group 

expanded in the IPF tissues and expressing moderate levels of AT2 marker genes. From both 

a molecular and functional perspective, those cells were very similar to mouse injury-activated 

alveolar epithelial progenitors (IAAPs) (Ahmadvand, Lingampally et al. 2022) and 

demonstrated self-renewal capacity in the steady state lung (Ahmadvand, Carraro et al. 2022). 

1.7.3.2 Single myeloid cells of the lung 

Myeloid cells constitute another important player for the initiation and establishment of fibrosis 

and thus, have become the research subject of many single cell publications. 

Initially, based on an RNA-seq analysis of FACS-enriched myeloid sub-types of the lung, it 

was suggested that monocyte-originating and not lung-resident macrophages are the ones 

implicated in fibrosis development (Misharin, Morales-Nebreda et al. 2017). Murine data from 

the same publication supported the existence of a continuous differentiation path between 

monocyte-derived and alveolar macrophages, with these two populations accounting for pro-

fibrotic and homeostatic conditions, respectively. 
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Similarly to the case of epithelial cells, Reyfman and colleagues (2019) have identified 

macrophage clusters specifically enriched for cells of fibrotic origin. Pathway analysis of 

deregulated genes in the cluster yielded fibrosis-related processes, such as “extracellular matrix 

organization” and “regulation of migration” (Reyfman, Walter et al. 2018). 

In support of a continuous periphery-to-lung developmental trajectory of myeloid cells, Aran 

and colleagues (2019) examined murine fibrotic niches and identified a population of 

transitioning macrophages (Aran, Looney et al. 2019). These SiglecF+CD11c+MHCIIhi cells 

were observed in contact with fibroblasts and regulated their proliferation via Pdgfaa secretion 

in both human and mouse lungs. Ablation of this macrophage population inhibited fibrosis by 

affecting fibroblast expansion and fibrotic scar formation (Aran, Looney et al. 2019). Further 

supporting evidence came from an independent publication were monocyte-derived alveolar 

macrophages of the fibrotic niches were found to be important sources of Pdgfa regulating 

fibroblasts pro-fibrotic behavior (Joshi, Watanabe et al. 2019). On the other hand, tissue-

resident interstitial macrophages did not contribute to the niche-associated macrophage group. 

Importantly, (Xie, Wang et al. 2018) dataset re-analysis produced similar results.  

PF heterogeneity is reflected, among others, between the various lung locations, with upper 

lobe parts presenting milder fibrosis than lower parts. To examining this difference, a single 

cell comparative analysis revealed an increase in fibroblast, basal and club cell numbers in 

lower lobe sections, in contrast to alveolar macrophages (Morse, Tabib et al. 2019). Clustering 

of the latter revealed three groups in both control and IPF lungs: FABP4hi, SPP1hi and FCN1hi, 

each one with a unique enrichment pattern. More specifically, SPP1hi macrophage numbers 

were increased in the lower fibrotic lung parts in comparison to the upper IPF and control lungs, 

while staining for SPP1 suggested localization at the fibrotic niches (Morse, Tabib et al. 2019). 

In addition, SPP1hi cells of the control lungs were characterized by the expression of quiescent 

cell cycle markers, whereas they were found to be heavily cycling in all IPF sampling sites. 

Subsequent gene network analysis pinpointed the densest part of the network between 

fibroblasts and fibrotic niche macrophages and it was thus suggested that tissue resident 

macrophages that undergo changes during fibrosis are those that promote pathogenesis, 

contrarily to the findings of (Reyfman, Walter et al. 2018, Aran, Looney et al. 2019, Joshi, 

Watanabe et al. 2019).  

The aforementioned findings were replicated by Valenzi and colleagues (2019) as macrophages 

and monocytes were separated into the shame three groups described in (Morse, Tabib et al. 

2019) and a SPP1hi macrophages abundance was found increased in fibrotic samples compared 

to respective controls (Valenzi, Bulik et al. 2019). SPP1-marked macrophages were then re-

identified when an archetype analysis led to the discovery of a pro-fibrotic SPP1+CSF-1+ 

subtype at the very end of the respective trajectory (Adams, Schupp et al. 2020). Last, the 

“activated alveolar macrophages” reported by Mayr and colleagues (2021) was an independent 

identification of a SPP1hi macrophage population (Mayr, Simon et al. 2021). 

Further interest in the PF myeloid compartment was triggered by (Fraser, Denney et al. 2021) 

who observed that peripheral macrophages CD64 expression correlates with patients’ fibrotic 

load. More specifically, it was shown that IPF-suffering individuals had an increased number 

of monocytes in the periphery accompanied by elevated levels of serum IL6, CCL-2 and CSF-

1, a known promoter of epithelium senescence. Re-analysis of (Reyfman, Walter et al. 2018) 

single cell data identified, among others, a transitional macrophage type with increased levels 
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of CCL-2 and type-I IFN, suggesting a lung origin for this periphery-detected feature (Fraser, 

Denney et al. 2021). From a transcriptional point-of-view, this macrophage subset was similar 

to the pro-fibrotic group of (Adams, Schupp et al. 2020). Furthermore, a decrease in the 

numbers of mature macrophages in favor of expanded monocyte and transitional macrophage 

populations in the fibrotic lung corroborated the findings of previous publications such as that 

of (Aran, Looney et al. 2019). 

Extending previous findings of their lab and extending the work of (Fraser, Denney et al. 2021), 

Valenzi and colleagues (2021) detected differential regulation of interferon signaling features 

between IPF and SSc-ILD macrophages. In more detail, IFNγ signaling was intensified in 

SSP1hi and FABP4hi macrophages of IPF versus those of SSc-ILD origin, while the opposite 

pattern was followed by IFN-I, thus necessitating a more careful examination of any IPF 

patients interferon treatment (Valenzi, Tabib et al. 2021).  

1.7.3.3 Single cells of the fibrotic mesenchyme 

Stromal cells and especially fibroblasts have long been in the crosshairs of scientists 

investigating lung fibrosis, as these cells promote tissue stiffness via direct ECM remodeling. 

Single cell analysis of this lung compartment has uncovered a previously unknown great 

heterogeneity and have also challenged the effectiveness of long established marker genes. 

Furthermore, the ever-increasing number single cell datasets attempt to reveal the source of 

pro-fibrotic fibroblast populations, yet with mostly conflicting results. 

One of the most heavily researched IPF single cell topics is about the discovery and 

characterization of in vivo mesenchymal sub-types. During the early days of IPF single cell 

analyses, researchers observed the existence of two mesenchymal niches: an Axin2+ 

myofibrogenic and a Pdgfra+ Wnt-responding alveolar one (Zepp, Zacharias et al. 2017). 

Lineage tracing of single cells from a BLM murine model revealed that the former cells give 

rise to pathogenic myofibroblasts and were thus termed Axin2+ Myofibrogenic Progenitors 

(AMPs). The latter group responded to acute lung injury by providing the necessary support 

for the physiological AT2 regeneration and trans-differentiation into AT1s and were thus called 

mesenchymal alveolar niche cells (MANC) (Zepp, Zacharias et al. 2017). A year later, 

examination of FACS-enriched mesenchymal cells from both BLM-treated and untreated mice 

led to the identification of multiple fibroblast clusters, whose comparison led to several 

interesting findings (Xie, Wang et al. 2018). As far as cluster markers are concerned, Hhip, 

Aspn and Mustn1 proved better myofibroblast markers compared to Acta2, as the latter was 

expressed indistinguishably by both myo- and matrix fibroblasts. Detected lipofibroblasts 

expressed Adrp and Pparg in addition to already known markers and were also characterized 

by an M2 macrophage-like signature blurring the line between the two cell types. In contrast 

to previous reports, neither lipofibroblasts nor myofibroblasts expressed elevated levels of 

Pdgfra, a feature which was primarily produced by Col13a1 and Col14a1 matrix fibroblasts. 

A rare Pgfrb+ population was found scattered across known fibroblast clusters and constituted 

predominantly by cells of fibrotic origin which did not overlap with the pericyte group. 

Juxtaposed to the observations of (Zepp, Zacharias et al. 2017) D0 myofibroblasts and D21 

Pdgfrbhi cells correlated well with AMPs, while MANCs were more closely related to the here 

described Col13a1 and Col14a1 matrix fibroblasts. Collectively, the authors suggested that the 

term ‘pericytes’ may actually describe a heterogeneous set of cells made of both myofibroblast 

and matrix fibroblasts and that Pdgfra+ cells are plastic matrix fibroblasts that can 
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transdifferentiate into lipofibroblasts. Last, it was proposed that the latter give rise to 

myofibroblast via Pgfrbhi intermediate mesenchymal cells (Xie, Wang et al. 2018). 

In a different cell isolation strategy, sampling various lung regions led to the discovery of a 

HAS1hi ECM-producing mesenchymal population occurring primarily in the fibrotic lung 

(Habermann, Gutierrez et al. 2020). Located at peripheral and subpleural areas of the organ, 

HAS1hi cells were encountered in deeper tissue parts during PF, indicating a potential invasive 

phenotype. Their transcriptome was enriched with epithelial-to-mesenchymal transition and 

cellular stress processes. Lineage receptor analysis interconnected fibroblasts and epithelial 

cells via matrix-driven integrin-depended signaling pathways (Habermann, Gutierrez et al. 

2020). The above described cell types were recovered from a re-analysis of (Reyfman, Walter 

et al. 2018, Morse, Tabib et al. 2019) datasets and similar transcriptional profiles including 

elevated expression of HAS1 have been independently reported by (Adams, Schupp et al. 

2020). 

Another active research topic revolves around mesenchymal-related signaling pathways. To 

validate previous data indicating a Pdgfraa flow from SiglecF+CD11c+MHCIIhi macrophages 

to fibroblasts located in adjacent fibrotic niches, (Aran, Looney et al. 2019) re-analyzed a 

murine lung single cell dataset. Although Pdgfra was not detected, Aran and colleagues 

identified a new group of cell cycling fibroblasts in the fibrotic samples. Ultimately, depletion 

of CX3CR1+ macrophages led to a significant reduction of cells expressing Pdgfra and Pdgfrb 

fibroblast markers and a simultaneous reduction of collagen levels (Aran, Looney et al. 2019). 

Further strengthening the hypothesis of a macrophage-dependent fibroblasts expansion, single 

cell ligand-receptor analysis revealed that alveolar macrophages do target fibroblasts with pro-

proliferating molecules, such as Pdgfra (Joshi, Watanabe et al. 2019). Moreover, analysis of a 

DEG network revealed a intense communication between fibroblasts and SPP1hi macrophages 

(Morse, Tabib et al. 2019). 

With the aim of exploring early fibrosis processes, Peyser and colleagues (2019) collected 

murine lung cells on the 11th day of BLM treatment and examined their transcriptional profile. 

Interestingly enough, 49 genes could be found deregulated in an activated group of fibroblasts, 

but their expression was not limited to BLM-treated cells. This observation supported the 

notion that pro-fibrotic mesenchymal cells do emerge from homeostatic ones during fibrosis 

establishment (Peyser, MacDonnell et al. 2019). Furthermore, as many of these genes, 

including Sfrp1 and Cthrc1, have been previously linked to anti-fibrotic processes, it was 

proposed that an increase in their transcription may be part of an active defensive mechanism. 

In terms of population size, no changes in fibroblast numbers were observed during the initial 

stages of the model, suggesting that mesenchymal cells and fibrosis initiation are not 

functionally related (Peyser, MacDonnell et al. 2019). Last, in accordance with (Xie, Wang et 

al. 2018) it was proposed that no single marker, let alone ACTA2, can be used for adequate 

myofibroblasts characterization. 

Extending mesenchyme research, Valenzi and colleagues (2019) scrutinized the transcriptome 

of control and SSc-ILD cells and identified two major, SPINT2hi and MFAP5hi, and one minor, 

WIF1hi, group of fibroblasts present in both phenotypes. On the other hand, detected 

myofibroblasts were of fibrotic origin and intensively expressed cell proliferation-related 

features, such as CTHRC1 and ACTA2 (Valenzi, Bulik et al. 2019). Noteworthily, the latter 

was also transcribed by smooth muscle cells along with MYH11 and PLN, further strengthening 
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the opinion that ACTA2 use is inappropriate for myofibroblasts identification. Moreover, it was 

suggested that murine mesenchymal markers are not directly analogous to human cells. In 

agreement to (Peyser, MacDonnell et al. 2019), fibroblast numbers did not change during 

fibrosis, opposite to the proportion of myofibroblasts (Valenzi, Bulik et al. 2019). Last, in 

contrast to (Xie, Wang et al. 2018), it was proposed that myofibroblasts arise from a quiescent 

cell type, with MFAP5hi group being the most probable developmental source (Valenzi, Bulik 

et al. 2019). 

The latter hypothesis that pro-fibrotic mesenchymal cells arise from a resting steady state cell 

type was further reinforced by the work of (Adams, Schupp et al. 2020). More specifically, 

invasive fibroblasts were detected in parallel to myofibroblasts, with the latter forming 

aggregates in physical proximity to aberrant basaloid cells. Correlation between pseudotime 

distances and cells’ transcriptome highlighted a slow and progressive increase in the expression 

of genes related to both aforementioned cell types. 

A quite interesting observation about IPF mesenchymal progenitor cells (MPCs) is that their 

fibrogenic character seems to be imprinted and thus manifestable in the absence of a pro-

fibrotic microenvironment. Transcriptome examination of IPF and control MPCs demonstrated 

that the biggest differences between phenotypes can be seen in the least differentiated cells 

(Beisang, Smith et al. 2020). The majority of those expressed CD44 and it was also shown that 

CD44hi IPF MPCs produced more colonies outside of their native fibrotic milieu, in contrast to 

their CD44lo IPF counterparts. From a spatial point-of-view, pathological MPCs were found at 

the high perimeter region of fibroblastic foci, similarly to many other fibrosis-related cell types. 

Collectively, data from this publication support the early emergence of pro-fibrotic IPF 

fibroblasts and the hypothesis of their emergence from macrophage-corrupted tissue resident 

control MPCs (Beisang, Smith et al. 2020).  

Working on the hypothesis that fibroblasts achieve their diverse functional repertoire thanks to 

tissue-specific transcriptional profiles, Buechler and colleagues (2021) assessed an extended 

research area of multiple integrated single cell samples originating from various tissues, 

diseases and two distinct species. In precis, it was revealed that fibroblasts can be separated 

into a universal, a steady-state and an activated (pathology-related) group (Buechler, Pradhan 

et al. 2021). More importantly, researchers witnessed a high concordance between mouse and 

human fibroblasts, while multiple PF cells expressed various universal markers (Habermann, 

Gutierrez et al. 2020). 

In search for ECM-supporting cells, Tsukui and colleagues (2020) identified Cthrc1+ and 

CTHRC1+ fibroblasts as the main producers of secreted collagen. In detail, normal mouse 

fibroblasts were separated into four alveolar subgroups, two types of adventitial and a cluster 

of bronchial fibroblasts (Tsukui, Sun et al. 2020), all in different locations similarly to 

(Habermann, Gutierrez et al. 2020). Comparison of their transcriptome with expression 

patterns from previous publications led to the identification of cells homologous to (Xie, Wang 

et al. 2018) fibroblasts and AMPs (Zepp, Zacharias et al. 2017). In contrast, lipofibroblast 

markers were detected across several cell groups (Tsukui, Sun et al. 2020). Interestingly, Acta2 

has not only been once more accused as an unreliable myofibroblast marker, but it was also 

proposed as uncharacteristic of collagen producing cells in general (Tsukui, Sun et al. 2020). 

As far as the identified Cthrc1+ fibroblasts are concerned, they presented a stronger migratory 

potential than alveolar or adventitial fibroblasts and they also had an enhanced ability to 
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colonize BLM-treated murine lungs. From a developmental point-of-view, both RNA velocity 

and trajectory analysis indicated alveolar fibroblasts as the source of Cthrc1+ cells. 

Importantly, re-analysis of (Peyser, MacDonnell et al. 2019) data identified a latent fibrosis-

specific cell cluster similar to the Cthrc1+ fibroblasts described. Similar findings emerged from 

human scRNA-seq data and re-analysis of (Morse, Tabib et al. 2019) dataset in which a 

collagen-producing CTHRC1+ACTA1low population was identified. Last, CTHRC1+ 

fibroblasts were also described independently in scleroderma patients (Valenzi, Bulik et al. 

2019). 

Approaching pathogenic fibroblasts establishment from both a transcriptomics and proteomic 

point-of-view, Mayr and colleagues have observed that myofibroblast signatures are up-

regulated early in the progression of the disease (Mayr, Simon et al. 2021), in contrast to the 

suggestions of (Peyser, MacDonnell et al. 2019). In addition, it was suggested that lung 

PDGFRB+ cells which are often vaguely labelled as perivascular pericytes, are more 

heterogeneous than previously appreciated, encompassing not only perivascular pericytes, but 

also fibroblasts and smooth muscle cells (Mayr, Simon et al. 2021). Similar results regarding 

the heterogeneity of PDGFRB+ cells were produced by (Wu, Yu et al. 2020). 

In extension of the (Mayr, Simon et al. 2021) findings, Nakahara and colleagues detected 

meflin (ISLR), a gene up-regulated during fibrosis, in a population of PDGFRB+/EPCAM-

/CDH5-/PTPRC- cells. The latter most probably hosted fibroblasts and myofibroblasts of both 

the control and the IPF lung (Nakahara, Hashimoto et al. 2021). Examination of the spatial 

distribution of ISLR+ fibroblasts in control lungs revealed their intermittent presence in 

perivascular or periepithelial regions. During fibrosis three quarters of them were located in 

fibrotic lesions with half of them being ACTA2-, while ACTA2+ fibroblasts that were found 

in dense fibrotic regions were practically negative for ISLR. Data from further 

experimentations revealed that meflin is required for restraining the pro-fibrotic and senescent 

lung fibroblast phenotype (Nakahara, Hashimoto et al. 2021). Conclusively, it was proposed 

that in early fibrogenesis, meflin increased expression is inhibited by persistent TGFβ 

signaling, ultimately leading to fibroblast senescence and aberrant pro-fibrotic activity 

(Nakahara, Hashimoto et al. 2021). 

It may be that mesenchymal cells are directly responsible for the secretion of ECM-remodeling 

factors, thus leading to progressive lung stiffness establishment, yet there are also other tissue 

compartments that can indirectly affect the whole process. Extending previous knowledge and 

data presented by (Habermann, Gutierrez et al. 2020), Xie and colleagues (2021) have for the 

first time proposed a fibroblast-epithelial communication line via GHR-enriched vesicles. 

More specifically, GHR was found under-expressed during fibrosis and it was revealed that its 

presence is necessary for the successful recovery of an injured lung epithelium (Xie, Kulur et 

al. 2021). Diminished exosomal and cellular GHR expression from mesenchymal cells 

suppress epithelial cell progenitor renewal, thus leading to an impaired epithelium recycling. 

Except for the signals exchanged between epithelial and mesenchymal lung cells, current data 

also propose an active signaling channel between fibroblasts and endothelial cells (Xiucheng, 

Xichun et al. 2021). Beginning from a clustering of fibroblast cells, authors were able to 

identify all common cell types, such as myo- and lipo- fibroblasts, while they were also in place 

to detect Cthrc1+ collagen producing fibroblasts as previously reported by (Tsukui, Sun et al. 

2020). Ligand-receptor analysis between fibroblast and epithelial cells suggested a potentially 

important contribution of the epithelium in the regulation of fibroblast proliferation and ECM 
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production. Last, fibroblasts were witnessed to communicate with macrophages. The latter, 

expressing PLA2G7 during fibrosis were found to promote fibroblast-to-myofibroblast 

transition via the LPC/ATX/LPA/LPA2 axis (Wang, Jiang et al. 2022). Pharmacological 

inhibition of Pla2g7 ameliorated fibrosis in BLM-treated mice and reduced the expression of 

many pro-fibrotic features, including Acta2 and Col1a1. On the contrary, expression of ACTA2, 

FN1 and COL1A1 increased in 3T3 cells when co-cultured with PLA2G7hi macrophages 

compared to empty vector transfected ones. 

As PF is an age-related disease, examination of human and mouse mesenchymal samples from 

various life stages can provide illuminating information for steady state and pathologic 

conditions. In such a research initiative (Liu, Rowan et al. 2021) scrutinized murine 

mesenchymal cells in multiple age time-points. To begin with, lipofibroblasts were located at 

the one end of E17.5 cells trajectory analysis opposite to fibroblasts and myofibroblasts. 

Subsequent examination of lipofibroblasts transcriptome across multiple developmental stages 

yielded a novel set of marker genes capable of identifying lipofibroblasts at all time-points 

studied. In contrast, the commonly-used gene set was capable of identifying the cell type only 

during its peak stage. Similar results were also obtained for human lipofibroblasts with TCF21 

being the most reliable marker of the group irrespective of the developmental stage. As far as 

myofibroblasts are concerned, discriminative genes were identified for murine but not for 

human cells, as human myofibroblasts were inseparable from smooth muscle cells. 

Interestingly, on E14.5 researchers witnessed the emergence of a transcriptionally-unique 

Ebf1+ mesenchymal population. Following the signal into adult mouse lungs, Ebf1 signal was 

detected in pericytes and fibroblasts bearing the same embryonic expression signature, once 

again suggesting a common developmental origin for both the aforementioned cellular groups. 

Homologues cells were found in human IPF and control lung samples, while comparison of 

deregulated functions revealed the enrichment of various pro-fibrotic processes, such as 

fibroblast migration and proliferation, during fibrosis. Regarding cell proportions, not any 

change in myofibroblast numbers nor evidence of trans-differentiation from other 

mesenchymal cell types was witnessed in neither species. On the contrary, it was proposed that 

all mesenchymal cells over-express ECM-related features. Last, re-analysis of the (Xie, Wang 

et al. 2018) dataset revealed that Col14a1 and Col13a1 fibroblast markers from  were expressed 

by lipofibroblasts and Ebf1+ cells, respectively. 

1.8 Integration efforts and meta-analysis 

Nowadays, publicly accessible repositories host an ever expanding collection of gene 

expression datasets as a result of the unceasing research of the PF transcriptional landscape. In 

parallel to the increasing data volume came several attempts of datasets integration, 

combination and/or meta-analysis, aiming to reveal latent yet potentially informative patterns 

of disease manifestation, establishment and progression. Due to the complex nature and the 

huge size of many of these data collections, machine learning (ML) applications have been 

adopted multiple times in an attempt to delimit otherwise unconceivable pathological motifs. 

1.8.1 Challenges in data meta-analysis 

Dataset meta-analysis and/or combination presents several data quality and data collection-

related challenges. To begin with, both publication and search bias can greatly affect the ‘raw 

materials’ of a meta-analysis and in turn quality of its results (Walker, Hernandez et al. 2008). 

Publication bias refers to the current preference of the scientific world to ‘success story’ 

publications, a notion that excludes negative, unpublished yet highly informative research 
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deliverables. On the other hand, search bias concerns the fragile dependence of search engine 

responses from user-provided keywords, a relationship that if not taken into consideration can 

conceal significant publications. In addition, selection bias is another pitfall that arises when 

the final dataset shortlist is not shaped based on a comprehensive set of criteria. Last, persisting 

inconsistencies in public datasets recording can affect meta-analytic results. Thus, data 

harmonization, careful manual curation and meta-data gleaning is a necessary data pre-

processing stage.  

Apart from the target data per se, a comprehensive meta-analytic effort can also be confined 

by the quality and availability of meta-data and annotation sources. Annotating omics data with 

biological and technical information can be extremely challenging due to often outdated public 

archive entries and lack of interconnection between biological databases. Together with the 

aforementioned difficulties, retrieving annotation for the so called ‘legacy’ data frequently 

proves to be a nearly overwhelming task. To overcome the above obstacles, manual curation 

of annotation sources is usually required, thus introducing a time-consuming and rather baffling 

step in the meta-analytic process (Krassowski, Das et al. 2020). Moreover, data heterogeneity 

introduced not only across but also within omics modalities due to for example differences in 

protocols and sequencing platforms used, do create the necessity of data wrangling via various 

transformation steps, such as normalization and standardization (Krassowski, Das et al. 2020). 

1.8.2 Meta-analytic/ integration efforts in IPF 

Collective analysis of independent IPF-centered research deliverables begun rather early with 

one of the first such publications been based on literature reported results as were (Tzouvelekis, 

Harokopos et al. 2007). Nevertheless, the authors suggested a novel set of PF biomarkers and 

distinguished HIF-1 as an important player for epithelium homeostasis. In a more statistically 

oriented attempt, Kim and colleagues (2015) integrated clinical, mRNA and miRNA 

expression data from a single cohort of lung disease patients. Applying a custom pipeline of 

feature concatenation and dimensionality reduction followed by unsupervised clustering of 

smoothed feature intensities, the authors retrieved three significant patient clusters representing 

COPD, ILD and intermediate cases, each one with specific deregulated features (Kim, Herazo-

Maya et al. 2015). 

Other meta-analytic attempts aimed to illuminate the regulatory mechanisms governing PF 

progression. Towards that goal, weighted gene co-expression network analysis (WGCNA) has 

been applied on differentially expressed features isolated from two of IPF and control sample 

sets, while the two independent datasets have been used for validation purposes (McDonough, 

Kaminski et al. 2019). Specifically, 16 expression modules have been shaped and nine of them 

correlated with lung function measurements. Totally, immune response was found down-

regulated during IPF in favor of an up-regulated humoral response, in parallel to two 

simultaneous fibrotic processes. Last, transcriptional co-activators p300 and TCF12 along with 

miR-205 and miR-30s were proposed to interconnect with specific gene co-expression modules 

(McDonough, Kaminski et al. 2019). 

Data integration has also been exploited for purposes of drug repurposing. In such an example, 

differential expression and network analysis created a multi-dataset-based list of deregulated 

features capable of describing IPF heterogeneity both across individuals and between different 

disease stages (Karatzas, Bourdakou et al. 2017). At least five different drug candidates were 

proposed for all or for the two examined IPF stages specifically. Two years later, connectivity 
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map analysis (CMap) of an aggregated feature list produced another set of eight potential drugs 

(Wang, Zhu et al. 2019).  

Identification of latent yet important disease targets/biomarkers has greatly benefited from 

combinatorial dataset analyses. To begin with, WGCNA of between-datasets most variable 

genes shaped two co-expression modules significantly correlated with disease status (Wang, 

Zhu et al. 2019). Examining their members’ distribution the authors identified 30 hub features 

supposedly suitable as IPF biomarkers. Towards the same goal, Li and colleagues (2020) 

created a PPI network from the DEGs shared between six lung microarray datasets comparing 

IPF and control individuals. 24 hub nodes were identified and subsequent pathway analysis 

(PA) implicated them in several ECM-related pro-fibrotic processes (Li, Liu et al. 2020). An 

almost identical approach based on just a couple of datasets was published the same year 

reporting ten disease targets (Xu, Mo et al. 2020). In a third network-based attempt, 20 hub 

genes were pinpointed as important in pulmonary fibrosis. Many of these features were also 

found to be potential miRNA interactors according to their opposite deregulation pattern during 

PF (Zhu, Xu et al. 2021). Last, yet another network-revolving publication proposed 11 IPF 

target genes following 7 transcriptomics datasets integration and wet laboratory validation of 

the in silico findings (Wan, Huang et al. 2021). The same number of significant genomic 

features was disclosed by (Cui, Ji et al. 2021) 

Analyzing a bigger sample size increases the chances of revealing otherwise-masked disease 

subtypes. Agglomerative hierarchical clustering of IPF patients from multiple datasets 

according to their DEGs led to the characterization of two major sub-clusters (Kim, Jung et al. 

2021). Each sub-cluster was potentially driven by different cell types and was enriched in a 

specific biomarker set developed from a PPI network analysis. Moreover, key driver analysis 

(KDA) of the network’s primary component produced 119 key disease genes, ¼ of which were 

also differentially regulated. 

To accelerate future combinatorial research efforts, Villasenor-Altamirano and colleagues 

(2019) developed an omics database hosting expression datasets from IPF, COPD and control 

cases. PulmonDB, as it is called, enables researchers to interactively investigate changes in 

pulmonary transcriptome during disease without the need of any computational expertise. 

Nevertheless, knowledge of the R programmatic language is necessary to retrieve data for any 

downstream analysis (Villaseñor-Altamirano, Moretto et al. 2020). 

In conclusion, PF datasets meta-analyses aimed to address some of the most common yet 

unsolvable problems in the field of lung pathology. Future evaluation of their results will judge 

the utility of such methods. 

1.8.3 Machine learning in IPF 

ML is a computer science discipline that aims on solving practical problems by algorithm 

construction and tuning (Burkov 2019). It has evolved dramatically from the beginning of the 

21st century and has nowadays various applications in a great spectrum of fields, including 

biology and related fields (Jordan and Mitchell 2015). ML trains mathematical formulas on a 

(non) labelled input dataset (training data) and then uses them to predict the labels of an 

unknown dataset. This type of ‘learning’ differs significantly from the conventional learning 

encountered in the animal kingdom, as it strongly depends on the quality and structure of the 

training data. Even the smallest divergence of the unseen data from the training standards will 

most probably negatively affect the performance of the model (Burkov 2019). 
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Distinguishable by the annotation level accompanying the training dataset, there are four types 

of ML, with supervised and unsupervised learning being the most famous ones. In contrast to 

the labelled examples provided in a supervised learning task, unsupervised learning is trained 

on a vector of unlabeled examples which is subsequently either transformed or used as is to 

provide an answer to a given task. For example, while supervised learning can be used for spam 

e-mail detection, unsupervised learning is often applied for clustering and dimensionality 

reduction purposes (Burkov 2019). Popular algorithmic examples developed for the latter 

application are uniform manifold approximation and projection (UMAP) (McInnes, John et al. 

2020), autoencoders (Rumelhart, Hinton et al. 1986) and principal component analysis (PCA) 

(Jolliffe and Cadima 2016), one of the very first methods of this kind. Although multiple 

concerns are now beginning to arise (Dyer and Kording 2023), PCA and UMAP are still the 

methods of choice for transcriptomics data analysis bearing various advantages, such as those 

described in (Becht, McInnes et al. 2019). 

In biomedical sciences, ML algorithms have been repeatedly used to analyze complex data and 

reveal previously unnoticeable motifs. For example, novel biomarkers have been proposed via 

ML for cancer (Huang, Cai et al. 2018) and NAFLD cases (Han, He et al. 2022). Another 

popular application is that of endotype discovery and differential response to treatment 

prediction, for example in acute respiratory syndrome (Calfee, Delucchi et al. 2018). 

Concerning IPF, there are multiple research deliverables making use of ML for various reasons. 

To begin with, IPF diagnosis is a difficult task impeded by the similarities of its radiology and 

histopathology patterns to those of other ILDs. Currently, presence of a usual interstitial 

pneumonia (UIP) pattern is a necessary factor for successful IPF recognition. Although, high 

resolution computed tomography (CT) can ascertain UIP, its definitive existence can only be 

validated via examination of biopsy samples (Lynch, Saggar et al. 2006, Raghu, Collard et al. 

2011). In an attempt to avoid such an invasive method, Kim and colleagues (2015) used both 

microarray and RNA-seq gene expression data from surgical biopsy samples in order to 

develop a classifier algorithm capable of predicting UIP. Top 200 differentially expressed 

features between UIP and non-UIP samples were used in different size combinations to train a 

per technology classifier (Kim, Diggans et al. 2015). For microarrays a support vector machine 

and a lasso classifier were assessed, while for RNA-seq a linear support vector machine was 

applied on log transformed normalized data. Both classifiers achieved a >90% specificity, 

while a sensitivity of 82% (%CI 64-95) and 59% (35–82) was achieved by the microarray and 

the RNA-seq-based model, respectively. One more such attempt was based on gene expression 

data from trans-bronchial biopsies characterized or not by a UIP pattern (Pankratz, Choi et al. 

2017). Quality controlled RNA-seq data were subjected to feature selection via logistic 

regression with elastic net penalty and a signature of 169 genes was used to classify patients. 

Ultimately, the aforementioned deliverables provided evidence that UIP prediction is feasible 

by examining biopsy transcriptional data, paving the way for the search of more similar 

signatures. 

To rigorously examine their Envisia genomic classifier, Choi and colleagues (2018) provided 

further data supporting that it remains practically unaffected from unfavorable data 

characteristics, such as small sample sizes and heterogeneous pathology composition of the 

non-UIP samples (Choi, Liu et al. 2018). The model was also tested for its robustness against 

various quality and biological contamination levels using count data from 190 genes collected 

from various total mRNA datasets (Choi, Lu et al. 2017). It was revealed that Envisia can 
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adequately perform with UIP and non-UIP signals skewed up to 20% and 60%, respectively, 

while blood contamination can be tolerated up to 22%. Moreover, the test was found to be 

reproducible both within and across laboratories (Choi, Lu et al. 2017).  

To further scrutinize their algorithm, Raghu and colleagues (2018) have trained Envisia on a 

new set of expression data and compared the predicted diagnosis to that of high resolution CT 

scans. Interestingly, Envisia was witnessed to objectively distinguish UIP from non-UIP even 

in cases of uncertain or inconclusive high-resolution CT scans (Raghu, Flaherty et al. 2019). 

Last, the genomic classifier was shown to increase the diagnostic certainty when used together 

with bronchoscopic lung biopsies and can even be used on its own given the appropriate 

diagnostic settings (Kheir, Alkhatib et al. 2020). 

ML has also been exploited for disease severity recognition and classification. Towards that 

goal, unsupervised clustering of IPF/UIP and control samples based on expression data from a 

single microarray dataset, revealed six distinct subgroups of patients that correlated with 

disease severity and physiological lung function (Wang, Yella et al. 2017). Molecular 

signatures able to distinguish IPF from control and mild from severe IPF cases were also 

reported. Findings were validated in three independent microarray datasets. In addition, 

differential expression analysis (DEA) between the six subgroups produced approximately 

3000 deregulated genes organized into three gene expression modules, each one enriched in 

different functional processes (Wang, Yella et al. 2017). Interestingly, DEA between patient 

groups identified both group-specific and universal features with the vast majority of the latter 

being deregulated in all three validation cohorts. A logistic regression classifier trained on the 

main dataset and tested on each of the validation ones, achieved specificity, sensitivity and 

accuracy >90% in all testing sets and proposed the universal set of DEGs as a robust IPF versus 

control classification signature (Wang, Yella et al. 2017). Last, classifier’s training and 

validation with the unique gene set of the 6th subgroup enabled distinction of advanced from 

stable IPF cases. 

On top of expression-based ML algorithms there are others that use imaging data in order to 

address, for example, limitations in manual or semi-automatic steps of high-resolution CT 

scans quantitative analysis (Barnes, Humphries et al. 2023). Indicatively, CT scan-trained 

neural networks have been developed to facilitate disease classification based on the criteria 

published by (Raghu, Collard et al. 2011) and (Lynch, Sverzellati et al. 2018). Ultimately, the 

algorithm performed at least the same with the majority opinion of a great number of 

specialized thoracic radiologists, thus providing a reproducible and quick way of patient 

stratification (Walsh, Calandriello et al. 2018). Furthermore, a novel deep convolutional neural 

network architecture strengthened by two layers of transfer learning has been developed for the 

classification of ILD patterns based on CT images (Huang, Lee et al. 2020). Last, unsupervised 

ML evaluation of CT images produced a set of radiological IPF progression markers capable 

of predicting disease outcome (Pan, Hofmanninger et al. 2023). 

ML has also been employed for the discovery of disease biomarkers. Representatively, 

unsupervised separation of IPF subtypes led to the functional ranking of two IPF gene 

signatures and the isolation of a small group of BAL fluid markers separating disease from 

steady state (Wang, Yella et al. 2017). In another research deliverable, a random forest 

algorithm based on six expression datasets distinguished six genes, CDH3, DIO2, ADAMTS14, 

HS6ST2, IL13RA2 and IGFL2, as the best IPF versus control biomarkers (Li, Wang et al. 2023). 
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Interestingly, all the expression of all the above features correlated with lung function, while 

that of CDH3, DIO2 was also associated with patients’ survival. 

To summarize, ML can successfully address several yet unanswered biological questions and 

unsolved tasks. Novel algorithms development is promising to better model biological data and 

thus speed up biomedical research. 

2. Materials & Methods 

2.1 Transcriptomics data selection for Fibromine 

Scientific literature and research papers were scrutinized in order to form a list of IPF-related 

transcriptomics datasets. Those with less than three biological replicates per condition were 

filtered out along with those not providing editable raw data. Focus was given on 

commercially-available transcriptomics technologies for reasons of annotation availability. 

Datasets addressing only homeostatic or pathologic samples were filtered out, too. The vast 

majority of transcriptomics datasets used can be found in GEO repository (Barrett, Wilhite et 

al. 2013). Each archived dataset is represented by a unique GSE identifier which 

comprehensively codifies the individual samples, the technology used and any recorded 

metadata (Barrett, Suzek et al. 2005). 

Data of the aforementioned datasets were collected using ad hoc created packages. 

Specifically, GEOquery R package served as a GEO-proxy so as to easily fetch raw microarray 

data, as well as relative technical and biological annotation (Davis and Meltzer 2007). RNA-

seq FASTQ files were retrieved from Sequence Read Archive (SRA) (Kodama, Shumway et 

al. 2012) as SRA files using the SRA Toolkit function prefetch and were then transformed with 

the fastq-dump utility. 

2.2 Fibromine-hosted microarray data analysis 

2.2.1 Data preprocessing 

Microarray platforms can be separated into one or two color arrays, based on the number of 

color dyes used. Each array type requires different handling with one color data usually 

processed in three steps: background correction, normalization and summarization. On the 

other hand, two color data often require an extra specific step of within array normalization. 

Affymetrix 3΄ IVT expression arrays, as well as their gene and exon successor platforms were 

consistently pre-processed using Robust Multichips Average (RMA), a procedure that has been 

repeatedly reported to yield superior results during downstream DEA (Cope, Irizarry et al. 

2004, Harr and Schlötterer 2006). RMA can be summarized in three steps: background 

adjustment, quantile normalization and summarization of the expression values. Background 

adjustment deals with the noise arising from several sources, such as non-specific 

hybridizations. During RMA probes’ GC content can be taken or not into consideration via 

algorithms implementation in the gcrma (Wu, Irizarry et al. 2004) and rma (Irizarry, Hobbs et 

al. 2003) package, respectively. gcrma was only applied to 3΄ IVT arrays as gene and/or exon 

platforms do not use mismatch (MM) probes. For the rest of the cases, RMA was used as 

implemented in the affy (Gautier, Cope et al. 2004) and oligo (Carvalho and Irizarry 2010) R 

packages. For gene/exon arrays, RMA was applied on the ‘core’ array probes. HTA arrays 

were analyzed the same way with the gene/exon ones. 

Agilent microarrays can be divided into one or two channel arrays according to the number of 

colors used to measure gene expression. Data pre-processing requires within (only for two 
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color chips) and between arrays normalization post to background correction. normexp 

background correction with a 50 units offset was applied. This method was developed based 

on the RMA model and has been reported to perform better than other respective methods 

(Ritchie, Silver et al. 2007). The empirical offset value of 50 was added as a variance 

stabilization strategy necessary for the method’s successful results. Within array normalization 

deals with the inherent dye bias of two color arrays. Global loess method was selected instead 

of the otherwise better print-tip loess, as Agilent technology does not use print-tip groups 

(Smyth and Speed 2003). Last, between arrays normalization was used to deal with systematic 

biases of both one and two color microarrays. To maintain the analysis as consistent as possible, 

quantile normalization methods extending from the homonym Affymetrix strategy were 

selected, being suited for both one and two color arrays (Yang and Thorne 2003). All the 

aforementioned processes were used as implemented in limma R package (Ritchie, Silver et al. 

2007). Duke Operon arrays were analyzed as the Agilent two color ones. 

Illumina BeadChip microarrays were pre-processed with the neqc method that combines 

normexp and background correction followed by quantile normalization, as it is known to have 

top performance for Illumina platforms (Shi, Oshlack et al. 2010). 

2.2.2 Quality control, curation and probe filtering 

Quality control for Fibromine microarray data was performed using the arrayQualityMetrics 

R package (Kauffmann, Gentleman et al. 2009) and ad hoc created code scripts on background 

corrected and normalized expression values. Identification and removal of outlier samples was 

performed in a recursive manner. The process was facilitated by diagnostic plots and scores 

hosted in a per-dataset arrayQualityMetrics html report. Outlier detection was further 

supported by independently-created top DEG-expression-based sample hierarchical clustering 

and sample location in a PCA reduced dimension space (Jolliffe and Cadima 2016). Datasets 

with poor quality and/or per-condition inseparable samples were discarded. 

Subsequently, probes were filtered in order to increase the power of downstream DEA by 

decreasing the number of statistical tests made. Probes removal was based on biological (e.g. 

matching to none or multiple genes) and/or technical criteria (e.g. control and low variance 

probes) (Cordero, Botta et al. 2007). More specifically, control probes along with probes 

matching to no or multiple genes were filtered out. Respective annotation was found in either 

dedicated Bioconductor databases or array’s manufacturer website. R packages such as 

GEOmetadb were also utilized (Zhu, Davis et al. 2008). 

2.2.3 Gene level summarization and differential expression analysis 

Post to probe selection, intensities were summarized at the gene level represented by HGNC 

gene symbols. Intensities were recorded as is in cases of 1:1 probe-gene matching, while the 

weighted average was taken for genes represented by multiple probes. weighted.mean function 

of the stats R package was used with weights summing up to the unit. 

Statistical comparison of gene expression levels between conditions was performed using the 

limma moderated t-test statistics method (Ritchie, Phipson et al. 2015). Various experimental 

designs described in the package’s vignette were applied wherever necessary and occasional 

batch effects were incorporated into the statistical model. Multiple testing bias was corrected 

using the false discovery rate (FDR) method (Benjamini and Hochberg 1995). Significantly 

deregulated genes were defined by an absolute fold change (FC) ≥1.2 and an FDR-corrected 

p-value <0.05. 
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2.3 Other microarray data analyses 

2.3.1 Kidney disease datasets 

GSE66494 (Agilent) and GSE104066 (Affymetrix) raw data were retrieved from GEO via 

GEOquery R package (Davis and Meltzer 2007). The Agilent dataset was background 

corrected with the normexp method and an offset of 50 units (Ritchie, Silver et al. 2007), prior 

to between arrays quantile normalization. Affymetrix data were background corrected and 

RMA normalized utilizing the oligo R package (Carvalho and Irizarry 2010). 

arrayQualityMetrics R package facilitated quality-control and outlier removal for both datasets; 

GSM1623315 and GSM3904846, GSM2788881 outlier samples were removed from 

GSE66494 and GSE104066, respectively. 

Subsequent probe filtering of both datasets removed control, as well as probes matching to no 

or multiple HGNC gene symbols. Probes with intensity values close to the background as 

defined by interquartile range (IQR) calculation were also filtered out. Affymetrix probes with 

increased chances of cross-linking, as described in the technical annotation retrieved from 

getNetAffx function of the oligo package were removed, too. 

Intensity values of both collections underwent gene level summarization with one:many 

gene:probe relationships represented by a weighted average (see section 2.2). Deregulated 

features were identified via the empirical Bayes test statistic implemented in limma. Absolute 

FC ≥ 1.2 and FDR corrected p-value < 0.05 were utilized to designate statistically significant 

expression changes. 

2.4 Fibromine-hosted RNA-seq data analysis 

For a consistent re-analysis, the vast majority of RNA-seq data included in Fibromine were 

fetched in a FASTQ file format from SRA (Kodama, Shumway et al. 2012) (see section 2.1). 

Reads alignment was performed in a two-step process coupling HISAT-2 (Kim, Paggi et al. 

2019) and Bowtie2 (Langmead and Salzberg 2012) aligners. Samples as well as datasets with 

low alignment rate were filtered out. All downstream processes were completed using 

metaseqR2, an R package for streamlined RNA-seq handling, improved DEA and 

comprehensive results reporting (Fanidis and Moulos 2020). Outlier samples were identified 

and removed in a recursive manner via multi-dimensional scaling (MDS) plots and top DEG-

based hierarchical clustering. MDS plots were created based on EDASeq normalized 

expression values. 

2.4.1 Reads alignment 

All RNA-seq datasets were mapped to GRCh38.p13 and GRCm38 reference genomes for H. 

sapiens and M. musculus samples, respectively. Use of the same per-species reference genome 

eliminated any chances of different annotation. Mapping was achieved via a pipeline of 

HISAT-2 and Bowtie2 aligners. 

HISAT-2 (Hierarchical Indexing for Spliced Alignment of Transcripts 2) is a splice-aware 

aligner based on a graph Ferragina-Manzini index. It operates on a linear graph of the reference 

genome with alternative paths representing several genomic variations (Kim, Paggi et al. 2019). 

The aligner was applied on raw sequencing data without any modification of its default 

operating parameters. Exception to the rule is the --rna-strandness argument which was 

activated for the processing of paired-end stranded datasets. Reads that remained un-mapped 

were isolated for downstream processing. 
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Bowtie2 is a short read aligner permitting gapped mapping based on the Bowtie indexing 

approach (Langmead and Salzberg 2012). Reads that failed to map via HISAT-2 were fed to 

this aligner using the –local and --very-sensitive-local parameters. The first authorized the 

aligner to trim read ends if by doing so maximized the alignment score. The second matched 

to a preset of options that carefully fine tune the accuracy, sensitivity and speed of the local 

alignment. These options are: the allowance of up to 20 consecutive seed extension attempts, 

three-times re-seeding of reads with repetitive seeds, zero permitted mismatches, utilization of 

20 nucleotide long seed substrings and usage of a gap between seed substrings given by 1 +

0.5 × √𝑥 with x being the length of each read. In addition to the aforementioned two, the --

dovetail argument was used for the alignment of paired-end reads in order for the mapping of 

dovetail pairs to be considered as concordant. Dovetailing describes the situation where one 

read mate aligns past the beginning of the other leading the wrong mate to begin upstream. 

The produced SAM files were transformed into binary ones (BAM files) using samtools view 

function (samtools v1.7). BAM files from both aligners were then merged, coordinate sorted 

and indexed via samtools merge, sort and index functions, respectively. Datasets with very low 

proportions of overall aligned reads were discarded. 

2.4.2 Reads quantification, normalization and filtering 

Following alignment, BAM files were fed to metaseqR2 package for downstream processing. 

Initially, read counting was performed via internal use of the GenomicRanges R package 

(Lawrence, Huber et al. 2013) and was based on the same reference genomes used during 

alignment. count.type argument of metaseqr2 function was set to either ‘gene’ or ‘exon’ 

depending on each sequencing library. 

Subsequently, in cases of exon counting, reads were filtered by default to ensure a minimum 

read presence. Thus, to maintain features with up to five exons, reads should have been mapped 

in at least two of them. On the other hand, more complex features were filtered in, if reads 

accumulated to at least 0.2 of their exons. Exon counts were then summarized to the gene level 

(trans.level = ‘gene’). 

Next, gene expression values were normalized prior to gene-level filtering. EDASeq two step 

normalization strategy was selected in order to address both gene length/ GC-content bias and 

library size/ composition (Risso, Schwartz et al. 2011). Before GC-correction, features with 

zero counts in total were automatically removed. As far as gene-level filtering is concerned, 

genomic features were filtered based on their structure, reads count, expression, biotype and 

presence. Specifically, genes shorter than 500kb or belonging to rare biotypes, such as 

unprocessed pseudogene, were filtered out. Genes with, on average, less reads per 100kb than 

the 25th quantile of the average count distribution per 100 base pairs were removed. Average 

count distribution was calculated based on each feature length. In cases of an exon count, all 

exons individual length was summed. Quantile was calculated per sample. Genes below the 

median of the overall count distribution were also filtered out. Last, the presence of a gene was 

evaluated across all samples, with genomic elements having less than 10 counts in the 25% of 

the samples being removed. 

2.4.3 Statistical analysis 

Normalized and pre-processed gene counts data were analyzed statistically for purposes of 

DEA. metaseR2 supports nine individual statistical methods including the popular DESeq2 

(Love, Huber et al. 2014), edgeR (McCarthy, Chen et al. 2012) and limma-voom (Law, Chen 
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et al. 2014). Furthermore, it provides seven p-value combination methods that can be activated 

when multiple individual algorithms are selected. Herein, all nine baseline methods were 

calculated and then PANDORA (Moulos and Hatzis 2015) weighted p-value algorithm 

combined their results. Differentially regulated features were defined as those having an 

absolute FC ≥1.2 and a PANDORA meta-p-value <0.05. PANDORA p-values were preferred 

as they have been observed to more truthfully identify deregulated features. Briefly, 

PANDORA improves false hits control while maintaining true positives, while at the same 

time is robust against several RNA-seq data particular characteristics and biases (Moulos and 

Hatzis 2015, Fanidis and Moulos 2020). 

2.5 Other RNA-seq data analyses 

2.5.1 Inflammatory diseases data 

metaseqR2 (Fanidis and Moulos 2020) was used to re-analyze expression data from immune-

related diseases (Ota, Nagafuchi et al. 2021) for the purposes of (Nikitopoulou, Fanidis et al. 

2021). EDASeq normalization was followed by default filtering and statistical analysis using 

DESeq (Anders and Huber 2010), DESeq2 (Love, Huber et al. 2014), limma-voom (Law, Chen 

et al. 2014), edgeR (McCarthy, Chen et al. 2012) and ABSSeq (Yang, Rosenstiel et al. 2016) 

individual algorithms. PANDORA (Moulos and Hatzis 2015) was then used to combine the 

produced p-values. DEGs were identified using an absolute FC ≥1.2 and a meta p-value <0.05. 

2.5.2 Quant-Seq data 

Quant-Seq (Lexogen) data (Moll, Ante et al. 2014) were analyzed in (Barbayianni, 

Kanellopoulou et al. 2023). Initially, low quality read ends were trimmed (Phred < 20) by Trim 

Galore (https://github.com/FelixKrueger/TrimGalore). Then pre-processed reads were mapped 

against GRCm38 Ensembl genome in a two-step pipeline utilizing HISAT-2 (Kim, Paggi et al. 

2019) and Bowtie2 (Langmead and Salzberg 2012) as described in section 2.4.1. 

Resulting BAM files were downstream processed with metaseqR2 (Fanidis and Moulos 2020). 

A 3’ UTR reads count table was crafted with internal use of GenomicRanges (Lawrence, Huber 

et al. 2013). During counting, 3’ UTR regions spanning minimum 300 base pairs, as well as 50 

base pairs flanks were taken into consideration. Gene summarized reads were then EDASeq 

normalized (Risso, Schwartz et al. 2011) prior to default filtering. DEA used all nine individual 

methods provided and then PANDORA combined their p-values. FDR-corrected meta-p-

values <0.05 and absolute FC ≥1.2 were set as significance thresholds. Heatmaps were created 

using normalized and standardized expression values. Euclidean distance was used for 

hierarchical clustering. 

2.6 TCGA data analysis  

TCGA data were used for publications (Panagopoulou, Fanidis et al. 2021, Panagopoulou, 

Drosouni et al. 2022). In (Panagopoulou, Fanidis et al. 2021), TCGA database was queried for 

methylation and expression data of prostate adenocarcinoma (PC), lung adenocarcinoma (LC) 

and liver hepatocellular carcinoma (HCC) cases. Level 3 methylation (Infinium Human 

Methylation 450K bead-chip) and normalized RNA-seq data at the gene and isoform levels 

(Illumina HiSeq) were retrieved exploiting the TCGAbiolinks R package (Colaprico, Silva et 

al. 2016). Sample metadata accompanying were also downloaded. All available cases of 

matched tumor and tumor-adjacent control areas (15 for HCC, 35 for PC and 42 for LC) were 

selected in addition to 200 tumor samples per cancer. In the infrequent event of a single patient 

being represented by multiple files per modality, the weighted average of all available values 

https://github.com/FelixKrueger/TrimGalore
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was used for subsequent processes; weights summed up to the unit. Relationship of differential 

expression and methylation events was assessed via Spearman’s correlation test as 

implemented in the cor.test vanilla R function. FDR corrected p-value < 0.05 was set as 

statistical significance threshold. Small correlation coefficients were further examined by 

linear model fitting using the lm vanilla R function. 

In (Panagopoulou, Drosouni et al. 2022), TCGAbiolinks was used to retrieve and process raw 

RNA-seq and level 3 methylation data, both originating from breast cancer patients. 

Sequencing data were normalized with EDASeq (Risso, Schwartz et al. 2011) and quantile 

filtered prior to DEA with edgeR (McCarthy, Chen et al. 2012). Absolute FC value ≥1.2 and 

adjusted p-value ≤0.05 were set to distinguish DEGs. Proper phenotype representation by RNA 

and methylation samples was examined by multi-dimensional scaling (MDS) and principal 

component analysis (PCA), respectively. Spearman correlation was used to identify significant 

relationships between gene expression and DNA methylation (rho ≥ 0.4 and adjusted p-value 

≤ 0.05). 

2.7 Microbiomics data analysis 

16S rRNA sequencing data targeting seven hot spot regions (V2-V4 and V6-V9) were analyzed 

for the purposes of (Galaris, Fanidis et al. 2022). DADA2 (Callahan, McMurdie et al. 2016) 

was used to process 16S rRNA FASTQ files. More specifically, 14bp were trimmed from the 

left end of each read as proposed by IonTorrent. Reads of at least 50bp and with less than four 

“expected errors” were kept for downstream analysis. Expected errors (EE) were computed 

based on nominal quality scores (Q) as thus: 

𝐸𝐸 = 𝑠𝑢𝑚 (10
−𝑄

10⁄ ) 

Contaminant sequences were detected by aligning pre-processed reads against the human and 

mouse genomes using the FastQ Screen tool (Wingett and Andrews 2018). Mammal sequences 

were removed from the raw FASTQ files which were then merged per tissue and diet prior to 

filtering and trimming repeat. Subsequently, DADA2 functions were used for denoising 

(leranErrors) and chimera removal (removeChimeraDenovo). Reads were then assigned to 

amplicon sequence variants (ASVs) that were in turn matched to specific taxa using SILVA 

database (Quast, Pruesse et al. 2013). To adjust for differences in gene copy numbers (GCN), 

abundance values were divided by the species-specific number of 16S gene copies as retrieved 

from rrnDB (v5.7 NCBI) (Stoddard, Smith et al. 2015). Taxa with no entries in rrnDB were 

removed from all downstream analyses. 

Bacterial diversity was assessed by the metrics of microbial richness (observed number of 

ASVs) and biodiversity (Shannon’s index) (Shannon 1948). β-diversity was compared between 

conditions using the Aitchison distance as it takes into consideration the compositional 

character of 16S rRNA sequencing data (Gloor, Macklaim et al. 2017). 

2.8 scRNA-seq data analyses 

Seurat R package (Stuart, Butler et al. 2019) was the workhorse of scRNA-seq data mining, re-

analysis and results visualizations. 

2.8.1 GSE122960 data 

For the purposes of (Zannikou, Barbayianni et al. 2021), raw scRNA-seq data were fetched 

from GEO and re-analyzed similarly to the original publication (Reyfman, Walter et al. 2018). 

Cells from each sample were filtered according to their proportion of mitochondrial reads and 
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the number of detected features. The remaining reads were normalized with the LogNormalize 

method and a scale factor of 10k. Subsequently, PCA was applied on the scaled values of the 

top 3000 highly variable genes (HVG) and the most informative principal components were 

selected using heatmaps and Elbow plots. K-closest neighbors of each cell were then identified 

and shared nearest neighbor (SNN) graph was constructed. Louvain original algorithm, as 

implemented in FindClusters function, was exploited for modularity optimization and cluster 

identification. Consistently to the published analysis the t-distributed stochastic neighbor 

embedding (tSNE) non-linear dimensionality reduction method (Van Der Maaten and Hinton 

2008) was selected for 2D depiction of cells. Cell typing was performed using known marker 

genes. Cell filtering parameters, selected principal components, clustering resolution and cell 

typing decisions of the re-analysis were dataset-specific and in accordance to the annotation of 

the original publication. 

Once individually analyzed, samples were integrated per condition and then across-conditions 

using the Seurat anchor-based strategy. Briefly, a diagonalized canonical correlation analysis 

(CCA) was used to jointly reduce dimensionality of datasets prior to CCA vectors L2-

normalization and mutual nearest neighbors (MNN) identification. The occurring cell pairs, 

aka anchors, were hypothesized to represent an across-dataset shared biological state and thus 

form the basis of the integration process downstream (Stuart, Butler et al. 2019). During 

integration, each cell received a correction vector representing a batch average in order to 

prioritized cells based on both their biological state and robust anchor correspondence. The 

process was then extended to multiple datasets using a tree alignment-like method. Integrated 

data were scaled, clustered and visualized as above. Cell type assignment of cells performed 

during individual sample analysis was fine-tuned whenever necessary so as to support a final 

round of cell typing based on known cell population markers. The Wilcoxon rank-sum test 

implemented in FindMarkers Seurat function was exploited for the identification of DEGs 

based on the “RNA” slot expression values. Absolute FC value ≥1.2 and Bonferroni corrected 

p-value <0.05 were set as thresholds of differential features transcription. Macrophages and 

fibroblasts specific sub-clustering was performed with the aforementioned methods. 

The aforementioned re-analyzed dataset was also mined for the evaluation of SH3PXD2A 

expression at the single cell level as presented in (Barbayianni, Kanellopoulou et al. 2023). 

SH3PXD2A+ fibroblasts were defined by non-zero expression of the gene based on normalized 

counts. Differential expression analysis was applied as above. 

2.8.2 COVID-19 data 

Multiple publicly available scRNA-seq R and Python objects were mined for ENNP2 

expression during SARS-CoV2 infection and steady state (Nikitopoulou, Fanidis et al. 2021) 

using Seurat (Stuart, Butler et al. 2019). Python packages were processed in R after 

transformation with the SeuratDisk R package (https://github.com/mojaveazure/seurat-disk). 

Gene expression deregulation was assessed by Wilcoxon rank-sum test, with absolute FC ≥1.2 

and Bonferroni-adjusted p-value <0.05 selected as significant deregulation thresholds. 

For the identification of lung plasmacytoid dendritic cells (pDCs) in (Bharat, Querrey et al. 

2020) dataset, dendritic cells were isolated and subjected to PCA based on scaled expression 

values (ScaleData) of their HVG (FindVariableFeatures). An SNN graph was constructed 

sourcing data from the 30 first principal components (FindNeighbors) and clusters were 

https://github.com/mojaveazure/seurat-disk
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subsequently shaped with a 0.8 resolution (FindClusters). Cell typing was elicited from 

markers of the (Travaglini, Nabhan et al. 2020) cell atlas. 

2.8.3 Kidney disease data 

Kidney scRNA-seq data were scrutinized for the purposes of (Magkrioti, Antonopoulou et al. 

2022). The respective dataset was fetched from https://doi.org/10.5281/zenodo.4059315 and 

mined using Seurat (Stuart, Butler et al. 2019). With an initial pre-processing stage already in 

place, CD10+ and CD10- objects were first normalized and then integrated using Seurat v3 

anchor-based method (see section 2.8.1) and a set of 2000 HVGs. Cell typing and metadata 

were maintained as in the original publication (Kuppe, Ibrahim et al. 2021). Wilcoxon-rank 

sum test (FindMarkers) was used for all differential expression tasks with default parameters. 

Absolute FC ≥ 1.2 and multiple testing-corrected p-value < 0.05 were selected as DEA 

significance thresholds. Communication networks between CD10+/CD10- proximal tubule and 

the rest of the cells grouped per population were predicted by SingleCellSignalR (Cabello-

Aguilar, Alame et al. 2020). Ligand-receptor pairs of interest were retrieved from CellTalkDB 

(Shao, Liao et al. 2021) and added to the default SingleCellSignalR database. Circus plots were 

shaped by the circlize R package (Gu, Gu et al. 2014). 

2.8.4 Fibromine-hosted data 

Already analyzed scRNA-seq data of (Mayr, Simon et al. 2021) were downloaded as described 

in the README page of https://github.com/theislab/2020_Mayr. Raw counts from the 

integrated_human_dataset.h5ad object were loaded into R and normalized with the 

LogNormalize Seurat method and default parameters (Stuart, Butler et al. 2019). Prior to 

downstream analysis “empty” barcodes were removed. DEA was performed per cell type and 

between phenotypes in a pairwise-fashion using default parameters of FindMarkers Seurat 

function. 

2.8.5 LCN2 expression assessment 

Cellular expression of LCN2 was explored in four respiratory system-oriented scRNA-seq 

datasets (Galaris, Fanidis et al. 2023). These datasets were found at the GEO entries 

GSE136831 (Adams, Schupp et al. 2020), GSE135893 

(GSE135893_ILD_annotated_fullsize.rds.gz) (Habermann, Gutierrez et al. 2020) and the 

github repositories https://github.com/theislab/2019_Strunz (Strunz, Simon et al. 2020) and 

https://github.com/theislab/2020_Mayr (Mayr, Simon et al. 2021). All data processes were 

performed using Seurat R package (Stuart, Butler et al. 2019). The Wilcoxon-Rank sum test as 

implemented in FindMarkers function was utilized for deregulated features identification 

(absolute FC ≥1.2; Bonferroni-adjusted p-value <0.05). 

Filtered data from GSE136831 were normalized with a 10k scaling factor (NormalizeData), 

prior to HVGs identification (FindVariableFeatures) and scaling (ScaleData). Data were then 

recuded in space using PCA, and the 7 first principal components selected via the median of 

all findPC methods (Zhuang, Wang et al. 2022) were exploited for the creation of a closest 

neighborhood graph (FindNeighbors). Louvain clustering with a resolution of 1.3 was applied 

for clusters identification. Cell typing provided along with the object were adopted. Non-linear 

reduction of dimensions was achieved via UMAP (RunUMAP). 

IPF and control originating cells were isolated from both the GSE135893 and the (Mayr, Simon 

et al. 2021) object. Their Rrw reads were log normalized (NormalizeData; default parameters) 

before further data mining. Barcodes with an assigned “empty” and “NA” or “Low-Quality 

https://doi.org/10.5281/zenodo.4059315
https://github.com/theislab/2020_Mayr
https://github.com/theislab/2019_Strunz
https://github.com/theislab/2020_Mayr
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Cells” cell type were removed from (Mayr, Simon et al. 2021) and (Strunz, Simon et al. 2020), 

respectively. 

2.9 Weighted Gene Co-expression Network Analysis 

WGCNA (Langfelder and Horvath 2008) was utilized for the identification of gene modules 

significantly related to PF, with the ultimate goal of biomarkers identification. Two different 

co-expression analyses were performed for human (GSE10667, GSE24206, GSE48149, 

GSE47460_GPL6480, GSE53845, GSE83717, GSE99621) and mouse datasets (GSE18800, 

GSE40151, GSE34814). The algorithm was provided with normalized, z-transformed bulk 

expression values in order to create a signed network based on biweight midcorrelation. To 

reduce noise, network’s sign was calculated by adjacency transformation. Network modules 

were defined by a (1-TOM) measured distance (TOM: Topological Overlap Matrix) and 

closely related modules – defined by 0.25 and 0.40 units of distance according to hierarchical 

clustering for human and mouse samples, respectively – were merged. Per module eigengenes 

(ME) was measured according to default parameters. 

Pearson correlation was used to identify any significant (|ρ|> 0.6; p-value < 0.05) module-trait-

of-interest relationships and intra-modular analysis was utilized to find phenotype drivers. The 

latter were characterized by both their module membership (MM) and gene expression 

significance (GS). MM is defined as the Pearson correlation of a gene expression values with 

the respective ME, while GS as the Pearson correlation of gene expression values with a 

phenotypic trait vector. Statistical significance of both MM and GS were calculated using 

corPvalueStudent function of the WGCNA R package. Networks that can be plotted in the 

Fibromine app contain nodes with pre-set MM and GS values above the respective 60th 

percentile, a threshold that can be interactively modified according to user’s needs. The edges 

of each network represent correlations of TOM measurements of the 3rd quartile. No genes with 

zero degree of connectivity are used during minimum spanning tree calculation, while network 

layout is automatically chosen. 

2.10 Pathway analysis 

For the needs of PA, two R packages were exploited: enricheR (Chen, Tan et al. 2013) and 

clusterProfiler (Yu, Wang et al. 2012). In all cases, significant results were defined by an 

adjusted p-value < 0.05. The former tool is a computational interface to Enricher, a heavily-

used web-based enrichment analysis tool that hosts multiple reference databases. It is the 

workhorse of all real-time PA options of Fibromine, thanks to its web-site embeddable 

character (Fanidis, Moulos et al. 2021). Gene Ontology (GO) database of 2018 was used for 

both human and mouse datasets. KEGG terms as of 2021 and 2019 were exploited for human 

and mouse samples, respectively. Last, a collection of COVID-19 related gene sets were also 

exploited. 

For all other PA purposes, either over-representation (ORA) or gene set enrichment analysis 

(GSEA) were performed with the clusterProfiler R package. GO (The Gene Ontology 

Consortium 2019) and KEGG (Kanehisa, Sato et al. 2019) reference databases were used as 

provided by the clusterProfiler package. On the contrary, MSigDB hallmark sets were accessed 

via msigdbr R package (https://igordot.github.io/msigdbr/) (Liberzon, Subramanian et al. 2011). 

For the needs of pre-ranked GSEA, features were sorted by decreasing FC values. Significantly 

enriched terms (adjusted p-value < 0.05) were further distinguished into induced or suppressed 

using positive and negative normalized enrichment score (NES) values, respectively. 

https://igordot.github.io/msigdbr/
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2.11 Multiplex ELISA data analysis 

Luminex data were examined for the purposes of (Magkrioti, Antonopoulou et al. 2022). 

During pre-processing performed by an independent analyst, abundance values were 

transformed to FCs defined as the ratio of the response to a specific stimulus divided by the 

response to plain medium treatment. A signal was defined as active if it was characterized by 

a FC ≥1.5, a threshold selected via sensitivity analysis.  

For both phosphoproteins and secreted factors, stimuli not causing any activation were filtered 

out in addition to signals not reaching the significant activation threshold under any treatment. 

For clustering to take place, FCs were transformed to binary values with 1 and 0 representing 

activation and non-activation cases, respectively. Distances were calculated using the Gower’s 

metric as implemented in the proxy R package (https://cran.r-

project.org/web/packages/proxy/index.html) so as to reflect related pairs of stimuli. The distance 

matrix was then used to perform divisive clustering as implemented in cluster package 

(https://cran.r-project.org/web/packages/cluster/index.html). 

2.12 Machine learning 

2.12.1 Data pre-processing 

ML was used to classify lung samples to either an IPF or a control phenotype based on gene 

expression data (Fanidis, Pezoulas et al. 2023). Towards that goal, expression data of the 

consensus DEGs (cDEGs) from seven (GSE10667, GSE24206, GSE48149, 

GSE47460_GPL6480, GSE53845, GSE83717, GSE99621) IPF_vs_Ctrl lung datasets were 

accessed via Fibromine. The datasets were selected according to a set of dataset benchmarking 

characteristics described in (Fanidis, Moulos et al. 2021). cDEGs were defined as those features 

being significantly (absolute FC ≥ 1.2; p-value < 0.05) deregulated towards the same direction 

(up or down) in a minimum of four of the selected datasets. Consensus fold change (FCconsensus) 

was used as a single value representation of each feature’s deregulation pattern during fibrosis 

(Fanidis, Moulos et al. 2021). In the case of GSE24206 advanced IPF samples were used to 

represent the pathological state. 

With the aim of preventing overfitting, semantics similarity was used to identify a smaller 

number of PF-relative features. DOSE R package (Yu, Wang et al. 2015) was utilized to search 

for the features most related to the pulmonary fibrosis term (DOID:3770). The produced per 

feature similarity score (SS) was then multiplied by FCconsensus to create an integrated score 

𝑆𝑖 = 𝑆𝑆 × 𝐹𝐶𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 for gene ranking similarly to (Maghsoudloo, Azimzadeh Jamalkandi 

et al. 2020). Top 200 ranked genes (half up- and half down-regulated) were selected for 

downstream processes. 

Next, normalized expression values retrieved from Fibromine were standardized via vanilla R 

functions in order to lie within a unified numerical range and missing values were replaced by 

zero. This pre-processing was applied in all training/testing (the aforementioned seven) and 

validation (GSE32537, GSE47460_GSE14550) collections. Datasets were then compared and 

common genes were maintained and intersected with the 200 ones prioritized by semantics 

similarity. A conclusive list of 172 transcriptomics elements was used for model training. 

Classification variable levels (IPF or control) were hot-encoded. 

2.12.2 Sex-specific expression examination 

Samples hierarchical clustering with complete linkage was performed based on pre-processed 

expression data of the selected 172 features. Sex metadata were available for 62.5% of the 

https://cran.r-project.org/web/packages/proxy/index.html
https://cran.r-project.org/web/packages/proxy/index.html
https://cran.r-project.org/web/packages/cluster/index.html
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training/testing and 100% of the validation samples. Cases without any sex annotation were 

not taken into consideration during clustering. 

2.12.3 Tuning, training and evaluation 

The task of phenotypic classification was assigned to XGBoost models with a binary hinge 

objective function. Training/testing and evaluation were all performed using the python 

packages sklearn (Pedregosa, Varoquaux et al. 2011) and xgboost (Chen and Guestrin 2016). 

A Monte-Carlo cross validation (MCCV) with a 75:25 train:test split iterated ten times was 

used for model training and testing. Tuning of hyperparameters was performed per model 

making use of a stratified 5-fold approach with random shuffling on each training set followed 

by a grid-search cross-validation. The following hyperparameters were tuned: 

 n_estimators: the number of used decision trees 

 learning_rate (eta): a regularization variable step-wise adjusting feature weights during 

boosting 

 max _depth: the maximum allowed depth per tree 

 reg_alpha: the Manhattan distance corresponding to L1 regularization parameter 

 reg_lambda: the squared Euclidean distance corresponding to L2 regularization 

variable 

For models’ performance evaluation six metrics were used: accuracy, precision, sensitivity, 

specificity, F1-score and Matthew’s correlation coefficient (MCC). While F1-score assesses 

precision-sensitivity tradeoff, MCC encapsulates the confusion matrix of each model in a single 

numerical value. The median value across all ten models for each evaluation metric was 

reported. Performance evaluation took place for both the testing and the independent validation 

dataset. 

2.12.4 Model explanation 

Shapley additive explanations, Shapley or just SHAP values were calculated per XGBoost 

model using the SHAP python package (https://github.com/slundberg/shap). As suggested by 

(Lundberg and Lee 2017, Lundberg, Erion et al. 2020) the mean absolute SHAP values were 

calculated as representatives of features’ importance during the classification process. In short, 

SHAP values measure the contribution of each player (feature) to the outcome of a game 

(phenotype classification) after considering all possible player coalitions (feature 

combinations). The coalitions are formed one feature at a time and then feature-specific 

marginal contributions are averaged in a weighted manner. Thus, based on an input group of 

M genes (𝑔1, 𝑔2, … , 𝑔𝑀) subtracted from a larger set of L features (𝑔1, 𝑔2, … , 𝑔𝐿) with 𝑀 ≤ 𝐿, 

the SHAP value of any given 𝑔𝑗  ∈ 𝐺(𝑆𝑗) is given by the following formula: 

𝑆𝑗 =  ∑
|𝐺|! (𝑃 − |𝐺| − 1)!

𝑃!
(𝑓𝑔(𝐺 ∪ {𝑔}) −  (𝑓𝑔(𝐺))) 

where |𝐺| is the number of features included in G and 𝑓𝑔(𝐺) the expected value of the function 

conditioned on P. 

2.12.5 Biomarker lists comparison 

ML was also used for the comparison of proposed IPF biomarker lists proposed here with other 

already-published computationally crafted ones. XGBoost algorithm was trained on the 

samples referred in section 2.12.3. The maintained features were given by the intersection of 

the already-published marker sets to the 172 cDEGs detected in all Fibromine-retrieved 

https://github.com/slundberg/shap
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datasets of the section 2.12.1 Models were tuned, trained, and tested as described above. 

Correlation of spirometry and normalized gene expression values was performed using 

Spearman’s correlation test as implemented in cor.test vanilla R (v.4.0.4) function. An absolute 

rho ≥ 0.5 and a p-value < 0.05 were set to define significant relationhips. 

2.13 Ranking aggregation 

A couple of the best-performing ranking aggregation methods (Wang, Law et al. 2022), MAIC 

(https://github.com/baillielab/maic) (Li, Clohisey et al. 2020) and BIRRA 

(https://github.com/baillielab/comparison_of_RA_methods) (Badgeley, Sealfon et al. 2015), were 

used in (Fanidis, Pezoulas et al. 2023) for the aggregation of SHAP-prioritized features. During 

aggregation, every model was treated as a different category. Briefly, MAIC (meta-analysis by 

information content) is a python-implemented package that works on the hypothesis of datasets 

sharing some of the genes. Based on them it produces a weight for each experiment and a 

respective score per gene which is used to summarize evidence and produce a final rank (Li, 

Clohisey et al. 2020). On the other hand, BIRRA (Bayesian Iterative Robust Rank 

Aggregation), an R-implemented package, iteratively calculates aggregated rankings from 

dataset-specific Bayes factors and then utilizes the ranking to modify Bayes factors calculation. 

Apart from the aforementioned two, an ad hoc ranking aggregation method was created 

extending the popular majority voting technique. During SHAP-weighted majority voting, 

genes were ranked by decreasing Shapley value weights. The final rank of each gene i was 

given by:  

∑
𝑛𝑚

𝑟𝑚

𝑀

𝑚=1

 

where m is any given model, nm the number of features having a non-zero mean absolute SHAP 

value in m and rm the rank of the gene of interest in the model m post to genomic features 

ranking in decreasing order of SHAP values. 

2.14 Text mining 

The same pipeline of scientific literature mining was used in both (Fanidis, Pezoulas et al. 

2023) and (Barbayianni, Kanellopoulou et al. 2023) publications. Initially, XML R package 

(https://cran.r-project.org/web/packages/XML/index.html) was used to download PubMed 2022 

baseline and form a corpus of abstracts. The corpus was then searched by rentrez R package 

(Winter 2017) for elements mentioning IPF[All Fields] OR (\"pulmonary fibrosis\"[MeSH 

Terms] OR \"pulmonary fibrosis\"[All Fields]) OR (\"lung diseases, interstitial\"[MeSH 

Terms] OR \"interstitial lung diseases\"[All Fields] OR \"interstitial lung disease\"[All 

Fields]). pubmed.mineR (Rani, Shah et al. 2015) was utilized to perform human gene 

atomization based on HUGO symbols on the above selected texts. In the case of (Barbayianni, 

Kanellopoulou et al. 2023) recovered genes were mapped to their mouse deregulated 

homologues via biomaRt (Durinck, Spellman et al. 2009). 

2.15 Transcription factor analysis 

DoRothEA R package (Garcia-Alonso, Holland et al. 2019) was used for transcription factor 

(TF) analysis in (Barbayianni, Kanellopoulou et al. 2023). Beginning from mouse regulons, 

focus was given on high quality interactions that included Quant-Seq DEGs as targets (see 

section 2.5.2). Further filtering maintained those TF-target pairs in which both members were 

found deregulated via Quant-Seq. Mode of regulation was used to report opposite and same 

https://github.com/baillielab/maic
https://github.com/baillielab/comparison_of_RA_methods
https://cran.r-project.org/web/packages/XML/index.html
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direction interactions for TFs acting as repressors and activators, respectively. Network 

visualizations were crafted using igraph (Csárdi and Nepusz 2006) and visNetwork 

(https://github.com/datastorm-open/visNetwork) R packages. 

2.16 Connectivity Map analysis 

CMap analysis was used for drug repurposing purposes in (Barbayianni, Kanellopoulou et al. 

2023). Top 300 deregulated features (half over-, half under-expressed) were selected from NGS 

data (see section 2.5.2) covering the maximum size per query signature permitted by 

https://clue.io/query. The uploaded signature was compared to that of perturbagens included in 

Expanded CMap LINCS Resource 2020 (L1000 expression data last updated on 11/23/2021). 

cmapR package (https://github.com/cmap/cmapR) was used to isolate compound (trt_cp) and 

peptide (trt_lig) signatures with significant similarities (FDR-corrected p-value < 0.05), while 

signed normalized connectivity score (NCS) was utilized to separate signatures of similar from 

those of opposite phenotypes. The final signatures list was shaped after filtering out 

perturbagens that: had an unknown mechanism of action, were deduced from a single 

biological replicate and/or by treatments lasting less than 24 hours. 

2.17 Fibromine-hosted proteomics data handling 

Literature was scrutinized for publications describing changes in protein abundance between 

IPF and control individuals. As the identified proteomic datasets were far fewer compared to 

transcriptomics (see sections 2.2 and 2.4), the process of final selection was looser for the 

former compared to that of the latter. Thus, differential proteomic results in tabular format were 

retrieved from respective publications. Proteins quantified in mixtures/same aptamer were 

filtered out. Differential abundance thresholds of the original publications were maintained as 

were in order to ensure the already small total number of 693 deregulated proteins. 

2.18 Fibromine database creation 

Fibromine omics data and third-party annotation were organized in an SQLite database. R 

packages RSQLite (https://cran.r-project.org/web/packages/RSQLite/index.html) and DBI 

(https://cran.r-project.org/web/packages/DBI/index.html) were used for its creation. 

Fibromine database was designed to host normalized read counts, differential 

expression/abundance data, as well as information from many third-party annotation sources 

necessary for omics data characterization. Omics publications selected for inclusion were 

manually scrutinized along with the respective repository entries to glean dataset-specific 

metadata, such as technology used, tissue sampled, samples sex and any clinical data available. 

Metadata, such as per condition sample size, were modified to accommodate changes 

introduced during re-analysis including outlier removal.  

Molecular level annotation was retrieved from publicly available databases and processed 

using ad hoc created scripts. Gene-level information including biotype, gene name aliases and 

chromosome position was retrieved from Ensembl using biomaRt package (Durinck, Spellman 

et al. 2009). Homology pairs between H.sapiens and M.musculus were also utilized to support 

transcriptome mapping between animal models and actual disease samples. In order to be able 

to combine miRNA and mRNA transcriptomic datasets hosted in Fibromine RefSeq (O'Leary, 

Wright et al. 2016) mRNA, ncRNA and peptide IDs were fetched. GO database (The Gene 

Ontology Consortium 2019) entries’ ID, name, namespace and definition were retrieved from 

the go-basic.obo file removing the obsolete terms.  

https://github.com/datastorm-open/visNetwork
https://clue.io/query
https://github.com/cmap/cmapR
https://cran.r-project.org/web/packages/RSQLite/index.html
https://cran.r-project.org/web/packages/DBI/index.html
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Data retrieved from miRBase (Kozomara, Birgaoanu et al. 2019) and miRDB (Chen and Wang 

2020) database were used for the annotation of non-protein coding RNA datasets. In detail, 

miRBase accessions and identity numbers, as well as full molecular names were maintained 

for both mRNA and pre-miRNA molecules. Evidence category and location were additionally 

extracted for mRNAs. Predicted miRNA-mRNA pairs were downloaded from miRDB for the 

non-coding molecules included in miRBase. 

Protein-level annotation was collected via UniProt/Swiss-Prot (The UniProt Consortium 2018) 

and STRING (Szklarczyk, Gable et al. 2019) databases. UniProt human data were accessed via 

the uniprot_sprot_human.dat.gz file and mouse data were isolated from 

uniprot_trembl_rodents.dat.gz. For each species protein characteristics, such as length, 

function, subcellular-localization, disease-associations and technical details including 

accession codes, identity numbers and entry review status were isolated using custom made 

scripts. Full protein links, actions and info files for H.sapiens (NCBI taxonomy ID 9606) and 

M.musculus (NCBI taxonomy ID 10090) were fetched from STRING database and intersected 

with data from UniProt/Swiss-Prot so as to focus on common protein molecules. 

Last, Fibromine database hosts TF annotation for both species. Human TFs as described in 

(Lambert, Jolma et al. 2018) were retrieved from http://humantfs.ccbr.utoronto.ca/ (v.1.01). 

Only factors with known motifs were incorporated in the database. Murine TFs were found at 

http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/ (Hu, Miao et al. 2019). 

2.19 Protein-protein interaction networks 

Each of the Fibromine interactive PPI networks revolve around a queried protein and consist 

of two interaction shells. Protein interactions depicted are sourced from STRING database data 

stored into Fibromine database. The first shell contains maximum nine proteins (nodes) that 

are confidently (interaction score > 700) known to interact (edges) with the queried one. The 

second shell is comprised of the two most trustworthy interactors for each of the first level 

molecules. No protein can be simultaneously found in both layers. Network visualization is 

crafted based on a DrL layout weighted by protein interaction scores. 

Fibromine networks can be color-annotated according to differential gene expression data that 

can describe a variety of transcriptomic comparisons. Initially, each protein (node) is matched 

to its coding element using UniProt/Swiss-Prot data and in cases of a 1:many protein:gene 

mapping, the gene characterized as primary by UniProt is maintained. Nodes not included in 

Swiss-Prot are marked as “Unknown” and colored jordy blue, the default color of the network. 

Subsequently, DEA data of the requested comparison are retrieved for each of the remaining 

nodes from all respective datasets. A consensus direction of deregulation is shaped as thus:  

 if a gene is found deregulated in either a single or a couple of datasets in a consistent 

manner its direction of deregulation is kept as is 

 if a gene is found deregulated in a couple of datasets with an inconsistent direction of 

deregulation, the larger dataset’s direction of deregulation is adopted 

 if a gene is found deregulated in multiple datasets, the most frequent direction of 

deregulation prevails. 

According to the above pipeline, a gene, and thus a protein node, can be characterized as “Non 

DE”, “Upregulated” and “Downregulated”, categories that are color-coded grey, red and aqua 

color, respectively. Default DEA thresholds were set to an absolute FC ≥1.2 and a p-value 

http://humantfs.ccbr.utoronto.ca/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/
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<0.05, but they can be interactively modified through Fibromine. Statistics corrected for 

multiple testing bias are presented at the explorer’s Data used tab. 

2.20 Accompanying wet laboratory experimentations 

No wet laboratory experimentations described in this thesis were performed by the PhD 

candidate himself. Details about the materials and methods used, please, refer to the respective 

publications. 

3. Results 

3.1 A centralized resource for pulmonary fibrosis omics 

3.1.1 Datasets collection 

To identify all IPF-related transcriptomic datasets we have exploited multiple online resources. 

First, ‘IPF’ and ‘bleomycin’ search terms were used for the collection of human- and animal- 

related PubMed publications, respectively. Next, the same keywords along with the 

‘Transcriptomics’ filter were applied in omicsdi.org search. To supplement the aforementioned 

findings we referred to previous listings and reviews, such as (Villaseñor-Altamirano, Moretto 

et al. 2020) and (Vukmirovic and Kaminski 2018). Last, ReGEO (Chen, Ramírez et al. 2019) 

offered an alternative search portal for GEO-deposited datasets not coupled to a Digital Object 

Identifier (DOI) accompanied publication. From the detected microarray and RNA-seq 

datasets, we maintained only those that provided raw data via open-access repositories and that 

were comprised by at least three biological replicates per experimental condition. We also 

filtered out non-commercial arrays as their technical and biological annotation were most often 

unavailable. Unique experimental setups, such as that of GSE31934, were the only reason for 

bypassing the previous filtering step. Last, datasets with only pathological or control/healthy 

samples were also filtered out, as they cannot by default support any differential expression 

analysis. 

Human IPF versus control proteomics datasets were also identified via careful literature search. 

The only criterion for their inclusion was the provision of differential abundance results for 

multiple proteins in the form of a table. No other filtering criteria were used due to IPF-related 

proteomics data scarcity (Norman, Moore et al. 2018, Khan, Dasgupta et al. 2021). 

3.1.2 Transcriptomics datasets re-analysis 

Following their collection and initial selection, previously published and ad hoc developed 

pipelines were used for transcriptomics data analysis. To avoid introduction of unwanted 

variation via differences in applied pipelines, we re-analyzed microarray and RNA-seq datasets 

in the most consistent manner possible (please refer to Materials and Methods for a detailed 

description). Briefly, we consistently pre-processed same platform array datasets, while closely 

related analytical methods were applied across platforms whenever possible. As far as RNA-

seq data are concerned, we followed the same alignment strategy with only small changes in 

read mapping parameters following differences in reads strandness and library type. 

Subsequently, data curation was performed both manually and computationally, with outlier 

detection and proper per condition samples separation consisting our main goals. Indicatively, 

we recruited PCA/MDS plots, arrayQualityMetrics results (Kauffmann, Gentleman et al. 2009) 

and metaseqR2 quality plots (Fanidis and Moulos 2020) to exclude low quality datasets and 

samples, as well as outliers, from downstream analyses. 
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Regarding gene-level DEA, the applied strategy was obligatory dictated by the particularities 

of each technology. For expression arrays we have used the limma moderated t-test statistics 

method (Ritchie, Phipson et al. 2015) and if necessary, we have sometimes incorporated 

additional sources of variation in the model to account for potential batch effects. For RNA-

seq datasets, we have used PANDORA (Moulos and Hatzis 2015) as implemented in 

metaseqR2 R package (Fanidis and Moulos 2020). After retrieving the results of nine 

individual statistical methods we combined their p-values using PANDORA, in order to reduce 

false positives contamination and reap certain advantages including better representation of 

transcript types, such as lncRNAs, and better handling of low count reads (Fanidis and Moulos 

2020). 

In total and post to low quality datasets exclusion, we have selected and re-analyzed 47 human 

and 13 murine datasets, spanning multiple conditions and sampling sites/tissues (Table S1). 

3.1.3 Data organization 

Our next objective was the efficient organization and annotation of the re-analyzed omics data. 

Towards that purpose we created Fibromine, a database designed to host both transcriptomics 

and proteomics data, samples metadata and more importantly features annotation (Figure 1). 

Indicatively, two separate database tables were dedicated to the DEA results of protein-coding 

and non-coding RNAs, hosting fields such as gene names, FC under specific comparisons and 

the statistical significance of each result. Another table holds protein differential abundances. 

Last, normalized transcriptomics values were stored in another table for quick future retrieval. 

Subsequently, we designed a collection of phrases capable of separating differential expression 

comparisons spanning distinct tissues, cell lines and phenotypes deposited under the same 

dataset id. Each comparison is encoded as a three part phrase: A_vs_B. The first and the third 

component describe the juxtaposed conditions holding information such as sample treatment, 

while _vs_ element separates the two states. Usage of the capital letter D accompanied by a 

number signifies the day of sample collection with respect to a treatment’s beginning. 

Likewise, as all Fibromine-hosted proteomic datasets examine differences between the human 

pathology and control state, we have used the IPF_vs_Ctrl phrase for their description. 
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Figure 1 Fibromine database schema. Adapted from (Fanidis, Moulos et al. 2021). 

Sample metadata gleaned from both respective publications and supplementary tables 

accompanying dataset public depositions were also included in two database tables. 

Information collected during data re-analysis, such as the final dataset size post to outliers/ low 

quality samples removal and the presence or not of clinical data, were hosted in the same tables. 

Clinical data per se were not incorporated into the database mainly due to their scarcity that 

rendered them practically useless during any future dataset combination/integration. 

To annotate the molecular features of the database, we have collected and re-organized 

annotation from publicly accessible databases. For transcriptomics data we retrieved gene and 

transcript-specific content from Ensembl (Yates, Achuthan et al. 2020) and RefSeq (O'Leary, 

Wright et al. 2016) databases, while miRDB (Chen and Wang 2020) and miRBase (Kozomara, 

Birgaoanu et al. 2019) were used for small non-coding RNAs description and interconnection 

with verified or predicted mRNA targets. Protein-related annotation was mined from UniProt 

(The UniProt Consortium 2018) and STRING (Szklarczyk, Gable et al. 2019) databases. Last, 
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to functionally characterize the genomic features we have exploited GO database post to 

obsolete terms removal (The Gene Ontology Consortium 2019). 

Collectively, all re-analyzed datasets were organized in a dedicated database along with rich 

annotation and an ad hoc designed comparison vocabulary facilitating data navigation and 

mining. 

3.1.4 Transcriptomics benchmarking 

During the aforementioned transcriptomic datasets organization, it became obvious that there 

was not any metric available for their direct comparison. To accommodate for this lack, we 

designed and implemented a dataset credit system based on seven criteria, both technical and 

biological (Figure 2). This system was designed on the assumption that the most accredited 

datasets would be the most appropriate to combine/integrate, as their data would share multiple 

commonalities. The system was applied on four bulk transcriptomics DEA comparison groups 

shaped according to species and target molecules: 

1. all coding datasets 

2. all non-coding datasets 

3. all coding IPF_vs_Ctrl lung datasets  

4. all coding BleomycinD14_vs_Ctrl 

For each DEA comparison in any of the above groups we pre-calculated the number of (1) 

detected and (2) deregulated genes, (3) the proportion of DEGs known to be fibrosis-

implicated, (4) the number of features having a small (1.2<x< 2), intermediate (2≤x<5) or large 

absolute FC (5≤x), (5) the fraction of up to down regulated features, as well as the area under 

the (6) nominal and (7) multiple test corrected p-value distributions. Human genes known to 

be implicated in fibrosis were retrieved from (Vukmirovic and Kaminski 2018) along with their 

direction of deregulation wherever available. The fibrosis-related gene list was enriched with 

genes sourced from our lab expertise in the field. Mouse orthologues were used for murine 

datasets evaluation. 

Subsequently, the calculated values were used to form per-metric per-group distributions. The 

latter were evaluated and a dataset was accredited when: 

 the number of known fibrotic genes found to be DE in the same direction of 

deregulation with the literature was larger than the median of the distribution 

 the number of detected genes was between the 25th and the 90th percentile of the 

distribution 

 the number of DEGs lied in the interquartile range (IQR) of the distribution 

 the ratio of up/down DEGs lied in the IQR of the distribution 

 the area under the p-value belonged to the IQR of the distribution 

 the area under the corrected p-value belonged to the IQR of the distribution 

 the number of DEGs in at least 2 of the 3 FC groups (low, intermediate, high) lied 

between the IQR of the respective distribution. 

As a result, each dataset received minimum 0 and maximum 7 stars. The most stars assigned 

to a dataset the more ‘trustworthy’ it was considered for downstream combinatorial processes. 

Data from each benchmarking group were incorporated in the database and can be found in 

Fibromine’s ‘Dataset Benchmarking’ tab. 
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Figure 2 Transcriptomics datasets benchmarking process. Dataset groups are evaluated for seven 

different metrics, which are then organized in metric-specific distributions. Pre-defined distribution 

intervals are used to appoint per-dataset stars. The latter are in turn exploited to discern datasets for 

downstream combinatorial processes. Adapted from (Fanidis, Moulos et al. 2021). 

3.1.5 Interactive database access/use 

Post to database creation, we set to create an online application offering both data mining and 

combination services. Named after the database at its core, Fibromine 

(https://fibromine.com/Fibromine) is an R Shiny application designed around three major 

(‘Dataset’, ‘Gene’ and ‘Protein’ explorer) and several satellite explorers, such as ‘Gene co-

expression’ and ‘Datasets benchmarking’ (Figure 3). Except for in situ data manipulation 

Fibromine enables download of almost all hosted data supporting downstream analysis. 

3.1.5.1 Dataset explorer 

‘Dataset explorer’ is the first main Fibromine interface. It was designed to provide access to 

differential gene expression and protein abundance data. Selection of any single dataset enables 

exploration of all its DEA features. On the other hand, multiple transcriptomic datasets 

selection triggers their combination via identification of consensus differentially expressed 

genes (cDEGs) (Figure 4). The latter are reported along with their consensus fold change 

(FCconsensus) and consensus direction of deregulation. In species-specific cases, cDEGs are 

defined by a consistent and same-direction deregulation (up/down) in at least half of the chosen 

datasets. In parallel, they should lack any significant deregulation towards the opposite 

direction in the remaining selected cases. During between-species dataset combinations, 

cDEGs are those features with an 1:1 human:mouse homology and significant consensus 

expression change in at least half of each species’ selected datasets. Post to cDEGs 

identification, the most frequent direction of deregulation is selected as the consensus, while 

FCconsensus is set to the mean of the FC values from the datasets matching the consensus 

direction. User-tunable differential expression thresholds are by default |FC|>=1.2 and p-

value<0.05. Proteomic dataset combination is achieved via consensus differentially abundant 

proteins (cDAP) identification (Figure 4). cDAPs are discerned as in transcriptomic datasets 

https://fibromine.com/Fibromine
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with the exception of original differential abundance thresholds being adopted per dataset. Last, 

in order to interconnect the two molecular levels, cDAPs are presented along with their 

respective cDEGs in case of experimental conditions match between selected transcriptomics 

and the hosted proteomic datasets. 

 

Figure 3. Fibromine schema. A. Fibromine database comprises of multiple omics datasets from 

various platforms and technologies. Data from open-access databases were used to annotate hosted 

expression values. B. The homonym application can be used for data mining and integration via multiple 

explorer tabs. Real time created and pre-formatted data can be freely downloaded. ‘How to’ and ‘Doc’ 

tabs provide an analytic walk description of the application and its functions. Adapted from (Fanidis, 

Moulos et al. 2021). 

Alongside datasets combination, ‘Dataset explorer’ provides the functionality of over-

representation analysis of the projected transcriptomics data (combined or not) via the 

‘Pathway analyses’ tool. The latter exploits five reference databases including one of COVID-

19-related gene sets. A per-dataset interactive volcano plot and top deregulated genes heatmap 

can also be visualized on demand. 

3.1.5.2 Gene explorer – miRNA explorer – Single cell data 

Most of the times, researchers are interested in expression patterns of specific genes rather than 

whole dataset profiles. To meet such a need Fibromine offers ‘Gene explorer’, its’ second main 

explorer (Figure 3). Requiring as input a list of HGNC names or Ensembl identification codes, 
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the explorer displays a series of DE statistics (FC, nominal and multiple testing corrected p-

values) for all DE entries across human and/or mouse datasets. Genomic coordinates, RefSeq 

transcript IDs and related GO functional terms lie among the accompanying annotation. 

Potential and confirmed miRNA interactions with the queried gene targets are also listed in an 

attempt to supplement and enrich previous reports (McDonough, Kaminski et al. 2019). 

Similarly to the ‘Dataset explorer’, ‘Gene explorer’ reports differences in the abundance of 

protein products coded by the queried genes. Last, in consequence of single cell sequencing 

emergence, the explorer automatically maps the queried DE features to publicly available 

scRNA-seq datasets (Reyfman, Walter et al. 2018, Xie, Wang et al. 2018, Joshi, Watanabe et 

al. 2019). DEA results at the single cell level from another dataset (Mayr, Simon et al. 2021) 

can be found at the ‘Single cell data’ Fibromine tab, supplementing bulk sequencing data with 

expression patterns of greater resolution. 

 

Figure 4 Omics datasets combination pipeline. ‘Dataset explorer’ summarizes DEGs/DAPs across 

selected datasets through the identification of consensus DEGs/DAPs. Adapted from (Fanidis, Moulos 

et al. 2021). 

Non-protein coding transcripts consist a special category of molecules under both steady state 

and pathological conditions (Loganathan and Doss C 2023). As in detail recorded in the 

introduction, miRNAs have many times sparked the interest of the scientific community 

regarding their role in the fibrotic lung. Fibromine itself hosts several miRNA-oriented 

expression datasets. Although miRNA expression patterns can be individually assessed via 

‘Gene explorer’, it cannot simultaneously provide DE statistics for both members of an 

miRNA-mRNA interaction. To fill that gap we constructed the ‘miRNA explorer’ hosting data 

from IPF_vs_Ctrl coding and no-coding datasets (Figure 3). Initially we identified all non-

coding cDEGs using default Fibromine parameters. Then, we collected the miRDB-defined 

targets that have been consensus deregulated towards the opposite direction of deregulation in 

the respective coding datasets. By combining the above two lists, ‘miRNA explorer’ 

effortlessly provides multiple miRNA-mRNA pairs that could potentially affect or be affected 

by PF. 

3.1.5.3 Protein explorer 

‘Protein explorer’ consists the third core explorer of Fibromine. The explorer accepts as input 

the name of any single protein coding gene and returns data about its differential abundance 

during IPF along with UniProt-sourced description metadata. More importantly, the explorer 

is capable of creating on-demand phenotype-specific PPI networks (Figure 5). These networks 
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are built on STRING pre-mined protein (nodes) interactions (edges) revolving around the 

queried protein. They can be annotated with data shared by datasets examining any specific 

combination of tissue and DE comparison hosted in Fibromine (Materials & Methods). Briefly, 

following the selection of the above two parameters, the application collects consensus gene 

expression data from the respective transcriptomic datasets and colors each network node as 

Non-DE, Up-regulated or Down-regulated. The DEA thresholds used during cDEG 

identification can be changed manually by the user. Networks are species-specific and follow 

the queried protein. Thanks to this visual feature, transcriptomics data can be projected to the 

protein interaction space, offering a potentially significant glimpse into DE impact in the 

formation of protein complexes and/or in the operation of signaling pathways. 

 

Figure 5 Disease-specific PPI networks creation pipeline. Protein explorer uses transcriptomics data 

to project on PPI networks the consensus expression profile of a certain tissue/cell type under specific 

parameters that affect DE. Adapted from (Fanidis, Moulos et al. 2021). 

3.1.5.4 Gene co-expression and other smaller explorers 

In any given condition, certain gene groups are characterized by the same expression patterns, 

potentially due to common underlying regulatory mechanisms. These co-fluctuations can be 

described by gene co-expression networks (GCN) which can, once created, be exploited for 

various applications, such as functional characterization of molecular features and 

prioritization of disease targets. Motivated by previous IPF-related publications that have 

successfully used gene co-expression analysis (McDonough, Kaminski et al. 2019), we 

implemented ‘Gene co-expression’ Fibromine tab. The latter presents the results of two 

WGCNAs focusing on human IPF_vs_Ctrl and mouse BleomycinD14_vs_Ctrl lung datasets 

apiece. Selected human datasets were decorated with more than four stars when benchmarked 

in the respective lung group of coding expression sets. The three most accredited mouse 

datasets among same condition sets were used for the murine WGCNA. Briefly, for each 

analysis, we shaped gene co-expression modules on normalized and standardized gene 

expression values (Materials and Methods). Subsequently, and to prioritize potential pathology 

drivers, we filtered in those module members characterized by statistically significant MM and 

GS metrics and organized them in Fibromine database. With the selection of any of these 

features from a drop-down list, WGCNA modules are accessible via Fibromine application as 

interactive GCNs. Network nodes represent statistically significant module members with an 
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MM and GS value above the 60th percentile of the respective distribution. The latter default 

threshold can be dynamically tuned for each metric. Network edges reflect strong TOM values 

(above the 75th percentile of the respective distribution) between all network nodes with the 

occasional exception of the queried feature. 

Last, Fibromine consists of several smaller tabs with further data mining and downloading 

functionalities, as well as documentation on the use of the application. The ‘Single cell data’ 

explorer hosts DEA data from (Mayr, Simon et al. 2021) as previously mentioned, along with 

a list of multiple scRNA-seq IPF datasets. ‘Datasets benchmarking’ tab thoroughly describes 

the transcriptomics datasets credit system by cataloging all stars and metric distributions. In 

addition it records all benchmarking results (see section 3.1.4). ‘How to’ and ‘Docs’ tabs 

provide guidelines on the use of Fibromine and details regarding its features, respectively. 

Through ‘Download data’ the user can retrieve normalized gene expression data for local 

downstream analysis. 

To conclude with, we have created a collection of carefully selected, consistently re-analyzed 

and manually curated omics datasets examining IPF. These data have been organized in a 

dedicated database along with rich third-party annotation and meta-data. As an IPF-oriented 

reference point the database has been made accessible through the creation of Fibromine, an 

online, free and easy-to-use application. The latter offers multiple data mining and combination 

features that require zero computational experience for their successful operation. To the best 

of our knowledge, our application also hosts the first PF-specific PPI network annotation tool. 

Ultimately, Fibromine is expected to accelerate IPF research through fast in silico hypothesis 

validation and new hypothesis formation. 

3.2 Machine learning-based disease marker prioritization 

Fibromine is a great resource for interactive exploration of good quality, manually curated lung 

fibrosis high-throughput data. Significantly, it enables features prioritization by combining 

genes or proteins individually ‘endorsed’ by multiple independent datasets (cDEGs/cDEPs). 

Although any user can exploit Fibromine to export cDEG lists with pathology-related 

molecular elements (Fanidis, Moulos et al. 2021), selecting a targets shortlist for downstream 

experimentations is not always straight-forward. To address this limitation and showcase 

Fibromine’s significance for IPF research, we trained a ML algorithm to classify samples as 

control or IPF solely based on gene expression data. Focus was given on the IPF_vs_Ctrl 

comparison both due to its high frequency among Fibromine and literature DE comparisons, 

as well as due to its direct interest for IPF research. Interpretation of the ML decisions was 

subsequently used for target selection. 

3.2.1 Successful XGBoost separation of sample phenotypes 

To begin with, we set to select a ML training/test set. For this purpose we distinguished seven 

IPF_vs_Ctrl lung datasets accredited with at least 4 stars during Fibromine dataset evaluation 

(GSE10667, GSE24206, GSE48149, GSE47460_GPL6480, GSE53845, GSE83717, 

GSE99621). Fibromine’s ‘Dataset explorer’ was utilized for datasets combination resulting in 

the identification of 2182 cDEGs. Compared to the total of 184 (124 IPF and 60 control) 

samples, the dataset was characterized by a disproportionate features-to-examples (genes-to-

samples) ratio. To deal with it we exploited a previously published semantics similarity 

prioritization pipeline (Maghsoudloo, Azimzadeh Jamalkandi et al. 2020) after a series of 

context-required modifications (Materials and Methods). In a nutshell, we designed and 
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calculated an integrated score (Si) that combined both consensus gene expression data and 

cDEGs semantics similarity to pulmonary fibrosis related terms. Si was then used to order 

features, with up-regulated PF-related genes ending at the top and down-regulated PF-related 

genes at the bottom of the list. Top 100 and bottom 100 features were selected for ML training 

and testing (Figure 6). 

 

Figure 6 Machine learning methods are capable of separating IPF-originating from control 

samples using gene expression data. Adopted from (Fanidis, Pezoulas et al. 2023). 

Post to samples and features selection, we pre-processed data for proper use with ML methods 

(Figure 6). Initially, Fibromine-hosted gene expression values from all seven datasets were 

downloaded and standardized, in order to eliminate between dataset differences in numerical 

range. Next, those features shared by all seven datasets were maintained and intersected with 

the 200 Si-prioritized features. The intersection was extended to include genes found in an 

independent couple of big IPF_vs_Ctrl lung datasets (GSE32537, GSE47460_GSE14550) 

which was later exploited as an independent ML evaluation set. The latter two datasets included 

199 IPF and 119 control samples and were subjected to the same pre-processing steps with the 

aforementioned seven. As a result, our full training/testing and evaluation sets consisted of 184 

(124 IPF - 60 control) and 318 (199 IPF - 119 control) examples, respectively. Both sets beared 

expression values from 172 cDEGs (Table S2) equally distributed between up and down 

regulated groups (84 up and 88 down). Last, due to the sex-specific nature of both gene 

expression (Gershoni and Pietrokovski 2017) and IPF pathology (Raghu, Collard et al. 2011), 

we tested the selected data for sex-driven patterns, with no findings (Figure 7). 
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Figure 7 Gene expression data used for ML training and evaluation were not affected by any sex-

bias. A. Training/testing dataset. B. External evaluation dataset. Adopted from (Fanidis, Pezoulas et al. 

2023). 

A supervised XGBoost model was chosen to phenotypically classify samples. The learning and 

evaluation process was based on a MCCV approach with a 75:25 train:test split iterated ten 

times. Hyperparameter tuning was performed with a stratified 5-fold strategy with random 

shuffling per training set, accompanied by a grid-search cross-validation (Materials and 

Methods). Algorithmic performance was summarized by the median across-iterations value for 

each evaluation metric. As indicated by almost all metrics having a median above 0.9, our 

algorithm succeeded in samples classification in both test splits (Figure 6B; Table 1) and the 

independent datasets (Figure 6C; Table 1) More importantly, we observed that ML application 

on the independent set of data had a smaller between-iterations variation in metric values 

compared to the initial testing splits (Figure 6C). 



70 
 

Table 1 Machine learning algorithm evaluation. Comparison of our full and lite models with others 

trained with previously identified target genes. Values presented are the median across training/testing 

iterations. Colored values represent performance picks. Adopted from (Fanidis, Pezoulas et al. 2023) 

Full: the full proposed model; Lite: the lite proposed model; Test: testing split; Val: independent 

validation set 

Conclusively, artificial intelligence efficiently separated samples in an either IPF or control 

category based on Fibromine-sourced gene expression data. 

3.2.2 Identification and functional characterization of ML-utilized features 

As ML models were proven capable of separating human phenotypes, we hypothesized that 

some of the most significant IPF-related transcriptional features were used in the process. To 

shed light into XGBoost decisions we calculated SHAP values per model and feature (Materials 

and Methods). As a result, the most informative genes for condition classification were marked 

by a per-iteration non-zero mean absolute SHAP value (Figure 8A). These 76 features were 

characterized by a varying frequency of occurrence between the 10 XGBoost models (Figure 

S1). At the same time it became obvious that feature selection and usage was performed in an 

iteration-specific manner, with models exploiting a minimum number of 11 and a maximum 

number of 32 exploited features (Figure S1). 

In an attempt to validate the relevance between these 76 genes and PF, we have executed a 

series of functional and data mining analyses. To begin with, we performed pathway over-

representation analysis using GO as a reference database. Some of the most significantly 

enriched ontologies pertained to ECM and collagen fibrils organization as well as tissue 

remodeling, suggesting an important role of the prioritized features in lung fibrosis (Figure 8B; 

Table S3). Similar fibrosis-related sets of genes were revealed when the analysis was repeated 

with MSigDb hallmark sets as reference (Figure 8C; Table S4). Subsequently, we queried all 

76 features in CORUM3.0 (Giurgiu, Reinhard et al. 2019), so as to retrieve protein complexes 

potentially known for their pro- or anti-fibrotic function. Several of the molecular formations 

listed have been documented to participate in immune response, integrin signaling, cellular 

adhesion and migration (Figure 8D; Table S5). Next, we mined a corum of PubMed abstracts 

flagged by at least one of the ‘pulmonary fibrosis’, ‘IPF’ and ‘interstitial lung diseases’ 

keywords for gene names. Retrieved genomic elements were then intersected with the 76 ML-

used features. Surprisingly, 36 of the latter had already been mentioned in PF-related literature 

pieces, corroborating selected genes relationship with the fibrotic lung (Figure 8E). Manual 

scrutiny of the full list further validated the known role of several of its members in lung 

pathology. Notably, AGER, SPP1, MMP7 and CRLF1 were included in the (Vukmirovic and 

Kaminski 2018) list of PF deregulated genes, while 12 of 76 genes, such as LCN2, COL1A1, 

MMP7, COL15A1 and COMP were chosen by multiple publications as potential drivers of IPF 

 Performance metrics 

Model 
Accuracy Precision Sensitivity Specificity F1-score MCC 

Test Val. Test Val. Test Val. Test Val. Test Val. Test Val. 

Full 0.93 0.93 0.97 0.94 0.92 0.95 0.92 0.89 0.95 0.94 0.84 0.85 

Lite 0.93 0.94 0.97 0.95 0.94 0.95 0.91 0.92 0.95 0.96 0.85 0.88 

Wan 0.93 0.93 0.95 0.95 0.94 0.97 0.89 0.87 0.95 0.95 0.84 0.86 

Li 0.91 0.93 0.95 0.93 0.91 0.96 0.90 0.89 0.94 0.95 0.80 0.86 

Zhu 0.92 0.92 0.95 0.92 0.94 0.94 0.89 0.87 0.95 0.93 0.81 0.83 

Cui 0.93 0.92 0.97 0.92 0.94 0.96 0.91 0.85 0.96 0.94 0.85 0.83 

Xu 0.91 0.86 0.94 0.85 0.95 0.93 0.86 0.74 0.94 0.89 0.80 0.69 
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(Table 2) (Li, Liu et al. 2020, Xu, Mo et al. 2020, Cui, Ji et al. 2021, Wan, Huang et al. 2021, 

Zhu, Xu et al. 2021). 

Table 2. IPF target genes identified by previous publications in silico integrating IPF and control 

gene expression data. Adopted from (Fanidis, Pezoulas et al. 2023). 

 

3.2.3 Disease targets prioritization 

Having validated the fibrosis-relevance of the 76 ML-utilized transcriptomics features, we then 

set to prioritize them in an informative manner. Towards that goal, we integrated the iteration-

specific SHAP-ordered gene lists by means of ranking aggregation. BIRRA (Badgeley, Sealfon 

et al. 2015) and MAIC (Li, Clohisey et al. 2020) methods were recruited as two of the best 

available options for handling multiple ranked lists of unknown heterogeneity (Wang, Law et 

al. 2022). In addition, we applied SHAP-weighted majority voting, an ad hoc developed 

method based on the voting ranking aggregation strategy (Materials and Methods) (Figure 9A).  

At first glance, each algorithm seemed to yield a completely different gene ranking, but closest 

examination revealed that all three aggregations share 65% of their 1st quartile members (Figure 

9B). When we examined the three lists in their full length via Kendall ranking correlation, the 

BIRRA-originating list had the more strong relationship with the other two which in turn shared 

the less common rankings (Figure 9C). Significantly, 8 of the 13 1st quartile common genes 

have been reported by the above described text mining process and half of them (COMP, 

COL1A1, COL17A1 and COL5A2) were among previously proposed biomarkers (Li, Liu et al. 

2020, Cui, Ji et al. 2021, Wan, Huang et al. 2021, Zhu, Xu et al. 2021). 
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Figure 8 Functional analyses of model-selected features suggest close relationship to pulmonary 

fibrosis. A. The 76 features exploited by the XGBoost iterations. Direction of deregulation as defined 

by Fibromine’s ‘Dataset explorer’. B-C. GO- and MSigDb-oriented pathway analyses, respectively, 

highlight involvement in PF-related processes. D. Prioritized features participating in CORUM3.0-

defined protein complexes along with their functional significance. E. PubMed abstract mining reveals 

the fibrotic character of the identified target genes. Adopted from (Fanidis, Pezoulas et al. 2023). 
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Figure 9 Ranking aggregation of model-prioritized features. A. Ranking aggregation pipeline. B. 

Prioritized features ranking per applied method. Across-methods shared genes of the first quartile are 

colored in red. C. Correlation of the three rankings. That of BIRRA shared the most characteristic with 

the other two. Adopted from (Fanidis, Pezoulas et al. 2023). 

Ultimately, we have applied a ML algorithm on gene expression data and have succeeded not 

only to distinguish IPF from control samples, but also to use that classification process as a 

means of disease targets isolation and informed prioritization. We are of the opinion that future 

research should focus on the less best studied of the 76 prioritized features as latent yet 

potentially significant IPF players. 

3.2.4 Prioritized features list comparison with previous biomarker lists 

In the past, several in silico pipelines have attempted to identify novel IPF markers using 

transcriptomics datasets (Li, Liu et al. 2020, Xu, Mo et al. 2020, Cui, Ji et al. 2021, Wan, Huang 

et al. 2021, Zhu, Xu et al. 2021). Juxtaposition of their findings, revealed minimum common 
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ground (Figure 10A; Table 2), while comparison with our much longer 76 gene list just 

validated the underlying heterogeneity. Intrigued by these observations, we decided to examine 

the above target sets’ ability for samples phenotypic classification. 

For a proper comparison, XGBoost was once again recruited as a binary classifier using 

expression values from (Li, Liu et al. 2020, Xu, Mo et al. 2020, Cui, Ji et al. 2021, Wan, Huang 

et al. 2021, Zhu, Xu et al. 2021) and our prioritized gene list (Figure 8A). In addition, we 

trained and evaluated a seventh XGBoost algorithm with a more compact version of the full 

target list. This new gene set, from now on called ‘lite’, comprised of the top 13 features shared 

between the three ranking aggregation methods (Figure 9B). Already published target genes 

not present in the 172 cDEG set were excluded from ML training and testing. As can be seen 

from Figure 10B and Table 1, our lite model had the best performance next to that of Wan and 

Cui lists, while all three performed up to 5% better than the rest of the models. On the other 

hand, Xu-based model had the poorest performance, with an exception in sensitivity. As far as 

the external dataset evaluation is concerned (Figure 10C; Table 1), the here proposed lite model 

achieved an overall best classification. In detail, it reached a 92% specificity followed only by 

the full and Li models, while it also scored the highest accuracy (94%), precision (95%), F1-

score (96%) and MCC (88%). Once again, Xu classifier had the least favorable phenotype 

classification. 

Subsequently, we used SHAP values and SHAP-weighted majority voting, in order to explain 

lite model’s modus operandi and to prioritize target genes (Figure 10D). Similar to the full 

model, known fibrotic players, such as MMP7, COL15A1 and COMP (Vukmirovic and 

Kaminski 2018) (Table 2), were placed at the top of the list. IL13RA2, a relatively unknown 

gene in the PF context, not covered by our text mining endeavor was interestingly ranked 

fourth.  

Last, normalized expression values were correlated with spirometry measurements so as to 

evaluate less studied lite model genes. Both molecular and physiological measurements 

originated from three cohorts utilized during ML training/testing (GSE47460_GPL6480, 

GSE47460_GPL14550, GSE32537). Analysis not only revalidated relationships known to 

literature, but more importantly revealed previously latent ones (Table S6). Illustratively, % 

predicted Forced Vital Capacity (FVC) was found to be negatively correlated with IL13RA2 

expression in two of the three examined cohorts (Figure 10E), while the opposite pattern was 

established for PAPSS2 (Figure 10F). 

To wrap up, both our full (76 genes) and lite (13 genes) biomarkers list models were among 

the top phenotypic classifiers compared with previously published marker sets. Importantly, 

our lite model had the best performance when evaluated on the external dataset, further 

validating its usefulness in pathology identification. 
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Figure 10 Proposed feature sets performs better than most previously published ones in 

phenotype classification.  A. In silico proposed disease target collections are highly variable. B. 

Sample classification potential of seven gene sets according XBGoost test splits. C. Sample 

classification potential of seven gene sets according an independent validation dataset. D. SHAP-

weighted majority voting prioritization of the lite gene list. E-F. Correlation of gene expression and 

spirometry measurements. Adopted from (Fanidis, Pezoulas et al. 2023). 

3.3 ENPP2 expression and methylation in cancer 

Apart from its implication in PF (Magkrioti, Galaris et al. 2019), ENPP2 is a known player in 

several malignancies (Peyruchaud, Saier et al. 2020). Nevertheless, and despite indications 

from other diseases (Parris, Kovács et al. 2014, Udomsinprasert, Kitkumthorn et al. 2017), 

there no systematic investigation of ENPP2 methylation has been performed. 
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3.3.1 ENPP2 methylation in cancerous and healthy tissue 

Motivated by the aforementioned data, we set to in silico investigate ENPP2 methylation in 

tumor and control samples. Initially, in order to reveal a homeostatic baseline of ENNP2 

methylation across the human body, we re-analyzed GSE50192, a dataset spanning 17 healthy 

tissues (Lokk, Modhukur et al. 2014). As can be seen from (Figure 11), all gene body CGs had 

elevated levels of methylation when compared to those located at the transcription start site 

(TSS) and the 1st exon of the gene.  

 

Figure 11 Pattern of ENPP2 methylation across human tissuess. TSS: Transcription start site 

Re-analysis of 10 publicly available datasets (GSE113017, GSE113019, GSE120878, 

GSE27130, GSE63704, GSE76938, GSE98534, GSE46306, GSE134772, GSE97686) 

investigating DNA methylation in some of the most frequently arising and lethal cancer types 

(Sung, Ferlay et al. 2021), revealed differentially methylated CGs (DMCs) in all but 

precancerous interepithelial cervical neoplasia (CIN), cervical cancer (CC) and gastric cancer 

(GC) cases (Table 3). Several DMCs were recurrently identified. Importantly, all promoter-

associated and 1st exon CGs had increased methylation during cancer. The opposite pattern was 

witnessed in almost all gene body CGs. 

To extend our research, we reanalyzed GSE71627, a dataset that contains hepatocellular and 

prostate cancer cell lines of differential aggressiveness (Cheishvili, Stefanska et al. 2015). 12 

DMCs were identified (Table 4) and half of them were shared by both tumor types. With the 

only exception of two regions, CGs across the whole gene had a heavier decoration in the more  
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Table 3. ENPP2 differential methylation in various cancer types compared to steady state. 
Adopted from (Panagopoulou, Fanidis et al. 2021). 
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Table 3 cont. 

 

Table 4. ENPP2 DMA between more (SKHEP1; PC3) and less (HEPG2; LNCAP) invasive cell 

lines of PC and HCC cancer types. Adopted from (Panagopoulou, Fanidis et al. 2021). 
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invasive cell lines. Last, and to investigate drug-reversibility of ENPP2 epigenetic 

modification, we reanalyzed data from a colon cancer cell line treated with 5-aza-20-

deoxycytidine (Seelan, Mukhopadhyay et al. 2018). Results validated our expectations and 

methylation levels decreased in all 14 ENPP2 DMCs (Table S7). 

Collectively, the above results support the existence of a deregulated ENPP2 methylation 

pattern which in turn suggests down-regulation of its transcription levels during cancer. 

Increased CG methylation in more aggressive cell lines further implicates DNA methylation in 

cancer progression. 

3.3.2 ENPP2 expression and methylation in prostate cancer 

Subsequently, we set to investigate the impact of ENPP2 methylation changes on ENPP2 

mRNA levels. To begin with, we assessed the probability of DNA methylation affecting TF-

DNA interaction. Using PROMO computational tool we predicted that 40 TFs can potentially 

bind on or in close proximity to multiple ENPP2 promoter CGs (Figure 12). Four of the latter 

have also been found differentially methylated. Afterwards, we set to examine ENPP2 

expression and methylation in prostate (PC), lung (LC) cancer and hepatocellular carcinoma 

(HCC) samples. TCGA was selected as a source database due to its large cohort sizes, 

measurement of multiple omics modalities per sample and the provision of rich clinical and 

demographic metadata. 

 

Figure 12 Transcription factors that are predicted to bind at ENPP2 promoter CG sites. Adopted 

from (Panagopoulou, Fanidis et al. 2021). 

To examine ENPP2 methylation and expression during PC, we compared 235 tumor and 35 

healthy adjacent tissue samples (Table 5). A dozen DMCs were found between phenotypes, 

while ten of them were also highlighted during up-stream analyses (Table 3). More specifically, 

all cancer samples’ TSS and 1st exon CGs had an increased number of attached methyl groups, 

in contrast to the decreased methylation observed in half of the gene body CGs. Examination 

of methylation levels along with several cohort characteristics revealed that methylation of 

cg02534163 (1st exon), cg02709432 (TSS200) and cg23725583 (gene body) was positively 

correlated to tumor size (p=0.032). In addition, resistance to pharmacotherapy was related to 

increased methylation of cg01243251 (p=0.023) located at the gene’s body. On the other hand, 

ENPP2 expression in the same PC samples was found decreased compared to their healthy 

counterparts (LogFC= -0.379, FDR=3.70×10−2). Spearman’s correlation of gene expression 

and methylation at gene and isoform levels was then employed and linear models were also fit 

in an attempt to connect the two modalities (Figure 13A; Table 6). Despite the small effect size, 

cg02156680, cg02709432, cg06998282, cg14409958 (TSS CGs) and cg02534163 (1st exon 

CGs) methylation was negatively correlated to gene expression during PC. No significant 

correlation was established in control samples. At the isoform level, ucc003yot.1, uc003yos.1 

and uc003yor.1 expression showed statistically significant correlation to multiple CGs with a 

mostly negative rho statistic. 
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Table 5. ENPP2 differential methylation and expression analysis from TCGA-originating 

samples. Adopted from (Panagopoulou, Fanidis et al. 2021). 

 

Table 6. Correlation between ENPP2 expression and methylation in PC, LC, HCC TCGA 

samples. Adopted from (Panagopoulou, Fanidis et al. 2021). 

 

3.3.3 ENPP2 expression and methylation in lung cancer 

Regarding LC, we examined 212 adenocarcinoma and 15 healthy lung samples. Differential 

methylation analysis identified 8 DMCs, four of which have also been found during our initial 

GEO dataset re-analysis (Table 7). Specifically, 3 TSS and a single 1st exon CG were hyper-

methylated during cancer. The opposite pattern was observed for the four gene body DMCs. 

When correlated to available sample metadata, methylation of TSS-related cg14409958 related 

to advanced cancer (p=0.035). DEA demonstrated lower ENNP2 transcript levels in LC 

samples compared to the respective controls (LogFC= -1.285, FDR= < 1.00 × 10−2), similarly 

to PC cases. Spearman’s correlation and linear models fit were once again exploited for 

uncovering expression-methylation relationships. Although characterized by a small effect 

size, ENPP2 transcription was negatively correlated with cg14409958 methylation during LC 

(Figure 13B and Table 6). No significant correlation was found in control samples. Last, no 

statistically significant relationships were established between methylation and expression of 

ENPP2 isoforms, although large effect sizes and significant linear models suggested otherwise. 
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Figure 13 Significant relationships between ENPP2 transcription and methylation. A. Prostate 

cancer. B. Lung cancer. C. Hepatocellular carcinoma. Red and blue color marks tumor and control 

samples, respectively. Adopted from (Panagopoulou, Fanidis et al. 2021). 

Table 7. Differential methylation analysis for ENPP2 CGs between LC and control samples. 
Adopted from (Panagopoulou, Fanidis et al. 2021). 
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3.3.4 ENPP2 expression and methylation in hepatocellular carcinoma 

With regard to HCC, we retrieved and examined 241 HCC and 42 control liver samples. 

Differential methylation analysis identified 13 DMCs, 12 of which were shared with the HCC 

GEO datasets analyzed earlier (Table 8). Once again, gene body sites were down-methylated 

during cancer, in contrast to the TSS and 1st exon GCs. Examination of clinical characteristics 

suggested that younger HCC patients had more methyl groups attached to 7 of their CGs 

(cg00320790, cg01243251, cg07236691, cg09444531, cg20048037, cg20162626 and 

cg2372558) compared to older ones (all p<0.001). On the other hand, cg01243251 methylation 

was negatively correlated with control samples age (p=0.0037). Methylation of most CGs was 

also correlated to patients’ sex, with female individuals presenting a heavier decoration than 

males (all p<0.05). We observed the same phenomenon in just a single CG during homeostasis 

(cg20048037; p=0.033). Interestingly, tumor invasiveness was positively related to 

cg04452959 methylation (p=0.044). In contrast to PC and LC, ENNP2 expression was 

increased during HCC (LogFC= 0.710, FDR=1.00 × 10−2). Subsequently, methylation of 6 

gene body CGs was positively associated with ENPP2 expression (Figure 13C and Table 6). 

On the contrary, almost all statistically significant steady state relationships followed the 

opposite pattern. Correlation of methylation and isoform level expression produced similar 

results. 

Table 8. Differential methylation analysis for ENPP2 CGs between LC and control samples. 
Adopted from (Panagopoulou, Fanidis et al. 2021). 

 

3.3.5 ENPP2 expression and methylation in UALCAN database data 

To replicate our findings in an independent sample set, we re-analyzed UALCAN database-

retrieved data. In accordance to TCGA findings, ENPP2 expression was decreased in PC/LC 

and increased in HCC cases. Moreover, differential protein levels analysis in LC revealed 

reduction in primary tumors relative to control cases. In agreement to our previous 

observations, ENNP2 was hyper-methylated in all three cancer types compared to respective 

controls. 

To conclude with, data from various sources converge on the existence of both ENPP2 

differential methylation and expression in cancer affected tissues. Methylation in PC and LC 

follows the same hyper-methylation motif of TSS and 1st exon CGs. On the other hand, addition 

of methyl groups during HCC seems to obey a cancer type-specific mechanism. Although, 

pending wet lab validation studies, our in silico analyses suggest the existence of a potentially 

drugable regulatory link between ENPP2 expression and methylation. 
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3.4 ENPP2 methylation as a liquid biomarker of breast cancer 

Motivated by our findings in PC, LC and HCC, we next decided to examine ENPP2 

methylation and expression in breast cancer, the most common cancer type between female 

individuals (Łukasiewicz, Czeczelewski et al. 2021). 

3.4.1 ENPP2 methylation and expression in breast cancer 

To begin with, we analyzed data from 520 primary/metastatic breast cancer (BrCa) and 185 

control tissue samples originating from five GEO datasets and the TCGA database. Differential 

methylation analysis revealed that all TSS and 1st exon CGs (cg04452959, cg02709432, 

cg02156680, cg06998282 and cg02534163) were hyper-methylated during cancer (Table 9). 

The same pattern was followed by three gene body CGs (cg09444531, cg26078665, 

cg23725583), while cg00320790 and cg20048037 were hypo-methylated in BrCa cases. DEA 

of the above TCGA data (302 BrCa and 76 normal tissue samples) demonstrated a decrease in 

ENPP2 transcript levels in cancer-affected tissue samples (FC=−5.15, FDR=3.96×10−66) 

(Table 10).  

Table 9. ENPP2 DMCs between BrCa and control tissue samples. Adopted from (Panagopoulou, 

Drosouni et al. 2022). 

 

Table 10. ENPP2 DE between cancer and control TCGA samples (|FC|≤ 1.2; FDR < 0.05). Adopted 

from (Panagopoulou, Drosouni et al. 2022). 
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Last, correlation of ENPP2 expression and methylation status was recruited to reveal any 

potential connection between the two modalities (Figure 14A, Table 11). Regarding BrCa cases 

 

Figure 14 Relationship of ENPP2 transcription and methylation in breast cancer samples. 

Depicted are cases of significant correlation between CG methylation and ENPP2 expression 

(Spearman’s correlation; |rho| ≥ 0.4; FDR < 0.05). A. Breast cancer (red) and control samples (blue). 

B. Breast cancer stage I (red) and control samples (blue). C. Advanced (red) and early (blue) breast 

cancer samples. Adopted from (Panagopoulou, Drosouni et al. 2022). 

transcript levels were negatively correlated with promoter-associated CGs (cg02534163, 

cg06998282, cg14409958) and no significant relationship was established with gene body 

methylation sites. Analysis of normal samples highlighted a negative correlation between 

ENPP2 transcription and two gene body CGs (cg07236691, cg2372583). Intriguingly, and a 
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single TSS dinucleotide which was also among the significant tumor correlations: cg14409958. 

A sole positive correlation was revealed for cg14409958 of the gene body. All together, the 

above results suggest that ENPP2 genomic site does undergo differential methylation during 

BrCa, with hypermethylation of promoter-associated sites reducing the genes transcription 

rates. 

Table 11. Correlation between ENPP2 transcription and methylation for different BrCa stages 

and control samples. Adopted form (Panagopoulou, Drosouni et al. 2022). 

 

3.4.2 ENPP2 methylation and expression between breast cancer stages and types 

As breast cancer is considered curable if detected prior to any metastatic event (Harbeck, 

Penault-Llorca et al. 2019), discovery of an accurate and sensitive detection strategy is of 

outmost importance. Initially, before investigating the diagnostic potential of ENPP2 

methylation, we wanted to examine whether methylation changes can indeed be detected early 

on BrCa progress. Towards this purpose we re-analyzed raw data from 132 primary and 31 

distant metastatic cancer cases. Four gene body CGs were found hypo-methylated in metastatic 

cancer while two others, one in the 1st exon and the other in the TSS area, were conversely 

affected (Table 9), proposing the implication of ENPP2 methylation in the BrCa progress 

and/or invasiveness. 
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To replicate and extend the above findings, we subsequently analyzed TCGA data from stage-

I BrCa and healthy tissue samples. Differential methylation analysis based on 136 stage-I and 

111 normal specimens identified 9 DMCs, with five of the hyper-methylated ones located at 

promoter-associated regions and another three at the ENPP2 body (Table 9). Consisting the 

sole divergence from the general pattern, cg20048037 was found hypo-methylated during BrCa 

onset. In addition, DEA in 111 stage-I and 66 normal tissue areas revealed once again the  

ENPP2 transcription downregulation (FC=−5.46, FDR=3.43×10−52) (Table 10). When we 

examined expression and methylation levels of stage-I BrCa samples, we observed exclusively 

negative relationships (Table 11). The same pattern was witnessed in normal-origin data 

implicating one TSS and two body CGs, while a positive correlation was uncovered in a single 

gene body instance. 

Afterwards, we focused on any epigenetic regulation taking place durinh BrCa latter stages, 

using data from 521 early (stage I, II) and 221 advanced (stage III) cases. Interestingly, only 

two gene body DMCs were identified (Table 9). Moreover, we established no difference 

(FC=1.20, FDR=9.41×10−2) in ENPP2 transcript levels between 519 early and 191 advanced 

BrCa examined individuals (Table 10). Inability of methylation and expression values to 

separate samples by phenotype, as revealed through dimensionality reduction methods applied 

on data of both modalities (Figure S2), further validates/supports the lack of significant 

findings. Nevertheless, irrespective of these negative findings, significant correlations were 

identified between ENPP2 transcription and methylation of three TSS and a 1st exon CG in 

advanced cancer cases (Figure 14C; Table 11). Negative relationships in three out of the four 

locations mentioned above were reported in early BrCa samples, too. 

In order to examine differences between invasive cancer types, we retrieved TCGA data from 

473 invasive ductal and 186 invasive lobular suffering individuals. Differential methylation 

analysis revealed only three statistically significant DMCs, which unfortunately had very small 

effect sizes (Table 4). 

Table 12. ENPP2 CGs differentially methylated between ductal and lobular BrCa. Adopted from 

(Panagopoulou, Drosouni et al. 2022). 

 

Last, UALCAN database was used as an independent data source for validation of all 

aforementioned findings. Indeed, not only promoter-associated regions had increased levels of 

methylation compared to normal tissue samples (Figure 15A), but ENPP2 expression was 

found downregulated in cases of primary tumor (Figure 15B). In addition, protein levels were 

also reduced in the same tumor samples respective to their control counterparts (Figure 15C).  
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Figure 15 Analysis of ENPP2 transcription and its regulation from UACLAN database. A. ENPP2 

promoter methylation, B. mRNA expression and C. protein expression from BrCa and control samples 

recovered from the UACLAN platform. CPTAC: clinical proteomic tumor analysis consortium. 

Adopted from (Panagopoulou, Drosouni et al. 2022). 

Collectively, data analyses strongly indicate that ENPP2 methylation does change alongside 

cancer establishment, with increased accumulation of methyl groups on promoter-related CG 

sites causing the reduction of ENPP2 transcript and protein levels. Nevertheless, once cancer 

reaches a severe status, no high effect changes can be detected in neither ENPP2 expression 

nor methylation in respect to earlier cancer stages. 

3.4.3 ENPP2 methylation and expression between breast cancer types 

Reduced and even minimal invasiveness is key for the wide application of a diagnostic test. As 

far as cancer diagnosis is concerned, several studies have been able to measure methylation via 

liquid biopsies and then relate it to cancer evolution (Panagopoulou, Karaglani et al. 2019, 

Panagopoulou, Cheretaki et al. 2021, Ren, Lu et al. 2022). Motivated by the previously 

performed investigations, we wanted to discover if ENPP2 methylation does offer the same 

diagnostic capabilities. 

Working towards that goal, we re-analyzed a GEO-deposited dataset (GSE1222126) of 

circulating cell free DNA (ccfDNA) revealing eight DMCs between cancer and control samples 

(Table 13). In detail, all promoter-associated CGs were found hyper-methylated with big effect 

sizes, while the opposite pattern was detected in a single gene body CG. Most significantly, 

half of the aforementioned CGs located in promoter-associated regions (cg02534163, 

cg04452959, cg02156680 and cg06998282), have also been reported as DMCs in the 

BrCa_vs_normal analyses presented above (Table 9). Thus, these results propose that ccfDNA 

may indeed work as a window to ENPP2 methylation status in cancer-affected tissue sites. 

3.4.4 ENPP2 methylation as measured in ccfDNA 

In an attempt to validate our in silico findings and support the clinical validity of measuring 

ENPP2 methylation in liquid biopsy samples, we have used qMSP to target cg02534163, a 1st 

exon CG identified as a DMC in computational analyses of data from both lung tissue and the  
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Table 13. Comparison of ENPP2 methylation between BrCa and control individuals as 

represented in ccfDNA samples. Adopted from (Panagopoulou, Drosouni et al. 2022). 

 

periphery. More specifically, ccfDNA was collected from 52 adjuvant-treated, 19 metastatic 

and 15 neoadjuvant-treated BrCa suffering individuals. Twenty healthy individuals formed the 

negative control sample. Initially, it should be noted that methylation was detected more 

frequently in cancer-originating than in healthy-sourced ccfDNA (Figure 16A). Separate 

consideration of cancer types, detected ENPP2 methylation in 71.1%, 73.6% and 72.1% of the 

adjuvant, metastatic and neoadjuvant cases, respectively. Comparison of methylation positives 

between groups revealed significant differences between control_vs_adjuvant, 

control_vs_metastatic and control_vs_neoadjuvant cases (Figure 16B), yet no difference was 

identified between BrCa groups per se.  

Last, we performed differential methylation analysis between conditions. No significant 

difference was recorded between pathological and steady-state samples (Figure 17A), while 

the neoadjuvant-treated individuals had increased levels of methylated ccfDNA as compared 

to either control or adjuvant group (Figure 17B). Comparison of many- versus few-metastatic 

event cases revealed cg02534163 hyper-methylation in patients of the former category (Figure 

17C). 

In conclusion, the aforementioned observations support that use of cg02534163 methylation as 

detected in ccfDNA is a possible test for non-invasive diagnosis of early stage cancer. Further 

larger studies must be conducted for the independent validation and establishment of ENPP2 

methylation as a BrCa biomarker. 

 

Figure 16 ENPP2 methylation as measured from ccfDNA isolated from breast cancer affected 

and control individuals. A. Breast cancer and control samples. B. The same samples per breast cancer 

group. *Control related to adjuvant; # Control related to metastatic; $ Control related to neoadjuvant. 

Adopted from (Panagopoulou, Drosouni et al. 2022). 
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Figure 17 Differential methylation analysis between different pathology conditions and control 

samples. Boxplots of ccfDNA levels from (A) BrCa compared to control; (B) in each group separately; 

(C) BrCa patients with one or more metastatic events. *Adjuvant related to neoadjuvant; #Control 

related to neoadjuvant. Adopted from (Panagopoulou, Drosouni et al. 2022). 

3.5 Gut, liver and lung microbiome 

To examine how pulmonary homeostatis is affected by lung microbiome and if there is any 

interaction with microbes of both gut and liver milieu, we performed 16S rRNA sequencing 

from murine samples of all the above three tissues. Samples were collected from both high-fat 

diet (HFD) and control diet (CD) treated C57Bl6 mice, post to validation of obesity 

establishment in the former group. 

Initially, we quality controlled and denoised FASTQ files produced by the BSRC genomics 

facility, using DADA2 functionalities (Callahan, McMurdie et al. 2016). Then, samples were 

pooled per tissue and diet prior to amplicon sequence variants (ASV) formation. ASVs were 

adjusted for taxa-specific 16S gene copy numbers (GCN correction). In total, we were able to 

detect 29 phyla, 59 classes, 130 orders, 227 families and 585 species which we used for all 

downstream analyses (Figure S3A).  

To examine general diversity patterns, we utilized the observed number of ASVs (richness), as 

well as Shannon’s index (biodiversity). In detail, computed richness suggested that more 

diverse microbial communities exist under HFD conditions in all three tissues (Figure 18A; 

Figure S3C). On the other hand, Shannon’s index corroborates the above observation only for 

lung tissue samples (Figure 18B). Subsequently, to compare microbial composition between 

tissues and diets we calculated the Aitchison distance (β-diversity) under healthy and obese 

conditions. It was observed that HFD-driven obesity changes lung microbiome to a more liver-

like composition (Figure 18C). Examination of phyla and families per diet and tissue suggested 

that obesity does increase the absolute numbers of microbial categories shared across tissues, 

thus potentially shaping a more homogeneous microbiome across the body (Figure 18D-E; 

Tables S8-9). 
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Figure 18 Microbiome of all three tissues is affected from HFD-driven obesity. A. A higher number 

of ASVs is observed under HFD-driven obesity conditions. B. Sample biodiversity per tissue and diet. 

C. β-diversity between tissue and diet samples. D-E. Common phyla and families upon CD or HFD in 

gut, liver, and lung. Adopted from (Galaris, Fanidis et al. 2022). 

Afterwards, we attempted to dissect the above mentioned changes at both the phylum and 

family levels of taxa organization. After removing zero abundance phyla we discovered that 

all three tissues shared the same taxa, namely Proteobacteria, Actinobacteria, Bacteroidetes, 

Cyanobacteria and Firmicutes, irrespective of the received diet (Figure 19A-B). Nevertheless, 

samples hierarchical clustering suggested that HFD disrupts phyla relative abundance, 

rendering liver microbial community more similar to that of the lung instead of the gut. The 

same observation can be made from β-diversity clustering (Figure 18C), as well as from phyla 

intersection between conditions (Figure 18D). More specifically, Proteobacteria was the most 

abundant phylum in liver and lung of CD-treated mice, with Actinobacteria and Firmicutes 

ranking second and third, respectively (Figure 19C). Slightly different, the CD gut was 

primarily populated by Bacteroidetes and then by Proteobacteria and Firmicutes. In contrast, 

during HFD Firmicutes was the second most abundant phylum in liver and lung with 

Proteobacteria maintaining the first and Actinobacteria sidelined to the third position (Figure 

19C). Under the same conditions, Firmicutes, Actinobacteria and Proteobacteria were the most 

frequently found phyla in the gut. In total, all the above data propose an expansion of Firmicutes 

during HFD. 

Moving to the family level, Firmucutes families Staphylococcaceae, Streptococcaceae and 

Peptoniphilaceae families were expanding during obesity in all examined tissues (Figure 20A). 

Pasteurelacceae (Proteobacteria) followed the same pattern of expansion. Regarding genera of 
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the above three Firmicutes families (Table S10), Staphylococcus seems to be the most favored 

by HFD (Figure 20Β). 

 

Figure 19 Relative phyla abundance in all tissues and diets. A-B. Heatmaps and clustering of relative 

abundance in CD and HFD-treated animals. Only phyla with a non-zero two-decimal places abundance 

were considered. Heatmaps were scaled per phylum. Manhattan distance with complete linkage was 

used for hierarchical clustering. C. Detected phyla relative abundance. Adopted from (Galaris, Fanidis 

et al. 2022). 

 

Figure 20 HFD effect on microbial families and genera. A. Relative abundance of families between 

tissues. B. Relative abundance of genera between tissues. Only taxa with non-zero relative abundance 

differences between the two diet regimes in at least one tissue were considered. Heatmaps are scaled 

per taxon. Manhattan distance and complete linkage were used for hierarchical clustering purposes. 
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Genera and their respective family are color-coded in both figure panels. Adopted from (Galaris, Fanidis 

et al. 2022). 

Last, as the three most consistently affected Firmicutes genera, Staphylococcus, Streptococcus 

and Finegoldia, host species that have been previously witnessed to produce superantigens 

(Fraser and Proft 2008, Anderson, Zheng et al. 2012), we queried UniProt using the term 

‘superantigen’ to uncover more such microbes. Intersection of the query results with the here 

detected species yielded six superantigen producers (Table S11), four of which seems to have 

been affected by HFD in a single organ at minimum. 

In summary, all the aforementioned data propose that HFD-driven obesity does not only affect 

liver and gut microbiome, but also that of the lungs. Disruption of the microbiomic 

communities was reflected from the highest to the lowest level of taxa organization, with 

certain families undergoing consistent changes in their abundance. Further experimentations 

are absolutely necessary to support these preliminary findings, which if validated will change 

our perception of obesity and its effects in the respiratory system. 

3.6 Lipocalin-2 in fibrosis and steady state 

Motivated by a potential participation of LCN2 in the establishment of PF (see Introduction), 

we decided to examine the above hypothesis by means of both dry and wet laboratory processes 

in human and murine samples. 

3.6.1 Human LCN2 expression patterns 

Initially, we examined LCN2 expression using bulk high-throughput sequencing data from 

Fibromine (Fanidis, Moulos et al. 2021) (Table S12). Multiple datasets mining revealed an 

increase in LCN2 mRNA levels in IPF compared to control lung tissue samples (Figure 21A-

B; Table S12). More importantly, expression data negatively correlated with lung function 

measurements (DLCO, FVC and FEV1) in IPF patients of the same datasets (Figure 21C; 

Figure S4A-B).  

Subsequently, we set to dissect LCN2 expression in lung cell types. To accomplish this task, 

we re-analyzed data from three open source scRNA-seq datasets (Table S13) (Adams, Schupp 

et al. 2020, Habermann, Gutierrez et al. 2020, Mayr, Simon et al. 2021). LCN2 transcripts were 

detected in all cases (Figure 21D; Figure S4C-D) and expressed mainly by epithelial (goblet, 

ciliated, basal and club) and aberrant basaloid cells (Figures 21E; Figure S4E-F). Comparison 

of expression between cells originating from IPF and control individuals, demonstrated LCN2 

up-regulation in various cell types including AT1 and AT2 (Figure 21F; Figure S4G-H). 

Although neutrophil-produced LCN2 has been witnessed in multiple pathologies (Hu, Li et al. 

2023) , low neutrophil cell numbers in the here presented scRNA-seq datasets did not enable a 

proper verification of literature statements. Last, to support our in silico observations we 

ELISA-measured proteins in BAL fluid from 26 IPF patients. Indeed, LCN2 abundance 

negatively correlated with respiratory function measurements as suggested by in silico findings 

(Figure 22A-C). 

Thus, initial data suggest that LCN2 is over-expressed in the lungs of IPF patients, a 

phenomenon that seems to be related with progressive decline of lung function. Various 

epithelial cells, as well as the recently identified population of aberrant basaloid cells were the 

primary source of LCN2 in both IPF and steady state conditions. LCN2 can be isolated from 

the BAL fluid of IPF-suffering individuals, with the protein levels negatively correlating to 

lung function. 



93 
 

 

Figure 21 Increased LCN2 expression during fibrosis is negatively correlated to lung function 

measurements. A. Differential LCN2 expression between IPF and control tissues (Table S12). B. DEGs 

(FC > 1.2; FDR adjusted p < 0.05) of the largest datasets in (A) examining 115/44, 28/15, 84/75 IPF 

patients and controls, respectively. C. Spearman’s correlation between LCN2 transcription and lung 

function from the GSE47460_GPL14550 dataset (***p < 0.01). D. LCN2 is mainly expressed by 

pulmonary epithelial cells. E. Dot plot of the dataset in (D) iconizing LCN2 as a marker gene of six cell 

types in red font (Wilcoxon rank-sum; FC > 1.2 and Bonferroni adjusted p < 0.05). F. Differential 

expression between cell groups and phenotypes (IPF vs. control origin) (Wilcoxon rank-sum test; *FC 

≥ 1.2; Bonferroni-corrected p < 0.05; *upregulated in IPF; *downregulated in IPF). Adopted from 

(Galaris, Fanidis et al. 2023). 
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Figure 22 LCN2 BALF levels negatively relate to lung function metrics. A–C. Spearman’s 

correlation of ELISA-defined LCN2 levels with (A) forced expiratory volume (FEV) to forced vital 

capacity (FVC) ratio, (B) transfer capacity of the lung for carbon monoxide uptake (TLCO) and (C) 

carbon monoxide transfer coefficient (KCO). Statistical significance was delimited by absolute 

Spearman’s r > 0.4 and *p < 0.05. Adopted from (Galaris, Fanidis et al. 2023). 

Table 14 Characteristics of the IPF patients cohort. Adopted from (Galaris, Fanidis et al. 2023). 

 

3.6.2 Mouse Lcn2 expression patterns 

Samples of BLM-induced PF and their control counterparts were mined through Fibromine to 

explore Lcn2 differential expression between phenotypes (Table S12). As in the case of human 

species, we found Lcn2 over-expressed during the fibrotic phase of the model in most of the 

datasets (Figure 23A-B). Re-analysis of murine scRNA-seq data (Strunz, Simon et al. 2020) 

revealed that Lcn2 is produced primarily by epithelial cells and neutrophils (Figure 23C-D), 

while CellMarker2.0 database query (Hu, Li et al. 2023) proposed Lcn2 as a marker of both 

neutrophils and AT2 cells (Table S14). More crucially, scRNA-seq data suggested that Lcn2 

mRNA quantities peak during the initial model stages that are characterized by acute 

inflammation, neutrophil accumulation and epithelial damage (Figure 23E-G). 

In order to replicate the aforementioned findings, we administered BLM via oropharyngeal 

aspiration to 8-10 weeks old C57Bl6 mice, sacrificed at three time-points corresponding to the 

inflammation and fibrotic disease stages. Post to multiple model validation experiments (please 

refer to respective publication), we examined Lcn2 expression in lung tissue via Q-RT-PCR 

and validated its detection in all disease phases (Figure 24K). Although BAL fluid Lcn2 

concentrations followed a similar motif (Figure 24L), serum protein levels differed from those 

of control samples only during acute inflammation (day 3) (Figure 24M), a phase rich in 

neutrophils as suggested by subsequent FACS analysis (Figure 24N). Following the acute 

inflammation, Western blot analysis revealed that Lcn2 is detectable on day 14 post-BLM 

administration (Figure 24P-Q). 
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Figure 23 Lcn2 expression pattern in mouse fibrosis model. A. Lcn2 differential expression in 

several transcriptomic datasets comparing BLM- and non-treated mice (Table S12). B. Volcano plots 

of (A)-included datasets. C. Lcn2 expression in the mouse lung at single cell resolution. D. Lcn2 

expression pattern in cell types ordered by decreasing level of importance. Transcription comparison 

demonstrated Lcn2 as a marker gene of the red colored cell groups (Wilcoxon rank-sum test; FC > 1.2; 

Bonferroni adjusted p < 0.05). E. Lcn2 epithelial origin can be supported through separate examination 

of control (PBS) and fibrotic (BLM) cells. F. Time-point-specific expression of cell population markers. 

G. Changes of mouse lung major cell populations in respect to BLM administration as described by 

scRNA-seq data. Adopted from (Galaris, Fanidis et al. 2023). 
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Figure 24 Lcn2 levels are increased in the lungs of the BLM mouse model. K. Q-RT-PCR measured 

Lcn2 expression presented as fold change over control; expression was normalized over that of B2m. 

L-M. ELISA-measured Lcn2 quantities in BAL fluid (L) and serum (M) of mice at 3, 7, and 14 d post-

BLM aspiration (one-way ANOVA, */**/*** denote p < 0.05/0.01/0.001 respectively). N. Composition 

of the immune compartment in the murine lung post-BLM administration. O. Representative Western 

blot of Lcn2 quantities 14 d post-BLM. P. Densitometry analysis of Lcn2, normalized to Actin 

expression (green); cumulative result from two independent experiments (unpaired t-test; **p < 0.01). 

Q. Representative images of two independent immunohistochemistries for Lcn2 in saline (SAL) and 

BLM treated murine lung tissue (×10). Adapted from (Galaris, Fanidis et al. 2023). 

In an attempt to support Lcn2 as an indicator of pulmonary inflammation, we measured Lcn2 

levels during an LPS-induced acute lung injury (ALI). ALI establishment and inflammatory 

cells infiltration (Figure 25A-B, E) were related to increased Lcn2 transcription and translation 

(Figure 25C-D). This relationship was mirrored in both BAL fluid and sera samples of the same 

animals (Figure 25F-G). 

In conclusion, both in silico and ex vivo analyses support that Lcn2 is a marker of acute lung 

inflammation occurring either independently or as the first stage of PF. 
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Figure 25 Lcn2 levels are increased during acute lung injury episodes. A. BAL fluid total protein 

concentration (Bradford assay). B. Difference in BAL fluid inflammatory cell numbers from saline and 

LPS-treated mice (hemacytometer). C. Q-RT-PCR measured Lcn2 expression normalized over that of 

B2m and iconized as fold change over control (representative results from three independent 

experiments). D. Western blot of Lcn2 in mouse lungs suffering from LPS-induced ALI, accompanied 

by Actin-normalized densitometry analysis. E. Representative immunohistochemistry images for Lcn2 

in SAL and LPS-treated mouse lungs (×10). F-G. ELISA-measured BAL fluid and serum Lcn2 levels 

(Mann–Whitney test; */**** denote p < 0.05/0.0001) .Adopted from (Galaris, Fanidis et al. 2023). 

3.6.3 Genetic approach of Lcn2 role in murine lung pathology 

Subsequently, we genetically knocked out Lcn2 in order to dissect its molecular function. 

Despite the successful knock-out (Figure 26A-B), we observed no effect on several BLM-

induced changes, such as weight loss (Figure 26C) and the aberrant production of soluble 

collagen (Figure 26F). In addition, lung structure was not altered (Figure 26G-H). 

Nevertheless, BLM inability to cause significant changes in lung function of Lcn2 knock-out 

mice (Figure 26I-J) suggests that as in humans, increased levels of Lcn2 negatively correlate 

with proper lung function. As Lcn2 has been previously connected to obesity (Jaberi, Cohen et 

al. 2021) which in turn has been related to IPF (Guo, Sunil et al. 2022), we then examined Lcn2 

contribution in IPF establishment in obese (HFD-fed) compared to lean (control diet-fed) mice. 

In accordance to the PF model, no pathology-related changes were observed (Figure S5A-D). 

Last, motivated by the aforementioned increase in Lcn2 expression during acute inflammation 

(Figure 24-25), we treated Lcn2-/- mice with LPS to observe feature’s effect on an active 

inflammation. Although knock-out animals suffered from increased pulmonary edema (Figure 

27A), no changes in inflammation were detected (Figure 27B-C). 

To conclude with, although initial analyses of both human and murine samples do pinpoint an 

increase in LCN2/Lcn2 expression during acute inflammation and fibrosis, gene knock-out 

does not seem to have any significant effect on neither BLM-induced PF nor LPS-induced 

inflammation. Further experimentations are necessary to interpret LCN2 up-regulation during 

divergence from steady state. 
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Figure 26 BLM-model is only slightly affected by Lcn2 genetic deletion. A. Q-RT-PCR-examined 

Lcn2 expression normalized over B2m expression and iconized as fold change over control. B. 

Representative Western blot of Lcn2 in WT and KO lungs from BLM-treated mice proves global Lcn2 

depletion in KO mice. C. Weight loss post-BLM treatment. D. BAL fluid total protein  (Bradford assay). 

E. Number of BAL fluid inflammatory cells (hemacytometer). F. Levels of BAL fluid soluble collagen 

detected via Direct Red assay. G. Representative H&E-stained lung sections (×10). H. Disease severity 
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as reflected by Ashcroft scoring. I-J. FlexiVent-measured metrics of respiratory function (one-way 

ANOVA; */**/**** denotes p < 0.05/0.01/0.0001). Adopted from (Galaris, Fanidis et al. 2023). 

 

 

Figure 27 LPS-triggered pulmonary inflammation was marginally affected by Lcn2 genetic 

deletion. A. BAL fluid total protein (Bradford assay). B. Number of BAL fluid inflammatory cells 

(hemacytometer). C. Representative H&E-stained lung sections from of WT and Lcn2 KO animals 

(×10) (one-way ANOVA; */**/***/**** denotes p < 0.05/0.01/0.001/0.0001). Adopted from (Galaris, 

Fanidis et al. 2023). 

3.7 TKS5 and fibroblast migration 

TKS5 is a structural protein of podosomes, necessary accessories for cells migration 

(Introduction). Increased TKS5 expression has been reported in various cancer types (Murphy 

and Courtneidge 2011, Hoshino, Branch et al. 2013, Paterson and Courtneidge 2018), while it 

was also suggested to mediate lung tumor metastasis (Li, Chen et al. 2013). PF is among the 

higher risk factors for lung cancer development and ECM invasion is just one of the multiple 

commonalities shared between lung fibroblasts and cancer cells (Karampitsakos, Tzilas et al. 

2017). Motivated by the above observations, we decided to examine the involvement of TKS5 

in PF. 

3.7.1 TKS5 expression is upregulated during PF 

Initially, we computationally assessed TKS5 expression in human lungs during both fibrosis 

and steady state. Using Fibromine (Fanidis, Moulos et al. 2021), we observed a TKS5 over-

expression in almost all IPF_vs_Control bulk RNA-seq lung datasets (Figure 26A; Table S15) 

incorporating three of the biggest ones (Figure 28B; Figure S6A,C). In addition, TKS5 

transcription positively correlated with that of COL1A1 (Figure 28C; Figure S6B,D), 

strengthening the connection between TKS5 deregulation and PF establishment. 

To support our in silico findings we applied Q-RT-PCR which validated the increased TKS5 

mRNA levels in IPF lung tissue (n=20) compared to both control (n=9) and COPD-suffering 

individuals (n=19) (Figure 28D; Table S16). Next, by immunostaining lung sections we 

identified TKS5 in the alveolar epithelium and the fibrotic areas of IPF/UIP (n=3) patients, but 
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not in control samples (n=3) (Figure 28E). Re-analysis of a scRNA-seq dataset (Reyfman, 

Walter et al. 2018) located strong TKS5 expression in epithelial cell types, basal cells and 

primarily fibroblasts (Figure S6E-F), with TKS5+ fibroblasts belonging to a COL1A1+ 

subpopulation (Figure S6G-F). 

 

Figure 28 TKS5 expression is increased during pulmonary fibrosis. A. TKS5 expression in lung 

tissue of IPF patients compared (log2FC) to that of controls individuals as represented in nine 

Fibromine-hosted datasets (Table S15). B. Volcano plot from a large dataset of (A) (FC > 1.2, FDR < 

0.05). C. TKS5 and COL1A1 expression correlation in the dataset of (B) with a fitted linear model and 

95% CI (two-tailed Spearman’s test; ρ > 0.6; p = 8.92E-08). D. Q-RT-PCR revealed TKS5 over-

expression in IPF/UIP lung tissue samples (n = 20) compared to COPD (n = 19) and tumor-free control 

lung tissue (n = 9) (r2 = 0.98, E = 97%) (Table S16) (normalization to the expression of B2M; 

presentation as fold change to control values). Statistical significance was established with two-tailed 
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Kruskal-Wallis test (**p = 0.0076, *p = 0.0129). E. Representative immunostaining images 

demonstrating a TKS5 increase in fibrotic lungs (n = 3; scale bars = 50μm). F. COL1A1+ lung 

fibroblasts are the main producers of TKS5 as witnessed from the analysis of a scRNA-seq dataset 

(Reyfman, Walter et al. 2018) (Wilcoxon Rank Sum test; *FC > 1.2; Bonferroni corrected p = 8.9E- 12 

/ 1.1E-10 / 2.1E-3 from left to right). G-H. Q-RT-PCR-measured expression of Tks5 and Col1a1 

normalized over that of B2m and iconized as fold change (log2) over control (n = 8/12) (r2 = 0.89/0.93; 

E = 103%/96%); cumulative result from 3 experiments (two-tailed Mann Witney test; ****p < 0.0001). 

H. Correlation of Tks5 and Col1a1 mRNA levels in the same samples (two-tailored Spearman’s test; 

*p = 0.0323; r = 0.63). I. Representative photographs of double immunostaining for Tks5 and aSMA 

(Acta2) or Col1a1, followed by their respective Image J derived quantification (n = 4); scale bars=50 

μm (two-tailed Welch’s test; *p = 0.0211, **p = 0.0013). Adopted from (Barbayianni, Kanellopoulou 

et al. 2023). 

Subsequently, we set to generalize our findings and assess the eligibility of the BLM mouse 

model for TKS5 exploration. Towards that purpose we examined publicly available murine 

model datasets. As in the case of the human disease, Tks5 mRNA levels increased in BLM-

treated compared to untreated animals, with this up-regulation correlating with Col1a1 

expression (Figure 28G-H). Immunostaining ascribed Tks5 expression in the alveolar 

epithelium and lung fibrotic areas (Figure 28I) supporting our findings in human samples. Last, 

Col1a1, aSMA and Tks5 stainings comparison revealed that 1/5 of the Col1a1+ fibroblasts 

were also Tks5+ in contrast to only 2% of their aSMA+ counterparts (Figure 28I). 

Collectively, fibrosis affected human and mouse lung tissue over-expresses TKS5/Tks5 

similarly to COL1A1/Col1a1. TKS5/Tks5 transcription can be located to certain pulmonary 

fibroblast subtypes. 

3.7.2 Lung fibroblasts intrinsically create TGFβ-induced TKS5 podosome rosettes 

Based on the above findings and the already known pro-fibrotic effects of TGFβ on pulmonary 

fibroblasts (Ye and Hu 2021), we next evaluated whether TGFβ signaling does affect TKS5 

levels and function. To begin with, TGFβ treatment of primary normal human lung fibroblasts 

(NHLFs) not only induced TKS5 transcription (Figure 29A), but even echoed the TKS5-

COL1A1 relationship seen during active fibrosis (Figure 29B). The same observations were 

made in various other experimental contexts (Figure S7A-D). In addition, NHLF in vitro 

treatment with TGFβ induced posodomes formation (Figure 29C-F). MMP9 detected at the 

same structures (Figure 29G-H) potentially participates to the increased chemical degradation 

of fluorescein-conjugated gelatin substrate (Figure 29I-J), further supporting the structures’ 

identity as that of functioning podosomes. 

Next we set to examine whether the IPF lung pro-fibrotic milieu can in vivo induce the 

formation of podosomes. Towards that purpose, we cultured IPF-originating lung fibroblasts  
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Figure 29 TGFβ stimulates normal human lung fibroblasts to create podosomes. A-B. Q-RT-PCR 

measured expression of TKS5 and COL1A1 (r2 = 0,94/0,92; E = 98,3%/93% respectively) in two NHLF 

clones (cl.1, cl.2) normalized to B2M expression and presented as fold change over control; n = 4/5/4/4; 

(two-tailed Welch’s test (a/cl.1) and two-tailed Mann Whitney test (a/l.2); **p = 0.0012, *p = 0.0159). 

B. Two-tailed Pearson’s correlation of TKS5 and COL1A1 expression values in the same samples (*p 

= 0.0116). C-J. Representative composite images from double immunostaining, and respective 

quantifications, for: (C) F-actin/TKS5, (E) F-actin/Cortactin (CTTN), (G) F-actin/MMP9 and (H) 

TKS5/MMP9. Scale bars 50 μm; arrows point to representative podosomes. (D, F) Quantification of of  

podosome-containing cells per optical field (n = 6) (two-tailed t-test; **p = 0.0011, ***p = 0.0009). I. 

Representative TGFβ-induced degradation (black holes) of a fluorescein-conjugated gelatin substrate. 

J. Quantification of gelatin degradation area, normalized to control (n = 5) (two-tailed t-test; **p = 

0.0016). Adopted from (Barbayianni, Kanellopoulou et al. 2023). 
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(HLFs) (Table S17) without any treatment and stained for podosomes, while various NHLF 

cell lines cultured under the same conditions were used as control. Podosome rosettes were 

identified in the pathologic HLFs irrespective of their culture density (Figure 30A-D). 

Interestingly, podosomes were structurally the same with the TGFβ-induced ones and they also 

persisted for a long period in ex vivo cultures. Similarly yet more effectively to TGFβ-

stimulated NHLFs, IPF HLFs lysed a fluorescein-conjugated gelatin substrate that we used 

(Figure 30E-F). 

 

Figure 30 Human lung fibroblasts homeostatically produce podosomes. A, C. Serum starved, sub-

confluent primary IPF-HLFs and NHLFs immunostained for F-actin and (A) TKS5 or (C) cortactin. 

Counter stained with DAPI; n = 5; scale bars = 50 μm. B, D. Cumulative number of podosome-

containing cells (%) and podosomes number per cell per optical field, respectively (two-tailed t-test (b) 

or two-tailed Welch’s test (d); ****p < 0.0001). E. Staining of the same clones cultured on a 

fluorescein-conjugated gelatin substrate for F-actin. Counter staining with DAPI. F. Cumulative 

quantification the degraded gelatin (%) for all clones and quantification of gelatin degradation area per 

cell (ImageJ; two-tailed t-test; *** p = 0.0001/**p = 0.0020). Adopted from (Barbayianni, 

Kanellopoulou et al. 2023). 

In support of the above findings, TGFβ-treatment of primary normal mouse lung fibroblasts 

(NMLFs) stimulated Tks5 transcription in a fashion similar to that of Col1a1 (Figure S8A-B). 

Moreover, we were able to identify podosome rosettes (Figure S8C-D) and lysis of a 

fluorescein-conjugated gelatin substrate (Figure S8E-F). Matching results were retrieved from 
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3T3 embryonic fibroblasts (Figure S8G-K). As in the case of their human homologues, primary 

lung fibroblasts isolated from BLM-treated animals were characterized by an increased 

transcription of Tks5, Col1a1 and Mmp9 (Figure S8L-N), as well as by podosome rosettes 

formation (Figure S8O-P). 

The aforementioned results suggest that both TGFβ treatment and the IPF/BLM pro-fibrotic 

milieu stimulate lung fibroblasts to up-regulate the expression of TKS5/Tks5 and the 

development of likely imprinted podosome rosettes. 

3.7.3 Tks5 haploinsufficiency diminish BLM-induced lung fibrosis 

Subsequently, we set to evaluate the effects of Tks5 during PF. Working towards that goal we 

created a C57Bl6/J Tks5+/- mouse model which we treated with BLM (Figure 31A-B). WT 

littermates were used as control. For details regarding knockout mice creation, please, refer to 

(Barbayianni, Kanellopoulou et al. 2023). Animals were sacrificed 14 days after BLM 

administration, at the peak of the modeled fibrosis (Barbayianni, Ninou et al. 2018). From some 

initial analyses, Tks5+/- mice did not lose any weight in contrast to WT ones (Figure 31C), 

while vascular leak and pulmonary oedema were definitively reduced in the former (Figure 

31D). Moreover, inflammatory cells, BAL fluid soluble collagen levels and Col1a1 expression 

were significantly reduced in the knockout animals (Figure 31E-H). Histologically, we 

discovered less collagen being deposited in BLM-treated knockout mice (Figure 31I), in 

parallel to less fibrotic regions both in the parenchyma and peribronchial areas (Figure 31J). 

Observations from ex vivo cultures of Precision Cut Lung Slices (PCLS) from the same mice 

were in line with the above findings (Figure 31I). Last, lung function was not significantly 

affected by BLM in Tks5+/- animals compared to their WT littermates (Figure 31K-M).  

Hence, Tks5 expression and by extension podosomes seem to actively participate in BLM-

induced PF, with these observations possibly generalizable to the human IPF lung. 

3.7.4 Tks5 haploinsufficiency diminish BLM-induced lung fibrosis 

With the aim of functionally examining the anti-fibrotic properties of Tks5 haploinsufficient 

mice, we collected primary lung fibroblasts from littermate WT and Tks5+/- mice and treated 

them with TGFβ. Tks5+/- cells (Figure 32A) had a smaller number of podosomes (Figure 32B-

C) and decreased proliferation rates (Figure 32D). To evaluate podosomes’ ability to actively 

support cells’ movement through ECM, we cultured murine lung fibroblasts on murine lung-

originating acellular ECM (Figure S9A-B) in a transwell invasion chamber for 6h (Figure 32E). 

Tks5+/- originating cells were characterized by a decreased number of TGFβ-induced 

podosome rosettes, a reduction which was accompanied by a decline in cells’ invasion potential 

(Figure 32F). Last, BLM-treated Tks5+/- fibroblasts had less podosomes compared to their WT 

counterparts (Figure 32G-H) in parallel with a reduced capacity for acellular ECM invasion 

(Figure 32I). 

In search of a mechanism of action, we once again treated murine WT and Tks5+/- lung 

fibroblasts with TGFβ and used 3’ UTR RNAseq (Quant-Seq LEXOGEN) to interrogate their 

transcriptional profile. DEA identified 3648 deregulated genes (FC>1.2, FDR corrected 

p<0.05) (Figure S10A), with 418 of them already known to be implicated in fibrosis as revealed 
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Figure 31 BLM-established pulmonary fibrosis is weakened in Tks5 haploinsufficient animals. A. 

BLM-induced PF model protocol. B. Kaplan Meyer survival curve for wild type and Tks5 
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haploinsufficient animals post to BLM treatment. C. Changes in body weight after BLM administration 

(two-tailed one-way ANOVA; **p = 0.031). D. BAL fluid total protein concentration (Bradford assay; 

two-tailed one-way ANOVA; ****p < 0.0001, *** p = 0.0009). E. Number of inflammatory cells in 

BAL fluid (hematocytometer; two-tailed one-way ANOVA; ****p < 0.0001, ***p = 0.0002/0.0008). 

F. Levels of soluble collagen in BAL fluid (Direct red assay; two-tailed Kruskal Wallis; *p = 0.0124). 

G-H. Q-RT-PCR measured expression of Tks5 and Col1a1 normalized over that of B2m and presented 

as fold change over control (two-tailed one-way ANOVA; ** p = 0.0012, *p = 0.0207). H. Two-tailed 

Pearon’s correlation of Tks5 and Col1a1 expression in the same samples (*p = 0.0342; r = 0.91/0.54). 

I. Representative images from: murine lung sections stained with Fast Green/Sirius Red (first row), 

precision cut lung slices stained with Hematoxylin & Eosin (H&E) (second row) and lung sections 

stained with H&E (third row) (scale bars 50 μm). J. Fibrosis severity as defined by Ashcroft scoring 

H/E lung sections (two-tailed one-way ANOVA; ****p < 0.0001). K. Mean respiratory system 

resistance (Rrs; two-tailed one-way ANOVA; ***p = 0.0008/0.0004). L. Mean respiratory system 

elastance (Ers; two-tailed one-way ANOVA; ***p = 0.0002, **p = 0.0081). M. Mean static lung 

compliance (Cst; two-tailed one-way ANOVA followed by Welch’s correction; **** p < 0.0001). 

Adopted from (Barbayianni, Kanellopoulou et al. 2023). 

 

Figure 32 Tks5 partial deletion attenuates fibroblasts ability to produce podosomes and invade 

the extracellular matrix. Serum-starved NMLFs from WT and Tks5+/- mice treated with recombinant 

TGF-β1 (10 ng/ml for 24 h). A. Q-RT-PCR measured Tks5 expression normalized over that of B2m and 

presented as fold change over control (two-tailed one-way ANOVA; *p = 0.0464, **** p < 0.0001). B. 
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Representative double immunostaining for F-actin and Cortactin counter-stained with DAPI; arrows 

indicate representative podosomes. C. Number of podosome containing cells per optical field (two-

tailed one-way ANOVA followed by Welch’s correction; *p = 0.004/0.0053 * p = 0.0411). D. TGFβ-

induced proliferation of NMLFs (MTT assay; two-tailed one-way ANOVA; **** p < 0.0001). E. 

Schematic of TGFβ-stimulated lung fibroblasts invasion into acellular ECM (biorender.com). After 6h, 

cells located into the lower surface of the upper chamber were stained, lysed and their absorbance was 

measured. F. Invasion capacity of TGF-β treated NMLFs (transwell invasion assay; two-tailed one-way 

ANOVA; ****p < 0.0001, *p = 0.0266, ***p = 0.0005). G. Representative double immunostaining for 

F-actin and Tks5 in NMLFs retrieved from WT and Tks5+/- mice, post BLM administration; arrows 

indicate representative podosomes (scale bars 50 μm). H. Number of podosome-containing cells per 

optical field (two-tailed t-test; **p = 0.009). I. Post-BLM invasion capacity of LFs (transwell invasion 

assay; two-tailed one-way ANOVA; ***p = 0.0003 **p = 0.0099). Adopted from (Barbayianni, 

Kanellopoulou et al. 2023). 

by text mining of PubMed-hosted publication abstracts. Examination of the DEG list for 

deregulated transcription factors revealed that Stat1, Cebpa and Ar were under-expressed in 

haploinsufficient cells along with multiple of their targets (Figure S10B). From a functional 

point-of-view, deregulated genes were enriched by ECM-related biological processes (Figure 

33A), with “Collagen containing ECM” (GO:0062023) being the most prominent among them 

(Figure 33B, Figure S10C).  

In extension of the above findings, BLM-treated Tks5+/- lung fibroblasts, characterized by a 

smaller number of podosome formations and weakened acellular ECM (aECM) invasion 

capabilities (Figure 32G-I), had significantly reduced levels of Col1a1 (Figure 33C). 

On the other hand, NMLFs grown on a Col1a1+ BLM-treated mice originating aECM had 

stimulated Tks5 expression and podosomes formation (Figure 33D-F). More interestingly, 

Col1a1 treatment increased Col1a1 production (Figure 33G), thus suggesting the existence of 

a signaling loop between ECM components and podosomes during lung fibroblasts activation. 

To sum up, the above observations establish that Tks5+/- animal models are at least partially 

protected from fibrosis due to impaired podosomes formation and subsequent reduction of 

ECM invasion. Importantly, both processes can be tracked down to the transcriptomic level 

thus revealing an impaired gene expression both regulated from and affecting lung ECM. 

3.7.5 Inhibiting Src does reduce podosomes creation and diminish pulmonary fibrosis 

Since the enhanced Tks5-dependent podosome formation is an inherent property of pro-fibrotic 

fibroblasts which if impaired can impede IPF progression, we wanted to discover drugs that 

could target this process. Towards that purpose, we have used CMap analysis (Lamb, Crawford 

et al. 2006) to compare the transcriptional profile of TGFβ-treated Tks5+/- lung fibroblasts 

with that of LINCS-L1000 database (Figure 34A). The latter resource provides thousands of 

gene expression profiles measured from multiple cell lines incubated to various small  
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Figure 33 Tks5 haploinsufficiency affects lung fibroblasts interaction with the extracellular 

matrix. A. ECM-related biological processes were enriched among down-regulated genes in TGFβ 

treated Tks5+/- lung fibroblasts compared to WT treated ones (fold change pre-ranked GSEA). B. The 

most enriched term among down-regulated genes. C. Serum-starved WT and Tks5+/- originating lung 

fibroblasts immunostained for Col1a1 and counter-stained with DAPI (scale bars = 50 μm). D-E. 

Serum-starved WT primary lung fibroblasts grown in post saline (pSAL) and post bleomycin (pBLM) 

retrieved aECM. Q-RT-PCR-measured Tks5 and Col1a1 expression normalized over that of B2m and 

presented as fold change over control (two-tailed Mann-Whitney test; *p = 0.0286). E. Two-tailed 

Pearson’s correlation between Col1a1 and Tks5 expression in the same samples (***p = 0.0004, r = 

0.99). F-G. Representative double immunostaining for F-actin and Cortacin (Cttn; F) or Col1a1 (G) 

counter-stained with DAPI; arrows indicate representative podosomes; scale bars = 50 μm. Adopted 

from (Barbayianni, Kanellopoulou et al. 2023). 

molecules and drugs (Subramanian, Narayan et al. 2017). During CMap analysis, the queried 

signature is juxtaposed to those in the database in search of a molecule that affects transcription 

in a similar or opposite fashion. In our case, we identified 15 signatures consistent to our 

knockout profile, several of which are known to have a positive impact on the health of animal 

disease models (Figure 34A; Table S18). Among the aforementioned signatures one can  
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Figure 34 Src inhibition in human fibroblasts impairs podosome formation and extracellular 

matrix invading capabilities. Serum starved NHLFs pretreated for 1 h with A-419259 and Nintedanib 

prior to 24h treatment with recombinant human TGFβ. A. CMap analysis pipeline and results. B-C. Q-

RT-PCR measured expression of TKS5 and COL1A1 normalized to that of B2M and presented as fold 

change over control (two-tailed one-way ANOVA; ***p = 0.0008, *p = 0.0397/0.0107 ** p = 0.003). 

C. Correlation of TKS5 and COL1A1 expression in the same samples (two-tailed Pearson correlation; 

*p = 0.0202, r = 0.84). D-E. Q-RT-PCR measured expression of TKS5 and COL1A1 normalized to that 

of B2M and presented as fold change over control (two-tailed one-way ANOVA; *p = 0.0202, **** p 
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< 0.0001). E. Correlation of TKS5 and COL1A1 expression in the same samples (two-tailed Pearson 

correlation;**p = 0.0018, r = 0.85). F. Representative double immunostaining for F-actin and Cortactin 

(cttn) counter stained with DAPI; arrows indicate representative podosomes; scale bars = 50 μm. G. 

Quantification of podosome-containing cells per optical field (two-tailed one-way ANOVA; **** p < 

0.0001, ***p = 0.0006, **p = 0.0014). H. Transwell invasion assay of NHLFs  pre-treated with A-

419259 and stimulated with TGF-β (two-tailed one-way ANOVA; *p = 0.0294). I. Pulmonary fibrosis 

reduction by Src-inhibition in mouse precision cut lung slices obtained post-BLM treatment (d11). A-

419259 was administered in the first 24h after slicing for 3 consecutive days. PCLS stained with H&E, 

Fast green/Sirius red and double immunostaining for Tks5 and Col1a1; scale bars=50 μm. Adopted 

from (Barbayianni, Kanellopoulou et al. 2023). 

distinguish those of PDGF and VEGF receptors, protein structures affected by nintedanib 

(Wells, Flaherty et al. 2020), as well as the one occurring by the inhibition of Src, a molecule 

essential for fibroblasts activation and migration (Li, Zhao et al. 2020). To test Src inhibition 

in practice, we exposed TGFβ-activated NHLFs to non-toxic increasing concentrations of 

nintedanib and A-419259, an Src inhibitor. Both molecules and more importantly A-419259 

down-regulated TKS5 and COL1A1 expression (Figure 34B-E), reduced the number of 

podosomes (Figure 34F-G) and diminished aECM invasion (Figure 34H). 

Last, we attempted to examine the in vivo therapeutic effects of A-419259. Initially, we 

validated that Src inhibition post to BLM treatment does decrease pulmonary fibrosis (Figure 

34I). Subsequently, we treated 6 mice with the inhibitor for 6 days beginning from the 7th day 

post BLM. The inhibitor was administered via the respiratory route and it corresponded to 

2mg/kg per animal (Figure 35A). Neither lethality nor any dramatic loss weight were witnessed 

(Figure 35B-C). Interestingly, pulmonary edema, inflammation and collagen production were 

all reduced (Figure 35D-G). In addition, collagen deposition in the lungs and the architectural 

disruption of the tissue, common consequence of BLM treatment, were diminished (Figure 

35H-I). 

To sum up, TKS5-mediated formation of podosomes, an active pro-fibrotic process in the PF 

lung. It is a druggable mechanism that can be successfully targeted by Src inhibition in an 

attempt to attenuate lung fibrosis via inhibition of ECM invasion. 
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Figure 35 Inhibiting Src in the BLM-mouse model attenuates pulmonary fibrosis. A. BLM model 

and drug administration (biorender.com). B. Kaplan Meyer survival curve of BLM-administered mice, 

treated or untreated with Src-inhibitor. C. BLM-treated weight change of mice with or without Src-

inhibition. D. BAL fluid protein concentration (Bradford assay; two-tailed one-way ANOVA; ****p < 

0.0001, ***p = 0.0001). E. Number of inflammatory cells in BAL fluid (hematocytometer; two-tailed 

one-way ANOVA; ****p < 0.0001, * p = 0.0115). F. BAL fluid soluble collagen (direct red assay; two-

tailed one-way ANOVA; *** p = 0.0004, *p = 0.0473). G. Q-RT-PCR measured Col1a1 expression 

normalized over that of B2m and presented as fold change over control (two-tailed Kruskal Wallis; **p 

= 0.0094). H. Ashcroft scoring of fibrosis load in Hematoxylin & Eosin (H/E) stained lung sections 

(two-tailed one-way ANOVA; ****p < 0.0001, ** p = 0.0028/0.0074). I. Mouse lung sections stained 

with Fast Green/Sirius Red and H&E; scale bars = 50 μm. Adopted from (Barbayianni, Kanellopoulou 

et al. 2023). 
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3.8 MAP3K8 against fibrosis 

3.8.1 Decreased Map3k8 expression during pulmonary fibrosis 

Initially, we set to investigate Map3k8 expression in a BLM mouse model. Towards that goal, 

we treated C57Bl6/J mice with BLM and sacrificed them 7 (inflammatory phase), 14 (fibrotic 

phase) or 21 (resolution phase) days later. Animals that have received BLM and survived until 

the designated sacrifice day (Figure 36A) were characterized by loss of weight and a gradual 

increase in pulmonary edema and tissue inflammation (Figure 36C-D). 

 

Figure 36 Map3k8 expression is down-regulated in the BLM-induced fibrosis model. A-B. 

Survival and weight loss curves of BLM-treated/untreated C57Bl6/J mice. C. BAL fluid protein 

concentration (Bradford assay). D. BAL fluid inflammatory cell number (hematocytometer). E. Q-RT-

PCR measured expression of Col1a1 in whole-lung tissue normalized to that of B2M. F. Soluble 

collagen in BAL fluid (Sirius Red assay). G. H&E-staining of murine lungs at 7, 14, and 21 days 
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following BLM administration (original magnification 310). H–J. FlexiVent measured lung function 

metrics. K. Q-RT-PCR defined expression of Map3k8 measured in the same samples as in E with Q-

RT-PCR. Statistical significance assessed by two-way ANOVA with Bonferroni post hoc correction 

(A–F) and unpaired two-tailed Welch t-test (H–J); *p = 0.05, **p = 0.01, ***p = 0.001. Adopted from 

(Zannikou, Barbayianni et al. 2021). 

In parallel, we noted an over-expression of collagen (Figure 36E) and an increase of its soluble 

form in the BAL fluid (Figure 36F). Expansion of fibrotic regions (Figure 36G) was 

accompanied by an impairment of respiratory functions (Figure 36H-J). Most importantly, 

Map3k8 expression was down-regulated during the inflammatory and fibrotic phase of the 

model compared to baseline conditions (Figure 36K). 

 

Figure 37 MAP3K8 is under-expressed in the human fibrotic lung. A,D,G. Samples in reduced space 

prior to outlier removal. B,E,H. Samples in reduced spave post to outlier removal. C,F,I. Differentially 

expressed genes (|FC| ≥ 1.2 and FDR < 0.05) of the samples presented in (B,E,H). Adopted from 

(Zannikou, Barbayianni et al. 2021). 

To extend our observations in IPF, we computationally re-analyzed three big cohorts of IPF 

and control lung samples publicly available under the GEO accession codes GSE32537 (Yang, 

Coldren et al. 2013) and GSE47460 (Tan, Tedrow et al. 2016). Post to background correction 

and rma normalization, we used PCA plots to identify and remove outlier samples (Figure 37A-
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B, 37D-E, 37F-G). According to DEA results, MAP3K8 mRNA levels were consistently 

reduced during pulmonary fibrosis (Figure 37C,F,I) (log2 FC and FDR corrected p-value for 

GSE32537, GSE47460-GPL6480, and GSE47460-GPL14550 are respectively -

0.459/4.65×10-10; -0.658/1.06×10-04; -0.668/1.46×10-13). 

Motivated by previous knowledge regarding cell specific effects of Map3k8 (Vougioukalaki, 

Kanellis et al. 2011), we decided to examine its expression on a cell type level. Re-analysis of 

a publicly available scRNA-seq dataset (GSE122960) (Reyfman, Walter et al. 2018) revealed 

that MAP3K8 was expressed by both hematopoietic (HC) and non-hematopoietic cells (nHC), 

and primarily monocytes and macrophages (Figure S11A). DEA between macrophage 

subtypes underlined the under-expression of MAP3K8 in the mostly IPF-originating SPP1+ 

cell cluster (FC = -1.2; FDR-corrected p = 6.11×10-24; Figure S11B) and the aSMA+ 

fibroblasts (FC = -1.4; FDR-corrected p = 0.0002; Figure S11C). 

In summary, MAP3K8/Map3k8 expression is down-regulated during PF both in human and 

mouse lungs. 

3.8.2 Map3k8 exerts anti-inflammatory functions especially in macrophages 

To dissect the role of Map3k8 during PF, we administered BLM to a Map3k8-/- model animals 

and littermate WT controls. As a result, genetically modified animals were characterized by an 

increased lethality rate (Figure 38A) and more severe weight loss (Figure 38B) compared to 

their control counterparts, while immune-related measurements (Figure 38C-D) agreed to an 

increased disease burden. An increase in collagen expression (Figure 38E-F) and in the number 

of fibrotic areas (Figure 38G) was also observed. Respiratory functions were accordingly more 

severely impaired in knockout than in WT animals (Figure 38H-J). 

Following the lead of the in silico analyses revealing MAP3K8 expression from both HC and 

nHC, we set to identify the relative contribution of these cellular populations to MAP3K8 

levels. For that purpose we irradiated WT and knockout mice to remove all HCs and we then 

proceed to bone marrow transfers with cells originating from both types of animals (Figure 

39A-B). Chimeric mice were then treated with BLM and sacrificed at the fibrotic peak of the 

model (day 14). In agreement with upstream experimentations, Map3k8 deficiency in HCs led 

to an increased lethality and weight loss (Figure 39C-D). Moreover, Map3k8 removal in either 

nHCs or HCs increased lung inflammation and collagen expression (Figure 39E-H). As far as 

the BAL fluid is concerned, immune cells were more numerous when Map3k8 was not-

expressed by HCs (Figure 39F). Last, animals lacking Map3k8 from their HCs were 

characterized by structurally deformed lungs and collagen accumulation (Figure 39I). 

Motivated by the fact that Map3k8 removal from HCs greatly affected BAL fluid immune cells 

in BLM-treated mice, we subsequently analyzed immune cells using an incomprehensive 

FACS approach (Figure 40A). At first, Map3k8 deletion slightly affected neutrophilic 

infiltration (Figure 40B). Nevertheless, deletion from nHCs and especially HCs promoted 

macrophages accumulation. Last, we observed accumulation of lymphocytes when HC, but not 

nHCs, were Map3k8-deficient (Figure 40C). 
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Figure 38 Map3k8 deficiency induces fibrosis establishment. A-B. Survival and weight loss curves 

of mice treated with BLM or saline. C. BAL fluid protein concentration (Bradford assay). D. Number 

of inflammatory cells BAL fluid (hematocytometer). E. Q-RT-PCR measured expression of Col1a1 in 

whole-lung tissue normalized to that of B2M. F. Soluble collagen levels of the BAL fluid (Sirius Red 

assay). G. H&E- and Sirius Red– staining of murine lungs (original magnification 310). H–J. FlexiVent 

assessed respiratory function metrics. Statistical significance was assessed with two-way ANOVA 
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followed by Bonferroni post hoc correction; *p = 0.05, **p = 0.01, ***p = 0.001. Adopted from 

(Zannikou, Barbayianni et al. 2021). 

 

Figure 39 Map3k8 deletion from hematopoietic or non-hematopoietic lineage cells intensifies lung 

inflammation and fibrosis. Chimeric mice having HCs with the donor’s genetic background (WT or 
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Map2k8-/-) were treated with BLM. Fibrosis was evaluated 14 days post BLM administration. A. 

Depiction of bone marrow transfers. B. Chimeric mice obtained from the bone marrow transfers 

presented in (A). C-D. Survival and weight loss curves post BLM treatment. E. BAL fluid protein 

concentration (Bradford assay). F. BAL fluid Inflammatory cell numbers (hematocytometer). G. Q-RT-

PCR measured expression of Col1a1 in whole-lung tissue normalized to that of B2M. H. BAL fluid 

soluble collagen (Sirius Red assay). I. H&E- and Sirius Red murine lungs stainings (original 

magnification 310). Statistical significance evaluated by two-way ANOVA followed by Bonferroni 

post hoc correction (*p = 0.05, **p = 0.01, ***p = 0.001). Adopted from (Zannikou, Barbayianni et al. 

2021). 

 

Figure 40 MAP3K8 deficiency increases the number of inflammatory cells in the BAL fluid of 

BLM-treated animals. A. FACS gating strategy. B-C. FACS analysis of the indicated cell types (two-

way ANOVA with Bonferroni post hoc correction; *p = 0.05, **p = 0.01, ***p = 0.001). Adopted from 

(Zannikou, Barbayianni et al. 2021). 

Due to the above described reduced Map3k8 expression in IPF macrophages and the 

exacerbation of inflammation/fibrosis as a result of its deficiency, we decided to examine the 

role of Map3k8 in macrophage homeostasis. To do so, we created a mouse strain 
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(LysMMap3k8-/-) whose macrophages and granulocytes lacked Map3k8. These transgenic 

mice were treated with BLM and compared to BLM-treated WT littermates. It was observed 

that LysMMap3k8-/- animals suffered from severe fibrosis reflected in all performed 

measurements (Figure 41). More importantly, Map3k8-deficient BAL fluid macrophages had 

the same phenotype with the Map3k8-deficient HCs (Figure 42; Figure 39) suggesting that 

both Map3k8 and lung macrophages play an important role in PF progression. 

 

Figure 41 Map3k8 deletion from LysM+ cells intensifies pulmonary inflammation and fibrosis. 

LysMMap3k8-/- mice lacking Map3k8 in macrophages/granulocytes and wt littermates were treated with 

BLM. Fibrosis establishment was evaluated 14d post treatment. A-B. Survival and weight loss curves 

of mice treated with BLM or saline. C. BAL fluid protein concentration (Bradford assay). D. BAL fluid 
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inflammatory cell numbers (hematocytometer). E. Q-RT-PCR measured expression of Col1a1 in 

whole-lung tissue normalized to that of B2M. F. BAL fluid soluble collagen (Sirius Red assay). G. 

H&E- and Sirius Red murine lungs stainings (original magnification 310). H–J. FlexiVent defined 

metrics of proper respiratory functioning. Statistical significance was tested with two-way ANOVA 

followed by Bonferroni post hoc correction (*p = 0.05, ***p = 0.001). Adopted from (Zannikou, 

Barbayianni et al. 2021). 

 

Figure 42 Map3k8 deficiency from LysM+ cells increases the number of inflammatory cells in the 

BAL fluid of BLM-treated mice. A. FACS analysis gating strategy. B-C. FACS analysis results. 

Statistical significance was assessed with two-way ANOVA followed by Bonferroni post hoc correction 

(*p = 0.05, **p = 0.01, ***p = 0.001). Adopted from (Zannikou, Barbayianni et al. 2021). 

3.8.3 Map3k8-produced PGE2 attenuates pulmonary fibrosis  

Prostaglandin E2 (PGE2) production from arachidonic acid (AA) via regulation of Cox-2 levels 

is known to be regulated by Map3k8 (Figure 43A) (Roulis, Nikolaou et al. 2014, Roulis, 

Kaklamanos et al. 2020). PGE2 is an eicosanoid that has been proposed to act in an anti-fibrotic 

function in the lungs (Bozyk and Moore 2011).  



120 
 

 

Figure 43 Map3k8 modifies the Cox-2-AA-PGE2 axis of the lungs. A. Schematic representation of 

AA metabolism; measured lipid species are color coded. B-C. Map3k8 and Cox- 2 mRNA levels in 

whole-lung tissue of the indicated mice and treatments were determined with Q-RT-PCR analysis; 

values were normalized to the expression of B2M. D-G. Tandem mass spectrometry determination of 

AA and PGE2 metabolites in BALFs. Statistical significance was evaluated using unpaired two-tailed 

Welch t-test (*p = 0.05, **p = 0.01, ***p = 0.001). Adopted from (Zannikou, Barbayianni et al. 2021). 

Thus, we were interested in assessing the effects of Map3k8 deletion (Figure 43B) on PGE2 

production during fibrosis. Examining BLM-treated mice at the peak of their fibrotic phenotype 

we observed that Cox-2 expression was decreased (Figure 43C), similarly to that of Map3k8 

removal from HCs and non-HCs (Figure S12A-B), as well as to that of macrophages (Figure 

S12C-D). These results validate Map3k8 expression from both nHCs and HCs along with the 

regulation of Cox2 transcription from Map3k8. In addition, measurement of AA (Figure 43D) 

and PGE2 levels (Figure 43E-G) in Map3k8-/- mice, revealed an impaired AA metabolism. 
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Similar observations were made in chimeric mice (Figure S13), suggesting Map3k8 as a crucial 

regulator of PGE2 abundance in the lungs. 

Last, in an attempt to establish a connection between PGE2 and PF, we administered a stable 

PGE2 analogue (dmPGE2) to WT and Map3k8-/- mice post to BLM-treatment. PGE2 

restoration restrained the intense fibrotic events observed in Map3k8-/- animals, while at the 

same time reduced fibrosis severity in their WT littermates (Figure 44). Interestingly, treatment 

with PGE2 limited the inflammatory influx that characterizes fibrosis progression in the IPF 

BLM-based animal model (Figure 45). 

 

Figure 44 PGE2 reverses the Map3k8-established profibrotic impact and inhibits the progression 

of pulmonary fibrosis and inflammation. A-B. Survival and weight loss curves of mice treated with 

BLM or saline. C. BAL fluid protein concentration  (Bradford assay). D. BAL fluid Inflammatory cell 

numbers (hematocytometer). E. Q-RT-PCR measure expression of Col1a1 in whole-lung tissue 

normalized to that of B2M. F. BAL fluid soluble collagen (Sirius Red assay). G. Murine lung sections 

stained with H&E (original magnification 310). H-J. FlexiVent assessed metrics of pulmonary function 
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Statistical significance was evaluated with two-way ANOVA followed by Bonferroni post hoc 

correction (*p = 0.05, **p = 0.01, ***p = 0.001). Adopted from (Zannikou, Barbayianni et al. 2021). 

 

Figure 45 PGE2 decelerates the accumulation of inflammatory cells in mouse lungs. A-B. FACS 

analysis BAL fluid cells. The same gating strategy as above was used. Statistical significance was 

assessed with two-way ANOVA followed by Bonferroni multiple comparisons test (*p = 0.05, **p = 

0.01, ***p = 0.001). Adopted from (Zannikou, Barbayianni et al. 2021). 

In conclusion, Map3k8 function is crucial for lung homeostasis maintenance. During fibrosis, 

Map3k8 anti-fibrotic effects are impaired via down-regulation of its expression, which in turn 

inhibits Cox-2 mediated production of PGE2. 

3.9 Dendritic cells and COVID-19 

During the worldwide COVID-19 pandemic, there were several indications regarding the 

underlying commonalities of PF and SARS-CoV-2 infection (Bharat, Querrey et al. 2020, 

Drake, Docherty et al. 2020, Osuchowski, Winkler et al. 2021). Motivated by these preliminary 

reports, we set to examine ENPP2 potential implication in COVID-19. 

3.9.1 Increase in ENPP2 levels during COVID-19 

Working towards that goal, we initially examined ENPP2 mRNA levels via wet laboratory 

methods. Briefly, measurement of ENPP2 mRNA levels from nasopharyngeal swabs via Q-

RT-PCR (Table 15) revealed that mild and severe COVID-19 patients had increased transcript 

numbers compared to control individuals (Figure 46). Subsequently, we used ELISA to 

quantify ATX levels in the serum of an independent set of COVID-19 patients stationed at the 

Evangelismos hospital in Athens, Greece. The cohort was comprised of individuals admitted 

to either WARD or intensive care unit (ICU), with the latter receiving or not dexamethasone 

(Dex) treatment (Table 16). ICU patients not receiving Dex had increased levels of ATX in 

their circulation compared to WARD patients, implicating ENPP2 in disease severity (Figure 

47A). Nevertheless, no significant correlation was observed between ATX concentration and 

severity markers listed in Table 16. Similarly, not any significant ATX change was related to 

patients’ sex or comorbidities (Figure S14). 

Subsequently, we set to examine the factors potentially regulating this catholic increase in ATX 

abundance. Initially, we focused on IL-6, the molecule most predictive of a COVID-19-related 

cytokine storm (Ulhaq and Soraya 2020, Zhang, Hou et al. 2020), as it has also been reported 

to stimulate ATX expression (Castelino, Bain et al. 2016, Sun, Wang et al. 2017).  

Table 15 ENPP2 transcription is up-regulated in the nasopharynx of COVID-19 patients 

compared to healthy counterparts. Statistical significance was evaluated with one-way ANOVA 
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followed by Bonferroni post-hoc correction (**** p < 0.0001). Adopted from (Nikitopoulou, Fanidis 

et al. 2021). 

 

Table 16 Clinical, epidemiological and laboratory characteristics of Evangelismos general 

hospital COVID-19 patients. Statistical significance was evaluated with one-way ANOVA followed 

by Bonferroni post-hoc correction (**** p < 0.0001). Adopted from (Nikitopoulou, Fanidis et al. 2021). 

 

Spearman’s correlation revealed a significant relationship between IL-6 and ATX levels 

(Figure 47B). In addition, following the higher abundance molecules reported by a previous 

publication (Vassiliou, Keskinidou et al. 2021) on a subset of the Evangelismos cohort, we 

discovered that ATX levels positively correlated with those of endothelium proteins (Figure 

S15), thus implicating the former in COVID-19-related endothelium impairment. 

Last, as Dex is used for the treatment of lung inflammatory conditions (Xu, Qiao et al. 2009, 

Patil, Naveen Kumar et al. 2018), such as ARDS, and has also proven beneficial for certain  
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Figure 46 ENPP2 transcripts are increased in nanospharynx swabs of COVID-19 patients. A. 

ENPP2 expression in two patient and a control individual group (dotted line marks the optimal threshold 

value). B. ROC curve generated post to patient groups merging. (*p = 4×10-6; **p = 2.92×10-7).  

Adopted from (Nikitopoulou, Fanidis et al. 2021). 

 

Figure 47 ATX levels are increased in the serum of ICU admitted patients and correlate to IL-6 

levels. A. ELISA-measured levels of ATX from the serum of Evangelismos patients that had not been 

treated with Dex (unpaired t-test; **** p < 0.0001). B. ATX levels in the serum correlated to those of 

IL-6 (Spearman’s correlation). Adopted from (Nikitopoulou, Fanidis et al. 2021). 

COVID-19 patients (Sterne, Murthy et al. 2020, The Recovery Collaborative Group 2020), we 

wanted to investigate its impact on ATX serum abundance. Interestingly, intubated Dex-treated 

patients had decreased amounts of circulating ATX compared to the intubated untreated ones, 

while no difference was witnessed between patients not receiving any mechanical ventilation 

(Figure 48A). The same observations (Figure 48B) were made from the examination of another 

independent cohort hospitalized in the Patras University hospital (Table 17). In both cases, 

artificially ventilated Dex-untreated patients had the highest amounts of serum ATX. More 

importantly, ATX levels varied significantly between differential survival patient groups, with 

deceased untreated patients having the highest ATX levels (Figure 48C-D). 
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Table 17 Clinical, epidemiological and laboratory characteristics of University Hospital of Patras 

ICU patients. Statistical significance was evaluated with one-way ANOVA followed by Bonferroni 

post-hoc correction (** p < 0.05). Adopted from (Nikitopoulou, Fanidis et al. 2021). 

 

In conclusion, ENPP2 transcription and translation do up-regulate in COVID-19 patients in 

parallel to several important molecules, including IL-6. Moreover, the therapeutic mechanism 

of Dex seems to be reflected and/or manifested via ATX reduction in the blood. 
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Figure 48 ATX quantity in the serum of hospitalized patients is affected by dexamethasone 

treatment. ELISA measured ATX levels in the serum of COVID-19 patients admitted in the ICU of 

the Evangelismos (A,C) or the Patras University hospital (B,D). The measurements in the Dex groups 

in (A) and (C), are the same as with those in Figure 47A. Statistical significance was evaluated with 2-

way ANOVA followed by Bonferroni post hoc correction (*p < 0.05, **p < 0.01, ***p < 0.001 and 

****p < 0.0001). Adopted from (Nikitopoulou, Fanidis et al. 2021). 

3.9.2 Cellular pattern of ENPP2 expression in COVID-19 

In an attempt to identify the cellular source of ENPP2 during SARS-CoV-2 infection, we have 

re-analyzed RNA-seq data of single cells isolated from the circulation, the upper and the lower 

respiratory track of COVID-19 patients (Table S19).  

Beginning from the two nasopharyngeal datasets, ENPP2 was detected in immune cells and 

specifically in macrophages and NK cells (Figure 49A; Figure S16A). In the PBMC-focusing 

circulation datasets, ENPP2 was primarily expressed by plasmacytoid dendritic cells (pDCs) 

(Figure 49B; Figure S16B). The same cell type was also witnessed as the main source of 

ENPP2 transcripts among human BAL fluid cells (Figure 49C; Figure S16C). In the lung, 

ENPP2 was produced by mesothelial, arterial and monocytic group cells (Figure 49D; Figure 

S16D). A similar pattern of expression was revealed in the lung of IPF patients (Figure S16E; 

Table S19), indicating a potentially common mechanism of action between the two diseases. 
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Figure 49 ENPP2 expression pattern across tissues and cell types during COVID-19. A. 

Nasopharyngeal swabs (PMID: 32591762). B. PBMC (PMID: 32810438). C. BAL fluid (PMID: 

32398875). D. lung tissue (PMID: 33257409). Dimensionality reduction plots iconize each site’s 

cellular composition. Dot plots depict ENPP2 expression pattern relative to the cell types of the 

respective UMAP plot (color coded). Cell types marked by ENPP2 expression are highlighted with the 

use of stars (Wilcoxon rank sum test; FC > 1.2, Bonferroni corrected p < 0.05; ***p < 0.01). Adopted 

from (Nikitopoulou, Fanidis et al. 2021). 

Despite the small numbers of dendritic cells available in the aforementioned datasets (Figure 

49), we were able to identify a statistically significant ENPP2 increase in patients’ peripheral 

pDCs compared to those of healthy individuals. ENPP2 expression levels did not reach 

statistical significance in other tissues (Figure 50A-D). To avoid the bottleneck of small cell 

size, we extended the searching space comparing ENPP2 transcript count between COVID-19 

and healthy individual DCs in general. ENPP2 mRNA levels were once again found elevated 

in COVID-19 originating cells (Figure 50E). Strikingly, when we examined multiple immune 
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cell types from a big number of healthy samples (Ota, Nagafuchi et al. 2021), DCs emerged as 

the main ENPP2 producer (Figure S17A). DCs also seem to express high levels of LPAR2, 

one of the five LPA receptors reported (Figure S17B). Apart from COVID-19, a boost in 

ENPP2 expression from pDCs has also been observed in inflammatory diseases, such as 

systemic lupus erythematosus (SLE), adult-onset Still’s disease (AOSD), mixed connective 

tissue disease (MCTD) and idiopathic inflammatory myopathy (IIM) when compared to steady 

state conditions (Figure S17C). Last, in order to identify potential ENPP2 interacting genes we 

performed pairwise DEA between COVID-19 and control DCs, positive or not to ENPP2. We 

discovered that transmembrane protein 176B (TMEM176B) and CD1a, were the only up-

regulated genes following the same pattern with ENPP2 in the COVID-19 milieu (Figure 50F). 

 

Figure 50 ENPP2 expression is increased in dendritic cells of SARS-CoV-2 affected individuals. 

A–D. ENPP2 differential expression in pDCs isolated from nasopharyngeal swab, PBMC, BAL fluid 

and lung tissue samples of COVID-19 patients versus healthy controls. ENPP2 transcription was up-

regulated in peripheral (B) patient-originated pDCs. E. ENPP2 was over-expressed in pulmonary DCs 

of patients compared to healthy counterparts. F. Deregulated genes in lung DCs (Wilcoxon rank sum 

test; FC > 1.2; Bonferroni corrected p < 0.05). Adopted from (Nikitopoulou, Fanidis et al. 2021). 

To sum up, ENPP2 is actively transcribed by peripheral and respiratory track immune cells. 

From the identified ENPP2+ cell types, DCs repeatedly emerge as the most significant 

producer under both steady state and pathogenic conditions. More importantly, ENPP2 

transcription intensifies during SARS-CoV-2 infected individuals compared to healthy 

controls. Last, according to DEA results it seems that ENPP2 affects DCs homeostasis during 

COVID-19, potentially affecting patients via the aforementioned cell type. 

3.10 LPA and renal fibrosis 

Located downstream of ATX, LPA signaling has been found to participate into various chronic 

diseases including rheumatoid arthritis, pulmonary and lung fibrosis (Magkrioti, Galaris et al. 

2019). In parallel, accumulating evidence supports its implication in CKD (Zhang, Chen et al. 

2016, Zhang, Wang et al. 2017) and the regulation of kidney TECs’ secretome (Pradere, Klein 
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et al. 2007, Sakai, Chun et al. 2017). Motivated by these findings, we used kidney TEC’s as a 

means of studying ATX signaling effects on signaling pathways and secreted molecules. 

3.10.1 HKC-8 proteome changes induced by 176 stimulants  

In two experimental setups, human renal proximal tubular epithelial cells (HKC-8) were 

exposed to 175 stimulants (Table S20) and LPA species 18:1 (10μΜ). In the first protocol, 

cells were intubated for 24 hours and 32 extracellular factors were measured in their 

supernatants. In the second experiment, cells were treated for 5 or 25 minutes and 27 

intracellular phosphoproteins were measured using cellular lysates. Quantification of both 

secreted and intracellular proteins was accomplished by a custom multiplex ELISA. For data 

normalization purposes, per stimulus-measured abundance of each molecule was divided with 

same molecule levels from untreated cells (median of the control wells) (Figure 51-52). 

Heatmaps’ color coding reflects the response intensity of each quantified molecule, with light 

blue and dark red corresponding to no/low and very high activation, respectively. A response 

ratio threshold of 1.5 gave a stable number of activations, adequate for downstream analysis 

(Figure S18). 

According to the performed measurements, HKC-8 cells actively responded to %61 of the 176 

stimuli, with 76 of the latter affecting the secreted (Figure 51) and 71 the intracellular analytes 

(Figure 52). More specifically, hepatocyte growth factor (HGF), interleukin 1β, FSL1 and 

TNFα were the top four stimulants with 18, 17, 13 and 12 unique activations, respectively. 

From an analytes perspective, CXCL10 was the secreted molecule with most responses (34 the 

number), while JUN was the phosphoprotein with the most activations (29 the number). 

To summarize, the ad hoc developed multiplex ELISA successfully detected treatment-induced 

proteome activations, while selected stimulants produced an adequate number of changes to 

use for downstream analyses. 

3.10.2 LPA-driven changes in HKC-8 secretome and proteome 

Focusing on LPA, we initially treated HKC-8 cells with LPA 18:1, enriched cells’ secretome 

for IL-6, IL-8, CLL2, CCL3 and CXCL10 (Figure 52). Phosphorylation of JUN, IκΒα, ERK1 

and CREB1 was also induced (Figure 52). Following the above responses, the cell line was 

exposed 16:0 or 20:4 LPA species (1.5 FC threshold for active signals) (Figure 53-54). 

Examination of the LPA species, revealed that secreted CLL3, IL-6 and IL-8 had an increased 

abundance in all three treatment regimens compared to untreated cells (Figure 53). On the other 

hand, secreted ICAM1 was significantly induced by 16:0 and 20:4 LPA (Figure 53). CXCL10 

secretion was activated by 18:1, validating the up-stream observations.  

Examining the phosphorylation patterns activated by the three LPA species, no treatment 

induced any change of important effect size in any of the examined time-points. However, 5 

minute treatment with LPA 18:1 resulted in statistically significant up-regulation of MEK1 and 

CREB1 (Figure 54A). On the second time-point, statistically significant changes were only 

witnessed by LPA 16:0 and 20:4 treatments, as can be seen from (Figure 54B). 

In conclusion, treatment with LPA 18:1 consistently affected HKC-8 cells inducing the 

secretion of pro-inflammatory molecules. No reproducible pattern was described for 

intracellular proteins phosphorylation. Similarly, more experimentations are needed to validate 

the observations made after treatment with the other two LPA species. 
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Figure 51 Impact of LPA (18:1) and 175 biological stimulants on human kidney proximal tubular 

epithelial cells secretome (32 factors). Red color indicates active signals (FC ≥ 1.5). Adopted from 

(Magkrioti, Antonopoulou et al. 2022). 
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Figure 52 Impact of LPA (18:1) and 175 biological stimuli on the phosphorylation of 27 pathway 

hubs from proximal tubular epithelial cells. Red color indicates active signals (FC ≥ 1.5). A signal 

was included if active in at least one treatment time-point Adopted from (Magkrioti, Antonopoulou et 

al. 2022). 

3.10.3 HKC-8 responses to the other stimuli 

In an attempt to group kidney responses into biologically meaningful groups, we concatenated 

results from both experimental setups (Figure 51-52) and isolated 108 stimuli, each one causing 

at least a single activation event. Subsequently, we transformed ELISA measurements into 

binary values representing activation (1) or impassiveness (0) and used them for stimuli 

unsupervised divisive clustering with the Gower’s metric. As can be seen from (Figure 55), 

three big stimuli clusters were revealed. Interestingly, LPA clustered along with several pro-

inflammatory (PMA, IL-1α, IL-1β, IL-17α, TNFα and CXCL14/BRAK) and immune system-

related stimulants, such as FSL1, PolyIC, TNFSF12/TWEAK and promethazine (cluster II). 

Same cluster stimulants induced a consistent pattern of activated secretions (IL-6, IL-8, CCL3, 
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CCL2 and CXCL10). Regarding post-translational modifications, JUN and ΙκΒα 

phosphorylation was induced by most stimuli, while that of CREB1 was affected by 

promethazine, PMA, IL-1β and LPA. 

 

Figure 53 LPA species (16:0, 20:4, 18:1) intensify chemokine secretion from human kidney 

proximal tubular epithelial cells. Cell were treated with 10 µM of each LPA species for 24 hours. 

Normally distributed data were assessed using Brown–Forsythe’s and Welch’s ANOVA followed by 

Dunnett’s post hoc test, while non-normally distributed data with Kruskal–Wallis test (*p < 0.05, **p 

< 0.01, ***p < 0.001). Circles, squares, upward triangles and downward triangles iconize control, LPA 

16:0, LPA 20:4 and LPA 18:1 values, respectively. Adopted from (Magkrioti, Antonopoulou et al. 

2022). 

 

Figure 54 LPA species (16:0, 20:4, 18:1) induce the phosphorylation of transcription factors and 

signaling kinases of human kidney proximal tubular epithelial cells. Cell were treated with 10 µM 

of each LPA species for 5 (A) or 25 min (B), and the phosphorylation was assessed with multiplex 

ELISA in triplicates. Normally distributed data were assessed using Brown–Forsythe’s and Welch’s 

ANOVA followed by Dunnett’s post hoc test, while non-normally distributed data with Kruskal–Wallis 

test (*p < 0.05, **p < 0.01). Circles, squares, upward triangles and downward triangles iconize control, 

LPA 16:0, LPA 20:4 and LPA 18:1 values, respectively. Adopted from (Magkrioti, Antonopoulou et 

al. 2022). 

Similarly to the 2nd one, cluster I consisted of a rather small group of stimulants (ANG1, HGF, 

PDGF-AB, PDGF-BB, digoxin, BMP2, BDNF and IL-10). Importantly, multiple activations 

(Figure 56) were induced by ANG1 and BMP2, that have been shown to have a protective role 

in models of renal injury (He, Zhang et al. 2019) and to polarize adult renal progenitor cells 

(Simone, Cosola et al. 2012), respectively. 
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Last, cluster III – the biggest of the three – included multiple protein activation events, many 

of which are directly or indirectly linked to kidney fibrosis. Indicatively, WISP1 that has been 

reported to regulate kidney fibrosis (Zhong, Tu et al. 2017) induced the secretion of CCL2, 

CCL5, CXCL10, TNF10, PROK1 and IL-3. Moreover, activin A which induced both 

phosphorylation (GSK3B, KS6B1, RS6, JUN, IκBα) and secretion (CCL3, CXCL10, CCL2) 

of multiple molecules has been observed to activate renal fibroblasts during kidney fibrosis 

(Yamashita, Maeshima et al. 2004). 

 

Figure 55 LPA affects human kidney proximal tubular epithelial cells in a fashion similar to that 

of pro-inflammatory stimuli. Active stimuli are clustered in three groups defined by latin enumeration. 

In active signals/stimuli are not included. Pairwise stimuli distance was calculated on binary 

transformed fold change values using Gower’s metric prior to divisive clustering. Adopted from 

(Magkrioti, Antonopoulou et al. 2022). 
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3.10.4 Focus on cluster II stimulants 

Subsequently, we attempted to dissect the effects of LPA and similar signaling (cluster II) in 

the kidneys. Initially, we performed PA on the active responses of cluster II genomic stimulants 

with GO and KEGG as reference databases (Figure S19A). By examining the most highly 

enriched pathways/ontologies, we noticed that cluster II was most probably related to 

inflammatory and pathogen invasion-related processes (Figure S19B-C). Then, we re-analyzed 

two microarray datasets containing CKD, focal segmental glomerulosclerosis and 

immunoglobulin-A nephropathy samples along with their control counterparts. Four molecules 

affected by cluster II stimulants (TNFSF12, IL-1β, ICAM1, CCL5) were among the 

differentially expressed genes identified between pathology and control samples (Figure S20). 

ICAM1 was also activated by LPA proposing the existence of a common mechanism between 

kidney diseases and LPA signaling. Cell specificity of cluster II features was assessed by re-

analysis of single cells from kidneys of CKD and control cases (Kuppe, Ibrahim et al. 2021). 

In brief, CCL2, CCL3, CCL5, CXCL8 (coding for IL-8) and IL-1β marked CD10- proximal 

tubule epithelial cells (PT-negative) and VEGFB CD10+ cells (PT-positive) (Figure S21A), 

validating that kidney cells can indeed produce those molecules. 

Last, we performed a ligand-receptor analysis in search of underlying cell-to-cell 

communication networks, potentially reflecting in culture discovered stimulations. For this 

purpose, SingleCellSignalR database was supplemented with CellTalkDB-sourced 

interactions. With the exception of PT-positive and PT-negative cells all other cell type groups 

were clustered per population for purposes of facilitating results’ interpretation. Examination 

of PT-marking cytokines revealed a rather universal communication network proposing PT 

cells as a potential starting point for both autocrine and paracrine signals towards all other cell 

populations (Figure S21B). 

In brief, various in silico analyses suggested that cluster II stimuli affect immune system-

related processes which potentially underly various pathological conditions. Furthermore, 

single cell data examination validated the capability of proximal tubular epithelial cells to 

secrete molecules activated by cluster II stimulants. 

3.10.5 In vitro validation and dissection of LPA effects 

With the aim of verifying the above mentioned effects, transcription of six genes was evaluated 

post to 1, 4, 12 and 24 h stimulation of HKC-8 cells with LPA 18:1. As can be seen in (Figure 

56A), the abundance of all secreted molecules peaked after 4 hours of treatment. Measuring 

mRNA levels after 4h treatment with various LPA concentrations (2.5, 5 and 10 µM) revealed 

that 10 μM of LPA cause maximum transcriptional activation of almost all examined genes 

(Figure 56B). Finally, HKC-8 cell surface LPA receptors were quantified using the same RNA 

samples. LPAR2 and LPAR6 were found as the primary LPA receptors, yet no significant 

change was detected post to LPA treatment (Figure S22). 

To intra-cellularly dissect LPA signaling we measured mRNA levels of previously identified 

LPA-affected phosphoproteins post to LPA, LPA/Ki16425 and LPA/H2L5186303 treatment. 

Ki16425 and H2L5186303 were selected as inhibitors of LPAR1/3 and LPAR2, respectively. 

LPAR1/3 were responsible for the regulation of CCL3, CXCL8 and IL-6, with LPAR2 acting 

as an extra switch that controlled IL-6 transcription (Figure S23). Participation of other LPARs 

in the LPA signaling cascade cannot be excluded due to lack of proper inhibitors. 



135 
 

 

Figure 56 Chemokines production from human kidney proximal tubular epithelial cells is 

affected by various LPA signaling parameters. A. Cells were treated with 10μΜ of LPA for 1, 4, 12, 

and 24 h. B. Cells were treated with 2.5, 5, and 10 µM LPA for 4 h. In both (A-B) control cells were 

intubated with chloroform. Gene expression was measured with RT-qPCR and Cq values were 

normalized against those of B2M. In (A) circles, upward triangles, downward triangles and diamonds 

iconize 1, 4, 12 and 24 hours of incubation with LPA, respectively. In (B) circles, upward triangles, 

downward triangles and diamonds represent treatment with 0, 2.5, 5 and 10 µM of LPA, respectively. 

Statistical significance was assessed with 2-way ANOVA and Tukey’s post hoc test (A) and with 

Brown-Forsythe’s and Welch’s test or the Kruskal–Wallis test depending on data normality (*p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001). Adopted from (Magkrioti, Antonopoulou et al. 2022). 

Last, to validate changes in protein phosphorylation, we treated HKC-8 cells with SP600125 

(a JNK inhibitor), PD98059 (a MEK/ERK inhibitor), JSH23 (an NFκB inhibitor) or 666-15 (a 

Creb inhibitor). PD98059, JSH23 and 666-15 treatments lessened CCL2, CCL3, CXCL8 and 

ICAM1 expression (Figure 57A-C). In parallel, CCL3 and ICAM1 transcription was obstructed 

by SP600125 (Figure 57D). These results propose that the above targeted pathways, JNK/c-

JUN, MEK/ERK, NFκB and CREB act downstream of LPA and regulate cellular secretion. 

Indeed, a literature search indicated that CCL2, CCL3, CXCL8 and ICAM1 are co-regulated by 

the above mentioned pathways (Figure 58). 
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In conclusion, we were able to validate LPA 18:1 effects on multiple molecules at both the 

transcriptional and translational level. A 4h treatment period with 10 μM of LPA was required 

for HKC-8 cells’ transcription to be maximally affected, but without any significant change in 

LPA receptors produced mRNAs. Use of pathway inhibitors further supported our findings by 

achieving the exact opposite results from the treatment assays. 

 

Figure 57 Obstruction of LPA-stimulated intracellular signaling pathways in kidney proximal 

tubular epithelial cells. A-D. Cells were pretreated for 1 h with 10 µM of 666-15 (CREB1 inhibitor), 

100 µM of JSH23 (NFκB inhibitor), 50 μM of PD98059 (MEK/ERK inhibitor) and 50μM of SP600125 

(JNK inhibitor), respectively. Subsequently they were treated for 4 h with 10 µM of LPA (final 

concentration). Gene expression was measured with RT-qPCR, while per gene Cq values were 

normalized against those of B2M. In cases of normality, statistical analysis was performed with unpaired 

t-test or Welch’s test; Mann–Whitney test was performed in all other cases (* p < 0.05, ** p < 0.01, *** 

p < 0.001, **** p < 0.0001). Adopted from (Magkrioti, Antonopoulou et al. 2022). 
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Figure 58 Visualization of LPA-stimulated signaling pathways in human kidney proximal tubular 

epithelial cells. Adopted from (Magkrioti, Antonopoulou et al. 2022). 

4. Discussion 

4.1 New IPF targets from public omics resources 

IPF is a lethal progressive fibrotic disease of unknown cause, with a heavily heterogeneous 

between patients progress (Podolanczuk, Thomson et al. 2023). Although an orphan disease it 

bears a significant socioeconomic impact (Raimundo, Chang et al. 2016, Hilberg, Bendstrup et 

al. 2018), especially for aging societies, while its worldwide mortality rate has been reported 

to steadily increase (Hutchinson, McKeever et al. 2014). As a curative treatment has yet to be 

found, medical doctors can only subscribe anti-fibrotic agents, such as nintedanib and 

pirfenidone, in an attempt to delay disease progression in exchange for many times severe 

adverse effects (Podolanczuk, Thomson et al. 2023). 

Currently, multiple genomic targets are known to be implicated in the establishment and 

progression of PF (Distler, Györfi et al. 2019, Henderson, Rieder et al. 2020, Bowman, Echt et 

al. 2021). A great percentage of these gene markers has been identified via omics technologies; 
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primarily transcriptomics (Vukmirovic and Kaminski 2018) and secondarily proteomics 

(Khan, Dasgupta et al. 2021). One of the elementary corollaries of such an active research was 

the accumulation of large data volumes which had not been extensively mined for latent yet 

significant information. 

As the scientific community begun to understand the additive value of these publicly available 

resources, attempts were made to combine and interpret them. The purpose of most such 

research deliverables was to discover biomarkers that could potentially unlock new treatment 

options and even explain IPF’s driving force. Based on the importance of highly interconnected 

genes (aka hub genes) (Carlson, Zhang et al. 2006, Helsen, Frickel et al. 2019), several of these 

transcriptomic-oriented publications exploited just a handful of datasets in order to perform 

DEA, create interaction networks, identify and report their hub genes (Li, Liu et al. 2020, Xu, 

Mo et al. 2020, Cui, Ji et al. 2021, Zhu, Xu et al. 2021). Others such as (McDonough, Kaminski 

et al. 2019, Wan, Huang et al. 2021) have technically enriched their analysis with the use of 

WGCNA, while (Karatzas, Bourdakou et al. 2017) exploited transcriptomic data from multiple 

publications aiming at drug repurposing. 

The aforementioned attempts may have provided several clues about transcriptome 

organization and regulation during IPF, yet they are highly incomprehensive as they focus on 

specific data collections. To provide a more holistic view of PF, (Villaseñor-Altamirano, 

Moretto et al. 2020) collected “without any restriction” human COPD and IPF transcriptomic 

datasets from GEO. These data are accessible via PulmonDB, a web-tool that supports data 

mining and visualization powered by the Clustergrammer package (Fernandez, Gundersen et 

al. 2017). Nevertheless, even PulmonDB does not address all PF-related omics datasets as it 

excludes animal model, proteomics and scRNA-seq datasets. At the same time, its online 

exploratory capabilities are limited and acquisition of the hosted pre-processed data requires a 

certain level of computational skills. 

In this project, we planned on creating a comprehensive collection of PF datasets and utilize it 

for the proposal of new biomarker genes. Working towards that goal, we initially developed 

Fibromine, a database and accompanying toolkit dedicated to the collection, integration and 

presentation of IPF omics data. For its creation we have manually scrutinized the scientific 

literature for related publications and carefully selected the best publicly-available 

transcriptomic and proteomic datasets. Transcriptomic data were consistently re-analyzed and 

quality controlled, both manually and algorithmically, while the far fewer proteomic 

collections were handled separately. Outlier samples were removed from all transcriptomic 

datasets. Data collections of low quality revealed during re-analysis were filtered out as well. 

For the harmonization of the supported conditions defined via retrieved meta-data (clinical 

phenotypes, experimental conditions) we have created a structured vocabulary of terms which 

was also used for the description of the presented DEA/differential abundance comparisons. 

Collectively, our database hosts 47 human/human-origin and 13 mouse collections spanning 

42 distinct condition comparisons and 5 omics technologies. 

For proper data presentation and handling, we have armed Fibromine with a great variety of 

dataset-specific and general-purpose metadata. The latter were either manually gleaned from 

the respective publications or systematically collected from publicly-accessible databases 

using ad hoc created scripts. Ensembl (Yates, Achuthan et al. 2020), STRING (Szklarczyk, 
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Gable et al. 2019), miRBase (Kozomara, Birgaoanu et al. 2019) and RefSeq (O'Leary, Wright 

et al. 2016) are some of the sources utilized. 

To enable on-the-fly mining and integration of Fibromine data, we crafted the homonym web-

based Shiny application. Structured around three main explorers, the application offers, among 

others, identification of cDEGs and cDEPs, exploration of gene-specific expression patterns 

on a bulk and single cell level and the creation of disease-specific PPI networks. Moreover, the 

user can explore deregulated miRNA-mRNA pairs, along with WGCNA of human and mouse 

origin. DEA data from three integrated scRNA-seq datasets are also easily accessible. Some of 

the rest available services are the real-time PA supported by enricheR (Chen, Tan et al. 2013), 

as well as the creation of dataset-specific volcano and heatmap plots for bulk transcriptomic 

datasets. All pre-processed bulk data can be downloaded and used for any downstream 

application. 

Compared to its predecessors, Fibromine presents with multiple advantages and extra features. 

Initially, it is the first comprehensive collection of high-quality, manually curated PF omic 

datasets. Thanks to the inclusion of multiple experimental models and platforms, the user can 

directly compare their findings in order to validate wet laboratory observations and/or form 

new hypotheses. In addition, apart from the multifaceted data exploration tools provided, the 

user can integrate differential expression/abundance data from any hosted datasets irrespective 

of the featured species, platform or technology. This is achieved by the calculation of 

FCconsensus, a metric that cannot be affected by biases potentially introduced though batch or 

technology particularities. Owing to this data combination system, Fibromine is a highly 

flexible and extendable toolkit capable of hosting a great variety of data without the need of 

reanalyzing its existing database. To the best of our knowledge, Fibromine offers the first 

condition-specific PF-oriented PPI network creation tool, enabling the projection of condensed 

knowledge to the protein interaction space. Moreover, as part of Fibromine, we were the first 

to attempt a transcriptomic datasets benchmarking. Based on this qualitative system future 

users can quickly identify similar datasets to use. Last, Fibromine was designed to be as 

transparent and user-tailored as possible, by providing backend algorithmic details and 

enabling dynamic modification of the vast majority of its parameters, respectively. 

Despite its many advantages, Fibromine is also characterized by certain drawbacks/ limitations. 

As far as the animal model datasets used are concerned, exact condition matching cannot be 

guaranteed as various bleomycin treatment protocols have been utilized. Even in cases of same 

BLM quantities usage, track of administration may differ thus potentially introducing 

differences to the examined phenotype. Moreover, Fibromine PPI networks annotation is based 

on integrated values of differential gene expression and not on their proteomic counterparts. 

While this pipeline just reflects what the proteomic landscape could be, usage of transcriptomic 

data was unfortunately the best possible option given the limited number of unique proteins 

(693) assessed by an even smaller number of proteomic datasets. In addition, while Fibromine 

hosts a great proportion of the high quality PF omics datasets that are publicly available, there 

are certain biological modalities that are not adequately represented. Concerning scRNA-seq, 

the small number of published datasets during Fibromine’s creation was the inclusion-limiting 

factor.  

It is important to note that Fibromine’s operational processes are subject to certain assumptions. 

For example, murine datasets benchmarking hypothesize that mouse pro-fibrotic features exert 
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an effect analogous to that of their human homologues. Furthermore, cDEG identification 

exploit nominal instead of multiple testing corrected p-values, so as to avoid usage of a hard 

threshold that could potentially exclude marginally significant observations. While 

consultation of FDR corrected p-values presented at Transcriptomics/Proteomics analytically 

tabs is highly recommended, cDEGs identification is simply based on the verifying value of an 

observation’s independent repetition. 

As described above Fibromine can quickly and painstakingly provide any user with a list of 

the most promising IPF molecular elements from a huge pool of available options. 

Nevertheless, application’s use has shown that the produced cDEG/cDEP collections can still 

some times be of a size that renders targets selection a rather subjective process. To address 

this limitation, we decided to attempt target discovery with the assistance of a ML algorithm. 

During the past years, ML strategies have successfully been used in PF research with most 

applications using image data (Walsh, Calandriello et al. 2018, Huang, Lee et al. 2020, Barnes, 

Humphries et al. 2023, Pan, Hofmanninger et al. 2023). Endotyping (Kim, Herazo-Maya et al. 

2015) and differential diagnosis (Kim, Diggans et al. 2015) predicted from gene expression 

values are other less frequent ML objectives in the IPF research field. 

Thus, in continuance to Fibromine we have trained an XGBoost ensemble learner to classify 

IPF and control samples. Supervised learning was based on a subset of IPF_vs_Ctrl Fibromine 

cDEGs identified from a benchmarking-proposed set of transcriptomic data collections. To 

form the final training feature set, cDEGs list underwent a second round of selection according 

to an ad hoc formulated integrated score (Si) that combined knowledge between differential 

expression and semantics similarity. Supervised training and testing were succeeded by an 

external models’ validation which utilized an independent cohort of samples. Subsequently, 

SHAP values were calculated to interpret models’ very good performance yielding ten marker 

sets which were then integrated by two top and a custom developed ranking aggregation 

methods. According to functional analyses, both well established and less known DEGs lied 

among the prioritized features. In addition, we have selected from the top marker genes those 

shared between ranking aggregation methods and used them to repeat XGBoost 

tranining/testing and validation process. Performance of the new model was compared to that 

of others which were instructed to discern phenotypes from the expression of biomarker sets 

computationally-shaped from past publications. Our algorithm was among the best performers 

in the internal testing set with distinguished performance during external validation. Last, the 

expression of SHAP value-prioritized marker genes was correlated to lung function 

measurements revealing several important associations. 

Apart from producing two novel sets of IPF biomarkers, the aforementioned work revealed that 

ML algorithms and related methods can be used for phenotype classification when powered by 

gene expression data. In this context, we have validated the previously reported successful use 

of XGBoost with transcriptomics data (Dimopoulos, Koukoutegos et al. 2021). A far as we are 

able to know, we are also the first to use SHAP values for disease target selection, potentially 

setting the foundations for their broader usage. Moreover, the small performance differences 

witnessed between models is in agreement with observations from already published ML 

applications (Pezoulas, Papaloukas et al. 2021). Last and according to their performance, 

ranking aggregation methods seem to be a useful and straight-forward computational tool for 

the integration of DEG lists originating from distinct data sources. 
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Supplementary to the above observations and suggestions and in favor of any similar future 

attempts, it is important to note some ML technicalities encountered during the herein 

discussed application. To begin with, ML algorithms must be carefully selected in order to be 

able to address DEG characteristics, such as their inherent co-linearity. XGBoost was 

purposefully distinguished due to its robust nature against overfitting and multi-co-linearity 

phenomena (Parsa, Movahedi et al. 2020). Furthermore, the number of training features must 

be carefully selected to achieve a good model performance, yet without restricting the pool of 

candidate biomarkers. 

As far as the biological component of this research attempt is concerned, we were able to 

suggest a long and a short/core set of target genes consisting of 76 and 13 features, respectively. 

Interestingly, both over- and under-expressed genes are hosted in both groups potentially 

reflecting simultaneous differential regulation of anti- and pro-fibrotic genes during PF. 

Limited intersection of the 76 features with those mined from PubMed abstract corpus suggests 

the identification of latent disease targets that require future experimental assessment. These 

findings should be interpreted with caution as an abstract corpus has a finite capacity of 

recording all disease-related transcriptomic elements that have been found. Nevertheless, there 

are certain promising targets, such as IL13RA2, DCXR and SFRP2, that are directly or 

indirectly connected to fibrosis and have not yet been extensively researched. In detail, 

IL13RA2 that was here significantly correlated with lung function metrics has been proposed 

to play a pro-fibrotic role in the colon (Fichtner-Feigl, Strober et al. 2006), while DCXR 

suppression has been reported to ameliorate kidney fibrosis (Odani, Asami et al. 2008). Among 

the top-prioritized features lies SFRP2, a gene that is well established as a marker of 

myofibroblast progenitors in systemic skin sclerosis (Tabib, Huang et al. 2021) and has been 

also detected in lung fibroblasts (Mayr, Simon et al. 2021), thus potentially participating in 

fibrosis establishment. Last, there are under-researched targets even between those detected 

during text mining. Indicatively, CTHRC1 is a high-ranked feature that although over-

expressed during IPF was only recently shown to mark pro-fibrotic genes in the fibrotic lung 

(Tsukui, Sun et al. 2020). 

Conclusively, we have developed Fibromine, an open-access database of manually curated and 

consistently re-analyzed omics datasets revolving around PF. These data can be accessed via 

various data integration and exploration tools provided by the homonym web-based toolkit. 

More importantly, we have showcased that Fibromine-integrated data can be creatively 

exploited for IPF research, such as the training of a ML algorithm for phenotype classification 

and biomarker discovery. Future research endeavors needs to be done in order to address 

limitations of the herein presented design, as well as for identified disease targets wet 

laboratory validation. 

4.2 Methylation-dependent transcriptional control of ENPP2 during cancer 

DNA methylation is a significant tier of transcription regulation both during steady state and 

pathological conditions. Despite its undisputable importance for human cells, there are still 

multiple open questions regarding the functions of DNA methylation (Schübeler 2015). It is 

now known that DNA methylation patterns do change in lung fibroblasts during IPF (Huan, 

Yang et al. 2015, Lee, Son et al. 2019, Negreros, Hagood et al. 2019), while methylation 

changes observed in the fibrotic lung are sometimes comparable to those of tumor cells 

(Rabinovich, Kapetanaki et al. 2012). 



142 
 

ENPP2 encodes for ATX, a glycoprotein responsible for the regulation of various processes in 

the human organism. Patients suffering from chronic inflammatory diseases, including IPF, 

have increased levels of both ATX and its effector product, LPA (Magkrioti, Galaris et al. 

2019), while ATX-LPA axis is also implicated in tumor formation (Magkrioti, Oikonomou et 

al. 2018). The exact ENPP2 transcriptional regulation is still under active research with 

previous findings pinpointing the gene as a genomic locus prone to epigenetic modifications 

(Parris, Kovács et al. 2014). 

Motivated by the aforementioned data we examined the functional relationship of ENPP2 

methylation and expression during cancer and steady state. In silico comparison of publicly 

available healthy and tumor samples from various cancer types revealed aberrant methylation 

patterns during pathology. In detail, analysis of GEO-retrieved samples showed that ENPP2 

methylation followed a consistent pattern across control sampling sites, with increased and 

decreased levels of methyl groups in the gene body and TSS/1st exon CGs, respectively. On 

the other hand, and although ENPP2 methylation during cancer seems to adhere to a 

malignancy-specific motif, in general, TSS/1st exon and gene body sites were hypo- and hyper- 

methylated, respectively, compared to healthy samples. The totality of the TSS/1st exon-located 

DMCs were characterized by increased methylation across cancer types such as HCC, LC and 

PC, in accordance to previous findings (Parris, Kovács et al. 2014, Liu, Peng et al. 2020, Nema, 

Shrivastava et al. 2021, Wang, Liao et al. 2021). 

Subsequently, differential gene expression and differential methylation analysis of TCGA data 

validated that TSS and 1st exon CGs were hyper-methylated in PC, LC, HCC and BrCa samples 

related to their control counterparts. The opposite pattern was witnessed for ENPP2 gene body 

CGs, while ENPP2 transcription was down-regulated in PC and LC samples compared to 

steady state. Expression of the ENPP2 gene followed the same expression pattern in BrCa. In 

addition, our results revealed a significant correlation between the hyper-methylated PA/1st 

exon areas and the decreased ENPP2 transcription during LC, PC and BrCa, extending 

previous observations (Parris, Kovács et al. 2014, Nema, Shrivastava et al. 2021). In HCC 

samples, ATX expression was up-regulated irrespective of TSS and 1st exon methylation. 

Similar ENPP2 expression changes have been previously reported for HCC (Wu, Xu et al. 

2010). It should be noted that according to the existing bibliography, mRNA and protein levels 

are not straight-forward related during cancer (Chen, Gharib et al. 2002, Maier, Güell et al. 

2009, Lemée, Clavreul et al. 2018, Arcos-Montoya, Wegman-Ostrosky et al. 2021). 

Interestingly, cg02156680 methylation obeyed to the same pattern in the BrCa, PC and HCC 

examined cases. Similar findings arose from the analysis of UALCAN data, as ENPP2 was 

found under-expressed and over-methylated in LC and PC cases. Nevertheless, no such 

regulatory link was revealed from the examination of HCC samples, where both processes of 

DNA transcription and methylation were up-regulated. Thus, it can be suggested that ENPP2 

methylation functions in a cancer-type-specific manner. 

As far as transcriptomic isoform and DNA methylation levels are concerned, our study 

proposed that methylation of promoter-related CGs is in general negatively related with ENPP2 

isoform expression, which could in turn be characterized as cancer-specific. In more detail, 

cg06998282 was the only CG whose methylation was negatively related to ENPP2 mRNA 

levels in all PC, LC and HCC malignancies. Importantly, the cg02709432-centered negative 

correlation between the two modalities in both PC and LC, could be attributed to TF binding 

inhibition and thus ENPP2 transcription (Tate and Bird 1993, Farina, Cappabianca et al. 2012). 
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Such obstruction of gene transcription by promoter methylation that hinders TF binding is a 

known regulatory mechanism (Héberlé and Bardet 2019). In our study we have in silico 

predicted 39 TFs potentially targeting ENPP2, with several of them known to participate into 

the aforementioned regulatory process (Tate and Bird 1993, Chen and O'Connor 2005). 

With the aim of assessing the importance of ENPP2 methylation for tumor prognosis, we 

analyzed clinical characteristics of the examined human samples. Indicatively, PC ENPP2 

methylation levels were positively related to tumor size and response to therapy, while DNA 

methylation was associated with advanced LC stages. In HCC, ENPP2 methylation was in turn 

correlated with tumor micro-invasion. Examination of cancer cell lines with varying 

aggressiveness revealed heavier ENPP2 methylation in the more invasive PC and HCC cell 

cultures. In a similar fashion, two TSS and a single 1st exon CG were related to BrCa metastasis. 

Significantly, via differential methylation analysis we suggest that hyper-methylation of 

ENPP2 promoter CG sites takes place during the early and persists during latter BrCa stages, 

in accordance to previous studies (Ivan, Patricia et al. 2021). 

In an attempt to evaluate DNA methylation drugability, we showed that ENPP2 de-methylation 

can be achieved through 5-AZA treatment of three colon cancer cell lines. Starting from this 

observation and by taking into consideration the pathologic role of ATX in several contexts 

(Nikitopoulou, Oikonomou et al. 2012, Oikonomou, Mouratis et al. 2012, Magkrioti, 

Oikonomou et al. 2018), future studies should examine ENPP2 de-methylation as a novel 

cancer therapeutic option. 

Last, based on a previous report of consistent methylation between ccfDNA and affected tissue 

DNA (Panagopoulou, Karaglani et al. 2019), we re-analyzed a publicly available dataset of 

ccfDNA samples and successfully detected heavier methylation of promoter-related CGs 

during BrCa compared to steady state. To replicate in vitro the above in silico findings, we 

used a qMSP assay to assess the methylation status of a 1st exon DMC, cg02534163. Hyper-

methylation was witnessed more often in BrCa affected than in cancer-free individuals in 

contrast to an older study (Wang, Liao et al. 2021). This discrepancy can be attributed to 

population and even methodological differences of the two papers. In addition, increased 

methylation was found in neoadjuvant and metastatic samples compared to adjuvant and 

control cases. 

Ultimately, we have shown that ENPP2 methylation changes drastically during cancer, a 

change that seems to follow a malignancy-specific pattern. Increased methylation of TSS/1st 

exon CGs related with decreased expression in PC and LC cancer samples, a relationship that 

was not validated in HCC. The above relationship could potentially be manifested, at least in 

some cases, by the inhibition of transcription-necessary TFs. Significantly, we propose that 

ENPP2 methylation can be used as a cancer prognostic biomarker, motivating for more related 

studies. Future larger studies are needed in order to evaluate the clinical importance of ENPP2 

methylation in BrCa and its measurement in ccfDNA as an easily accessible biomarker. 

4.3 The lung microbiome  

The microbiome is a “system” so important for the homeostasis of the human organism that 

disturbance of the fragile balance between its microbe-members has been related to multiple 

human diseases (Cho and Blaser 2012, Fan and Pedersen 2021). Different organs, such as the 

gut, the lungs and the liver not only host their own specific microbiome, but they also exploit 

it for communication purposes (Tripathi, Debelius et al. 2018). In the IPF context, a 
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longitudinal study witnessed host response to alternations of BAL microbes and even proposed 

lower-airways microbiome to cause a continuous lung injury during pathology (Molyneaux, 

Willis-Owen et al. 2017). Lung microbiome per se is characterized by decreased abundance 

during IPF (Tong, Su et al. 2019). 

In the current thesis, we have attempted to examine in parallel the microbiome of the gut, lungs 

and liver in search of an association between them, as well as a functional/causal relationship 

with obesity and fibrosis. Towards that goal, we have collected samples from HFD-driven 

obese and CD-fed control mice. These two phenotypes were selected as obesity is known to 

affect the microbiome  (Stanislawski, Dabelea et al. 2019) and has also been connected to cystic 

(Litvin, Yoon et al. 2019) and lung fibrosis (Guo, Sunil et al. 2022), potentially as a chronic 

inflammation-causing factor. 16S rRNA sequencing was used for species detection and focus 

was given on seven hot spots for the achievement of better sensitivity (Gloor, Macklaim et al. 

2017, Johnson, Spakowicz et al. 2019). DADA2-pre-processed 16S rRNA data were merged 

per diet and tissue of origin and assigned to ASVs before subjected to GCN correction. 

Although merged samples offered a “cleaner” picture of the examined milieu, they 

unfortunately limited the applicable statistical operations and thus the final inferences of the 

study. ASVs were preferred over operational taxonomic units, given that the latter come with 

various limitations, such as polarization of microbial diversity metrics (Callahan, McMurdie et 

al. 2017) and inadequate taxa representation (Větrovský and Baldrian 2013). 

Microbiomes were then examined for their richness and diversity, with richer communities 

seemingly detected under HFD. This observation was reinforced by the calculated Shannon’s 

index only in lung tissue samples. Next, β-diversity suggested that HFD polarizes lung 

microbiome towards a liver-like composition. Intersection of phyla sampled from the various 

animal phenotypes and anatomical locations indicated that HFD increase the absolute numbers 

of common taxa across tissues, a phenomenon replicated by families’ juxtaposition. 

Subsequent comparison of relative abundances revealed five phyla common between tissues 

and diets. In the gut, HFD triggered an expansion of Firmicutes and a parallel reduction of 

Bacteroidetes. Similar changes have been detected not only in murine (Ley, Bäckhed et al. 

2005) but in human gut (Ley, Turnbaugh et al. 2006), as well. 

In accordance to the above described findings, relative abundance-based samples clustering 

proposed that during HFD liver microbiome dissociates from that of the gut and tends to 

equalize with that of the lungs. Four families, Staphylococcaceae, Streptococcaceae, 

Peptoniphilaceae and Pasteurelacceae were favored by obesity in all three tissues. Species 

assessment identified Staphylococcus, Streptococcus and Finegoldia as those consistently 

affected by HFD in all three tissues. Interestingly, we have detected several superantigen 

producer species, with four of them being affected by HFD in at least a single anatomic 

location. 

Analyzing the above findings it is important to note that to the best of our knowledge, our study 

is the first ever to detect microbes in a healthy murine liver. These microorganisms potentially 

originated from the neighbor gut and reached the liver via a “leaky” portal vein (Broadley, 

Plaumann et al. 2016, Zeng, Surewaard et al. 2016). In agreement with our findings, microbes 

have recently been detected in healthy human liver (Suppli, Bagger et al. 2021). Furthermore, 

identification of increased abundance of Staphylococcus in all tissues during HFD, conforms 

to obese individuals having and increased risk of colonization from this genus (Befus, Lowy et 
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al. 2015). Elevated Staphylococcus load has also been associated with IPF and its acute 

exacerbations (Han, Zhou et al. 2014, D’Alessandro-Gabazza, Kobayashi et al. 2020). Last, the 

observation of super-antigen producers been affected by HFD suggests that HFD can indirectly 

disturb pulmonary homeostasis, similar to staphylococcal super-antigens causing interstitial 

pneumonia in murine models (Shinbori, Matsuki et al. 1996).  

In a nutshell, we have here presented preliminary data proposing a connection between diet-

induced obesity and lung fibrosis via microbiome changes. Studies of bigger sample sizes and 

extensive mechanistic assays are necessary for an in depth and proper statistical description of 

the underlying biology. 

4.4 Fibrosis-related features 

4.4.1 LCN2 and fibrosis 

LCN2 encodes for a protein that has been functionally related to iron homeostasis (Ali, Kim et 

al. 2020) and microbiome regulation (Molyneaux, Cox et al. 2014), but more importantly has 

been detected in multiple pulmonary pathologies (Eagan, Damås et al. 2010, Kangelaris, 

Prakash et al. 2015, Treekitkarnmongkol, Hassane et al. 2020, Huang, Li et al. 2022). Despite 

the above indications a more thorough research on LCN2 is needed for an in depth description 

of its actions during disease and steady state. 

During the current thesis, our laboratory has investigated LCN2 participation in the 

establishment and progression of IPF. To begin with, we have observed via Fibromine 

increased levels of LCN2 mRNA in IPF and non-fibrotic lung tissue samples (Fanidis, Moulos 

et al. 2021). Increased LCN2 expression was also negatively related to lung function as 

expected from a previous research deliverable (Ikezoe, Handa et al. 2014). At a single cell 

resolution, mRNA was primarily detected in epithelial cell types and aberrant basaloid cells, a 

recently described IPF-specific cellular population with spatial proximity to lung 

myofibroblasts (Adams, Schupp et al. 2020). Between phenotypes DEA revealed up-regulation 

of the gene in cell types such as AT1 and AT2, while a proper LCN2 assessment was not 

possible in neutrophils, mainly due to their inadequate cells number. The aforementioned 

results were replicated by LCN2 protein measurement in the BAL fluid of IPF patients. 

Subsequently, we examined Lcn2. As with the human data, we have found an over-expression 

of Lcn2 in multiple Fibromine-hosted fibrotic datasets. Re-analysis of scRNA-seq data and 

mining of public databases located Lcn2 active transcription in epithelial cells and neutrophils. 

Interestingly, Lcn2 mRNA quantities climax during the inflammatory stage of the animal 

model, connecting the gene to pre-fibrotic inflammation. Measurement of mRNA in the lung 

and protein in BAL fluid of BLM-treated animals revealed an up-regulation in Lcn2 expression 

during both inflammatory and fibrotic phases of the model. Lcn2 serum protein levels increased 

during the neutrophil-rich inflammatory phase only. Increased protein abundance was also 

detected in the lung during day 14 post BLM treatment. LPS-caused ALI reflected the above 

findings in all lung, BAL and sera, thus supporting an inflammation-related over-expression of 

LCN2/Lcn2. 

Subsequently, we created Lcn2-/- mice which were then administered BLM. Although the 

genetic modification did not have any significant impact on multiple BLM-triggered histo-

pathological and physiological changes, maintenance of good lung function in treated Lcn2-/- 

animals validated Lcn2 implication in lung homeostasis. Furthermore, no major effects were 

observed from knocking out Lcn2 in BLM-treated obese mice, irrespective of the previously 
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described triangular connection between Lcn2, obesity and fibrosis (Jaberi, Cohen et al. 2021, 

Guo, Sunil et al. 2022). Last, in contrast to the ALI model findings, LPS-induced inflammation 

was not impacted by Lcn2 deficiency. 

Failure of Lcn2 KO to significantly impact BLM-treated and LPS-challenged mice can be 

attributed to several factors. Initially, one can hypothesize that Lcn2 does not have any major 

pathogenic role, yet without neglecting Lcn2 importance as reflected by the lung function 

measurements performed. On the other hand though, it may be true that Lcn2 cannot be 

properly studied in the aforementioned models as previously witnessed for other genomic 

features (Mouratis and Aidinis 2011). It should also be noted that Lcn2 KO may disrupt 

homeostasis in ways not examined during this thesis, such as via microbiome regulation (Flo, 

Smith et al. 2004). As far as the inflammatory role of Lcn2 is concerned, published studies have 

produced contradictory reports (Jang, Lee et al. 2013, Warszawska, Gawish et al. 2013, Kang, 

Ren et al. 2018, Guardado, Ojeda-Juárez et al. 2021, An, Yoo et al. 2023) possibly reflecting 

tissue-specific Lcn2 functions and/or differences between used models. Nevertheless, potential 

inability of animal models to clarify the role of Lcn2 should not discourage future human-

centered experiments. 

To conclude with, we here suggest that LCN2/Lcn2 is important for earlier inflammatory stages 

of lung fibrosis in both humans and mice, potentially acting via neutrophils. Future studies 

should address limitations of the Lcn2-/- model in favor of a mechanistic explanation of its 

function. 

4.4.2 TKS5 and fibroblast invasiveness 

Until today, many of the IPF pathogenic and progression mechanisms are still unknown. In 

search of a probable disease cause, scientific community frequently shapes new hypotheses 

based on the common grounds between IPF and other human pathologies including cancer 

(Vancheri 2013). 

One of the commonalities between cancer and PF is the invasive character of tissue fibroblasts 

(Karampitsakos, Tzilas et al. 2017), with IPF lung fibroblasts having an increased invasiveness 

compared to other pulmonary pathologies (Karvonen, Lehtonen et al. 2012). For the invasion 

to take place, fibroblasts exploit podosomes (or invadopodia in a tumor context), specialized 

cell structures that proteolyze ECM enabling cellular migration (Murphy and Courtneidge 

2011, Paterson and Courtneidge 2018). SH3PXD2A (TKS5) codes for a necessary podosome 

component (Hoshino, Branch et al. 2013) and has previously been implicated in tumor cell 

metastasis including lung adenocarcinoma (Seals, Azucena et al. 2005, Li, Chen et al. 2013). 

As part of this thesis, we have examined TKS5 expression in IPF using both human and murine 

data. To begin with, we have in silico observed that transcription of TKS5 is up-regulated in 

multiple IPF lung samples compared to their control counterparts, while its mRNA levels 

correlated with those of COL1A1. These data were validated using both PCR and 

immunostaining applied on an independent sampling set. scRNA-seq data re-analysis detected 

TKS5 expression in the epithelium and cells of the fibroblastic lineage. Interestingly, TKS5+ 

fibroblasts were positive for COL1A1 and preferentially positive for CD44 and PD-L1/CD274. 

CD44 is required for proper invadopodia functioning (Zhao, Xu et al. 2016) and PD-L1 has 

been suggested as an invasion marker (Jiang, Liu et al. 2022). Thus, TKS5+ fibroblasts should 

have an increased invasive potential supported by podosomes formation. In addition to human 

data, bulk sequencing of mouse lung tissue revealed an over-expression of Tks5 in BLM-treated 
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animals. Tks5 levels were once again correlated to those of Col1a1. Supplementary to human 

tissue, immunostaining positioned Tks5 in fibrosis-affected areas and the epithelium. 

Comparison of aSMA and Col1a1 expressing fibroblasts demonstrated a much more frequent 

co-localization of Tks5 with the latter instead of the latter. 

Subsequently, we provided proof that TGFβ induces the formation of podosomes via TKS5 

and MMP9 expression amplification in NHLFs and other cell lines. These results are in 

accordance to podosomes regulation by other growth factors, such as PDGF (Quintavalle, Elia 

et al. 2010, Charbonneau, Lavoie et al. 2016). On the other hand, cultured IPF-originating lung 

fibroblasts created podosomes without any external signal. Similarly, enhanced invadosome 

formation by IPF lung fibroblasts was in parallel suggested by an independent research effort 

(Lebel, Cliche et al. 2023). These structures lasted for a significant period of time and were 

highly functional. Podosomes were also developed by TGFβ-treated NMLFs and untreated 

fibroblasts collected from the lungs of BLM-treated mice. Tks5, Col1a1 and Mmp9 expression 

was boosted as in the case of human samples. Detection of increased MMP9/Mmp9 levels is 

of specific importance as it has, along with CD44, been connected to wound healing 

(Michopoulou, Montmasson et al. 2020). Furthermore, it has been detected in TGFβ-treated 

IPF lung fibroblasts of increased invasiveness (Ramírez, Hagood et al. 2011). Given the 

conflicting results of MMP9 targeting (Espindola, Habiel et al. 2020, Bormann, Maus et al. 

2022) more dedicated studies are required to illuminate its function in fibrosis. 

To assess the functional importance of Tks5 for the fibrotic phenotype we have created a 

haploinsufficient murine model. Genetically modified animals were sacrificed at the peak of 

fibrosis. Despite BLM-treatment collagen levels were found reduced in the partial absence of 

Tks5, an observation supplemented by less collagen deposition and fibrotic areas, reflected 

also in ex vivo PCLS cultures. From a physiological perspective, lung function of genetically 

modified animals was not that much affected compared to that of their WT counterparts. To 

examine the potentially anti-fibrotic actions of Tks5, we cultured primary lung fibroblasts from 

WT and Tks5+/- animals with TGFβ. The latter cells were less proliferative, with a smaller 

number of podosomes. Moreover, genetically modified cells had a decreased migratory 

potential as witnessed from transwell invasion assay. Experiments repetition using BLM 

instead of TGFβ led to the same findings. These observations supplement previous ones 

supporting the invasive profile of fibrotic lung fibroblasts (White, Thannickal et al. 2003, Li, 

Jiang et al. 2011, Karvonen, Lehtonen et al. 2012). 

From a molecular point-of-view, Quant-Seq analysis of TGFβ-treated WT and Tks5+/- lung 

fibroblasts revealed several thousand DEGs including multiple fibrosis-associated and 

invasion-related ones. Interestingly, PA pinpointed the suppression of various ECM-related 

processes in haploinsufficient cells indicating a functional relationship between Tks5 and the 

extracellular environment. In parallel, staining of cultured BLM-treated fibroblasts showed 

reduced quantities of Col1a1 in Tks5 semi-deficient cells compared to control ones. Moreover, 

growth of NMLFs on aECM isolated from BLM-treated animals induced Tks5 expression, 

podosomes development and Col1a1 transcription, indicating an active crosstalk between 

fibroblasts and the extracellular environment via their podosomes (Iizuka, Leon et al. 2020). 

Without neglecting the molecular compounds of post BLM ECM, podosomes formation could 

also have been triggered by the increased matrix stiffness, as already known for invadopodia 

(Alexander, Branch et al. 2008). The above hypothesis becomes even more probable if we take 

into consideration the inherent stiffness of lung ECM and its plasticity upon homeostasis 



148 
 

disruption, ageing and especially IPF (White 2015, Pardo and Selman 2016, Burgstaller, Oehrle 

et al. 2017). 

In an attempt to repurpose drugs for podosome targeting, we have applied CMap analysis on 

our top Quant-Seq DEGs. Among the signatures that mimicked Tks5 knockout there was that 

of an Src inhibitor. Src is necessary for podosomes formation (Li, Zhao et al. 2020) and its 

inhibition has the strongest connectivity score to the IPF transcriptomic signature compared to 

nintedanib and pirfenidone (Ahangari, Becker et al. 2022). Thus, we have inhibited its function 

on TGFβ-treated NHLFs and compared its effects with those of nintedanib. Both treatments 

decreased expression of TKS5 and COL1A1, reduced the number of podosomes and attenuated 

cells’ migratory potential. Incubation of mouse PCLS with A-419259 highlighted its ability to 

decrease fibrotic load. Last, mice that have already been treated with BLM were administered 

the inhibitor. Interestingly, A-419259 delivery was well tolerated and resulted in less intense 

pro-fibrotic hallmarks, such as collagen production and deposition. BLM-induced changes 

were also attenuated. 

It must be noted that apart from fibroblasts, we have here shown TKS5 transcription by 

epithelial and basal cells when examined at the single cell level. Podosomes per se have not 

been described in epithelial cells, yet their adhesive abilities to the basement membrane have 

been related to podosome-like structures (Spinardi, Rietdorf et al. 2004) as well as wound 

healing (Michopoulou, Montmasson et al. 2020). Src-inhibition, that was here observed to 

affect podosomes, has been witnessed to inhibit basal-cell midated PF development (Jaeger, 

Schupp et al. 2022). Further targeted studies should be performed for demystifying TKS5 role 

in these two cell types. 

To conclude with, increased TKS5 expression during fibrosis acts in a pro-fibrotic fashion by 

enhancing podosome formation and thus ECM invasion by lung fibroblasts. Drug targeting of 

the process using compounds, such as Src-inhibitors, is a promising therapeutic treatment that 

should be assessed by future studies. 

4.4.3 MAP3K8 and fibrosis 

MAP3K8 is a kinase of the MAPK pathway and is implicated in cancer (Johnson, Stuhlmiller 

et al. 2014) and inflammatory diseases, such as inflammatory bowel disease (Roulis, Nikolaou 

et al. 2014). In the pulmonary context it is protective against inflammation (Watford, Wang et 

al. 2009) and cancer development (Gkirtzimanaki, Gkouskou et al. 2013). In this thesis, we 

attempted to dissect its role in lung fibrosis, given its many commonalities with both the 

aforementioned pathological conditions (Vancheri 2013, Desai, Winkler et al. 2018, Savin, 

Zenkova et al. 2022). 

Initially, measurements of Map3k8 in BLM-treated murine lungs revealed a reduction in gene’s 

expression. We observed the same under-expression pattern in in silico re-analyzed IPF versus 

control transcriptomic datasets. Re-analysis of scRNA-seq data pinpointed macrophages and 

monocytes as the main MAP3K8 producers of the human lung, while mRNA was produced 

from HCs as well. Per cell type - between phenotypes DEA established a significant down-

regulation of the gene in SPP1+ macrophage subcluster 1 and aSMA+ fibroblasts of IPF origin. 

In extension to the DEA results, IPF lung fibroblasts have been suggested to express smaller 

amounts of the MAP3K8-downstream molecules COX-2 and PGE2 (Wilborn, Crofford et al. 

1995, Coward, Watts et al. 2009). As far as macrophages are concerned, SPP1hi cells have been 
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located in lung fibrotic niches (Morse, Tabib et al. 2019) and were also suggested to act in a 

pro-fibrotic manner (Adams, Schupp et al. 2020) 

For a functional examination, we created Map3k8 knockout mice and treated them with BLM. 

Interestingly, multiple physiological and molecular measurements demonstrated that 

genetically modified animals suffered from a more severe fibrotic phenotype, suggesting that 

Map3k8 exert an anti-fibrotic role in the lungs. Subsequently, we used bone marrow 

transplantation to and from Map3k8-/- and WT irradiated mice in order to dissect HCs and nHCs 

contribution to Map3k8-mediated protective processes. Mice examination 14 days post-BLM 

administration unveiled a more severe fibrosis in animals hosting either hematopoietic or non-

hematopoietic Map3k8-deficient cells. Our data also supported that HCs deficiency has a 

broader and more significant impact compared to that of nHCs. To extend our findings we 

specifically examined BAL fluid immune cells via FACS and discovered that Map3k8 deletion 

from either HCs or nHCs affected macrophages accumulation. On the other hand, neutrophils 

infiltration was not affected while lymphocyte numbers were increased post to HC but not nHC 

genetic modification. Motivated by the potential importance of Map3k8 for macrophages, we 

specifically deleted it from both macrophages and granulocytes. KO animals treated with BLM 

developed more severe fibrosis compared to their littermate WT controls. Interestingly, 

genetically modified macrophages had similar profile to the deficient HCs implicating both 

cell types into PF. 

As MAP3K8 anti-fibrotic role may arise from its known regulation of PGE2 (Bozyk and Moore 

2011, Roulis, Nikolaou et al. 2014, Roulis, Kaklamanos et al. 2020), we next examined the 

PGE2 pathway on the 14th day post BLM administration in WT and Map3k8-/- animals. Cox-2 

expression was down-regulated in KO mice, while PGE2 and AA abundance was reduced in 

the BALF, thus supplementing previous reports in other pathological contexts (Eliopoulos, 

Dumitru et al. 2002, Berthou, Ceppo et al. 2015). On the other hand, animal treatment with a 

PGE2 analogue partially rescued the Map3k8-/- phenotype and reduced the fibrosis load of WT 

controls. Last, treatment with PGE2 per se constricted fibrosis in BLM-treated animals as 

expected (Failla, Genovese et al. 2009, Dackor, Cheng et al. 2011), further supporting the 

importance of the MAP3K8-PGE2 pathway for PF. Implication of PGE2 in the apoptosis and 

differentiation of lung fibroblast (Maher, Evans et al. 2010, Bozyk and Moore 2011) could at 

least partially explain the phenotype of animals with Map3k8 deficient nHCs. 

Conclusively, we have shown that lung-expressed Map3k8 acts in an anti-fibrotic manner via 

the Map3k8/Cox-2/PGE2 axis. During fibrosis its expression is reduced in specific cell types, 

such as macrophages and fibroblasts. Opposite findings (Perugorria, Murphy et al. 2013) may 

reflect organ-specific processes, as suggested elsewhere (Chen and Dai 2023). Future studies 

are necessary for distinction of fibrotic and inflammatory Map3k8/Cox-2/PGE2 effects, as well 

as for the examination of other Map3k8 pathways of action. 

4.5 Fibrosis and COVID-19 

SARS-CoV-2-caused COVID-19 is a disease initially detected in late 2019 and since then have 

affected millions of individuals worldwide (Hu, Guo et al. 2021). It can be accompanied by a 

plethora of symptoms defined by each patient’s underlying clinical picture, but is usually 

characterized by hypoxaemia and even ARDS. COVID-19 is closely related to PF with 

hallmarks of the latter witnessed in severe cases of the former (Osuchowski, Winkler et al. 
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2021) and ILD patients having a less favorable COVID-19 progression if infected (Drake, 

Docherty et al. 2020, Esposito, Menon et al. 2020, Beltramo, Cottenet et al. 2021). 

During this thesis we have explored the relationship of COVID-19 and IPF at a molecular level 

via examination of the pro-fibrotic molecule ENPP2. Initially, we have observed increased 

ENPP2 levels (either mRNA or protein) in the nasopharynx and blood serum of COVID-19 

patients. In detail, ATX levels were potentially connected to disease severity as Dex-untreated 

ICU patients had higher protein quantities related to individuals treated in the WARD. There 

was also not any association between significant ATX changes and patients’ clinical 

characteristics. Subsequently, extending findings in ARDS suffering individuals (Gao, Li et al. 

2021), we have also demonstrated that IL-6 serum levels correlated with those of ATX in ICU 

patients not treated with Dex, suggesting an ENPP2 implication in severe COVID-19 cases. 

ATX levels co-fluctuated with epithelium-related proteins, as well. As expected from previous 

experiments (Meng, Tang et al. 2019), measurements from two independent cohorts showed 

that ATX was less abundant in Dex-treated ICU residents with mechanical ventilation 

compared to non-treated ventilated counterparts. Remarkably, ATX levels were the highest in 

samples from deceased patients that had not been treated with Dex. No difference was observed 

in non-ventilated individuals. 

Afterwards, we examined ENPP2 mRNA levels at the single cell level. Re-analysis of eight 

scRNA-seq datasets detected active ENPP2 transcription in immune cells of the nasopharynx 

and pDCs of the peripheral circulation. pDCs were the main ENPP2 producers among BAL 

cells, too. On the other hand, ENPP2 was expressed by mesothelial and arterial cells, as well 

as by monocytes located in COVID-19 patients’ lungs. Interestingly, lung arterial cells from 

IPF individuals were the main source of ATX mRNA along with fibroblast subtypes and DCs. 

Despite the small number of the latter, we established a significant difference in ENPP2 mRNA 

levels between IPF and healthy samples-originating peripheral pDCs. The same difference was 

observed between lung DCs sampled from infected and non-infected lungs. As far as both lung 

and peripheral DCs are concerned, ENPP2 mRNA was not detected in a big number of cells 

suggesting the existence of an either ENPP2+ subset or a dropout effect in place. 

In validation of the scRNA-seq data presented above, ENPP2 transcription was found up-

regulated in pDCs of various inflammatory diseases compared to cells arising from steady state 

tissues according to bulk RNA-seq data. During homeostasis, pDCs were the primary supplier 

of the immune compartment with ENPP2 and LPAR2. Last, single cell level DEA highlighted 

TMEM176B and CD1a as the only genomic features of DCs that co-express with ENPP2 

during COVID-19. Strikingly, it has been previously suggested that both features mark early 

stages in DC development (Tazi, Bouchonnet et al. 1993, Condamine, Le Texier et al. 2010, 

Bourgeois, Subramaniam et al. 2015, Picotto, Morse et al. 2019), thus proposing a new role for 

ENPP2 as regulator of DC homeostasis. 

On the basis of both the above findings, we are of the opinion that ENPP2 over-expression in 

COVID-19 pDCs should be evaluated along with the observation of a diminished blood pDCs 

population during COVID-19 (Zhou, To et al. 2020). Developmentally, pDCs are controlled 

by features such as TMEM176B, CD1a – see previous paragraph – and TCF4 (Cisse, Caton et 

al. 2008) that is evidently modulated by LPA (Guo, He et al. 2015). Thus, we suggest that 

increased autocrine ATX signaling during SARS-CoV-2 infection could prevent maturation of 
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pDCs leading to the aforementioned depletion. In support of our hypothesis, LPA anti-

inflammatory functions have previously been described (Emo, Meednu et al. 2012). 

Another possible functional relationship between ATX and COVID-19 comes through 

vasculature homeostasis. ENPP2 was here found to be expressed by cells of the pulmonary 

circulation and was elsewhere connected with coronaviruses-caused lung hemorrhages 

(Gralinski, Ferris et al. 2015, Gralinski, Menachery et al. 2017). It has also been proposed that 

ATX-LPA axis stimulates E-sel expression in human endothelial cells (Rizza, Leitinger et al. 

1999, Shlyonsky, Naeije et al. 2014, Takeda, Matoba et al. 2019). Given the fact that ATX has 

positively correlated with the increased levels of soluble E-selectin in non-survivors of the 

Evangelismos cohort (Vassiliou, Keskinidou et al. 2021), it is probable that ATX participates 

in the endothelial impairment seen during COVID-19 (Flaumenhaft, Enjyoji et al. 2022). 

In conclusion, we have demonstrated that both ATX mRNA and protein levels are increased 

during SARS-CoV-2 infection in the periphery and the lungs. We also propose that ATX can 

affect DCs maturation and thus the inflammatory response of the patients, as well as their 

vasculature homeostasis. Future publications examining larger numbers of DCs and applying 

further wet laboratory techniques are necessary for in depth examination of these novel 

hypotheses. 

4.6 LPA in the kidneys 

LPA and another 175 stimulants have been used to treat HKC-8 cells in order to measure their 

effect on protein secretion and phosphorylation. According to a custom multiplex ELISA, an 

active response was recorded in %61 of the stimulants, with HGF inducing the greatest number 

of changes. Stimulants clustering revealed three major groups, each one with distinct impact 

on kidney tubular epithelial cells. Specifically, LPA 18:1 was a cluster II member along with 

several pro-inflammatory factors, such as PMA, IL1A-B, TNFA and IL17A, suggesting an 

active role in CKD. Cell culturing with three different LPA species up-regulated 

phosphorylation of IκBa, MEK1, CREB1, ERK1 (marginally) and JUN, the most activated 

signal transduction molecule of our experiment. The same treatment induced the secretion of 

CCL2, CCL3, CXCL10, ICAM1, IL-6, IL-8 and CCL3. Respective genes’ transcription up-

regulation was also witnessed. In accordance to previous publications (Pradere, Klein et al. 

2007, Geng, Lan et al. 2012, Sakai, Chun et al. 2017), LPA effects on kidney tubular epithelial 

cells seem to be primarily manifested via LPAR2 and secondarily via LPAR6. 

In more detail, CCL2-3 are known for their chemo-attraction of various inflammatory cells 

(Lv, Booz et al. 2018) and CCL2 has also been implicated in various renal-related pathologies 

and animal models (Wada, Yokoyama et al. 1996, Lloyd, Minto et al. 1997, Vielhauer, Anders 

et al. 2001, de Zeeuw, Bekker et al. 2015). On the contrary, although a known chemoattractant 

(Vazirinejad, Ahmadi et al. 2014) CXCL10 role in CKD requires further research. ICAM1 is 

detected in kidney tubular epithelial cells specifically during pathological conditions such as 

IgA nephropathy (Arrizabalaga, Solé et al. 2003) and primary glomerulosclerosis (Vazirinejad, 

Ahmadi et al. 2014). Re-analysis of a public microarray dataset validated the pathogenic role 

of ICAM1 with its transcription being up-regulated during IgA nephropathy, CKD and focal 

segmental glomerulosclerosis compared to steady state. Although not targeted by LPA, 

TNFSF12, IL-1β and CCL5 cluster II induced molecules were also among the deregulated 

features. Similarly to ICAM1, IL-6 levels are higher in CKD than in control samples (Oh, Kim 

et al. 2013), while IL-6 has also been implicated in fibrosis via collagen I induction 
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(Ranganathan, Jayakumar et al. 2013). IL-8 has been previously reported downstream of LPA 

in the lungs (Cummings, Zhao et al. 2004, Barekzi, Roman et al. 2006, Saatian, Zhao et al. 

2006) and its levels have been found altered in the kidneys of type-2 diabetes (Loretelli, 

Rocchio et al. 2021) and CKD patients (Tunçay, Doğan et al. 2021). JUN and CREB1 are two 

TFs responsible for regulating the expression of various inflammatory-related genes including 

the LPA-induced IL-6 (Wen, Sakamoto et al. 2010, Grynberg, Ma et al. 2017), while MEK1 

and ERK – members of the same pathway – are known targets in the lung context (Saatian, 

Zhao et al. 2006, Nathan, Zhang et al. 2021). Last, phosphorylation of IκBα upon LPA 

treatment induces the expression of NFκB, a well-known player in various immune-related 

pathologies (Haij, Woltman et al. 2002, Hayden and Ghosh 2012). In total and with the 

exception of CCL2 and ERK, our experiment showed for the first time the LPA induction of 

the above molecules’ secretion/phosphorylation from/in kidney tubular epithelial cells. 

Apart from their importance under pathological conditions, LPA-induced TFs can also regulate 

the expression of many LPA-affected molecules that we measured. Use of an NFκΒ-specific 

inhibitor blocked LPA-mediated activation of CCL2, CCL3, CXCL-8, and ICAM1 extending 

previous findings (Melotti, Nicolis et al. 2001, Viedt and Orth 2002, Cummings, Zhao et al. 

2004, Brasier 2010, Deng, Xu et al. 2013). On the other hand and although known to be a target 

of NFκΒ pathway (Georganas, Liu et al. 2000, Liu, Zhang et al. 2017) IL-6 was not affected, 

probably due to cell type specific reasons. Our results also validate the capability of human 

primary proximal TECs to produce IL-6, IL-8, and CCL2. JNK was witnessed to regulate 

ICAM1 and CCL3 abundance in accordance to previous publications (Holzberg, Knight et al. 

2003, Sindhu, Akhter et al. 2020), while no effect was observed for CCL2 and CXCL8. 

Increased CREB1 phosphorylation post LPA treatment could explain LPA impact on CXCL8, 

CCL2 and CCL3 according to the existing literature (Mayer, Simard et al. 2013, Zhao, Hui et 

al. 2014, Koga, Tsurumaki et al. 2019, Tomalka, Pelletier et al. 2021). Last, CCL2, CCL3, 

CXCL10, ICAM1, IL-6, CXCL8 and CCL3 expression could be regulated by MAPK signaling. 

Our ELISA measurements supported such regulation for CCL2, CCL3, CXCL8, and ICAM1 in 

line with previous findings (Hwang, Jeong et al. 2004, Lee, Zhang et al. 2006, Zhu, Wei et al. 

2016, Namba, Nakano et al. 2017), while IL-6 abundance remained unaffected adding to an 

existing list of conflicting results (Klemm, Bruchhagen et al. 2017, Kitanaka, Nakano et al. 

2019, Hu, Huang et al. 2020, Plastira, Bernhart et al. 2020). We did not test CXCL10 

expression dependence on MAPK pathway. 

As far as the other cluster II members are concerned, most of them are positively related with 

CKD progression. Indicatively, TNFSF12/TWEAK levels significantly diverge during renal 

injury and related pathologies compared to steady state (Ortiz, Sanz et al. 2009, Ucero, Benito-

Martin et al. 2013, Sanz, Izquierdo et al. 2014, Bernardi, Voltan et al. 2019) and 

TNFSF12/TWEAK inhibition reduces inflammation and partially restores kidney function 

(Sanz, Justo et al. 2008, Poveda, Tabara et al. 2013, Bernardi, Voltan et al. 2019). TNFa is 

directly related to renal function as its very low homeostatic levels are necessary for kidneys’ 

excretory functions to take place (Mehaffey and Majid 2017). Up-regulation of its expression 

has been witnessed during various kidney pathologies (Vielhauer and Mayadas 2007, 

Nikitopoulou, Oikonomou et al. 2012). IL-1β induces inflammation and causes IgA 

nephropathy (Stangou, Papagianni et al. 2013), while it is secreted by kidney cells during tissue 

injury alongside IL-1α (Anders 2016). On the contrary, findings are rather controversial for IL-

17a (Ramani, Tan et al. 2018, Sun, Wang et al. 2018, Orejudo, Rodrigues-Diez et al. 2019). 
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The above observations suggest that LPA functions in a pro-pathogenic manner in the kidneys 

since it clusters with CKD-promoting molecules. Indeed, available literature supports our 

hypothesis (Pradere, Klein et al. 2007, Swaney, Chapman et al. 2011, Mirzoyan, Baïotto et al. 

2016, Sakai, Chun et al. 2017). 

In conclusion, our study has provided detailed information regarding human renal proximal 

TECs’ response to a great variety of stimulants. In specific, LPA was shown to exert a pro-

inflammatory function leading in the regulation of major signaling pathways and the secretion 

of multiple molecules potentially affecting kidney homeostatic maintenance. 
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Appendix I – Supplementary figures 

 

Figure S1. Per model features ranked by mean absolute Shapley (SHAP) value. Phenotypic 

classification was achieved with different genomic features combination per model. Adopted 

from (Fanidis, Pezoulas et al. 2023).  
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Figure S2. TCGA expression and methylation data projected into reduced space. A. BrCa and 

normal tissue samples. B. Stage I BrCa and normal tissue samples. C. Advanced and early BrCa 

samples. Adopted from (Panagopoulou, Drosouni et al. 2022). 
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Figure S3. Obesity creates a tendency of increasing microbial wealth in the gut-liver-lung axis. A. 

Total number of detected taxa. B. No changes in host tissue 18S rRNA gene (Q-PCR), ensures equal 

loading of samples. C. Obesity by HFD created a general pattern of increased number of taxa compared 

to the control diet. Adopted from (Galaris, Fanidis et al. 2022). 
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Figure S4. LCN2 up-regulation in IPF lung tissue is negatively related to lung function. A-B. 

Correlation between LCN2 expression and spirometry measurements from two patient cohorts 

(GSE47460_GPL6480; GSE32537). C-D. Dimensionality reduction plots of two single cell datasets 

(Habermann, Gutierez et al. 2020; Adams Shupp et al. 2020) that support LCN2 production from cells 

of the epithelial lineage. E-F. Dot plots of the datasets in C-D, respectively. Red color highlights cell 

types for which LCN2 is a marker gene (Wilcoxon tank sum test; FC > 1.2; Bonferroni adjusted p-value 

< 0.05). G-H. Differential expression analysis within cells of the same type and between phenotypes 

(Wilcoxon tank sum test; |FC| ≥ 1.2; Bonferroni adjusted p-value < 0.05); * up-regulated in IPF; * 

down-regulated in IPF. Adopted from (Galaris, Fanidis et al. 2023). 
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Figure S5. Obese BLM mice models of PF are only slightly impacted by Lcn2 genetic deficiency. 

A. Change of weight in WT and KO mice treated with BLM compared to their saline-treated 

counterparts. B. BAL fluid protein concentration (Bradford assay). C. Number of cells in the BAL fluid 

of obese mice on the 14th day post BLM administration (hepatocytometer). Statistical significance was 

evaluated using Kruskal-Wallis test (** p < 0.01). D. Stainings of murine lung tissue sections from WT 

and Lcn2 knockout mice (x10). Adopted from (Galaris, Fanidis et al. 2023). 
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Figure S6. TKS5 transcription is up-regulated in the lungs of IPF patients. A, C. DEA volcano 

plots between IPF and control lung tissue samples from two big publicly available transcriptomic 

datasets (FC>1.2, FDR<0.05). B, D. TKS5 with COL1A1 expression correlation in the A, C datasets. E. 

TKS5 expression mapped in lung tissue cells embedded in a space of reduced dimensions; reanalysis of 

(Reyfman, Walter et al. 2019). F. Fibroblasts of the dataset in (E) are the primary producers of TKS5 

(Wilcoxon rank sum test; FC>1.2, Bonferroni adjusted-p<0.05). G. Same dataset fibroblast sub-groups 

with a resolution of 0.1 on isolated re-processed cells. Adopted from (Barbayianni, Kanellopoulou et 

al. 2023). 
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Figure S7. Lung fibroblasts over-express TKS5 and COL1A1 after stimulation with TGFβ. A. Q-

RT-PCR measured expression of TKS5 in serum-depleted primary normal human lung fibroblasts 

cultured with TGFβ. Expression values were normalized over those of B2M and presented as fold 

change over control (two-tailed t-test; *p = 0.023). B. TKS5-COL1A1 expression correlation (two-

tailed Pearson’s correlation test; *p = 0.0286). C. Q-RT-PCR measured expression of TKS5 in serum-

depleted MRC5 cells (human lung fibroblasts) cultured with TGFβ. Expression values were normalized 

over those of B2M and presented as fold change over control (two-tailed Welch’s test; **p = 0.062). D. 

TKS5-COL1A1 expression correlation (two-tailed Pearson’s correlation test). Adapted from 

(Barbayianni, Kanellopoulou et al. 2023). 
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Figure S8. Podosome rosettes are inherently formed by BLM-treated lung fibroblasts post to 

TGFβ treatment. A-B. Q-RT-PCR measured Tks5 and Col1a1 expression by normal mouse lung 

fibroblasts with or without TGFβ treatment. The two genes follow the same transcription pattern post 

to TGFβ treatment. Expression was normalized over that of B2m and presented as fold change over 

control (two-tailed t-test with *p=0.0322; two-tailed Pearson’s correlation test with *p=0.0186 and 

r=0.96). C. F-actin and Tks5 double immunostaining images (scale bars 50μm; arrows indicate 

representative podosomes). D. Number of podosome-decorated cells per optical field (n=5; two-tailed 

Welch’s test; **p=0.0012). E. Images of normal mouse lung fibroblasts degrading a fluoresce-

conjugated gelatin substrate (black holes) post to TGFβ treatment (scale bars 50μm). F. Quantification 

of gelatin degradation (ImageJ; two-tailed Welch’s test; **p=0.0098). G-H. Tks5 and Col1a1 

expression from 3T3 cells with or without TGFβ treatment (same experimental procedure with A-B; 

two-tailed Mann-Whitney test with *p=0.0238; two-tailed Spearman’s correlation with *p=0.0167 and 
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r=0.83). I. F-actin and cortactin (Cttn) double immunostaining images (scale bars 50μm; arrows indicate 

representative podosomes). J. Number of podosome-decorated cells per optical field (n=5; two-tailed 

Welch’s test; ***p=0.0001). K. 3T3 cellular proliferation post to TGFβ treatment (MTT assay; two-

tailed Welch’s test; ****p<0.0001). L-M. Tks5 and Col1a1 expression from normal mouse fibroblasts 

post BLM administration (same experimental procedure with A-B; two-tailed Welch’s test with *p=0. 

0464; two-tailed Pearson’s correlation with **p=0. 0023 and r=0.98). N. Mmp9 expression measured 

as in L (two-tailed t-test, ***p=0.0003). O. F-actin and Tks5 double immunostaining images (scale bars 

50μm; arrows indicate representative podosomes).P. Number of podosome-decorated cells per optical 

field (two-tailed Welch’s test; **p=0.0023). Adapted from (Barbayianni, Kanellopoulou et al. 2023). 

 

 

Figure S9. Usage of acellular ECM (aECM) as a substrate for aututologous in vitro lung fibroblast 

culturing. A. Pipeline of aECM preparation from mouse lungs. B. H&E staining confirms 

decellularization of the collected matrix (scale bars 50μm). C. Col1a1 immunofluorescent staining of 

aECM generated from mouse lungs treated with saline or BLM. The latter treatment induces the 

accumulation of collagen (scale bars 50μm). Adapted from (Barbayianni, Kanellopoulou et al. 2023). 
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Figure S10. Expression patterns of Tks5+/- lung fibroblasts treated with TGFβ. Α. Top 100 DEGs 

(FC≥1.2; Benjamini-Hochberg corrected PANDORA p<0.05). B. Interaction of differentially expressed 

TFs and their target genes. C. Expression motif of core features from the GO:0062023 term selected 

post to pathway analysis. D. Deregulated mouse homologues of the top 50 up-regulated genes measured 

in invasive fibroblasts (supplementary data of PMID 30763282). Adopted from (Barbayianni, 

Kanellopoulou et al. 2023). 
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Figure S11. Cell specificity of MAP3K8 expression in the human lung. The gene is down-regulated 

in IPF macrophages and myofibroblasts. A. Projection of 76,070 single cells in reduced dimension 

space. Cells were isolated from eight donor lung biopsies and equal number of IPF patients’ lung 

explants. 14 different cell types were identified (nupulmonary.org/resources; GSE122960). B-C. Re-

analysis of the same dataset. B. MAP3K8 is under-expressed in macrophage sub-cluster 1 that is 

characterized by SPP1 expression and cells of mainly IPF origin (FC = -1.19; Bonferroni adjusted p-

value = 6.11e-24). C. Fibroblast sub-clustering from the same dataset. MAP3K8 is under-expressed in 

aSMA+ sub-cluster 1 (FC=-1.35; Bonferroni adjusted p-value = 0.0002). Adopted from (Zannikou, 

Barbayianni et al. 2021). 
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Figure S12. Cox-2 expression in the lungs is regulated by Map3k8. A, C. Q-RT-PCR measured 

Map3k8 and (B, D) Cox-2 expression in whole lung tissue of the indicated conditions, normalized over 

the expression of B2m (two-way ANOVA with Bonferroni post-hoc correction; */**/*** p = 

0.05/0.01/0.001, respectively). Adopted from (Zannikou, Barbayianni et al. 2021). 
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Figure S13. Map3k8 is a regulator of arachidonic acid and PGE2. Arachidonic acid (A) and PGE2 

(B) levels in the BAL fluid of chimeric mice as determined by MS/MS (two-way ANOVA with 

Bonferroni’s post-hoc correction; */**/*** p = 0.05/0.01/0.001, respectively). Adopted from 

(Zannikou, Barbayianni et al. 2021). 

 

 

Figure S14. ATX levels in the serum of ICU COVID-19 patients do not correlate with their gender 

or underlying comorbidities. Serum ATX was measured using ELISA in the sera of ward and ICU 

patients of the Evaggelismos hospital. Patients were treated or not with Dex. Gender (A) or existing 

comorbidities did not seem to affect ATX levels (two-way ANOVA with Bonferroni’s post-hoc 

correction; */** p < 0.001/0.0001, respectively). Adopted from (Nikitopoulou, Fanidis et al. 2021). 
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Figure S15. Levels of endothelial dysfunction markers positively correlate with ATX levels in the 

serum of ICU-admitted COVID-19 patients. E-sel (A), sICAM (B), sP-sel (C) and ANG2 (D) levels 

positively correlate with ATX protein levels in the serum of SARS-CoV-2 affected individuals 

(Spearman’s correlation). Adopted from (Nikitopoulou, Fanidis et al. 2021). 
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Figure S16. Cell specific ENPP2 expression during COVID-19 and ILDs. A-D. Four COVID-19 

datasets of single cells collected from different sampling sites. E. Data from an ILD dataset. 

Dimensionality reduction plots (left) iconize cellular composition of each site. Dot plots (on the right) 

ENPP2 expression across cell types. Stars highlight cell groups marked by ENPP2 expression 

(Wilcoxon rank-sum test; FC>1.2; Bonferroni adjusted p<0.05; */** p<0.5/0.01). Adopted from 

(Nikitopoulou, Fanidis et al. 2021). 
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Figure S17. ENPP2 expression by plasmacytoid dendritic cells (pDCs) is deregulated during 

inflammatory diseases. A. pDCs are the main ENPP2 producers among immune cells during steady 

state. Per cell type EDASeq-normalized counts and pairwise differential expression analysis of each 

cell type with pDCs (*** iconizes FC>1.2 and FDR-corrected p<0.01). B. LPAR2 is the main LPA 

receptor of healthy pDCs (EDAseq-normalized counts; Kruskal-Wallis followed by Dunn post-hoc test; 

*** denotes Benjamini-Hochberg adjusted p<0.01).C. pDCs sampled from four immune-related 

pathologies have a more intense ENPP2 transcription compared to their healthy counterparts (FC>1.2; 

FDR-corrected p<0.05; PMID: 33930287). HC: healthy control; SLE: systemic lupus erythematosus; 

AOSD: adult-onset Still’s disease; MCTD: mixed connected tissue disease; IIM: idiopathic 

inflammatory myopathy. Adopted from (Nikitopoulou, Fanidis et al. 2021). 
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Figure S18. Selection of an active signal-response threshold. A. Fold change (measured fluorescence 

under stimulated to unstimulated state) distribution for all signals. Median response value post to 

stimulation with culture medium was selected as the unstimulated state. B. Fold change threshold 

sensitivity analysis. Selection of a small threshold has a big impact on the number of active signals 

filtered in, whereas high thresholds render data rather insensitive to threshold changes. Optimal 

threshold was selected as the one which enabled an adequate number of signals for downstream analysis 

but at the same time made the dataset insensitive enough to ratio changes. Adopted from (Magkrioti, 

Antonopoulou et al. 2022). 

 

Figure S19. LPA impacts renal proximal tubular epithelial cells similarly to pro-inflammatory 

stimuli. A. Heatmap of cluster II (totally unresponsive signals were filtered out). B-C. Pathway analysis 

of cluster II signals/stimuli with GO and KEGG reference databases, respectively. Top 10 enriched 
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terms from KEGG and each GO category reveal the pro-inflammatory nature of the cluster, suggesting 

LPA pro-inflammatory modus operandi. Adopted from (Magkrioti, Antonopoulou et al. 2022). 

 

Figure S20. Transcription profile of cluster II targets upon kidney disease. Re-analysis of a couple 

of microarray datasets (GSE66494 in A and GSE104066 in B-C) representing steady state and three 

kidney pathologies (CKD: chronic kidney disease; FGS: focal segmental glomerulosclerosis; IgAN: 

immunoglobulin A nephropathy). Venn diagrams iconize the similarities of differentially expressed 

genes (|FC|≥1.2 with adjusted p-value < 0.05) between shown comparisons with the ELISA-measured 

active stimuli and secreted molecules. Intersection features are shown on the volcano plots with arrows 

indicating the LPA responders. Interestingly, TNFSF12 and IL1B1 are both stimuli and responders of 

cluster II. Adopted from (Magkrioti, Antonopoulou et al. 2022). 
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Figure S21. Cell specific expression of cluster II signals. A. Dot plot of the responders included in 

cluster II. Letter m denotes PT-pos (CD10+) and PT-neg (CD10-) marker genes (Wilcoxon rank-sum 

test; FC≥1.2; adjusted p-value<0.05). Arrows indicate features activated post LPA treatment. TPO, IL3 

and PROK1 cluster II members were not detected at this specific single cell dataset. B. Ligand-receptor 

analysis of proximal tubule marker ligands. Interactions are built around cluster II responding molecules 

that are both secreted from and mark proximal tubule cells. Results were gathered from steady state and 

pathology-originated cells. Plot segments correspond to a feature/cell type or feature/population 

combination. PT: proximal tubule cells. Adopted from (Magkrioti, Antonopoulou et al. 2022). 
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Figure S22. Endogenous levels of LPA receptors (LPARs) transcription from HKC-8 cells. Cells 

were treated with LPA 18:1 or chloroform (VHC). Expression levels were assessed with RT-qPCR and 

were normalized over those of B2M prior to comparison with 2-ΔCq values (Kruskal-Wallis test; 

*/**p<0.05/0.01). Adopted from (Magkrioti, Antonopoulou et al. 2022). 

 

Figure S23. LPA receptors (LPARs) as mediators of LPA signaling. HKC-8 cells were treated with 

10μM of Ki16425 (LPAR1/3 inhibitor) or equal amount of H2L5186303 (LPAR2 inhibitor) post to 

LPA treatment at a final concentration of 10μΜ for 4h. Unpaired t-test or Welch’s test were used in 

case of normally distributed data, while Mann-Whitney otherwise; */**/***p<0.05/0.01/0.001. 

Adopted from (Magkrioti, Antonopoulou et al. 2022). 

 

 

 

 

 

 

 

 

 

 

 



214 
 

Appendix II – Supplementary tables 
Table S1. Fibromine-hosted bulk sequencing datasets. 

Datasets  

Transcriptomics 51 

 Human 38 

 Mouse 13 

Proteomics 9 

 Human 9 

 Mouse - 

Publications  

Transcriptomics 47 

Proteomics 9 

Comparisons  

Transcriptomics 42 

Proteomics 1 

Tissue/cell types  

Transcriptomics 15 

Proteomics 4 

 

Table S2. Differentially expressed features used for machine learning training purposes. Adapted 

from (Fanidis, Pezoulas et al. 2023). 

Symbol Description 

ABCA3 ATP binding cassette subfamily A member 3 

ABHD5 abhydrolase domain containing 5, lysophosphatidic acid acyltransferase 

ACADL acyl-CoA dehydrogenase long chain 

ACSL1 acyl-CoA synthetase long chain family member 1 

ACVRL1 activin A receptor like type 1 

ADAMDEC1 ADAM like decysin 1 

AGER advanced glycosylation end-product specific receptor 

AGTR2 angiotensin II receptor type 2 

AKR1A1 aldo-keto reductase family 1 member A1 

ALPP alkaline phosphatase, placental 

ANKRD1 ankyrin repeat domain 1 

ANXA3 annexin A3 

AQP5 aquaporin 5 

ARG1 arginase 1 

ARNTL2 aryl hydrocarbon receptor nuclear translocator like 2 

ASPN asporin 

B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3 

BDKRB2 bradykinin receptor B2 

BHLHE22 basic helix-loop-helix family member e22 

BPIFB1 BPI fold containing family B member 1 

C20orf85 chromosome 20 open reading frame 85 

CA2 carbonic anhydrase 2 

CA4 carbonic anhydrase 4 

CACNA2D2 calcium voltage-gated channel auxiliary subunit alpha2delta 2 

CACNB4 calcium voltage-gated channel auxiliary subunit beta 4 

CALU calumenin 



215 
 

CCL11 C-C motif chemokine ligand 11 

CCL13 C-C motif chemokine ligand 13 

CCL19 C-C motif chemokine ligand 19 

CD19 CD19 molecule 

CD1A CD1a molecule 

CD1C CD1c molecule 

CD1E CD1e molecule 

CHST6 carbohydrate sulfotransferase 6 

CLDN18 claudin 18 

COL15A1 collagen type XV alpha 1 chain 

COL17A1 collagen type XVII alpha 1 chain 

COL1A1 collagen type I alpha 1 chain 

COL1A2 collagen type I alpha 2 chain 

COL3A1 collagen type III alpha 1 chain 

COL5A2 collagen type V alpha 2 chain 

COLEC11 collectin subfamily member 11 

COMP cartilage oligomeric matrix protein 

COX4I2 cytochrome c oxidase subunit 4I2 

CP ceruloplasmin 

CPB2 carboxypeptidase B2 

CRLF1 cytokine receptor like factor 1 

CSF3 colony stimulating factor 3 

CSF3R colony stimulating factor 3 receptor 

CTH cystathionine gamma-lyase 

CTHRC1 collagen triple helix repeat containing 1 

CTSG cathepsin G 

CXCL14 C-X-C motif chemokine ligand 14 

CXCL6 C-X-C motif chemokine ligand 6 

CXCR1 C-X-C motif chemokine receptor 1 

CYBRD1 cytochrome b reductase 1 

CYP24A1 cytochrome P450 family 24 subfamily A member 1 

CYP2F1 cytochrome P450 family 2 subfamily F member 1 

DAPK2 death associated protein kinase 2 

DCXR dicarbonyl and L-xylulose reductase 

DISP1 dispatched RND transporter family member 1 

DNAAF1 dynein axonemal assembly factor 1 

DPYSL3 dihydropyrimidinase like 3 

DYNLRB2 dynein light chain roadblock-type 2 

EMP2 epithelial membrane protein 2 

F11 coagulation factor XI 

FERMT2 fermitin family member 2 

FLVCR2 FLVCR heme transporter 2 

FOXF1 forkhead box F1 

FOXJ1 forkhead box J1 

GDF15 growth differentiation factor 15 

GKN2 gastrokine 2 
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GPD1L glycerol-3-phosphate dehydrogenase 1 like 

GPM6B glycoprotein M6B 

GPR87 G protein-coupled receptor 87 

GPX3 glutathione peroxidase 3 

HDC histidine decarboxylase 

HEY1 hes related family bHLH transcription factor with YRPW motif 1 

HIF3A hypoxia inducible factor 3 subunit alpha 

HIVEP3 HIVEP zinc finger 3 

HS6ST2 heparan sulfate 6-O-sulfotransferase 2 

HSD17B6 hydroxysteroid 17-beta dehydrogenase 6 

ICAM2 intercellular adhesion molecule 2 

IL13RA2 interleukin 13 receptor subunit alpha 2 

IL18R1 interleukin 18 receptor 1 

IL18RAP interleukin 18 receptor accessory protein 

IL1R2 interleukin 1 receptor type 2 

IL1RL1 interleukin 1 receptor like 1 

INPP1 inositol polyphosphate-1-phosphatase 

ITGB8 integrin subunit beta 8 

KCNK3 potassium two pore domain channel subfamily K member 3 

KLF9 Kruppel like factor 9 

KRT15 keratin 15 

LCN2 lipocalin 2 

LHPP phospholysine phosphohistidine inorganic pyrophosphate phosphatase 

LSS lanosterol synthase 

MAP3K6 mitogen-activated protein kinase kinase kinase 6 

MFSD2A major facilitator superfamily domain containing 2A 

MGAM maltase-glucoamylase 

MLPH melanophilin 

MMP1 matrix metallopeptidase 1 

MMP7 matrix metallopeptidase 7 

MS4A2 membrane spanning 4-domains A2 

MSMB microseminoprotein beta 

MSMO1 methylsterol monooxygenase 1 

MVD mevalonate diphosphate decarboxylase 

MYLK myosin light chain kinase 

MZB1 marginal zone B and B1 cell specific protein 

NDRG4 NDRG family member 4 

NEK11 NIMA related kinase 11 

NFATC4 nuclear factor of activated T cells 4 

NTF3 neurotrophin 3 

PAPSS2 3'-phosphoadenosine 5'-phosphosulfate synthase 2 

PARD3 par-3 family cell polarity regulator 

PAX9 paired box 9 

PCTP phosphatidylcholine transfer protein 

PDLIM4 PDZ and LIM domain 4 

PEBP4 phosphatidylethanolamine binding protein 4 
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PGC progastricsin 

PIGA phosphatidylinositol glycan anchor biosynthesis class A 

PLA2G1B phospholipase A2 group IB 

PLA2G2A phospholipase A2 group IIA 

PLA2G7 phospholipase A2 group VII 

PROK2 prokineticin 2 

PRX periaxin 

PTPRB protein tyrosine phosphatase receptor type B 

PTPRE protein tyrosine phosphatase receptor type E 

RAMP3 receptor activity modifying protein 3 

RCAN2 regulator of calcineurin 2 

RENBP renin binding protein 

RGMA repulsive guidance molecule BMP co-receptor a 

RGS10 regulator of G protein signaling 10 

RGS16 regulator of G protein signaling 16 

RNF128 ring finger protein 128 

S100A2 S100 calcium binding protein A2 

S100A8 S100 calcium binding protein A8 

SCEL sciellin 

SCGB1A1 secretoglobin family 1A member 1 

SCN7A sodium voltage-gated channel alpha subunit 7 

SERPIND1 serpin family D member 1 

SFRP2 secreted frizzled related protein 2 

SFTPD surfactant protein D 

SIX1 SIX homeobox 1 

SLAMF7 SLAM family member 7 

SLC19A2 solute carrier family 19 member 2 

SLC6A4 solute carrier family 6 member 4 

SLCO1A2 solute carrier organic anion transporter family member 1A2 

SLCO2A1 solute carrier organic anion transporter family member 2A1 

SLN sarcolipin 

SOSTDC1 sclerostin domain containing 1 

SOX7 SRY-box transcription factor 7 

SPP1 secreted phosphoprotein 1 

SPRY4 sprouty RTK signaling antagonist 4 

SRXN1 sulfiredoxin 1 

ST6GALNAC1 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 1 

STEAP1 STEAP family member 1 

STRA6 signaling receptor and transporter of retinol STRA6 

SULF1 sulfatase 1 

TACC2 transforming acidic coiled-coil containing protein 2 

THBS4 thrombospondin 4 

TMPRSS4 transmembrane serine protease 4 

TNFRSF17 TNF receptor superfamily member 17 

TNNC1 troponin C1, slow skeletal and cardiac type 

TRO trophinin 
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UNC13B unc-13 homolog B 

VCAM1 vascular cell adhesion molecule 1 

VIPR1 vasoactive intestinal peptide receptor 1 

VNN2 vanin 2 

VWCE von Willebrand factor C and EGF domains 

WFDC2 WAP four-disulfide core domain 2 

XYLT2 xylosyltransferase 2 

ZBTB16 zinc finger and BTB domain containing 16 
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Table S3. GO terms enriched in the 76 features prioritized by machine learning. Adapted from 

(Fanidis, Pezoulas et al. 2023). 

ID Description 

GO:0030020 extracellular matrix structural constituent conferring tensile strength 

GO:0005201 extracellular matrix structural constituent 

GO:0005581 collagen trimer 

GO:0062023 collagen-containing extracellular matrix 

GO:0005583 fibrillar collagen trimer 

GO:0098643 banded collagen fibril 

GO:0005788 endoplasmic reticulum lumen 

GO:0048407 platelet-derived growth factor binding 

GO:0048771 tissue remodeling 

GO:0019955 cytokine binding 

GO:0098644 complex of collagen trimers 

GO:0005178 integrin binding 

GO:0030199 collagen fibril organization 

GO:0043062 extracellular structure organization 

GO:0030198 extracellular matrix organization 

GO:0008009 chemokine activity 

GO:0071559 response to transforming growth factor beta 

GO:0071560 cellular response to transforming growth factor beta stimulus 

GO:0042476 odontogenesis 

GO:0019730 antimicrobial humoral response 

GO:0042379 chemokine receptor binding 

GO:0002020 protease binding 

GO:0019838 growth factor binding 

GO:0046332 SMAD binding 

GO:0005125 cytokine activity 

GO:0030593 neutrophil chemotaxis 

GO:0004896 cytokine receptor activity 

GO:0071723 lipopeptide binding 

GO:0071347 cellular response to interleukin-1 

GO:0032963 collagen metabolic process 

GO:0048020 CCR chemokine receptor binding 

GO:0048247 lymphocyte chemotaxis 

GO:1990266 neutrophil migration 

GO:0009897 external side of plasma membrane 

GO:0071621 granulocyte chemotaxis 

GO:0002709 regulation of T cell mediated immunity 

GO:0042493 response to drug 

GO:0071356 cellular response to tumor necrosis factor 

GO:0070555 response to interleukin-1 

GO:0001664 G protein-coupled receptor binding 

GO:0001910 regulation of leukocyte mediated cytotoxicity 

GO:0097529 myeloid leukocyte migration 

GO:0010876 lipid localization 
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GO:0001914 regulation of T cell mediated cytotoxicity 

GO:0034612 response to tumor necrosis factor 

GO:1904018 positive regulation of vasculature development 

GO:0030595 leukocyte chemotaxis 

GO:0002822 regulation of adaptive immune response based on somatic recombination of 

immune receptors built from immunoglobulin superfamily domains 

GO:0097530 granulocyte migration 

GO:0031341 regulation of cell killing 

GO:0034103 regulation of tissue remodeling 

GO:0046849 bone remodeling 

GO:0043506 regulation of JUN kinase activity 

GO:0048545 response to steroid hormone 

GO:0009636 response to toxic substance 

GO:0031960 response to corticosteroid 

GO:0031214 biomineral tissue development 

GO:0110148 biomineralization 

GO:0004089 carbonate dehydratase activity 

GO:0071674 mononuclear cell migration 

GO:0031667 response to nutrient levels 

GO:0007178 transmembrane receptor protein serine/threonine kinase signaling pathway 

GO:0007584 response to nutrient 

GO:0002819 regulation of adaptive immune response 

GO:0001906 cell killing 

GO:0045124 regulation of bone resorption 

GO:0015718 monocarboxylic acid transport 

GO:0001913 T cell mediated cytotoxicity 

GO:0002460 adaptive immune response based on somatic recombination of immune 

receptors built from immunoglobulin superfamily domains 

GO:0015908 fatty acid transport 

GO:0006959 humoral immune response 

GO:0002456 T cell mediated immunity 

GO:0033197 response to vitamin E 

GO:0043589 skin morphogenesis 

GO:0016054 organic acid catabolic process 

GO:0046395 carboxylic acid catabolic process 

GO:0001909 leukocyte mediated cytotoxicity 

GO:0046850 regulation of bone remodeling 

GO:0006654 phosphatidic acid biosynthetic process 

GO:0006631 fatty acid metabolic process 

GO:0006869 lipid transport 

GO:0044272 sulfur compound biosynthetic process 

GO:0046322 negative regulation of fatty acid oxidation 

GO:0046473 phosphatidic acid metabolic process 

GO:0001912 positive regulation of leukocyte mediated cytotoxicity 

GO:0051216 cartilage development 

GO:0019755 one-carbon compound transport 

GO:0043200 response to amino acid 
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GO:0140375 immune receptor activity 

GO:0072676 lymphocyte migration 

GO:0001503 ossification 

GO:0007179 transforming growth factor beta receptor signaling pathway 

GO:0060348 bone development 

GO:0002475 antigen processing and presentation via MHC class Ib 

GO:0038166 angiotensin-activated signaling pathway 

GO:0045766 positive regulation of angiogenesis 

GO:0060326 cell chemotaxis 

GO:0002703 regulation of leukocyte mediated immunity 

GO:0090177 establishment of planar polarity involved in neural tube closure 

GO:0019216 regulation of lipid metabolic process 

GO:0031343 positive regulation of cell killing 

GO:1901342 regulation of vasculature development 

GO:0071496 cellular response to external stimulus 

GO:0002699 positive regulation of immune effector process 

GO:0001101 response to acid chemical 

GO:0042249 establishment of planar polarity of embryonic epithelium 

GO:0045453 bone resorption 

GO:0060135 maternal process involved in female pregnancy 

 

Table S4. MSigDB hallmark set enriched in the 76 features prioritized by machine learning. 

Adapted from (Fanidis, Pezoulas et al. 2023). 

ID Description 

HALLMARK_EPITHELIAL_MESENCHYMAL_T

RANSITION 

HALLMARK_EPITHELIAL_MESENCHYMAL_T

RANSITION 
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Table S5. Protein complexes of the 76 machine learning prioritized features potentially affected 

by IPF changes (CORUM3.0). Adapted from (Fanidis, Pezoulas et al. 2023). 

Complex Name Prioritized genes frequency Prioritized gene(s) in complex 

ITGAV-ITGB5-SPP1 complex 0.33 SPP1 

ITGAV-ITGB6-SPP1 complex 0.33 SPP1 

ITGAV-ITGB3-SPP1 complex 0.33 SPP1 

ITGAV-ITGB3-SPP1 complex 0.33 SPP1 

ITGAV-ITGB1-SPP1 complex 0.33 SPP1 

ITGA11-ITGB1-COL1A1 complex 0.33 COL1A1 

Sulphiredoxin-peroxiredoxin complex 0.50 SRXN1 

CR2-CD19 complex 0.50 CD19 

CP-LF complex 0.50 CP 

CP-MPO complex 0.50 CP 

ITGAV-ITGB8-MMP14-TGFB1 complex 0.25 ITGB8 

CD19-VAV1-PIK3R1 complex 0.33 CD19 

ITGA9-ITGB1-SPP1 complex 0.33 SPP1 

ITGA5-ITGB1-SPP1 complex 0.33 SPP1 

Chromatin remodeling complex  

(TACC2, TACC3, PCAF) 

0.33 TACC2 

FBXW7-CSF3R-GSK3B complex 0.33 CSF3R 

CP–LF–MPO complex 0.33 CP 

CTNNB1-FERMT2-TCF7L2 complex 0.33 FERMT2 

CTNNB1-FERMT2-YBX1 complex 0.33 FERMT2 

HIVEP3-RUNX2-WWP1 complex 0.33 HIVEP3 

P2X7 receptor signaling complex 0.08 PTPRB 

Itga5-Itgb1-Fn1-Sfrp2 complex 0.25 SFRP2 

MLL1-WDR5 complex 0.04 MGAM 

 

  



223 
 

Table S6. Relationship of lite model-used features to spirometry measurements. Table shows 

genes with significant relationships of the same direction in at least two datasets. Adapted from 

(Fanidis, Pezoulas et al. 2023). 

Gene Dataset Spirometry measurement Spearman rho p value 

ABCA3 GSE47460 

GPL6480 

% predicted DLCO 0.55 4.61E-04 

% predicted FEV1 post-bd 0.67 6.07E-03 

% predicted FEV1 pre-bd 0.36 1.90E-02 

% predicted FVC post-bd 0.72 2.51E-03 

% predicted FVC pre-bd 0.44 3.51E-03 

(FEV1 / FVC) post-bd -0.54 3.86E-02 

(FEV1 / FVC) pre-bd -0.41 6.40E-03 

GSE47460 

GPL14550 

% predicted DLCO 0.50 1.74E-10 

% predicted FEV1 post-bd 0.29 6.10E-03 

% predicted FEV1 pre-bd 0.43 1.45E-08 

% predicted FVC post-bd 0.41 8.68E-05 

% predicted FVC pre-bd 0.54 3.14E-13 

(FEV1 / FVC) post-bd -0.44 1.78E-05 

(FEV1 / FVC) pre-bd -0.50 1.37E-11 

ABHD5 GSE47460 

GPL6480 

% predicted DLCO 0.42 1.06E-02 

% predicted DLCO 0.37 3.98E-06 

% predicted FVC pre-bd 0.40 1.86E-07 

GSE32537 % predicted DLCO -0.25 1.47E-02 

% predicted FVC pre-bd -0.24 1.15E-02 

ACADL GSE47460 

GPL6480 

% predicted DLCO 0.65 1.40E-05 

% predicted FEV1 post-bd 0.77 8.15E-04 

% predicted FEV1 pre-bd 0.52 3.17E-04 

% predicted FVC post-bd 0.72 2.51E-03 

% predicted FVC pre-bd 0.60 2.24E-05 

(FEV1 / FVC) pre-bd -0.48 1.03E-03 

GSE47460 

GPL14550 

% predicted DLCO 0.65 1.76E-18 

% predicted FEV1 post-bd 0.50 9.12E-07 

% predicted FEV1 pre-bd 0.57 3.03E-15 

% predicted FVC post-bd 0.62 1.50E-10 

% predicted FVC pre-bd 0.67 5.31E-22 

(FEV1 / FVC) pre-bd -0.53 6.56E-13 

ADAMDEC1 GSE47460 

GPL6480 

% predicted FEV1 pre-bd -0.36 1.88E-02 

% predicted FVC pre-bd -0.34 2.65E-02 

GSE47460 

GPL14550 

% predicted FEV1 pre-bd -0.31 5.61E-05 

% predicted FVC pre-bd -0.37 1.90E-06 

AGER GSE47460 

GPL6480 

% predicted DLCO 0.74 1.61E-07 

% predicted FEV1 post-bd 0.70 4.01E-03 

% predicted FEV1 pre-bd 0.60 2.41E-05 

% predicted FVC post-bd 0.77 7.65E-04 

% predicted FVC pre-bd 0.68 6.05E-07 

(FEV1 / FVC) post-bd -0.63 1.23E-02 

(FEV1 / FVC) pre-bd -0.56 8.77E-05 
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GSE47460 

GPL14550 

% predicted DLCO 0.78 2.14E-30 

% predicted FEV1 post-bd 0.57 5.54E-09 

% predicted FEV1 pre-bd 0.66 2.62E-21 

% predicted FVC post-bd 0.65 5.34E-12 

% predicted FVC pre-bd 0.75 5.45E-30 

(FEV1 / FVC) post-bd -0.47 3.59E-06 

(FEV1 / FVC) pre-bd -0.54 2.84E-13 

GSE32537 % predicted DLCO 0.20 4.69E-02 

% predicted FVC pre-bd 0.25 8.57E-03 

AQP5 GSE47460 

GPL6480 

% predicted DLCO -0.39 1.68E-02 

% predicted FEV1 post-bd -0.60 1.92E-02 

% predicted FEV1 pre-bd -0.32 3.81E-02 

% predicted FVC post-bd -0.59 2.15E-02 

% predicted FVC pre-bd -0.36 1.74E-02 

GSE47460 

GPL14550 

% predicted DLCO -0.64 5.32E-18 

% predicted FEV1 post-bd -0.38 3.10E-04 

% predicted FEV1 pre-bd -0.46 1.04E-09 

% predicted FVC post-bd -0.48 1.90E-06 

% predicted FVC pre-bd -0.56 2.22E-14 

COL15A1 GSE47460 

GPL6480 

% predicted DLCO -0.59 1.16E-04 

% predicted FEV1 post-bd -0.76 1.06E-03 

% predicted FEV1 pre-bd -0.47 1.41E-03 

% predicted FVC post-bd -0.79 4.49E-04 

% predicted FVC pre-bd -0.56 7.93E-05 

(FEV1 / FVC) post-bd 0.64 9.92E-03 

(FEV1 / FVC) pre-bd 0.55 1.24E-04 

GSE47460 

GPL14550 

% predicted DLCO -0.61 2.40E-16 

% predicted FEV1 post-bd -0.45 8.92E-06 

% predicted FEV1 pre-bd -0.52 1.60E-12 

% predicted FVC post-bd -0.60 6.29E-10 

% predicted FVC pre-bd -0.63 6.50E-19 

(FEV1 / FVC) post-bd 0.53 9.95E-08 

(FEV1 / FVC) pre-bd 0.51 9.33E-12 

COL1A1 GSE47460 

GPL6480 

% predicted DLCO -0.61 5.41E-05 

% predicted FEV1 post-bd -0.89 7.94E-06 

% predicted FEV1 pre-bd -0.55 1.54E-04 

% predicted FVC post-bd -0.89 7.58E-06 

% predicted FVC pre-bd -0.64 4.52E-06 

(FEV1 / FVC) pre-bd 0.58 4.88E-05 

GSE47460 

GPL14550 

% predicted DLCO -0.65 1.78E-18 

% predicted FEV1 post-bd -0.48 1.70E-06 

% predicted FEV1 pre-bd -0.51 5.43E-12 

% predicted FVC post-bd -0.63 3.31E-11 

% predicted FVC pre-bd -0.62 3.42E-18 

(FEV1 / FVC) pre-bd 0.52 1.80E-12 

COMP % predicted DLCO -0.73 3.83E-07 
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GSE47460 

GPL6480 

% predicted FEV1 post-bd -0.74 1.61E-03 

% predicted FEV1 pre-bd -0.65 2.36E-06 

% predicted FVC post-bd -0.80 3.85E-04 

% predicted FVC pre-bd -0.68 4.42E-07 

(FEV1 / FVC) post-bd 0.62 1.44E-02 

(FEV1 / FVC) pre-bd 0.51 4.52E-04 

GSE47460 

GPL14550 

% predicted DLCO -0.74 6.47E-26 

% predicted FEV1 post-bd -0.53 9.12E-08 

% predicted FEV1 pre-bd -0.58 1.23E-15 

% predicted FVC post-bd -0.67 1.43E-12 

% predicted FVC pre-bd -0.69 2.22E-23 

(FEV1 / FVC) post-bd 0.54 6.70E-08 

(FEV1 / FVC) pre-bd 0.56 2.85E-14 

GSE32537 % predicted DLCO -0.25 1.56E-02 

% predicted FVC pre-bd -0.27 3.77E-03 

DCXR GSE47460 

GPL6480 

(FEV1 / FVC) post-bd -0.57 2.77E-02 

(FEV1 / FVC) pre-bd -0.40 7.80E-03 

GSE47460 

GPL14550 

% predicted DLCO 0.31 1.18E-04 

% predicted FVC pre-bd 0.31 7.41E-05 

(FEV1 / FVC) post-bd -0.28 7.95E-03 

(FEV1 / FVC) pre-bd -0.32 3.27E-05 

GSE32537 % predicted DLCO -0.27 9.32E-03 

% predicted FVC pre-bd -0.23 1.55E-02 

IL13RA2 GSE47460 

GPL6480 

% predicted DLCO -0.53 7.30E-04 

% predicted FEV1 post-bd -0.78 6.46E-04 

% predicted FEV1 pre-bd -0.43 3.65E-03 

% predicted FVC post-bd -0.83 1.13E-04 

% predicted FVC pre-bd -0.53 2.91E-04 

(FEV1 / FVC) post-bd 0.70 3.50E-03 

(FEV1 / FVC) pre-bd 0.57 6.13E-05 

GSE47460 

GPL14550 

% predicted DLCO -0.67 1.47E-20 

% predicted FEV1 post-bd -0.51 4.92E-07 

% predicted FEV1 pre-bd -0.52 1.30E-12 

% predicted FVC post-bd -0.64 1.21E-11 

% predicted FVC pre-bd -0.65 2.73E-20 

(FEV1 / FVC) post-bd 0.55 3.37E-08 

(FEV1 / FVC) pre-bd 0.55 9.91E-14 

GSE32537 % predicted FVC pre-bd -0.26 5.69E-03 

MMP7 GSE47460 

GPL6480 

% predicted DLCO -0.65 1.27E-05 

% predicted FEV1 post-bd -0.76 8.92E-04 

% predicted FEV1 pre-bd -0.49 7.46E-04 

% predicted FVC post-bd -0.76 1.00E-03 

% predicted FVC pre-bd -0.54 1.72E-04 

(FEV1 / FVC) pre-bd 0.44 3.37E-03 

GSE47460 

GPL14550 

% predicted DLCO -0.70 1.68E-22 

% predicted FEV1 post-bd -0.46 6.39E-06 
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% predicted FEV1 pre-bd -0.58 1.35E-15 

% predicted FVC post-bd -0.56 1.13E-08 

% predicted FVC pre-bd -0.68 1.15E-22 

(FEV1 / FVC) pre-bd 0.53 1.05E-12 

PAPSS2 GSE47460 

GPL6480 

% predicted DLCO 0.60 1.02E-04 

% predicted FEV1 post-bd 0.60 1.75E-02 

% predicted FEV1 pre-bd 0.50 5.87E-04 

% predicted FVC post-bd 0.64 1.10E-02 

% predicted FVC pre-bd 0.61 1.61E-05 

(FEV1 / FVC) pre-bd -0.54 2.06E-04 

GSE47460 

GPL14550 

% predicted DLCO 0.70 6.82E-23 

% predicted FEV1 post-bd 0.50 7.95E-07 

% predicted FEV1 pre-bd 0.55 1.10E-13 

% predicted FVC post-bd 0.62 1.56E-10 

% predicted FVC pre-bd 0.67 8.12E-22 

(FEV1 / FVC) pre-bd -0.56 3.04E-14 

DLCO: diffusing capacity of the lungs for carbon monoxide; FEV1: forced expiratory volume in 1 second; FVC: forced vital 

capacity; pre/post bd: pre/post bronchodilator 
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Table S7. ENPP2 differentially methylated features between colorectal cancer (CRC) cells prior 

to and post to 5-Aza-CdR treatment (GSE51815). Negative Δβ values verify demethylation of all 

examined CGs. Adapted from (Panagopoulou, Fanidis et al. 2021). 
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*Mean β (Mβ) value 1 represents methylation without 5-Aza-CdR treatment and *Mean β (Μβ) value 2; methylation in 5-Aza-

CdR treated cell lines; #Δβ value: (Mean β value 2-Mean β value 1); PA: Promoter Associated, TSS: Transcription Start Site, 

5-Aza-CdR: 5-AZA-2'-deoxycytidine, HT116 1KO: colon cancer cell line, knockout of the DNA methyltransferase gene 

DNMT1, HT116 3BKO: colon cancer cell line, knockout of the DNA methyltransferase gene DNMT3B 

 

Table S8. Taxa of the indicated taxonomic level and diet. Adopted from (Galaris, Fanidis et al. 

2022). 
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Table S9. Number of taxa shared between conditions as revealed by pairwise comparisons. 

Adopted from (Galaris, Fanidis et al. 2022). 

 

Table S10. Detected genera of the recorded phyla and families. Red font marks genera affected by 

high fat diet in at least a single tissue (HFD to control relative abundance difference other than zero). 

Adopted from (Galaris, Fanidis et al. 2022). 

 

Table S11. Super-antigen related species detected in our dataset. Reference list of related species 

retrieved from UniProt database and/or the literature. Adopted from (Galaris, Fanidis et al. 2022). 
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Table S12. IPF_vs_Ctrl and Bleomycin_vs_Ctrl Fibromine datasets interrogated for LCN2 

differential transcription. It was found up-regulated in several occasions. Red font marks comparisons 

iconized in figures 21 and 23 of the main text. Adopted from (Galaris, Fanidis et al. 2023). 

 
LTRC: lung tissue research consortium; Dotted line separates significant (top) from non-significant (bottom) human 

comparisons. 

Table S13. Single cell datasets used for the exploration of LCN2/Lcn2 cell specific expression. 

Adapted from (Galaris, Fanidis et al. 2023). 
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Table S14. Neutrophil and epithelial cells of multiple human and mouse organs are marked by 

ENPP2/Enpp2 expression (CellMarker2.0). Adopted from (Galaris, Fanidis et al. 2023). 

 

Table S15. TKS5 differential transcription between IPF and control samples from Fibromine. 

Adopted from (Barbayianni, Kanellopoulou et al. 2023). 

 
LTRC: lung tissue research consortium 
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Table S16. Demographic and clinical description of lung tissue donors. Adopted from (Barbayianni, 

Kanellopoulou et al. 2023). 

 
FVC%: %predicted forced vital capacity; DLCO%: %predicted carbon monoxide diffusing capacity; FEV1%: %predicted 

forced expiratory volume in 1 second. 

 

Table S17. Demographic and clinical description of lung fibroblast donors. Comparison between 

IPF and control groups was performed with two-sided unpaired t-test (**p=0.0029 ****p<0.0001). 

Adopted from (Barbayianni, Kanellopoulou et al. 2023). 

 
FVC%: %predicted forced vital capacity; DLCO%: %predicted carbon monoxide diffusing capacity; FEV1%: %predicted 

forced expiratory volume in 1 second. 
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Table S18. Factors that create a transcriptional profile similarly to that of TGFβ-induced Tks5+/-
 

lung fibroblasts. Adopted from (Barbayianni, Kanellopoulou et al. 2023). 

 
NCS: normalized connectivity score 

Table S19. Description of single cell datasets used. Adapted from (Barbayianni, Kanellopoulou et al. 

2023). 

Idiopathic pulmonary fibrosis; Hypersensitivity pneumonitis; Interstitial lung disease associated with systemic sclerosis; 

Myositis; Nonspecific interstitial pneumonia; Unclassifiable; Chronic hypersensitivity pneumonitis; Sarcoidosis; Extrinsic 

allergic alveolitis. #NS: nasopharyngeal samples  

Disease PMID Dataset Tissue Cells 
#Disease/ 

#Ctrl 
Note 

C
O

V
ID

-1
9

 

32591762 figshare 

N
S

#
 135600 27/5 Main object 

33361824 figshare 88177 32/16  

32514174 covid_cell_atlas 

P
B

M
C

 44721 7/6  

32810438 fastgenomics 99049 27/22 Cohort one 

32398875 
UCSC cell 

browser 

B
A

L
F

 66452 9/4  

33429418 GSE155249 77146 15/0 Main object 

33257409 GSE158127 

L
u

n
g
 

155413 12/10 Bharat samples 

33915569 SCP1052 106792 16/0  

IL
D

s*
 

33650774 github 233780 33/29 Integrated object 

https://pubmed.ncbi.nlm.nih.gov/32591762/
https://figshare.com/articles/dataset/COVID-19_severity_correlates_with_airway_epithelium-immune_cell_interactions_identified_by_single-cell_analysis/12436517
https://pubmed.ncbi.nlm.nih.gov/33361824/
https://figshare.com/articles/dataset/Hypertension_delays_viral_clearance_and_exacerbates_airway_hyperinflammation_in_patients_with_COVID-19/13200278
https://www.ncbi.nlm.nih.gov/pubmed/32514174
https://hosted-matrices-prod.s3-us-west-2.amazonaws.com/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25/blish_covid.seu.rds
https://pubmed.ncbi.nlm.nih.gov/32810438/
https://beta.fastgenomics.org/datasets/detail-dataset-952687f71ef34322a850553c4a24e82e#Files
https://www.ncbi.nlm.nih.gov/pubmed/32398875
http://cells.ucsc.edu/covid19-balf/nCoV.rds
http://cells.ucsc.edu/covid19-balf/nCoV.rds
https://pubmed.ncbi.nlm.nih.gov/33429418/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155249
https://www.ncbi.nlm.nih.gov/pubmed/33257409
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158127
https://pubmed.ncbi.nlm.nih.gov/33915569/
https://singlecell.broadinstitute.org/single_cell/study/SCP1052/covid-19-lung-autopsy-samples
https://pubmed.ncbi.nlm.nih.gov/33650774/
https://github.com/theislab/2020_Mayr
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Figure S20. Stimuli used for the treatment of HCK-8 cells. Adapted from (Magkrioti, Antonopoulou 

et al. 2022). 

Stimulus  Target C (ng/ml) Stimulus  Target C (ng/ml) 

Pam3CSK4  1000 Activin A  100 

Poly(I:C) HMW  10000 DKK-1  100 

LPS-EK standard  10000 IFN beta  50 

FLA-ST standard  1000 IL-12  50 

FSL1  1000 IL17F  100 

Imiquimod  1000 IL22  200 

ssRNA40/LyoVec  1000 IL23  100 

C12-iE-DAP  1000 PDGF-AA  50 

MDP  10000 PDGF-AB  100 

Tri-DAP  10000 PDGF-BB  50 

IL17A  100 IL16 (121)  100 

NT-3  200 IL6  100 

NT-4  100 TNFA  100 

SCF  100 IL-13  100 

SCGF-A  500 CXCL14/BRAK  200 

SFAS ligand  10 CCL4L1/LAG1  200 

Soluble RANK ligand  100 CCL3L1/LD78B  200 

TGFB1  10 CCL28/MEC  50 

TGFB2  10 CCL19/MIP3B  500 

TGFB3  10 Amphiregulin (98)  100 

VCAM-1  100 BMP-13/CDMP-2  300 

VEGF 121  100 BMP-3  100 

WISP-3  150 CTGF  50 

ANG-1  250 CTGFL/WISP-2  50 

ANG-2  500 CYR61  200 

GMF-beta  100 EG-VEGF  100 

CCL2  200 Endostatin  1000 

CCL3  200 Epigen  400 

CCL4  1000 FGF-10  500 

CCL5  500 FGF-16  100 

SDF-1A  200 FGF-17  100 

SDF-1B  200 FGF-18  100 

GM-CSF  20 FGF-21  10 

IFN-G  100 FGF-23  50 

IL-1A  50 FGF-4  100 

IL-1B  50 FGF-5  50 

IL-10  10 FGF-6  250 

Human EGF  

(Animal Free)  

100 FGF-8  100 

Beta-NGF  50 FGF-9  100 
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FGF-acidic  100 Pleiotrophin  100 

Galectin-1  100 Slit2-N  500 

Galectin-3  20 APRIL  200 

GDF-11  10 BMP-2  100 

IL4  100 BMP-4  200 

HGF  50 BMP-6  300 

BDNF  50 BMP-7  100 

Klotho  50 FGF-20  20 

NOGGIN  200 G-CSF  100 

OPG  10 GDF-7  100 

PDGF-CC  125 IL-11  100 

PEDF  200 WNT-1  50 

sCD100  50 Betacellulin  50 

sCD14  130 IL-15  100 

sCD40 ligand  500 IL19  100 

SDLL-1  500 IL20  200 

SDLL-4  500 IL9  30 

SFRP-1  100 KGF  100 

Sonic 

HedgeJoq  

200 IL17B  100 

SPARC  100 IL17D  200 

TGFA  200 IL17E  100 

CNTF  200 Dexamethasone  392 

GDNF  200 Riluzole hydrochloride  4006 

TRAIL  100 Norethindrone  3999 

TWEAK  100 Clomipramine 

hydrochloride  

4005 

VEGF 165  100 Clenbuterol 

hydrochloride  

4015 

VEGF-B  100 Betaxolol hydrochloride  3989 

Visfatin  250 Bisacodyl  3975 

WISP-1  200 Cisapride  4007 

WNT-7A  25 Digitoxigenin  3970 

HB-EGF  50 Progesterone  4025 

IGF-BP2  500 Serotonin hydrochloride  5901 

IGF-BP4  100 Benperidol  3967 

IGF-BP5  100 Betahistine mesylate  5648 

IGF-BP7  30 Hexestrol  4001 

IGF-II  100 Tolmetin sodium salt 

dihydrate  

3519 

CDNF  10 Carbachol  3982 

MANF  100 Promethazine 

hydrochloride  

3979 

Midkine (MK)  100 Nisoxetine 

hydrochloride  

3528 
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Menadione  3995 

Prestw-1494   

Hydrocotarnine  3989 

Procyclidine hydrochloride  3564 

Digoxin  4061 

Metacycline  3716 

Beta-Escin  3620 

Epigallocatechin-3-gallate (EGCG)  45840 

Mepyramine  2854 

Lovastatin  3959 

High glucose  9008000 

Forskolin / Coleonol  4105 

Staurosporine  466 

PMA (Phorbol 12-myristate 13- acetate)  500 

Insulin  1000 

Formaldehyde  150 

NaCl  8766000 

H2O2  17005 

Dimethyloxalylglycine  175140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Original publications 

Fibromine is a multi-omics database and mining tool for target discovery in pulmonary 

fibrosis 

Fibromine: μια πολυ-ωματική βάση δεδομένων και εργαλείο εξόρυξης δεδομένων για την 

ανακάλυψη στόχων στην πνευμονική ίνωση 

Η ιδιοπαθής πνευμονική ίνωση είναι μια θανάσιμη ινοπολλαπλασιαστική ασθένεια με  

περιορισμένες θεραπευτικές επιλογές. Η εξέταση διαφορικής έκφρασης επηρεασμένων 

περιοχών υπήρξε καταλυτική για την ανατομία εμπλεκόμενον παθογενετικών μηχανισμών και 

την ανακάλυψη θεραπευτικών στόχων. Εντούτοις, οι προσπάθειες σύγκρισης/εξόρυξης 

δεδομένων από τα πολλαπλά σχετικά δημοσίως διαθέσιμα σύνολα δεδομένων με στόχο την 

επαλήθευση και τον σχηματισμό ερευνητικών υποθέσεων είναι πολύ λίγες. Σε αυτό το πλαίσιο 

παρουσιάζουμε το Fibromine, μία ενωποιητική βάση δεδομένων και περιβάλλον εξερεύνησης 

που αποτελείται απο συνεκτικώς επαναναλυμένα, χειρωνακτικώς σχολιασμένα 

μεταγραφωμικά και πρωτεωμικά σύνολα δεδομένων πνευμονικής ίνωσης. Τα σύνολα αυτά 

καλύπτουν ένα μεγάλο εύρος πειραματικών σχεδιασμών τόσο σε δείγματα ασθενών όσο και 

σε ζωικά μοντέλα. Πρόσβαση στο Fibromine δίνεται μέσω μιας R Shiny εφαρμογής 

(http://www.fibromine.com/Fibromine) η οποία προσφέρει λειτουργίες δυναμικής 

εξερεύνησης και ενωποίησης δεδομένων της βάσης σε πραγματικό χρόνο. Επιπροσθέτως, 

εισαγάγουμε ένα καινούργιο σύστημα συγκριτικής αξιολόγησης μεταγραφωμικών συνόλων 

δεδομένων χρήσει διαφόρων λανθανόντων χαρακτηριστικών τους. Μέσω αυτού καταλήγουμε 

σε βαθμονόμηση των συνόλων προκειμένου να βοηθήσουμε τον χρήστη στην επιλογή των 

καταλληλότερων εξ αυτών. Ακόμη, η κυτταρική εξειδίκευση στην έκφραση γονιδίων μπορεί 

να οπτικοποιηθεί και να εξερευνηθεί σε σύνολα δεδομένων έκφρασης μεμονωμένων κυττάρων 

σε μία προσπάθεια σύνδεσης δεδομένων κληρονομιάς (legacy data) με δεδομένα τεχνολογίας 

αιχμής. Τέλος, παρουσιάζονται διάφορα παραδείγματα χρήσης του εργαλείου, αναπαραγώγιμα 

από οποιονδήποτε μη εξειδικευμένο χρήστη, ο οποίος αποτελεί και τον πρωταρχικό αποδέκτη 

αυτού του εγχειρήματος. 

 

http://www.fibromine.com/Fibromine
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Fibromine is a multi‑omics 
database and mining tool for target 
discovery in pulmonary fibrosis
Dionysios Fanidis1, Panagiotis Moulos2* & Vassilis Aidinis1*

Idiopathic pulmonary fibrosis is a lethal lung fibroproliferative disease with limited therapeutic 
options. Differential expression profiling of affected sites has been instrumental for involved 
pathogenetic mechanisms dissection and therapeutic targets discovery. However, there have been 
limited efforts to comparatively analyse/mine the numerous related publicly available datasets, to 
fully exploit their potential on the validation/creation of novel research hypotheses. In this context 
and towards that goal, we present Fibromine, an integrated database and exploration environment 
comprising of consistently re‑analysed, manually curated transcriptomic and proteomic pulmonary 
fibrosis datasets covering a wide range of experimental designs in both patients and animal models. 
Fibromine can be accessed via an R Shiny application (http:// www. fibro mine. com/ Fibro mine) which 
offers dynamic data exploration and real‑time integration functionalities. Moreover, we introduce a 
novel benchmarking system based on transcriptomic datasets underlying characteristics, resulting to 
dataset accreditation aiming to aid the user on dataset selection. Cell specificity of gene expression 
can be visualised and/or explored in several scRNA‑seq datasets, in an effort to link legacy data with 
this cutting‑edge methodology and paving the way to their integration. Several use case examples are 
presented, that, importantly, can be reproduced on‑the‑fly by a non‑specialist user, the primary target 
and potential user of this endeavour.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive idiopathic pulmonary disease mainly manifested 
in older adults and characterized by extensive fibrosis of the lung interstitium that irreversibly affects normal 
lung  function1. Although presenting a highly heterogeneous clinical course, half of the IPF patients succumb to 
respiratory failure or life-threatening comorbidities within 2–5 years post  diagnosis2–4. Its enhanced morbidity, 
increased incidence among elder  individuals4 and the lack of a curative  option2 render IPF a rare disease of major 
concern, especially for ageing societies. Currently, new studies focus on providing healthcare practitioners with 
invaluable information about patient stratification and prioritization, non-pharmaceutical treatment options and 
medications confronting potentially fatal  comorbidities2. Nevertheless, the task of new disease targets discovery 
is still greatly unfulfilled, as the most currently approved anti-fibrotics, nintedanib and pirfenidone, may delay 
lung function decline, but cannot help patients evade a fatal  outcome5.

Since their first appearance, omics technologies have been extensively used to assess pathological deregula-
tion in multiple molecular levels, thus physically leading to the progressive accumulation of a great volume 
of publicly available datasets. As far as IPF is concerned, a large number of expression profiling studies in IPF 
patients, as well as animal models, have been performed providing the scientific society with important lists of 
implicated targets such as that of Kim et al.6. Most of their datasets have been deposited in public repositories, 
but the qualitative assessment and mining of this vast legacy information, require significant expertise and time 
investment, not always available at the average research lab.

Irrespective of its laborious nature, comparative meta/re-analysis of publicly available datasets would provide 
additional means to discover novel pathogenic targets. Towards this direction, several attempts have been made 
to integrate IPF  datasets7–11, yet none of them spans a comprehensive collection of sample types, technologies 
and pathology models, while real-time data exploration features are either limited or absent.

Recognizing the need for a centralized, easily operable and comprehensive source of IPF(-related) data, we 
here introduce Fibromine, an open source application and database of integrable omics datasets accompanied 
by rich gene/RNA/protein level annotation and dataset meta-data. Currently, Fibromine hosts 60 consistently 
re-analysed and manually curated transcriptomic and proteomic datasets ranging over 42 unique comparisons, 
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two species and several cell culture-based experiments. Moreover, and to increase data resolution, our database 
hosts a collection of more than 200,000 single cells originating from healthy and various pulmonary diseases sam-
ples. Fibromine can be accessed through a website (http:// www. fibro mine. com/ Fibro mine) that offers, amongst 
others: (i) within and across species integration of the supported datasets (Dataset explorer), (ii) interrogation 
of coding and non-coding gene expression patterns (Gene explorer; miRNA explorer), and (iii) exploration of 
protein abundance changes during disease (Protein explorer). In addition, other functionalities include the crea-
tion of disease-specific protein–protein interaction (PPI) (Protein explorer) and lung-specific gene co-expression 
networks (Gene co-expression), inter-connection with single cell resolution data visually via Gene explorer and 
in more detail via Single cell data tab, pathway analysis of consensus differentially expressed genes (cDEGs) and 
creation of heatmaps and volcano plots (Dataset explorer). Last but not least, in order to guide the user through 
transcriptomic datasets’ underlying characteristics and inherent variability, a dataset benchmarking strategy 
based on seven distinct metrics has been applied (Datasets benchmarking tab). Conclusively, Fibromine not only 
aims to facilitate specialist and non-specialist users to validate their findings/observations and/or form nascent 
hypotheses prior to any time-consuming wet lab validation, but also to boost downstream research attempts via 
unconstrained access to all database data and integration/mining outputs.

Results
Fibromine datasets selection, re‑analysis, curation and organization. Aiming to create a central-
ized repository for IPF omics data, we catalogued a plethora of publicly available microarray and RNA-seq tran-
scriptomic datasets via PubMed and omicsdi.org using “IPF” and “bleomycin” as search keywords for human 
and mouse datasets, respectively. In the case of omicsdi.org, search results were further narrowed down using 
the “Transcriptomics” filter. Datasets included in the work of Villaseñor-Altamirano11 were also taken into con-
sideration and finally, references from an IPF transcriptomics  review3 along with results from  ReGEO12 search 
using the “IPF” keyword were intersected with the already found datasets to form an initial pool of IPF datasets. 
To maintain the most informative, we excluded, among others, those consisting of less than three biological rep-
licates, those of poor data quality (see further down), as well as those created using custom developed platforms 
(Fig. 1a). A few exceptions to the latter criterion were made to include datasets such as GSE31934 that address 
rarely explored scientific questions.

A major issue in all meta-analytic efforts that include data from various technological principles is the pres-
ence of technical heterogeneity within and across datasets that can, if ignored, greatly affect the data integration 
results by introducing non-biological sources of variability. Hence, to address technical variability in a scalable 
fashion that would facilitate future Fibromine updates without the requirement of already included data re-
processing, we have re-analysed the collected transcriptomic datasets in a modular fashion maintaining the 
same re-analysis methods/parameters both across and within technologies in the highest degree possible. Then, 
to pinpoint and remove any sample outliers, all re-analysed datasets were manually curated using Principal 
Component Analysis (PCA)/MultiDimensional Scaling (MDS) and samples hierarchical clustering plots (Fig. 1a, 
Supplementary Fig. S1). Datasets failing to pass quality control criteria were excluded.

Subsequently, in order to further increase data resolution, we have pinpointed marker genes of all pathology-
originating cells compared to healthy donated ones, as integrated by Mayr et al.13. Pathology versus healthy state 
comparisons were performed for over 40 cell types’ top variable genes, resulting in an expression profiling of ten 
different pulmonary diseases.

Furthermore, in order to complement differential gene expression data, we retrieved deregulated proteins 
between IPF and control/healthy individuals from respective publications (Fig. 1a). The latter were selected 
via an extensive manual literature search and the only criterion applied for dataset selection was the provision 
of Differential Expression Analysis (DEA) results for more than just a couple of proteins in a tabular format. 
Proteomic datasets selection procedure was not as strict as the one for gene expression data, due to the relatively 
small number of the former publications relative to the  latter14,15. Proteins quantified in mixtures/same aptamer 
were removed, while DEA thresholds were kept as is in each original publication.

With the purpose of organising the aforementioned data, we created Fibromine, a dedicated application 
backed by a manually curated database that holds both DEA results and normalized transcriptomics data from 
47 human and 13 murine datasets (Fig. 1a, Supplementary Fig. S2). Subsequently, because several datasets sup-
port multiple DE comparisons, we armed Fibromine with a controlled vocabulary of terms so as to be able to 
effectively codify and match all included phenotypes/DE comparisons across datasets. More specifically, based 
on respective literature and GEO retrieved nomenclature, all DEA comparisons were denoted by a three-part 
phrase, such as A_vs_B (or A vs B), where the first and third elements represent the two participating experi-
mental conditions. Any dashes or underscores used in the comparisons pre-fix and suffix elements, A and B, 
separate sample from potential treatments and/or time-points. The capital letter D followed by one or multiple 
digits is used to denote the day of sample collection respective to the starting time-point of a given treatment.

Last, to enrich these data and support an unhampered by external parameters data exploration experience 
we have also included into Fibromine gene, transcript and protein level annotation retrieved from  Ensembl16, 
UniProt/Swiss-Prot17 and STRING  databases18, as well as gene ontology terms from Refs.19,20, miRNA annotation 
downloaded from  mirBase21 and miRNA target interaction predictions from  miRDB22 (Fig. 1a). Human and 
mouse transcription factor annotation was obtained from Refs.23,24, respectively. All operations were supported 
by in-house developed R/bash scripts and the use of  GEOquery25 and  biomaRt26 Bioconductor packages.

Conclusively, Fibromine is an ab initio created IPF-oriented database that interlinks a great volume of DEA 
results with rich out-sourced annotation. In addition, it is worth mentioning that Fibromine is the first lung 
fibrosis database that encompasses multi-omics and multi-species data, thus offering a great starting line for 
comparative meta-analyses.

http://www.fibromine.com/Fibromine
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Fibromine datasets benchmarking. As meta-analytic collections are prone to factors introducing bio-
logical/technical heterogeneity and IPF is a highly heterogeneous pathology, Fibromine’s controlled vocabulary 

Figure 1.  Fibromine database creation workflow and homonymous web server map. (a) Fibromine included 
datasets were discovered via literature, https:// www. omics di. org/ and http:// www. regeo. org/ scrutiny prior 
to specific criteria-based selection. Transcriptomic datasets were re-analysed and manually curated, while 
differentially expressed proteins were gleaned from respective publications. Differential expression was 
performed in a collection of three integrated scRNA-seq datasets. Annotation was sourced from various open-
access resources. (b) Fibromine web interface is Shiny-powered. It is made out of three main explorers Dataset, 
Gene and Protein explorer and several smaller ones, while Datasets benchmarking tab provides a metrics-based 
system of datasets accreditation. Single cell data tab provides a list of relative published studies along with DEA 
results from three integrated datasets. The user can also map a gene directly to several single cell datasets via 
Gene explorer. MDS: multi-dimensional scaling, PCA: principal component analysis. Annotation sources: 
https:// string- db. org/, https:// ensem bl. org/, https:// mirba se. org/, http:// geneo ntolo gy. org/, https:// unipr ot. org/, 
http:// bioin fo. life. hust. edu. cn/ Anima lTFDB/, http:// mirdb. org/. Figure was created using https:// www. google. 
com/ slides/ about/.

https://www.omicsdi.org/
http://www.regeo.org/
https://string-db.org/
https://ensembl.org/
https://mirbase.org/
http://geneontology.org/
https://uniprot.org/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/
http://mirdb.org/
https://www.google.com/slides/about/
https://www.google.com/slides/about/
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may be up to a certain point capable of standardizing the DE comparisons included, but definitively cannot assess 
datasets underlying biological and technical differences that may affect any downstream integration attempt. For 
this reason, as well as the fact that most datasets’ meta-data do not comprehensively describe crucial informa-
tion that would assist in a variability reduction endeavour, instead of directly dealing with data variability we 
next set to offer a thorough means of datasets evaluation, easily interpretable by all users. For such a purpose, 
we designed a dataset assessment system, which we implemented on dataset/DEA groupings (Fig. 2a) in order 
to distinguish and accredit the most similar datasets within certain groups shaped using experimentally-based 
criteria. Our strategy is currently based on seven broadly used metrics: (i) the number of detected and (ii) dif-
ferentially expressed genes, (iii) the representation of known pro-fibrotic genes among each dataset’s Differen-
tially Expressed (DE) genes, (iv) the number of genes with low {x, 1.2 < x < 2)}, intermediate {x, 2 ≤ x < 5} or high 
{x, 5 ≤ x} absolute fold change, (v) the ratio of up- to down-regulated genes, as well as the area under their (vi) 
nominal and (vii) adjusted p-value distributions. Human pro-fibrotic genes already known to be implicated in 
pulmonary fibrosis were collected both from Ref.3 and from our lab’s multi-year observations, while their homo-
logue counterparts, as reported in Ensembl database, were used for murine datasets assessment.

More specifically, we separated all bulk transcriptomic data by technology, platform, species, dataset and DEA 
comparison and then calculated the aforementioned metrics (Fig. 2a,b). Afterwards, data were grouped per spe-
cies/technology and metric-specific distributions were constructed (Fig. 2c,d). Last, datasets/DEA comparisons 
were accredited a star for every calculated value of a metric lying within a pre-specified distribution interval 
(7 stars at maximum) (Fig. 2e,f, Supplementary Fig. S3). All benchmarking results are recorded at Dataset and 
Gene explorer matrices, while an analytical description of the process along with intermediate products can be 
found at Datasets benchmarking tab of Fibromine. Datasets/DEA comparisons with more stars are most similar 
to each other relative to the rest of the group. Datasets investigating exclusively non-coding genes were processed 
separately using the same workflow. Finally, because our database addresses a wide variety of experimental con-
ditions which are expected to affect benchmarking results when assessed simultaneously, we have repeated the 

Figure 2.  Fibromine transcriptomic datasets benchmarking workflow. In order to reveal the most 
homogeneous transcriptomic datasets of Fibromine, seven metrics were calculated (b) post to data separation 
(a). Subsequently, transcriptomic data were grouped per species and technology (c) and seven metric-specific 
distributions were shaped for each of the dataset groups (d). Finally, every dataset/DEA comparison was 
evaluated relative to the rest of its grouping and assigned a star if the calculated criterion value lied within a pre-
specified interval of the respective distribution (e). Each dataset received 7 stars to the maximum and none to 
the minimum. Datasets with many stars are more closely related to each other than to the rest of the group. (f) A 
real example of stars assignment: red dots are datasets/DEA comparisons assigned a star for the Number of pro-
fibrotic genes criterion. Datasets investigating exclusively non-protein coding genes were processed separately 
using the same workflow. Boxplots depict the interquartile range and median of the data; whiskers extend no 
longer than 1.5 times the length of the boxplot. DEGs: differentially expressed genes, FC: fold change, AUC: area 
under the curve. Figure was created using https:// ggplo t2. tidyv erse. org/ v3.5.5 and https:// www. google. com/ 
slides/ about/.

https://ggplot2.tidyverse.org/
https://www.google.com/slides/about/
https://www.google.com/slides/about/
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aforementioned process exclusively for datasets belonging to important Fibromine comparisons (IPF_vs_Ctrl 
and BleomD14_vs_Ctrl on lung tissue) (Supplementary Fig. S4).

To conclude with, although not completely treating data variability, the realized datasets benchmarking 
strategy provides an extra layer of datasets comparative information, not readily available neither from raw, 
publicly available data, nor directly extractable from respective publications, based on which the most interest-
ing/ “homogeneous” datasets can be picked for integration and/or mining.

Fibromine online interface: a web tool for IPF data integration and mining. A central pillar of 
the hereby described endeavour, is to facilitate data mining (mainly data summarization and aggregation) and 
comparative exploration of Fibromine data for the non-specialist user. For this reason, we have developed a 
Shiny-based online application that enables data access from three distinct but complementary points of obser-
vation: from a dataset (Dataset explorer), from a gene (Gene explorer; miRNA explorer) and from a protein level 
(Protein explorer). In addition to the aforementioned layers of information, Gene co-expression tab graphically 
displays significant modules of human and mouse lung-specific gene co-expression networks, while Single cell 
data > Search data tab presents in a tabular format DEA results for a great number of single cells.

Dataset explorer. To begin with, Fibromine’s Dataset explorer is divided into two tabs responsible for bulk 
transcriptomic (Transcriptomic datasets) and proteomic datasets (Proteomic datasets) (Fig. 1b), each one organ-
ised around a central interactive table. The user’s input is minimized to the selection of one (exploration) or mul-
tiple datasets of interest (integration) and the subsequent press of a button. Particularly, as far as transcriptomic 
datasets integration is concerned, Fibromine initially detects between datasets cDEGs (Fig. 3, Supplementary 
Fig. S5). Subsequently, it examines the available proteomic datasets matching the selected datasets experimental 
parameters for any consensus differentially expressed protein (cDEP) coded by any of the cDEGs. Addedly, in 
order to facilitate biological interpretation of the cDEG list, the user can perform over-representation analysis 
based on five gene-term libraries, exploiting the Pathway analyses tool provided. Concerning proteomic datasets 
integration, cDEPs are identified using the same pipeline of cDEGs determination. For more technical details 
about cDEGs and cDEPs, please, refer to "Methods" section of the paper.

Understanding the limitations and subjective nature of adopting strict statistical thresholds for consensus 
differentially expressed features (cDEFs) definition (“Methods” section), we have enabled the user to adjust the 
default fold change and hypothesis testing constraints used during transcriptomics data integration. This feature 
is not available for proteomic datasets, because the original publication thresholds were considered as is for the 
identification and isolation of Fibromine-included DE proteins. Moreover, the user can further influence the 
strictness of cDEFs report via the Out of … Datasets column of Consensus DEGs/Consensus DEPs result tables, 
that controls the number of datasets out of the n user-selected ones where a feature’s expression has to be found 
consistently divergent, in order to be recognised as a cDEF (“Methods” section).

Last, as an extra means for transcriptomic datasets inspection, an interactive exploratory heatmap and volcano 
plot can be depicted upon demand at the Dataset plots tab of the explorer. There, the user can examine samples 
hierarchical clustering and create a volcano plot for each queried dataset. Selected markers of fibrosis are shown 
in the volcano plot providing a coarse-grained estimation of each dataset’s quality.

Gene explorer. Being able to acquire differential gene expression data across a great number of samples 
and datasets in a targeted fashion, is a catalytic step towards supporting wet lab findings and fuelling novel 
hypotheses formation. To painlessly retrieve the aforementioned information from Fibromine, we have imple-
mented Gene explorer (Fig. 1b, Supplementary Fig. S6). Taking as input one or multiple genes of interest, Gene 
explorer displays the statistics (fold change, nominal and FDR adjusted p-value) of all their DE instances found 
in the database, along with information about their genomic position and biotype, related GO terms and RefSeq 
sequences. Moreover, as several miRNAs have been reported to be implicated in IPF  pathology9, the display of 
miRDB-sourced mRNA-miRNA interactions relative to the queried protein-/miRNA-coding gene at the latest 
tab of the explorer can prove of extreme use. In parallel, the explorer displays data for any DEP coded by the 
queried genes. Last, in order to combine the better established methods of bulk DEA with the higher resolution 
of single cell data, Gene explorer maps each requested gene to single cell datasets of NU-Pulmonary cell browser 
in a species specific manner: human to  Reyfman27 and murine to Joshi-Watanabe28 and  Xie29 datasets. More 
details on published scRNA-seq pulmonary fibrosis datasets can be found in the Single cell data tab of our web 
server, along with DEA results of Mayr et al.  dataset13 in a tabular format. Please, refer to "Single cell data" section 
of the paper for more details.

miRNA explorer. Among the transcriptomic studies hosted by Fibromine, there are some having explicitly 
sequenced non-coding genes. Although these transcripts and their potential targets can be individually interro-
gated via Gene explorer, the latter does not simultaneously provide differential expression statistics for both cod-
ing and non-coding interactors. Thus, in order to accelerate the discovery of important regulatory interactions, 
we have created miRNA explorer (Supplementary Fig. S7). In more detail, we have integrated all IPF_vs_Ctrl lung 
non-coding array datasets and isolated the consensus differentially expressed miRNAs. Subsequently, we have 
performed likewise for their miRDB-sourced targets found at the bulk IPF_vs_Ctrl lung coding datasets. Both 
integrations were performed using the same pipeline applied to define cDEFs (“Methods” section) and |FC|> 1.2 
and FDR < 0.05 values were used as differential expression thresholds. As a result, the user can mine the most 
important regulatory pathways taking place during lung fibrosis by selecting any member of the deregulated 
miRNA list and automatically obtain all mRNA targets characterized by an opposite direction of expression.
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Protein explorer. Although the IPF related proteomic datasets are significantly fewer than the respective 
transcriptomic  ones14, the proteomic milieu may hold key leads for deciphering IPF progression. For this reason, 
we have equipped Fibromine with Protein explorer (Fig. 1b), a proteomic datasets accessor and protein–protein 
interaction network creation tool. Requiring as input only a protein’s coding gene name, the explorer initially 
presents some basic annotation for the queried protein, alongside the respective differential expression data, if 
any. Subsequently, aiming to inter-connect transcriptomic and proteomic expression data, the explorer hosts a 

Figure 3.  Same species datasets integration workflow. (a) Dataset explorer same species transcriptomic/
proteomic datasets integration workflow. Boxes of red correspond to front-end elements, while the rest account 
for back-end processes. Latin number elements are presented in (b). (b) Front end steps of transcriptomic 
datasets integration through Dataset explorer: (i) datasets selection, (ii) consensus DEGs table, (iii) consensus 
DEPs coded by any of the consensus DEGs and sharing the same direction of deregulation, (iv) analytical 
statistics table. Differential expression default parameters can be changed via a dedicated tuning panel (v). 
lof2FcAve column of (ii) holds the consensus direction of deregulation for each of the reported genes in a 
color coded fashion. Out of … Datasets column of the same table enables further tuning of consensus features 
identification procedure. cDEGs: consensus differentially expressed genes, cDEPs: consensus differentially 
expressed proteins. Figure was created using https:// www. google. com/ slides/ about/.

https://www.google.com/slides/about/
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condition-specific PPI network creation tool under the homonymous tab (Fig. 4). With the push of a button, 
the user can in real-time create a two-shell, high-confidence interactive network revolving around the queried 
protein and then automatically annotate it upon demand, based on the expression pattern of its nodes in any 
Fibromine-supported transcriptomic dataset/experimental comparison.

As far as network annotation is concerned, DE statistics for all genes coding for the UniProt/Swiss-Prot 
members of the network are initially isolated from the datasets corresponding to the experimental parameters 
selected by the user. Then, differential expression data are summarized for each of the genes into integration 

Figure 4.  Protein–protein interaction network creation and condition-specific annotation workflow. (a) Protein 
explorer back-end process for the creation and annotation of protein–protein interaction networks. Data on 
protein relationship and interactions confidence are retrieved from Fibromine included UniProt data. Boxed 
and Latin numbers in red correspond to front-end elements presented in (b). (b) The pipeline on the front-
end of Protein explorer: (i) specific protein query, (ii) selection of experimental parameters to consider, (iii) 
annotated network. Figure was created using https:// www. google. com/ slides/ about/.

https://www.google.com/slides/about/
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labels holding the consensus direction of deregulation: Non-DE, Up-regulated and Down-regulated. Genes coding 
for TrEMBL proteins are assigned the Unknown label as Fibromine does not currently support TrEMBL entries. 
The aforementioned labels are used to color-code network nodes and thus transfer all available transcriptomics 
information into the protein level. Analytical statistics of the data used to annotate the network can be inspected 
at the Data used tab of the explorer, while it is worth mentioning that the default DEA thresholds are easily tun-
able to meet all users’ expectations.

Gene co‑expression. Gene co-expression analysis has been used successfully in the past for regulatory 
targets prediction in  IPF9. Motivated by those previous attempts and in order to complement Fibromine’s PPI 
network creation tool, we have designed Gene co-expression tab to host a human (IPF_vs_Ctrl) and a mouse 
(BleomycinD14_vs_Ctrl) lung-specific gene co-expression network (GCN) (Supplementary Fig. S8). Through 
this tool, with only the selection of any, potentially, disease driving gene, as pinpointed via Weighted Gene Co-
expression Network Analysis (WGCNA), the user can plot interactive GCNs spanning any of the top fibrotic 
phenotype-related modules. Each network is built on the members of the module where the selected feature 
belongs. Network nodes represent genes with a module membership (MM) and gene significance (GS) above 
the 60th percentile of their respective module, while edges represent high confidence gene relationships, with a 
Topological Overlap Measure (TOM) above the 3rd quartile of the respective module’s distribution. The queried 
gene is marked in red and it is the only node allowed not to have any edge. Last, both MM and GS thresholds can 
be tuned via Fibromine to dynamically change the strictness of node selection.

Single cell data. As mapping of genes at the single cell level through the Gene expression tab is limited to 
visual inspection of feature plots, we designed the Single cell data tab in order to provide detailed DEA statistical 
data from one of the biggest datasets regarding lung  fibrosis13 (233,638 cells from 10 pulmonary diseases and 
control donor samples). More specifically, through Search data sub-tab the user can access DEA data of the top 
2000 most variable genes, examined for differentiating expression levels between each pathology and the control 
cells. These data are expected to increase resolution of the bulk sequencing data presented at the Gene explorer 
tab, as well as to generalize DEA findings to the greater niche of pulmonary pathologies.

Overall, Fibromine web server constitutes a data mining and integration portal suitable for all users irrespec-
tive their computational background. As far we are able to know, its highly-automated exploration features render 
Fibromine, the first IPF-revolving toolkit able to integrate data across species and experimental designs, map 
them to the single cell level in a visual and tabular format and to offer a quick and tangible way of transcriptomics 
data projection to an environment of proteomics intercommunication. Last but not least, two other prominent 
functionalities of Fibromine is mining and presentation of the most biologically promising lung fibrosis-specific 
miRNA-mRNA interactions and gene co-expression networks.

Usage of retrieved individual gene expression patterns for novel hypothesis formation. Fibro-
mine’s Gene explorer enables interrogation of single/multiple gene expression motifs (consistently recurring 
DEA results across same/similar experimental conditions), a very useful feature to validate wet laboratory find-
ings and quickly deepen novel hypotheses formation. For example, following leads from cancer and inflamma-
tory diseases, our laboratory has used a primary version of Fibromine’s Gene explorer to discover that based on 
the three larger IPF_vs_Ctrl bulk lung datasets, MAP3K8 is down-regulated in IPF patients’  lungs30. In addition, 
inspecting MAP3K8 in higher resolution data via the explorer’s Map to single cell data feature instantly revealed 
an “enrichment” of gene’s expression in monocytic-lineage cells. These findings were further validated in the 
bleomycin-induced animal model of pulmonary fibrosis, where genetic deletion of MAP3K8 was shown to exac-
erbate the modeled  disease30. All results impelling us to wet lab examination of MAP3K8 expression during lung 
fibrosis can be replicated using the Example button of Gene explorer and then filtering the DEG statistics table 
for lung tissue and IPF_vs_Ctrl comparisons (Supplementary Fig. S6).

Identification of “bona fide” differentially expressed genes in human and mice fibrotic 
lungs. Another very useful function of Fibromine’s web server is its ability to encapsulate differential gene 
expression data from a great number of samples and datasets sharing similar experimental parameters. This 
feature is particularly important as it extends over the limited sample size of single datasets and yields results 
reported by several research efforts. IPF_vs_Ctrl and BleomycinD14_vs_Ctrl human and mouse lungs respec-
tively, constitute the two most numerous of the 42 unique differential expression comparisons available through 
Fibromine. To retrieve a list of potential fibrosis drivers for each of these experimental settings, we have initially 
pinpointed through Datasets benchmarking tab (Fig. 1b) those IPF_vs_Ctrl human lung datasets with at least 
4 stars (Fig. 5a) and the three top accredited BleomycinD14_vs_Ctrl lung murine datasets (Fig. 5b). Then, we 
integrated via Dataset explorer the human datasets retrieving a list of 2182 human cDEGs, prior to mouse data-
sets separate integration which displayed a longer collection of 3863 cDEGs. Both lists can be exported through 
Fibromine online application using the default thresholds (|FC|> 1.2 and p-value < 0.05) and requiring as input 
only the selection of the respective datasets from Transcriptomics datasets tab main interactive table. For more 
details on back-end processes, please, refer to respective sections of the publication.

Across‑species datasets integration. Bleomycin-induced pulmonary fibrosis in mouse is a well-estab-
lished and broadly used model of pulmonary  fibrosis31 and thus it is expected to bear common ground with 
the human disease. The aforementioned lists of consensus differentially expressed genomic features provide the 
opportunity for an inspection of model’s fitness to simulate human pathology, but such a comparative undertak-
ing surely requires extra manual processing. To avoid such a limitation, Fibromine enables automatic between 
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species integration of datasets upon their simultaneous selection through the explorer’s interactive table (Sup-
plementary Fig. S5). As can be seen from Fig. 5c, approximately one quarter of the initial 2182 human cDEGs 
were found to have a consistently deregulated mouse homologue, with their 1:1 across species homology being 
an extra factor advocating for a more probable cross-species direct relationship at the molecular level. Cross-
species cDEGs can be recreated through Fibromine via integration of the aforementioned datasets.

Discussion
As more and more omics datasets addressing divergence from steady state emerge and accrue to the existing ones, 
a big bet for the contemporary biomedical sciences is to be able to fruitfully mine latent information from these 
already available wealthy data sources in order to guide, accelerate and validate wet laboratory research. This 
strategy can prove extremely useful especially for rare diseases such as IPF, which logically attract less attention 
than more prevalent ones. Moreover, biomedical sciences have nowadays entered an era of single cell centred 
research, enabling pathologies exploration at an unprecedented level of resolution. Nevertheless, pulmonary 
fibrosis research still lacks a central resource that would help scientists to exploit the vast legacy of bulk omics 
and single cell datasets and their inherent characteristic such as a smaller drop-out  effect32. Furthermore, as 
deconvolution methods have proven to be affected by data pre-processing33 steps, a comprehensive collection of 
consistently handled bulk data could also facilitate the verification of single cell level observations by providing 
the bulk sequencing material necessary for such analyses.

Taking all the above into consideration, we have developed Fibromine, a database of IPF omics datasets of 
both transcriptomic and proteomic nature, spanning human and murine research deliverables of various designs. 
For this purpose we initially manually selected, consistently re-analyzed and carefully curated a great number of 
bulk transcriptomic and proteomic datasets which consist the backbone of our database. The latter, also includes 
wealthy third-party annotation and dataset meta-data yielded from literature. Smooth access to Fibromine 
is ensured by a Shiny-powered web server that simultaneously examines data from multiple complementary 
perspectives: from a dataset, a single gene/protein, a gene co-expression and protein–protein interaction point-
of-view. Crucially, bulk sequencing resolution is increased via provision of in-house single cell level data organ-
ized in a tabular format and dynamical connection to external single cell data resources for visual examination. 
Last, for those users who wish to perform their own downstream analysis, our server supports download of all 
included data and integration/mining results.

One of the main assets of the hereby presented project is the freedom it provides to the user to fine-tune cru-
cial exploration and integration parameters. To begin with, the user can experiment changing the default DEA 
thresholds which in turn affect, amongst others, the features of dataset integration and PPI network annotation. 
In addition, by consulting the available datasets meta-data, the gene/protein annotation included, and more 
importantly our transcriptomic datasets accreditation system, the user has a quick and tangible means of shaping 
a well calculated decision regarding which data are contextually best to investigate. Most importantly, thanks to 

Figure 5.  IPF_vs_Ctrl lung and BleomycinD14_vs_Ctrl datasets integration. (a) Integration of the IPF_vs_Ctrl 
lung datasets with at least 4 accreditation stars. (b) Integration of the top 3 starred BleomycinD14_vs_Ctrl 
datasets. (c) Across-species integration of the (a,b) datasets. Selection of the top accredited human and mouse 
transcriptomics datasets for integration leads to the identification of 504 consensus DEGs. All intermediate and 
integration output lists can be retrieved through Fibromine. Integration was performed using default differential 
expression thresholds. cDEGs: consensus differentially expressed genes, DEA: differential expression analysis. 
Figure was created using https:// www. google. com/ slides/ about/.

https://www.google.com/slides/about/
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our datasets benchmarking system, the user has a tangible means of comparing transcriptomic datasets based 
on their otherwise not readily accessible characteristics.

Apart from the well-established data analysis methods used, the operation of Fibromine website is subject 
to certain assumptions. First, instead on inspecting corrected p-values for cDEG identification, Fibromine uses 
their nominal counterparts in order to avoid exclusion of borderline significant features, which may be however 
reported as deregulated using the looser uncorrected threshold in multiple of the user integrated datasets, thus 
indicating a latent biologically significant feature. In parallel, as multiple testing bias indisputably needs to be 
taken into consideration, corrected per-dataset statistics for the features reported are presented in the Transcrip-
tomics or Proteomics analytically tabs. We strongly encourage consultation of the latter prior to any wet or dry 
laboratory downstream procedure. Furthermore, although very informative, some of the metrics used during 
datasets benchmarking are based on some general assumptions, such as that the murine homologues of human 
pro-fibrotic genes exert the same effect in the mouse IPF model and thus, may require future fine-tuning. As far 
as PPI networks annotation is concerned, the decision of using transcriptomic instead of proteomic data was 
determined by: (i) the tremendously smaller number of supported DE proteins (693 unique ones) compared 
to the number of described DE genes (17,153 unique DE protein coding genes; |FC|≥ 1.2 and FDR corrected 
p-value < 0.05) and (ii) the currently limited number of included proteomic data experimental designs compared 
to those of transcriptomics nature. Therefore, use of the former instead of the latter would have surely limited PPI 
annotation options and would have led to the characterization of an excess of nodes as Non-DE, thus rendering 
the tool rather impractical.

Further work needs to be done for Fibromine’s active maintenance and expansion. Despite the careful litera-
ture inspection, some of the latest transcriptomic datasets may not have been included into our database and 
some minor DE comparisons supported by the currently included datasets have not yet been examined. On top 
of that, our database currently addresses an important yet incomplete portion of proteomic data (IPF_vs_Ctrl 
human datasets) which will also be expanded to include invaluable datasets such as Ref.34. Last but not least, 
enrichment of Fibromine with datasets from other omics technologies such as metabolomics, lipidomics and 
predominantly a greater number of single cell datasets are some of our top priorities.

Conclusively, this endeavour set out to implement from scratch a centralized web resource for the acceleration 
of IPF research. Through Fibromine, both computational and most importantly non-computational background 
supported biomedical scientists can quickly and effortlessly obtain, integrate and compare information regard-
ing DE events during a wide variety of IPF-related conditions. Hopefully, Fibromine will prove itself the driving 
force for novel hypothesis formation and new biomarkers discovery.

Methods
Datasets re‑analysis and curation. Microarray datasets re-analysis was performed using ad hoc devel-
oped pipelines based on well-established tools and methods, while metaseqR2 Bioconductor  package35 was used 
for the re-analysis of RNA-seq data.

For microarrays data processing,  limma36,  oligo37 and  beadarray38 Bioconductor packages consisted the analy-
sis workhorses while arrayQualityMetrics package was utilized for quality control  purposes39. More specifically, 
probe intensities were within-technology consistently background corrected, within- and across-technologies 
uniformly normalized using quantile normalization and then summarized to the gene level using a weighted 
average. Control sequences and probes mapping to multiple HGNC gene symbols were removed from further 
analysis. DEA was conducted for all datasets using the limma moderated t-test statistics method.

RNA-seq fastq files were mapped to GRCh38.p13 and GRCm38.p6 genomes using a two steps alignment 
pipeline that exploits  HISAT240 and  Bowtie241 aligners. Initially, HISAT2 was used to map reads in a splice aware 
fashion, while those failing to align were delivered to Bowtie2 for a second, more sensitive alignment round. 
Further processing was conducted using the Bioconductor package  metaseqR235: raw counts files were quanti-
fied at the gene level, normalized with  EDASeq42, filtered using default parameters and statistically analysed for 
DE using PANDORA algorithm. The latter combined the results of the well-known and broadly used  DESeq43, 
 DESeq244,  edgeR45, limma-voom36 and  ABSSeq46 DEA methods, leading to more precise lists of differentially 
expressed genomic features. More precisely, PANDORA combines individual DEA algorithms p-values in a 
weighted manner, with weights shaped according to each method’s performance during real-data based simula-
tions. As a result, among others, PANDORA achieves a better precision-recall trade-off and reduces the effects 
of gene length in downstream analyses, such as pathway analysis.

For microarray and RNA-seq datasets, sample outliers were identified prior to removal using PCA and MDS 
plots, respectively, as well as samples hierarchical clustering of log2-scaled normalized values of the thousand 
top DE genes. The later were defined using the thresholds of |FC|> 1.2 and a significant p-value at an FDR 
threshold of 5%.

Proteomics data were retrieved directly from published tables and DE thresholds were kept as is in each 
original publication. An exception was made for a single  dataset47 due to the very limited number of DE proteins 
returned otherwise. Proteins quantified in mixtures/same aptamer were removed.

Identification of consensus differentially expressed features. During same species datasets DEA 
results integration, a feature (either transcript or protein) is called consensus differentially expressed if it has 
been found consistently deregulated (in the same direction of deregulation) in at least half of the user-selected 
datasets and not significantly deregulated towards the opposite direction in any of the rest; Consensus DEGs/Con-
sensus DEPs tabs. According to those, we report as consensus direction of deregulation, the one most frequently 
encountered across them, while as consensus fold change the mean of their fold change values. When integrating 
datasets from multiple species, a feature is defined as consensus DE if it has 1:1 human:mouse homology (based 
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on Ensembl data) and has been found consistently deregulated in at least half of each species’ selected datasets. 
Datasets examining explicitly non-coding genes are not considered for across species integration. Consensus 
fold change is calculated as in the case of same species data. For reasons of clarity, only the human component 
of across species datasets integration is summarized in Datasets explorer’s Consensus DEG and Consensus DEPs 
coded tabs. In both the above cases, DEA thresholds are |FC|> 1.2 and p-value < 0.05 for genes and those applied 
during original analysis for proteins. For more on hypothesis testing thresholds selection, please, refer to “Dis-
cussion” section of the paper. All thresholds for DE genes identification are user-tunable from within Fibromine.

Pathway analysis. Fibromine’s Dataset explorer supports pathway analysis of cDEGs. Specifically, enri-
chR package is used to connect with the Enrichr database and perform over-representation analysis for up and 
down regulated genomic features separately, based on five libraries: KEGG, BP GO, MF GO, BP GO and one of 
COVID-19-related associations. For more on current use and implementation of the aforementioned gene set 
libraries please refer to the latest Enrichr  publication48.

Heatmap and volcano plot creation. Dataset-specific Fibromine’s interactive heatmaps and volcano 
plots are crafted using  heatmaply49 and plotly R  package50, respectively. Clustering of each dataset’s samples is 
performed on z-score scaled log2-transformed normalized expression values of the top one thousand DE genes 
using Euclidean distance and complete linkage for clusters comparison. Volcano plots specify deregulated genes 
based on the thresholds of |FC|> 1.2 and p-value < 0.05. A significant, yet non-comprehensive list of genes known 
to be implicated in pulmonary fibrosis are indicated in every volcano plot.

Condition‑specific protein–protein interaction networks creation. PPI networks are shaped 
according to Fibromine-incorporated STRING  database18 data. More specifically, each network consists of two 
interaction shells, with the first including maximum nine, high confidence (interaction score > 700) proteins 
interacting with the queried one. For the determination of second shell elements, the two most confident inter-
actors for each of the first shell proteins are selected. Proteins already-considered for the first shell creation are 
not considered for the second one. All networks have a DrL layout with protein interaction scores used as edge 
weights.

For the condition-specific annotation of networks, genomic features coding for the network elements are 
identified and their differential gene expression statistics are recovered from the datasets corresponding to 
user-selected experimental parameters. From the aforementioned genes only those corresponding to UniProt/
Swiss-Prot members are retained and for the cases of 1:many UniProt/Swiss-Prot:gene entries the gene featured 
by UniProt as primary is utilized. Afterwards, each network node is assigned a label of a consensus direction of 
deregulation: “Unknown” if the gene product is not a Swiss-Prot member, “Non DE” if the corresponding gene 
is not DE and “Upregulated” or “Downregulated” for the deregulation cases. The latter two labels are shaped 
according to the following rules: if a gene is found DE in a single dataset or consistently deregulated in a couple 
of datasets, its direction of deregulation is kept as is; if a gene is found DE in a couple of datasets with an incon-
sistent direction of deregulation between the two, the biggest dataset’s direction of deregulation is maintained; 
if a gene is found DE in multiple datasets, then the most frequent direction is utilized. By default, DE genes are 
defined as those having an absolute fold change bigger than 1.2 and a p-value smaller than 0.05. Multiple testing 
corrected statistics are presented at the Data used tab of the explorer.

Gene co‑expression networks creation. For the human network, IPF_vs_Ctrl lung tissue datasets with 
more than four stars assigned were selected (GSE10667, GSE24206, GSE48149, GSE47460_GPL6480, GSE53845, 
GSE83717, GSE99621), while the three most accredited BleomycinD14_vs_Ctrl were chosen for the mouse one 
(GSE18800, GSE40151, GSE34814). Normalized, z-transformed gene expression values were applied to deter-
mine the scale-free co-expression modules via  WGCNA51. Biweight midcorrelation, a more robust alternative 
of Pearson coefficient, was used to create a signed network, while signed Topological Overlap Measure (TOM) 
was calculated by adjacency transformation to decrease noise. Network modules were identified using (1-TOM) 
as a distance metric and module eigengene (ME) was determined using default parameters. Closely clustered 
modules (0.25 and 0.40 distance determined by hierarchical clustering for human and mouse, respectively) were 
merged. MEs were correlated to the trait of interest (fibrotic/non-fibrotic tissue) and those with a significant 
Pearson correlation coefficient were maintained (|ρ|> 0.6; p-value < 0.05). Potential phenotype-drivers were pin-
pointed by intra-modular analysis having a statistically significant module membership and gene significance 
value (p-value < 0.05). Pearson co-efficient for the latter two metrics can be adjusted via Fibromine server for a 
more thorough and objective features selection.

For the creation of network visualisations, all features of the selected gene’s module with module membership 
and gene significance above the (default) 60th percentile are selected. Network edges represent correlations in the 
3rd quartile of the pre-calculated TOM and with the exception of the queried gene, all genes having a zero degree 
of connectivity are dropped prior to minimum spanning tree calculation and network visualization. Network 
layout is automatically chosen and the thresholds of module membership and gene significance are user tunable.

Single cell data analysis. Seurat package v.4 was used for the analysis of single cell data found  here. In 
detail, “empty” cells, as annotated during original analysis, were removed prior to identification of the top 2000 
most variable genes using the vst method (FindVariableFeatures). Finally, Wilcoxon rank sum test was used for 
DEA of the above mentioned genes using default parameters (FindMarkers).

https://drive.google.com/uc?export=download&id=13vf6Fcy6cCJUuGvbnj5sQDhayLRq7op1
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Data availability
The data that support this study can be accessed freely via http:// www. fibro mine. com/ Fibro mine, a Shiny-based 
web tool.

Code availability
The code for the creation and operation of Fibromine web server is available via https:// github. com/ dfani dis/ 
Fibro mine.
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An explainable machine learning-driven proposal of pulmonary fibrosis biomarkers 

Μια εξηγήσιμη πρόταση βιοδεικτών πνευμονικής ίνωσης βασισμένη σε μηχανιστική μάθηση 

Ασθένειες πνευμονικής ίνωσης βρίσκονται στο επίκεντρο της βιοϊατρικής έρευνας εξαιτίας 

τόσο του αυξανόμενου επιπολασμού τους, όσο και της συσχέτισης τους με τις λοιμώξεις 

SARS-CoV-2. Η έρευνα της ιδιοπαθούς πνευμονικής ίνωσης, της πιο θανάσιμης μεταξύ των 

διάμεσων πνευμονοπαθιών, έχει την ανάγκη για νέους βιοδείκτες και στόχους, μια διαδικασία 

που θα μπορούσε να επιταχυνθεί με τη χρήση τεχνικών μηχανιστικής μάθησης. Σε αυτή την 

μελέτη χρησιμοποιήσαμε τιμές Shapley για να εξηγήσουμε τις αποφάσεις που πάρθηκαν από 

ένα ensemble μοντέλο μάθησης εκπαιδευμένο να κατηγοριοποιεί δείγματα ως ινωτικά ή υγιή 

βάση τιμών μεταγραφής διαφορικώς εκφρασμένων γονιδίων. Αυτή η διεργασία κατέληξε σε 

ένα πλήρες και ένα λακωνικό σύνολο γενετικών χαρακτηριστικών, ικανών να διαχωρίσουν 

φαινοτύπους σε βαθμό τουλάχιστον αξιότιμο με αυτόν προηγουμένως δημοσιευμένων 

συνόλων βιοδεικτών. Ενδεικτικώς επετεύχθη μία μέγιστη αύξηση της τάξης του 6% στην 

ακρίβεια και 5% στον δείκτη συσχέτισης του Matthew's. Αξιολόγηση ενός επιπρόσθετου 

ανεξάρτητου συνόλου δεδομένων έδειξε πως το εδώ προτεινόμενο σύνολο χαρακτηριστικών 

έχει μεγαλύτερο δυναμικό γενίκευσης σε σχέση με τα υπόλοιπα. Εν τέλει, οι προτεινόμενες 

λίστες γονιδίων αναμένεται όχι μόνο να υπηρετήσουν ως νέα σύνολα διαγνωστικών δεικτών 

αλλά και ως μια δεξαμενή στόχων για μελλοντικές ερευνητικές πρωτοβουλίες.   
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a b s t r a c t

Pulmonary fibrosing diseases are in the very epicenter of biomedical research both due to their increasing 
prevalence and their association with SARS-CoV-2 infections. Research of idiopathic pulmonary fibrosis, the 
most lethal among the interstitial lung diseases, is in need for new biomarkers and potential disease targets, 
a goal that could be accelerated using machine learning techniques. In this study, we have used Shapley 
values to explain the decisions made by an ensemble learning model trained to classify samples to an either 
pulmonary fibrosis or steady state based on the expression values of deregulated genes. This process re-
sulted in a full and a laconic set of features capable of separating phenotypes to an at least equal degree as 
previously published marker sets. Indicatively, a maximum increase of 6% in specificity and 5% in Mathew’s 
correlation coefficient was achieved. Evaluation with an additional independent dataset showed our feature 
set having a greater generalization potential than the rest. Ultimately, the proposed gene lists are expected 
not only to serve as new sets of diagnostic marker elements, but also as a target pool for future research 
initiatives.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive 
scaring disease of the lungs affecting mainly elder males. Patients 
present progressive decline of respiratory processes leading to dys-
pnea, fatigue and ultimately respiratory failure [1]. Epidemiologi-
cally it is the most deadly of the interstitial lung diseases (ILD) [2]
affecting a great number of individuals in an annual base [3]. Al-
though numerous research deliverables have focused on IPF, both its 
etiology and more importantly a curative option remain elusive. 
Currently, as SARS-CoV-2 infection has been suggested to stimulate 
the expression of pro-fibrotic targets [4] and interstitial lung disease 
patients present an increased risk of poor COVID-19 outcome [5,6], 
the proposal of a robust set of disease biomarkers and potential new 
targets has become more crucial.

Moving towards that direction, our laboratory recently created 
Fibromine, a collection of manually curated and consistently 

processed IPF-related omics datasets [7]. Through Fibromine, the 
user can explore, mine and combine transcriptomic and/or pro-
teomic datasets of both human and mouse origin, in search for in-
teresting latent targets or validation of wet laboratory findings. 
Although combination of deregulated features across datasets in 
Fibromine is designed to select the most promising elements be-
tween any selected set of phenotypes, consensus features reported 
are sometimes numerous, rendering the selection of a small number 
of targets rather subjective and time consuming.

Machine learning techniques have been used many times in the 
past to analyze huge volumes of biomedical data in search for im-
perceptible, yet important patterns. Cancer research has benefited 
greatly from artificial intelligence-based drug or biomarker dis-
covery studies [8], while such techniques have also led to the pro-
posal of new biomarkers in the fibrotic context of non-alcoholic 
fatty-liver disease [9]. In addition, thanks to these in silico meth-
odologies, disease endotypes requiring distinct treatment protocols 
have been revealed in numerous contexts, including that of acute 
respiratory syndrome [10]. As far as IPF research is concerned, most 
machine learning applications aim on stratifying patients based on 
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imaging data, such as in [11], while others exploit gene expression 
for recognition of distinct pathological states [12,13].

In this publication, we have used a semantics similarity/Shapley 
values-explained machine learning pipeline so as to prioritize and 
propose a new set of IPF diagnostic biomarkers. More specifically, 
ensemble learning models were successfully trained to discern pa-
thological from steady-state samples according to expression data 
fetched from Fibromine. Shapley (Shapley Additive exPlanations; 
SHAP) values were then used to explain model decisions and rank/ 
select 76 features as the most diagnostically valuable. Text mining 
and functional characterization of the selected genes revealed both 
well-established and slightly researched in the IPF context features, 
which constitute a valuable source of biomarkers and potential 
disease targets, respectively. Different ranking aggregation methods 
were used to integrate results across multiple models and select a 
shorter, lite version of the 76 Shapley-prioritized features. 
Comparison of machine learning-guided classification of samples 
based on either our lite or other already published biomarker sets 
revealed a wider applicability potential of the former. Last, inter-
esting correlations were revealed between certain prioritized fea-
tures and available spirometry measurements, further supporting 
the importance of the markers reported.

2. Materials and methods

2.1. Semantics similarity prioritization

Fibromine online interface was used to fetch consensus 
IPF_vs_Ctrl differentially expressed genes across seven datasets 
(GSE10667, GSE24206, GSE48149, GSE47460_GPL6480, GSE53845, 
GSE83717, GSE99621) selected based on a set of benchmarking 
characteristics [7]. Default thresholds for the identification of con-
sensus deregulated genes were applied (absolute fold change of at 
least 1.2 on natural scale and p-value less than 0.05). Significant 
differential expression towards the same direction (up or down) in at 
least four out of the aforementioned seven datasets was required for 
a gene to be considered consensus deregulated. The repeated and 
independent nature of these findings greatly reduces the chances of 
false positive hits, especially for top deregulated features, similarly 
to past smaller scale attempts [14]. As a single value representation 
of the differential gene expression patterns reported across datasets, 
consensus fold change (FCconsensus) was used [7]. For GSE24206, Ad-
vanced IPF samples were used as the pathological ones. Subse-
quently, in order to reduce the chances of model overfitting (2.3. 
Machine learning models tuning, training and evaluation) while 
maintaining vastly trustworthy elements, the genes most related to 
the term pulmonary fibrosis (DOID:3770) were selected via semantics 
similarity prioritization performed by the R Bioconductor package 
DOSE (v.3.16.0) [15]. The per feature yielded similarity score (SS) was 
multiplied by FCconsensus to obtain an integrated score 

=S SS FC*i consensus, sharing information between differential expres-
sion and fibrosis-association. Si was used to rank genes in fashion 
similar to [16]. Top 100 up and top 100 down-regulated genes were 
isolated for downstream analysis.

2.2. Preprocessing of Fibromine gene expression data

Normalized gene expression values of the above datasets re-
trieved through Fibromine Download tab were used as input to 
machine learning models. More specifically, per dataset normalized 
values were standardized using vanilla R functions so as to obtain 
normalized expression values within a unified numerical range. 
Missing values were replaced by zero. The same process was applied 
to a couple of big datasets (GSE32537, GSE47460_GSE14550) not 
implicated in the training-testing procedure, but used as an external 
validation sample set (2.4. Machine learning models tuning, training 

and evaluation). Common genes across all aforementioned datasets 
were isolated and then intersected with the 200 ones prioritized by 
semantics similarity (2.1. Semantics similarity prioritization). A final 
list of 172 features was used as the training set of machine learning 
models (Table S1).

2.3. Assessment of sex-specific feature expression

To assess any sex-specific effect on the expression of the selected 
172 features, samples hierarchical clustering using Euclidean dis-
tance and complete linkage was performed. Sex metadata were re-
trieved from respective GEO entries and/or publications whenever 
available (62.5% of the training/testing and 100% of the external 
evaluation cases). For clustering purposes, preprocessed expression 
data were used, while samples without any sex annotation were 
removed prior to clustering.

2.4. Machine learning models tuning, training and evaluation

XGBoost models with a binary:hinge objective were tuned, 
trained and tested using the python libraries sklearn (v.1.0) [17] and 
xgboost (v.1.5.2) [18]. XGBoost (Extreme Gradient Boosting) is a 
scalable implementation of the gradient tree boosting supervised 
machine learning technique [18]. The latter, an ensemble learning 
method, is proven to produce high-quality results not only under 
standard [19] but also realistic circumstances [20].

The model was trained/tested using a Monte Carlo cross valida-
tion (MCCV) approach with a 75:25 train:test split iterated ten times 
to account for differences during data splits. To avoid overfitting, 
apart from reducing the number of features (2.1. Semantics similarity 
prioritization), per model hyperparameter tuning was performed 
using a stratified 5-fold approach with random shuffling on each 
training set followed by a grid-search cross-validation strategy. The 
hypermaraters tuned were: n_estimators (the number of decision 
trees to use), learning_rate (also known as eta; a regularization 
parameter adjusting feature weights during boosting in a step-wise 
manner), max _depth (the maximum depth of each tree), reg_alpha 
(the L1 regularization parameter that corresponds to Manhattan 
distance) and reg_lambda (the L2 regularization parameter that 
corresponds to squared Euclidean distance).

Accuracy, precision, sensitivity and specificity, were used for the 
evaluation of the models’ performance. In addition, F1-score was 
applied to assess the precision-sensitivity tradeoff of each model and 
Matthews correlation coefficient (MCC) was calculated as below to 
summarize the per model confusion matrix in a single value. The 
median across models value for each evaluation metric was re-
ported.

=
+ + + +

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN

( * * )

( )*( )*( )*( )

Models were also evaluated using GSE32537 and 
GSE47460_GPL14550, two datasets not implicated in model training- 
testing. The whole machine learning pipeline is visualized in Fig. S1.

2.5. Comparison of biomarker lists

XGBoost was employed to compare the capability of different 
biomarker lists for phenotype separation. The same samples used for 
shaping the here proposed lists were exploited for training of all 
models, while the intersection of the already-published marker sets 
to those genes shared by the Fibromine-retrieved datasets were used 
as features (Fig. S4). Models were tuned, trained, and tested using 
the previously described pipeline (Fig. S1).
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2.6. Machine learning model explanation

Game theory inspired Shapley values were calculated using the 
homonym python library (v.0.39.0) (https://github.com/slundberg/ 
shap). Per model mean absolute SHAP values were calculated, as 
proposed previously [21,22], to assess the importance of individual 
features in diagnosing the IPF phenotype. Features with a zero ab-
solute SHAP value were filtered out. SHAP values are able to explain 
machine learning models both locally and globally in a consistent 
and accurate fashion [23]. Briefly, SHAP values reflect the contribu-
tion of each feature on the final prediction of the model after taking 
into consideration all possible feature combinations (coalitions) 
formed one feature at a time and then averaging the marginal 
contributions of each feature in a weighted manner. Collectively, 
given an input subset of features …d d d d{ , , , , }M1 2 3 from a larger set of 
L features …d d d d{ , , , , }L1 2 3 where M L, the SHAP value of a feature 
d Dj (Sj) is calculated as thus:

=Sj
D P D

P
f D d f D

| | !( | | 1)!
!

( ( { }) ( ( )))d d

where |D| is the number of features in D and f D( )d is the expected 
value of the function conditioned on P.

2.7. Pathway analysis

R Bioconductor package clusterProfiler (v.3.18.1) [24] was used 
for over-representation analysis of the important (non-zero absolute 
SHAP) machine learning features. Gene ontology terms of all three 
categories (Cellular Component; Molecular Function; Biological Pro-
cess) were auto-retrieved from the package, while MSigDB hallmark 
gene sets were fetched from the R package msigdbr (v.7.5.1) (https:// 
igordot.github.io/msigdbr/).

2.8. Text mining

PubMed 2022 baseline was fetched from the respective ftp site 
and XML R package (v.3.99.0.8) was used to form an abstract corpus. 
The latter was queried for the elements containing IPF[All Fields] OR 
(\"pulmonary fibrosis\"[MeSH Terms] OR \"pulmonary fibrosis\"[All 
Fields]) OR (\"lung diseases, interstitial\"[MeSH Terms] OR \"interstitial 
lung diseases\"[All Fields] OR \"interstitial lung disease\"[All Fields]) 
using rentrez R package (v.1.2.3). Human gene atomization based on 
HGNC symbols was performed with pubmed.mineR package 
(v.1.0.19) [25] and the results were intersected with the machine- 
learning - SHAP value prioritized gene list.

2.9. Ranking aggregation methods

SHAP-weighted majority voting, an ad hoc modified version of 
majority voting in which genes are ranked by decreasing gene-wise 
Shapley value weights was applied. More specifically, the im-
portance, and thus final rank, of any given gene i was calculated as 
the sum of the per model (m) ratio of the total number of non-zero 
mean absolute SHAP value features in the model (nm) to the rank of 
the gene in the model (rm) according to decreasing order of SHAP 
values:

=

n
rm

M
m

m1

Two well established best performers were also applied. MAIC 
ranking aggregation algorithm was retrieved from the respective 
github repository (https://github.com/baillielab/maic), while BIRRA 
script was fetched from (https://github.com/baillielab/comparison_ 
of_RA_methods). During MAIC and BIRRA ranking aggregation, each 
model was treated as a different category. The results of the above 

three methods were compared by means of Kendall correlation as 
implemented in the homonym R package (v.2.2.1) and function.

2.10. Correlation analysis

Normalized gene expression values of selected machine learning 
prioritized features were retrieved from Fibromine and correlated 
with spirometry measurements retrieved using GEOquery package 
(v. 2.58.0) [26]. Both expression and spirometry values originated 
from datasets GSE47460_GPL6480, GSE47460_GPL14550 and 
GSE32537. Correlation included those dataset samples used during 
machine learning training/testing not having a missing value for 
each spirometry measurement examined. Spearman correlation was 
separately performed for each dataset using cor.test vanilla R (v.4.0.4) 
function. Relationships with an absolute rho value of at least 0.5 and 
a p-value less than 0.05 were considered as statistically significant 
strong.

3. Results

3.1. XGBoost machine learning algorithm successfully separates IPF 
from control individuals

The most important differential expression comparison hosted in 
Fibromine, both due to its anthropocentric character and to the 
number of available datasets, is that of IPF versus control individuals 
(IPF_vs_Ctrl). Among those datasets, seven were accredited with at 
least four stars by our datasets benchmarking strategy [7] and were 
thus distinguished as the most “reliable” combination set (2.1 Se-
mantics similarity prioritization). Collectively, these datasets gather 
samples from 184 individuals, while their combination using Fi-
bromine’s Datasets explorer with default thresholds (2.1. Semantics 
similarity prioritization) reports 2182 consensus deregulated genes. 
Manually selecting biomarkers and/or targets from this big, yet 
biologically reasonable number of genes is a rather impossible task. 
Instead, as machine learning algorithms can provide an alternative 
solution to the aforementioned problem [27], we decided to create 
an explainable diagnostic model and assess the most valuable of the 
machine-used features.

Initially, to decrease the chances of a downstream model over-
fitting event due to the larger ratio of features (genes) to examples 
(lung samples) (p  >   > n), we applied a semantics similarity prior-
itization technique described by [16] after some context-required 
modifications (2.1. Semantics similarity prioritization). Briefly, an ad 
hoc calculated score (Si) sharing information between semantics 
similarity and gene expression was used to rank the 2182 genes and 
the top 100 up- and 100 down- regulated ones were selected for 
model training (Fig. 1A).

Next, normalized gene expression data were retrieved from 
Fibromine. To be suitable for any machine learning application, these 
data underwent several preprocessing steps (Fig. 1A). Initially, as 
selected datasets originated from different platforms, gene expres-
sion values were standardized to fit within the same numerical 
range. Subsequently, common across datasets features (see 2.2. 
Preprocessing of Fibromine gene expression data) were selected and 
then intersected with the previously selected top 200 semantics 
similarity prioritized genes. Eventually, our machine training dataset 
consisted of 184 examples (124 patients and 60 controls) and 172 
features (Table S1) equally distributed between over and under ex-
pressed gene groups (84 up and 88 down regulated genes). Because 
IPF is known to affect males more often than females [28] and gene 
expression can be regulated in a sex-specific manner [29] hier-
archical clustering was used to assess any differences between sexes 
for the 172 selected genes. No case of sex-specific expression was 
observed (Fig. S2).
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XGBoost ensemble algorithm was used to classify IPF and control 
individuals [18]. Selection of this fast gradient boosting algorithm 
was made due to its regularized learning objective function which 
renders it robust to overfitting and enables feature selection, as well 
as due to its previous successful use with gene expression data [30]. 
In addition, the ability of XGBoost not to be affected by multi-co- 
linearity phenomena [31] further supported its selection, as top 
deregulated genes are by default expected to co-fluctuate. Model 
tuning/training were performed with a ten-iteration MCCV strategy 
(2.4. Machine learning models tuning, training and evaluation) 
(Fig. 1A). To summarize model testing, across iterations the median 
value for each evaluation metric is reported. Specifically, XGBoost 
showed a very good performance in phenotype prediction as 

summarized across the 10 models, with all metrics except MCC 
having a median of at least 0.9 (Fig. 1B; Table 1).

The efficiency of the trained models was further evaluated on 
two additional Fibromine-retrieved datasets (GSE32537, 
GSE47460_GPL14550) (Figs. 1A; S1). This data collection was pro-
cessed simultaneously with the one used during tuning-training- 
testing, in order to obtain the exact same features (2.4. Machine 
learning models tuning, training and evaluation). The preprocessing 
pipeline yielded a dataset of 199 IPF and 119 control cases. As can be 
seen from Fig. 1C and Table 1, all models present a very good per-
formance in this external dataset, very similar to that of the initial 
testing sets in addition to smaller fluctuations of the metric values of 
the former compared to the latter.

Fig. 1. An explainable machine learning based pipeline was successfully used for phenotype classification based on gene expression values. A. Pipeline’s graphical abstract. 
Fibromine-derived, semantics similarity prioritized IPF_vs_Ctrl consensus differentially expressed genes were used for XGBoost modeling. The latter was explained by Shapley 
(SHAP) values. B. Model evaluation using the testing dataset. The trained models demonstrate very good performance. C. Model evaluation using an independent evaluation 
dataset. The models present the same if not better performance in a totally independent dataset. MCCV: Monte Carlo Cross Validation.

Table 1 
Comparison of performance metrics between our full and lite model with those based on previous gene lists. The median across ten tuning-training-testing iterations is presented. 
Two significant digits have been maintained for all values. Top values are marked in blue and orange according to the evaluation data set. Full: the full model of this study; Lite: the 
lite model of this study; Test: testing set of the split; Val: external validation set. 
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Fig. 2. Functional characterization of the prioritized list of features reveals their fibrosis-related nature. A. Features exploited by the XGBoost classifiers for the separation of IPF 
and control individuals. Direction of deregulation as established by FCconsensus. B. Pathway analysis based on Gene Ontology database. Molecular function, biological process and 
cellular component top enriched elements are visualized in different networks. C. Pathway analysis based on MSigDB. D. Prioritized features found in Corum3.0 protein-protein 
complexes and top GO terms characterizing them. E. Venn diagram of the intersection between text mining reported and prioritized list of genes. Almost half of the prioritized 
features have been highlighted in the past in relation to pulmonary fibrosis and interstitial lung diseases.
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To conclude with, we were able to separate IPF from control in-
dividuals by applying a supervised machine learning algorithm on 
Fibromine gene expression data previously selected via semantics 
similarity.

3.2. SHAP values-based selection and characterization of ML used genes

In order to explain the decisions made by the models trained, we 
then calculated per model Shapley values for each one of the fea-
tures. Non-zero mean absolute SHAP values revealed a varying 
number of per model important genes with a minimum of 11 and a 
maximum of 32 significant features (Fig. S3). Union of the features 
across the 10 models led to a total of 76 non-zero SHAP genes, with 
several of them characterized by a repeated and others by a less 
frequent pattern of emergence (Fig. 2A). For the sake of brevity, this 
marker set will be called long or full list for the rest of the paper.

To functionally characterize this full marker list, we initially 
performed pathway analysis using Gene Ontology (GO) database. 
Top enriched terms revealed fibrosis related entities such as the 
biological processes of collagen fibril organization, extracellular matrix 
organization, molecular functions including tissue remodeling and 
cellular components such as fibrillar collagen trimer, collagen con-
taining ECM (Fig. 2B; Table S2). The same analysis was repeated using 
the MSigDB hallmark gene sets as a reference database, revealing 
that our gene list is enriched for epithelial-mesenchymal transition 
features (Fig. 2C; Table S3), known to be implicated in pulmonary 
fibrosis [32]. Moreover, CORUM3.0 [33] query using the full feature 
list implicated many of them with protein complexes related to the 
plasma membrane, cell adhesion and migration, immune response 
and integrin-mediated signaling pathways (Fig. 2D; Table S4). Last, 
text mining of PubMed abstracts selected using the keywords pul-
monary fibrosis, IPF or intestitial lung diseases revealed a set of 36 
genes already mentioned in the context of lung fibrosis (Fig. 2E; 
Table S5).

A closer inspection of the SHAP-selected features revealed that 
several of them are already known to be implicated in lung fibrosis. 
For instance, AGER, SPP1, MMP7 and CRLF1 are included in a review 
list of transcriptionally deregulated genes during IPF compiled by 
[34]. In addition, genes such as COL1A1, COL15A1, COMP, MMP7 and 
LCN2 were identified as potential IPF drivers by previous exploratory 
research deliverables comparing the transcriptomes of IPF patients 
to those of control individuals (Table 2) [35–39].

Collectively, a great number of the 76 genes actually used during 
machine learning phenotype classification are known to be im-
plicated in pulmonary fibrosis and 12 of them were even proposed as 
IPF diagnostic biomarkers at least once in the past. These observa-
tions support the fibrosis-related character of our list. More inter-
estingly, half of the machine learning-chosen genomic elements 
have not been extensively studied in the context of lung fibrosis as 
proposed by PubMed abstracts mining, thus consisting a pool of 
potentially significant targets for downstream experimentations.

3.3. SHAP-based ranking aggregation of prioritized features

To obtain a unique robust set of important features sharing in-
formation across all ten XGBoost models, we integrated SHAP-or-
dered lists using three ranking aggregation methods (Fig. 3A). BIRRA 
[40] and MAIC [41], two of the best strategies in handling large 
numbers of ranking sources with high or unknown quality of het-
erogeneity [42] were applied along with SHAP-weighted majority 
voting, an ad hoc crafted method extending the voting ranking ag-
gregation method (2.9. Ranking aggregation methods). Interestingly, 
although each method proposed a different ranking of the features 
in the full biomarker list (Fig. 3B), all three strategies seem to have 
comparable performance as they share 65% of the 1st quartile of the 
features list. More than half of these common features (8/13) are 

among the text mining highlighted ones, while four (COMP, COL1A1, 
COL17A1 and COL5A2) have been proposed as biomarkers in the past 
[35,36,38,39]. In addition, comparison of the lists along their whole 
length using Kendall ranking correlation, revealed strong similarities 
of BIRRA with each of the SHAP-weighted majority voting and MAIC 
methods, while the latter two share less common rankings (Fig. 3C).

The aforementioned data support that ranking aggregation of 
Shapley value-selected features across model iterations can lead to 
an integrated list of informed ordering. Having various levels of re-
presentation in the bibliography, top genes of the aggregation 
methods comprise an interesting collection for further examination.

3.4. Comparison with previous biomarker lists

Subsequently, we wanted to compare our full feature list with 
already published, in silico predicted lists of markers separating IPF 
from control cases [35–39]. Regardless of the much larger size of our 
set, a complete intersection with any of the previous lists was not 
achieved (Fig. 4A; Table 2). Moreover, the already available marker 
lists were greatly heterogeneous (Fig. 4A).

Motivated by the different nature of the aforementioned gene 
collections we examined their ability of distinguishing phenotypes 
relatively to that of our full feature list (Fig. 2A), using XGBoost as a 
common baseline methodology (2.5. Comparison of biomarker lists). 
Furthermore, in order to propose a laconic set of IPF biomarkers 
along with the full feature list, we trained and evaluated another 10 
models using the 13 of the top 20 features shared between the three 
ranking aggregation methods applied to the full biomarker list 
(Fig. 3B).

As can be seen from Fig. 4B and Table 1, when models are eval-
uated on testing data, our lite model is the best performer along with 
the models based on Wan and Cui biomarkers. Their most of the 
times equal performance is improved by 2–3% and even 5% com-
pared to the rest of the models. Xu and colleagues based algorithm 
has the least favorable performance, with the exception of the sen-
sitivity metric. On the other hand, when external evaluation datasets 
are examined (Fig. 4C; Table 1) our lite model has the best perfor-
mance in all but the sensitivity measurement, an observation that 
suggests a better generalization potential of the herein shaped la-
conic marker set. More specifically, the lite model achieved a 92% 
specificity followed by that of Li and our full model, which scored 
three units less. Similarly, our lite model was characterized by the 
best accuracy (94%), MCC (88%) and F1-score (96%), along with the 
best precision (95%) shared with the Wan model. Xu-based pheno-
type classifier had the least favorable performance on the external 
validation dataset.

SHAP value prioritization of the lite model features followed by 
ranking aggregation using the ad hoc crafted method was applied 
(Fig. 4D). As expected, genes already known to be fibrosis-implicated 
such as MMP7, COL15A1 and COMP [34] (Table 2) have been ranked 
on the top of the list by our ad hoc designed aggregation method. 
IL13RA2, a gene neither reported as an IPF biomarker in the past nor 
found by text mining was ranked fourth. Correlation analysis of the 
lite model’s features normalized expression with spirometry mea-
surements available in three datasets used during machine learning 
led to the validation of known and the establishment of latent re-
lationships (Table S6). Indicatively, IL13RA2 was strongly negatively 
correlated to the % predicted forced vital capacity (FVC) in two out of 
three cohorts (Fig. 4E), while the opposite pattern was observed for 
PAPSS2 (Fig. 4F).

4. Discussion

IPF is a progressive lethal disease that is expected to affect a 
growing percentage of individuals, as societies of especially the 
developed world are getting elder [43,44]. Unfortunately, despite 
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Fig. 3. Ranking aggregation methods were used to integrate gene rankings from each model iteration. A. Basic pipeline. Two well established (BIRRA, MAIC) and an ad hoc 
developed method (SHAP-weighted majority voting) were applied. B. Prioritized features ranking post to aggregation of the individual models. Each method returns a distinct 
ranking. Genes marked with red are those in the top 20 (∼1st quartile) shared between the rankings. C. Kendall correlation of the rankings. BIRRA results are strong correlated 
with those of the other two methods.
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Fig. 4. Comparison of a lite model with those of previous biomarker lists shows greater generalization potential. A. Intersection of the prioritized biomarkers with those of 
previous publications. Great heterogeneity is observed among lists. B. Model evaluation using the testing dataset. The herein introduced model is among the top performers. C. 
Model evaluation using an independent evaluation dataset. The proposed lite model shows a greater potential of generalization compared to the other methods. D. Integration of 
the ten lite models using the ad hoc crafted method. The list comprises of both known and less explored pulmonary fibrosis targets. E-F. Correlation of IL13RA2 and PAPSS2 
expression values with those of predicted Forced Vital Capacity (FVC) in three datasets. Strong significant relationship is established in two out of three cohorts for both genes.
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decades of intensive research, the factors responsible for IPF mani-
festation and establishment remain largely unknown. In addition to 
the latter, COVID-19 pandemic and pulmonary fibrosis seem to be 
ominously interconnected [4,6] rendering the discovery of new 
targets extremely urgent. Here, we have exploited Fibromine, a da-
tabase and mining tool of manually curated, consistently analyzed 
pulmonary fibrosis omics datasets in an ensemble learning-powered 
attempt to in silico highlight previously neglected IPF-implicated 
molecules.

The rationale behind this study was to train and use supervised 
machine learning models for samples binary classification on an 
either pathological or steady state, and to subsequently evaluate the 
data-driven decisions of the models as they are expected to reflect 
important homeostatic changes. The ultimate goal was to obtain a 
new set of disease targets capable to inform future wet laboratory 
experimentations. For this purpose, the most similar IPF_vs_Ctrl lung 
Fibromine datasets were chosen and their consensus top deregu-
lated genes were submitted to semantics similarity analysis. The 
repeated and independent nature of the selected findings combined 
with their utmost ranking among the deregulated elements greatly 
limits the chances of a false positive hit, similarly to [14]. Ultimately, 
via this semantics similarity feature selection we have reduced the 
probability of model overfitting by reducing the number of available 
features, while at the same time we maintained an objective set of 
important fibrosis-related terms.

Based on the selected gene expression data, an XGBoost en-
semble learner was successfully tuned, trained and tested for se-
parating patients from pulmonary fibrosis free individuals using an 
MCCV approach. The XGBoost model was specifically chosen for 
several reasons including its previous effective use with gene ex-
pression data [30], as well as its resistant nature to overfitting and 
multi-co-linearity phenomena[31]. The latter algorithmic property is 
extremely significant as it enables the maintenance and downstream 
prioritization of equally significant deregulated features which may 
belong to distinct molecular processes; features that would have 
been removed prior to any other multi-co-linearity susceptible ap-
proach. Models evaluation using the testing set returned a median of 
at least 0.92 for all but one metrics, while model assessment with an 
entirely independent couple of Fibromine datasets resulted in an at 
least equally good classification, scoring a median of minimum 0.85 
and maximum 0.95 in the same performance metrics.

Subsequently, per gene SHAP values were calculated in order to 
explain features contribution to each of the models. 76 genes with at 
least one non-zero SHAP value in any of the 10 iterations were se-
lected for downstream processes. Functional characterization based 
on pathway analysis and CORUM3.0 mining revealed several fi-
brosis-related entities and protein complexes supporting the fi-
brotic-related character of the selected genes, respectively. In 

addition, almost half of them were revealed to be associated with 
pulmonary fibrosis and/or interstitial lung diseases based on 
PubMed text mining. More importantly, 12 of those machine 
learning-selected features were suggested by previous publications 
as potential IPF biomarkers, further strengthening the fibrotic 
character of our list.

To aggregate in a single list the 76 features collectively proposed 
by the ten models, two of the best performing [42] - BIRRA and MAIC 
- and an ad hoc developed ranking aggregation methods were ap-
plied. Based on the popular majority voting strategy, the herein 
formulated ranking aggregation method delivered very similar 
rankings with the other two as revealed by Kendall correlation. In 
addition, 13 of the 20 top ranking genes were common across all lists 
and more than half of those genomic elements were underlined as 
fibrosis-associated via text mining. Importantly, four of them (COMP, 
COL1A1, COL17A1 and COL5A2) were already included in previous 
lists of in silico predicted IPF biomarkers [35,36,38,39].

Last, an attempt was made to compare our full set of proposed 
markers with in silico-formed ones from previous publications that 
exploited publicly available datasets in a mostly network-oriented 
manner [35–39]. For such a purpose, ten XGBoost models were 
tuned and trained for each of the already published biomarker lists 
following the exact same pipeline as in our full model. In parallel, an 
extra model was trained based the top 13 genes shared by all ranking 
aggregation methods applied on the full feature list (Fig. 3B), with 
the aim of presenting a smaller set of similar size to that of the al-
ready available marker lists.

As expected based on past machine learning applications on gene 
expression data [45], juxtaposition of the models’ performance 
showed relatively small differences. In brief, evaluation on the 
testing set placed our lite model among the top performing 
methods, while Xu-based classifier showed the lowest efficiency in 
separating IPF from control individuals. The latter observation can be 
potentially attributed to the formation of the initial Xu list using only 
a couple of datasets [37] possibly not adequate to properly address 
IPF heterogeneity. Model performance on the external set of data 
suggested that our lite feature list has a greater generalization po-
tential, with only its sensitivity being outperformed by just a couple 
of models. Thus, the above results propose the aforementioned 13 
genes as a robust set of IPF biomarkers.

In addition to introducing a new set of diagnostic genes able to 
classify IPF and healthy cases, this endeavor also attempts to bring 
into scientific attention several IPF-related features overlooked by 
previous in silico studies. For example, focusing on the genes of our 
lite model, apart from well-known pulmonary fibrosis players, such 
as MMP7 [46–48], COL1A1 [47,49,50], COL15A1 [47], COMP [51] and 
AGER [52,53], there are features that have not been extensively 
studied in pulmonary fibrosis. Although, interleukin 13 receptor 
subunit alpha 2 (IL13RA2) has been evidenced to mediate pro-fi-
brotic TGFb-1 signaling in a colitis model [54] and was here corre-
lated with several pulmonary function tests, its potential implication 
in pulmonary fibrosis needs to be thoroughly investigated. Other 
genes unexplored in the lung scaring context include PAPSS2 which 
has been recently implicated in pro-tumorigenic processes of cuta-
neous squamous cell carcinoma cells [55], DCXR whose suppression 
has been shown to ameliorate renal fibrosis [56] and ACADL which 
has been evidenced to offer an at least indirect protection against 
steatosis [57]. All above three genes were here shown to have sig-
nificant correlations with lung function physiological measure-
ments.

Furthermore, other interesting genes lie among the most im-
portant features of our full model. Secreted frizzled-related protein 2 
(SFRP2) which is among the top 20 prioritized genomic elements of 
both BIRRA and SHAP-weighted majority voting is a known marker 
of myofibroblast progenitors in systemic skin sclerosis [58] and has 
also been recently implicated in breast cancer, participating in a 

Table 2 
Prioritized features found in previous idiopathic pulmonary fibrosis versus control 
differential expression-based biomarker lists. 

Prioritized 
Gene

Xu et al. 
PMID: 
32899090

Zhu et al. 
PMID: 
34522168

Cui et al. 
PMID: 
33672678

Wan et al. 
PMID: 
34476240

Li et al. 
PMID: 
32782692

COL1A1 X X X X
COL15A1 X
COMP X
MMP7 X X X
COL17A1 X
SPP1 X X X
ASPN X
LCN2 X
COL3A1 X X X
ITGB8 X
COL1A2 X X X
CP X
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lung-breast cancer axis of communication [59]. Nevertheless and 
although its transcription has been located in a fibroblast population 
by [60], its role in IPF has not yet been clarified. Even though re-
ported by text mining, CTHRC1 and ABCA3 are two other features 
ranked among the top three genes of both BIRRA and the here de-
veloped ranking aggregation method, whose exact role in pulmonary 
fibrosis may worth a detailed dissection. More specifically, although 
known to be over-expressed during pulmonary fibrosis, CTHRC1 has 
been only recently shown to mark cell types with pathological ex-
pression profile in the fibrotic lung [50]. More importantly, as far as 
we are able to know, reported ABCA3 implication in pulmonary fi-
brosis has until now been restricted to mutations found in infant and 
adult IPF patients [61]. Nevertheless, the ILD phenotype of an infant 
was most recently reversed after disrupting an inherited ABCA3 
biallelic mutation via lung transplantation [62].

Our study is not without limitations. First, models constructed on 
previously published biomarker lists, included a big yet not com-
plete set of per list proposed genes, as a comprehensive inclusion 
would have automatically differentiated their baseline training data 
from that of our full list. Second, PubMed baseline collection of 2022 
publications although fairly up-to-date does not include the latest 
research deliverables and may have thus slightly affected our text 
mining results. Manual literature search results performed in an 
attempt to fill that publication gap, although thorough, are not ex-
pected to be impeccable.

Overall, this study proposed a full and a laconic set of marker 
genes able to separate IPF from pulmonary-fibrosis free individuals 
using a transparent machine learning pipeline. Starting from a long 
list of differentially expressed genes it offered a full and a lite set of 
IPF diagnostic features hosting both well-known and less in-
vestigated targets. Furthermore, the results of an ad hoc ranking 
aggregation method have been shown to reflect underlying biology 
in an adequate degree compared to two of the currently top-per-
forming strategies. Future wet laboratory experiments are needed to 
establish the role of the here highlighted disease targets and assess 
the biomarkers effectiveness at the laboratory bench.
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ENPP2 methylation in health and cancer 

Μεθυλίωση του ENPP2 σε υγιείς και καρκινικές συνθήκες 

Η αυτοταξίνη (autotaxin; ATX), κωδικοποιούμενη από το γονίδιο της 2 εξωνουκλεοτιδικής 

πυροφωσφατάσης/φωσφοδιεστεράσης (ENPP2), είναι ένα ένζυμο κλειδί για την σχετική με 

τον καρκίνο σύνθεση λυσοφωσφατιδικού οξέος (LPA). Παρότι έχει ήδη αναφερθεί 

παρεκκλίνουσα έκφραση του γονιδίου, το προφίλ μεθυλίωσής του σε υγιείς και κακοήθεις 

συνθήκες δεν έχει περιγραφεί. Εξετάσαμε in silico την μεθυλίωση του, αναλύοντας δημοσίως 

διαθέσιμα συνολα δεδομένων μεθυλίωσης προκειμένου να ταυτοποιήσουμε διαφορικώς 

μεθυλιωμένες θέσεις CpGs (DMCs). Aκολούθως οι τελευταίες συσχετίστηκαν με τιμές 

έκφρασης σε γονιδιακό και επίπεδο μεταγραφωμικών ισομορφών. Υγιείς ιστοί παρουσίασαν 

μεθυλίωση σε όλο το σώμα του γονιδίου και χαμηλότερα επίπεδα σε περιοχές συσχετιζόμενες 

με τον υποκινητή του, ενώ το αντίστροφο προφίλ παρατηρήθηκε στην πλειονότητα των 

εξετασθέντων όγκων. Τα DMCs που ταυτοποιήθηκαν στον υποκινητή τοποθετούνταν σε 

θέσεις που αναγνωρίζονται από πολλαπλούς μεταγραφικούς παράγοντες, προτείνοντας 

συμμετοχή στη γονιδιακή έκφραση. Αλλαγές στην μεθυλίωση συσχετίστηκαν με έναν πιο 

επιθετικό φαινότυπο καρκινικών κυτταρικών σειρών. Σε προστατικά και πνευμονικά 

αδενοκαρκινώματα αυξημένη μεθυλίωση των CGs του υποκίνητή συσχετίστηκε με μειωμένη 

έκφραση του ENPP2 και δυσοίωνες προγνωστικές παραμέτρους. Συγκεντρωτικώς, τα 

αποτελέσματά μας υποστηρίζουν πως η μεθυλίωση είναι ένα ενεργό επίπεδο ρύθμισης της 

έκφρασης της ATX στον καρκίνο. Η μελέτη μας, παρέχει μία εκτενή περιγραφή της 

κατάστασης μεθυλίωσης του ENPP2 σε υγιείς και καρκινικές συνθήκες και επισημαίνει 

συγκεκριμένα DCMs ως πιθανούς προγνωστικούς βιοδείκτες. 
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Abstract: Autotaxin (ATX) encoded by Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2)
is a key enzyme in Lysophosphatidic Acid (LPA) synthesis implicated in cancer. Although its aberrant
expression has been reported, ENPP2 methylation profiles in health and malignancy are not described.
We examined in silico the methylation of ENPP2 analyzing publicly available methylome datasets, to
identify Differentially Methylated CpGs (DMCs) which were then correlated with expression at gene
and isoform levels. Significance indication was set to be FDR corrected p-value < 0.05. Healthy tissues
presented methylation in all gene body CGs and lower levels in Promoter Associated (PA) regions,
whereas in the majority of the tumors examined (HCC, melanoma, CRC, LC and PC) the methylation
pattern was reversed. DMCs identified in the promoter were located in sites recognized by multiple
transcription factors, suggesting involvement in gene expression. Alterations in methylation were
correlated to an aggressive phenotype in cancer cell lines. In prostate and lung adenocarcinomas,
increased methylation of PA CGs was correlated to decreased ENPP2 mRNA expression and to poor
prognosis parameters. Collectively, our results corroborate that methylation is an active level of ATX
expression regulation in cancer. Our study provides an extended description of the methylation
status of ENPP2 in health and cancer and points out specific DMCs of value as prognostic biomarkers.

Keywords: autotaxin; ENPP2; methylation; cancer; expression; regulation

1. Introduction

ATX encoded by ENPP2 is a secreted lysophospholipase D (lysoPLD) and belongs
to the ENPP (1–7) protein family [1]. ATX is responsible for the synthesis of the majority
of extracellular LPA in blood. LPA acts locally upon increased ATX levels through at
least six G protein-coupled receptors [2]. Increased ATX activity and levels have been
correlated with several inflammatory [3] and fibroproliferative conditions [4], as well as
with cancer [5]. In particular, increased expression of ATX in blood and the subsequent
increase of LPA have been correlated with cancer invasiveness [6]. In addition, it has been
shown that ATX expression is upregulated in cancerous [7,8] and fibrotic tissues [9].

ENPP2 contains 26 introns and 27 exons and is located in the human chromosomal
region 8q24 [10], a region with frequent genetic alterations in many cancers [11]. ENPP2 is
characterized by alternative splicing of mRNA. The best-known splice variants of ENPP2
are isoforms alpha, beta and gamma; between them, differences in the stability and expres-
sion pattern have been documented among several tissues [12].

Epigenetic regulation of ENPP2 has been previously reported [13]. DNA methylation,
a well-studied epigenetic mechanism, can regulate gene expression [14], and aberrant gene-
specific methylation has been correlated with many pathologies, such as cancer [15–20].
However, data on the methylation profile of ENPP2 in health and pathology are fragmented.
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A study in Biliary Atresia (BA) showed hypomethylation at four CpGs of ENPP2 promoter
in the blood and liver of BA patients in relation to normal tissue and was correlated
to increased ATX expression [21]. ENPP2 promoter hypermethylation and gene under-
expression was found in primary invasive breast carcinomas [13]. Similarly, in breast
cancer cell lines, a promoter-associated CpG (cg02156680) of ENPP2 was found highly
methylated [22].

In the present study, we studied in silico the methylation of ENPP2 in health and
several malignancies and correlated it with gene and isoform expression, aggressiveness
and prognosis. Cancer types included in our study were chosen based on their high world
incidence, mortality and prevalence [23], as well as access to readily available suitable high-
throughput datasets. We examined publicly available methylation datasets from readings
by the Illumina methylation bead-chip arrays found in Gene Expression Omnibus (GEO), to
identify Differentially Methylated CpGs (DMCs) of ENPP2 between health and disease.
Lung, prostate and liver cancer presented a greater number of Promoter Associated (PA)
DMCs for ENPP2 and were further pursued using large datasets retrieved from The Cancer
Genome Atlas (TCGA), which allowed DMC correlation to clinicopathological parameters
and gene expression. A workflow of our study is presented in Figure 1.
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Figure 1. Workflow of the study of ENPP2. Created with BioRender.com (Agreement number:
UW22ZTY5U7) (accessed on 24 September 2021). Abbreviations: GEO: Gene Expression Omnibus,
DMCs: Differential Methylated CpG sites, TF: Transcription Factor, TCGA: The Cancer Genome
Atlas, LC: Lung Cancer, PC: Prostate Cancer, HCC: Hepatocellular Carcinoma, ATX: Autotaxin.



Int. J. Mol. Sci. 2021, 22, 11958 3 of 21

2. Materials and Methods
2.1. GEO Datasets for the In-Silico Methylation Analysis

DNA methylation data from cancer cell lines and patients with different malignan-
cies and corresponding controls were obtained from the GEO (Gene Expression Omnibus)
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 25 December 2020) database [24]. Col-
orectal Cancer (CRC), Lung Cancer (LC), melanoma, Prostate Cancer (PC), Gastric Cancer
(GC), Liver Cancer (HCC), cell lines and normal tissues were used as keywords in GEO
query and ‘Methylation profiling by array’ as study type. A total of 73 studies were found;
between them, only those using Infinium Human Methylation 27 K, 450 K and EPIC
BeadChips (San Diego, CA, USA) and providing adequate data were selected for further
analysis. In total, 13 studies, GSE27130 [25], GSE98534 [26], GSE63704, GSE46306 [27],
GSE134772 [28], GSE120878 [29], GSE76938 [30], GSE97686 [31], GSE113017 [32],
GSE113019 [32], GSE71627 [33], GSE50192 [34,35] and GSE51815 [36], were recruited for
our analysis. Descriptions of study groups and correlations are presented in Table 1.

Table 1. Methylome datasets retrieved from GEO for the in silico analysis of ENPP2 methylation.

Dataset Platform Compared Patient Groups References

GSE27130 27 k 236 CRC vs. 236 adjacent colon tissues [25]

GSE98534 27 k 16 CRC vs. 16 adjacent colon tissues [26]

GSE63704 450 k 17 LC vs. 43 adjacent lung tissues -

GSE46306 450 k 6 CC (HPV+) vs. 18 CIN3(HPV+) vs. 20 normal cervical (HPV−) tissues [27]

GSE134772 EPIC 3 CC(HPV16) vs. 2 CIN1, 1 CIN2, 1 CIN3 (HPV16) vs. 3 normal (HPV-)
cervical tissues [28]

GSE120878 450 K 89 melanoma vs. 73 nevus tissues [29]

GSE76938 450 K 73 PC vs. 63 prostate benign tissues [30]

GSE97686 450 k 3 GC vs. 3 adjacent gastric vs. 3 normal gastric myofibroblasts [31]

GSE113017 450 k 30 HCC vs. 30 adjacent liver tissues [32]

GSE113019 450 k 19 primary HCC vs. 18 recurrent HCC vs. 18 adjacent liver tissues [32]

GSE71627 450 k HepG2 vs. SKHep1, LNCaP vs. PC3 [33]

GSE50192 450 k

Adipose abdominal, adipose subcutaneous, splenic artery, bone, bone marrow
red, coronary artery, gastric mucosa, lymph node, aorta abdominal, aorta
thoracic, bladder, bone marrow yellow, gallbladder, ischiatic nerve, joint

cartilage, medulla oblongata, tonsils (basal methylation)

[34,35]

GSE51815 450 k AZA treated colon cancer cell lines vs. untreated controls [36]

CRC: Colorectal Cancer; LC: Lung Cancer; CC: Cervical Cancer; HPV+/−: Human Papillomavirus positive/negative; CIN: Cervical
Intraepithelial Neoplasia; PC: Prostate Cancer; GC: Gastric Cancer; HCC: Hepatocellular Carcinoma.

2.2. Methylation and Statistical Analysis

Methylation analysis was carried out using normalized beta values ranging between
0 (no methylation) and 1 (full methylation) representing methylation levels of each CpG
site (Level 3 data). The Kolmogorov–Smirnov test was applied to check for normality in
distribution. Statistical analysis was performed using IBM SPSS 19.0 statistical software
(IBM Corp. 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY, USA).
One-Way ANOVA tests followed by Bonferroni post-hoc or Kruskal–Wallis tests were
used for comparisons of continuous variables among three or more different groups. In
the case of binary variables, t-test or Mann–Whitney tests were also applied. Pearson or
Spearman correlation was applied to compare two continuous variables. Differentially
Methylated CpGs (DMCs) for ENPP2 were identified based on the False Discovery Rate
(FDR—adjusted p-value < 5.00 × 10−2).

https://www.ncbi.nlm.nih.gov/geo/


Int. J. Mol. Sci. 2021, 22, 11958 4 of 21

2.3. In Silico Determination of Transcription Factor (TF) Binding

In order to examine if the DMCs identified were correlated to ENPP2 expression, we
further analyzed promoter regions to locate TF binding sites. Hence, PROMO (http://alggen.
lsi.upc.es/, accessed on 18 March 2021) [37] tool was used in order to define possible TFs
binding in identified DMCs inside ENPP2 promoter. Only human factors and human sites
were considered for a TFs search.

2.4. Expression and Methylation Correlation Analysis Using TCGA Datasets

Normalized (gene and isoform level) RNA-seq (Illumina HiSeq), level 3 methylation
legacy data (Infinium Human Methylation 450 K bead-chip) and corresponding available
clinical data were retrieved from prostate adenocarcinoma, lung adenocarcinoma and liver
hepatocellular carcinoma TCGA projects representing PC, LC and HCC cases, using the
TCGAbiolinks R package [38]. In total, 212 LC, 235 PC and 241 HCC cancer cases along
with adjacent healthy lung (15 cases), prostate (35 cases) and liver (42 cases) tissues were
obtained. More specifically, cases were chosen to include both mRNA expression (gene
and isoforms) and methylation data, from which all matched control and tumor cases were
retrieved along with 200 additional tumor samples per cancer type. In the rare case of a
case ID being represented by more than one methylation or expression file, the weighted
average of the respective values was used for downstream analysis (all weights sum up to
the unit). Spearman correlation was calculated per cancer type using the cor.test function.
The cutoff level of significance was set to be FDR corrected p-value < 0.05. Last, p-values
of linear models fitted between methylation and expression levels (lm R function) were
used to test and establish the importance of small correlation coefficients. Analyses were
performed using R version 4.0.4.

2.5. Expression, Methylation and Survival Analysis Using the UALCAN Database

In order to further verify our results, we used the UALCAN database (http://ualcan.
path.uab.edu/, accessed on 10 September 2021) [39] that enables researchers to analyze
cancer archived omics data. We performed expression, methylation and survival analysis
of ENPP2 in the three types of cancer used in our analysis (PC, LC, HCC) along with
the corresponding controls. According to UALCAN, different beta value cut-offs have
been considered to indicate hyper-methylation [beta value: 0.7 − 0.5] or hypo-methylation
[beta-value: 0.3 − 0.25]. For mRNA expression, methylation and survival, we used TCGA
gene analysis, and the screening conditions were as follows: gene “ENPP2”, TCGA dataset
“Prostate adenocarcinoma”, “Lung adenocarcinoma”, “Lung Squamous cell carcinoma”,
“Liver hepatocellular carcinoma”. We then used “expression”, “methylation” and “survival”
as links for analysis of each cancer. Protein expression data were available only for lung
adenocarcinoma, and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets
were used for analysis. For protein analysis, Z-values represent standard deviations from
the median across samples for the given cancer type. Log2 Spectral count ratio values
from CPTAC were first normalized within each sample profile and then normalized across
samples.

3. Results
3.1. Analysis of ENPP2 Methylation from GEO Datasets

In silico methylation analysis of ENPP2 was performed using methylome data re-
trieved using the GEO. The results are described below.

3.2. ENPP2 Methylation in Normal Tissues

In order to examine the methylation profile of ENPP2 across different human healthy
tissues, we analyzed methylome data from 17 healthy tissues included in the GSE50192
study. We observed a consistent methylation pattern across all studied tissues (Figure 2),
with methylation being increased in all 7 CGs in the gene body region and decreased in
5 CGs in the Transcription Start Site (TSS) and 1 in the 1st exon.

http://alggen.lsi.upc.es/
http://alggen.lsi.upc.es/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
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3.3. ENPP2 Methylation in Tissues from Cancer Patients

In order to unravel aberrant ENPP2 methylation in cancer, we compared methylomes
of malignant vs. respective benign tissues from 7 different cancer types, using 10 GEO
datasets (GSE113017, GSE113019, GSE120878, GSE27130, GSE63704, GSE76938, GSE98534,
GSE46306, GSE134772, GSE97686) (Table 1). In total, 13 DMCs were identified in 5 cancers,
i.e., HCC (12 DMCs), PC (10 DMCs), LC (9 DMCs), melanoma (7 DMCs), CRC (1 DMC)
(Table 2), most of which were common between them (Table 3), whereas no DMCs were
identified in Precancerous Interepithelial Cervical Neoplasia (CIN) and Cancer (CC) and
in Gastric Cancer (GC). With two exceptions, all gene body DMCs showed decreased
methylation in cancer in relation to their controls. Most importantly, all CGs located in the
promoter-associated region and the 1st exon, regions known to hold an important role in
transcriptional regulation [38,40] were DMCs across different cancer types, all presenting
increased methylation. These results demonstrate aberrant methylation of ENPP2 in the
majority of cancer types studied, following a specific pattern pointing to down-regulation
of expression.
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Table 2. DMCs presenting higher or lower methylation in cancer in relation to corresponding control, identified via in silico
analysis in ENPP2.

Study ID Compared
Groups CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene

Region FDR

HCC

GSE113017 Adjacent liver
vs. HCC tumor

cg00320790 0.892 0.761 −0.130 Down Body 2.5 × 10−2

cg07236691 0.832 0.659 −0.173 Down Body 1.9 × 10−3

cg09444531 0.795 0.619 −0.176 Down Body 8.6 × 10−4

cg20162626 0.809 0.642 −0.167 Down Body 3.0 × 10−2

cg02709432 0.123 0.263 0.141 Up TSS200 1.9 × 10−2

cg04452959 0.058 0.189 0.131 Up TSS200 2.1 × 10−2

cg02156680 0.067 0.202 0.135 Up TSS1500 4.0 × 10−3

cg06998282 0.086 0.286 0.200 Up TSS1500 4.0 × 10−3

GSE113019

Adjacent liver
vs. primary
HCC tumor

cg00320790 0.835 0.623 −0.212 Down Body 3.0 × 10−2

cg07236691 0.776 0.563 −0.213 Down Body 4.5 × 10−2

cg09444531 0.721 0.484 −0.237 Down Body 2.4 × 10−3

cg20048037 0.696 0.474 −0.222 Down Body 2.1 × 10−2

cg20162626 0.695 0.447 −0.248 Down Body 7.0 × 10−3

cg23725583 0.718 0.557 −0.161 Down Body 6.2 × 10−2

cg02156680 0.064 0.188 0.124 Up TSS1500 1.8 × 10−2

cg06998282 0.105 0.284 0.179 Up TSS1500 3.0 × 10−2

cg02709432 0.127 0.256 0.129 Up TSS200 2.0 × 10−2

cg04452959 0.042 0.149 0.106 Up TSS200 9.3 × 10−3

Adjacent liver
vs. (primary &

recurrent)
HCC tumor

cg00320790 0.835 0.634 −0.201 Down Body 2.3 × 10−3

cg07236691 0.776 0.568 −0.207 Down Body 2.3 × 10−3

cg20048037 0.696 0.450 −0.246 Down Body 1.8 × 10−3

cg23725583 0.718 0.581 −0.137 Down Body 4.6 × 10−2

cg02156680 0.064 0.198 0.134 Up TSS1500 4.0 × 10−3

cg06998282 0.105 0.279 0.174 Up TSS1500 1.3 × 10−2

cg14409958 0.263 0.374 0.111 Up TSS1500 2.2 × 10−2

cg02709432 0.127 0.253 0.126 Up TSS200 1.2 × 10−2

cg04452959 0.042 0.141 0.098 Up TSS200 5.3 × 10−3

cg02534163 0.143 0.274 0.131 Up 1st Exon 2.3 × 10−3

Melanoma

GSE120878

Nevus vs.
primary

melanoma
tissues

cg23725583 0.481 0.583 0.102 Up Body 4.7 × 10−6

cg00320790 0.859 0.834 −0.025 Down Body 2.3 × 10−3

cg09444531 0.736 0.692 −0.043 Down Body 1.1 × 10−2

cg20048037 0.801 0.740 −0.061 Down Body 1.4 × 10−6

cg20162626 0.625 0.575 −0.050 Down Body 2.3 × 10−3

cg26078665 0.647 0.616 −0.031 Down Body 8.0 × 10−3

cg04452959 0.105 0.142 0.037 Up TSS200 5.6 × 10−4

cg02534163 0.155 0.242 0.087 Up 1st Exon 1.4 × 10−6

CRC

GSE27130 Adjacent colon
vs. CRC cg14409958 0.201 0.210 0.009 Up TSS1500 5.6 × 10−3
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Table 2. Cont.

Study ID Compared
Groups CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene

Region FDR

LC

GSE63704

Normal lung
vs. LC

cg09444531 0.832 0.774 −0.058 Down Body 3.0 × 10−4

cg20048037 0.832 0.754 −0.078 Down Body 5.2 × 10−5

cg20162626 0.863 0.802 −0.061 Down Body 6.5 × 10−5

cg02709432 0.234 0.265 0.030 Up TSS200 1.7 × 10−2

cg06998282 0.198 0.268 0.070 Up TSS1500 2.6 × 10−3

cg14409958 0.264 0.366 0.103 Up TSS1500 1.4 × 10−4

cg02534163 0.133 0.183 0.050 Up 1st Exon 1.5 × 10−2

IPF vs. LC

cg00320790 0.940 0.904 −0.036 Down Body 5.6 × 10−4

cg20048037 0.785 0.754 −0.031 Down Body 5.2 × 10−1

cg20162626 0.844 0.802 −0.042 Down Body 2.1 × 10−2

cg06998282 0.196 0.268 0.072 Up TSS1500 4.7 × 10−3

cg14409958 0.269 0.366 0.097 Up TSS1500 8.4 × 10−4

COPD vs. LC

cg20048037 0.810 0.754 −0.056 Down Body 8.4 × 10−3

cg20162626 0.850 0.802 −0.048 Down Body 4.7 × 10−3

cg02709432 0.229 0.265 0.035 Up TSS200 8.4 × 10−3

cg02156680 0.183 0.204 0.022 Up TSS1500 3.4 × 10−2

cg06998282 0.184 0.268 0.084 Up TSS1500 8.4 × 10−4

cg14409958 0.253 0.366 0.114 Up TSS1500 8.4 × 10−4

cg02534163 0.133 0.183 0.050 Up 1st Exon 2.8 × 10−2

PC

GSE76938
benign

prostate vs. PC

cg07236691 0.471 0.670 0.199 Up Body 1.4 × 10−6

cg09444531 0.654 0.775 0.122 Up Body 1.4 × 10−6

cg23725583 0.845 0.914 0.069 Up Body 1.0 × 10−3

cg26078665 0.687 0.709 0.022 Up Body 7.6 × 10−3

cg20162626 0.787 0.687 −0.100 Down Body 1.4 × 10−6

cg02709432 0.093 0.417 0.324 Up TSS200 1.4 × 10−6

cg04452959 0.034 0.289 0.255 Up TSS200 1.4 × 10−6

cg06998282 0.108 0.457 0.349 Up TSS1500 1.4 × 10−6

cg14409958 0.126 0.399 0.273 Up TSS1500 1.4 × 10−6

cg02156680 0.070 0.351 0.281 Up TSS1500 1.4 × 10−6

cg02534163 0.071 0.340 0.268 Up 1st Exon 1.4 × 10−6

* Mean β (Mβ) value 1 represents methylation in control and Mean β (Mβ) value 2 methylation in cancer; # ∆β value: (Mean β value
2-Mean β value 1). Abbreviations: DMC: Differentially Methylated CpG; FDR: False Discovery Rate; HCC: Hepatocellular Carcinoma; TSS:
Transcription Start Site; PA: Promoter Associated; CRC: Colorectal Cancer; IPF: Idiopathic Pulmonary Fibrosis; LC: Lung Cancer; COPD:
Chronic Obstructive Pulmonary Disease; PC: Prostate Cancer.
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Table 3. Common DMCs across different cancer types, located at TSS or 1st exon, all presenting
upregulation of methylation in relation to respective benign controls.

DMC Studies Analysed Cancer Type

cg02156680 GSE113017, GSE113019, GSE63704, GSE76938 HCC, PC

cg02709432 GSE113017, GSE113019, GSE63704, GSE76938 HCC, LC, PC

cg04452959 GSE113017, GSE113019, GSE120878, GSE76938 HCC, melanoma, PC

cg06998282 GSE113017, GSE113019, GSE63704, GSE76938 HCC, LC, PC

cg02534163 GSE113019, GSE120878, GSE63704, GSE76938 HCC, melanoma, LC, PC

cg14409958 GSE113019, GSE27130, GSE63704, GSE76938 HCC, CRC, PC, LC
Abbreviations: CRC: Colorectal Cancer; LC: Lung Cancer; PC: Prostate Cancer; HCC: Hepatocellular Carcinoma.

3.4. ENPP2 Methylation Was Correlated to Aggressiveness in Cancer Cell Lines

In order to study any relation of ENPP2 methylation to cancer aggressiveness, we
compared cell lines from hepatocellular and prostate cancer presenting a more (SKHEP1
and PC3 respectively) or less (HEPG2 and LNCAP respectively) invasive phenotype, using
the GSE71627 study dataset [33]. In total, 12 DMCs were identified (Table 4), 6 of which
were common in both cancer types. All 8 DMCs identified in HCC cell lines were also
found in the liver tumor methylomes, whereas the common DMCs between prostate tissues
and cell lines were 6/8. With two exceptions, all DMCs across the whole gene (1st exon,
TSS, body) showed higher methylation in the more aggressive hepatocellular and prostate
cell lines. These observations suggest an involvement of ENPP2 methylation in cancer
aggressiveness.

Table 4. DMCs of ENPP2 identified by comparing HCC and PC cell lines with a more (SKHEP1 and PC3 respectively) to
less (HEPG2 and LNCAP respectively) invasive phenotype (GSE71627 dataset).

CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene Region FDR

HCC

cg00320790 0.808 0.924 0.115 Up Body 3.1 × 10−2

cg09444531 0.353 0.765 0.411 Up Body 6.5 × 10−3

cg20048037 0.564 0.859 0.295 Up Body 2.4 × 10−2

cg07236691 0.689 0.126 −0.563 Down Body 3.6 × 10−3

cg04452959 0.339 0.784 0.444 Up TSS200 5.1 × 10−2

cg02156680 0.472 0.868 0.396 Up TSS1500 3.2 × 10−3

cg06998282 0.637 0.938 0.302 Up TSS1500 1.8 × 10−4

cg02534163 0.710 0.967 0.257 Up 1st Exon 2.7 × 10−2

PC

cg00320790 0.574 0.900 0.326 Up Body 2.3 × 10−3

cg07236691 0.778 0.824 0.046 Up Body 5.6 × 10−2

cg09444531 0.251 0.585 0.333 Up Body 4.3 × 10−3

cg20048037 0.370 0.671 0.301 Up Body 8.8 × 10−3

cg20162626 0.190 0.552 0.362 Up Body 1.7 × 10−2

cg26078665 0.662 0.772 0.110 Up Body 2.3 × 10−3

cg02156680 0.725 0.377 −0.348 Down TSS1500 2.5 × 10−3

cg02534163 0.772 0.951 0.179 Up 1st Exon 2.9 × 10−3

* Mean β (Mβ) value 1 represents methylation in less invasive cell lines and * Mean β (Mβ) value 2 methylation in more invasive; # ∆β
value: (Mean β value 2-Mean β value 1). Abbreviations: PC: Prostate Cancer, HCC: Hepatocellular Carcinoma, PA: Promoter Associated,
TSS: Transcription Start Site.

Interestingly, treatment of colon cancer cell lines with the DNA methylation inhibitor
5-aza-2′-deoxycytidine (GSE51815 study) caused a decrease of methylation in all 14 DMCs
located throughout ENPP2 (Supplementary Table S1), implying that methylation could
present a potential therapeutic target to reverse the aggressive phenotype.



Int. J. Mol. Sci. 2021, 22, 11958 9 of 21

3.5. In Silico Analysis of TF Binding on the ENPP2 Promoter

Regulation of gene expression via DNA methylation occurs mainly by disturbing
TF and RNA polymerase binding to sites known to be necessary for initiation of tran-
scription [41]. To support that the identified DMCs on ENPP2 may actually play a role in
regulating ATX expression, we examined if they are located within TF binding promoter
regions that could initiate transcription. Analysis using the PROMO tool predicted 39 puta-
tive TFs that could bind to the ENPP2 promoter (Figure 3), 4 of them (TFIID, GR, GR-beta,
C/EBPbeta) on or in proximity to cg04452959, 7 TFs (TFII-I, GR-alpha, GATA-1, E2F-1,
Pax-5, p53, Sp1) in cg02709432, 7 TFs (C/EBPbeta, C/EBPalpha, Pax-5, p53, ENKTF-1, YY1,
GR-beta) in cg02156680 and 3 TFs (PEA3, GATA-1, XBP-1) in cg06998282. Interestingly,
those 4 CGs located 200 nucleotides upstream of and up to the TSS (TSS200) (first 2), or
200 to 1500 nucleotides upstream of the TSS (TSS1500) (last 2) were identified as DMCs
in most of the malignancies examined and between more and less aggressive cell lines.
Collectively, these findings show that DMCs identified in the ENPP2 promoter in cancer
are found in sites significant for TF binding, and therefore, altered methylation is likely to
affect transcription and expression of ATX.
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3.6. ENPP2 Methylation and Expression Analysis from TCGA Datasets

An important objective of our study was to address if and how aberrant methylation
of ENPP2 is related to alterations in gene expression. Based on our findings, three cancer
entities presenting the highest number of DMCs were selected for further study, in order to
confirm altered ENPP2 methylation in larger cohorts and correlate them with expression at
gene and isoform levels. For this purpose, several available datasets including PC, LC and
HCC readings of mRNA expression (gene and isoforms) and methylation along with the
available clinical and demographic data were downloaded from TCGA.

3.7. ENPP2 Methylation and Expression Analysis in Prostate Cancer

Comparisons were performed between 235 prostate adenocarcinoma tumors and
35 healthy prostate tissues (Table 5). In general, results confirmed those from the GEO
datasets. In total, 12 DMCs were identified between cancer and control tissues (5 in TSS, 1 in
1st exon and 6 in the gene body), 10 of which were common to those found in the GSE76938
dataset. All DMCs in TSS and the 1st exon presented increased methylation in PC in relation
to controls, whereas decreased methylation was noticed in 3 out of 6 DMCs in the gene
body area. Following this, we examined correlation of DMCs to clinicopathological patient
characteristics, to reveal associations with prognosis. Methylation analysis in relation to
available patient data (age, race, nodal status, relapse, tumor size and treatment response)
showed a significant correlation with tumor size, as increased methylation of 3 CGs, namely,
cg02534163 (1st exon), cg02709432 (TSS200) and cg23725583 (gene body), was found in
larger tumors in relation to smaller tumors (p = 0.032). Furthermore, non-response to
pharmacotherapy was correlated with increased methylation of cg01243251 in the gene
body region (p = 0.023). No other correlations were found in relation to age, race, nodal
status and the event of relapse.
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Table 5. Differential methylation and expression analysis of ENPP2 between normal prostate and PC tumors from
TCGA cases.

CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene Region FDR

cg07236691 0.568 0.730 0.162 Up Body 1.44 × 10−6

cg09444531 0.697 0.735 0.038 Up Body 1.09 × 10−3

cg20048037 0.885 0.815 −0.070 Down Body 4.22 × 10−3

cg20162626 0.796 0.650 −0.146 Down Body 1.44 × 10−6

cg23725583 0.858 0.877 0.019 Up Body 9.05 × 10−3

cg01243251 0.933 0.904 −0.029 Down Body 1.44 × 10−6

cg14409958 0.251 0.590 0.339 Up TSS1500 1.44 × 10−6

cg02156680 0.156 0.543 0.386 Up TSS1500 1.44 × 10−6

cg06998282 0.212 0.645 0.433 Up TSS1500 1.44 × 10−6

cg02709432 0.213 0.586 0.372 Up TSS200 1.44 × 10−6

cg04452959 0.130 0.466 0.335 Up TSS200 1.44 × 10−6

cg02534163 0.128 0.565 0.436 Up 1st Exon 1.44 × 10−6

# ∆β value: (Mean β value 2 * cancer-Mean β value 1 * normal). Abbreviations: PC: Prostate Cancer, FC: Fold Changes.

mRNA expression analysis in the same samples showed decreased levels in PC in
relation to normal tissues (LogFC: −0.379, FDR: 3.70 × 10−2), indicating that the increased
methylation of ENPP2 in PA regions is correlated with the decreased expression of ENPP2
in PC. Spearman correlation of mRNA ENPP2 expression (at gene and isoform level) per CG
site revealed statistically significant correlations shown in Figure 4A and Table 6. Between
gene body CGs, a tendency towards positive correlation of mRNA expression to cg01243251
and cg20162626 methylation was observed and a negative to cg07236691. TSS CG sites
cg02156680, cg02709432, cg06998282, cg14409958 and 1st exon cg02534163 methylation
showed a negative correlation with expression, showing that the increased methylation at
these regions is associated with decreased expression. Interestingly, although Spearman’s
coefficient is relatively small for TSS and 1st exon CGs, successful fit of a linear model
further supports the existence of an expression-methylation relationship (Table 6, coefficient
p-value column). No significant correlations emerged between ENPP2 expression and
methylation in control prostate tissue.

Table 6. Spearman correlation coefficient between ENPP2 CG methylation and mRNA expression (p < 0.05) for PC, LC and HCC
samples, showing mainly a negative correlation with PA CG methylation and in most cases a positive correlation with gene body
methylation.

Sample Type CG Gene Region Rho FDR Correlation Coefficient p-Value

PC

Tumor

cg06998282 TSS1500 −0.253 1.22 × 10−3 Negative 1.55 × 10−2

cg02156680 TSS1500 −0.212 2.88 × 10−3 Negative 4.43 × 10−2

cg14409958 TSS1500 −0.221 2.18 × 10−3 Negative 3.90 × 10−2

cg02709432 TSS200 −0.176 1.30 × 10−2 Negative 4.39 × 10−2

cg02534163 1st Exon −0.226 2.18 × 10−3 Negative 1.30 × 10−2

LC

Tumor
cg06998282 TSS1500 −0.142 >0.05 Negative 3.74 × 10−3

cg14409958 TSS1500 −0.213 2.19 × 10−2 Negative 1.05 × 10−4

Control cg07236691 Body −0.564 >0.05 Negative 2.31 × 10−2

HCC

Tumor

cg00320790 Body 0.297 9.46 × 10−6 Positive 6.29 × 10−5

cg01243251 Body 0.247 2.94 × 10−4 Positive 6.90 × 10−4

cg07236691 Body 0.239 4.06 × 10−4 Positive 2.28 × 10−4

cg09444531 Body 0.395 1.22 × 10−9 Positive 1.53 × 10−7

cg20048037 Body 0.436 8.81 × 10−12 Positive 1.02 × 10−8

cg20162626 Body 0.473 0.00× 100 Positive 2.10 × 10−9

cg06998282 TSS1500 −0.137 >0.05 Negative 4.55 × 10−2
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Table 6. Cont.

Sample Type CG Gene Region Rho FDR Correlation Coefficient p-Value

Control

cg20162626 Body 0.422 2.63 × 10−2 Positive 3.39 × 10−2

cg23725583 Body −0.35 4.74 × 10−2 Negative 2.61 × 10−2

cg02709432 TSS200 −0.361 4.56 × 10−2 Negative 3.25 × 10−2

cg04452959 TSS200 −0.411 2.63 × 10−2 Negative 2.87 × 10−2

cg06998282 TSS1500 −0.464 1.60 × 10−2 Negative 4.53 × 10−3

cg02156680 TSS1500 −0.393 2.99 × 10−2 Negative 3.52 × 10−2
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In order to unfold the impact of CG methylation on ENPP2 isoform expression [12,42], we
downloaded mRNA expression data from ENPP2 isoforms, i.e., isoform alpha (uc003yos.1),
isoform beta (uc003yor.1 and uc003yot.1) and isoform gamma (uc010mdd.1). Uc003yot.1,
uc003yos.1 and uc003yor.1 isoform expression showed statistically significant correlation
with the methylation of several CGs. In specific, although they were all characterized by
small effect sizes, uc003yor.1 expression is linearly related to the methylation levels of TSS
and 1st exon CGs cg02156680, cg06998282, cg14409958 and cg02534163, respectively, further
strengthening the observed correlation (Supplementary Figure S1 and Table S2). Finally, no
relation emerged between expression of any of the ENPP2 isoforms and methylation of
CGs in healthy prostate samples, consistent with the observations at the gene level.

3.8. ENPP2 Methylation and Expression Analysis in Lung Cancer

Analysis was performed between 212 LC adenocarcinoma tumors and 15 healthy lung
tissues, and results presenting statistically significant correlations are shown in Table 7.
Findings confirmed those from the GEO datasets. Eight DMCs were identified between can-
cer and control tissues (3 in the TSS, 1 in the 1st exon, 4 in the gene body) and 6 of them were
common to those found in the GSE76938 dataset. DMCs of ENPP2 showed upregulation of
methylation in TSS (cg04452959, cg06998282, cg14409958) and the 1st exon (cg02534163)
and downregulation in the gene body (cg07236691, cg09444531, cg20048037, cg20162626).
Methylation was also correlated to the available clinicopathological characteristics of LC
and normal lung tissue samples (gender, age, nodal status, distance metastasis, relapse,
tumor size and treatment response and stage). In LC samples, increased methylation of
cg14409958 (TSS) was significantly correlated with advanced cancer stage (p = 0.035).

Table 7. Differential methylation and expression analysis of ENPP2 between normal lung and LC tumors from TCGA cases.

CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene Region FDR

cg20162626 0.750 0.636 −0.114 Down Body 1.19 × 10−2

cg20048037 0.722 0.624 −0.098 Down Body 5.18 × 10−2

cg07236691 0.561 0.547 −0.014 Down Body 2.95 × 10−4

cg09444531 0.730 0.630 −0.100 Down Body 2.95 × 10−4

cg04452959 0.071 0.138 0.066 Up TSS200 7.19 × 10−3

cg14409958 0.105 0.262 0.158 Up TSS1500 2.95 × 10−4

cg06998282 0.096 0.230 0.134 Up TSS1500 1.05 × 10−2

cg02534163 0.109 0.255 0.145 Up 1st Exon 8.19 × 10−4

Mβ Value 1 *: Mean β value normal, Mβ Value 2 *: Mean β value cancer # ∆ β value: (Mean β value 2 * cancer-Mean β value 1 * normal).
Abbreviations: LC: Lung Cancer, FC: Fold Changes.

Differential mRNA expression analysis in the same samples showed decreased levels
in LC in relation to normal tissues (LogFC: 1.285, FDR: < 1.00 × 10−2) similarly to PC,
indicating that in cancer the increased methylation of PA CGs is correlated to decreased
autotaxin expression. The impact of ENPP2 methylation on its expression was examined in
LC and healthy lung tissue samples. Spearman correlation of mRNA expression per CG
resulted in a single statistically significant correlation (Figure 4B and Table 6). A reverse
correlation was noticed between methylation of cg14409958 (TSS) and mRNA expression,
suggesting again the DNA methylation role in repressing expression. Fit of a linear model
once again reinforced the observed correlation. On the other hand, control samples did
not show any statistically significant correlation after p-value correction, and only the
methylation of body site cg7236691 showed a significant correlation coefficient along with
a linear relationship to ENPP2 expression levels. Last, no significant correlations were
witnessed between methylation and expression levels of all isoforms examined, yet large
rho values and significant linear model fit propose the existence of such a relationship.
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3.9. ENPP2 Methylation and Expression Analysis in Hepatocellular Carcinoma

Analysis was performed between 241 HCC tumors and 42 control liver tissues. Statis-
tically significant correlations are presented in Table 8. In total, 13 DMCs were identified
between cancer and control (5 in the TSS, 1 in the 1st exon, 7 in the gene body) and 12 were
common to those found in GSE113017 and GSE113019. Again, downregulation of methy-
lation was noticed in all gene body CGs (cg00320790, cg23725583 and cg01243251) and
upregulation of methylation in all TSS and 1st exon related CGs (cg02156680, cg02534163,
cg02709432, cg04452959, cg06998282 and cg14409958) in HCC.

Table 8. Differential methylation and expression analysis of ENPP2 between normal liver and HCC tumors from TCGA cases.

CG ID Mβ Value 1 * Mβ Value 2 * ∆β Value # Regulation Gene Region FDR

cg00320790 0.929 0.798 −0.131 Down Body 3.90 × 10−5

cg01243251 0.917 0.872 −0.046 Down Body 1.99 × 10−3

cg07236691 0.878 0.734 −0.143 Down Body 1.30 × 10−5

cg09444531 0.850 0.689 −0.161 Down Body 1.30 × 10−5

cg20048037 0.832 0.684 −0.148 Down Body 4.04 × 10−2

cg20162626 0.833 0.671 −0.161 Down Body 3.75 × 10−4

cg23725583 0.864 0.765 −0.099 Down Body 1.50 × 10−2

cg04452959 0.054 0.180 0.126 Up TSS200 4.46 × 10−2

cg02709432 0.104 0.264 0.160 Up TSS200 2.83 × 10−4

cg02156680 0.065 0.210 0.144 Up TSS1500 3.76 × 10−2

cg06998282 0.116 0.300 0.184 Up TSS1500 1.86 × 10−2

cg14409958 0.340 0.463 0.123 Up TSS1500 1.86 × 10−2

cg02534163 0.070 0.247 0.177 Up 1st Exon 3.15 × 10−4

Mβ Value 1 *: Mean β value normal, Mβ Value 2 *: Mean β value cancer # ∆β value: (Mean β value cancer-Mean β value normal).
Abbreviations: LC: Lung Cancer, FC: Fold Changes.

Methylation of ENPP2 was also correlated to available clinical and demographic
characteristics of the HCC cohort. Interestingly, in the tumor samples, increased methyla-
tion of the majority of the ENPP2 CGs (cg00320790, cg01243251, cg02156680, cg02709432,
cg07236691, cg09444531, cg14409958, cg20048037, cg20162626, cg23725583) (all p < 0.05)
was noticed in women in relation to men. In addition, a negative correlation was found be-
tween age and methylation of cg00320790, cg01243251, cg07236691, cg09444531, cg20048037,
cg20162626 and cg23725583 (all p < 0.001), i.e., younger people presented increased methy-
lation in relation to older. Finally, increased methylation of cg04452959 was correlated to
tumors with macro invasion in relation to those with no or micro invasion (p = 0.044). No
correlation was noticed between methylation and BMI, hepatic inflammation, Ishak fibrosis,
relapse, family history, grade, stage or tumor size. Analysis in normal samples showed a
gender correlation only for one CG (cg20048037) which presented increased methylation
in females (p = 0.033) in relation to males. Negative correlation was also noticed between
cg01243251 methylation and age (p = 0.037). Finally, no relationship was found between
BMI and ENPP2 methylation in normal samples.

mRNA expression analysis in the same samples showed increased levels in HCC in
relation to normal tissues (LogFC: 0.710, FDR: 1.00 × 10−2), i.e., the opposite of LC and PC
observations, suggesting a methylation-independent and a cancer type-specific regulation
of ENPP2 in HCC. Spearman correlation of mRNA expression (at gene and isoform levels)
per CG site revealed the most numerous statistically significant correlations, compared
to PC and LC samples, shown in Figure 4C and Table 6. Between gene body CGs, a posi-
tive correlation of mRNA expression to cg00320790, cg01243251, cg07236691, cg09444531,
cg20048037 and cg20162626 methylation was observed. Apart from the significant correla-
tions established, methylation of the aforementioned CGs was characterized by a linear
relationship to ENPP2 expression, further supporting dependence of the latter on the for-
mer. Control samples also showed positive correlation between ENPP2 mRNA expression
and methylation of 2 gene body CGs (cg20048037, g20162626). Finally, cg23725583 of body
and cg02709432, cg04452959, cg06998282 and cg02156680 of TSS regions showed negative
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correlation of methylation in relation to ENPP2 mRNA expression. Isoform analysis for the
control tissues showed similar correlation patterns (Supplementary Figure S2 and Table S2).

3.10. ENPP2 Methylation, Expression and Survival Analysis via UALCAN

In order to further verify our findings, we conducted expression, methylation and sur-
vival analysis of ENPP2 in PC (all adenocarcinoma cases), LC (adenocarcinoma and squa-
mous cell carcinoma cases) and HCC using the UALCAN database. Analysis confirmed
the above results as ENPP2 mRNA was under-expressed in PC (p = 9.31 × 10−3, Figure 5A)
and LC (adenocarcinoma, p = 1.68 × 10−3 and squamous cell carcinoma, p = 4.52 × 10−3,
Figure 6A,C) and upregulated in HCC (p = 2.38 × 10−10, Figure 7A). Protein expression
analysis was available only for LC adenocarcinoma cases, showing downregulation in
primary tumor tissues in relation to normal tissues (Figure 6E, p = 1.78 × 10−4). Next,
methylation analysis revealed upregulation in all cancer types in relation to normal tissues
(PC, p = 1.62 × 10−12, HCC, p = 1.11 × 10−16 and LC, p = 1.62 × 10−12 for both types)
as depicted in Figures 5–7, in accordance with our previous observations. Methylation
and expression results via UALCAN strengthen our findings, showing that the ENPP2
gene is methylated in LC, HCC and PC and this is related to under-expression in LC and
PC, suggesting a causative relationship in these two cancer types and a cancer-specific
regulatory mechanism in HCC. Finally, survival analysis did not reveal any statistical
significance for any of the studied cancers, as depicted in Supplementary Figure S4A–D.
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4. Discussion

ATX encoded by ENPP2 is a secreted glycoprotein that forms LPA [42]. The ATX-LPA
axis is related to many physiological processes, including embryonic development and
wound healing. Dysregulation of ATX expression is connected with various pathological
conditions such as cancer, inflammatory diseases and fibrosis [3–5]. The exact mechanism
by which ENPP2 expression is regulated is still not fully understood, whereas recently,
it has been proved that ENPP2 is prone to epigenetic alterations [13]. Still, very little
information is available about its DNA methylation pattern and the consequent impact in
gene expression in health and human pathology.

In the present study we adopted a bioinformatic in silico approach using publicly
available datasets from healthy tissues and different cancer tissues and cell lines to analyze
methylation patterns of ENPP2. Our analysis showed a consistent methylation pattern
throughout the gene’s regions across human tissues, i.e., increased methylation in the gene
body and decreased methylation in TSS and the 1st exon. Given the fact that ENPP2 is
expressed in almost all tissues and biological fluids [12,43,44], we can postulate that the
decreased methylation in the TSS and 1st exon is associated with the active transcription of
the gene in most human tissues.

Analysis of cancer datasets revealed aberrant ENPP2 methylation, showing a malignant-
specific profile throughout different cancer types. In general, methylation was increased
in the TSS and 1st exon, regions known to hold an important role in gene expression, and
decreased in the gene body region. A large number of DMCs were identified between
malignant and respective benign tissues. Most importantly, all six DMCs of ENPP2 located
at TSS in the promoter or at the 1st exon showed increased methylation across different
cancer types, including HCC, melanoma, CRC, LC and PC. These results corroborate
and expand recent observations showing a hypermethylated ENPP2 promoter in primary
tumors of LC and squamous cell carcinoma patients [45] and in breast cancer [13,22,46].

Based on these interesting observations, we next performed in silico analysis of ENPP2
methylation in datasets retrieved from the TCGA, focusing on those cancer types presenting
the greatest number of DMCs, i.e., LC, PC and HCC. TCGA datasets are generally larger
compared to those of other research efforts, allowing comparisons of stronger statistical
relevance, and most significantly, they contain several clinical and demographic parameters
of each patient. In addition, the datasets selected included also mRNA expression data and
were therefore suitable for addressing an important objective of this study, i.e., if aberrant
methylation is correlated to gene expression. Methylation, clinical and expression data were
recovered for the three cancer types. Differential methylation analysis of ENPP2 revealed
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that all emerged DMCs identified in transcription-related (TSS and 1st exon) regions were
hypermethylated in all three cancers compared to healthy controls, confirming the analysis
of the GEO datasets. In addition, the majority of DMCs located at the gene body were
hypomethylated in the studied cancers in relation to controls. mRNA levels were decreased
in PC and LC in relation to normal tissues. Collectively, our results indicate that the
increased methylation of PA and 1st exon CGs is correlated with decreased expression
in lung and prostate cancer. This is in line with previous studies in LC and BC showing
that ENPP2 is hypermethylated in tumor tissues in relation to normal, causing down
regulation in gene expression [13,45]. In PC, ATX protein was not or was weakly expressed
in non-neoplastic epithelial cells and in high-grade intra-epithelial neoplasia, while in
cancer cells ATX was only expressed in half of the tumors and was correlated with adverse
tumor parameters [47]. A relevant study in LC showed that ATX protein expression and
activity was increased in LC tissues and sera [48]. As far as HCC is concerned, our analysis
showed upregulation of expression in HCC in relation to normal liver, showing a TSS and
1st exon methylation-independent and a cancer type-specific role of ENPP2 expression
regulation. In a previous study, ATX overexpression in HCC tissues was correlated with
inflammation and liver cirrhosis. In addition, liver cancer cell lines presented stronger ATX
expression in relation to normal hepatocytes [49]. It should be noted that many authors
have demonstrated that the relationship between mRNA expression and protein differs in
many cancers. It has been reported in lung cancer and glioblastoma that, for many genes,
mRNA expression is lower but protein levels are higher compared with the control [50–53].

In agreement with the above findings, analysis using the UALCAN database showed
that ENPP2 is hypermethylated and under-expressed in LC and PC, suggesting that DNA
methylation regulates expression in LC and PC. However, no regulatory relation was
observed between methylation and expression in HCC, as both were upregulated, pointing
again to a cancer-specific methylation-independent ENPP2 regulation. Different mech-
anisms between cancer types are common. Here, our presented results from the cancer
types studied indicate a cancer type-specific profile of ENPP2 methylation rather than a
similar pan-cancer dysregulation. Without availability of suitable methylome datasets or
targeted methylation studies of ENPP2 in each different cancer type, we cannot extrapolate
conclusions between cancers.

The same correlation pattern was noticed for ENPP2 isoforms in all cancer types stud-
ied. Interestingly, there was a significant negative correlation between mRNA expression
(gene and isoform alpha and beta) and promoter methylation in four CGs (cg02156680,
cg02709432, cg04452959 and cg06998282) in PRAD. In LC samples, the methylation of
cg06998282 and cg02709432 was negatively correlated with the expression of ENPP2 and
also with isoform beta and gamma. Finally, in the case of HCC, only the methylation of
cg06998282 was negatively correlated with the expression of ENPP2 and isoform beta.
The above findings indicate that the promoter methylation of specific CGs is negatively
correlated with ENPP2 and isoform expression differs between cancers, with cg02709432
being a common site in PC and LC but not in the case of HCC. This CG is located at a site
that can bind E2F-1 TF, which has been shown to be inhibited by CG methylation [54], and
Sp1 TF, which has been found to regulate ENPP2 transcription [55]. Thus, we hypothesized
that as the level of methylation increases, methylation of cg02709432 hinders the binding of
the TFs to the promoter, thus leading to reduction in ENPP2 gene and isoforms expression.

The expression pattern of isoforms differs between tissues as high expression levels
of isoform beta were found in peripheral tissues and plasma, while isoform gamma was
mostly found in the brain, and isoform alpha is considered to be the most under-expressed
in brain and peripheral tissue in comparison to the other two [56]. According to a relevant
study, isoform alpha has a deletion of exon 12, isoform beta a deletion of exons 12 and 21
and isoform gamma a deletion of exon 21 [12], leading to different splice variants. None of
the identified DMCs were located at these regions, explaining similar patterns of ENPP2
mRNA and isoform expression.
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DNA methylation within promoters is known to modulate the binding of TFs to
regulatory elements, thus resulting in transcriptional repression [57]. In our study, we
predicted 39 TFs which can regulate transcription through binding to ENPP2 promoter’s
DMCs. Therefore, any aberrant methylation events in these DMCs during pathological
transformation may block TF binding and related transcription. This is further supported
by reports involving the identified TFs in ENPP2 and ATX expression. Indeed, among the
predicted TFs, NF kappaB, AP-2 and E2F have been previously shown to be sensitive to CG
methylation with consequent inhibition of their DNA binding activities [54]. Another TF
predicted to bind DMCs of ENPP2, NFAT1, has been shown to mediate ATX overexpression
in MDA-MB-435 cells [58]. It has also been shown that blocking the expression of NFAT1
results in downregulation of ATX expression, leading to inhibition of melanoma and
metastasis [35]. High C-Jun levels seem to enhance ENPP2 expression [59]. Interestingly,
SP was found to regulate ENPP2 transcription in neuroblastoma cells by activating a
CRE/AP-1-like element at position −142 to −149 and a GAbox at position −227 to −235
near the TSS of ENPP2 [55]. This is in accordance with our finding that Sp1 can bind near
the cg02709432 located at TSS200.

In order to assess any correlation of ENPP2 methylation to tumor prognosis, clinical
characteristics analysis was performed and showed that increased methylation of some CGs
was correlated with poor tumor parameters. Indeed, in PC it was associated with larger
tumors and non-response to pharmacotherapy, in LC it was connected to the advanced
cancer stage and in HCC it was associated with macro-invasion. Hence, ENPP2 methylation
in the identified CGs could be pursued further and be evaluated in clinical cancer samples as
biomarkers of cancer progression and poor outcome. In addition, these results corroborate
previous data showing that low mRNA expression was associated with worse prognosis
in LC [45].

The involvement of ENPP2 methylation in tumor progression and prognosis was also
addressed by analyzing methylomes from cell lines presenting a more or less aggressively
invasive phenotype, revealing several DMCs. Higher methylation was observed in the
more aggressive in relation to less aggressive HCC and PC cell lines, indicating a connection
of ENPP2 methylation with worse prognostic behavior, in accordance with our findings in
the clinical samples.

Finally, analysis of colon cell lines treated with DNA methyltransferase inhibitors
showed that 5-AZA caused a decrease of methylation in all CGs in relation to untreated
controls in the three studied cell lines, showing a clear demethylation effect in the ENPP2
gene. Given the contribution of ENPP2 in a variety of pathologies, further studies could
assess a methylation-based reprogramming of ENPP2 via a variety of methylation inhibitors.
Similarly, previous studies have demonstrated that targeting the ATX-LPA-LPP axis is an
attractive strategy for introducing new therapeutic choices [60,61].

In conclusion, healthy tissues presented increased methylation of ENPP2 in the gene
body and decreased in the promoter and 1st exon connected to the active transcription of
the gene in most human tissues. A different pattern was described in HCC, melanoma,
CRC, LC and PC, showing a malignant-specific profile of ENPP2 methylation. Further
analysis of independent TCGA datasets confirmed these results as increased methylation
of promoter and 1st exon CGs and decreased ENPP2 mRNA expression in PC and LC in
relation to healthy tissues were found. Furthermore, increased methylation of ENPP2 was
connected to poor prognostic parameters in the same cancers, which was also supported
by analysis of cell line datasets. We also found a negative correlation between mRNA
expression at gene and isoform levels and methylation of PA CGs that present TF binding
sites. In specific, we postulate that the methylation of promoter CGs may hinder the
binding of TFs, and thus, the expression of ENPP2 and isoforms may be reduced.

Our findings contribute to the understanding of methylation events and regulatory
mechanism of ENPP2 in cancer and provide a full description of DMCs to be further
validated in functional and clinical studies.
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ENPP2 Promoter Methylation Correlates with Decreased Gene Expression in Breast 

Cancer: Implementation as a Liquid Biopsy Biomarker 

Μεθυλίωση του υποκινητή του ENPP2 συσχετίζεται με μειωμένη γονιδιακή έκφραση σε 

καρκινικό ιστό: εφαρμογή ως βιοδείκτης υγρής βιοψίας 

Το γονίδιο ENPP2 κωδικοποιεί για ένα σημαντικό ένζυμο της σύνθεσης του 

λυσοφωσφατιδικού οξέος (LPA). Προσφάτως περιγράψαμε τα προφίλ μεθυλίωσης του ENPP2 

τόσο σε υγιείς συνθήκες, όσο και σε πολλαπλές κακοήθειες και επιδείξαμε την συσχέτισή της 

με την αποκλίνουσα έκφραση του γονιδίου. Εδώ εστιάζουμε στον καρκίνο του μαστού (BrCa) 

αναλύοντας in silico δημοσίως διαθέσιμα σύνολα μεθυλίωσης, ώστε να εντοπίσουμε 

διαφορικώς μεθυλιωμένα CpGs (DMCs) και να τα συσχετίσουμε με δεδομένα έκφρασης. 

Πολλαπλά CGs στο σώμα και στον υποκινητή του ENPP2 εντοπίστηκαν διαφορικώς 

μεθυλιωμένα μεταξύ BrCa και υγιών δειγμάτων μαστικού ιστού. Τα CGs του υποκινητή 

βρέθηκαν με περισσότερες μεθυλομάδες σε: δείγματα καρκίνου συγκρινόμενα με υγιή, 

δείγματα μεταστατικού καρκίνου σε σχέση με πρωτοπαθή και σε καρκινικά δείγματα σταδίου 

Ι σε σχέση με δείγματα ελέγχου. Αυτή η απορρυθμισμένη μεθυλίωση συσχετίστηκε με 

μειωμένη μεταγραφή του ENPP2. Επίσης, DMC του πρώτου εξωνίου ερευνήθηκε στο 

ελεύθερο DNA (cell free DNA) της κυκλοφορίας καρκινοπαθών και δειγμάτων ελέγχου. Η 

αυξημένη μεθυλίωση στα καρκινικά δείγματα επιβεβαίωσε τα υπολογιστικά δεδομένα. 

Επιπροσθέτως, διέφερε μεταξύ ομάδων ασθενών και συσχετίστηκε με την ύπαρξη πολλαπλών 

μεταστατικών θέσεων. Τα δεδομένα μας υποδεικνύουν ότι μεθυλίωση του υποκινητή του εν 

λόγω γονιδίου σταματά τη μεταγραφή του στον καρκίνο του μαστού, ενώ επίσης εισαγάγουν 

την μεθυλίωση του πρώτου εξωνίου ως έναν δυνητικό βιοδείκτη διάγνωσης και 

παρακολούθησης προσβάσιμο μέσω υγρής βιοψίας. 
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Abstract: Autotaxin (ATX), encoded by the ctonucleotide pyrophosphatase/phosphodiesterase 2
(ENPP2) gene, is a key enzyme in lysophosphatidic acid (LPA) synthesis. We have recently described
ENPP2 methylation profiles in health and multiple malignancies and demonstrated correlation to its
aberrant expression. Here we focus on breast cancer (BrCa), analyzing in silico publicly available
BrCa methylome datasets, to identify differentially methylated CpGs (DMCs) and correlate them
with expression. Numerous DMCs were identified between BrCa and healthy breast tissues in the
gene body and promoter-associated regions (PA). PA DMCs were upregulated in BrCa tissues in
relation to normal, in metastatic BrCa in relation to primary, and in stage I BrCa in relation to normal,
and this was correlated to decreased mRNA expression. The first exon DMC was also investigated in
circulating cell free DNA (ccfDNA) isolated by BrCa patients; methylation was increased in BrCa in
relation to ccfDNA from healthy individuals, confirming in silico results. It also differed between
patient groups and was correlated to the presence of multiple metastatic sites. Our data indicate that
promoter methylation of ENPP2 arrests its transcription in BrCa and introduce first exon methylation
as a putative biomarker for diagnosis and monitoring which can be assessed in liquid biopsy.

Keywords: autotaxin; ENPP2; methylation; breast cancer; liquid biopsy; expression; regulation

1. Introduction

Breast cancer (BrCa) is one of the most common cancers in the world among women [1].
Currently, early detection and new treatment options have improved the survival rate;
however, clinical challenges still persist due to drug resistance and relapse being the
leading cause of morbidity and mortality [2–4]. There is still an emerging need to define the
biological mechanisms associated with the pathogenesis of BrCa and identify biomarkers
and targets to improve treatment strategies.

The ATX-LPA signaling axis attracts growing interest in cancer research [5]. ATX is
a secreted catalytically active glycoprotein that belongs to the ectonucleotide pyrophos-
phatase/phosphodiesterase (ENPP) family and is encoded by the ENPP2 gene [5,6]. ATX
has a lysophospholipase D activity and is mainly responsible for catalyzing the hydrolysis
of extracellular LPC into LPA [5,6]. LPA then acts through at least six G-coupled receptors
(GPCRs), known as LPAR1-6, and can activate various signaling pathways in almost every
mammalian cell type [7]. Breast carcinogenesis was first linked to ATX and LPA signaling
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back in 1995, by observations that ATX promotes proliferation of breast and ovarian cancer
cells [8]. Since then, several studies have associated aberrant expression of ATX and LPA
signaling with BrCa pathogenesis and metastatic progression [5,9–12].

Recently, a few studies reported that the ATX-LPA axis is governed by epigenetic
regulation of the gene encoding ATX, ectonucleotide pyrophosphatase/phosphodiesterase
2 (ENPP2). DNA methylation is a well-studied epigenetic mechanism that regulates ex-
pression [13]. The identification of abnormal methylation in tissue or liquid biopsy has
been correlated to cancer initiation and progression [14–17]. By employing an in silico
approach, we have recently described ENPP2 methylation profiles in health and malig-
nancy, showing that methylation is an active level of ATX expression regulation in cancer.
Increased methylation of promoter and first exon cytosine-guanine dinucleotides(CGs) and
respective decreased ENPP2 mRNA expression were found in prostate and lung cancers
and were correlated to poor prognostic parameters [18].

Here, we focus in BrCa, presenting an in silico methylation and expression analysis of
ENPP2 followed by an experimental investigation in liquid biopsy. In specific, we explored
the methylation status of ENPP2 in BrCa and correlated it to its expression by using
publicly available high-throughput methylation datasets from the Illumina methylation
450 bead-chip array, found in The Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO) databases. Retrieved data were allocated into groups according to four
important clinical endpoints related to prognosis and diagnosis to conduct differential
methylation and expression analysis. ENPP2 methylation, expression at protein and
mRNA levels and survival were also estimated using the UALCAN platform. Identified
differentially methylated ENPP2 CGs were further validated in patient ccfDNAs to evaluate
their potential for clinical implementation in liquid biopsies for the diagnosis and prognosis
in BrCa.

2. Results
2.1. In Silico Analysis of ENPP2 Methylation and Expression in BrCa
2.1.1. Differential Methylation and Expression Analysis between BrCa and Normal
Breast Tissue

Raw methylome data from 520 BrCa (primary and metastatic) and 185 normal breast
tissues were analyzed for the 14 CGs of ENPP2 that the Infinium Human Methylation
450 k platform contains by means of RnBeads. In total, ten DMCS (FDR < 5 × 10−2)
were detected among breast tissues from healthy individuals and BrCa patients (Table 1).
In promoter-associated (PA) regions known to be strongly associated with regulation
of expression by methylation, i.e., transcription start site (TSS) and first Exon [19,20],
all DMCs (cg04452959, cg02709432, cg02156680, cg06998282, and cg02534163) presented
increased methylation in BrCa in relation to normal breast tissue. In the gene body, two
CGs (cg00320790, cg20048037) were hypomethylated in BrCa and three CGs (cg09444531,
cg26078665, cg23725583) were hypermethylated.

In order to address if the observed aberrant methylation of ENPP2 in BrCa is associated
with alterations in gene expression, we examined ENPP2 mRNA levels in the same TCGA
samples (GEO samples excluded as no expression data were available). Comparisons were
made between 302 BrCa and 76 normal breast tissues. Results showed downregulation
of expression in BrCa in relation to normal tissues (FC:−5.15, FDR:3.96 × 10−66) (Table 2),
indicating that the increased methylation of ENPP2 in promoter and first exon regions
is correlated with lower gene expression in BrCa. Discrete samples distribution based
on methylation and expression is depicted in Figure 1. In specific, Figure 1A shows the
distribution of BrCa and healthy samples in reduced dimensional space. Pathology is
the main source of variation in both expression and methylation values. Correlation of
ENPP2 mRNA expression per CG methylation revealed statistically significant correlations,
showed in Figure 2A and Table 3. In BrCa tissues, important correlations emerged only
for PA CGs, as for TSS CGs (cg06998282, cg14409958) and first exon CG (cg02534163),
methylation showed a reverse correlation with expression. These results further confirm



Int. J. Mol. Sci. 2022, 23, 3717 3 of 18

that increased methylation at these gene regions is associated with decreased expression.
Analysis between ENPP2 methylation and expression in normal breast tissues showed a
negative correlation for two gene body CGs, namely cg07236691 and cg2372583, and a
positive correlation for the gene body cg09444531 (Table 3).

Table 1. ENPP2 DMCs identified via in silico analysis of BrCa and normal breast tissues.

CG ID Mβ Value
Normal

Mβ Value
BrCa ∆β Value Methylation in

BrCa Gene Region FDR

Normal breast tissue vs. BrCa

cg00320790 0.96 0.95 0.01 Down Body 5.97 × 10−4

cg20048037 0.92 0.87 0.05 Down Body 1.13 × 10−12

cg09444531 0.77 0.79 −0.02 Up Body 5.16 × 10−3

cg26078665 0.77 0.84 −0.07 Up Body 7.32 × 10−14

cg23725583 0.85 0.92 −0.06 Up Body 1.03 × 10−15

cg02534163 0.06 0.53 −0.47 Up 1st Exon 3.15 × 10−91

cg04452959 0.03 0.44 −0.41 Up TSS200 4.56 × 10−80

cg02709432 0.09 0.57 −0.48 Up TSS200 6.71 × 10−73

cg02156680 0.04 0.44 −0.39 Up TSS1500 9.18 × 10−72

cg06998282 0.09 0.62 −0.53 Up TSS1500 9.54 × 10−76

Primary vs. Metastatic BrCa

cg20048037 0.87 0.82 0.06 Down Body 3.99 × 10−2

cg09444531 0.78 0.71 0.06 Down Body 3.77 × 10−2

cg26078665 0.86 0.79 0.07 Down Body 9.09 × 10−4

cg23725583 0.92 0.88 0.04 Down Body 2.56 × 10−2

cg02534163 0.55 0.74 −0.19 Up 1st Exon 1.26 × 10−4

cg06998282 0.64 0.79 −0.15 Up TSS1500 2.28 × 10−3

Normal breast vs. stage I BrCa

cg20048037 0.92 0.89 0.03 Down Body 4.35 × 10−4

cg09444531 0.77 0.80 −0.03 Up Body 9.27 × 10−3

cg26078665 0.78 0.86 −0.08 Up Body 1.07 × 10−7

cg23725583 0.86 0.93 −0.07 Up Body 1.74 × 10−8

cg02534163 0.06 0.55 −0.48 Up 1st Exon 2.45 × 10−49

cg04452959 0.04 0.47 −0.43 Up TSS200 5.53 × 10−38

cg02709432 0.10 0.61 −0.51 Up TSS200 1.14 × 10−38

cg02156680 0.05 0.47 −0.43 Up TSS1500 5.59 × 10−39

cg06998282 0.10 0.66 −0.56 Up TSS1500 2.93 × 10−35

Early vs. Advanced BrCa

cg01243251 0.94 0.92 0.014 Down Body 3.10 × 10−2

cg20162626 0.75 0.69 0.051 Down Body 3.12 × 10−3

Abbreviations: BrCa: breast cancer, DMCs: differentially methylated CpGs, FDR: false discovery rate, Mβ Value:
mean β value, ∆β Value: difference between mean values.

Table 2. ENPP2 differential expression analysis results based on TCGA data. |FC| > = 1.2 and
FDR < 0.05 are considered as thresholds of significant deregulation.

Compared Breast Groups Fold Change p-Value FDR

Cancer_vs_Normal −5.15 1.18 × 10−67 3.96 × 10−66

StageI_vs_Normal −5.46 6.28 × 10−54 3.43 × 10−52

Advanced_vs_Early 1.20 1.23 × 10−2 9.41 × 10−2
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Figure 1. Dimensionality reduction plots for TCGA expression and methylation data. (A) MDS plot 
for normalized expression values of BrCa and normal breast tissue samples (left); PCA plot for level 
3 beta methylation values of the same phenotypes (right). (B) MDS plot for normalized expression 
values of stage I BrCA and normal tissues (left); PCA plot for level 3 beta methylation values of the 
same phenotypes (right). (C) MDS plot for normalized expression values of advanced and early 
BrCA tissues (left); PCA plot for level 3 beta methylation values of the same phenotypes (right). 
MDS: Multidimensional scaling; PCA: principal component analysis. 

Figure 1. Dimensionality reduction plots for TCGA expression and methylation data. (A) MDS plot
for normalized expression values of BrCa and normal breast tissue samples (left); PCA plot for level
3 beta methylation values of the same phenotypes (right). (B) MDS plot for normalized expression
values of stage I BrCA and normal tissues (left); PCA plot for level 3 beta methylation values of the
same phenotypes (right). (C) MDS plot for normalized expression values of advanced and early
BrCA tissues (left); PCA plot for level 3 beta methylation values of the same phenotypes (right).
MDS: Multidimensional scaling; PCA: principal component analysis.
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Figure 2. Spearman correlation of ENPP2 CGs methylation and mRNA expression. CGs showing 
significant correlations are depicted (|rho| >= 0.40, FDR < 5 × 10−2). (A) Expression-methylation scat-
ter plots of CG sites of BrCa (red) and normal (blue) samples, (B) expression-methylation scatter 
plots of CG sites of BrCa stage I (red) and normal (blue) samples, (C) expression-methylation scatter 
plots of CG sites of advanced (red) and early (blue) BrCa samples. 

2.1.2. Differential Methylation Analysis between Primary and Metastatic BrCa 
Methylomes of primary BrCa were analyzed in comparison to those from metastatic 

BrCa in order to detect changes in ENPP2 related to metastatic transformation. Raw data 
from 132 primary cancers and 31 cancers with distant metastasis were analyzed using 
RnBeads and 6 DMCs out of a total of 14 CGs (FDR < 5 × 10−2) were detected (Table 1). 
Four of them were located at the gene body (cg20048037, cg09444531, cg26078665, 
cg23725583) presenting lower methylation and two were located in the TSS and first exon 
(cg06998282 and cg02534163, respectively) showing upregulation in metastatic in relation 
to primary BrCa. These observations suggest an involvement of ENPP2 methylation in 
BrCa progression and metastasis. 

Figure 2. Spearman correlation of ENPP2 CGs methylation and mRNA expression. CGs showing
significant correlations are depicted (|rho| >= 0.40, FDR < 5 × 10−2). (A) Expression-methylation
scatter plots of CG sites of BrCa (red) and normal (blue) samples, (B) expression-methylation scatter
plots of CG sites of BrCa stage I (red) and normal (blue) samples, (C) expression-methylation scatter
plots of CG sites of advanced (red) and early (blue) BrCa samples.

2.1.2. Differential Methylation Analysis between Primary and Metastatic BrCa

Methylomes of primary BrCa were analyzed in comparison to those from metastatic
BrCa in order to detect changes in ENPP2 related to metastatic transformation. Raw
data from 132 primary cancers and 31 cancers with distant metastasis were analyzed
using RnBeads and 6 DMCs out of a total of 14 CGs (FDR < 5 × 10−2) were detected
(Table 1). Four of them were located at the gene body (cg20048037, cg09444531, cg26078665,
cg23725583) presenting lower methylation and two were located in the TSS and first exon
(cg06998282 and cg02534163, respectively) showing upregulation in metastatic in relation
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to primary BrCa. These observations suggest an involvement of ENPP2 methylation in
BrCa progression and metastasis.

Table 3. Spearman correlation coefficient between ENPP2 CG methylation and mRNA expression
for each of our clinical endpoints. CGs showing significant correlations are depicted (|rho| >= 0.40,
FDR < 5 × 10−2).

BrCa vs. Normal
Tissue CG Gene Region Rho FDR Correlation

BrCa
cg02534163 First Exon −0.40 1.18 × 10−12 Negative
cg06998282 TSS1500 −0.42 1.53 × 10−13 Negative
cg14409958 TSS1500 −0.42 2.10 × 10−13 Negative

Normal

cg09444531 Body 0.62 4.77 × 10−06 Positive
cg23725583 Body −0.70 3.02 × 10−11 Negative
cg07236691 Body −0.55 1.27 × 10−08 Negative
cg14409958 TSS1500 −0.52 9.53 × 10−07 Negative

Stage I BrCa vs. Normal

Stage I

cg02534163 First Exon −0.46 1.54 × 10−06 Negative
cg04452959 TSS200 −0.44 3.74 × 10−06 Negative
cg14409958 TSS1500 −0.64 3.29 × 10−13 Negative
cg02156680 TSS1500 −0.42 1.28 × 10−05 Negative
cg06998282 TSS1500 −0.63 6.04 × 10−13 Negative

Normal

cg09444531 Body 0.64 3.25 × 10−08 Positive
cg23725583 Body −0.66 1.36 × 10−08 Negative
cg07236691 Body −0.53 1.40 × 10−05 Negative
cg14409958 TSS1500 −0.51 4.25 × 10−05 Negative

Early vs. Advanced BrCa

Early
cg02534163 First Exon −0.42 2.56 × 10−23 Negative
cg06998282 TSS1500 −0.47 4.588 × 10−29 Negative
cg14409958 TSS1500 −0.46 5.37 × 10−28 Negative

Advanced

cg02534163 First Exon −0.43 1.23 × 10−09 Negative
cg04452959 TSS200 −0.41 5.47 × 10−09 Negative
cg14409958 TSS1500 −0.48 4.72 × 10−12 Negative
cg06998282 TSS1500 −0.49 4.18 × 10−12 Negative

Abbreviations: FDR: false discovery rate, TSS: Transcription Start Site.

2.1.3. Differential Methylation and Expression Analysis between Stage I BrCa and Normal

In order to address if aberrant ENPP2 methylation is an early effect in the breast
carcinogenetic process, methylome raw data from 136 stage-I BrCa and 111 normal breast
tissues were subjected to RnBeads differential methylation analysis. A total of 9 out of the
14 studied CGs were DMCs between stage I BrCa and normal tissues (Table 1). All but one
gene body DMCs and all five PA DMCs showed increased methylation in stage I BrCa in
relation to normal tissues.

Differential mRNA expression analysis between 111 Stage I BrCa and 66 Normal breast
tissue samples showed downregulation of expression in Stage I cancer (FC:−5.46, FDR:
3.43 × 10−52) (Table 2), similarly with findings of the analysis between all BrCa samples and
normal tissues. Dimensionality reduction plot (Figure 1B) depicts excellent separation of
Stage I BrCa and normal samples based on level 3 methylation and normalized expression
values. Interestingly, a negative correlation between methylation and expression was
noted for all TSS (cg02156680, cg04452959, cg06998282, cg14409958) and first exon CGs
(cg02534163) in BrCa samples and no correlation emerged for gene body CGs (Table 3). A
different pattern was observed for control samples as methylation of three gene body CGs,
namely cg07236691 (negatively), cg23725583 (negatively), and cg09444531 (positively), were
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found to be correlated to mRNA expression. Finally, one TSS CG (cg14409958) presented
reverse correlation between methylation and expression (Table 3).

2.1.4. Differential Methylation and Expression Analysis between Early- and
Advanced-Stage BrCa

In order to detect important methylation events related to the progression of BrCa
to advanced-stage disease, we conducted an analysis of raw methylome data from 521
early (stage I, II) and 221 advanced (stage III) BrCa patients. Only two DMCs (cg01243251,
cg20162626) were identified in the gene body region, showing a slight but still statistically
significant decrease in methylation in advanced in relation to early BrCa. No difference
was observed in TSS or first exon CGs (Table 1). In accordance to methylation, no difference
in mRNA expression was observed between 519 stage I and II cancers and 191 stage III
cancers (FC: 1.20, FDR: 9.41 × 10−2) (Table 2). Last, in dimensionality reduction plots
(Figure 1C) there was no separation of early and advanced stage BrCa samples based on
detected features’ methylation and expression.

As expected, correlation analysis revealed important relationships for PA CGs. In
specific, in advanced cancer, methylation of three TSS (cg04452959, cg06998282, cg14409958)
and one first exon CG (cg02534163) was negatively correlated with ENPP2 expression
(Figure 2C and Table 3). Same tendency was observed in the early cancers except for the
case of cg04452959 (Figure 2C and Table 3).

Cumulatively, previous analysis indicated that ENPP2 methylation is associated with
the malignant transformation of breast cells and metastasis. However, minimal methylation
changes were noted between stage I/II and stage III BrCa. Similarly, downregulation of
ENPP2 expression was noted in BrCa samples in relation to control but not between early
and advanced stage.

2.1.5. Differential Methylation Analysis between BrCa Cancer Types

We also examined differences in the methylation of ENPP2 between BrCa cancer types.
In particular, differential methylation analysis was performed between 473 invasive ductal
and 186 invasive lobular BrCa (accounting for 90.2% of available TCGA cases). Three CGs
of ENPP2 were found differentially methylated (Table 4), showing small but statistically
significant differences. In specific, body CGs were either hyper-(cg01243251) or hypo-
methylated (cg20048037) in ductal in relation to lobular BrCa. A third CG located at the
TSS1500 (cg02156680) presented downregulation of methylation in the ductal type.

Table 4. ENPP2 DMCs identified between ductal and lobular BrCa via in silico analysis of TCGA cases.

CG ID Mβ Value
Ductal Cancer

Mβ Value
Lobular
Cancer

∆β Value Methylation in
Ductal Cancer Gene Region FDR

cg01243251 0.94 0.93 0.01 Up Body 1.53 × 10−2

cg20048037 0.86 0.90 −0.04 Down Body 1.11 × 10−2

cg02156680 0.47 0.52 −0.04 Down TSS1500 2.52 × 10−2

Abbreviations: BrCa: breast cancer, DMCs: differentially methylated CpGs, FDR: false discovery rate, Mβ Value:
mean β value, ∆β Value: difference between mean values.

2.1.6. In Silico Analysis of ENPP2 Methylation in BrCa ccfDNA Data

The analysis of a ccfDNA dataset (GSE1222126) revealed eight ENPP2 DMCs (Table 5)
between BrCa patient-derived samples and healthy individuals. In specific, four (cg04452959,
cg02156680, cg06998282, cg14409958) out of five studied TSS CGs and one first exon CG
(cg02534163) were found hypermethylated in BrCa ccfDNAs in relation to control. In the
gene body, two (cg07236691, cg20162626) and one (cg20048037) CGs were hypomethylated
and hypermethylated, respectively, in BrCa. It has to be noted that four DMCs in PA regions
were common between BrCa ccfDNA and breast tissue samples (clinical endpoint: BrCa vs.
normal), suggesting that ccfDNA may reflect the methylation status of the tumor.
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Table 5. ENPP2 DMCs identified in ccfDNA of BrCa patients and healthy individuals via in silico analysis.

CG ID Mβ Value
BrCa

Mβ Value
Normal ∆βValue Methylation in

BrCa Location FDR

cg07236691 0.583 0.817 −0.234 Down Body 3.04 × 10−3

cg20048037 0.711 0.331 0.380 Up Body 5.08 × 10−5

cg20162626 0.489 0.814 −0.325 Down Body 3.18 × 10−4

cg02534163 0.802 0.206 0.596 Up 1st Exon 6.30 × 10−11

cg04452959 0.620 0.020 0.599 Up TS200 2.51 × 10−13

cg02156680 0.515 0.028 0.487 Up TSS1500 1.48 × 10−13

cg06998282 0.772 0.057 0.715 Up TSS1500 1.61 × 10−8

cg14409958 0.748 0.053 0.695 Up TSS1500 2.24 × 10−6

Abbreviations: BrCa: breast cancer, DMCs: differentially methylated CpGs, FDR: false discovery rate, Mβ Value:
mean β value, ∆β Value: difference between mean values.

2.2. ENPP2 Methylation, Expression and Survival Analysis by UALCAN

In order to further verify our findings, we conducted ENPP2 expression, methylation,
and survival analysis in BrCa using the UALCAN platform. Analysis confirmed above
results, as promoter methylation level of ENPP2 was increased in primary tumor tissues of
BrCa patients in relation to normal (p < 1× 10−12) as depicted in Figure 3A. Next, expression
analysis showed downregulation of ENPP2 mRNA expression in primary tumor tissues
in relation to normal tissues (p = 1.6 × 10−12) as depicted in Figure 3B. Similarly, protein
expression analysis showed downregulation in primary tumors in relation to normal tissues
(Figure 3E, p = 4.5 × 10−12). Methylation and expression results by UALCAN strengthen
our findings, showing that the ENPP2 gene is methylated in BrCa and this is related to lower
expression, suggesting a causative relationship and a methylation regulatory mechanism
in BrCa. Finally, survival analysis did not reveal any statistical significance as depicted in
Supplementary Figure S1.
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2.3. Methylation Analysis of ENPP2 in ccfDNA from BrCa Patients

Following the in silico analysis, the methylation of ENPP2 was investigated in BrCa
patient-derived ccfDNAs and was compared to their healthy counterparts, using qMSP, in
order to test clinical applicability in liquid biopsy. Primers were designed to include the
cg02534163 of the first exon of ENPP2, a CG identified as a DMC in the in silico analysis in
both tissues, and ccfDNA and could be exploited as a biomarker in BrCa.

ENPP2 methylation was investigated in ccfDNAs isolated from 52 adjuvant, 19 metastatic,
and 15 neoadjuvant BrCa patients and 20 healthy individuals (control). Methylation was
detected more often in ccfDNA of BrCa patients than in healthy individuals in a statistically
significant manner (p = 1× 10−2) (Figure 4A). In specific, methylated ENPP2 was detected in
21 out of 46 (45.6%) of control samples and in 62 out of 86 (72.1 %) of BrCa samples. Between
BrCa groups, methylation was detected in 71.1% (36/52), 73.6% (14/19), and 80% (12/15) of
adjuvant, metastatic, and neoadjuvant groups, respectively, showing statistically significant
differences between groups (p = 2 × 10−2). In specific, when methylation positives of each
group were compared separately, statistically significant correlations emerged between control
and adjuvant (p = 9× 10−3), control and metastatic (p = 3.6× 10−2), control and neoadjuvant
(p = 2× 10−2), but not between BrCa groups.
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Figure 4. Methylation of ENPP2 estimated by qMSP in ccfDNA (A) from BrCa patients and healthy
individuals (B) from each group separately (adjuvant, metastatic, neoadjuvant, and healthy). Ab-
breviations: ccfDNA: circulating cell-free DNA; qMSP: quantitative methylation-specific PCR; CRC:
colorectal cancer. * Control in relation to Adjuvant, # Control in relation to Metastatic, $ Control in
relation to Neoadjuvant.

Next, methylation levels were also measured. Methylation levels were found elevated
in ccfDNA of BrCa patients compared to ccfDNA of healthy individuals, but no statistically
significant correlation emerged (p = 8 × 10−2) (Figure 5A). Between groups, significantly
increased levels of ENPP2 methylation were found in the neoadjuvant group as compared
to the control group (p = 8 × 10−4) and the adjuvant group (p = 1 × 10−3) (Figure 5B). This
result could be due to the fact that neoadjuvant patients have increased tumor burden in
relation to adjuvant patients, having their tumor removed. No other statistically significant
difference in methylation levels were observed between the other studied groups (Control
vs. Adjuvant: 4.3 × 10−1, Control vs. Metastatic: 4.5 × 10−1, Adjuvant vs. Metastatic:
8.4 × 10−1, Metastatic vs. Neoadjuvant: 5.5 × 10−1) (Figure 5B). A significant correlation
was found in the metastatic group, as patients with one metastatic site presented lower
methylation levels than those having more metastatic sites (p < 1 × 10−2) (Figure 5C).
Finally, no other correlation emerged between ENPP2 methylation and grade, nodal status,
tumor size, or age.
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Figure 5. Median methylation levels of ENPP2. Boxplots depict methylation levels in ccfDNA of (A)
BrCa compared to control group and (B) in each studied group separately; (C) BrCa patients with one
metastatic site compared to those with two or more. Abbreviations: BrCa: breast cancer, * Adjuvant
in relation to Neoadjuvant, # Control in relation to Neoadjuvant.

3. Discussion

ATX is a well-known enzyme responsible for generating lysophosphatidic acid (LPA)
and dysregulation of its expression has been linked to several pathologies and to can-
cer [5,6]. ATX’s encoding gene ENPP2, is epigenetically regulated, as aberrant methylation
patterns were described in five different cancer types and were correlated to mRNA ex-
pression. Furthermore, increased methylation of ENPP2 was connected to poor prognostic
parameters [18]. In most cancer types, ATX is increased, but BrCa cells express little ATX.
Still, ATX from its microenvironment plays an important role in BrCa development, pro-
moting cell proliferation, migration, and survival, and is also regarded as a potential target
for therapy or increased chemotherapeutic sensitivity [21].

In the present study, we focus on ENPP2 methylation and expression in BrCa. We
first adopted a bioinformatic approach using publicly available datasets of BrCa tissues
and ccfDNA. Among 10 DMCs identified between BrCa and normal tissues, all TSS and
1st Exon DMCs presented increased methylation in BrCa. These gene regions are known
to be strongly associated with regulation of expression by methylation [19,20] indicating
epigenetic arrest of ENPP2 transcription in BrCa. Indeed, expression analysis showed
decreased transcription in BrCa in relation to normal tissues, and increased methylation
of all PA CGs was reversely correlated to mRNA expression, results also confirmed by
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analysis in the UALCAN platform. These results agree with our previous findings in HCC,
melanoma, CRC, LC, and PC, showing ENPP2 hypermethylation in PA and decreased
expression [18].

In addition, ENPP2 is one of 11 genes spanning the 8q12.1-q24.22 genomic region found
to be differentially methylated and expressed in invasive breast carcinomas harboring the
8p11-p12 amplicon by integrative analysis. In accordance to our results, ENPP2 was the only
gene showing lower expression levels and hypermethylation despite amplification of the
8p11-p12 amplicon [22]. In fact, one of the DMCs identified here in BrCa and previously in
HCC and PC, located in TSS1500 (cg02156680) was included in an eight-feature methylation-
based breast-cancer specific signature constructed by integrative analysis of genome-wide
DNA methylation and was shown to reliably separate BrCa from normal samples [23]. In
contrast, the whole ENPP2 gene was not included in the methylation-based biosignatures
of translational relevance built via automated machine learning analysis of BrCa whole
methylome datasets and was not identified as a top rated DMG [24].

When compared to healthy tissues, stage I BrCa showed hypermethylation in PA
CGs which were correlated to downregulation of expression, indicating an early event
in BrCa. However, when comparison was made between early (I, II) and advanced (III)
stages of BrCa, no difference was observed in the methylation pattern of PA CGs, but only
in two gene body CGs, and no changes in mRNA expression, suggesting minor ENPP2
methylation events in the course of the disease. Another study based on TCGA datasets
analysis reported ENPP2 as one of 66 significantly hypermethylated genes with logFC >
1.8 between Stage I–III BrCa [25].

Comparison between primary and metastatic BrCa revealed six ENPP2 DMCs. Among
them, two were in TSS and first exon showing hypermethylation of ENPP2 in metastatic
BrCa, implying a participation in the metastatic cascade. Increased expressions of ATX in
the stroma is associated with aggressiveness of human BrCa in women [26], whereas ENPP2
is one of the 40–50 most up-regulated genes in metastatic solid tumors [5]. Unfortunately,
expression data from metastatic samples were not available to allow correlation with
methylation and deeper understanding in the process of metastasis. It has to be noted
that in our previous work, ENPP2 hypermethylation in lung cancer was correlated with
advanced cancer stage [18].

Small differences in ENPP2 methylation were observed between ductal and lobular
BrCa pathological types, and no further analysis was possible due to lack of relevant clinical
information in the available datasets and small representation from other BrCa types. GEO
datasets, for example, do not include the cancer type as a parameter for each case. This
underlines the significance of the integrity of information provided in the archived datasets
to allow full exploitation of readings towards clinical relevance.

ENPP2 hypermethylation of PA associated CGs was also detected in methylome
datasets of ccfDNAs from BrCa patients in relation to ccfDNA from healthy individuals,
presenting a similar profile as in the case of tissue samples. Taken together, these findings
suggest that assessing methylation in ccfDNA can dynamically reflect methylation events
of the tumor. This notion is further supported by our recent in vitro study showing that the
methylation profile of ccfDNA released by breast and cervical cancer cell lines is identical
to their genomic DNA [27]. Similarly, in CRC, we detected identical methylation profiles of
corticotropin releasing factor receptor genes in tumors as in patient ccfDNAs [16].

We further evaluated ENPP2 methylation in ccfDNA of BrCa patients in order to
examine its clinical value as a biomarker. The first exon cg02534163 was targeted in a qMSP
assay, chosen because it was identified as a DMC in all clinical endpoints examined, except
in the case of early vs. advanced disease, presenting the highest FDR. Analysis showed
that ENPP2 hypermethylation was detected more often in ccfDNA of BrCa patients than
in healthy individuals in a statistically significant manner. In a previous study address-
ing ENPP2 methylation in ccfDNA from 22 healthy and 45 Taiwanese BrCa patients, no
significant differences were found [28], although ENPP2 methylation showed a twofold
increase in BrCa in relation to adjacent normal tissue. Methodological differences or even
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population genetic variations might explain these different findings. Importantly, in our
study, ccfDNA methylation levels of ENPP2 were also elevated in the neoadjuvant and
metastatic groups of patients in relation to adjuvant and control group of patients. This
result could be due to the fact that in the new adjuvant and metastatic groups, patients
still have a significant tumor burden. Our bioinformatic analysis also showed that ENPP2
methylation is increased in metastasis in relation to primary cancers. In addition to that, ac-
cording to our experimental analysis, patients having two or more metastatic foci presented
more increased ENPP2 methylation levels than those patients having a distant metastasis
in one organ. Cumulatively, our experimental results are in accordance with those from
bioinformatic analysis showing hypermethylation of ENPP2 in BrCa tissue and ccfDNA
and a correlation with cancer aggressiveness and metastasis, suggesting its potential as a
novel circulating biomarker in BrCa.

A limitation of our study is the small number of patients enrolled in the experimental
part not allowing significant correlations between ENPP2 methylation levels and clinico-
pathological features such as grade and tumor size to emerge. Future validation in a larger
group of patients should be conducted in order to confirm its clinical value. Furthermore,
studies employing in vitro models should clarify the connection between methylation and
expression during the carcinogenic process.

4. Materials and Methods
4.1. Bioinformatic Analysis of ENPP2 in BrCa
4.1.1. Data Sources

Raw DNA methylation data from BrCa tissues and normal breast tissues as well as
the corresponding clinical and demographic data were obtained from The Cancer Genome
Atlas (TCGA) [29] and Gene Expression Omnibus (GEO) [30] databases. TCGA case
inclusion criteria were: 1. Platform: Infinium Human Methylation 450 K bead-chip 2.
Primary site: breast; 3. Project: TCGA-BRCA; 4. Gender: female; 5. Age at diagnosis:
26–80 years; 6. Race: white, black or African American, Asian, and not reported. A total of
730 cases were downloaded. As for the BrCa type at diagnosis, the majority of the cases
were invasive ductal (64.7% of total cases) or lobular (25.5% of total cases) BrCa, 9.8% of
cases were of eight other BrCa types (e.g., secretory, tubular, papillary, and others). The
GEO database was searched using ‘Breast cancer’, ‘Metastatic Breast cancer’, ‘cell free DNA’
as keywords and ‘Methylation profiling by array’ as study type. In total, 96 studies were
found. Those using the Infinium Human Methylation 450 K bead-chip array and providing
adequate raw and clinical data were selected for further analysis, i.e., five studies, namely
GSE72245, GSE72251 [31], GSE88883 [32], GSE108576 [33], GSE74214 and GSE122126 [34].
Analysis of ENPP2 methylation in tissues was performed against 4 major clinically relevant
endpoints, as presented in Table 6. Analysis of ENPP2 methylation was also performed in
a ccfDNA dataset (GSE122126) [34] including three BrCa ccfDNA samples and two from
healthy individuals.
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Table 6. Comparisons, endpoints, study group characteristics, and clinical significance of the tissue
datasets used in the bioinformatic analysis. Abbreviations: BrCa = breast cancer, NR = Not Relevant.

Study Groups Tissues Age (Years) Median
(Range) Stage Significance

1. BrCa vs. Normal
520 BrCa (primary and

metastatic) 49 (26–80)

102 Stage I
264 Stage II
114 Stage III
40 Stage IV

Diagnosis

185 Normal 47 (26–80) NR

2. Primary vs. Metastatic BrCa 132 PrimaryBrCa 55 (47–55)
22 Stage I
75 Stage II
35 Stage III

Diagnosis/Prognosis

31 Metastatic BrCa 54 (41–80) 31 Stage IV

3. Stage I BrCa vs. Normal 136 Stage I BrCa 54 (27–80) 136 Stage I Diagnosis/Prognosis
111 Normal 58 (29–80) NR

4. Early vs. Advanced BrCa 521 EarlyBrCa 58 (26–80) 115 Stage I
406 Stage II Diagnosis/Prognosis

221 Advanced BrCa 55 (27–80) 221 Stage III

4.1.2. Data Preprocessing and DNA Methylation Analysis

Raw DNA methylation data (IDAT files) and sample annotation files were subjected to
the Bioconductor R package RnBeads v2.0 [35]. RnBeads is a software tool suitable for large-
scale analysis, interpretation, and visualization of DNA methylation data. In our workflow,
ENPP2 CGs were chosen as the genomic region of interest and were analyzed for each of
the four endpoints, as previously reported by our team [16,24]. Beta methylation values
are expressed as decimal values between 0.0 (no methylation) and 1.0 (full methylation).
DMCs (DMCs) for ENPP2 were identified based on the false discovery rate (FDR-adjusted
p-value < 5.00 × 10−2).

4.1.3. Differential Expression Analysis and Expression—Methylation Correlation

Raw RNA-seq (Illumina HiSeq) paired with level 3 methylation data described above
(Table 6) were obtained from the TCGA database. No expression data were available
for the GEO retrieved methylation datasets. In detail, 66 Normal, 302 BrCa, 111 Stage I,
191 advanced, and 519 early-stage samples were obtained. Expression data were EDASeq
normalized and quantile filtered post to differential expression analysis using the edgeR
package. Absolute fold change ≥ 1.2 and adjusted p-value ≤ 5 × 10−2 were selected as
thresholds of significant differential expression. Multi-dimensional scaling (MDS) plots
of normalized expression and principal component analysis (PCA) of level 3 methylation
data were created to visualize sample separation according to the phenotype attributed.
Normalized expression and level 3 methylation data were correlated using the Spearman
method. Absolute rho value ≥ 0.4 and adjusted p value ≤ 5 × 10−2 were set as significant
correlation thresholds. All the above manipulations were performed with TCGA biolinks
package version 2.18.0 [36] and R version 4.0.4.

4.1.4. Expression, Methylation and Survival Analysis Using the UALCAN Platform

In order to further verify our results, we used the UALCAN platform [37] that enable
researchers to analyze cancer archived omics data. We performed expression, promoter
methylation, and survival analysis of ENPP2 gene in BrCa and corresponding controls.
According to UALCAN, different beta value cut-offs have been considered to indicate hyper-
methylation (Beta value: 0.7–0.5) or hypo-methylation (Beta-value: 0.3–0.25). For mRNA
expression, methylation, and survival, we used TCGA gene analysis, and the screening
conditions were as follows: gene “ENPP2”, TCGA dataset “Breast Cancer” and then we
used “expression”, “methylation”, and “survival” as links for analysis. Protein expression
analysis was performed using the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
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datasets, Z-values represent standard deviations from the median across samples for the
given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized
within each sample profile then normalized across samples.

4.2. Methylation Analysis of ENPP2 in BrCa Liquid Biopsies
4.2.1. Study Groups and Clinical Samples

The study was approved by the Scientific Board of the University General Hospital
of Evros (PGNE), following assessment by Ethics Committee (decision 663/08.08.16), and
was conducted according to the ethical principles of the 1964 Declaration of Helsinki and
its later amendments. All patients participated after signing a voluntary informed consent.

Blood samples were collected from 86 BrCa patients who visited the Department of
Medical Oncology of PGNE and were allocated to three groups: (a) 52 patients having
recently (within the previous month) undergone surgery for primary BrCa, exactly before
the initiation of adjuvant therapy (adjuvant group), (b) 15 patients upon diagnosis for BrCa,
having no previous surgery, before the initiation of neo-adjuvant therapy (neo-adjuvant
group), (c) 19 patients upon diagnosis for metastatic disease before the initiation of first-line
chemotherapy (a combination of Taxane/Anthracyclines) (metastatic group). Pathological
BrCa type was invasive ductal carcinoma for all patients enrolled in the study. The available
clinicopathological features for all patient groups are presented in Table 7. Five-year follow-
up data were also available. In the adjuvant group, 10 (19.23%) patients have died as a
consequence of their disease progression and respective numbers in the metastatic and
neo-adjuvant BrCa groups were 11 (57.89%) and 5 (33.33%), respectively.

Table 7. Demographic and clinicopathological characteristics of BrCa and control groups.

Group Total Adjuvant Metastatic Neoadjuvant Control

N 132 52 19 15 46
Age

Mean (±SD) 57.7 (±13.9) 58.7 (±12.0) 61.9 (±9.8) 55.5 (±16.6) 55.6 (±13.7)
Median (range) 59.0 (0.0–83.0) 60.5 (27.0–80.0) 65.0 (44.0–75.0) 51.0 (29.0–79.0) 57.0 (26.0–83.0)

Grade
1 10 10 - -
2 25 19 - 6
3 30 16 8 6

N/A 21 7 11 3
Stage

I 15 15 - -
II 28 28 - -
III 9 9 - -
IV 19 - 19 -

N/A 15 - - 15
Lymphnode status

Negative 27 24 - 3
Positive 33 26 - 7

N/A 26 2 19 5
Tumor size (before surgery)

≤2 30 25 - 5
>2 and ≤6.5 33 26 - 7

N/A 23 1 19 3
Metastatic sites

Lung 12 - 12 -
Skin 1 - 1 -

Distantlymphnodes 5 - 5 -
Pancreas 1 - 1 -

Bone 9 - 9 -
Liver 4 - 4 -

Pleural 1 - 1 -

Abbreviations: BrCa = breast cancer, SD = standard deviation, N/A = Non-Available or Non-Applicable.
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Peripheral blood was collected in EDTA before treatment and was processed immedi-
ately for plasma isolation. In parallel, blood samples from 46 age-matched healthy female
donors were included in our study (mean age: 55.65 (±SD) (±13.7), median: 57.0 (range:
26.0–83.0)) (control group). All blood samples were centrifuged within 2 h twice at 2000× g
and then at 10,000× g for 10 min and plasma was stored at −80 ◦C until further use.

4.2.2. ccfDNA Extraction

ccfDNA from plasma was extracted using the QIAamp DNA Blood Mini kit (Qiagen,
MD, USA) according to manufacturer’s instructions with some modifications. Specifically,
DNA was eluted from 500 µL of plasma in 25 µL elution buffer and then stored in −20 ◦C
until further use.

4.2.3. Sodium Bisulfite Conversion of ccfDNA

Bisulfite conversion was performed by EZ DNA Methylation-Gold™ Kit (ZYMO
Research Co., Orange, CA, USA) as described by the manufacturer. During conversion,
all unmethylated but not the methylated-cytosines of ccfDNA were converted to uracil.
DNA was then eluted in 10 µL elution buffer and stored at −80 ◦C until further use. In
each experiment, CpGenome Human methylated and nonmethylated DNA standards
(Merck Millipore, Darmstad, Germany) or H2O were included as positive and negative
controls respectively.

4.2.4. Quantitative Methylation-Specific PCR (qMSP)

Methylation of ENNP2s 1st Exon was analyzed by qMSP. ENPP2 primers (Table 8)
for methylated sequences specifically designed to contain cg02534163 were checked using
Oligo 7 software and obtained from Eurofins, Genomic (Louisville, USA). A methylation-
independent assay with non-CpG including primers for the β-actin gene (ACTB) was used
in order to verify DNA quality and to normalize results. Specificity and cross-reactivity of
methylated primers were evaluated by using SB-converted methylated and non-methylated
DNA standards. Analytical sensitivity of qMSP assays was evaluated by using serial
dilutions of SB-converted methylated and nonmethylated DNA standards (100%, 50%,
10%, 1%, 0%). The assay efficiency (expressed as E = 10−1/slope−1) was evaluated by
using serial dilutions of the SB-converted methylated DNA standards in H2O (100–0.01 ng).
The results were calculated using the Rotor-Gene 6000 Series Software 1.7 (Qiagen). The
analysis was performed according to the RQ sample (Relative Quantification) = 2−∆∆CT

method. Specifically, ∆∆CT values were generated for each target after normalization by
ACTB values and using 100% methylation as calibrator.

Table 8. Primer sequences, annealing temperatures, and genomic locations used for qMSP assays.

GENE Primer
Sequence (5′–3′)

Annealing
Temperature

(◦C)
Product Length Genomic Loci

ENPP2

MET F:
CGTTTTTTTATTTGATACGATTGGAACGA

MET R:
CAAAACCT-

CAAAACAAT-
ACACTCCG-

TAA

60 117bp
Chr8: 120650976-

120651092 (+1
strand)

ACTB

F: TGGTGATG-
GAGGAGGTT-

TAGTAAG
R: AAC-

CAATAAAACC-
TACTCCTCCC

60 134bp
chr7: 5558705–

5558838
(−1 strand)

Abbreviations: MET: methylated, F: forward, R: reverse.
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In the ENPP2 qMSP assay, a high linear correlation was found between the dilu-
tion ratios, analytical sensitivity of 0.01%, and efficiency 99%. Curves are presented
in Supplementary Figure S2A. Additionally, analytical sensitivity of ACTB was 0.1% and
efficiency was 96% (Supplementary Figure S2B).

4.2.5. Statistical Analysis

The Kolmogorov–Smirnov test was used to check for normality in distribution and the
chi-squared test was used for comparison between discrete variables. One-way ANOVA test
that was followed by Bonferroni post-hoc or Kruskal–Wallis test was applied to compare
continuous variables between subgroups. In case of binary variables, t-test or Mann–
Whitney test were also applied. Pearson or Spearman correlation was used for comparison
between two continuous variables. Statistical significance was placed at p-value < 5 × 10−2.
Statistical analysis was conducted with the IBM SPSS 19.0 statistical software (IBM Corp.
2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY, USA).

5. Conclusions

Presented data demonstrate ENPP2 promoter hypermethylation in BrCa tissues as-
sociated with decreased expression, suggesting epigenetic regulation of its expression.
Methylation events are correlated to BrCa progression and metastatic potential. In addition,
we demonstrate that the ENPP2 methylation assessed in liquid biopsy could offer a mini-
mally invasive approach in early diagnosis and monitoring upon prospective evaluation.
Our data introduce ENPP2 methylation as a putative biomarker in BrCa.
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Obesity Reshapes the Microbial Population Structure along the Gut-Liver-Lung Axis in 

Mice 

H παχυσαρκία επαναδιαμορφώνει την δομή του μικροβιακού πληθυσμού κατά μήκος του 

άξονα εντέρου-ήπατος-πνεύμονα στα ποντίκια 

Το μικροβίωμα αναδύεται ως μείζον παίκτης της ιστικής ομοιόστασης υπό υγιείς αλλά και 

παθολογικές συνθήκες. Δυσβίωση του εντερικού μικροβιώματος συσχετίζεται με διάφορες 

αυτοφλεγμονώδεις και μεταβολικές ασθένειες. Δίαιτες πλούσιες σε λιπαρά και η επακόλουθη 

παχυσαρκία είναι γνωστό πως επηρεάζουν την πολυπλοκότητα και την ποικιλομορφία του 

μικροβιώματος και συνεπώς την παθοφυσιολογία του οργανισμού. Επιπροσθέτως έχει 

προταθεί η ύπαρξη ενός μικροβιακού άξονα μεταξύ εντέρου και ήπατος, άξονας που μπορεί 

να εκτείνεται και στους πνεύμονες. Σε αυτό το πλαίσιο, συγκρίναμε συστηματικώς το 

μικροβίωμα του εντέρου, του ήπατος και του πνεύμονα ποντικών οι οποίοι τρέφονταν με δίαιτα 

πλούσια σε λιπαρά με αυτό αδερφών ζώων που λάμβαναν την δίαιτα αναφοράς. Διεξάγαμε 

αλληλούχιση επτά υπερμεταβλητών περιοχών του 16S ριβοσωμικού RNA (rRNA) για να 

εξετάσουμε την μικροβιακή ποικιλότητα στους ιστούς ενδιαφέροντος. Σύγκριση των τοπικών 

μικροβιωμάτων υπέδειξε πως ο πνευμονικός ιστός φέρει το λιγότερο ποικιλόμορφο 

μικροβίωμα υπό ομοιοστατικές συνθήκες, ενώ το μικροβίωμα του υγιούς ήπατος ομοιάζει με 

αυτό του εντέρου. Η παχυσαρκία αύξησε την μικροβιακή πολυπλοκότητα και στους τρεις 

ιστούς, με την πνευμονική μικροβιακή ποικιλότητα να υφίσταται τις μεγαλύτερες αλλαγές. 

Επίσης, η παχύσαρκία προώθησε την επέκταση των Firmicutes κατά μήκος του άξονα εντέρου-

συκωτιού-πνεύμονα, ενώ παράλληλα ανέδειξε το γένος Staphylococcus ως έναν πιθανό 

παθολογικό σύνδεσμο μεταξύ παχυσαρκίας και συστημικής παθοφυσιολογίας, ιδιαιτέρως δε 

των πνευμόνων. 
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Abstract: The microbiome is emerging as a major player in tissue homeostasis in health and disease.
Gut microbiome dysbiosis correlates with several autoimmune and metabolic diseases, while high-fat
diets and ensuing obesity are known to affect the complexity and diversity of the microbiome, thus
modulating pathophysiology. Moreover, the existence of a gut-liver microbial axis has been proposed,
which may extend to the lung. In this context, we systematically compared the microbiomes of the
gut, liver, and lung of mice fed a high-fat diet to those of littermates fed a matched control diet.
We carried out deep sequencing of seven hypervariable regions of the 16S rRNA microbial gene to
examine microbial diversity in the tissues of interest. Comparison of the local microbiomes indicated
that lung tissue has the least diverse microbiome under healthy conditions, while microbial diversity
in the healthy liver clustered closer to the gut. Obesity increased microbial complexity in all three
tissues, with lung microbial diversity being the most modified. Obesity promoted the expansion of
Firmicutes along the gut-liver-lung axis, highlighting staphylococcus as a possible pathologic link
between obesity and systemic pathophysiology, especially in the lungs.

Keywords: obesity; high-fat diet; microbiome; 16S rRNA; gut; liver; lung; comparative analysis;
firmicutes; staphylococcus

1. Introduction

The microbiome, the sum of commensal, symbiotic, and pathogenic organisms that
populate animal bodies, is increasingly recognized as a major player in tissue homeostasis
in health and disease [1], modulating a variety of host functions, including immunity
and inflammation [2], as well as energy homeostasis and metabolism [3]. Changes in
microbial population structure and the ensuing local or systemic effects can be induced by
different environmental factors, most notably exposure to antibiotics and dietary changes,
while the efficacy of various medications has been suggested to correlate with microbiome
perturbations and vice versa [1].

Most microorganisms reside within the intestine. It is well established that the gut
microbiome participates in multiple homeostatic functions essential for the host, including
nutrient absorption and education of the immune system. Alterations in the composition
and complexity of microbiomes can harm the health of an organism. Such alterations
lead to dysbiosis and have been associated with autoimmune and metabolic diseases,
mostly via secreted microbial metabolites [4]. Non-alcoholic fatty liver disease (NAFLD)
has been linked to dysbiosis [5,6], highlighting a connection between gut microbiota and
the liver, referred to as the gut-liver axis [7]. The gut and liver are in direct contact
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through the biliary tract and the portal vein, and disturbances in gut barrier functions
result in an increased influx of bacteria and their metabolites to the liver [7]. Moreover, a
gut-brain microbial axis has also been proposed [8], suggesting that the gut microbiome
may also affect distant organs. In the same vein, a gut-lung axis has also been proposed,
and dysbiosis has been associated most notably with asthma and chronic obstructive
pulmonary disease (COPD) [9]. It is noteworthy that elder individuals become more
susceptible to these respiratory diseases, while the process of aging has also been associated
with microbial dysbiosis [10]. Moreover, the lungs—believed until recently to be sterile—
have been found to contain their own bacterial flora, which is deregulated in disease
states [11]. Specific bacterial species have recently been associated with disease status in
COPD patients [12] and with mortality in idiopathic pulmonary fibrosis (IPF) patients [13].
Liver functions, including endotoxin and bacterial clearance, have been suggested as critical
determinants of lung pathophysiology in acute respiratory distress syndrome (ARDS) [14],
while the contribution of a liver-lung axis has also been proposed in alcohol-induced liver
diseases [15]. Moreover, a fiber-rich diet has been shown to confer reduced risk for COPD,
possibly through metabolic, liver-mediated effects on innate immunity. This points to a
potential gut-liver-lung axis [16] that may further involve metabolic regulation of microbial
dysbiosis. However, the gut-liver-lung axis is thought to be imposed mainly via microbial
metabolites. In that respect, the actual microbial populations of the different organs along
with the full gamut of metabolites and their possible similarities or differences have not
been fully elucidated.

Obesity and obesity-related metabolic disorders are linked to lipid biosynthetic path-
ways in the liver and have been associated with the composition of the human gut micro-
biome [4,17]. To date, multiple studies are starting to highlight the important contribution
of the microbiome to human health, but there remains a notable heterogeneity in published
results. Moreover, much less is known about the effects of obesity on the microbial compo-
sition of the liver and lungs or along the gut-liver-lung axis. In this context, we examined
the bacterial composition along the gut-liver-lung axis upon high-fat diet (HFD)-induced
obesity in wild type (wt) C57Bl6 mice, based on 16 rRNA gene (V2-4, V6-9) sequencing.

2. Materials and Methods
2.1. Animals

All mice (four per dietary regime) were bred under specific-pathogen-free (SPF) con-
ditions at the local animal facility at 20–22 ◦C, 55 ± 5% humidity, and a 12-h light/dark
cycle; water and food were provided ad libitum. All experiments on mice were in line
with ARRIVE guidelines and were approved by the Veterinary Service and Fishery De-
partment of the local governmental prefecture (#740336), following the positive opinion of
the Institutional Protocol Evaluation Committee BSRC Alexander Fleming. Experimental
animals were on an HFD (60% fat VHFD, D12492i, Research diets, New Brunswick, New
Jersey, USA), and their littermate control animals were fed the corresponding matched
control diet (CD) (10% fat, D12450J, Research diets, New Brunswick, New Jersey, USA) for
16 weeks starting after their ablactation. All mice were co-housed continuously throughout
the experiment, taking all necessary precautions for cross-contamination.

2.2. Tissue Sampling

Mice were anesthetized using a xylazine/ketamine/atropine mixture (10 mg/100 mg/
0.05 mg/kg body weight respectively) and then euthanized by a gradual supply of carbon
dioxide. Small intestines were isolated; the first ~1 cm right after stomach was discarded,
and samples of ~50 mg were collected and immediately transferred into liquid nitrogen.
No washing of the intestine was performed. Next, perfusion with PBS was performed,
as previously described [18], and liver and lung samples were isolated and immediately
transferred into liquid nitrogen. All tissue samples were stored at −80 ◦C until processing.
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2.3. Histopathology

Right lung tissues and medial liver lobes were fixed using 10% neutral buffered
formalin. The gut was fixed using a fixation buffer containing 50% Ethanol and 5% acetic
acid. All tissues were placed in paraffin. 4 µm sections were prepared and stained with
hematoxylin/eosin (H&E) standard protocols. Tissue imaging was performed using a
Nikon Eclipse E800 microscope (Nikon Corp., Shinagawa-ku, Japan) attached to a Q
Imaging EXI Aqua digital camera, using the Q-Capture Pro software (v7.0, QImaging,
Surrey, BC, Canada).

2.4. Plasma Sampling

Plasma was collected from every subject as previously described (Barbayianni,
Ninou, et al. 2018). In brief, after euthanasia of the animals, the blood was collected
through the inferior vena cava, and EDTA was added to a final concentration of 10%.
The samples were then centrifuged for 20 min at 2000 g at 4 ◦C. Plasma was transferred
and stored at 4 ◦C until biochemical analysis was performed using a Beckman Coulter
AU480 Clinical Chemistry Analyzer based at the BSRC ‘Alexander Fleming’ phenotyping
facility for the estimation of Alanine Transaminase (ALT) (OSR6107, Beckman Coulter,
Brea, CA, USA) and Aspartate Transaminase (AST) (OSR6109, Beckman Coulter, Brea, CA,
USA) levels.

2.5. DNA Extraction and 16s Library Preparation

Total genomic DNA was extracted from approximately 50 mg of tissue using the
DNeasy® Blood & Tissue Kit (Cat. Nos. 69504 and 69506, Qiagen, Hilden, Germany)
following the manufacturer’s suggested protocol. 2-8 µL (~100–250 ng) of genomic DNA
from each sample was used with the Ion 16S™ Metagenomics Kit (A26216, ThermoFisher
Scientific, Waltham, MA, USA) to amplify the 16S hypervariable regions. The kit used
includes two sets of primers targeting V2, V4, V8— And V3, V6-7, and V9 regions, re-
spectively. After sample purification, DNA libraries were prepared with the Ion Plus
Fragment Library Kit (4471252, ThermoFisher Scientific, Waltham, MA, USA) according
to the manufacturer’s instructions. The libraries were pooled and sequenced on an Ion
Proton™ System. Briefly, the genomic DNA from each sample was divided into two parts,
and each was amplified with a different pool of primers needed to cover the 16S hypervari-
able regions. Given that distinct hypervariable regions may contribute in varying degrees
to the identification of bacterial species, especially for low-level taxa [19], we amplified
seven of nine hypervariable regions (V2-4, V6-9), thus enabling broad-range identification
of bacterial populations. Following amplification, the two reactions were pooled, and
all samples were further purified with Agencourt AMPure XP Beads (A63881, Beckman
Coulter, Brea, CA, USA). Sample concentration was measured using the Qubit dsDNA HS
Assay Kit (Q32851 ThermoFisher Scientific, Waltham, MA, USA), and approximately 50 ng
of amplified DNA was used to prepare DNA libraries with the Ion Plus Fragment Library
Kit (4471252, ThermoFisher Scientific, Waltham, MA, USA). End repair was followed by
adaptor ligation and nick repair. After purification, libraries were amplified and further
purified. Each library’s quality and quantity was assessed on a Bioanalyzer using the
DNA High Sensitivity Kit reagents and protocol (5067-4626, Agilent Technologies, Santa
Clara, CA, USA). Quantified libraries were pooled to a final concentration of 7 pM. The
pools were then processed, templated, and enriched on an Ion Proton One Touch system.
Templating was performed using the Ion PI™ Hi-Q™ OT2 200 Kit (A26433, ThermoFisher
Scientific, Waltham, MA, USA), and sequencing was performed using the Ion PI™ Hi-Q™
Sequencing 200 Kit on Ion Proton PI™ V3 chips (A26771, ThermoFisher Scientific, Waltham,
MA, USA) according to commercially available protocols. The Ion Proton™ System [20]
was used for high-throughput sequencing according to the manufacturer’s instructions.
The above process is illustrated in Figure S1A.
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2.6. 16S rRNA Gene Sequencing Data Analysis

Fastq files were quality controlled using DADA2 functions [21] in order to trim 14b
read left ends, as suggested for IonTorrent data. Reads under 50 bp were subsequently
removed along with those sequences with more than four expected errors. Trimmed
reads were aligned against the human and mouse genomes using the FastQ Screen tool
(v0.14.01) [22] to detect contaminant sequences. No microbial reads were filtered from the
initial raw fastq files, which were pooled per sampled tissue and diet prior to quality control.
Filtration and trimming were performed as before, prior to denoising and chimera removal
using DADA2 (Figure S2; Table S1). Processed files were assigned to amplicon sequence
variants (ASVs). Taxonomy assignment was performed using the SILVA database [23],
followed by gene copy number (GCN) normalization. For GCN correction, abundance
values were divided by each taxon’s 16S gene copy number as recorded in rrnDB (v5.7
NCBI) [24] using an in-house script. Taxa with no records in rrnDB were not considered for
downstream analysis. The above process is depicted in Figure S1B.

2.7. Statistical Analysis

Statistical analysis was performed using the Prism 6 software (GraphPad, San Diego,
CA, USA), as specifically indicated in the text and the corresponding figure legends.

3. Results
3.1. High Fat Diet Induces Obesity and NAFLD

To examine the effect of obesity on the microbiome and possible interconnections of
the gut-liver axis with the lung, we fed wt C57Bl6 mice with a non-toxic HFD for 16 weeks,
starting right after their ablactation, at four weeks of age. Littermate mice fed a matched
CD were used as controls.

As expected, mice fed with HFD gained more weight than their littermate controls
(Figure 1A). Obese mice presented with elevated Alanine Transaminase (ALT) levels in
their plasma (Figure 1B) and decreased AST/ALT (AST: Aspartate Transaminase) ratios
(Figure 1C), indicating liver damage as well as lipid deposition in the liver (Figure 1D),
both reminiscent of NAFLD. Lipid deposition was also observed in the gut but not in the
lung (Figure 1D).

3.2. Obesity Increases Microbial Complexity along the Gut-Liver-Lung Axis

Quality controlled, denoised fastq files were pooled per tissue and diet and were
assigned to amplicon sequence variants (ASVs). Following abundance level correction for
differing 16S gene copy numbers between taxa (GCN correction), we detected in total 29
phyla, 59 classes, 130 orders, 227 families, and 585 species (Figure S3A).

To reveal patterns of microbiota composition in each gut, liver, and lung, we calcu-
lated bacterial diversity in terms of microbial richness (observed number of ASVs) and
biodiversity (Shannon’s index). No differences were observed in host tissue 18S rRNA gene
levels detected by RT-PCR and used as a negative loading control (Figure S3B). As shown
in Figure 2A, obesity resulted in higher microbial richness compared to equivalent controls
in all three tissues studied, an observation consistent with the higher numbers of microbial
taxa assigned upon HFD (Figure S3C). We report that although the lung is the tissue with
the least diverse microbiome under healthy conditions, its microbial diversity is affected
the most by HFD-driven obesity and reaches levels similar to those recorded for the other
two tissues under these conditions (Figure 2B).

To identify overall similarities in taxonomic composition between tissues (β-diversity),
we calculated the Aitchison distance of tissue microbiomes under healthy and obese
conditions. This distance metric was selected in order to take into consideration the
compositional nature of 16S rRNA gene sequencing data [19]. As shown in Figure 2C, we
observe that HFD-driven obesity shifts the composition of the lung microbiome closer to
that of the liver. Moreover, HFD-driven obesity results in a relative increase in phyla and
families that are shared across the examined tissues (Figure 2D,E; Tables S2 and S3).
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Figure 1. Mice fed with a high-fat diet (HFD) developed obesity and non-alcoholic liver fatty liver
disease (NAFLD). Mice fed with HFD for 16 weeks presented with (A) statistically significant higher
body weight from the tenth week of HFD onwards, (B) elevated ALT levels, and (C) decreased
AST/ALT ratio in plasma after 16 weeks of HFD. (D) Representative images from the histopathology
(hematoxylin & eosin staining) of gut, liver, and lung tissues, illustrating lipid deposition in the
liver and gut after 16 weeks of HFD. Hematoxylin stains cell nuclei (purple) and eosin stains the
extracellulal matrix (pink). The “bubbles” appearing in HDF liver and gut samples are lipid droplets.
Statistical significance was assessed through the Friedman test followed by pairwise Mann-Whitney
tests (in A) and Mann-Whitney tests (in B and C); * p < 0.05 was considered significant.
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Figure 2. HFD-driven obesity triggers changes in the microbiome composition of all tissues examined.
(A) HFD-driven obesity results in a greater number of detected Amplicon Sequence Variants (ASVs)
in all tissues. (B) α-diversity per sample and diet. Shannon’s index was used to evaluate sample
biodiversity per tissue and diet. (C) Similarity of samples per tissue and diet as described by
β-diversity. Aitchison distance was used to account for the compositional nature of 16S rRNA
sequencing data. (D) Venn diagrams of common phyla or (E) families upon CD or HFD in gut, liver,
and lung.
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3.3. Obesity Favors Firmicutes and, Most Notably, Staphylococcus Expansion in All Tissues

Given detected phyla, our data indicate that gut, liver, and lung share the same top-
level taxa: Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes
(Figure 3). Under CD and based on relative abundance, the gut microbiome is more closely
related to that of the liver (Figure 3A). Upon HFD administration, this balance is disturbed,
and the liver microbiome shifts closer to the lung (Figure 3B). This is also indicated by the
recorded β-diversity (Figure 2C) and because more taxa are shared across the liver and
lung at different taxonomic levels (Figure 2D,E).
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In CD liver and lung tissue, we report that Proteobacteria are the most abundant
bacteria, followed by Actinobacteria and Firmicutes (Figure 3C). This composition is
slightly different in the CD gut, with the most abundant Bacteroidetes being followed
by Proteobacteria and Firmicutes. Upon HFD, liver and lung are occupied, in order of
abundance, by Proteobacteria, Firmicutes, and Actinobacteria. On the other hand, the gut is
mainly populated by Firmicutes and Actinobacteria, followed by Proteobacteria. Notably,
our findings show that HFD-driven obesity favors expansion of Firmicutes in all three
tissues studied.

Deeper examination at the taxonomic level revealed that the Firmicutes families
that expanded under HFD-driven obesity in all tissues examined were Staphylococcaceae,
Streptococcaceae, and Peptoniphilaceae (Figure 4A); Pasteurelacceae family (Proteobacteria)
expanded as well. Concerning detected genera, two, three, and eleven genera were detected
within the Streptococcaceae, Staphylococcaceae, and Peptoniphilaceae taxa, respectively
(Table S4). Among them, and under HFD-driven obesity, Staphylococcus has an increasing
tendency in all three tissues relative to CD conditions (Figure 4B).
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A notable point that we raise given our findings is that the three genera most consis-
tently affected by HFD (Staphylococcus, Streptococcus, and Finegoldia) have been shown
to produce superantigens (SAg), potent immunomodulators that are produced by microor-
ganisms (Figure 4B). Given that SAgs are produced by specific, mostly bacterial species, we
searched UniProt to track them in our dataset. A search of the database with the UniProt
keyword ‘Superantigen’ revealed several UniProt-KB and Uni-Prot-TrEMBL entries, which,
when intersected with those of our 16S amplicon sequencing, led to the detection of six
SAg-related species (Table S5), of which four belong to genera whose diversity was affected
upon administration of HFD in at least one of tissue. This points to the existence of a
potential bacterial-driven pathogenic mechanism, which should be further explored.

4. Discussion

In this report, we examined the microbial composition of the guts, livers, and lungs
of mice fed a high-fat diet (HFD) compared to littermates fed a matched control diet
(CD). Towards this goal, we employed sequencing of seven (out of nine) 16S rRNA gene
hypervariable regions. Obesity was shown to increase microbial complexity along the
gut-liver-lung axis, promoting the expansion of Firmicutes, especially of Staphylococcus.

To induce obesity in mice, we utilized a non-toxic (not methionine- or choline-deficient)
HFD containing 20% protein, 20% kcal fat, and 60% kcal carbohydrate with a total of 20%
kcal energy density (5.21 kcal/g). As a result, the mice gained weight (unlike with toxic
diets), with lipids being deposited in both liver and gut, but not in lung tissue (Figure 1).

The technique of 16S rRNA gene amplicon sequencing has revolutionized micro-
biomics [25]. Although most reported sequencing protocols examine one or two hypervari-
able regions [25], we selected seven hot spots (V2-V4 and V6-9) for amplification, given that
each of these nine sub-regions has a distinct potential for distinguishing between microbial
taxa, especially for lower taxonomic levels [19]. This selection also serves to avoid skewing
of taxa distributions, as, for example, V1-V2 present poor performance in assigning se-
quences to the phylum of Proteobacteria [26], which are underrepresented in most studies.
Additionally, amplicon sequence variants (ASVs) were preferred to operational taxonomic
units (OTUs), given that OTUs represent certain bacterial taxa inadequately [27] and can
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systematically polarize diversity metrics due to reference incompleteness [28]. Furthermore,
we performed GCN correction to normalize microbial abundance levels for copy numbers.

In healthy CD mice, we report that all three tissues examined (gut, liver, and lung)
were populated chiefly by four phyla: Proteobacteria, Actinobacteria, Bacteroidetes, and Fir-
micutes (Figure 3C), as previously reported for the gut in mice [29,30] and humans [31,32].
Interestingly, Cyanobacteria were also detected in all three tissues consistent with previous
observations of the phylum in mouse lung [33], lower respiratory tract [34], and gastroin-
testinal canal [35]. Gut microbiome diversity is known to increase with age. In humans,
it stabilizes at the age of three and is largely dominated by Bacteroidetes, Firmicutes, and
Proteobacteria [36,37]. The liver is the first organ to encounter gut-derived bacteria upon
intestinal barrier dysfunction through the portal vein, as well as bacteria from systemic
infections via the hepatic artery, which are then removed from circulation through hepatic
filtering [38,39]. Bacterial clearance by the liver has been suggested to occur in a dual-track
mode: rapidly via Kupffer cell scavenger receptors and through a slower process involving
different immune system mechanisms, making the translocated microorganisms available
for the induction of adaptive immunity [38,39]. Given the above mechanisms, it is not
surprising that bacterial rDNA was detected, to the best of our knowledge for the first
time, in the healthy livers of mice (Figures 2–4). Our findings likely portray a snapshot of
the process of bacterial clearance by the liver or remnants of degraded bacteria. Microbial
diversity in the healthy liver clustered closer to that of the gut ( C and Figure 4A), point-
ing to a larger contribution of portal vein-derived gut-leaked microbes than previously
thought. This mechanism has been proposed to contribute to the worsening of human liver
diseases [40]. Importantly, bacterial rDNA was recently detected in the liver of healthy
human individuals [41]. Concerning lung tissue, which until recently was believed to be
sterile, studies in mice have reported colonization with Proteobacteria, Firmicutes, and
Bacteroidetes [42]. These phyla are also reported to be the most prevalent in the human
adult lung [43,44]. We report that the mouse lung microbiome was dominated mainly by
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria under both CD and HFD
(Figure 3C), although α-diversity levels showed that the lung was the organ/tissue with
the least diverse microbiome (Figure 2B).

Obesity is a complex disease characterized by extensive lipid deposition through-
out the body and increases the risk for multiple diseases [45,46]. The gut microbiome
contributes to the pathophysiology of obesity [47], and the ‘obese’ microbiome has been
suggested to harvest energy from nutrients with increased capacity [48]. Gut microbiota
have been shown to regulate body fat content in mice [11] and are regarded as a putative
target for obesity treatments [47]. As shown in the present study, HFD-driven obesity
suppresses Bacteroidetes in the gut of mice (Figure 3C), an effect also observed in ag-
ing mice [49]. Moreover, HFD-driven obesity was found to increase the Firmicutes to
Bacteroidetes ratio in the gut (Figure 3C), expanding on previous studies in genetically
engineered obese mice and obese humans [50,51]. An increase in the diversity of Firmicutes
upon HFD-driven obesity was also observed, for the very first time, in the liver (Figure 3C).
This observation may reflect gut microbiome leaking in the circulation and being cleared
in the liver. However, a similar increase in Firmicutes was also recorded for lung tissue
(Figure 3C), supporting the view that obesity stimulates systemic changes in microbiome
composition, but also the existence of a gut-liver-lung axis. Such an inter-organ network
maybe exist through different communication mechanisms that have been proposed in
the past, including commensal microbe translocation [52] and chemical communication
through bacterial metabolites (e.g., SCFAs) and tissue products [52,53].

Among Firmicutes, an abundance of Staphylococcus was characterized by an increas-
ing tendency in all three tissues upon HFD-driven obesity (Figure 4). Staphylococcus is a
Gram-positive, opportunistic pathogen that colonizes the skin as well as mucosal surfaces
and may cause a range of infections in healthy and immunocompromised individuals,
as well as in recovering postoperative patients. Obesity has been suggested to increase
the risk of Staphylococcus colonization in humans, with obese individuals being more
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susceptible to pneumonia, wound infections, bacteremia, and sepsis [54]. Increased abun-
dance of Staphylococcus and Staphylococcaceae family members have also been reported
in asthma [44], where obesity is a major risk factor and a disease modifier in children and
adults [55]. The gut microbiome has been suggested to link obesity to asthma. Staphylococ-
cus is a likely component of this link, with increased lung colonization by this microbe upon
obesity. In cystic fibrosis (CF), Staphylococcus aureus is the second most commonly isolated
pathogen from the airways of patients. The increasing prevalence of obesity in CF patients
is associated with further impairment of lung function [56]. Lung Staphylococcus burden
has also been found to be increased in chronic hypersensitivity pneumonitis (CHP) [57],
has been associated with progression of idiopathic pulmonary fibrosis (IPF) [58], and a
Staphylococcus pro-apoptotic peptide has been correlated with acute exacerbations of
IPF [59]. Therefore, as the gut microbiome has been linked with that of the liver [40] and
the lung [55] in different disease contexts and obesity, Staphylococcus may be a potential
pathogenic link between the three organs under divergence from a steady state.

Furthermore, HFD-induced obesity was shown to affect bacterial species, mainly
Staphylococcus, capable of producing superantigens (SAgs; Table S5), which are potent im-
munostimulatory molecules [60]. Chronic exposure to S. aureus SAg toxic shock syndrome
toxin-1 (TSST-1) has been shown to facilitate the development of diabetic complications
in rabbits [61], while TSST-1 has also been shown to stimulate cytokine production from
adipocytes [62], thus possibly contributing to the low-grade systemic inflammation asso-
ciated with obesity and diabetes. Moreover, staphylococcal SAg enterotoxin B (SEB) was
shown to cause interstitial pneumonia in both autoimmune and non-autoimmune mice [63],
although obesity is associated with decreased pneumonia risk and mortality, reflecting the
‘obesity paradox’.

The presented study is characterized by certain limitations. First, the pooled sample
analysis design followed limits our results to a mostly descriptive nature. In addition, 16S
rRNA gene amplicon sequencing data cannot be used directly for functional annotation.
This, in combination with the study design, does not enable a deeper examination of
proposed pathogenic mechanisms.

In conclusion, in addition to lipid deposition throughout the body and the triggering of
NAFLD, obesity was shown to increase microbial complexity along the gut-liver-lung axis
and, as a result, to possibly predispose mice to a series of metabolic diseases via increased
abundance in Staphylococcus and other species.
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of shared taxa between any pairwise combination of experimental conditions; Table S4: Detected
genera belonging to the Streptococcaceae, Staphylococcaceae, Peptoniphilaceae, and Pasteurelacceae
families. Red marked are those affected by a high-fat diet in at least one tissue as defined by HFD-to-
control relative abundance difference (non-zero difference); Table S5: Detected species related with
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Increased lipocalin-2 expression in pulmonary inflammation and fibrosis 

Aυξημένη έκφραση της lipocalin-2 στην πνευμομική φλεγμονή και ίνωση 

Εισαγωγή: H ιδιοπαθής πνευμονική ίνωση (idiopathic pulmonary fibrosis· IPF) είναι μία 

χρόνια προοδευτική διάμεση πνευμονοπάθεια με ζοφερή πρόγνωση. Οι υποκείμενοι 

παθολογικοί μηχανισμοί είναι ελάχιστα κατανοητοί οδηγώντας σε έλλειψη αποτελεσματικών 

θεραπειών. Εντούτοις, επανειλημμένη καταστροφή του πνευμονικού επιθηλίου θεωρείται 

κριτικής σημασίας για την έναρξη και την εξέλιξη της ασθένειας μέσω της έκκρισης διαλυτών 

παραγόντων. Οι τελευταίοι ενισχύουν την φλεγμονή, ενώ οδηγούν σε ενεργοποίηση 

ινοβλαστών και άφθονη εναπόθεση συστατικών της εξωκυτταρίας ουσίας. H LCN2 είναι μια 

πρωτεΐνη που έχει προταθεί ως βιοδείκτης καταστροφής του ήπατος. Το ίδιο μόριο έχει 

αναφερθεί να τροποποιεί την έμφυτη ανοσία συμπεριλαμβανομένης της στρατολόγησης 

ουδετεροφίλων και να προστατεύει ενάντια σε βακτηριακές λοιμώξεις μέσω της απομόνωσης 

σιδήρου. 

Μέθοδοι: In silico ανάλυση δημοσίως διαθέσιμων μεταγραφωμικών συνόλων δεδομένων· 

ELISA βρογχοκυψελιδικού υγρού ασθενών της IPF· επαγωγή πνευμονικής φλεγμονής και 

ίνωσης χρήσει BLM και επαγωγή οξέος πνευμονικού τραυματισμού χρήσει LPS σε ποντικούς· 

δοκιμασίες πνευμονικής λειτουργικότητας, ιστολογία, Q-RT-PCR, ανοσοαποτύπωση κατά 

Western και FACS ανάλυση στα παραπάνω ζωϊκά μοντέλα 

Αποτελέσματα: Ανιχνεύθηκαν αυξημένα επίπεδα μεταγραφής της LCN2 σε πνευμονικό ιστό 

ασθενών της IPF, αλλαγή που συσχετίσθηκε αρνητικά με λειτουργίες της αναπνοής. Ίδιες 

παρατηρήσεις έγιναν και για την πρωτεΐνη όπως αυτή ανιχνεύθηκε στο βρογχοκυψελιδικό 

υγρό κοόρτης ασθενών. Αυξημένη έκφραση της LCN2 εντοπίστηκε επίσης κατά την διάρκεια 

πνευμονικής φλεγμονής και ίνωσης στο πειραματικό μοντέλο της μπλεομυκίνης (BLM), με 

κορύφωση στην οξεία φάση, η οποία σχετίζεται με εισροή ουδετεροφίλων. Αύξηση 

παρατηρήθηκε και κατά την διάρκεια οξέος πνευμονικού τραυματισμού μετά από έκθεση σε 

LPS. Ανέλπιστα, και έχοντας υπόψιν τους περιορισμούς της παρούσας έρευνας, το ποντίκι 

Lcn2-/- βρέθηκε να αναπτύσει πνευμονική φλεγμονή και ίνωση μετά από έκθεση σε BLM ή 

LPS, προβληματίζοντας σχετικά με τον κύριο παθολογικό ρόλο της Lcn2 στα ποντίκια. 

Εντούτοις, και προτρέποντας για εκτενέστερες μελέτες, η LCN2 πληρεί τα κριτήρια για χρήση 

ως αναπληρωτής (surrogate) βιοδείκτης πνευμονικής φλεγμονής, αλλά και ως ένας πιθανός 

δείκτης επηρεασμένων πνευμονικών λειτουργιών. 
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Increased lipocalin-2 expression
in pulmonary inflammation and
fibrosis
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Paraskevi Kanellopoulou1, Ilianna Barbayianni1,

Konstantinos Ntatsoulis1, Katerina Touloumi1, Sofia Gramenoudi1,

Theodoros Karampitsakos3, Argyrios Tzouvelekis3,

Katerina Antoniou2 and Vassilis Aidinis1*

1Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander

Fleming, Athens, Greece, 2Department of Respiratory Medicine, School of Medicine, University of Crete,

Heraklion, Greece, 3Department of Respiratory Medicine, School of Medicine, University of Patras,

Patras, Greece

Introduction: Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive

interstitial lung disease with dismal prognosis. The underlying pathogenic

mechanisms are poorly understood, resulting in a lack of e�ective treatments.

However, recurrent epithelial damage is considered critical for disease initiation

and perpetuation, via the secretion of soluble factors that amplify inflammation

and lead to fibroblast activation and exuberant deposition of ECM components.

Lipocalin-2 (LCN2) is a neutrophil gelatinase-associated lipocalin (NGAL) that

has been suggested as a biomarker of kidney damage. LCN2 has been reported

to modulate innate immunity, including the recruitment of neutrophils, and to

protect against bacterial infections by sequestering iron.

Methods: In silico analysis of publicly available transcriptomic datasets; ELISAs

on human IPF patients’ bronchoalveolar lavage fluids (BALFs); bleomycin (BLM)-

induced pulmonary inflammation and fibrosis and LPS-induced acute lung injury

(ALI) in mice: pulmonary function tests, histology, Q-RT-PCR, western blot, and

FACS analysis.

Results and discussion: Increased LCN2 mRNA expression was detected in the

lung tissue of IPF patients negatively correlating with respiratory functions, as also

shown for BALF LCN2 protein levels in a cohort of IPF patients. Increased Lcn2

expression was also detected upon BLM-induced pulmonary inflammation and

fibrosis, especially at the acute phase correlating with neutrophilic infiltration, as

well as upon LPS-induced ALI, an animal model characterized by neutrophilic

infiltration. Surprisingly, and non withstanding the limitations of the study and the

observed trends, Lcn2−/− mice were found to still develop BLM- or LPS-induced

pulmonary inflammation and fibrosis, thus questioning a major pathogenic role

for Lcn2 in mice. However, LCN2 qualifies as a surrogate biomarker of pulmonary

inflammation and a possible indicator of compromised pulmonary functions,

urging for larger studies.

KEYWORDS

idiopathic pulmonary fibrosis (IPF), bleomycin (BLM), acute lung injury, transcriptomics,

lipocalin-2 (LCN2)

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease

characterized by the exuberant deposition of collagens and other ECM components by lung

fibroblasts, leading to the distortion of lung architecture and the impairment of respiratory

functions. The underlying mechanisms of the disease are poorly understood, resulting in a
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lack of effective treatments. However, epithelial damage is

considered a key event initiating the pathogenesis of IPF, where

repeated injury and/or abnormal repair of the epithelium trigger

a cascade of signaling events that result in the recruitment

and activation of immune cells, as well as the activation and

accumulation of lung fibroblasts (1, 2).

Expression profiling of human IPF samples has been

instrumental in the discovery of novel pathogenic genes and

cellular pathways (3), that some were validated in animal models

and some were translated into the clinic (4). In this context,

we have recently developed Fibromine, a database and data

mining tool, hosting all publicly available IPF transcriptomic (and

proteomic) datasets (5), thus allowing the further exploitation

of legacy data. Comparative analysis selected several hundred

genes as differentially expressed in IPF, while an explainable

machine learning phenotype classification algorithm prioritized

76 genes that include previously identified IPF expression

hallmarks (e.g., Col1a1), IPF biomarkers (e.g., MMP7), as

well as many genes previously shown to be involved in the

pathophysiology of IPF (e.g., SPP1) (6). Among the novel,

commonly identified deregulated genes in IPF was Lipocalin-2

(LCN2), also known as neutrophil gelatinase B-associated lipocalin

(NGAL), as it was initially identified in neutrophilic granules in

association with matrix metalloproteinase 9 (MMP9; gelatinase

B) (7, 8). However, LCN2 secretion from other immune cells,

as well as epithelial cells, has been reported (9, 10). LCN2

is considered an acute-phase protein, and increased LCN2

expression has been reported in different pathophysiological

situations, including heart failure, kidney disease, and gut

inflammation (10).

In the lung, increased LCN2 expression has been reported

in subclinical pulmonary emphysema (11), chronic obstructive

pulmonary disease (COPD) (12, 13), acute respiratory distress

syndrome (ARDS) (14), as well as in patients with influenza A

and SARS-CoV-2 virus infections (15). Not surprisingly, given

their commonalities (16), higher LCN2 expression in bronchial

epithelial cells of IPF patients has been also reported (17).

Moreover, and more intriguingly, LCN2 has been suggested

to mediate innate immune responses to bacterial infection by

sequestrating iron (18), whereas both iron homeostasis (19),

as well as microbiome regulation (20), have been linked with

IPF pathogenesis. Therefore, in this report, we investigated a

possible role for LCN2 in pulmonary inflammation and fibrosis,

by using in silico analysis of publicly available transcriptomic

datasets, examination of LCN2 protein levels in IPF patients,

as well as in vivo mouse models of pulmonary inflammation

and fibrosis.

Materials and methods

Datasets

All analyzed bulk-sequencing datasets

(Supplementary Table S1) were sourced from Fibromine (5).

scRNA sequencing (scRNAseq) datasets used in the study are

detailed in Supplementary Table S2.

TABLE 1 Demographics and clinical characteristics of IPF patients.

Characteristic IPF (n = 26)

Age (yr) (Mean± SD) 72.8± 7.3

Gender, n (%)

Male 25 (96.1%)

Female 1 (3.9%)

Pulmonary function tests (mean ± SD)

DLCO% 56.2± 19.4

FEV1/FVC% 85.4± 4.7

KCO 94.1± 21.5

Hematological analysis (%) (mean ± SD)

Macrophages 83.1± 9.8

Lymphocytes 7.6± 7.6∗

Polymorphonuclear 7.5± 6.4

Eosinophils 1.3± 1.61

BALF LCN2 (ng/mL) eosinophils 58.9± 52.3

∗FVC%, Forced vital capacity percent predicted; DLCO%, Carbon monoxide diffusing

capacity percent predicted; FEV1%, Forced expiratory volume in 1-s percent predicted.

Human patients

All studies were performed in accordance with the Declaration

of Helsinki principles at the Department of Thoracic Medicine,

University Hospital of Heraklion, and the demographics and

clinical characteristics of the IPF patients can be found in

Table 1. The diagnosis of IPF was based on ATS/ERS criteria or

multidisciplinary discussion according to the Fleischer criteria (2,

21). Patients were anti-fibrotic naïve. All patients were evaluated

with complete pulmonary function tests (PFTs) within 1 month

of bronchoscopy. Lung volumes were measured using body

plethysmography and the diffusion capacity (DLco, corrected for

hemoglobin) using the single breath technique, and a computerized

system (Jaeger 2.12; MasterLab, Würzburg, Germany). Patients

were classified as non-smokers, current smokers, or former

smokers (defined as having smoked a minimum of one cigarette a

day for a minimum of 1 year, and stopping at least 6 months before

presentation). All patients provided written informed consent. The

study was approved by the Ethics Committees of the University

Hospital of Heraklion (IRB numbers: 1045 and 17030).

Mice

All mice were bred at the animal facilities of the Alexander

Fleming Biomedical Sciences Research Center under specific

pathogen-free conditions. Mice were housed at 20–22◦C, 55 ±

5% humidity, and a 12-h light–dark cycle; water and food were

given ad libitum. Mice were bred andmaintained in their respective

genetic backgrounds for more than 10 generations. All experiments

performed on mice for this project were in line with the ARRIVE

guidelines and were approved by the Institutional Animal Ethical

Committee (IAEC) of the Biomedical Sciences Research Center
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“Alexander Fleming” (#373/375), as well as the Veterinary service

and Fishery Department of the local governmental prefecture

(#5508). Lipocalin-2 deficient mice (Lcn2−/−) were procured from

the Jackson Laboratory (#024630) and were maintained in a

C57Bl6 genetic background for over 10 generations; genotyping

was performed as previously published (18). Mice were humanely

euthanized in a gradually filled CO2 chamber.

BLM-induced pulmonary fibrosis

Pulmonary fibrosis was induced through the administration

of bleomycin (BLM, 0.8 U/Kg of body weight; Nippon Kayaku)

to anesthetized mice (intraperitoneal; ketamine/xylazine/atropine,

100/10/0.05mg/Kg, respectively) via the oropharyngeal (OA) track,

as previously described (22). In brief, mice were carefully placed

on a plastic wall upon anesthesia. Their tongue was pulled out

with forceps to get a better view of the trachea. The nares

were blocked to force inhalation, and the bleomycin, diluted in

normal saline (∼50 µl for each mouse), was directly delivered

to the oropharyngeal cavity using a conventional pipette tip.

Normal saline was administered in the same way to littermate

mice used as controls 3, 7, and 14 days after bleomycin (or

saline) administration, at the peak of BLM-induced disease (which

spontaneously resolves at d21).

Lipopolysaccharide (LPS)-induced acute
lung injury (ALI)

The acute lung injury (ALI) model was performed using LPS

delivered by inhalation, as previously described (23). In brief,

bacterial lipopolysaccharides (LPS) from Pseudomonas aeruginosa

(serotype 10, Sigma, St. Louis, MO, USA) were dissolved in normal

saline at a concentration of 2 mg/ml. A total of 5ml of this

solution was administered into a chamber containing 5–7 mice

via a custom-made nebulizer at an oxygen flow rate of 4 lt/min

for 25min. Normal saline was administered to the control mice.

All measures were taken to minimize animal suffering; however,

during the protocol, no anesthetics were used as no invasive or

painful techniques were performed. After the induction of ALI, the

condition of the animals was checked every 2 h during the light

period. Mice were euthanized 24 h after the induction of ALI.

Respiratory functions

The respiratory functions were examined with FlexiVent

(Scireq), following the manufacturer’s instructions and as

previously published (22).

Analyses of samples

Blood was collected through the portal vein and placed into

tubes containing 0.5M EDTA at a concentration of 10%v/v. Then,

it was centrifuged for 20min at 2.000 g at 4◦C, and the plasma

was transferred in new siliconized tubes. BALF was obtained by

lavaging the airways with 3ml of normal saline using a cannula

through the trachea (three times; 1mL each). Then, BALF was

centrifuged for 15min at 1.200 g at 4◦C. The first 1ml of the BALF

was transferred without the cells into a new siliconized tube. The

other 2ml were discarded; the cells were pooled and treated with

GEYS solution for 10min in ice. Then, they were centrifuged for

10min at 1.200 g at 4◦C, the suspension was discarded, the cell

pellet was re-suspended in fresh PBS, and the cells were counted

under an inverted microscope using a Neubauer chamber. The left

lung lobe was cut and instantly transferred into liquid nitrogen

for RNA and protein extraction. The remaining lobes were filled

with formalin (143091.1214, AppliChem), to be later mounted into

paraffin. Additionally, total protein concentration was estimated

in the BALF using Bradford reagent (Cat.no.: 39222.03, SERVA)

following the manufacturer’s instructions.

Flow cytometry

Mice were euthanized under deep anesthesia followed by

exsanguination. Then, BALF was collected via tracheotomy by

injecting and slowly withdrawing 3ml (3 times; 1mL each) of

phosphate-buffered saline (PBS). The cells were collected via

10min centrifugation at 1,200 rpm at 4◦C, and they were treated

with 1mL of Gey’s Solution for 2–3min. The Gey’s Solution was

removed after a 10min centrifugation at 1,200 rpm at 4◦C, and the

cells were resuspended in 1XPBS/1 %FBS and counted manually

under a reversed light microscope using an improved Neubauer

hemacytometer according to common procedures. Next, the cells

were centrifuged at 1,200 rpm for 10min at 4◦C. The cell pellets

were resuspended in 50 µl blocking buffer (1XPBS with 1% FBS

and 1:400 CD16/32) for 10min. Then, 100 µL of PBS was added to

each sample, and the cells were collected via 5min centrifugation

at 1200 rpm at 4◦C. The cells were resuspended and stained in

the desired concentrations of antibodies in 1XPBS + 1%FBS for

30min. Then, 100 µL of PBS was added to each sample, and the

cells were collected via 5min centrifugation at 1200 rpm at 4◦C.

Finally, the cells were resuspended in 250 µl filtered PBS, and

data were acquired on a BD FACSCanto TM II flow cytometer

using BD FACSDiva software (BD Biosciences). The analyses of

the RAW data were performed with the FlowJo software (TreeStar,

Ashland, OR).

RNA extraction and real-time PCR

The upper half of the left lobe isolated from the animals

was homogenized in 1mL of Trizol (TR118, Molecular Research

Center) followed by total RNA extraction according to the

manufacturer’s instructions. A total of 2 µg of total RNA were used

for cDNA construction usingM-MLV reverse transcriptase (28025-

013, Invitrogen) according to the manufacturer’s instructions.

Real-time polymerase chain reaction (RT-PCR) was performed

using SoFAst EvaGreen Supermix on a Bio-Rad CFX96 TouchTM

real-time PCR detection system (Bio-Rad Laboratories Ltd, CA,

USA). Values were normalized to β2-microglobulin (B2M) and the
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primers used are: Lcn2 (F: 5′-GGGAAATATGCACAGGTATCC

TC-3′; R: 5′- CATGGCGAACTGGTTGTAGTC-3′) and B2M (F:

5′-TTC TGG TGC TTG TCT CAC TGA-3′; R: 5′-CAG TAT GTT

CGG CTT CCC ATT C-3′).

Protein extraction and Western blot
analysis

The lower half of the left lobe was homogenized in 100 µL

of homemade RIPA cell lysis buffer (20mM Tris-HCl pH =

7.5, 150mM 5M NaCl, 2mM 0.5M EDTA, 1mM 0.5M EGTA,

0.5% Sodium Deoxycholate, 0.1% SDS, 1% N-P40) containing

protease inhibitor mixture (Cat. No: 11836170001, Roche) using a

manual tissue grinder, and lysates were spun n at 10.000 rpm for

10min at 4◦C. Protein concentration was estimated by Bradford

reagent (Cat. no.: 39222.03, SERVA), and 10 µg of total protein

was prepared for immunoblotting in the final volume of 15 µl.

In detail, protein mixtures were incubated at 100◦C for 5min,

and they were immediately spun and electrophoresed in SDS-

PAGE gel. Proteins were then transferred onto nitrocellulose

blotting membrane (GE10600002, Amersham, Germany), and the

membranes were incubated in 1% BSA-1‰ Tween20 PBS in

1:1200 rabbit anti-mouse lipocalin-2 antibody (ab63929, Abcam)

and 1:1,200 goat anti-mouse actin antibody (sc-1615, Santa Cruz

Biotechnology) O/N at 4◦C. The next day, the membranes were

washed in 1‰ Tween20 PBS followed by incubation with 1:20.000

secondary antibodies (anti-rabbit: 925-68073, LI-COR; anti-goat:

925-32214, LI-COR) in 1% BSA-1‰ Tween20 PBS. The blot was

visualized in an Odyssey DLx Imaging System (LI-COR).

Immunohistochemistry

Fixed lung tissues were mounted into paraffin; 4µm slices were

cut and placed on slides. Then, hematoxylin/eosin (H&E) staining

was performed as previously described (22). In brief, the slices

were deparaffinized at 60◦C for 2 h followed by xylene washes and

hydrated in gradual ethanol concentrations. The slices were stained

against Lcn2 (ab63929, Abcam) in 1:200 concentration. Peroxidase

conjugated secondary antibody (4010-05, Southern Biotech) and

DAB kit (SK-4100, Vector Laboratories, Inc.) were used to visualize

Lcn2 in the lung tissue slices.

ELISA

LCN2 levels were estimated in human and murine BALF

using a commercially available ELISA kit (EA100541, OriGene

Technologies Inc.), according to the manufacturer’s instructions.

In silico analyses

Differential gene expression analysis results produced during

Fibromine creation (5) were used for volcano plot creation.

Respective boxplots summarize LCN2 expression in terms of

log2 fold change, while depicted datasets had a statistically

significant difference between the compared groups (IPF_vs_Ctrl;

Bleomycin_vs_Ctrl). Absolute fold change (FC) of at least 1.2

and FDR-corrected p < 0.05 were selected as thresholds for

differential expression. The correlation of LCN2 expression values

with those of spirometry measurements was examined using

Spearman’s correlation test. An absolute rho value of at least 0.5

was considered the threshold of a strong relationship, while a p

< 0.05 was required for a relationship to be deemed significant.

Visualizations were performed using packages ggplot2 (v.3.3.5) and

ggrepel (v.0.9.1).

Single-cell RNA-seq data were found at GSE136831 (24),

(GSE135893_ILD_annotated_fullsize.rds.gz) (25), as well as in

the GitHub repositories (26, 27). All downstream described

processes were completed with the R package Seurat (4.0.5) (28,

29).

For GSE136831, already filtered data were log normalized using

a scaling factor of ten thousand (NormalizeData), and highly

variable features (HVG) were retrieved (FindVariableFeatures)

and scaled (ScaleData). Linear dimensionality reduction (PCA)

(RunPCA) was followed by the creation of the closest neighborhood

graph (FindNeighbors) using the first 7 principal components, as

proposed by themedian of all findPCmethods output (30). Clusters

were identified using Louvain clustering with a resolution of 1.3

(FindClusters). Cell typing information provided along with the

count data was adopted. Non-linear dimensionality reduction was

performed using UniformManifold Approximation and Projection

(UMAP) (RunUMAP). As its name implies, UMAP is a non-

linear method for reducing the dimensions of a dataset based on

manifold calculation (31). Although not developed for scRNA-seq

data per se, it is a method of choice for the analysis of such data

yielding reproducible results in fast running times (32). Taking

into consideration the same number of principal components as

above results in a visualization very similar to that of the initial

publication. Batch correction of any kind was not performed as

proven unnecessary during the original data analysis.

From the GSE135893 object, IPF and control originating cells

were maintained, while read counts were log normalized with a

scaling factor of ten thousands before any downstream analysis

(NormalizeData function). Mayr et al. lung dataset object was

analyzed for IPF and control cells only, while barcodes that were

assigned an “empty” cell type were removed. Log normalization

with a 10,000 scaling was applied (NormalizeData function).

Similarly, barcodes assigned a “NA” or “Low-Quality Cells” cell

type were removed from the Strunz et al. whole lung dataset object

before downstream analysis.

For all single-cell data differential expression analyses, the

Wilcoxon rank-sum test was applied (FindMarkers), while an

absolute FC of at least 1.2 and a Bonferroni-corrected p< 0.05 were

set as significant thresholds.

Statistics

Statistical analysis was performed using the GraphPad Prism

software (v8.0, GraphPad, San Diego, California, USA), as explicitly

indicated in each figure legend.
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Results

Increased LCN2 expression in IPF patients
negatively correlates with respiratory
functions

To explore a possible involvement of LCN2 in IPF,

LCN2 expression was interrogated in IPF transcriptomic

datasets (Supplementary Table S1), sourced from Fibromine

(www.fibromine.com), a database and data mining tool for target

discovery in IPF (5). Using absolute fold change of at least 1.2

and FDR-corrected p < 0.05, widely accepted thresholds for

the selection of differentially expressed genes, the expression of

LCN2 was found to be significantly increased in most datasets

interrogating gene expression in the lungs of IPF patients in

comparison with control individuals (Supplementary Table S1;

Figure 1A). Indicatively, LNC2 presented with a natural scale

fold change of 2.3, 4.5, and 3.9 in three of the largest ones

(Figure 1B; Supplementary Table S1). Importantly, LCN2

expression negatively correlated with the respiratory functions

(DLCO, FVC, and FEV1) of IPF patients in the same datasets

(Figure 1C; Supplementary Figures S1A, B).

To examine the cell specificity of LCN2 expression in

fibrotic lungs, we re-analyzed data from three publicly available

single-cell RNA seq (scRNAseq) datasets of human origin

(Supplementary Table S2) (24–26). LCN2 was found in all

three data collections (Figure 1D; Supplementary Figures S1C,

D), primarily expressed in epithelial cells, including goblet,

ciliated, basal, club, and aberrant basaloid cells (Figures 1D, E;

Supplementary Figures S1E, F). Comparing cell types between

phenotypes (IPF and control), LCN2 was found over-expressed

mostly in alveolar type 1 and 2 cells (AT1 and AT2) (Figure 1F;

Supplementary Figures S1G, H). However, LCN2 expression from

neutrophils, as shown in other pathological contexts summarized

by the CellMarker2.0 database (33) (Supplementary Table S3),

cannot be excluded, given the low representation of neutrophils in

human IPF scRNAseq datasets.

To validate the in silico findings, we estimated LCN2 levels in

the bronchoalveolar lavage fluid of 26 IPF patients (Table 1), with

a commercially available ELISA kit. As shown in silico for mRNA

levels in the lung tissue of IPF patients (Figure 1), LCN2 BALF

levels of IPF patients negatively correlated with their respiratory

functions (FEV1/FVC, TLCO, and KCO) (Table 1; Figures 2B, C).

Therefore, IPF is associated with increased LCN2 expression,

predominantly in pulmonary epithelial cells, negatively correlating

with impaired lung functions.

Increased Lcn2 expression upon pulmonary
inflammation and fibrosis in mice

To examine Lcn2 expression in the lungs of mice post-

bleomycin (BLM)-induced pulmonary inflammation and fibrosis,

a widely used animal model of pulmonary fibrosis (4, 22, 34),

we mined the relative transcriptomic datasets from Fibromine

(Supplementary Table S1), as in IPF patients. Lcn2 was found over-

expressed in most datasets when comparing the fibrotic phase of

the model to control samples (Supplementary Table S1; Figure 3A),

with indicative natural scale fold change scores of 5.4, 3, and 4.2

(Figure 3B). Moreover, re-analysis of a publicly available murine

scRNAseq dataset (Supplementary Table S2) (27) indicated that, as

in the human lung, Lcn2 is highly expressed mainly by epithelial

cells, as well as neutrophils (Figures 3C, D). More specifically,

classical and activated AT2 cells, neutrophils, goblet, and activated

mesothelial cells, as well as lymphatic endothelial cells (LECs),

were marked by Lcn2 expression (Figures 3C, D). Similar results

were revealed from the CellMarker2.0 database query (33), where

Lcn2 was defined as a marker of murine lung neutrophils and

AT2 cells (Supplementary Table S3). Importantly, the highest Lcn2

expression was detected during the earlier inflammatory phase

of the model (Figures 3E–G), which is characterized by epithelial

damage and neutrophilic inflammation.

To validate the in silico mouse results, we examined Lcn2

expression during the development of BLM-induced pulmonary

inflammation and fibrosis. To this end, BLM (0.8 U/Kg) was

administered by oropharyngeal aspiration to 8–10-wk-old C57Bl6

mice, which were then euthanized 3, 7, and 14 days post-BLM

administration, timepoints corresponding to the inflammatory

(3, 7) and fibrotic (14) phases of the disease (which resolves

at 21 d; not shown). As expected, BLM administration resulted

in the vascular leak and pulmonary edema, as indicated by

the total protein concentration of the bronchoalveolar lavage

fluid (BALF), determined with the Bradford assay (Figure 4A),

as well as in inflammation, as indicated by the inflammatory

cells in the (BALF) (Figure 4B). Soluble collagen levels in the

BALF, as determined with the Direct Red assay, were also found

gradually increasing in fibrotic lungs (Figure 1C). The H&E

staining performed in lung sections of murine lungs post-BLM

administration revealed the increasing presence of peribronchiolar

and parenchymal fibrotic regions (Figure 4D). Moreover, the

development of pulmonary fibrosis was reflected in the impairment

of respiratory functions, as quantified with FlexiVent (Figures 4E–

J). The development of BLM-induced pulmonary fibrosis and

the impairment of respiratory functions were associated with

increased lung tissue Lcn2 mRNA expression, as detected with Q-

RT-PCR, in all phases of the disease, but especially in the acute

inflammatory phase (Figure 4K). A similar profile was detected

in the Lcn2 protein concentrations in the BALF (Figure 4L),

while the increased concentration in the serum of the same

mice was only detected in the acute phase. To possibly correlate

Lcn2 levels with immune cell populations in the BALF post-

BLM administration, a multicolor FACS analysis was performed,

quantifying 10 distinct immune cell types; the employed gating

strategy is described in detail in Supplementary Figure S2. FACS

indicated an abundance of neutrophils in the acute inflammatory

phase post-BLM (Figure 4O), at the peak of Lcn2 expression.

However, increased Lcn2 protein levels could still be detected

in the fibrotic lung tissue 14 d post-BLM (Figures 4P, Q), while

Lcn2 immunostaining was localized in epithelial cells and fibrotic

regions, constitutive expression was detected from the bronchial

epithelium (Figure 4R).

To confirm Lcn2 as a marker of pulmonary inflammation, we

then examined Lcn2 levels upon LPS-induced acute lung injury

(ALI). LPS was administered (5mL; 2 mg/mL) via a nebulizer

(flowrate 4 lt/min) to WT C57Bl6 mice, that were euthanized 24 h

later. The development of ALI, as indicated by the vascular leak

(Figure 5A) and the infiltration of inflammatory cells (Figure 5B;
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FIGURE 1

Increased LCN2 mRNA expression in lung epithelial cells of IPF patients, negatively correlating with their respiratory functions. (A) Mean di�erential

LCN2 mRNA expression in IPF patients’ cohorts/datasets, detailed in Supplementary Table S1. (B) Volcano plots of di�erentially expressed genes (FC

> 1.2; FDR adjusted p < 0.05) in the three largest transcriptomics datasets of (A) interrogating the expression of 115/44, 28/15, 84/75 IPF patients and

controls, respectively (Supplementary Table S1). (C) Spearman’s correlation plots of LCN2 expression with spirometry measurements from the

GSE47460_GPL14550 cohort (***p < 0.01). (D) Dimensionality reduction plot localizing LCN2 expression in pulmonary epithelial cells originating

from 4 IPF patients and 6 controls (26). (E) Dot plot of the same dataset depicting cell type-specific LCN2 expression. The Wilcoxon rank-sum test

comparing each cell type with the rest validated LCN2 as a marker gene of the cell types marked in red font (FC > 1.2; Bonferroni adjusted p < 0.05).

(F) Per cell type di�erential expression analysis between cells of di�erent phenotype (IPF vs. control origin) using the Wilcoxon rank-sum test (*FC ≥

1.2; Bonferroni-corrected p < 0.05; *upregulated in IPF; *downregulated in IPF).

mostly neutrophils; data not shown) (35), was associated with

increased Lcn2 mRNA (Figure 5C) and protein levels (Figures 5D,

E) in the lung tissue. The increased Lcn2 expression upon

ALI was also reflected in the BALF and sera of the same

mice (Figures 5F, G).

Therefore, Lcn2 is a marker of pulmonary inflammation

in mice, correlating with epithelial damage and

neutrophilic infiltration.

Genetic dissection of the role of Lcn2 in
pulmonary inflammation and fibrosis in
mice

To dissect a possible role for Lcn2 in pulmonary inflammation

and fibrosis, we then investigated the effects of BLM-induced

pulmonary inflammation and fibrosis on Lcn2 ubiquitous knockout

mice (KO); the lack of Lcn2 expression in KO mice was verified
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FIGURE 2

LCN2 BALF levels of IPF patients negatively correlate with their respiratory functions. (A–C) Spearman’s correlation plots of LCN2 levels, as measured

using a commercially available ELISA, with the ratio of forced expiratory volume (FEV)/forced vital capacity (FVC) (A), with a transfer capacity of the

lung for the uptake of carbon monoxide (TLCO) (B) and with carbon monoxide transfer coe�cient (KCO) (C). Statistical significance was assessed

with Spearman’s r = −0.47, −0.42 as indicated; * denotes p < 0.05.

using Q-RT-PCR and Western blot analysis (Figures 6A, B). The

BLM-induced weight loss, an indicator of overall systemic health,

did not reach statistical significance in Lcn2−/− mice (Figure 6C);

however, no statistically significant changes were detected in

vascular leak (Figure 6D), inflammation (Figure 6E), or soluble

BALF collagen (Figure 6F). Accordingly, no major statistically

significant differences were detected in the associated distortion

of lung architecture (Figures 6G, H). However, BLM-induced

impairment of respiratory functions did not reach statistical

significance in Lcn2−/− mice (Figures 6I, J), suggesting again, as

the human data, a possible negative correlation of Lcn2 expression

with respiratory functions.

Given the suggested role of Lcn2 in metabolic disorders and

obesity (36) and the correlation between IPF and obesity in patients

(37), the effect of obesity-driven microbiome changes in the lungs

(38), as well as the suggested role of Lcn2 in iron sequestration

and microbiome regulation, we next investigated the role of Lcn2

in the pathogenesis of pulmonary fibrosis in obese mice, following

the high-fat diet (HFD) feeding for 13 weeks, in comparison with

mice fed a matched control diet. No statistically significant changes

in disease severity were observed either, although a clear trend of

disease attenuation was observed (Supplementary Figures S3A–D),

as opposed to lean mice.

Moreover, given the increased Lcn2 expression in the acute

phase post-BLM administration (Figure 4), as well as following

LPS-induced ALI (Figure 5), we then examined a possible role

of Lcn2 in acute inflammation by administering LPS in Lcn2−/−

and control wt mice. Lcn2−/− mice presented with increased

pulmonary edema (Figure 7A), but no significant changes in

inflammation (Figures 7B, C).

Therefore, despite observed trends in Lcn2−/− mice, no solid

conclusions on the role of Lcn2 in pulmonary inflammation

and fibrosis could be drawn upon disease modeling in mice, in

these settings.

Discussion

In this report, increased LCN2 mRNA expression has been

detected in silico in most available transcriptomics datasets at

Fibromine.com (Figure 1; Supplementary Table S1). The in silico

approach, given the availability of datasets in Fibromine, emerges

as a valuable surrogate tool for the identification of the expression

levels of genes under investigation. Moreover, given the multiple

available datasets/human samples, the method is more practical

and valuable than the usual practice, i.e., individual RT-PCRs in a

limited number of IPF samples.

LCN2 mRNA expression levels in IPF patients negatively

correlated with respiratory functions (Figure 1); accordingly,

LCN2 BALF levels negatively correlated with patients’ respiratory

functions (FEV1/FVC, TLCO, and KCO) of a cohort (n=26)

of IPF patients (Figure 2), in agreement with a previous study

(17). However, much larger clinical studies will be needed to

possibly associate LCN2 expression levels, in both sera and BALF,

with respiratory functions and other specific pathophysiological

disease attributes. A meta-analysis of publicly available scRNAseq

datasets indicated the lung epithelium as the major source

of LCN2 in the fibrotic lung (Figure 1), as previously shown

with immunocytochemistry (17). Recurrent epithelial damage is

considered the initiating insult of IPF pathogenesis, and acute

exacerbation of IPF is characterized by increased alveolar epithelial

cell injury, suggesting that future studies on LCN2 and IPF

should include the evaluation of LCN2 levels in patients with

acute IPF exacerbation and the correlation with other epithelial

injury markers.

Similar results were obtained in BLM-induced pulmonary

fibrosis in mice (Figures 3, 4), further indicating higher Lcn2

expression in the acute phase of the disease, following BLM-

induced epithelial damage and correlating with neutrophilic

inflammation. Lcn2 levels declined at the fibrotic phase, although

remained higher than controls, as is the case for various

inflammatory markers, e.g., TNF (39). Moreover, and in agreement

with an acute role for Lcn2, neutrophilic infiltration upon LPS-

induced ALI was also correlated with higher Lcn2 expression

(Figure 5).

However, despite the increased Lcn2 expression upon BLM-

or LPS-induced lung damage, no statistically significant changes

were observed upon BLM or LPS administration to Lcn2−/−

mice (Figures 6, 7; Supplementary Figure S3), suggesting that either

Lcn2 does not have a major pathogenic role or Lcn-2 can
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FIGURE 3

Increased Lcn2 expression in mouse lungs post-BLM-induced pulmonary fibrosis. (A) Mean di�erential Lcn2 mRNA expression in di�erent

transcriptomics BLM datasets (Supplementary Table S1). (B) Volcano plots of the three major datasets of (A). (C) Feature plot showing Lcn2

expression in the mouse lung (27). (D) Dot plot revealing the cell type expression pattern of Lcn2 (in decreasing order of importance). The Wilcoxon

rank-sum test comparing each cell type with the rest validated Lcn2 as a marker gene of the cells types marked in red font (FC > 1.2; Bonferroni

adjusted p < 0.05). (E) Separate examination of the control (PBS) and fibrotic (BLM) cells further supports the epithelial origin of Lcn2. (F) Per

timepoint examination of cell population markers. (G) Bar plot depicting the changes in the mouse lung major cell populations, as defined by

scRNAseq analysis clustering and cell typing, across timepoints of BLM administration.

have different roles in different cell populations, masked in the

ubiquitous knockout mice, and that a cell-specific Lcn2 deletion

could be more informative. Moreover, it is also possible that a

pathogenic role for Lcn2 cannot be efficiently dissected in animal

models, as has been shown formany other genes (4). In this context,

a very possible role of Lcn2 in iron sequestration and microbiome

regulation (18) cannot be likely examined in modeled mice, given

their sterile and controlled living conditions, as well as due to the
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FIGURE 4

Increased Lcn2 expression in mouse lungs during the development of BLM-induced pulmonary inflammation and fibrosis. (A) Total protein

concentration in BALFs, as determined using the Bradford assay. (B) Inflammatory cell numbers in BALFs, as counted with a hemacytometer. (C)

Soluble collagen levels in the BALFs as detected with the Direct Red assay. Statistical significance was assessed with one-way ANOVA; */** denote p

< 0.05/0.01 respectively. (D) Representative images from H&E-stained lung sections of murine lungs at 3, 7, and 14 d post-BLM administration (×10).

(E–J) Respiratory functions were measured with FlexiVent, 14 days post-BLM; mean respiratory system compliance (Crs); mean respiratory system

elastance (Ers); mean tissue elastance (H); mean static lung compliance (Cst); mean total lung capacity (A). Cumulative results from three

(Continued)
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FIGURE 4 (Continued)

independent experiments; statistical significance was assessed using the Mann–Whitney test; */** denote p < 0.05/0.01, respectively. (K) Lcn2 mRNA

expression was interrogated using Q-RT-PCR; Values were normalized over the expression of the housekeeping gene B2m and presented as fold

change over control. (L, M) Lcn2 concentration in BALF (L) and serum (M) of mice at 3, 7, and 14 d post-BLM administration. Lcn2 levels were

measured using a commercially available ELISA kit; Statistical significance was assessed with one-way ANOVA, */**/*** denote p < 0.05/0.01/0.001

respectively. (N) Bar plot showing the percentage of immune cell populations in the murine lung post-BLM; the employed gating strategy is

described in Supplementary Figure S2. (O) Representative Western blot of Lcn2 expression (red) in fibrotic lungs, 14 d post-BLM. (P) Densitometry

analysis of Lcn2 expression, normalized to the expression of Actin (green); cumulative result from two independent experiments; statistical

significance was assessed with unpaired t-test; ** denotes p < 0.01. (Q) Representative images of two independent experiments, from

immunohistochemistry for Lcn2 in control (SAL) and fibrotic (BLM) murine lung tissue (×10).

FIGURE 5

Lcn2 expression is upregulated during LPS-induced Acute Lung Injury (ALI). (A) Total protein concentration in BALF, as determined using the Bradford

assay. (B) Inflammatory cell numbers in BALF, from saline and LPS-treated mice, as counted with a hemacytometer. (C) Lcn2 mRNA expression was

interrogated with Q-RT-PCR; Values were normalized over the expression of the housekeeping gene B2m and presented as fold change over

control; representative results from three independent experiments. (D) Western blot of Lcn2 expression (red) in lungs from mice with LPS-induced

ALI, followed by densitometry analysis of Lcn2 expression, normalized to the expression of Actin (green). (E) Representative images from

immunohistochemistry for Lcn2 in lungs from control (SAL) and LPS-treated mice (×10). (F, G) Lcn2 levels in BALF (F) and serum (G) of mice were

estimated using ELISA; statistical significance was assessed using the Mann–Whitney test; */**** denote p < 0.05/0.0001.

species populating the lung that are not amenable to the suggested

bacteriostatic functions of Lcn2 (38, 40). However, a role for LCN2

in microbiome regulation in humans remains likely and should

be pursued in future clinical studies, especially since increased

airway microbiota has been associated with a more rapid disease

progression and a higher risk of mortality across different patient

cohorts and quantification platforms (20, 41, 42).

Moreover, microbiome differences in different animal houses

could explain the contradictory results on the role of Lcn2 in

inflammation in mice. For example, Lcn2 has been suggested

to mediate the recruitment of neutrophils and thus to stimulate

pro-inflammatory signaling; however, anti-inflammatory effects

have also been suggested, including M2 polarization and TRegs

expansion (10). We reported here no major role for Lcn2 in

LPS-induced ALI, while it was recently reported that Lcn2−/−

mice had relatively increased survival than control mice following

intratracheal administration of LPS (43); the contradiction could

be due to experimental design, dose, and species of administered

LPS, as well as the local microbiome of the animal houses. In

the same context, systemic administration of LPS in Lcn2−/−

mice was reported to result in exacerbated neuroinflammatory

responses (44), although an opposite role in neuroinflammation

has been also suggested promoting macrophage M1 polarization

(45). However, in the lungs, LCN2 was reported to deactivate

macrophages resulting in impaired immune responses following

pneumococcal pneumonia (46).

As an acute phase response protein, secreted by epithelial

cells upon damage, and/or infiltrating neutrophils, it is

conceivable that LCN2 may contribute to chronic damage

responses via the lung epithelium in IPF patients through the

amplification of neutrophil recruitment. Increased neutrophils

were detected in the IPF cohort examined here (Table 1; p

= 0.038), while BAL neutrophilia has been proposed as an

independent predictor of early mortality in IPF patients (47).
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FIGURE 6

Lcn2 genetic deficiency has minor e�ects in bleomycin (BLM)-induced pulmonary inflammation and fibrosis. (A) Lcn2 mRNA expression was

interrogated with Q-RT-PCR; Values were normalized over the expression of the housekeeping gene B2m and presented as fold change over

control; (B) Representative Western blot of Lcn2 expression (red) in lungs from WT and KO mice treated with BLM confirming the global depletion of

Lcn2 in KO mice. (C) Weight loss post-BLM administration. (D) Total protein concentration in BALFs, as determined with the Bradford assay. (E)

Inflammatory cell numbers in BALFs, as counted with a hemacytometer. (F) Soluble collagen levels in the BALFs as detected with the Direct Red

assay. (G) Representative H&E-stained lung sections (×10). (H) Ashcroft scoring of disease severity. (I, J) Indicated respiratory functions were

measured with FlexiVent; statistical significance was assessed with one-way ANOVA; */**/**** denotes p < 0.05/0.01/0.0001.
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FIGURE 7

Lcn2 genetic deficiency has minor e�ects on LPS-induced pulmonary inflammation. (A) Total protein concentration in BALFs, as determined with the

Bradford assay. (B) Inflammatory cell numbers in BALFs, as counted with a hemacytometer; (C) Representative H&E-stained sections of murine lungs

of WT and Lcn2 KO mice (×10); statistical significance was assessed with one-way ANOVA; */**/***/**** denotes p < 0.05/0.01/0.001/0.0001.

Additionally, a high neutrophil to lymphocyte ratio (NLR) as

measured from complete blood counts has also been associated

with increased mortality in IPF (48). LCN2 has been shown

to promote the formation of neutrophil extracellular traps

(NETs) (49), which have been implicated in the pathogenesis

of several diseases including IPF (50). In skin psoriasis, the

amplification loop of LCN2 parallel to neutrophil-produced

extracellular NETs was shown to participate in the enhancement

and persistence of the local inflammatory response (51). The

proinflammatory activity of NETs and LCN2 induction in

psoriasis was suggested to be dependent on TLR4/IL-36R

crosstalk and MyD88/nuclear factor-kappa B (NF-kB) downstream

signaling (51).

Overall, although the possible role for LCN2 in IPF

pathogenesis remains obscure, the acute increase in Lcn2

expression following both LPS-induced ALI and BLM-induced

pulmonary inflammation and fibrosis suggests that Lcn2 is

an acute phase protein of lung damage in mice, as previously

suggested for acute kidney injury (9) and acute exacerbation

of cystic fibrosis (52), correlating with epithelial damage and

neutrophilic infiltration. Moreover, the increased LCN2 mRNA

levels detected in IPF patients suggest that LCN2 levels can be

used as surrogate biomarkers of pulmonary inflammation and a

possible indicator of compromised pulmonary functions, urging

for larger studies.
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SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular 

matrix invasion and pulmonary fibrosis  

Η διαμεσολάβηση των SRS και TKS5 στον σχηματισμό ποδοσωμάτων από ινοβλάστες 

προωθεί εισβολή στην εξωκυτταρική μήτρα και πνευμονική ίνωση 

Η ενεργοποίηση και συσσώρευση πνευμονικών οινόβλαστών έχει ως αποτέλεσμα την 

ασυνήθιστη συσσώρευση στοιχείων της εξοκυττάριας μήτρας, ένα παθολογικό 

χαρακτηριστικό της ιδιοπαθούς πνευμονικής ίνωσης, μιας θανάσιμης και ανίατης ασθένειας. 

Σε αυτήν την αναφορά, αυξημένη έκφραση της TKS5, μιας ικριωματικής πρωτεΐνης 

απαραίτητης για τον σχηματισμό ποδοσωμάτων, ανιχνεύθηκε στον πνευμονικό ιστό ασθενών 

ιδιοπαθούς πνευμονικής ίνωσης (IPF) και ποντικών που είχαν λάβει μπλεομυκίνη (BLM). Το 

πρoϊνωτικό περιβάλλον βρέθηκε να προάγει την έκφραση του TKS5 και τον σχηματισμό 

προεξεχόντων ροζετών ποδοσωμάτων από πνευμονικούς ινοβλάστες. Οι  ροζέτες αυτές 

διατηρήθηκαν ex vivo καταλήγοντας σε αυξημένη εισβολή στην εξωκυττάρια μήτρα. Tks5+/- 

ποντικοί βρέθηκαν ανθεκτικοί στην πρόκληση πνευμονικής ίνωσης από BLM, γεγονός που 

μπορεί εν πολλοίς να αποδοθεί σε εξασθενημένο σχηματισμό ινοβλαστικών ποδοσωμάτων και 

σε μειωμένη εισβολή τους στην εξωκυττάρια μήτρα. Όπως προβλέφθηκε υπολογιστικά, 

δείχθηκε πως αναστολή της src κινάσης είναι ικανή να περιορίσει τον σχηματισμό 

ποδοσωμάτων από πνευμονικούς ινοβλάστες, την εισβολή της εξωκυττάριας μήτρας αλλά και 

την πνευμονική ίνωση που προκαλείται από BLM, προτείνοντας την φαρμακολογική 

στόχευση των ποδοσωμάτων ως μία πολλά υποσχόμενη θεραπευτική επιλογή για την 

πνευμονική ίνωση. 
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SRC and TKS5 mediated podosome
formation in fibroblasts promotes
extracellular matrix invasion and
pulmonary fibrosis

Ilianna Barbayianni1,7, Paraskevi Kanellopoulou1,7, Dionysios Fanidis 1,
Dimitris Nastos1, Eleftheria-Dimitra Ntouskou1, Apostolos Galaris1,
Vaggelis Harokopos1, Pantelis Hatzis 1, Eliza Tsitoura2, Robert Homer 3,
Naftali Kaminski 4, Katerina M. Antoniou2, Bruno Crestani5,
Argyrios Tzouvelekis6 & Vassilis Aidinis 1

The activation and accumulation of lung fibroblasts resulting in aberrant
deposition of extracellular matrix components, is a pathogenic hallmark of
Idiopathic Pulmonary Fibrosis, a lethal and incurable disease. In this report,
increased expression of TKS5, a scaffold protein essential for the formation
of podosomes, was detected in the lung tissue of Idiopathic Pulmonary
Fibrosis patients and bleomycin-treated mice. Τhe profibrotic milieu is
found to induce TKS5 expression and the formation of prominent podosome
rosettes in lung fibroblasts, that are retained ex vivo, culminating in
increased extracellular matrix invasion. Tks5+/- mice are found resistant to
bleomycin-induced pulmonary fibrosis, largely attributed to diminished
podosome formation in fibroblasts and decreased extracellular matrix
invasion. As computationally predicted, inhibition of src kinase is shown to
potently attenuate podosome formation in lung fibroblasts and extracellular
matrix invasion, and bleomycin-induced pulmonary fibrosis, suggesting
pharmacological targeting of podosomes as a very promising therapeutic
option in pulmonary fibrosis.

Tissue fibrosis is a pathogenic process that affects most organs and
constitutes a complication of many chronic diseases including cancer;
such fibroproliferative disorders account for >45% of all disease-
relateddeathsworldwide1. Among them, Idiopathicpulmonaryfibrosis
(IPF) is a chronic, progressive, interstitial lung disease affectingmostly
older adults. IPF patients exhibit progressive worsening of respiratory
functions, which lead to dyspnea and eventually to respiratory failure.

Histologically, IPF is characterized by lung parenchymal scarring, as
evident by a usual interstitial pneumonia (UIP) profile, characterized
by patchy dense fibrosis with architectural distortion and a subpleural
and paraseptal preference, and is distinguished by the presence of
fibroblast foci2. Although the etiopathogenesis of IPF remains largely
elusive, the prevailing hypothesis suggests that the mechanisms driv-
ing IPF involve age-related aberrant recapitulation of developmental
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programs and reflect abnormal, deregulated wound healing in
response to persistent alveolar epithelial damage, resulting in the
accumulation of lung fibroblasts (LFs)3.

LFs are the main effector cells in pulmonary fibrosis, secreting
exuberant amounts of extracellular matrix (ECM) components, such
as different types of collagens. LFs also secrete a variety of ECM
remodeling enzymes, such as matrix metalloproteinases (MMPs),
thus coordinating the overall ECM structural organization and con-
sequently the mechanical properties of the lung4. LF activation upon
fibrogenic cues, such as TGFβ or other growth factors (including
PDGF and VEGF), is characterized by the expression of alpha smooth
muscle actin (αSMA/ACTA2), and/or increased collagen expression,
as exemplified by COL1A15,6. ECM fibrotic remodeling and
resulting mechanical cues are considered as crucial stimulating and
perpetuating factors for LF activation6,7, while the chemoattraction
of LFs to various signals and their resistance to apoptosis has been
suggested to promote respectively their recruitment and
accumulation5,6.

Fibroblast accumulation in pulmonary fibrosis has also been
suggested to be mediated by their ability to invade the underlying
ECM, and increased ECM invasion of fibroblasts isolated from the lung
tissue of IPF patients or animal models has been reported8–11. Activa-
tion of invasion, critical for embryonic development, is among the
well-established hallmarks of cancer12, and one of the many shared
hallmarks between cancer cells and activated LFs13. Invasion critically
relies on the proteolysis of the underlying ECM via invadopodia in
cancer cells and podosomes in other cell types14,15.

Podosomes are comprised of a filamentous (F)-actin-rich core
enriched in actin-regulating proteins, such as the Arp2/3 complex and
cortactin (CTTN), and are surrounded by a ring of scaffold proteins,
most notably SH3 and PX domains 2A (SH3PXD2A; commonly known
as tyrosine kinase substrate with 5 SH3 domains, TKS5)14–16. The
effector molecules of the podosomes are various proteases, such as
matrix metalloproteinases (MMPs, mainly 2, 9, and 14) that digest the
ECM locally, thus stimulating the invasion andmigration of podosome
bearing cells16,17.

Tks5 expression is necessary for neural crest cell migration
during embryonic development in zebrafish18, and homozygous dis-
ruption of Tks5 in mice resulted in neonatal death19. Beyond
embryonic development, which heavily relies on migration and
invasion, increased TKS5 expression has been reported in different
types of cancers14–16, including lung adenocarcinoma, where it was
suggested to mediate metastatic invasion20. Pulmonary fibrosis
confers one of the highest risks for lung cancer development, while
many similarities between activated LFs and cancer cells have been
suggested, including ECM invasion13. Therefore, in this report we
investigated a possible role of TKS5 and podosomes in the patho-
genesis of pulmonary fibrosis employing in silico analysis of publicly
available human and mouse transcriptomic datasets, de novo ana-
lysis of human samples and associated clinical data, disease model-
ing in mice, ex vivo/in vitro human/mouse cell cultures and
dedicated functional assays, as well as pharmacologic validation
experiments. In this context, increased Tks5 expression is detected in
both human and mouse fibrotic lungs, primarily expressed in LFs.
Τhe profibrotic milieu, is shown to induce TKS5 expression and the
formation of prominent podosome rosettes in fibroblasts, culmi-
nating in increased ECM invasion. Haploinsufficient Tks5+/- mice are
found resistant to BLM-induced pulmonary fibrosis, largely attribu-
table to diminished podosome formation in LFs and decreased ECM
invasion. Expression profiling reveals an ECM-podosome cross talk,
and pharmacologic connectivity map analysis suggests several inhi-
bitors that could prevent podosome formation and thus pulmonary
fibrosis. Among them, inhibition of src kinase is shown to potently
attenuate podosome formation in LFs, ECM invasion, as well as BLM-
induced pulmonary fibrosis.

Results
Increased TKS5 expression in pulmonary fibrosis
Increased TKS5mRNA levels were detected in silico in the lung tissue
of IPF patients as compared with control samples (Fig. 1a), in most
publicly available IPF transcriptomic datasets (Supplementary
Table 1) at Fibromine21, including three of the largest ones (Fig. 1b
and Supplementary Fig. 1a, c). Importantly, TKS5mRNA expression in
fibrotic lungs correlated with the expression of COL1A1 (Fig. 1c and
Supplementary Fig. 1b, d), a well-established marker of fibrotic gene
expression. Confirming the in silico results, increased TKS5 mRNA
levels were detected with quantitative RNA RT-PCR (Q-RT-PCR) in
lung tissue isolated from IPF patients (n = 20), as compared with
COPD patients (n = 19) and healthy lung tissue (n = 9) (Supplemen-
tary Table 2 and Fig. 1d). Moreover, positive TKS5 immunostaining
was detected in the lungs of IPF/UIP patients (n = 3), as opposed to
control samples (n = 3), mainly localized in the alveolar epithelium
and fibrotic areas (Fig. 1e and Supplementary Fig. 2). Similar con-
clusions were derived from the analysis of a publicly available single
cell RNA sequencing (scRNAseq) dataset of lung tissue from trans-
plant recipients with pulmonary fibrosis (n = 4) and healthy lung
tissue from transplant donors (n = 8)22. TKS5 mRNA expression was
mostly detected in subsets of epithelial cells, basal cells and espe-
cially fibroblasts (Supplementary Fig. 1e, f), where TKS5-expressing
LFs were found to belong to a COL1A1-expressing subpopulation
(Supplementary Fig. 1g, f).

Increased Tks5mRNA levels, correlating with Col1a1mRNA levels,
were also detected in the lung tissue of mice post bleomycin (BLM)
administration (Fig. 1g, h), a widely used animal model of pulmonary
fibrosis;23–25 immunostaining localized Tks5 in the alveolar epithelium
and fibrotic areas (Fig. 1i), as in human patients. Moreover, double
immunostaining for aSMA or Col1a1, prominent activation markers of
fibroblasts in both mice and humans, indicated that Tks5 localized
mainly to a Col1a1 expressing fibroblast subset, as Tks5 staining over-
lapped with 20% of Col1a1 staining, as opposed to a 2% with aSMA
staining (Fig. 1i and Supplementary Fig. 3).

Therefore, pulmonary fibrosis in both humans and mice is asso-
ciatedwith increasedTKS5 expression, consistently correlatedwith the
expression of Col1a1, especially in LFs.

TGFβ-induced podosome rosettes is an inherent property of
fibrotic LFs
TGFβ, among the main pro-fibrotic factors driving disease develop-
ment in vivo, was found to stimulate TKS5 mRNA expression in dif-
ferent primary normal human lung fibroblast (NHLF) clones (Fig. 2a),
correlating with COL1A1 mRNA expression (Fig. 2b); identical results
were obtained from an independently derived NHLF cell line at a dif-
ferent lab/setting (Supplementary Fig. 4a, b), as well as from the
human fibroblastic cell line MRC5 (Supplementary Fig. S4c, d). In
agreement with the essential role of TKS5 on podosome formation
(colocalization of F-actin with TKS5 or CTTN)26, TGFβ, playing a pro-
minent role in proliferation and migration of fibroblasts (Supplemen-
tary Fig. 4e–g respectively), potently stimulated the formation of
podosomes in NHLFs in vitro, organized in distinctive rosettes
(Fig. 2c–f and Supplementary Fig. 5a–f). Moreover, TGFβ-induced
podosomes in LFs were enriched in MMP9 (Fig. 2g, h and Supple-
mentary Fig. 5g, h), likely contributing to the increased degradation of
a fluorescein-conjugated gelatin substrate (Fig. 2i, j), a nominal
podosome property.

To examine if the pro-fibrotic milieu in the lungs of IPF patients,
which includesTGFβ, also stimulate podosome formation in vivo, HLFs
from IPF patients (Supplementary Table 3) were cultured in the
absence of any stimulation and were stained for podosomes in com-
parison, under the same conditions (and 7–8 passages), with different
NHLF lines derived from healthy tissue. Remarkably, IPF HLFs, irre-
spectively of cell density (Supplementary Fig. 6a), presented with
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prominent podosome rosettes (Fig. 3a–d, Supplementary Fig. 6a, b,
and SupplementaryMovie 1), identical in structure as those stimulated
in vitroby TGFβ, that persist uponprolonged culture ex vivo. As shown
for TGFβ-stimulated NHLFs, IPF HLFs degraded more potently than
NHLFs a fluorescein-conjugated gelatin substrate (Fig. 3e, f and Sup-
plementary Fig. 6c).

Phenocopying the human experiments, exposure to TGFβ of pri-
mary, normal mouse lung fibroblasts (NMLFs) stimulated Tks5 mRNA
expression (Supplementary Fig. 7a), correlatingwithCol1a1 expression
(Supplementary Fig. 7b), the formation of podosome rosettes (Sup-
plementary Fig. 7c, d) and the degradation of a fluorescein-conjugated
gelatin substrate (Supplementary Fig. 7e, f); similar results were
obtained with 3T3 embryonic fibroblasts (Supplementary Fig. 7g–k).

Moreover, and as in the case of IPF LFs, mouse primary LFs isolated
post-BLM administration presented with increased Tks5, Col1a1 and
Mmp9 expression (Supplementary Fig. 7l–n respectively), exhibiting
prominent podosome rosettes in the absence of any stimulation
(Supplementary Fig. 7o–p).

Therefore, the pro-fibrotic milieu in the lungs of IPF patients and
BLM-treated mice, as well as TGFβ, induce TKS5 expression and the
formation of podosome rosettes, an inherent fibrotic LF property.

Creation of a series of obligatory and conditional knock out
mice for Tks5
To enable functional studies on the likely role of Tks5 in pulmonary
fibrosis and pathophysiology in mice, we then created a series of
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obligatory and conditional knock out mice for Tks5 (Sh3pxd2a). The
Sh3pxd2a locus has been already targeted by the European Condi-
tional Mouse Mutagenesis Program (EUCOMM), aiming to knock out
all mouse genes in a high throughput approach27. In this context, the
exon 11 of the Sh3pxd2a genewas loxP-flanked, while a LacZ/neomycin
reporter/selection cassette was placed upstream, including two FRT
sites; this allele is referred to as “targeted mutation 1a” (tm1a; Sup-
plementary Fig. 8a)27. The targeted ES cells were then microinjected
into C57Bl/6N blastocysts by the Welcome Trust Sanger Institute
(WTSI), that were transferred in pseudopregnant females to yield the
Sh3pxd2atm1a(EUCOMM)Wtsi/+ heterozygous mice (Supplementary Fig. 8a).
Frozen sperm of these mice was obtained from WTSI, via the INFA-
FRONTIER [https://www.infrafrontier.eu/] consortium28,29 and the
European Mutant Mouse Archive- EMMA [https://www.infrafrontier.
eu/emma/emma-services/?keyword=sh3pxd2a&category=strains]),
that was directly injected to mice in the transgenic facility of “BSRC
Fleming” via IVF technology to yield the Sh3pxd2atm1a(EUCOMM)WtsiFlmg/+

heterozygous mice. Mice were genotyped following the correspond-
ing strategy from EUCOMM, that queries three different genomic
fragments (lacz, WT allele, tm1a allele) by performing three indepen-
dent PCR reactions (Supplementary Fig. 8b, c). Moreover, the suc-
cessful targeting was also verified with long range PCR for both the 5’
and 3’ arms flanking the floxed region with primers against inserted
sequences (Supplementary Fig. 8d, e).

To obtain the tm1b reporter allele (Supplementary Fig. 8a)
Sh3pxd2atm1a/Fleming/+ mice were mated with transgenic mice expressing
the Cre recombinase under the control of the Cytomegalovirus (CMV)
promoter in all mouse tissues and cells (Tg-CMV-Cre)30. Genetic
recombination of the obtained Sh3pxd2atm1b (EUCOMM)WtsiFlmg/+ mice was
verified with genomic PCR (Fig. S7B, C). Q-RT-PCR in lung tissues
indicated a 50% reduction of Sh3pxd2amRNA levels indicating proper
gene targeting (Supplementary Fig. 8g). X-gal staining, detecting LacZ
expression from the promoter of Tks5 (Supplementary Fig. 8a, Tm1b),
localized transcriptional Tks5 activation (throughout development,
neonatal and adult life) mainly in arterial endothelium of the lung
(Supplementary Fig. 8i). No obvious gross macroscopic abnormalities
were observed, while heterozygous mice were healthy and fertile.

The haploinsufficient Sh3pxd2atm1b(EUCOMM)WtsiFlmg/+ and Sh3pxd2atm1d/

(EUCOMM)WtsiFlmg/+ (Tks5+/-) mice, presented with a 50% reduction of Tks5
mRNA levels in the lung (Supplementary Fig. 8g-h), while X-gal staining
(in the reporter tm1b strain) localized transcriptional Tks5 activation
(throughoutdevelopment, neonatal andadult life)mainly in endothelial
and smooth muscle cells in healthy conditions (Supplementary Fig. 8i).
No obvious gross macroscopic abnormalities were observed, while
heterozygous mice were healthy and fertile.

Intercrossing of heterozygous mice Tks5+/- mice yielded no
homozygous knockout mice, indicating that Tks5 has an essential role

inmouse development, as previously reported for an obligatory knock
out strain19.

A similar genetic strain, Sh3pxd2atm1b/(EUCOMM)Wtsi/+ was created by
WTSI from the Sh3pxd2atm1a(EUCOMM)Wtsi/+ mice via a cell permeable HTN-
Cre31. Sh3pxd2atm1b/(EUCOMM)Wtsi/+ heterozygous mice were systematically
phenotyped from the INFAFRONTIER consortium28,29 on our
behalf, following a relative competitive call. Results indicated that
Sh3pxd2atm1b/(EUCOMM)Wtsi/+micepresentwithnomajorpathophysiological
abnormalities, apart from an increase of serum alkaline phosphata-
se.in.females.(measurements.chart[https://www.mousephenotype.org/
data/genes/MGI:1298393#phenotypes-section]). Moreover, a viability
primary screen phenotypic assay was performed.on.the.novel.mu-
tant.strain.by.WTSI.(dataIchart[https://www.mousephenotype.org/
data/charts?accession=MGI:1298393&allele_accession_id=MGI:
5636944&zygosity=homozygote&parameter_stable_id=IMPC_VIA_001_
001&pipeline_stable_id=MGP_001&procedure_stable_id=IMPC_VIA_
001&parameter_stable_id=IMPC_VIA_001_001&phenotyping_center=
WTSI]]), confirming the requirement of Tks5 for embryonic
development.

Moreover, and to generate the conditional tm1c allele (Fig. S7A),
Sh3pxd2atm1a(EUCOMM)WtsiFlmg /+ mice were crossed with transgenic mice
expressing the Flp recombinase under the control of the Cytome-
galovirus (CMV) promoter in all mouse tissues and cells (Tg-
CMV-Flp)32. Genetic recombination of the obtained
Sh3pxd2atm1c(EUCOMM)WtsiFlmg/+ mice was verified with genomic PCR
(Supplementary Fig. 8c). To generate the conditional tm1d allele
(Supplementary Fig. 8a), Sh3pxd2atm1c/(EUCOMM)WtsiFlmg/ + mice were
crossed with transgenic mice expressing the Cre recombinase under
the control of the Cytomegalovirus (CMV) promoter in all mouse
tissues and cells (Tg-CMV-Cre)30. Genetic recombination of the
obtained Sh3pxd2atm1d(EUCOMM)WtsiFlmg /+ mice was verified with genomic
PCR (Supplementary Fig. 8c). Q-RT-PCR in lung tissue indicated a
50% reduction of Sh3pxd2a mRNA levels indicating proper gene
targeting (Supplementary Fig. 8h).

Tks5 haploinsufficiency in mice attenuates BLM-induced pul-
monary fibrosis
To genetically dissect the likely role of Tks5 in pulmonary fibrosis,
BLM was administered to 8-10-week-old C57Bl6/J Tks5+/- mice andWT
littermates (Fig. 4a, b), which were sacrificed 14 days post BLM (at the
peak of the disease in the local settings), as previously described24.
No weight loss, an overall systemic health indicator, was observed in
Tks5+/- mice (Fig. 4c), as opposed to wt mice. Vascular leak and pul-
monary edemawere significantly reduced in Tks5+/- mice, as indicated
by the total protein concentration in the bronchoalveolar lavage fluid
(BALF), determined with the Bradford assay (Fig. 4d). Inflammatory
cells in the BALF, as measured by hematocytometer, were found

Fig. 1 | Increased TKS5 expression in pulmonary fibrosis. a TKS5 mRNA expres-
sion in lung tissue from Idiopathic Pulmonary Fibrosis (IPF) patients as compared
(log2FC) to controls (CTRL) in different publicly available datasets (n = 9) (Sup-
plementary Table 1) at Fibromine. b Volcano plot from a representative large
dataset (FC > 1.2, FDR <0.05). c Scatter plot of TKS5 and COL1A1 expression in the
same dataset with a fitted linear model and 95% CI; correlation was assessed with
two-tailed Spearman’s test (ρ >0.6; p = 8.92E-08). d Increased TKS5mRNA levels in
the lung tissue of IPF (Usual Interstitial Pneumonitis; UIP) patients (n = 20) were
detected with Q-RT-PCR (r2 = 0.98, E = 97%), as compared with lung tissue from
COPD pa tients (n = 19) and control (CTRL) lung tissue isolated from lung cancer
patients (n = 9) (Supplementary Table 2). Values were normalized to the expression
values of the housekeeping geneB2M and presented as fold change to CTRL values.
Statistical significance was assessed with two-tailed Kruskal-Wallis test
(**p =0.0076, *p =0.0129). e Increased TKS5 immunostaining in fibrotic lungs.
Representative images from immunohistochemistry for TKS5 (brown) in IPF and
CTRL lung tissue (n = 3; Supplementary Fig. 2); scale bars = 50μm. f TKS5 is
expressedmainly by the COL1A1-expressing cluster/LF subpopulation. in a publicly

available scRNAseq dataset (Reyfman, Walter et al. 2019). Statistical significance
was assessedwithWilcoxonRank Sum test (*FC > 1.2, Bonferroni corrected p = 8.9E-
12 / 1.1E-10 / 2.1E-3 from left to right). g, h Tks5 and Col1a1 mRNA expression was
interrogated with Q-RT-PCR (r2 = 0.89/0.93; E = 103%/96%); cumulative result from
3 different experiments. Values were normalized over the expression of B2m and
presented as fold change (log2) over control (n = 8/12). Statistical significance was
assessed with two-tailed Mann Witney test (****p <0.0001). h Two tailed spearman
correlation plot of Col1a1 expression in the same samples (*p =0.0323; r =0.63). i.
Double immunostaining against Tks5 (green) and aSMA (Acta2) or Col1a1 (red);
representative images are shown, followed by their respective quantification (n = 4)
with Image J; scale bars=50 μm; a representative experiment out of 3 successful
independent ones are shown. Statistical significance was assessed with two-tailed
Welch’s test (*p =0.0211, **p =0.0013). In all panels all samples are biologically
independent; boxplots visualize the median of each distribution; upper/lower
hinges represent 1st/3rd quartiles; whiskers extend no further than 1.5 * IQR from the
respective hinge. Source data for all panels are provided as a Source Data file.
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Fig. 2 | TGFβ induces the formation of podosome rosettes in normal human
lung fibroblasts (NHLFs). Serum starved, sub-confluent (70–80%), primary NHLFs
were stimulated with recombinant human TGFβ (10 ng/ml) for 24 h; a representa-
tive experiment out of 4 successful independent ones is shown. a, b TKS5 and
COL1A1mRNA expression was interrogated with Q-RT-PCR (r2 = 0,94/0,92;
E = 98,3%/93% respectively) in two NHLF clones (cl.l, cl.2). Values were normalized
to the expression values of the housekeeping gene B2M and presented as fold
change over control; n = 4/5/4/4; statistical significance was assessed with two-
tailed Welch’s test (a/cl.1) and two-tailed Mann Whitney test (a/l.2); **p =0.0012,
*p =0.0159 respectively. b Two tailed pearson correlation plot of COL1A1 expres-
sion in the same samples (*p =0.0116; r = 0.79). c–j Representative composite
images from double immunostaining, and respective quantifications, for: c F-actin/

TKS5 (red/green), e F-actin/Cortactin (CTTN; red/green), g F-actin/MMP9 (red/
green), h TKS5/MMP9 (green/red). Cells are counterstained with DAPI; scale bars
50 μm; arrows indicate representative podosomes; separate images and proof of
colocalization of signals can be found at Supplementary Fig. 5. d, f. Quantification
of the number of podosome-containing cells per optical field (n = 6); statistical
significance was assessed with two-tailed t-test; **p =0.0011, ***p =0.0009.
i Representative images of the TGFβ-induced degradation (black holes) of a
fluorescein-conjugated gelatin substrate. j Quantification of gelatin degradation
area, normalized to control (n = 5); statistical significance was assessed with two-
tailed t-test; **p =0.0016. Source data for all relative panels (a, b, d, f, j) are provided
as a Source Data file.
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significantly reduced in Tks5+/- mice (Fig. 4e); so were soluble col-
lagen BALF levels, as determined by the Sirius red assay (Fig. 4f), in
concordance with Col1a1 mRNA expression in the lung tissue from
the samemice, as determined with Q-RT-PCR (Fig. 4g, h). Histological
analysis revealed decreased collagen deposition in Tks5+/- mice
post BLM, as quantified by Sirius red/Fast green staining (Fig. 4i),
and fewer peribronchiolar and parenchymal fibrotic regions
were detected (Fig. 4i), as reflected in the Ashcroft score (Fig. 4j);
similar conclusions were drawn upon the histological evaluation of
Precision Cut Lung Slices (PCLS) prepared from the same mice
and cultured ex vivo (Fig. 4i). The relative protection from the
BLM-induced tissue architecture distortion upon the genetic reduc-
tion of Tks5 expression was also reflected in lung respiratory func-
tions, as measured with FlexiVent (Fig. 4k–m). Therefore, Tks5
expression, and likely the formation of podosomes, were shown to

have a major role in BLM-induced pulmonary fibrosis, and therefore
likely IPF.

Tks5 haploinsufficiency in mouse LFs decreases ECM-regulated
podosome formation and ECM invasion
To functionally dissect the relative protection of Tks5+/- mice from BLM-
induced pulmonary fibrosis, primary LFs were isolated from littermate
wt and Tks5+/- mice and were exposed to TGFβ, as before. Tks5+/- LFs,
expressing ~50% of Tks5 (Fig. 5a), presentedwith decreased numbers of
podosomes in response toTGFβ (Fig. 5b, c), reaffirming the seminal role
of Tks5 in podosome formation26, as well as with decreased prolifera-
tion (24 h; Fig. 5d). As podosomes are known to promote ECM invasion,
we then examined the ability of LFs to invade acellular ECM (aECM)
prepared from the lungs of mice (Supplementary Fig. 9a, b), in a
transwell invasion chamber (6 h; Fig. 5e). The reduction of podosomes

Fig. 3 | The formation of extracellular matrix (ECM) degrading podosome
rosettes is an inherent property of IPF human lung fibroblasts (HLFs). Serum
starved, sub-confluent (70-80%), primary IPF-HLFs and normal HLFs (NHLFs) were
immunostained for F-actin (red) and (a) TKS5 (green) or (c) cortactin (CTTN; green)
and counter stained with DAPI (blue); n = 5; scale bars = 50 μm. Representative
images from representative clones are shown.b,dCumulative quantification of the
number of podosome-containing cells (%) and the number of podosomes per cell
per optical field respectively. Statistical significance was assessed with two-tailed t-
test (b) or two-tailed Welch’s test (d) (****p <0.0001). e The same clones were cul-
tured on a fluorescein-conjugated gelatin substrate (green) and were stained for

F-actin (red) and counter stained with DAPI (blue); representative images are
shown. f Quantification of the percentage of the degraded gelatin for all clones
cumulatively, and the quantification of gelatin degradation area per cell, as quan-
tified with ImageJ; statistical significance was assessed with two-tailed t-test;
***p =0.0001/**p =0.0020; additional clones and controls are shown at Supplemen-
tary Fig. 6. In all panels all samples are biologically independent; boxplots visualize
the median of each distribution; upper/lower hinges represent 1st/3rd quartiles;
whiskers extend no further than 1.5 *IQR from the respective hinge. Source data for
all relative panels (b, d, f) are provided as a Source Data file.
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was associated with a decreased TGFβ-induced invasion of Tks5+/- LFs in
aECM (Fig. 5f). Moreover, reaffirming in mice the inherent character of
podosome formation in LFs, post BLM Tks5+/- LFs presented with
reduced numbers of podosomes in comparison with wt LFs isolated
from littermate mice (Fig. 5g, h), resulting in defective aECM invasion
(Fig. 5i). Therefore, the in vivo demonstrated pathogenic role of Tks5 in

pulmonary fibrosis includes the formation of podosomes in LFs and the
promotion of their ECM invasion.

Τo obtain additional mechanistic insights, wt and Tks5+/- LFs
were exposed to TGFβ, as above, and their global expression profile
was interrogated with 3’ UTR RNA sequencing (Quant-Seq LEXO-
GEN). Differential expression analysis between TGFβ-induced Tks5+/-
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and wt LFs, revealed 3648 differentially expressed genes (DEGs;
FC > 1.2, FDR corr. p < 0.05; Supplementary Data 1 and Supplemen-
tary Fig. 10a); among them 418 DEGs have been previously associated
with pulmonary fibrosis, as detected with text mining of abstract co-
occurrence of identified DEGs with fibrosis keywords (Supplemen-
tary Data 1). Stat1, Cebpa, and Ar transcription factors (TFs), where
found downregulated in Tks5+/- LFs along with several of their target
genes (Supplementary Data 1 and Supplementary Fig 10b). Gene set
enrichment analysis (GSEA) performed on DEGs revealed that the
most affected cellular components (CC), molecular functions (MF)
and biological processes (BP) all relate to the ECM (Fig. 6a and and
Supplementary Data 2). “Collagen containing ECM” (GO:0062023)
was most prominent due to the down regulation of several ECM
related genes such as collagens and MMPs/TIMPS/Adamts (Fig. 6b
and Supplementary Fig. 10c), In this context and given the observed
consistent correlation of Tks5 and Col1a1 expression, Tks5+/- LFs post
BLM, containing fewer podosomes and exhibiting defective aECM
invasion (Fig. 5g–i), were found to produce significantly less Col1a1
(Fig. 6c). Vice versa, culture of primary NMLFs on Col1a1-rich aECM
prepared from the lungs of mice post BLM (Supplementary Fig. 9c),
stimulated Tks5 expression (Fig. 6d, e) and the formation of podo-
somes (Fig. 6f), and further stimulated Col1a1 expression (Fig. 6g),
indicating an ECM-podosome cross talk in the perpetuation of LF
activation.

Src-inhibition potently reduces podosome formation and
attenuate pulmonary fibrosis
Τo identify pharmaceutical compounds that can induce a similar
transcriptional profile as that of the defective in ECM invasion
Tks5+/- LFs, the TGFβ-induced Tks5+/- LFs profile was queried against the
connectivity map (CMap) LINCSL1000 database (Fig. 7a), a public
resource that contains >106 gene expression signatures of different cell
types treated with a large variety of small molecule compounds33.
Among the identified compounds with similar expression signatures,
several have already been shown to have a positive effect in disease
pathogenesis in animal models (Fig. 7a and Supplementary Table 4).
The identified possible therapeutic targets include the PDGF and VEGF
receptors, which are pharmacologically targeted by the current IPF
standard of care (SOC) compound nintedanib34. More importantly, the
list also includes an inhibitor of Src, a TGFβ/PDGF-inducible, non-
receptor tyrosine kinase essential for podosome formation35. To verify
the in silico findings in our experimental settings, TGFβ-activated
NHLFs were incubated with nontoxic, increasing concentrations of
nintedanib and A-419259, a commercially available src inhibitor. Both
nintedanib but especially A-419259 reduced both TKS5 and COL1A1
expression (Fig. 7b–e), as well as podosome formation (Fig. 7f, g) and
aECM LF invasion (Fig. 7h).

To examine possible therapeutic effects of src inhibition in pul-
monary fibrosis, we generated mouse precision cut lung slices (PCLS)
post BLM (d11) administration, which were then incubated with
A-419259 for 3 consecutive days, resulting in the attenuation of pul-
monary fibrosis (Fig. 7i). Moreover, the same inhibitor was adminis-
tered for 6 days by inhalation (4ml of 0182mg/ml for 5mins/6 mice,
corresponding to 2mg/Kg per mouse) to conscious, softly re-strained
mice, in a therapeutic mode (7d post BLM; Fig. 8a); no lethality was
observed (Fig. 8b); minimal changes were observed in weight
loss (Fig. 8c). Remarkably, src inhibition decreased, pulmonary edema
(Fig. 8d) and inflammation (Fig. 8e), and attenuated Col production
(Fig. 8f, g). Accordingly, src inhibition attenuated collagen deposition
in the lung tissue, and prevented BLM-induced architectural distortion
(Fig. 8h, i). Therefore, the TKS5-mediated podosome formation is a
druggable pathologic process, which can be potently targeted by Src
inhibition.

Discussion
Increased TKS5 expression was detected, for the first time in a non-
malignant disease15, in the lung tissue of IPF patients and BLM-treated
mice (Fig. 1 and Supplementary Figs. 1–2). Increased TKS5 expression
has been previously reported, beyond cancer cell lines, in lung
adenocarcinoma20, further extending the similarities of IPF and lung
cancer13. TKS5 mRNA expression in the lung tissue, of both humans
and mice, correlated with the mRNA expression of COL1A1, a hall-
mark of deregulated expression in IPF, while TKS5 expression in
fibrotic lungs was predominantly localized in the alveolar epithelium
and COL1A1-expressing LFs (Fig. 1 and Supplementary Figs. 1-3),
pending larger scale immunohistochemical studies.

TGFβ, the prototypic pro-fibrotic factor, was found to be a very
potent inducer of TKS5 expression and podosome formation in fibro-
blasts (NHLFs, NMLFs, MRC5, 3T3)(Fig. 2, Supplementary Figs. 4-5), as
previously reported only for THP-1 macrophages36,37 and primary
aortic endothelial cells38,39. Other well established pro-fibrotic growth
factors in the lung have been reported to modulate podosome for-
mation in different cell types: PDGF in synovial fibroblasts40 and
smooth muscle cells41, and VEGF in endothelial cells42, suggesting that
they could exert similar stimulatory effects on LFs. Moreover, PGE2,
which suppresses pulmonary fibrosis43, has been reported to promote
the dissolution of podosomes in dendritic cells44, suggesting that the
diminished PGE2 levels in IPF43 also favor the formation of podosomes.
Remarkably, the formation of podosomes in LFs was shown to be an
inherent property of IPF and post BLM LFs that can be maintained
in culture in the absence of any stimulation (Fig. 3, Supplementary
Figs. 6-7). In agreement, increased invadosome formation was very
recently reported in IPF LFs (3–7 passages), correlating with fibrosis
severity45. Therefore, podosome formation is an unappreciated central

Fig. 4 | Tks5 haploinsufficiency in mice attenuates bleomycin (BLM)-induced
pulmonary fibrosis (PF). a Schematic presentation of the BLM-induced PF model.
b. Kaplan Meyer survival curve post BLM administration. c. Weight change post
BLM administration; n = 4/7/4/6. Statistical significance was assessed with two-
tailed one-way ANOVA; **p =0.031. d Total protein concentration in bronch-
oalveolar lavage fluids (BALFs), as determined with the Bradford assay; n = 4/7/4/7.
Statistical significance was assessed with two-tailed one-way ANOVA; ****p <0.0001,
***p =0.0009. e Inflammatory cell numbers in BALFs, as counted with a hemato-
cytometer; n = 4/6/4/6. Statistical significance was assessed with two-tailed one-
way ANOVA; ****p <0.0001, ***p =0.0002/0.0008. f Soluble collagen levels in the
BALFs were detected with the direct red assay; n = 4/6/4/7. Statistical significance
was assessed with two-tailed KruskalWallis; *p =0.0124. g, h Tks5 and Col1a1mRNA
expression was interrogated with Q-RT-PCR; n = 4/5/3/7; values were normalized
over the expression of the housekeeping gene B2m and presented as fold change
over control. Statistical significance was assessed with two-tailed one-way ANOVA;
**p =0.0012, *p =0.0207.h Two tailed pearson correlation plot ofCol1a1 expression
in the same samples; *p =0.0342; r =0.91/0.54. i Representative images from lung

sections of murine lungs of the indicated genotypes, stained with Fast Green/Sirius
Red (green/red; first row), from Hematoxylin & Eosin (H&E)-stained Precision cut
lung slices (PCLS) (second row) and H&E-stained lung sections (third row); scale
bars 50 μm. j. Quantification of fibrosis severity in H/E stained lung sections via
Ashcroft scoring; n = 4/5/4/5. Statistical significance was assessed with two-tailed
one-way ANOVA; ****p <0.0001. k Rrs, mean respiratory system resistance as mea-
sured with Flexivent; n = 4/6/4/6. Statistical significance was assessed with two-
tailed one-way ANOVA; ***p =0.0008/0.0004. l Ers, mean respiratory system ela-
stance asmeasured with Flexivent; n = 4/6/4/5. Statistical significance was assessed
with two-tailed one-way ANOVA; ***p =0.0002, **p =0.0081.m Cst, mean static lung
compliance as measured with Flexivent; n = 4/7/4/6. Statistical significance was
assessed with two-tailed one-way ANOVA followed by Welch’s correction;
****p <0.0001. In all panels cumulative results from 2 different experiments are
shown; all samples are biologically independent; boxplots visualize the median of
each distribution; upper/lower hinges represent 1st/3rd quartiles; whiskers extend
no further than 1.5 *IQR from the respective hinge. Source data for all relative panels
(a–h, j–m) are provided as a Source Data file.
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response of LFs to pro-fibrotic factors and a major inherent char-
acteristic of IPF LFs, likely contributing to their accumulation and the
formation of foci, a hallmark of UIP/IPF.

Col1a1mRNA levels were found to consistently correlatewith Tks5
mRNA levels in both humans and mouse lung tissue or LFs (Figs. 1–3
and 5, and Supplementary Figs. 1, 3, and 9). Tks5+/- LFs were shown to
produce less Col1a1 post BLM (Fig. 6c), as also reflected in the reduced
overall collagendeposition in the lungs ofTks5+/- mice (Fig. 4g). Culture

of LFs on Col1a1-rich aECM promoted Tks5 expression and podosome
formation (Fig. 6d–), as well as further Col1a1 expression, emphasizing
a TGFβ-induced Col1a1-podosomes interdependency in the context of
the suggested crosstalk of ECM with podosomes46. Accordingly, Col1
has been shown to stimulate Tks5-dependent growth, while the degree
of collagen fibrilization has also been reported to have a decisive effect
on podosome formation47, likely though the Discoidin domain recep-
tors (DDRs) that mediate collagen binding48. The expression of both

Fig. 5 | Tks5 haploinsufficiency in mouse lung fibroblasts (LFs) decreases
podosome formation and extracellular matrix (ECM) invasion. Serum starved
primary normalmouse LFs (NMLFs) fromWT and Tks5+/- micewere stimulatedwith
recombinant TGF-β1 (10 ng/ml for 24h). a Tks5mRNA expression was interrogated
with Q-RT-PCR; n = 6/4/4/9. Values were normalized over the expression of the
housekeeping gene B2m and presented as fold change over control. Statistical
significance was assessed with two-tailed one-way ANOVA; *p =0.0464,
****p <0.0001. bRepresentative composite images fromdouble immunostaining for
F-actin (red) and Cortactin (Cttn; green) counter stained with DAPI (blue); arrows
indicate representative podosomes. c Quantification of the number of podosome-
containing cells per optical field; n = 5. Statistical significance was assessed with
two-tailed one-way ANOVA followed by Welch’s correction; *p =0.004/0.0053
*p =0.0411. d TGFβ-induced NMLFs proliferation was assessed with the MTT assay;
n = 6. Statistical significance was assessed with two-tailed one-way ANOVA;
****p <0.0001. e Schematic presentation (biorender.com) of LFs invasion into aECM,
upon TGFB stimulation. After 6 h, cells that had invaded into the lower surface of

the upper chamber were stained, lysed and absorbance values were measured.
f Invasion capacity of NMLFs, upon TGF-β stimulation (n = 4), as detected with the
transwell invasion assay. Statistical significance was assessed with two-tailed one-
way ANOVA; ****p <0.0001, *p =0.0266, ***p =0.0005. g Representative composite
images from double immunostaining for F-actin (red) and Tks5 (green) in NMLFs
isolated from WT and Tks5+/- mice, post bleomycin (BLM) administration; arrows
indicate representative podosomes; scale bars 50μm. h Quantification of the
number of podosome-containing cells per optical field (n = 5). Statistical sig-
nificance was assessed with two-tailed t-test; **p =0.009. i Invasion capacity of LFs
post BLM, as detected with the transwell invasion assay; n = 4. Statistical sig-
nificance was assessed with two-tailed one-way ANOVA; ***p =0.0003 **p =0.0099.
In all panels, all samples are biologically independent; boxplots visualize the
median of each distribution; upper/lower hinges represent 1st/3rd quartiles; whis-
kers extend no further than 1.5 *IQR from the respective hinge. Source data for all
panels are provided as a Source Data file.
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DDR1 and 2 were found downregulated in TGFβ-induced Tks5+/- LFs
(Supplementary Data 1), suggesting that DDR signaling, and con-
sequent tyrosine kinase activation could mediate the observed TGFβ-
Col1a-induced podosome formation. While the reverse signaling from
theoverproductionof collagen and the regulationofDDR1/2 shouldbe
further researched in the context of IPF, the therapeutic potential of
DDR inhibitors, currently explored for metastatic cancer49, should be
also investigated.

Another potent podosome inducer is tropoelastin46, the soluble
precursor of the cross-linked ECM protein elastin (Eln) whose expres-
sion was found accordingly downregulated in podosome deficient

Tks5+/- LFs (Supplementary Data 1). Moreover, and beyond individual
fibrosis-modulating factors, the stiff fibrotic post-BLMaECMwas shown
to stimulate Tks5 expression and podosome formation in LFs and to
perpetuate the increased expression of Col1a1 (Fig. 6). In agreement,
increased substrate rigidity, modeled with gelatin or polyacrylamide,
has been previously shown to promote invadopodia activity50. There-
fore, the formation of podosomes in LFs upon mechanical cues from
the stiff ECM of fibrotic lungs is a major component of the suggested
crosstalk of ECM with fibroblasts51,52, especially considering the age-
related increase of ECM stiffness in the lungs7, and the suggested role of
mechanosensitive signaling in LF activation and pulmonary fibrosis53.

Fig. 6 | Tks5 haploinsufficiency in mouse lung fibroblasts (LFs) disrupts
extracellular matric (ECM) homeostasis, that critically controls podosome
formation and ECM invasion. a ECM-related gene ontology components are
enriched for genes down-regulated in TGFβ stimulated Tks5+/- LFs compared to
their WT TGFβ treated counterparts. Gene-set enrichment analysis (GSEA) on
expression data pre-ranked according to their fold change values. b Collagen
containing extracellular matrix is the termmost enriched in down-regulated genes
according to gene-set enrichment analysis (GSEA). c Serum starved WT and Tks5+/-

LFs were immunostained for Col1a1 (green) and counter stained with DAPI (blue).
Representative images are shown; scale bars = 50 μm. d, e Serum starved WT pri-
mary LFs were cultured in post saline (pSAL) and post bleomycin (pBLM) aECM.
Tks5 and Col1a1 mRNA expression was interrogated with Q-RT-PCR; n = 4; values

were normalizedover the expressionof the housekeeping geneB2m and presented
as fold change over control. Statistical significance was assessed with two-tailed
Mann-Whitney test; *p =0.0286. e Two tailed pearson correlation plot of Col1a1
expression in the same samples; ***p =0.0004, r =0.99. f, g Representative com-
posite images from double immunostaining for F-actin (red) and Cortacin (Cttn;
green; f) or Col1a1 (g; green) counter stained with DAPI (blue); arrows indicate
representative podosomes; scale bars = 50μm. In all panels, representative
experiment out of 2 successful independent ones are shown; all samples are bio-
logically independent; boxplots visualize the median of each distribution; upper/
lower hinges represent 1st/3rd quartiles; whiskers extend no further than 1.5 *IQR
from the respective hinge. Source data for all panels are provided as a Source
Data file.
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Given the necessity of TKS5 expression for embryonic devel-
opment, the results presented here suggest that the formation of
podosomes in LFs is a developmental program that gets aberrantly
re-activated in IPF from pro-fibrotic factors, perpetuating LF activa-
tion and stimulating ECM invasion and LF accumulation. The re-
activation of developmental pathways is a common theme in organ

fibrosis, e.g. wnt and ATX/LPA signaling in pulmonary fibrosis, pro-
viding increased plasticity and regeneration potential, as well as
increased cell proliferation, migration and invasion.

Ubiquitous genetic Tks5 haploinsufficiency was shown to
attenuate BLM-induced pulmonary fibrosis with a plethora of readout
assays (Fig. 4), and Tks5+/- LFs were shown to form fewer podosomes,
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resulting in diminished aECM invasion (Fig. 5), thus establishing a
major pathogenetic role for Tks5-enabled podosomes and LF ECM
invasion in pulmonary fibrosis. ECM invasion by non-leukocytes, a
hallmark of cancer12, is gaining increased attention in pulmonary
fibrosis. IPF HLFs were shown to invade matrigel more efficiently than
NHLFs or HLFs from other interstitial diseases8,10,11. Enhanced invasion
correlated with increased actin stress fibers10, and was suggested to be
mediated, in part, by fibronectin and integrin α4β1 signaling11, or
hyalrounan (HA) and CD44 signaling8. CD44 has been localized in
invadopodia in breast cancer cells and has been shown to be required
for invadopodia activity54, while TKS5+ LFs were found to preferentially
express CD44 (Fig. 1f), suggesting that HA/CD44 participate in the
regulationof podosome formation inLFs. TKS5+ LFswere also found to
express preferentially CD274/PD-L1 (Fig. 1f), a proposed marker of
invasive IPF LFs55, suggesting yet another potential signaling input for
podosome formation. Moreover, BALFs from BLM-treated mice or IPF
patients stimulated ECM invasion of LFs56,57, shown to be attenuated
upon silencing LPAR1, EGFR and FGFR2 receptors56, or by interfering
with Sdc4-CXCL10 interactions57, suggesting additional signals that
could modulate LF invasion. HER2/EGFR2, a therapeutic target in
breast cancer, has been also proposed to drive invasion in LFs58, sug-
gesting again similarities with metastatic ADC, and further suggesting
repurposing a-HER-2 agents for the treatment of IPF. Interestingly,
several of the identified invasion-associated genes (Fstl3, Il11, Hbegf,
Ccn2, Inhba, Podxl, Sema7a, Bcl2a1b, Bcl2a1d, Sh3rf1) were found
down regulated in the Tks5+/- invasion-defective LFs (Supplementary
Data 1 and Supplementary Fig. 10d), further supporting the functional
results on the role of TKS5 and podosomes in LF ECM invasion.

Given the expression of TKS5 in other cell types in IPF, like
epithelial and basal cells (Fig. 1 and Supplementary Fig. 1) that are
both intricately linked with IPF pathogenesis, a role for TKS5 in these
cell types cannot be excluded. Podosome-like structures have been
reported in epithelial cells, suggested to regulate their basement
membrane adhesion59,60, and thus, likely, re-epithelization, an
essential process in wound healing. Moreover, pharmacologic inhi-
bition of src-kinase, a master regulator of podosomes, was shown to
attenuate IPF-basal cells-induced pulmonary fibrosis in minimally
BLM-injured immunodeficient mice61. However, conditional epithe-
lial deletion of Tks5 in future studies will be further required to dis-
sect a possible pro-fibrotic role for TKS5 and podosomes in these
cell types.

MMP9, a podosome enriched MMP (Fig. 2), has been previously
found to be expressed in IPF, localized on reactive alveolar epithelial
cells, basal-like cells, clusters of alveolar macrophages, as well as sub-
epithelial fibroblasts62,63. EpithelialMMP9 has been suggested to partly
mediate wound healing in keratinocytes via its proteolytic activity in
podosomes, in association with CD4460. Moreover, CD44-bound

MMP9 at the cell surface of cancer cells was shown to cleave latent
TGFβ, and thus promote its activation64, and thus, possibly, the acti-
vation of subepithelial fibroblasts in IPF. On the other hand, profibrotic
Thy1- fibroblastswith increasedmigrationpotential were also shown to
express MMP9 following stimulation with TGFβ65. As found here, post
BLM LFs, that had increased Tks5/Col1a1 levels (Supplementary Fig. 7l,
m) and increased podosomes (Supplementary Fig. 7o, p), also
expressed higher MMP9 levels (Supplementary Fig. 7n). Although
genetic deletion of MMP9 in mice (and/or MMP2) hadminimal effects
in Ad-TGFβ-induced pulmonary fibrosis66, antibody-mediated MMP9
targeting demonstrated antifibrotic efficacy in a humanized immuno-
deficient model of IPF induced by IPF lung extracts, but only when
fibrosis was promoted by “responder” IPF cells that had been shown to
have reduced phosphorylated SMAD levels in response to a-MMP9
treatment in vitro63. Further studies will be required to appreciate the
role of MMP9 in the pathogenesis of IPF and the possible therapeutic
potential of targeting MMP9.

Connectivity MAP (CMap) analysis has emerged as an invaluable
tool to connect gene expression, drugs and disease states33. CMap
analysis of scRNAseq of IPF bronchial brushings suggested that src
inhibition can reverse the observed pro-fibrotic transcriptional chan-
ges in IPF bronchial airway basal cells61.Moreover, CMapanalysis of IPF
transcriptional profiles and the nintedanib and pirfenidone corre-
sponding transcriptional signatures, indicated src inhibition as the
strongest connection67. As shown here, CMap analysis of the TGFβ-
inducedTks5+/- LFs profile identified, among established andpromising
others, src inhibition as apossible treatment to limit LF invasion (Fig. 7)
and therefore pulmonary fibrosis. In agreement, src inhibition was
shown to reduce Tks5 levels and podosome numbers, to decrease
aECM invasion and to reverse fibrosis in PCLS (Fig. 7) and to attenuate
BLM-induced pulmonary fibrosis in vivo when administered by inha-
lation (Fig. 8). The aerosolized delivery, infrequent in IPF and animal
models, opens new possibilities in IPF treatment, localizing treatment
and avoiding systemic toxicity, as well as possibly increasing efficacy.
The Src inhibitor Saracatanib, that has been previously also shown to
attenuate BLM-induced pulmonary fibrosis67, has recently entered
clinical trials (NCT04598919), and if therapeutic effects are as efficient
as in mice, the inhibition of podosome formation in LFs qualifies as a
major part of its mode of action. Moreover, targeting kinase-mediated
podosome formation, an inherent pathogenic LF property as shown
here, as well as structural (TKS5 and its protein-protein interactions) or
effector (MMP 2/9/14) podosome components, are very promising
therapeutic targets in pulmonary fibrosis.

Methods
All experimentationwas performed according to the respective ethical
regulations as outlined below.

Fig. 7 | Src-inhibition potently reduces podosome formation, extracellular
matrix (ECM) invasion and attenuates pulmonary fibrosis. Serum starved, pri-
mary normal human lung fibroblasts (NHLFs) were pretreated for 1 h with A-419259
(SRC inhibitor) and Nintedanib, and then stimulated with recombinant human
TGFβ (10 ng/ml) for 24h. a Graphical representation of connectivity (CMap) ana-
lysis using LINCS1000 resource of the TGFβ-induced TKS5+/- expression profile.
b, c TKS5 and COL1A1mRNA expression was interrogated with Q-RT-PCR. Values
were normalized to the expression values of the housekeeping gene B2M and
presented as fold change over control; n = 3/3/3/3. Statistical significance was
assessed with two-tailed one-way ANOVA; ***p =0.0008, *p =0.0397/0.0107
**p =0.003. c Two tailed Pearson correlation plot of COL1A1 reduction in the same
samples (*p =0.0202, r =0.84). d, e TKS5 and COL1A1mRNA expression was inter-
rogated with Q-RT-PCR. Values were normalized over the expression values of the
housekeeping gene B2M and presented as fold change over control; n = 3/5/6/5.
Statistical significance was assessed with two-tailed one-way ANOVA; *p =0.0202,
****p <0.0001. e Two tailed spearman correlation plot of COL1A1 reduction in the
same samples; **p =0.0018, r =0.85. f Representative composite images from

double immunostaining for F-actin (red) and Cortactin (cttn; green) counter
stained with DAPI (blue); arrows indicate representative podosomes; scale bars =
50μm. g Quantification of the number of podosome-containing cells per optical
field; n = 5. Statistical significance was assessed with two-tailed one-way ANOVA;
****p <0.0001, ***p =0.0006, **p =0.0014. h Invasion capacity of NHLFs (n = 4), upon
A-419259 pretreatment and TGF-β stimulation, as detected with the transwell
invasion assay; n = 4. Statistical significance was assessed with two-tailed one-way
ANOVA; *p =0.0294). i Src-inhibition attenuates pulmonary fibrosis in mouse pre-
cision cut lung slices (PCLS) generated post BLM (d11) administration. Treatment
withA-419259,was administered in thefirst 24 h after slicing for 3 consecutive days.
Representative images fromPCLS stainedwithH&E, Fast green/Sirius red (F.G./S/R.;
green/red) and from double immunostaining for Tks5 and Col1a1 (green/red) are
shown; scale bars=50 μm. In all panels, representative experiment out of 2 suc-
cessful independent ones are shown. In all panels, all samples are biologically
independent; boxplots visualize the median of each distribution; upper/lower
hinges represent 1st/3rd quartiles; whiskers extend no further than 1.5 *IQR from the
respective hinge. Source data for all panels are provided as a Source Data file.
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Fig. 8 | Src inhibition attenuates bleomycin (BLM)-induced pulmonary fibrosis.
a Schematic representation (biorender.com) of the BLM model and drug admin-
istration; n = 5. b Kaplan Meyer survival curve post BLM administration. c Weight
change post BLM administration. d Total protein concentration in bronchoalveolar
lavage fluids (BALFs), as determinedwith the Bradford assay. Statistical significance
was assessed with two-tailed one-way ANOVA; ****p <0.0001, ***p =0.0001.
e Inflammatory cell numbers in BALFs, as counted with a hematocytometer. Sta-
tistical significance was assessed with two-tailed one-way ANOVA; ****p <0.0001,
*p =0.0115. f Soluble collagen levels in the BALFs were detected with the direct red
assay. Statistical significance was assessed with two-tailed one-way ANOVA;
***p =0.0004, *p =0.0473. g Col1a1 mRNA expression was interrogated with Q-RT-

PCR. Values were normalized over the expression of the housekeeping gene B2m
and presented as fold change over control. Statistical significance was assessed
with two-tailed Kruskal Wallis; **p =0.0094. h Quantification of fibrosis severity in
Hematoxylin & Eosin (H/E) stained lung sections via Ashcroft scoring. Statistical
significance was assessed with two-tailed one-way ANOVA; ****p <0.0001,
**p =0.0028/0.0074. i Representative images from lung sections ofmurine lungs of
the indicated genotypes, stained with Fast Green/Sirius Red (F.G/S.R; green/red)
and H&E; scale bars = 50 μm. In all panels, all samples are biologically independent;
boxplots visualize the median of each distribution; upper/lower hinges represent
1st/3rd quartiles; whiskers extend no further than 1.5 *IQR from the respective hinge.
Source data for all panels are provided as a Source Data file.
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Datasets
All analyzed, re-normalized datasets (Supplementary Table 1) were
sourced from Fibromine;21 Differentially expressed genes
(DEGs): FC > 1.2, FDR corr. p <0.05.

Patients
All studies with human patient samples were performed in accordance
with the Helsinki Declaration principles. Lung tissue samples (Sup-
plementary Table 2) were obtained through the University of Pitts-
burgh Health Sciences Tissue Bank and Yale University Pathology
Tissue service, a subset of previously well characterized and published
samples;68 studies had been approved by the Yale University Institu-
tional Review Board (Yale IRB). LFs were isolated from the lung tissue
of IPF patients and from the adjacent healthy tissue of patients
undergoing open lung surgery for cancer (Supplementary Table 3) at
the Department of Pulmonology, Bichat-Claude Bernard Hospital,
Paris/France; studies were approved by the Committee for Personal
Protection (CPP)—Ile de France 1 (#0911932). All patients consented in
writing to the use of their samples for research purposes; no com-
pensation was provided for their participation.

Mice
Mice were bred at the animal facilities of Biomedical Sciences
Research Center ‘Alexander Fleming’, under SPF conditions, at
20–22 °C,55 ± 5% humidity, and a 12 h light-dark cycle; food (Muce-
dola diet #4RF21: humidity 12%, protein 18,5%, fat 3%, carbohydrate
53,5%, crude fibers 6%) and water were provided ad libitum. Mice
were bred and maintained in their respective genetic backgrounds
for more than 10 generations. All randomly assigned experimental
groups consisted of littermate age-matched mice. The health status
of themice was monitored once per day; no unexpected deaths were
observed. Euthanasia was humanly performed in a CO2 chamber with
gradual filling at predetermined time-points. All experimentationwas
approved by the Institutional Animal Ethical Committee (IAEC) of
Biomedical Sciences Research Center “Alexander Fleming”, as well as
by the Veterinary Service of the governmental prefecture of Attica,
Greece (# 8441/2017).

Bleomycin-induced pulmonary fibrosis
Pulmonary fibrosis was induced by a single oropharyngeal adminis-
tration (OA) of 0.8 U/kg bleomycin hydrogen chloride (BLM) (Nippon
Kayaku Co., Ltd., Tokyo, Japan) at day 0 into anesthetized (i.p.; xyla-
zine, ketamine, and atropine, 10, 100, and 0.05mg/kg, respectively) 8-
10-week-old male and female mice; control groups received sodium
chloride (SAL). Dose and route were selected upon prior extensive
local testing to induce a solid fibrotic profile, while minimizing leth-
ality. All randomly assigned experimental groups consisted of litter-
matemice. Disease development was assessed in comparison withWT
littermates 14dayspost-BLM, at thepeakof thedisease (which resolves
at d21 post BLM in these settings).

The A-419259 pharmacologic src inhibitor was administered
directly in the mouse lungs through inhalation, using the inExpose
system (Scireq, Cat.Number IX-XN1-T6) to conscious, softly re-strained
mice. The inhibitorwas administered at a therapeuticmode, once daily
for 6 consecutive days, starting from day 7 post BLM administration.
A-419529 was diluted in saline at a concentration of 0.182mg/ml and
4ml was administered for 5mins in a group of 6 mice, corresponding
to a final dose of 2mg/kg per mouse. Control groups received aero-
solized saline.

Following weighing, respiratory functions were measured with
FlexiVent (SCIREQ, Montreal, Canada), according to manufacturer
instructions and as previously described24,43. Briefly, a pressure-volume
loop (PV) perturbation and a forced oscillation technique (FOT, single
and low frequency) were applied in tracheotomized mice to produce
the indicated measurements.

Bronchoalveolar Lavage fluid (BALF) was obtained by lavaging
the lungs with 1ml of 0.9% sterile sodium chloride three times. After
the isolation, the samples were centrifuged at 1200 g for 10min at
4 °C, the first BALF supernatant was stored at -80 °C for protein and
collagen measurements. To estimate pulmonary inflammation, BALF
cell pellets were redissolved in 1ml saline, stained with 0.4% Trypan
Blue solution and were counted with the use of a Neubauer hema-
tocytometer. Total protein levels in BALFs, an indication of pul-
monary edema and vascular leak, were assessed with the Bradford
assay according to the manufacturer’s instructions (Bio-Rad, Her-
cules, CA, USA). In a 96-well plate 5 μl of every BALF sample is placed,
followed by the addition of 245μl of 1x Bradford reagent (Serva/
39222.03) and incubation for 5minutes in the dark. Absorbance
values were then measured at 595 nm, using a spectrometer, and
were converted in concentration values (mg/ml) using a bovine
serum albumin standard curve (BSA 0–2mg/mL). Total soluble col-
lagen in BALFs was quantified using the Sirius Red assay. 50μl of
BALF samples, diluted in 350μl of 0.5M acetic acid, were incubated
for 30min with 400μl of Direct (365548-5 G Sigma-Aldrich) at RT, in
the dark. This was followed by centrifugation, at 12000 g for 10min
and isolation of 200 μl of the supernatants. Absorbance values were
measured at 540 nm, using a spectrometer, and were converted in
concentration values (μg/ml) using a rat tail collagen I (C7661-5mg
Sigma Aldrich) standard curve (0–500μg/mL).

Histology
The right lung was fixed overnight in 10% neutral buffered formalin
and embedded in paraffin. 5μm lung sections were cut using a
Microtome and stained with Hematoxylin/eosin (H&E) (Papanico-
laou’s solution HX16967353 Sigma Aldrich/ Eosin G CI45380 ROTH)
with standard protocols. Fibrosis development was quantified by two
independent reviewers, in a blinded manner, based on a modified
Ashcroft score (0, normal lung; 1, isolated alveolar septa with gentle
fibrotic changes; 2, fibrotic changes of alveolar septa with knot-like
formation; 3, contiguous fibrotic walls of alveolar septa; 4, single
fibrotic masses; 5, confluent fibrotic masses; 6, large contiguous
fibroticmasses; 7, air bubbles; 8, fibrous obliteration). For Fast green-
Sirius red (F.G/S.R) collagen staining, lung sections were depar-
affinized in xylene and ethanol and incubated in Bouin’s solution
(75% picric acid/ 25% formaldehyde/ 1% acetic acid), for 1 hour at
56 °C, followed by staining with Fast Green (Glentham Life Sciences
GT3407/100 g) 0,04% in picric acid for 15minutes and Sirius Red
0,1%/Fast Green 0,04% dissolved in picric acid (197378-100 g Sigma-
Aldrich) for 40minutes. Stained sections were washed in acetic acid,
then dehydrated and mounted with DPX (06522-500ml Sigma-
Aldrich). PCLS, isolated and cut as described below stained with H&E.
For X-gal (Lac-Z), freshly isolated mouse lungs were inflated with
0,1 g/ml sucrose in 50% OCT/PBS, followed by the simultaneous
embedding and freezing in OCT, using isopentane and dry ice. Sec-
tions of 6-10 μm were cut using a cryotome and fixed in 2% for-
maldehyde/ 0,2% glutaraldehyde for 15minutes at 4 °C. Next, they
were washed twice in cold PBS/ 2mM MgCl2 (PENTA) for 10minutes
and stained overnight with X-gal staining solution (2mg/mL X-gal in
0.1M Sodium phosphate buffer pH=7.3, 0,01% Sodium deoxycholate
(30970 FLUKA), 5mM K3Fe(CN)6 (60300 FLUKA), 5,7mM K4Fe(CN)6
(12639 Riedel-de Haeen), 2mM MgCl2, 0,02% NP-40 (UN3082
Applichem) at 37 °C in the dark. The sections were then rinsed twice
with PBS/2mM MgCl2 and dH2O for 5minutes at room temperature,
counterstained with eosin following by dehydration and mounting
with DPX. Imaging was performed using a Nikon Eclipse E800
microscope (Nikon Corp., Shinagawa-ku, Japan) attached to a Q
Imaging EXI Aqua digital camera, using the Q-Capture Pro 7 software.
For immunohistochemistry studies, lung sections were depar-
affinized in xylene, rehydrated in a gradient of ethanol, and briefly
washed with water. The slides were kept in tap water until ready to
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perform antigen retrieval with sodium citrate buffer with pH 6.0 by
autoclave for 20min. Then they were treated with blocking solution
(10% normal goat serum/2% BSA; A9647 Sigma Aldrich) at room
temperature for 1 h and incubated with primary antibodies overnight
at 4 °C. After washing, they were incubated with fluorophore-
conjugated secondary antibodies diluted in the blocking solution.
Following this, sections were washed 3 times with PBS-T and moun-
ted with medium containing DAPI (F6057, Sigma Aldrich) for nuclear
visualization. Imaging was performed using a TCS SP8X White Light
Laser confocal system (Leica).

In vitro/ex vivo lung fibroblast cell model
Normal human lung fibroblasts (NHLFs) and IPF-HLFs were isolated
from fresh tissue samples by plating several 2-3mm pieces on 10 cm
tissue culture plates in DMEM supplemented by penicillin/strepto-
mycin solution, 10% FBS at 37o C and 5% CO2 in a humidified atmo-
sphere. 10-14 days following plating, proliferating fibroblasts
surrounded the tissue pieces, which were then removed, and cells are
detached with trypsin-EDTA solution and replated in F75 tissue culture
flasks (P0) until confluent. Removed tissue pieces were replated in
fresh 10 cm tissue culture plates for a second round of fibroblast
outgrowth in the same conditions as above. Following 2-3 passages,
homogeneous fibroblasts’ colonies are observed that can be frozen
down; upon thawing 3-4 passages are needed to obtain adequate
numbers for experimentation; HLFs are used until passage 7-8. A
similar procedure was independently used for an additional NHLF
clone (Fig. S3A-B), as previously published69.

Primary normal mouse lung fibroblasts (NMLFs) were isolated
from 8-10-week- old C57Bl6/J mice and/or from BLM-challenged mice.
Upon sacrifice, perfused lungswere excised inDMEM.Then lungswere
minced and digested with 0.7mg/ml collagenase type IV (C5138-
Sigma), for 1 h at 37 °C. Digestion was followed by filtration and the
suspension was centrifuged at 1200 g for 5min. Finally, the pellet
was resuspended in DMEM (GIBCO 41966-029) containing 10% FBS
(GIBCO 10437-028/ origin Mexico. All experiments were performed at
passage 2-3.

Murine and human embryonic LFs cell lines, 3T3 and MRC5
respectively, were purchased from ATCC (#CRL-1658 and #CCL-171
respectively).

NHLFs, IPF-HLFs, NMLFs, 3T3 and MRC5 cells were cultured in
DMEM supplemented with 10% fetal bovine serum (FBS) and strep-
tomycin/penicillin (GIBCO 15140-122) and amphotericin (GIBCO
15290-018) and incubated at 37 °C and 5% CO2. Cells were cultured to
60-80% confluency, were starved overnight with serum-free DMEM
( + 0.1% BSA) andwere exposed to 10 ng/ml recombinant humanTGF-
β1 (240-B-002 R&D SYSTEMS) for 24 h in serum-free DMEM. In con-
trol samples the dilutent of TGFβ (7.5% BSA in H2O) was used. For
pharmacologic studies, NHLFs were seeded at 6-well plates, were
serum starved and pre-treated for 1 h with the indicated increasing
concentrations of various agents and their diluents in controls. After
one hour of pre-treatment, cells were incubated with TGFβ as usual.

The proliferation of all LF cultures was quantified with the MTT
assay in96-well plates,where a common solutionofOPTI-MEM (GIBCO
11058-021) and MTT (0,7mg/ml) (ACROS ORGANICS158990010) was
added into each well. After incubation for 4 h and having confirmed
the formation of purple crystals, themediawas removed, and acidified
isopropanol was added into each well to dissolve the formazan crys-
talline product. Absorbance values were determined at 570 nm and
background subtracted at 660 nm using an OPTImax (Microplate
Photometer (Molecular Devises).

The spreading andmigration capabilities of LFs were assessed in a
scratch wound assay. Cells were cultured into a 12-well plate as above
and left to grow. Upon confluency, TGFβ was added, as described
above. Awoundwasgenerated using a sterile pipette tip. Theplatewas

placed in a tissue culture incubator at 37 °C, and photos were taken
under a reverse microscope at specific time intervals.

Migration and invasion were quantified also with Boyden
chambers (Costar 20122024/REF3422) according to manufacturer’s
instructions, as shown schematically in Fig. 5E. Briefly, LFs were
added to the upper chamber which was pre-coated with aECM sub-
strate (or not for migration) and allowed for 6 hours to invade/
migrate through the transwell membrane to the lower side which was
in touch with the starvation medium. Then, the cells which remained
in the upper chamber were removed, while invasive or migratory
cells, after washes and fixation, were stained with crystal violet.
Additionally, stained cells were lysed with Lysis Buffer for 20minutes
and absorbance was measured at 550nm using the TECAN Sunrise
Microplate Photometer.

The proteolytic capacity of LFs was assessed with the Fluor-
escein gelatin degradation assay. 12-mm glass coverslips were acid
washed with 20% nitric acid, incubated with 50μg/ml poly-L-lysine,
crosslinked with 0.5% glutaraldehyde and then coated for 20min
with 0.2% fluorescein-conjugated gelatin (Invitrogen, Gelatin from
Pig Skin, Fluorescein Conjugate: G13187) in 2% sucrose
(131621.1211Panreac) -containing phosphate buffered saline (PBS).
Then, the coverslips were treated with sodium borohydride (NaBH4-
Sigma 452882), washed with PBS, and transferred to a new 24-well-
plate. Fibroblasts were seeded in gelatin-coated coverslips and
treated with TGF-β1 as previously described. After 24 hours, medium
was replaced with full medium and cells were processed for immu-
nofluorescence, 24-48 hours later. The quantification of the degra-
ded gelatin was analyzed using ImageJ, as previously described70.
Briefly, the measurements of the degraded area, are reflected from
the measurement of the “area fraction”, which has been followed
from the threshold adjustment that represents the actual degrada-
tion. Following this process, the “area fraction” values were then
normalized to the number of nuclei as measured from the Dapi
channel of the correlated image.

For immunofluorescence staining, cells were seeded in coverslips
(20.000 cells/well) and after starvation, incubated with TGF-β1 as
usual. The cells were fixed with 4% PFA for 15min and permeabilized
with0.1% TritonX (T8532, SigmaAldrich) for 10min. Thiswas followed
by blocking with 2% BSA in PBS for 1 h at RT. The cells were incubated
overnight at 4 °C with primary antibodies. The next day, cells were
washed, and incubated with a secondary antibody and conjugated
phalloidin in 1% BSA/PBS for 60min at RT. Finally, after washing,
coverslips were mounted with a drop of mounting Fluoroshield med-
ium (containing DAPI for nucleus labeling). Confocal microscope
images were analyzed with ImageJ. Signal colocalization was per-
formed via the orthogonal views and k-curves analysis with ImageJ
tools showing the intensity per z-stacking or per distance of the
maximal projection accordingly.

The decellularization and generation of acellular ECM (aECM)
from mouse lungs was performed based on similar protocols for
other tissues71,72. Briefly, whole lungs were isolated and treated with
increasing concentrations of SDS (Fisher Bioreagents BP166) (0.01,
0.1, 1%) in a PBS solution, with 24 h incubation for each SDS con-
centration. For the final step, decellularized lung tissues were washed
with PBS for at least 3 days, cut into small pieces and stored at -80 °C.
Frozen tissue was lyophilized using a lyophilizer and then milled in
liquid nitrogen. To produce an ECM substrate, the milled form of the
matrix was solubilized through enzymatic digestion. Pepsin (Sigma-
Aldrich, P6887) was dissolved in 0.1M HCl to make a concentration
of 1mg/ml. Approximately 10mg of the ECM powder were digested
in 1mL of pepsin solution, in order to solubilize the ECM compo-
nents. After approximately 48 hours, the matrix was diluted using
0.1M acetic acid to make a 5mg/ml concentration of lung ECM
solution, which was used as a coating substrate for cells.
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Precision cut lung slices
C57-Bl/6, 8-10-week-old mice, were administered with SAL/BLM as
described above. On day 11, mice were sacrificed and lungs, after
perfusion, were inflated with 1ml of with 1.5% Low Melting Agarose
(15517-014-Invitrogen) in saline. Lungs were then isolated and incu-
bated at RPMI medium (Thermo Fisher Scientific) supplemented with
10% FBS and 1% penicillin-streptomycin for 30min at 4 οC to allow
agarose polymerization. The left lobe of the agarose filled lungs, was
cut into 200μmslices (PCLS)with Vibratome. PCLSwere then cultured
in 700μL of RPMI (GIBCO-21875-034)medium supplementedwith 10%
FBS and 1% penicillin-streptomycin in 24-well plates at standard con-
ditions (37 °C and 5% CO2) overnight. Next, PCLS were incubated to
2μmofA-419259 (Src-family inhibitor) andH2O for 3 consecutive days,
changing the treatment daily. In day 14, PCLSwerefixedovernightwith
PFA (Sigma-Aldrich P6148) at 4 °C, until slices embedded in paraffin.
Finally, 5μm sections of PCLS were cut using a Microtome and stained
for H&E, F.G/S.R and antibodies accordingly.

Antibodies- reagents
Antibodies used in this study included anti-Tks5 (SH3 domain) rabbit
monoclonal antibody (Merck, 3174822, 1:100), anti-SH3PXD2A mouse
monoclonal antibody (Origene, clone OTI1F5-TA811757S, LOT F001,
1:250), col1a1 rabbit polyclonal antibody (Invitrogen, PA5-29569, LOT
XK3738717 1:100), anti-A-actin (sma) mouse monoclonal antibody,
(Origene, clone UM870129, LOT F001 1:250), recombinant Anti-
Cortactin rabbit monoclonal (EP1922Y) antibody (Abcam, ab81208,
1:500), Alexa Fluor™ 633 Phalloidin (Invitrogen, A22284, LOT 2274768
1:50), MMP-9 XP Rabbit monoclonal (D6O3H) Antibody (Cell signaling
#13667, LOT 3 1:100). Secondary antibodies included: Goat anti-Rabbit
IgG (H + L) Cross-Adsorbed Secondary Antibody Alexa Fluor 488 (Life
technologies, A11008, LOT1470706), Goat anti-Rabbit IgG (H + L)
Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 (Life technolo-
gies, A21428, LOT 1670185), Goat anti-Mouse IgG (H + L) Highly
Cross-Adsorbed Secondary Antibody Alexa Fluor 488 (Life technolo-
gies, A11029, LOT1705900) Goat anti-Mouse IgG (H + L) Highly Cross-
Adsorbed Secondary Antibody Alexa Fluor 555 (Life technologies,
A22424, LOT1726548); all used in 1:500 dilution; all antibodies were
selected fromprevious publication, while all antibodies were validated
by the corresponding manufacturers for the specific employed
methodologies (IHC/IF). For pharmacological studies A-419259 inhi-
bitor SML0446 (Sigma-Aldrich), Nintedanib SML2848 (Sigma-Aldrich)
and Pirferidone P2116 (Sigma-Aldrich) were used.

Real Time quantitative RNA RT-PCR
In human samples, RNAwas extracted from30 to 50mgof frozen lung
tissue in 700μL of Qiazol (Lysis buffer, Qiagen, Valencia, CA) by tissue
disruption and homogenization using an electric homogenizer (Poly-
Tron homogenizer H3660-2A, CardinalHealth, Dublin, OH) at 15.000 g
for 15 seconds, according to the manufacturer’s instructions. RNA was
purified using the miRNeasy Mini kit (217004, Qiagen, Valencia, CA)
with the assistance of the Qiacube automated system (9001292, Qia-
gen, Valencia, CA). The purity of the RNAwas verified using NanoDrop
at 260 nm and the quality of the RNA was assessed using the Agilent
2100 Bioanalyzer (Agilent, Technologies, Santa Clara, CA). Real-time
PCR was performed with Taqman primers as described in the table
below. Values were normalized to the expression of Β2Μ.

In mouse samples RNA was extracted from the left lung lobe
using the Tri Reagent (TR-118) obtained from Invitrogen and treated
with DNAse (RQ1 RNAse-free DNAse) prior to RT-PCR according to
manufacturer’s instructions. cDNA synthesis was performed using
2 μg of total RNA per sample in 20-μl reaction using M-MLV RT
(Promega). Real-time PCR was performed on a BioRad CFX96
Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories).
Values were normalized to the expression of b-2 microglobulin
(b2m). The annealing temperature for all primers was 58 °C. Primers

sequences for RT and genomic PCRs are depicted at Supplementary
Table 5.

RNA sequencing
Six total RNA samples were prepared, and their concentration was
measured with nanodrop (ND1000 Spectrophotometer—PEQLAB).
The samples measured to a concentration of 400-500 ng/μl and
therefore 1μl of RNA, from each sample was used to proceed with the
library preparation. The RNA quality of each sample was measured in
bioanalyzer (Agilent Technologies) using the Agilent RNA 6000 Nano
Kit reagents and protocol. For the preparation of per sample libraries,
the 3′mRNA-Seq Library Prep Kit Protocol for Ion Torrent (QuantSeq-
LEXOGEN™ Vienna, Austria) was used according to manufacturer’s
instruction. Briefly, library generation was initiated by oligodT priming
which contains the Ion Torrent compatible linker sequences. 5 to
500 ng per 5μl of RNA from each sample was used to perform the first
strand synthesis. After first strand synthesis any remaining RNA was
removed and second strand synthesis was initiated by a random pri-
mer, containing Ion Torrent compatible linker sequences at its 5’ end,
and a sequence polymerase. In line barcodes were introduced at this
point. Second strand synthesis was followedby amagnetic bead-based
purification step and the resulted purified library was amplified for 14
cycles and re-purified. Quality and quantity of each library was asses-
sed in a bioanalyzer using the DNA High Sensitivity Kit reagents and
protocol (Agilent Technologies). The quantified libraries were pooled
together at a final concentration of 7 pM. The libraries pool was pro-
cessed on the Ion Proton One Touch system where the libraries were
templated and enriched using either the Ion PI™ Hi-Q™ OT2 200 Kit
(ThermoFisher Scientific) and sequenced, with the Ion PI™ Hi-Q™
Sequencing 200 Kit on Ion Proton PI™ V2 chips (ThermoFisher Sci-
entific) according to commercially available protocols. 3’ RNA-
sequencing was performed on an Ion Proton™ System73, according
to the manufacturer’s instructions. Initial analysis took place in Ion
Torrent server.

Single cell RNA-seq data re-analysis
Single cell RNA-seq data were downloaded from GSE122960 and pro-
cessed with the R package Seurat (v.3.1.2 & 4.0.5)74,75. A similar to the
original data analysis strategy was applied. Initially, each sample was
processed on its own. After removing low-quality cells and genes, data
were normalized using the LogNormalize method of Seurat and then
top variable features were selected using the vst method. Data were
scaled prior to principal component analysis (PCA) application and
selection of the top principal components. The latter were used for a
Shared Nearest Neighbor (SNN) graph-guided cell clustering and last,
t-SNE dimensionality reduction was performed. Cell typing followed
that of the original analysis as much as possible. Samples integration
was performed with the standard Seurat v3 integration pipeline first
for samples within each and then across phenotypes (donor and IPF).
Integrated data were re-scaled, clustering and dimensionality reduc-
tion were repeated. Cell types inherited from single-sample analysis
were validated and corrected whenever required according to the
original publication of the dataset. Marker genes were identified using
theWilcoxonRankSumtest appliedon the “RNA” slotof the integrated
samples object. Absolute fold changeof at least 1.2 onnatural scale and
Bonferroni-corrected p-value < 0.05 were used as differential expres-
sion thresholds. Fibroblast sub-clusters were identified with a resolu-
tion of 0.1 after fibroblast cells were isolated from the rest of the
dataset, re-scaled and new variable features were found as above.

Data processing
Quant-Seq (Lexogen) FASTQ files obtained from the Ion Proton
sequencing procedure were trimmed with Trim Galore (v.0.6.51) to
remove low quality read ends using a Phred score of 20. Subsequently,
a two steps alignment procedure was applied. Pre-processed reads
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were aligned against the GRCm38 reference genome (Ensembl) with
HISAT2 (v.2.2.1)76 and then the reads left unmapped were subjected to
a second alignment round using BOWTIE2 (v.2.3.5.1)77 with the -local
and -very-sensitive local switches turned on.

Computational analysis
Downstream analysis of the resulting BAM files was performed with
metaseqR2 (v.1.9.2)78. Briefly, the raw BAM files, one per sample, were
summarized to a 3’ UTR reads count table, using the package Gen-
omicRanges (v1.44.0)79 and Ensembl mouse genome mm10. For the
UTR counting, the entire 3’ UTR region, with a minimum length of
300 base pairs and 50 base pairs to flank the UTR end, was taken into
consideration. In the resulting reads count table, each row repre-
sented one 3’ UTR region and each column a Quant-Seq sample.
Next, reads were summarized per gene and the returned gene count
table was normalized using the package EDA-Seq (v.2.26.1)80 after
removing genes having zero reads across all samples. Post-normal-
ization, gene counts were filtered for possible artifacts using
default gene filtering options. The filtered gene counts table was
subjected to differential expression analysis using sequentially all
nine individual statistical analysis methods supported bymetaseqR2.
Their p-values were then combined by the PANDORA algorithm to
account, among others, for the false positives reported. Benjamini-
Hochberg corrected PANDORA p-values of less than 0.05 and abso-
lute fold change of at least 1.2 were used as differential expression
thresholds. Normalized expression values required for each
heatmap were retrieved and standardized across samples. Hier-
archical clustering of samples and genes based on calculated Eucli-
dean distance.

Gene set enrichment analysis
Differential expression analysis results were sorted by decreasing fold
change and used for Gene Set Enrichment Analysis (GSEA) against
Gene Ontology terms81 using the package clusterProfiler (v.4.0.5)82.
Signed normalized enrichment score (NES) was used to isolate the top
of the significantly enriched induced (NES > 0) and suppressed
(NES <0) terms (adjusted p-value < 0.05).

Text mining
PubMed 2022 baseline was downloaded from the respective FTP site.
XML R package (v.3.99.0.8) was used to create an abstract-based
corpus which was then queried with rentrez R package (v.1.2.3) for
IPF[All Fields] OR (\“pulmonary fibrosis\“[MeSH Terms] OR \“pulmonary
fibrosis\“[All Fields]) OR (\“lung diseases, interstitial\“[MeSH Terms] OR
\“interstitial lung diseases\“[All Fields] OR \“interstitial lung disease\“[All
Fields]) containing elements. Subsequently, human HGNC gene sym-
bols atomization was performed using pubmed.mineR package83

(v.1.0.19) and recovered genes were intersected with the human
homologs of the mouse Quant-seq differentially expressed genes.
Homolog feature mapping was obtained via biomaRt R package84

(v. 2.48.3).

Transcription factor analysis
Transcription factor analysis was performed using DoRothEA R
package85 (v.1.4.2). All mouse transcription factor-target regulons were
queried for those high quality ones (“A” level of confidence) including
as targets any of the Quant-seq differentially expressed genes. Sub-
sequent filtering maintained those interaction pairs where both
interactors were found significantly deregulated in the bulk sequen-
cing experiment. Based on the mode of regulation (mor) as described
in the DoRothEA database and the Quant-seq derived differential
expression data, pairs with the same or opposite direction of dereg-
ulation were maintained in cases of an activator or repressor tran-
scription factor, respectively.

CMap/LINCS analysis
CMap/LINCS database (https://clue.io/query) query was performed
using the top 150 up and top 150 down regulated genes as sorted by
fold change. 150 consisted of the maximum number of genes sup-
ported by the platform. L1000 gene expression data from the Expan-
dedCMapLINCSResource2020 (last update 11/23/2021)werequeried.
Results were processed by the R package cmapR (v.1.4.0). FDR-
corrected p-values less than 0.05 were used to isolate those signatures
having a statistically important connection with the provided one and
signed normalized connectivity score (NCS) was used to discern
between similar and opposite signatures. Focus was given on com-
pounds (trt_cp) and peptides (trt_lig) having an already known
mechanism of action and known targets. Datasets comprising of only
one replicate and/or of a treatment duration other than 24 hours were
discarded.

Statistics
Statistical significance was assessed with the Prism (GraphPad) soft-
ware according to its built-in recommendations, as detailed at each
figure legend. Briefly, and unless otherwise stated, all datasets were
tested for normal distributions via Shapiro-Wilk test, while all mea-
surements were performed on distinct and independent samples. For
the comparison of two normally distributed experimental groups, we
employed the two-tailed unpaired t-test, for equal SDs orWelch’s t-test
for unequal ones. Not normally distributeddatawere analyzedwith the
two-sided Mann-Whitney test. Normally distributed multi parametric
data with equal SDs were analyzed with the unpaired one-way ANOVA
test and post hoc Tukey’s test. Welch’s ANOVA test coupled with post
hoc Games-Howell test was used in cases of unequal SDs. For non-
normally distributedmultiparametric data, Kruskal-Wallis, followed by
post hoc Dunn’s test was utilized. For correlation analysis we used
Pearson’s, for normally distributed, or Spearman’s correlation for non-
normally distributed datasets. Most data are presented on box and
whiskers graphs depicting the median as well as all experimental
values (n).

Image creation
Third party images were created at bioRender.com (under the relative
agreements; 31/08/2023): Fig. 4a (DH25SQBJQT), Fig. 5e
(XG25SQC37G), Fig. 8a (UC25SQ61BR), Sup Fig. 8a (VP25SQ8NTX), Sup
Fig. 8b (GM25SQ96G1), Sup Fig. 8d (AV25SQA9RX), Sup Fig. 8f
(ZI25SQ9VL2), and Sup Fig. 9a (BQ25SQ7828).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All re-analyzed publicly available datasets are listed in Supplementary
Table 1, including accession numbers and hyperlinks. Quant-Seq data
have been deposited at the GEO database under the accession code
GSE220982. Already published, re-analyzed single cell RNA-seq data
used are available at GEO database: GSE122960. All other relevant
experimental data are within the paper and its supplementary infor-
mation files. Source data are provided with this paper.

Code availability
Data and code for the recreation of the computationally-created fig-
ures of the paper have been deposited at Zenodo (https://doi.org/10.
5281/zenodo.829651086 and at https://github.com/dfanidis/TKS5_
podosomes_IPF. Detailed scripts used are unrestrictedly available,
within 10 days, upon request to Dionysios Fanidis (fanidis@fleming.gr;
Institute for Fundamental Biomedical Research, Biomedical Sciences
Research Center Alexander Fleming, Athens, Greece).
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MAP3K8 Regulates Cox-2-Mediated Prostaglandin E2 Production in the Lung and 

Suppresses Pulmonary Inflammation and Fibrosis 

H ΜAP3K8 ρυθμίζει την Cox-2 διαμεσολαβούμενη παραγωγή προσταγλανδίνης Ε2 στον 

πνεύμονα και καταστέλλει την πνευμονική φλεγμονή και ίνωση 

H ιδιοπαθής πνευμονική ίνωση (IPF) χαρακτηρίζεται από άφθονη εναπόθεση συστατικών της 

εξωκυττάριας μήτρας οδηγώντας σε επιδείνωση της πνευμονικής αρχιτεκτονικής και των 

λειτουργιών της αναπνοής. Οι προϊνωτικοί μηχανισμοί ελέγχονται από πολλαπλά ρυθμιστικά 

μόρια, συμπεριλαμβανομένων των MAPKs, τα οποία με τη σειρά τους ρυθμίζονται από 

πολλαπλούς καταρράκτες φωσφορυλίωσης. H MAP3K8 είναι μια MAPK κινάση κινάση που 

έχει προταθεί πως ρυθμίζει πλειοτροπικώς πολλαπλά παθολογικά μονοπάτια στο πλαίσιο της 

ίνωσης και του καρκίνου· εντούτοις πιθανός ρόλος της στην παθογένεση της IPF δεν έχει 

ερευνηθεί. Σε αυτή την αναφορά τα επίπεδα μεταφραστικού RNA του MAP3K8 βρέθηκαν 

μειωμένα στους πνεύμονες ασθενών της IPF και σε αυτούς ποντικών, μετά την επαγωγή 

πνευμονικής ίνωσης χρήση μπλεομυκίνης (BLM). Ευρεία γενετική διαγραφή του Map3k8 σε 

ποντικούς επιδείνωσε την μοντελοποιημένη ασθένεια, και πειράματα μεταφοράς μυελού των 

οστών έδειξαν πως ενώ οι ρυθμιστικοί μηχανισμοί της MAP3K8 είναι ενεργοί τόσο σε 

αιμοποιητικά όσο και μη αιμοποιητικά κύτταρα, ο ρόλος τους στα πρώτα είναι περισσότερο 

κυρίαρχος. Ειδική διαγραφή του Map3k8 από μακροφάγα βρέθηκε να είναι επαρκής για την 

επιδείνωση της ασθένειας, επιβεβαιώνοντας με αυτόν τον τρόπο τον δεσπόζοντα ρόλο τους 

στις αποκρίσεις της πνευμονικής ίνωσης και προτείνοντας τον κύριο ρόλο της Map3k8 στην 

ομοιόσταση των εκτελεστικών πνευμονικών λειτουργιών τους. Επίσης, ανεπάρκεια του 

Map3k8 βρέθηκε να σχετίζεται με μειωμένη έκφραση του Cox-2, και επακόλουθη μειωμένη 

παραγωγή PGE2 στους πνεύμονες· αντιστοίχως εξωγενής χορήγηση PGE2 μείωσε την 

φλεγμονή και ανέστρεψε το επιδεινωμένο ινωτικό προφίλ των Map3k8-/- ποντικών. Ως εκ 

τούτου, η MAP3K8 έχει κεντρικό ρόλο στην ρύθμιση φλεγμονωδών αποκρίσεων, στην Cox-

2-διαμεσολαβούμενη παραγωγή PGE2 στον πνεύμονα, ενώ ύφεση της έκφρασης της είναι 

καίριας σημασίας για την ανάπτυξη πνευμονικής ίνωσης. 
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MAP3K8 Regulates Cox-2–Mediated Prostaglandin E2

Production in the Lung and Suppresses Pulmonary
Inflammation and Fibrosis

Markella Zannikou,* Ilianna Barbayianni,* Dionysios Fanidis,* Theodora Grigorakaki,*

Evlalia Vlachopoulou,* Dimitris Konstantopoulos,† Maria Fousteri,† Ioanna Nikitopoulou,‡

Anastasia Kotanidou,‡,x Eleanna Kaffe,* and Vassilis Aidinis*

Idiopathic pulmonary fibrosis (IPF) is characterized by exuberant deposition of extracellular matrix components, leading to the

deterioration of lung architecture and respiratory functions. Profibrotic mechanisms are controlled by multiple regulatory

molecules, including MAPKs, in turn regulated by multiple phosphorylation cascades. MAP3K8 is an MAPK kinase kinase

suggested to pleiotropically regulate multiple pathogenic pathways in the context of inflammation and cancer; however, a possible

role in the pathogenesis of IPF has not been investigated. In this report, MAP3K8 mRNA levels were found decreased in the lungs

of IPF patients and of mice upon bleomycin-induced pulmonary fibrosis. Ubiquitous genetic deletion of Map3k8 in mice exacer-

bated the modeled disease, whereas bone marrow transfer experiments indicated that although MAP3K8 regulatory functions are

active in both hematopoietic and nonhematopoietic cells, Map3k8 in hematopoietic cells has a more dominant role. Macrophage-

specific deletion of Map3k8 was further found to be sufficient for disease exacerbation thus confirming a major role for macro-

phages in pulmonary fibrotic responses and suggesting a main role for Map3k8 in the homeostasis of their effector functions in the

lung. Map3k8 deficiency was further shown to be associated with decreased Cox-2 expression, followed by a decrease in PGE2

production in the lung; accordingly, exogenous administration of PGE2 reduced inflammation and reversed the exacerbated

fibrotic profile of Map3k8 2/2 mice. Therefore, MAP3K8 has a central role in the regulation of inflammatory responses and

Cox-2–mediated PGE2 production in the lung, and the attenuation of its expression is integral to pulmonary fibrosis develop-

ment. The Journal of Immunology, 2021, 206: 607–620.

I
diopathic pulmonary fibrosis (IPF) is an interstitial lung
disease with a dismal prognosis, characterized by fibroblast
foci and exuberant deposition of extracellular matrix com-

ponents, leading to the distortion of lung architecture and the
deterioration of respiratory functions. The prevailing working

hypothesis suggests that the mechanisms driving IPF reflect
abnormal, deregulated wound healing in response to persistent,
environmentally imposed epithelial damage in genetically
predisposed individuals of an older age (1, 2). Although the only
effective treatment remains lung transplantation, pirfenidone (3)
and nintedanib (4) were found to delay disease’s progression and
constitute the current standard of care. Nintedanib is a small
molecule that inhibits receptor tyrosine-kinases (RTKs; such as
FGFR, VEGFR, and PDGFR), membrane receptors that activate
multiple, and frequently overlapping, cellular signaling pathways,
including MAPK pathways (4, 5). Although much less is known
on the mode of action of pirfenidone, it is generally considered as
an antifibrotic and anti-inflammatory agent, regulating the ex-
pression and activity of TGF-b and TNF-a that both, variably, rely
on MAPK signaling to exert their effector functions (3, 5).
MAPKs, such as ERKs, JNKs, and p38 MAPKs, are protein Ser/

Thr kinases that phosphorylate many intracellular targets including
cytoskeletal elements, membrane transporters, as well as other
kinases and transcription factors, resulting in the regulation of a
wide array of cellular functions, including stress response, cell
growth, differentiation, proliferation, and apoptosis (6). Aberrant
MAPK signaling has been linked to the pathogenesis of many
inflammatory, metabolic, or malignant diseases, highlighting the
importance of dissecting the regulatory mechanisms governing
their activation (6). MAPKs are activated from MAPK kinases
(MAP2Ks), in turn activated by MAP2K kinases (MAP3Ks),
which provide stimulus- and cell-specific signaling contexts for
cellular responses to extracellular stimuli such as peptide growth
factors, cytokines, hormones, as well as to endoplasmic reticulum
and oxidative stress (6), all inherently linked to IPF pathogenesis.
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MAPK kinase kinase 8 (MAP3K8; tumor progression locus 2
[TPL2]; cancer Osaka thyroid [COT] oncogene) is an Ser/Thr
MAP3K, at the crossroad of many different signaling pathways.
TPL2 was first identified by virtue of its oncogenic transforming
activity in cells, and is now incriminated for the regulation of
multiple pathogenic pathways in the context of inflammation and
cancer (7). MAP3K8 has been reported to promote pleiotropic and
even opposing effects, depending on the cell type and the tissue
microenvironment. Although MAP3K8 is generally considered
as a proinflammatory molecule and an oncogene, many reports
have indicated an opposite role in limiting inflammatory and
fibrotic responses and suppressing carcinogenesis (7). In the
lung, in which Tpl2/Map3k8 is highly expressed, Map3k8
ubiquitous deficiency was shown to exacerbate eosinophilic in-
flammation when challenged with OVA (8) and to promote
urethane-induced lung carcinogenesis (9). Because pulmonary
fibrosis is a major risk factor for the development of lung cancer
(10), and because different Map3k8-regulated functions are
relative with many cellular mechanisms governing the patho-
genesis of pulmonary fibrosis, in this report, we examined a
possible role of Map3k8 in regulating pathogenetic responses in
pulmonary fibrosis.

Materials and Methods
Mice

All mice were bred in the C57Bl6/J background for over 10 generations
under specific pathogen-free conditions at the local animal facilities. Mice
were housed at 55 6 5% humidity, 20–22˚C under a 12-h light-dark cycle;
food and water were given ad libitum. All experimentation, conforming to
the Animal Research: Reporting In Vivo Experiments (ARRIVE) guide-
lines, was approved by the internal Institutional Review Board (no. 95), as
well as by the Veterinary Service and Fishery Department of the local
governmental prefecture (no. 1121). The generation and genotyping in-
structions of LysM-Cre (11), Map3k8f/f, and Map3k82/2 mice (12) have
been described previously. All randomly assigned experimental groups
consisted of littermate mice. The health status of the mice was monitored
once per day; no unexpected deaths were observed; all measures were
taken to minimize animal suffering and distress.

Bleomycin-induced pulmonary fibrosis

Pulmonary fibrosis was induced by a single intratracheal instillation (with a
MicroSprayer aerosolizer) of bleomycin (BLM) (3.2 U/Kg; Nippon
Kayaku) into anesthetized (i.p.; xylazine, ketamine, and atropine, 10, 100,
and 0.05 mg/kg, respectively) 6- to 8-wk-old male and female mice as
previously reported (13–15). It should be noted that beyond dosing and
route of administration, the timing, severity, and resolution of BLM-
induced fibrosis depends on a number of parameters, such as the specific
genetic background (i.e., C57bl6 J or N, genetic drift, vendor) and local
health status. The dose used in this study was selected upon prior extensive
local testing to minimize lethality (for ethical and practical reasons) while
inducing a solid fibrotic profile, analyzed with a plethora of readout assays
as previously reported (13) and as described below.

Bone marrow transplantation

Bone marrow transplantation was performed as previously described (16);
Map3k82/2 and wild-type (wt) mice were irradiated once with 1000 rad
(J. L. Shepherd Irradiator). Irradiated mice were injected i.v. through the tail
vein with 5 3 106 bone marrow cells from male wt orMap3k82/2 mice. All
the irradiated nontransplanted control mice died within 14 d from the time of
irradiation, whereas all implanted mice survived, confirming efficient
transplantation and reconstitution of the hemopoietic system.

PGE2 administration

The 16,16-dimethyl PGE2 (dmPGE2; Cayman Chemical, Ann Arbor, MI)
was dissolved in methyl acetate, which was then evaporated under a ni-
trogen stream; dmPGE2 was immediately dissolved in nitrogen-purged
ethanol and kept as a stock solution at a concentration of 0.5 mg/ml.
Immediately before in vivo administration, the stock dmPGE2 solution
was diluted with saline and kept on ice. dmPGE2 was administered starting
1 d before BLM via two daily i.p. injections at a concentration of 10 mg/kg.

Measurement of respiratory functions

Respiratory mechanics, recently shown to be an accurate surrogate marker
of disease development (13), were analyzed in tracheostomized mice with
the FlexiVent ventilator system (SCIREQ) following manufacturer in-
structions, as previously reported (13).

Bronchoalveolar lavage fluid isolation and measurements

Bronchoalveolar lavage fluid (BALFs) were obtained by lavaging the lungs
of tracheostomized mice with 1 ml of 0.9% sterile sodium chloride (three
times). After centrifugation at 100 3 g for 10 min (4˚C), the first BALF
supernatant was stored at 280˚C for protein and collagen content deter-
mination, and cell pellets from total BALF volume were counted with a
hematocytometer after being stained with 0.4% trypan blue solution or
used for FACS analysis.

Total protein levels were assessed with the Bradford assay according to
manufacturer’s instructions (Bio-Rad Laboratories, Hercules, CA). Ab-
sorbance values were converted in mg/ml using a BSA standard curve
(BSA 0–2 mg/ml). Total soluble collagen was quantified using the Sirius
Red assay protocol; briefly, 50 ml of BALF samples, diluted in 0.5 M
acetic acid, were incubated for 30 min with Sirius Red at room temperature
(direct red 80; 120 mg/ml in 0.5 M acetic acid). After centrifugation
(12,000 3 g for 10 min), the absorbance of supernatant was read at
540 nm, and values were converted in micrograms per milliliter according
to a standard curve with collagen type I from rat tail (0–500 mg/ml).

For FACS analysis, BALF cells were centrifuged at 1200 rpm at 4οC and
incubated with Fc Receptor Binding Inhibitor C16/32 (eBioscience) for
15 min on ice. Cells were then incubated for 30 min in FACS buffer
containing manufacturers’ suggested dilutions of fluorescently labeled
mAbs. The following Abs were used for analysis: anti-CD11b–PE, anti-F4/
80–PE, anti-CD4–AF700, anti-CD8–allophycocyanin, anti-B220–PerCP–
Cy5.5, and anti-Gr1–FITC (all BioLegend, San Diego, CA). Live hema-
topoietic cells (HCs) were first gated empirically by forward scatter versus
side scatter characteristics (SSC). Cells in the hematopoietic gate were
then interrogated for surface immunophenotypic markers such as
CD8, CD4 (T cells), or B220 (B cells). Neutrophils were recognized
as non-autofluorescent highly granular (SSChi) cells and, within this gate,
were defined as cells F4/80+-Gr1high (R1) or by gating for CD11b+ (CD11b
versus SSC area [SSC-A]) cells and these were further gated for Gr1High

(neutrophils Gr1 versus SSC-A). CD11b/Gr1high cells had multilobed nu-
clei typical of granulocytes, whereas CD11b/Gr1mid and CD11b/Gr1low

cells had ovoid nuclei typical of monocytes/macrophages. Macrophages
were identified as large autofluorescent cells F4/80+Gr1mid/low (R2) or by
gating for CD11b+ (CD11b versus SSC-A) cells and these were further
gated for Gr1low (macrophages-monocytes) (Gr1 versus SSC-A). All ac-
quisition was performed using a BD FACSymphony flow cytometer. Data
analysis was performed with the FlowJo software.

Lung histology

The right lung tissues were fixed in 10% v/v neutral buffered formalin and
embedded in paraffin. Four-micrometer lung sections were prepared and
stained with H&E with standard protocols. For Sirius Red–Fast Green
staining, tissue sections were deparaffinized and stained successively with
Fast Green 0.04% and Sirius Red 0.1%/Fast Green 0.04% dissolved in
picric acid. Finally, sections were mounted with distyrene plasticizer xy-
lene. Lung tissue imaging was performed using a Nikon Eclipse E800
microscope (Nikon, Shinagawa-ku, Japan) attached to a Q Imaging EXI
Aqua Digital Camera, using the Q-Capture Pro 7 software.

Quantitative RT-PCR

Total RNA was extracted from the left lung lobe from each mouse using
the Tri Reagent (Molecular Research Center), followed by DNase treat-
ment (RQ1 RNAse-free DNase; Promega, Madison, WI) according to the
respective manufacturers’ instructions. cDNA was synthesized from 2 mg
of total RNA in a 20-ml reaction using Moloney murine leukemia virus
reverse transcriptase (Promega). Quantitative RT-PCR (Q-RT-PCR) was
performed using SoFAst EvaGreen Supermix in a Bio-Rad CFX96 Touch
Real-Time PCR Detection System (Bio-Rad Laboratories). Values were
normalized to b2-microglobulin (B2M). Primers used, as well as the
product size (bp) were as follows: col1a1 (forward: 59-CTA CTA CCG
GGC CGA TGA TG-39; reverse: 59-CGA TCC AGT ACT CTC CGC TC-
39; 188 bp), map3k8 (forward: 59-TTA GCC CAA GAC ATG AAG AC-39;
reverse: 59-ACT CAG CAA TGT TCT CAT GC-39; 117 bp), and b2m
(forward: 59-TTC TGG TGC TTG TCT CAC TGA-39; reverse: 59-CAG
TAT GTT CGG CTT CCC ATTC-39; 104 bp). The annealing tempera-
ture for all primers was 58˚C. Values were calculated according to the
2DDcycle threshold method.
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Mass spectrometry

As the estimated half-life of PGE2 in vivo is less than 15 s (17), we
quantified PGE2 through its metabolites, as recently reported (18). Briefly,
300 ml of BALFs were deproteinized with acetone. After vigorous mixing
for 4 min and centrifugation at 2000 3 g for 10 min at 4˚C, samples were
transferred to a clean 15-ml glass vial, mixed with 800 ml of hexane by
vigorous mixing for 30 s and centrifuged for 10 min at 2000 3 g at 4˚C.
The lower phase was acidified to pH 3.5 with formic acid and then mixed
with chloroform. After three vigorous mixing for 30 s and centrifugation
for 10 min at 2000 3 g at 4˚C, the lower chloroform phase was kept for
15 min at 280˚C to separate any residual from the upper phase. Samples
extracted in chloroform were evaporated to dryness using a speed-vac
concentrator (model no. SC110-120; Savant Systems, San Diego, CA)
and redissolved in 100 ml of methanol/100 mM ammonium acetate pH 8.5
(9:1). The dmPGE2 (Cayman Chemicals) was used as an internal control in
each sample from the beginning of the above extraction procedure at a final
concentration of 2.5 ng/ml. Samples were analyzed by direct infusion in an
LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham,
MA) with electrospray ionization in negative mode. Capillary temperature
was 275˚C, spray voltage was 3.5 kV, sheath gas was set at 40 U, and
sweep gas was at 8 U. The resolution was 100 K, providing high accuracy
for prostanoid measurements. Precursor ion masses were used for prosta-
noid profiling, whereas lipid identity was confirmed by precursor ion frag-
mentation using collision induced dissociation. Precursor m/z 297.1530
was used for 13,14-dihydro-15-keto-tetranor-PGE2 and tetranorPGE1, stable
metabolites of PGE2. Precursor m/z Precursor m/z 325.2021 was used
for metabolites 2,3-dinor-11b-PGF2a, 2,3-dinor-PGE1, dinor-PGF2a, and
2,3-dimensionalinor-8-iso-PGF2a.

Microarray and scRNAseq data reanalysis

The raw microarray datasets GSE32537 and GSE47460 (that contains data
from two different platforms, GPL6480 and GPL14550, which were pro-
cessed separately) were downloaded from Gene Expression Omnibus
(GEO), and intensity values were background corrected with subtraction or
normexp methods implemented into limma (19) and oligonucleotide (20)
Bioconductor packages, respectively, and robust multi-array average (rma)
normalized. Afterwards, sample outliers were removed based on a prin-
cipal component analysis (PCA) plot created with arrayQualityMetrics
Bioconductor package (21). Control probes, as well as probes mapping to
more than one HUGO gene symbol were removed from further analysis.
Intensity values were then summarized at the gene level using a weighted
average value of all probes/transcript clusters representing each gene
(weights sum up to the unit). Subsequent differential expression analysis
was performed using the moderated t test statistics algorithm provided by
limma R package.

scRNAseq GSE122960 dataset was processed with Seurat R package
version 3.1.2 (22). Adaptation of the original reported code provided in this
study was used to reanalyze the GSE122960 hierarchical feature-barcode
matrices. Because of the Seurat update since the original GSE122960
publication (23), samples integration was performed with a two-step ap-
plication of the standard Seurat v3 integration pipeline: integration of the
donor and IPF samples separately prior to donor-IPF samples final inte-
gration. All analyses were performed on R version 3.6.2, and the datasets
were retrieved from the GEO repository.

Statistical analysis

Statistical significance was assessed with the Prism (GraphPad) software, as
detailed at each figure legend.

Results
Decreased pulmonary MAP3K8 mRNA expression in
pulmonary fibrosis

To examine a possible role of Map3k8 in the regulation of path-
ogenic signal transduction pathways during fibrogenesis, we first
sought to quantify its mRNA expression levels during the devel-
opment of BLM-induced pulmonary inflammation and fibrosis. To
this end, BLM (3.2 U/Kg) was intratracheally administered to 6- to
8-wk-old C57Bl6/J mice, which were then sacrificed 7, 14, and 21 d
post-BLM administration, roughly corresponding to the (postacute)
inflammatory, fibrotic, and resolution phases of disease develop-
ment. As expected, surviving (Fig. 1A) mice that received BLM
lost weight (Fig. 1B), accompanied by a gradual increase in pul-
monary edema and inflammation, as indicated from the total

protein concentration and the infiltrating cell numbers of the
BALF (Fig. 1C, 1D, respectively). Col1a1 mRNA expression, as
determined with Q-RT-PCR in lung tissue from the same mice,
was also found gradually increasing post-BLM (Fig. 1E), as also
reflected at the soluble collagen levels in the BALF (Fig. 1F),
determined with the Sirius Red assay. Accordingly, histopatho-
logical analysis of the lungs of mice post-BLM administration
indicated the increasing presence of peribronchiolar and paren-
chymal fibrotic regions (Fig. 1G), resulting in impaired respiratory
mechanics, such as resistance, tissue elasticity, and static com-
pliance, as measured with FlexiVent (Fig. 1H–J). All disease signs
peaked 14 d post-BLM, subsiding at 21 d (Fig. 1C–G). Q-RT-PCR
mRNA analysis (in the same samples as in Fig. 1E) indicated a
gradual decrease in pulmonary Map3k8 expression in lung tissue
in inverse correlation with disease development (Fig. 1K).
To translate the findings into the human disease, we performed in

silico reanalysis of the three largest publicly available expression
profiling datasets (GSE32537 and GSE47460) at GEO interro-
gating differential expression in the lung tissue of 119, 122, and 38
IPF patients in comparison with 50, 91, and 17 controls, re-
spectively (24, 25). Raw data were background corrected and
rma normalized, and outliers were removed based on PCA plots
(Fig. 2A, 2B, 2D–G). Differential expression analysis indicated
a modest but highly statistical significant decrease of MAP3K8
mRNA levels in IPF (log2 FC/FDR-corrected p values for
the different datasets GSE32537, GSE47460-GPL6480, and
GSE47460-GPL14550 are respectively 20.459/4.65 3 10210,
20.658/1.06 3 1024, and 20.668/1.46 3 10213; Fig. 2), in
agreement with the modeled disease (Fig. 1). Thus, the devel-
opment of pulmonary fibrosis, in both humans and mice, is
accompanied with a transcriptional (or posttranscriptional)
downregulation of MAP3K8 mRNA levels in the lung.
As MAP3K8 is widely expressed in different pulmonary

cell types exerting pleiotropic effects (7), we next visualized
MAP3K8 mRNA expression in single pulmonary cells in the
normal or fibrotic human lung, via the web-tool available at
nupulmonary.org/resources and reanalysis of the relative single-
cell RNA-sequencing (scRNAseq) dataset GSE122960 (23). As
evident in Supplemental Fig. 1A, MAP3K8 is expressed at
both nonhematopoietic (nHCs) and HCs, and most notably in
monocytes/macrophages. More specifically, reduced MAP3K8
expression was detected in the SPP1+ macrophage subcluster 1,
which most likely correspond to monocyte-derived macrophages
(p = 6.11 3 10224; Supplemental Fig. 1B). In addition, the same
data also suggest MAP3K8 downregulation in the (aSMA+)
myofibroblast cell cluster (p = 0.0002; Supplemental Fig. 1C),
further corroborating a transcriptional downregulation ofMAP3K8
expression in IPF.

Map3k8, especially in macrophages, has a protective role in
BLM-induced pulmonary fibrosis

To validate and dissect a possible Map3k8 role in pulmonary fi-
brosis, BLM was administered to Map3k8 ubiquitous knockout
mice (Map3k82/2) (12) and wt littermate controls. Map3k82/2

mice present with no apparent pulmonary phenotype or impaired
respiratory functions upon healthy conditions (Fig. 3; Sal control
groups). BLM administration to Map3k82/2 mice resulted in in-
creased lethality (Fig. 3A) and in greater weight loss in the sur-
viving mice (Fig. 3B), suggesting increased systemic disease
burden in comparison with littermate wt mice. Pulmonary edema
and inflammation were also found significantly increased in sur-
viving Map3k82/2 mice (Fig. 3C, 3D, respectively), accompanied
by increased collagen expression (Fig. 3E, 3F). Accordingly, tis-
sue fibrosis was notably expanded (Fig. 3G), resulting in further
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deterioration of respiratory functions upon BLM administration
(Fig. 3H–J).
AsMap3k8 is expressed from both nHCs and HCs (Supplemental

Fig. 1), we next interrogated the relative contribution of Map3k8
expression from nHCs and HCs in disease protection. To that
end, wt and Map3k82/2 mice were irradiated to abolish HCs,
followed by injections of bone marrow cells isolated from wt or
Map3k82/2 mice to reconstitute the immune system (Fig. 4A).
The generated chimeric mice bearing HCs with the genetic
background of the donor (Fig. 4B), were then administered BLM
and disease severity was assessed 14 d post-BLM, at the peak of
the disease. Map3k8 deficiency in HCs resulted in a bigger effect
in the systemic manifestations of the disease, as reflected in le-
thality (Fig. 4C) and weight loss (Fig. 4D). Map3k8 deficiency in
either nHCs or HCs in surviving mice increased pulmonary
edema (Fig. 4E) and collagen expression (Fig. 4G, 4H) in
comparison with wt/wt controls, indicating that Map3k8 ex-
pression from both nHCs and HCs exert some protective role in
disease pathogenesis. Noteworthy, the accumulation of inflam-
matory cells in the BALF was more pronounced when Map3k8
expression was missing from the HCs (Fig. 4F). Accordingly,
and in agreement with the systemic manifestations (Fig. 4C, 4D),
Map3k8 deficiency in HCs was sufficient to exacerbate collagen
deposition and to distort lung architecture (Fig. 4I), suggesting a
main protective role in pulmonary fibrosis for Map3k8 expres-
sion in HCs.
Because the deletion ofMap3k8 in HCs had a higher effect in

the number of inflammatory cells in the BALFs of BLM-

challenged mice (Fig. 4F), we next performed basic (non-
exhaustive) FACS analysis of immune cells in the BALFs
(Fig. 5A). Map3k8 deletion had minor effects in neutrophilic
infiltration (Fig. 5B); accordingly, Map3k82/2 mice had minor
and nonconsistent effects in modeled acute lung disorders,
such as LPS-induced lung injury and ventilation-induced lung
injury (data not shown). However, Map3k8 deletion in either of
the cellular reservoirs promoted the accumulation of macro-
phages, which was found to be more pronounced upon dele-
tion in HCs (Fig. 5B). Moreover, Map3k8 deletion in HCs,
but not in nHCs, further promoted lymphocyte accumulation
(Fig. 5C).
Given the suggested role(s) ofMap3k8 in macrophage responses,

its reduced expression in fibrotic lungs (Figs. 1, 2) and IPF
macrophages (Supplemental Fig. 1), and the finding that Map3k8
deficiency in HCs exacerbates BLM-induced pulmonary inflam-
mation and fibrosis (Figs. 4, 5), we next genetically deleted
Map3k8 specifically in macrophages (and granulocytes) by mating
the conditional (floxed; f/f) knockout mouse forMap3k8 (Map3k8f/f)
(12) with a transgenic mouse strain expressing the Cre recombi-
nase under the control of the LysM promoter (TgLysM-Cre) (11).
TgLysM-Cre has been reported with an 80–95% deletion effi-
ciency in macrophages (11, 26), whereas LysM-mediated Cre
expression, per se, has been previously reported not to have any
effects on lung development and architecture or BLM-induced
pulmonary fibrosis (26). BLM was then administered to LysM-
Map3k82/2 mice and littermate controls and disease severity was
assessed with the standardized readout assays at the peak of the

FIGURE 1. Decreased pulmonaryMap3k8

expression upon BLM-induced pulmonary fi-

brosis. (A) Kaplan Meyer survival and (B)

weight loss of wt C57Bl6/J mice post-

BLM administration. (C) Total protein

concentration in BALF, as determined

with the Bradford assay. (D) Inflammatory

cell numbers in BALFs, as counted with a

hematocytometer. (E) Col1a1 mRNA lev-

els in whole-lung tissue were determined

with Q-RT-PCR analysis; values were

normalized to the expression of B2M. (F)

Soluble collagen in BALFs was determined

with the Sirius Red assay. (G) Represen-

tative H&E-stained sections of murine

lungs at 7, 14, and 21 d post-BLM (orig-

inal magnification 310). (H–J) Indicated

respiratory functions were measured with

FlexiVent. (K) Map3k8 mRNA levels were

quantified in the same samples as in (E)

with Q-RT-PCR. Statistical significance

was assessed with two-way ANOVA with

Bonferroni post hoc correction (A–F) and

unpaired t test with Welch correction (two-

tailed; H–J). Data are presented as means 6
SEM (n = 5–7; cumulative results from two

separate experiments). *p = 0.05, **p = 0.01,

***p = 0.001.
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disease. Disease development in LysMMap3k82/2 mice was found
exacerbated in all readout assays, including respiratory functions
(Fig. 6). Furthermore, FACS analysis of inflammatory cells in the
BALF in the absence of Map3k8 expression from macrophages
(Fig. 7) phenocopied the HC deletion (Fig. 5), indicating a major
protective role for macrophage (LysM+) Map3k8 expression in the
disease pathogenesis as well as confirming the seminal contribu-
tion of macrophages in pulmonary fibrosis.

Map3k8 regulates the cyclooxygenase-2–PGE2 axis, which
exerts anti-inflammatory and antifibrotic effects in the lung

Among the different cellular pathways affected by Map3k8 that could
possibly play a protective role in pulmonary fibrosis, Map3k8 has been
reported to regulate cyclooxygenase-2 (Cox-2)–mediated PGE2 ex-
pression from arachidonic acid (AA) (Fig. 8A) (12, 18). PGE2 is a

bioactive eicosanoid that is considered as a proinflammatory media-
tor; on the contrary, in the lung, PGE2 has an established role in
limiting fibrotic processes (27); however, its local regulation remains
relatively unexplored and its cellular origin uncertain.
To examine if Cox-2 mRNA levels are affected by the genetic

deletion of Map3k8, we performed Q-RT-PCR analysis in lung
tissue samples from genetically modified mice at the peak of the
disease post-BLM administration. Ubiquitous genetic deletion of
Map3k8 (Fig. 8B) was found to downregulate Cox-2 mRNA levels
(Fig. 8C). A similar expression profile was also observed upon
the genetic deletion of Map3k8 in nHCs and HCs in chimeric
mice (Supplemental Fig. 2A, 2B) as well as in macrophages
(Supplemental Fig. 2C, 2D), thus confirming 1) Map3k8 expres-
sion from both nHCs and HCs, 2) efficient Map3k8 targeting, as
well as 3) the regulatory role of Map3k8 in Cox-2 expression.

FIGURE 2. Decreased MAP3K8 mRNA expression in the fibrotic lung tissue of IPF patients. Reanalysis of two microarray datasets (GSE32537 and

GSE47460) interrogating differential expression in the lung tissue of 119, 122, and 38 IPF patients in comparison with 50, 91, and 17 controls, respectively.

Raw data were background corrected and rma normalized, and outliers were removed based on PCA plots (A–D, G, and H before and after curation, re-

spectively). Differential expression analysis of gene level–summarized intensity values is presented using volcano plots (C, F, and I). A gene was considered

statistically significantly differentially expressed when having a fold change (FC) score.1.2 or,0.07 at an false discover rate (FDR) of 5% (in Red). A modest

but highly statistically significant decrease of MAP3K8 mRNA levels was detected in IPF patients in all three cohorts/datasets as indicated in the text; the

expression of well-established fibrotic genes (COL1A1, COL3A1, ACTA2, and FAP) was found upregulated in the same samples.
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Accordingly, AA metabolism was found to be disturbed in
Map3k82/2 mice upon BLM-induced pulmonary fibrosis that pre-
sented with increased levels of AA (Fig. 8D) and reduced levels of
PGE2 in their BALFs (Fig. 5E–G), as deduced, given its extreme
instability from its metabolites, according to an established and
recently published procedure (18). Similar results were obtained in
chimeric mice (Supplemental Fig. 3), thus establishing Map3k8 as a
major regulator of PGE2 production in the lungs and suggesting
HCs as the major PGE2 producers in the lung.
To examine if the decreased PGE2 levels upon Map3k8 deletion

contribute to the observed exacerbated fibrotic phenotype, dmPGE2, a
stable analogue of endogenous PGE2, was administered (i.p.; 10mg/kg;

twice daily) toMap3k82/2 and wt littermate mice undergoing BLM-
induced pulmonary fibrosis development. dmPGE2 administration
restored the exacerbated fibrotic responses in Map3k82/2 mice, as
indicated from all readout assays (Fig. 9), as well as decreased the
severity of the BLM-induced disease in wt mice (Fig. 9).
Noteworthy, PGE2 administration also attenuated inflammatory
influx (Fig. 10), integral to fibrosis development in this animal
BLM model.

Discussion
MAP3K8 mRNA was found downregulated in both IPF patients
and the corresponding animal model, whereas public scRNAseq

FIGURE 3. Ubiquitous genetic deletion ofMap3k8 exacerbates pulmonary fibrosis. BLM was administered to Map3k8-deficient mice and wt littermates,

and disease development was assessed with standardized assays 14 d post-BLM administration. (A) Kaplan Meyer survival curve. (B) Weight loss post-

BLM administration. (C) Total protein concentration in BALFs, as determined with the Bradford assay. (D) Inflammatory cell numbers in BALFs, as

counted with a hematocytometer. (E) Col1a1 mRNA levels in whole-lung tissue were determined with Q-RT-PCR analysis; values were normalized to the

expression of B2M. (F) Soluble collagen in BALFs was determined with the Sirius Red assay. (G) Representative H&E- and Sirius Red–stained sections of

murine lungs of the indicated genotypes (original magnification 310). (H–J) Indicated respiratory functions were measured with FlexiVent. Statistical

significance was assessed with two-way ANOVAwith Bonferroni post hoc correction. Data are presented as means 6 SEM (n = 5–10; cumulative results

from two separate experiments). *p = 0.05, **p = 0.01, ***p = 0.001.
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data mining suggested that MAP3K8 is expressed in both nHCs
and HCs in the human lung. Genetic deletion of Map3k8 in mice
exacerbated BLM-induced pulmonary fibrosis, whereas bone
marrow transfer experiments indicated that although Map3k8 ex-
pression in both nHCs and HCs exert some protective role in

disease pathogenesis, Map3k8 in HCs has a more dominant role.
Moreover, macrophage-specific deletion of Map3k8 was shown
to be sufficient to exacerbate disease severity, thus confirming a
major role for macrophages in fibrotic responses in the lung and a
role for Map3k8 in the homeostasis of their effector functions.

FIGURE 4. Genetic deletion of Map3k8 from either nHCs or HCs exacerbates pulmonary inflammation and fibrosis. BLM was administered to chimeric

mice bearing HCs with the genetic background of the donor as indicated: wt or knockout (KO) (Map3k82/2) and disease development was assessed with

standardized assays 14 d post-BLM. (A) Schematic representation of bone marrow transfers. (B) Obtained chimeric mice from bone marrow transfers.

(C) Kaplan Meyer survival post-BLM administration. (D) Weight loss post-BLM administration. (E) Total protein concentration in BALFs, as determined

with the Bradford assay. (F) Inflammatory cell numbers in BALFs, as counted with a hematocytometer. (G) Col1a1 mRNA levels in whole-lung tissue were

determined with Q-RT-PCR analysis; values were normalized to the expression of B2M. (H) Soluble collagen in BALFs was determined with the Sirius Red

assay. (I) Representative H&E- and Sirius Red–stained sections of murine lungs of the indicated genotypes (original magnification 310). Statistical

significance was assessed with two-way ANOVAwith Bonferroni post hoc correction. Data are presented as means 6 SEM (n = 5–12; cumulative results

from two separate experiments). *p = 0.05, **p = 0.01, ***p = 0.001.
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Map3k8 deficiency was further shown to decrease Cox-2 mRNA
expression, followed by a decrease in PGE2 expression in the lung,
whereas exogenous administration of (dm)PGE2 reversed the ex-
acerbated fibrotic response of Map3k8 2/2 mice and decreased
disease severity in wt mice.
The expression and/or activation ofMAP3K8 has been shown to

be modulated by multiple inflammatory mediators through their
cognate receptors, such as TLRs, CD40, TNFR1, IL-1R, as well as
different GPCRs. At steady state, MAP3K8 is inactive through the
association with NF-kB p105 and A20-binding inhibitor of NF-kB
2 (ABIN2). Activation of IkB kinase (IKKb) leads to the phos-
phorylation of p105 and its subsequent ubiquitination and pro-
teasomal degradation, thus releasing MAP3K8, which is then
phosphorylated, in turn activating its downstream targets and thus
participating in the regulation of inflammatory responses (7).
However, and given the central role of Map3k8 in regulating in-
flammatory and homeostatic responses, additional levels of regu-
lation of the Map3k8 levels and effector functions have been
reported at the genetic and epigenetic level. MAP3K8 mRNA
expression has been found decreased in intestinal myofibroblasts
isolated from the inflamed ileum of inflammatory bowel disease
patients (12). Decreased MAP3K8 mRNA expression was also
detected in the lung tissue of lung cancer patients correlating with
poor survival, suggested to be imposed through miRNA-370
which targets MAP3K8 transcripts for degradation (9). As
shown in this study, decreased MAP3K8 mRNA levels were de-
tected in the lungs of mice upon BLM-induced pulmonary fibrosis
(Fig. 1) and of IPF patients (Fig. 2), indicating transcriptional or
posttranscriptional downregulation of Map3k8 expression upon
fibrinogenesis in the lung, notwithstanding additional means of
regulation via protein-protein interactions and/or phosphorylation
cascades.
Irrespectively of the regulatory mode of Map3k8 expression,

low Map3k8 levels have been associated with reduced Cox-2 and
PGE2 levels in different cell types and pathophysiological

situations, including inflamed adipocytes (28), intestinal myofi-
broblasts (12), and activated macrophages (29); however, no
such correlation has been reported in the context of pulmonary
fibrosis. As shown in this study, reduced Cox-2 and PGE2 levels
always accompanied Map3k8 genetic deficiency and the asso-
ciated exacerbated fibrotic phenotype (Figs. 8, Supplemental
Fig. 2), which could be reverted by the administration of exog-
enous PGE2 (Figs. 9, 10). PGE2 administration also prevented
disease development in wt mice, as previously reported (30, 31),
whereas no gross pathologic effects were observed (data not
shown) (30, 31).
Therefore, Map3k8 plays a central role in the regulation of local

PGE2 production in the lung. However, additional means of reg-
ulation of PGE2 production have been proposed, via soluble me-
diators and epigenetic changes (reviewed in Ref. 27). Moreover,
little is known on the relative contribution of different cell types in
the overall PGE2 production, although the current dogma, based
mostly on in vitro experiments, suggests alveolar epithelial cells
and fibroblasts as the main producers in the lung (27). However, as
shown in this study in vivo (Fig. 4), both nHCs and HCs produce
PGE2, whereas the overall contribution of HCs (likely macro-
phages) in pulmonary levels was found higher in these experi-
mental settings.
Map3k82/2 mice have been previously reported to be protected

from LPS/D-gal–induced endotoxic shock (32), attributed to de-
fective TNF and chemokine receptors expression from macro-
phages (32, 33). Map3k82/2 mice were also found protected from
experimental encephalomyelitis, attributed to defective IL-17
signaling (34), as well as from Con A (ConA)–induced, T cell–
dependent and TNF-mediated liver inflammation and injury, at-
tributed to defective NKT effector functions (35). However, and
on the contrary, Map3k8 ubiquitous genetic deficiency has been
reported to elevate inflammation and to exacerbate fibrosis in the
small intestine, liver, and lung following Schistosoma mansoni
infection (36), as well as to promote intestinal inflammation and

FIGURE 5. Map3k8 deficiency in either nHCs or HCs

promotes the accumulation of inflammatory cells in the

BALF upon BLM-induced pulmonary fibrosis. (A) Gating

strategy of FACS analysis. (B and C) FACS analysis of the

indicated cell types with the indicated cell markers. Data

are presented as mean 6 SEM. Statistical significance was

assessed with two-way ANOVA with Bonferroni post hoc

correction (n = 5–7; cumulative results from two separate

experiments are shown). *p = 0.05, **p = 0.01, ***p = 0.001.
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tumorigenesis (12, 37). In agreement, in this report, genetic de-
letion of Map3k8 was shown to exacerbate BLM-induced pul-
monary fibrosis (Fig. 3). A similar protective role was previously
shown for urethane-induced lung carcinogenesis (9), thus
extending the mechanistic similarities between IPF and lung
cancer (10) and suggesting a major homeostatic role for Map3k8
in lung pathophysiology and fibrotic responses that may underlie
carcinogenesis.

Map3k8 is expressed from both nHCs and HCs in the lung
(Supplemental Fig. 1) (7), and genetic deficiency in either cellular
reservoir was shown to exacerbate the modeled disease (Fig. 4),
suggesting that MAP3K8-regulated homeostatic mechanisms are
active in both compartments. Although MAP3K8 is thought to be
expressed mainly in HCs, it can also be detected in other cells (7),
including adipocytes (28) and fibroblasts (Supplemental Fig. 1)
(12). Decreased MAP3K8 expression was visualized in IPF

FIGURE 6. Genetic deletion of Map3k8 from macrophages (LysM+ cells) exacerbates pulmonary inflammation and fibrosis. BLM was administered

to LysMMap3k82/2 mice lacking Map3k8 in macrophages (and granulocytes) and wt littermates, and disease development was assessed with stan-

dardized assays 14 d post-BLM. (A) Kaplan Meyer survival and (B) weight loss post-BLM administration. (C) Total protein concentration in BALFs, as

determined with the Bradford assay. (D) Inflammatory cell numbers in BALFs, as counted with a hematocytometer. (E) Col1a1 mRNA levels in whole-

lung tissue were determined with Q-RT-PCR analysis; values were normalized to the expression of B2M. (F) Soluble collagen in BALFs was deter-

mined with the Sirius Red assay. (G) Representative H&E- and Sirius Red–stained sections of murine lungs of the indicated genotypes (original

magnification 310). (H–J) Indicated respiratory functions were measured with flexiVent. Statistical significance was assessed with two-way ANOVA

with Bonferroni post hoc correction. Data are presented as means 6 SEM (n = 5–8; cumulative results from two separate experiments). *p = 0.05,

***p = 0.001.
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(aSMA/ACTA2+) pulmonary myofibroblasts (Supplemental Fig.
1B, 1C), whose accumulation is a major hallmark of pulmonary
fibrosis (1, 2). Decreased MAP3K8 expression was previously
shown for inflammatory bowel disease intestinal myofibroblasts
(12), corelating with reduced COX-2 expression and PGE2 pro-
duction, suggesting similar effects in IPF myofibroblasts. Ac-
cordingly, lung fibroblasts isolated from IPF patients have been
suggested to express reduced levels of COX-2 and PGE2 (38, 39).
Moreover, alveolar epithelial cells have been proposed to produce
PGE2, via Cox-2, which target adjacent fibroblasts (40). In turn,
PGE2 has been shown to decrease fibroblast differentiation and
collagen production (reviewed in Ref. 27) and to promote their
apoptosis (41), likely through the EP2 receptor and disruption of
calcium signaling (42). Therefore, the observed exacerbated fi-
brotic response of chimeric mice lacking Map3k8 in nHCs cells
(Fig. 5) can be partly attributed to the attenuation of the anti-
fibrotic effects of PGE2 on lung fibroblasts.
However, the bone marrow transfer experiments indicated, for

the first time (to our knowledge) on a quantitative basis in vivo
with tandem mass spectrometry, that HCs are the major source of
Map3k8-regulated, Cox-2–mediated, PGE2 production in the lung
in modeled pulmonary fibrosis (Figs. 8, Supplemental Fig. 3).
Moreover, Map3k8 deletion in HCs, phenocopied in the
macrophage-specific deletion, was sufficient for disease exacer-
bation (Figs. 4, 6), corroborating the important role of Map3k8 in
the regulation of macrophage responses, as well as the role of
pulmonary macrophages, per se, in fibrosis development in the
lung. Macrophages are well recognized as essential players in IPF
pathogenesis, as they comprise the major immune cell type
populating the lungs of IPF patients, whereas depletion of cir-
culating monocytes, via genetic or pharmacologic means, attenuates

fibrosis severity in animal models (43–47). Beyond their well-
established roles in apoptotic cell clearance and the production
of profibrotic mediators such as TGFb and IL-13, macrophages
secrete numerous cytokines and chemokines thus modulating the
immune response, as well as matrix metalloproteinases responsi-
ble for extracellular matrix remodeling and resolution. However,
their mode of action remains controversial because they are highly
heterogenous and exhibit remarkable plasticity (48, 49).
Pulmonary macrophages can be grouped into two broad subsets

based on their anatomic location: alveolar macrophages, which
line the surface of alveoli, and interstitial macrophages (IMs)
localized between the alveolar epithelium and the vascular en-
dothelium. Furthermore, mouse alveolar macrophages include
tissue-resident cells, which are long-lived, self-renewing cells
that arise from fetal progenitors (50, 51), as well as monocyte-
derived alveolar macrophages (Mo-AMs) (52, 53). Mo-AMs
originate postnatally from circulating monocytes, are recruited
via a CCL2/CCR2 axis, exhibit an proinflammatory expression
profile, and have been suggested to be the main macrophage
subgroup driving pulmonary fibrosis in mice (54, 55). IMs also
originate from monocytes, and some from the yolk sac are
reprogrammed epigenetically by the local microenvironment,
although it has been suggested that they may serve as an
obligatory intermediate between blood monocytes and alveolar
macrophages (44, 56). Three distinct populations of IMs have
been suggested (IM1-3) based on surface markers exhibiting
differential turnover rates (57). The advent of scRNAseq has
revealed even greater macrophage diversity, and several novel
macrophage subsets have been suggested, defined by the ex-
pression of different chemokines and cell-surface markers such
as M-CSF/M-CSFR, SPP1/MERTK, CX3CR1, Ly6Chi, CD171,

FIGURE 7. Map3k8 deficiency in LysM+ cells promotes the

accumulation of inflammatory cells in the BALF upon BLM-

induced pulmonary fibrosis. (A) Gating strategy of FACS

analysis. (B and C) FACS analysis of the indicated cell types

with the indicated cell markers. Data are presented as mean 6
SEM. Statistical significance was assessed with two-way

ANOVA with Bonferroni post hoc correction (n = 5–7; cu-

mulative results from two separate experiments are shown).

*p = 0.05, **p = 0.01, ***p = 0.001.
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Fra-2, CD300c2, and Lrp5. However, a consensus has not
been reached because data analysis of scRNAseq data and
cluster identification have not yet developed standard operational
procedures and commonly used cell-specific markers. Given
the differential roles that have been suggested for the differ-
ent macrophage subsets and to possibly identify in which
macrophage subtype Map3k8 is found downregulated, we per-
formed reanalysis of the publicly available scRNAseq dataset
GSE122960 (23) (Supplemental Fig. 1). MAP3K8 was found
downregulated in a profibrotic macrophage subpopulation char-
acterized by elevated expression of SPP1, likely corresponding
to the previously reported macrophage subset SPPhi in humans
(58), as well as to the Mo-AMs in mice (54), reported to drive
the pathogenesis of the disease (54, 58). However, de novo
scRNAseq of both lung and BALF cells in the absence of
Map3k8 will be further required to fully appreciate the role of
Map3k8 in macrophages subsets and to obtain additional
mechanistic insights.
Increasing further heterogeneity and complexity, macrophages

can also get polarized, depending on local stimuli, toward two
highly dynamic and overlapping states of activation, classically
activated (by IFN-g and TNF) M1 macrophages or alternatively
activated (by IL-4, IL-13, etc.) M2 macrophages. M1 macro-
phages, which secrete TNF, IL1b, and IL-6, are considered
proinflammatory, whereas M2 macrophages (that can be further
subclassified into a–d), which secrete IL-10 and TGF among
others, are thought to suppress inflammation while promoting

fibroproliferation and uncontrolled repair. Map3k8 deficiency
has been suggested to promote macrophage polarization to M2,
following S. mansoni infection (36), suggesting yet another
profibrotic mechanism that could be regulated by Map3k8 in
macrophages. The promotion of macrophage M2 polarization
upon reduced levels of Map3k8 in IPF macrophages could in-
fluence not only macrophage wound healing effector functions
and fibrosis, but also T cell physiology and functions. As shown
in this study, Map3k8 genetic deletion in HCs (Fig. 3) or spe-
cifically in macrophages (Fig. 4) increased inflammatory cells in
BALFs, including T cells. Moreover, Map3k8 ubiquitous genetic
deletion has been shown to promote Th2 polarization of the
T cell response in the lung (8, 36), whereas IPF is considered as a
type II disease and type 2 cytokines, such as IL-4 and IL-13, are
elevated in IPF (59). T cell functions can be also modulated by yet
another monocytic subtype, namely circulating myeloid-derived
suppressor cells. Increased numbers of myeloid-derived sup-
pressor cells have been found in both IPF patients and the
BLM model, suggested to modulate IPF progression by or-
chestrating immunosuppressive and profibrotic networks (60,
61). Immunosuppressive signals have been also suggested to
emanate from a sessile sub population of alveolar macro-
phages via direct communication, through Cx43, with alve-
olar epithelial cells (62). Moreover, macrophages have been
suggested to direct the metabolism and homeostasis of adjacent
cells (63) such as fibroblasts whose activation includes glycolytic
reprogramming (64).

FIGURE 8. Map3k8 regulates pulmonary Cox-2

expression, AA metabolism, and PGE2 production. (A)

Schematic representation of AA metabolism; measured

lipid species are color coded. (B) Map3k8 and (C) Cox-

2 mRNA levels in whole-lung tissue of the indicated

mice and treatments were determined with Q-RT-PCR

analysis; values were normalized to the expression of

B2M. (D–G) Tandem mass spectrometry determination

of AA and PGE2 metabolites in BALFs. Statistical

significance was assessed with unpaired t test with Welch

correction (two-tailed). Data are presented as means 6
SEM (n = 5–11; cumulative results from two separate

experiments). *p = 0.05, **p = 0.01, ***p = 0.001.
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Notwithstanding the Map3k8 regulation of PGE2 production,
Map3k8 has been previously suggested to modulate, via MAPK
pathways, the expression of various cytokines and chemokines
(65). More specifically, Map3k8 genetic deletion has been
reported to decrease the levels of TNF and IL-1b (32), IL-6,
CXCL2 (MIP-2), and CCL2 (MCP-1) on nonmyeloid cells
(66), as well as CCR1, CCR2, and CCR5 on macrophages
(33). All of these proinflammatory mediators have been found
deregulated in pulmonary fibrosis (48, 49, 65), including the
BLM-induced disease (data not shown) (15, 26); among them,
CCL2 has been shown to be critical for macrophage recruit-
ment (43). mRNA levels of TNF, Il-1b, IL-6, CXCL2, and

CCL2 were found variably decreased in the lung tissue in the
absence of Map3k8 at the peak of the BLM-induced fibrosis
(data not shown). Therefore, and although RT-PCR in whole-
lung tissue at the peak of the disease is not the optimal meth-
odology for this purpose, the effect of Map3k8 deletion on the
levels of proinflammatory mediators cannot account for the
increased fibrosis post-BLM administration in Map3k8 null
mice in these settings.
Further studies, employing inducible deletion of Map3k8 and/or

the use of other fibrotic animal models that bypass inflammation
(i.e., adenoviral delivery of TGFb), will be required to dissect the
effects of Map3k8/Cox-2/PGE2 axis on fibrosis, per se. Moreover,

FIGURE 9. PGE2 restores the profibrotic effects of Map3k8 deficiency and attenuates pulmonary inflammation and fibrosis. dmPGE2 was administered

(i.p.; 10 mg/kg; twice daily) to Map3k82/2 and wt littermate mice undergoing BLM-induced pulmonary fibrosis, and disease development was assessed

with standardized assays 14 d post-BLM. (A) Kaplan Meyer survival and (B) weight loss post-BLM administration. (C) Total protein concentration in

BALFs, as determined with the Bradford assay. (D) Inflammatory cell numbers in BALFs, as counted with a hematocytometer. (E) Col1a1 mRNA levels

in whole-lung tissue were determined with Q-RT-PCR analysis; values were normalized to the expression of B2M. (F) Soluble collagen in BALFs was

determined with the Sirius Red assay. (G) Representative H&E-stained sections of murine lungs of the indicated genotypes and treatments (original

magnification 310). (H–J) Indicated respiratory functions were measured with flexiVent. Statistical significance was assessed with two-way ANOVAwith

Bonferroni post hoc correction. Data are presented as means 6 SEM (n = 6). *p = 0.05, **p = 0.01, ***p = 0.001.
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further lipidomic analysis in IPF and its animal model will be
necessary to fully appreciate the pleiotropic effects of various lipids
(leukotrienes, thromboxanes, and PGs, as well as lysophospholi-
pids) on pulmonary inflammation and fibrosis.
In conclusion, Map3k8 was shown to have a major role in

healthy lung homeostasis, regulating, among others, the local
production of PGE2 and its antifibrotic effects. The development
of fibrosis, in both humans and mice, entails a transcriptional
downregulation of Map3k8 expression in different pulmonary
cells, and especially macrophages. Down regulation of Map3k8
levels results, possibly among others, in the abrogation of Cox-
2–mediated PGE2 production and the alleviation of its lung
specific antifibrotic effects.
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Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, 

Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells  

Αυξημένα επίπεδα αυτοταξίνης σε σοβαρή νόσο COVID-19, συσχετιζόμενα με επίπεδα IL-6, 

βιοδείκτες ενδοθηλιακής δυσλειτουργίας και προβληματικές λειτουργίες δενδριτικών 

κυττάρων 

Η αυτοταξίνη (ATX; ENPP2) είναι μία εκκρινόμενη λισοφωσφολιπάση D που καταλύει την 

εξωκυττάρια παραγωγή λισοφωσφατιδικού οξέος (LPA). Προηγούμενες γενετικές και 

φαρμακολογικές μελέτες έχουν καταδείξει τον παθολογικό ρόλο της ATX και της 

σηματοδότησης του LPA στον τραυματισμό, την φλεγμονή και την ίνωση των πνευμόνων. 

Στον παρόν άρθρο, αυξημένα επίπεδα μεταφραστικού RNA του ENPP2 ανιχνεύθηκαν σε 

ανοσοποιητικά κύτταρα ρινοφαρυγγικών επιχρισμάτων ασθενών με COVID-19. Αυξημένα 

επίπεδα ATX ορού βρέθηκαν σε σοβαρά περιστατικά COVID-19. Τα επίπεδα ΑΤΧ ορού 

συσχετίστηκαν με τα αντίστοιχα επίπεδα ορού της IL-6, καθώς και με βιοδείκτες ενδοθηλιακής 

καταστροφής, προτείνοντας την αλληλεπίδραση του άξονα ΑΤΧ/LPA με περιστατικά 

υπερφλεγμονώδους συνδρόμου και συσχετιζόμενης αγγειακής δυσλειτουργίας στην COVID-

19. Αντιστοίχως, σύμφωνα με δεδομένα από δύο ανεξάρτητες κοόρτεις, χορήγηση 

δεξαμεθαζόνης (Dex) σε ασθενείς υπο μηχανική οξυγόνωση μείωσε τα επίπεδα της ΑΤΧ, 

υποδεικνύοντας πως τα θεραπευτικά οφέλη της Dex συμπεριλαμβάνουν την καταστολή της 

ATX. Επιπροσθέτως, μεγάλης κλίμακας ανάλυση πολλαπλών συνόλων δεδομένων 

αλληλούχισης RNA από μεμονωμένα κύτταρα αποκάλυψε το μεταγραφωμικό τοπίο του 

ENPP2 στην COVID-19. Επίσης, πρότεινε την συμμετοχή της ATX στην ομοιόσταση των 

δενδριτικών κυττάρων, τα οποία επιδεικνύουν τόσο αριθμητικά όσο και λειτουργικά ελλείματα 

κατά την COVID-19. Ως εκ τούτου, η ΑΤΧ πιθανώς να έχει λειτουργικό χαρακτήρα στην 

παθογένεση της COVID-19, προτείνοντας τη φαρμακολογική στόχευση του εν λόγω μορίου 

ως μια επιπρόσθετη πιθανή θεραπευτική επιλογή, τόσο κατά τη διάρκεια όσο και μετά την 

ενδονοσοκομειακή νοσηλεία των ασθενών. 
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Abstract: Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular
production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and
pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in
pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in
immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum
levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding
increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of
the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19.
Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels,
as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the
suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets
revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in
the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19.
Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its
pharmacological targeting might represent an additional therapeutic option, both during and after
hospitalization.

Keywords: COVID-19; ARDS; cytokine storm; vascular dysfunction; pulmonary fibrosis; autotaxin
(ATX; ENPP2); lysophosphatidic acid (LPA); dendritic cells (DCs)
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1. Introduction

The leading symptom of COVID-19, beyond cough and fever, is hypoxemia, leading
to dyspnea in severe cases, attributed to impaired lung mechanics and/or vasoconstric-
tion [1,2]. Endothelial dysfunction is a major characteristic of COVID-19 [3], shared with
hypertension, diabetes, and obesity, the most common comorbidities that are associated
with poor prognosis [1,2]. The respiratory epithelial cell damage that follows viral infection
and replication stimulate, depending on the underlying genetic and metabolic context, a
hyperinflammatory state denominated “cytokine storm” [4]. The excessive production of
pro-inflammatory cytokines, such as TNF and IL-6, further induces endothelial damage
and lung injury, and its more severe form, Acute Respiratory Distress Syndrome (ARDS),
that can result in respiratory and/or multi-organ failure and death [5].

A subset of surviving COVID-19 ARDS-like patients will develop a fibroproliferative
response characterized by fibroblast accumulation and ECM deposition [6], also evident in
postmortem histopathological analysis of the lungs of COVID-19 patients [7]. Moreover,
many discharged COVID-19 patients present with abnormally pulmonary architecture and
functions [8–12], suggesting persisting fibrotic abnormalities, pending long-term follow
up studies. Single-cell RNA sequencing (scRNAseq) analysis and transcriptional profiling
indicated similarities in expression profiles between idiopathic pulmonary fibrosis (IPF) and
COVID-19 [13,14], while CoV-2 infection has been suggested to stimulate the expression
of major pro-fibrotic factors including TGFβ [15]. Vice versa, patients with interstitial
lung diseases (ILD) had an increased risk for severe COVID-19 and poor outcomes (ICU
admittance, death) following CoV-2 infection [16–18].

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D that can be found in
most biological fluids, including blood and bronchoalveolar lavage fluid (BALF), largely
responsible for the extracellular production of lysophosphatidic acid (LPA), a growth
factor-like signaling phospholipid. Increased ATX expression and LPA signaling has been
reported in cancer as well as in chronic inflammatory diseases [19], including IPF [20,21].
Genetic and pharmacologic studies have further uncovered a therapeutic potential for
ATX in IPF [20,22–24], leading to phase III clinical trials [25]. Given the associations of
COVID-19 with pulmonary fibrosis, the pro-fibrotic properties of ATX, as well the many
reported LPA effects on pulmonary cells and especially the vasculature [26], in this study
we explored a possible association of ATX with COVID-19. In this context, we quantified
ENPP2 mRNA levels in nasopharyngeal swabs and ATX protein levels in the sera of
two cohorts of COVID-19 patients, while we performed a large-scale analysis of recently
published scRNAseq COVID-19 datasets.

2. Results
2.1. Increased ENPP2 mRNA Levels in Nasopharyngeal Swab Samples from COVID-19 Patients

As viral infections have been reported to stimulate ENPP2 mRNA expression [27,28],
and to examine if CoV-2 infection has similar effects, we first quantified ENPP2 mRNA
levels with Q-RT-PCR in nasopharyngeal swab samples (Table 1). A significant increase was
found in ENPP2 mRNA expression in mild and severe COVID-19 patients, as compared
to non-infected subjects (Figure 1). Therefore, CoV-2 infection stimulates ENPP2 mRNA
expression in the respiratory epithelial or immune cells that compose the nasopharyngeal
swab samples.
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Table 1. Increased ENPP2 mRNA expression in nasopharyngeal swabs from COVID-19 patients compared to healthy,
non-infected controls.

Negative Healthy Positive Mild Positive Severe/Critical
Number of patients (n) 21 21 21

ATX (2-∆∆Ct, mean ± SD) 2.15 ± 1.37 5.38 ± 2.34 **** 5.76 ± 2.18 ****
Sex

Male
Female

Not recorded

8 (38.09%)
13 (61.9%)

0

10 (47.6%)
9 (42.8%)
2 (9.52%)

17 (80.95%)
4 (19.04%)

0
Age (years, mean ± SD) 50.15 ± 20.86 37.78 ± 11.89 63.38 ± 17.23
Statistical significance was assessed with one-way ANOVA followed by Bonferroni post hoc correction; **** denotes p < 0.0001. ATX values
are presented at Figure 1.
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Mann–Whitney U test. (Β) ROC curves were generated after merging the results for the two positive 
groups (mild and severe/critical), and AUC, 95% CI, p values, and cut-off points with their specific-
ity and sensitivity were calculated. The dotted line (in red) represents perfect chance (positive like-
lihood ratio=sensitivity/(1-specificity) =1). Positive mild versus negative samples: * p = 4 × 10−6, pos-
itive critical/severe versus negative samples: ** p = 2.92 × 10−7. 

2.2. Increased Serum ATX Protein Levels in Severe COVID-19 Patients 
To examine if systemic levels of ATX are possibly increased upon COVID-19, ATX 

was quantified with an ELISA kit in the serum of COVID-19 patients hospitalized at the 
Evangelismos University Hospital (Table 2; completely independent from cohort/Table 
1). The cohort consisted of both WARD (n = 47; no Dex treatment), as well as of Intensive 
Care Unit (ICU) patients, which were further separated in patients receiving dexame-
thasone (Dex) treatment (n = 37) or not (NO Dex; n = 32). A large proportion of patients 
suffered from comorbidities and were receiving a variety of medications prior to admis-
sion, while COVID-19-targeted treatment included azithromycin, chloroquine, and lop-
inavir/ritonavir in different combinations per WHO recommendations at that time (Table 
2). In comparison with WARD patients, ICU patients were hypoxemic (low ratio of arterial 

Figure 1. Increased ENPP2 mRNA expression in nasopharyngeal swab samples from patients with
mild or severe/critical COVID-19. (A) ENPP2 mRNA values (mean 2−∆∆Ct) from the two groups
of patients (n = 21) and the control group (n = 21). The horizontal dotted line indicates the optimal
threshold value (cut-off). Data are represented as box plots; line in the middle, median; box edges,
25th to 75th centiles; whiskers, range of values. p values were calculated with the non-parametric
Mann–Whitney U test. (B) ROC curves were generated after merging the results for the two positive
groups (mild and severe/critical), and AUC, 95% CI, p values, and cut-off points with their specificity
and sensitivity were calculated. The dotted line (in red) represents perfect chance (positive likelihood
ratio=sensitivity/(1-specificity) =1). Positive mild versus negative samples: * p = 4 × 10−6, positive
critical/severe versus negative samples: ** p = 2.92 × 10−7.

2.2. Increased Serum ATX Protein Levels in Severe COVID-19 Patients

To examine if systemic levels of ATX are possibly increased upon COVID-19, ATX
was quantified with an ELISA kit in the serum of COVID-19 patients hospitalized at the
Evangelismos University Hospital (Table 2; completely independent from cohort/Table 1).
The cohort consisted of both WARD (n = 47; no Dex treatment), as well as of Intensive Care
Unit (ICU) patients, which were further separated in patients receiving dexamethasone
(Dex) treatment (n = 37) or not (NO Dex; n = 32). A large proportion of patients suffered
from comorbidities and were receiving a variety of medications prior to admission, while
COVID-19-targeted treatment included azithromycin, chloroquine, and lopinavir/ritonavir
in different combinations per WHO recommendations at that time (Table 2). In compar-
ison with WARD patients, ICU patients were hypoxemic (low ratio of arterial oxygen
partial pressure to fractional inspired oxygen; PaO2/FiO2), lymphopenic (low lymphocyte
numbers), and had increased LDH levels (Table 2), all three suggested as disease severity
markers.
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Table 2. Clinical characteristics and laboratory data of COVID-19 patients hospitalized at the Evangelismos general hospital.

WARD No Dex ICU No Dex ICU + Dex
Number of patients (n) 47 37 32

ATX (ng/mL, mean ± SD) 310.32 ± 98.85 * 443 ± 172.90 246.15 ± 73.74 *
Sex

Male
Female

33 (70.21%)
14 (29.78%)

31 (83.78%)
6 (16.21%)

22 (62.5%)
10 (31.25%)

Age (years, mean ± SD) 54.63 ± 15.46 63.54 ± 10.89 65.5 ± 10.7
Comorbidities n (%)

Hypertension
Diabetes

Coronary artery disease
COPD

Asthma
Hyperlipidemia

Hepatitis

13 (27.65%)
4 (8.51%)
8 (17.02%)
1 (2.12%)
2 (4.25%)
9 (19.14%)

0 (0%)

17 (45.94%)
5 (13.51%)
4 (10.81%)
1 (2.7%)
1 (2.7%)

9 (24.32%)
1 (2.7%)

12 (37.5%)
5 (15.62%)
4 (12.5%)
2 (6.25%)
1 (3.12%)
8 (25%)
0 (0%)

COVID-19 treatment
Azithromycin/chloroquine/lopinavir/ritonavir

Azithromycin/chloroquine
Lopinavir/ritonavir/chloroquine

Chloroquine Plasma

0
6
0
0
0

11
7
2
3
1

Clinical measurements
Mean arterial pressure (mmHg) 83.19 ± 8.86 82.83 ± 16.52 77.55 ± 8.54

PaO2/FiO2 (mmHg) 301.5 ± 79.81 * 194.86 ± 86.64 85.94 ± 15.97 *
Glucose (mg/dL) 133.5 ± 113.3 164.53 ± 77.73 164.06 ± 75.40

Creatinine (mg/dL) 0.9 ± 0.33 1.02 ± 0.32 0.95 ± 0.72
CRP (mg/dL) 6.8 ± 8.96 14 ± 10.17 13.83 ± 9.6

Total bilirubin (mg/dL) 0.5 ± 0.33 0.73 ± 0.5 0.61 ± 0.29
White blood cell count (per µL) 6995 ± 3468 10,125 ± 4633 11,705 ± 10,372

Neutrophils (%) 69.34 ± 13.51 81.34 ± 6.64 83.12 ± 12.2
Lymphocytes (%) 24.03 ± 10.89 * 12.63 ± 5.63 11.12 ± 11.23
Platelets (per µL) 240,297 ± 110,028 237,783 ± 101,338 257,000 ± 79,581

INR (median IQR) 1.06 ± 0.09 2.07 ± 5.73 1.26 ± 0.65
D-dimer (pg/mL) 1.19 ± 1.72 0.47 ± 0.26 1.39 ± 0.93

AST (IU/L) 36.65 ± 30.65 54.18 ± 39.95 121.4 ± 329.9
ALT (IU/L) 33.15 ± 23.58 45.9 ± 28.08 60.8 ± 72.4
LDH (U/L) 286.36 ± 122.08 * 498.48 ± 242.34 591.23 ± 490.84

Fibrinogen (mg/dL) 514.06 ± 176.18 638.18 ± 158.76 630.3 ± 172.2
Ferritin (pg/mL) 513.48 ± 815.55 2786 ± 694.48 912.47 ± 826.91
APACHE II score 5.25 ± 2.94 14.27 ± 5.08 15.4 ± 3.89

SOFA score 2 ± 1 6.83 ± 3.08 5.4 ± 1.81
Statistical significance with ICU NO Dex group values was assessed with one-way ANOVA followed by Bonferroni post hoc correction; *
denotes p < 0.0001. ATX values appear at Figures 2, 3, S1 and S2.

Increased ATX serum concentrations were discovered in ICU patients (not receiving
Dex) as compared with WARD patients (Figure 2A), suggesting a possible association of
ATX with disease severity. However, no substantial, statistically significant correlation was
observed independently with the applicable severity markers (data not shown and Table 2);
no statistically significant differences of ATX levels between the sex or the comorbidities of
COVID-19 patients was detected (Figure S1).
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Figure 2. Increased serum ATX protein levels in COVID-19 patients hospitalized in the intensive
care unit (ICU), correlating with increased IL-6 levels. (A) ATX protein levels were measured with
a commercial ELISA kit in the sera of COVID-19 patients hospitalized (without Dex treatment) in
the COVID-19 Ward (n = 47) or the ICU (n = 37) of the Evangelismos hospital. Statistical signifi-
cance, given the normal distribution of values, was assessed with an unpaired t-test. **** denotes
p < 0.0001. (B) ATX serum levels correlated with serum IL-6 levels (n = 29), as assessed with Spearman
correlation (r(s)).

Among the different cytokines that have been reported, with great variance, to get
elevated in the COVID-19-induced cytokine storm, IL-6 was found to be the most predictive
one [29,30], while in this cohort only IL-6 could be detected in high amounts; the IL-6 levels
in some patients reached the upper detection threshold (Figure 2B). Moreover, IL-6 has
been reported to stimulate ATX expression in different contexts [31,32]. Therefore, we next
examined if ATX and IL-6 serum levels correlate, to discover if, most importantly, ATX
levels correlated significantly with IL-6 levels in the serum of ICU patients (not receiving
Dex) (Figure 2B), suggesting a possible interplay of ATX/LPA with the cytokine storm in
COVID-19.

ICU non-survivors in this cohort had higher levels of the endothelial dysfunction
markers soluble E-selectin (sE-sel), soluble P-selectin (sP-sel), soluble intercellular adhesion
molecule 1 (sICAM-1), and angiopoietin 2 (ANG-2) when compared to survivors, as recently
reported using a subset of the current Evangelismos cohort samples [33]. Interestingly,
the increased ATX protein levels correlated with the increased protein levels of sE-sel and
sICAM (Figure S2) in ICU patients, suggesting a role for ATX/LPA in COVID-19-induced
endothelial dysfunction.

2.3. Dex Therapeutic Effects in COVID-19 Include the Suppression of ATX Serum Levels

The first line of therapy for many inflammatory diseases as well as respiratory in-
fections is Dex, which lowers the expression of pro-inflammatory cytokines including
IL-6, and which has been proven effective in COVID-19 patients requiring, invasive or
not, oxygenation [34,35]. Therefore, we next examined ATX serum levels in intubated,
or not, ICU patients receiving, or not, Dex treatment. Remarkably, Dex treatment was
discovered to potently suppress ATX serum levels in ventilated patients (Figure 3A), while
intubated ICU patients receiving no Dex presented with the highest overall ATX serum
levels. Identical results were obtained in another cohort of ICU patients from the University
hospital of Patras (Table 3) (Figure 3B), indicating that the therapeutic benefits of Dex
include the suppression of ATX serum levels.
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Table 3. Clinical characteristics and laboratory data of COVID-19 patients hospitalized at the ICU of the University Hospital
of Patras.

ICU No Dex ICU + Dex

Number of patients (n) 12 23

ATX (ng/mL, mean ±SD) 624.36 ± 203.5 404.16 ± 145.5 **

Sex
Male
Female

9 (75%)
3 (25%)

18 (78.26%)
5 (21.73%)

Age (years, mean ±SD) 66.75 ± 13.31 59.43 ± 15.42

Comorbidities n (%)
Hypertension
Diabetes
Coronary artery disease
COPD
Asthma
Hyperlipidemia
Hepatitis

5 (41.6%)
0 (0%)

2 (16.6%)
0 (0%)
0 (0%)
3 (25%)

(%)

10 (43.47%)
4 (17.39%)
1 (4.34%)
2 (8.69%)

0 (0%)
6 (26.08%)

(%)
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Table 3. Cont.

ICU No Dex ICU + Dex

COVID 19 treatment

Azithromycin/chloroquine/lopinavir/ritonavir
Azithromycin/chloroquine
Lopinavir/ritonavir/chloroquine
Chloroquine
Plasma

4 (33.33%)
6 (50%)

1 (8.33%)
0 (%)
0 (%)

0 (0%)
5 (21.73%)

0 (0%)
0 (%)
0 (%)

Clinical measurements

Glucose (mg/dL) 120.5 ± 24.57 154.04 ± 47.98 *
Creatinine (mg/dL) 0.95 ± 0.42 0.93 ± 0.38
CRP (mg/dL) 8.53 ± 5.51 15.55 ± 12.68
Total bilirubin (mg/dL) 0.67 ± 0.27 0.7 ± 0.36
Lymphocytes (absolute number) 0.62 ± 0.35 0.83 ± 0.5
INR (median IQR) 1.09 ± 0.13 1.07 ± 0.12
D-dimer (pg/mL) 2.21 ± 2.14 1.45 ± 1.72
LDH (U/L) 370 ± 129 455.08 ± 188.56
Fibrinogen (mg/dL) 630.55 ± 168.1 545 ± 182.32
Ferritin (pg/mL) 950 ± 382.64 1131.09 ± 1223.55

Statistical significance was assessed with an unpaired t-test; *, ** denotes p < 0.05, p < 0.01. ATX values appear in Figure 3.

Moreover, ATX levels in ICU patients not receiving Dex treatment negatively affected
survival, and non-surviving ICU patients receiving no Dex presented with the higher
overall ATX serum levels (Figure 3C,D).

2.4. The ENPP2 Expression Landscape in COVID-19

To identify possible ATX expressing cells in the nasopharyngeal swab (NS) samples
(Figure 1), peripheral blood monocytes (PBMCs) in the circulation (Figures 2 and 3), as well
as in BALF and lung tissue cells, we re-analyzed and mined several scRNAseq datasets
of COVID-19 patients and healthy controls, from recent high impact studies (Table 1),
collectively interrogating the gene expression of more than 106 cells; cell clustering and
naming followed that of the original analyses, which both varied between studies/datasets.

In NS cells, ATX was found to be mainly expressed by natural killer cells (NKs) and
monocyte-derived macrophages (MoAM) (Figures 4A and S3A), as detected in two NS
datasets (Table 1). In the circulation, and in both PBMCs datasets (Table 1), ENPP2 expres-
sion was mainly detected, remarkably, in plasmacytoid DCs (pDCs; Figures 4B and S3B).
In BALF cells (Table 1), ENPP2 expression was also mainly detected in pDCs, as well as
MoAMs (Figure 4C and Figure S3C). In lung tissue (Table 1), ENPP2 was found to be pri-
marily expressed in arterial and mesothelial cells, as well as in cells of the monocytic lineage
(Figure 4D and Figure S3D). A similar lung tissue profile was also detected (Figure S3E) in
an IPF scRNAseq dataset (Table 1), extending the similarities of pathogenic mechanisms
between IPF and COVID-19 and supporting a common role for ATX.
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(D) lung tissue; Table 1). UMAP plots (on the left) depict the cellular composition of these sites, while dot plots (on the right)
the expression pattern of ENPP2 in the detected cell types. Dot plots cell type color coding refers to that of the respective
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p < 0.05; *** denotes p < 0.01 (PMIDs: (A) 32591762; (B) 32810438; (C) 32398875; (D) 33257409; Table S1).

2.5. A Role for ATX in the Homeostasis of Dendritic Cells?

Given the ENPP2 expression from monocytic cells and especially pDCs, we next
interrogated ENNP2 mRNA levels specifically in pDCs from COVID-19 patients in compar-
ison with control samples, subsets of the datasets analyzed in Figure 4. Confined by the
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limited numbers of lung pDCs, as well as the detected genes per cell and the relatively low
expression levels of ENPP2, the analysis indicated a statistically significant overexpression
of ENPP2 in COVID-19 circulating pDCs (Figure 5B). Noteworthily, DCs are the highest
ENPP2 expressing immune cells during healthy conditions, as identified upon querying
a large-scale RNAseq dataset interrogating gene expression of 28 immune cell types (79
healthy volunteers and 337 patients from 10 immune-related diseases) [36] (Figure S4A).
Similar analysis indicated that the main LPA receptor expressed by DCs, among the at least
six LPA receptors reported thus far [37], is LPAR2 (Figure S4B), which has been suggested
to convey anti-inflammatory LPA signals to DCs [38]. Furthermore, increased ENPP2
mRNA expression was detected in pDCs from patients with systemic lupus erythemato-
sus (SLE), adult-onset Still’s disease (AOSD), mixed connective tissue disease (MCTD),
and idiopathic inflammatory myopathy (IIM) than in DCs from healthy volunteers (Fig-
ure S4C), suggesting that overexpression of ENPP2 in pDCs may be a common theme in
inflammation.
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Figure 5. ENPP2 mRNA expression is upregulated in peripheral pDCs and lung tissue DCs of COVID-19 patients.
(A–D) Differential expression of ENPP2 in pDCs of COVID-19 patients versus healthy controls: (A) nasopharyngeal swabs;
(B) PBMC; (C) BALF; (D) lung tissue. ENPP2 mRNA expression was found up-regulated in peripheral (B) pDCs of
COVID-19 patients. (E) Differential expression analysis indicates increased ENPP2 mRNA expression in COVID-19 lung
tissue DCs compared to healthy controls. (F) Venn diagrams of deregulated genes in lung DCs. Differential expression was
performed using a Wilcoxon rank sum test; FC > 1.2 and Bonferroni corrected p < 0.05; *** denotes Bonferroni adjusted
p < 0.01. (PMIDs: (A) 32591762; (B) 32810438; (C) 32398875; (D) 33257409; Table S1).

Finally, and to gain mechanistic insights into the possible role of ATX in DC home-
ostasis upon COVID-19, we first analyzed differential gene expression in COVID-19 DCs
(as pDCs were too few), from the only COVID-19 lung dataset [13] allowing such analysis,
as well as in ENPP2-expressing (ENPP2+) DCs (Table S5). Increased ENPP2 expression
was also detected in all lung DCs (Figure 5E), while comparative analysis (Venn diagrams
Figure 5F) highlighted two genes upregulated in ENPP2+ COVID-19 DCs, transmembrane
protein 176B (TMEM176B) and CD1a, that have been both proposed as DC differentiation
and/or maturation markers [39–43], suggesting that ENPP2 expression may modulate DC
homeostasis.
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3. Discussion

Previous studies have shown that HCV, HIV, and HBV viruses increase Enpp2 mRNA
expression in infected cells and/or raise systemic ATX levels [27,44,45]. As shown here,
increased ENPP2 mRNA expression was detected in nasopharyngeal swab samples from
COVID-19 patients in comparison to non-infected healthy controls (Figure 1), while scR-
NAseq re-analysis revealed that the highest ENPP2 expressing cells in swabs are immune
cells (Figures 5A and S5A), suggesting that CoV-2 infection stimulates ENPP2 expression
from immune cells in the nasopharynx. LPA, the enzymatic product of ATX and its effector
molecule, has been shown to directly affect HCV viral infection and replication [27,28],
suggesting that a similar autocrine mode of action may be in play in COVID-19, where
ATX produced by the infected host cell would stimulate local LPA production, in turn
facilitating viral entry and replication.

Increased serum ATX protein have been reported in cancer, liver diseases, as well
as respiratory diseases including asthma and pulmonary fibrosis [19,46], while increased
levels of serum ATX were recently reported in ARDS [47]. Here, increased ATX sera levels
were detected in ICU-hospitalized COVID-19 patients (receiving no Dex treatment) com-
pared to patients with less severe disease (Figure 2), suggesting increased ATX expression
as an additional commonality of ARDS and COVID-19.

Several studies have indicated a deregulated serum lipid profile of COVID-19 patients,
mainly focusing on fatty acids and triglycerides (reviewed in [48]); however, little is known
on phospholipid homeostasis upon CoV-2 infection. As ATX is largely responsible for
extracellular LPA synthesis, it would be complementary to quantify LPA levels in the same
samples of this study. However, the analyzed serum samples cannot be used because blot
clotting and platelet activation stimulate massive LPA release [49]. Moreover, all samples
should have been collected in siliconized tubes, to avoid the known attachment of lipids to
tubing, and kept at –80 ◦C or lower without repeated freeze thawing [48]. Therefore, a new,
multi-controlled, perspective study will be necessary to assess the levels of the different
LPA species, as well as related phospholipids, such as LPC, LPE, LPS, and S1P, with whom
LPA shares common interconnected biosynthetic pathways.

The origin of serum ATX is not completely deciphered; however, >40% of mouse serum
constitutively active ATX has been suggested to originate from the adipose tissue [50],
which was shown to be able to modulate the pathophysiology of distant metabolically
active organs [51,52]. Moreover, serum ATX has been reported to correlate with insulin
resistance in older humans with obesity [53], while mice with heterozygous Enpp2 de-
ficiency were protected from HFD-induced obesity and systemic insulin resistance [52].
Several additional reports have incriminated the ATX/LPA axis in the regulation of glucose
homeostasis and insulin resistance (reviewed in [54]), among the main comorbidities of
COVID-19, suggesting adipose tissue-derived ATX as a possible pathologic link between
obesity and COVID-19. No correlation of ATX serum levels with the related underlying
comorbidities of COVID-19 patients, cardiovascular diseases, diabetes, and dyslipidemia
(Figure S1B) or the body mass index (BMI; data not shown) of patients was observed.
However, the lack of correlation could be due to the heterogeneity and size of the examined
cohorts, as well as due to the corresponding treatments the patients were receiving for their
underlying pathologic conditions prior to CoV-2 infection and hospitalization. In partic-
ular, several reports have associated dyslipidemia with increased severity and mortality
of COVID-19 (reviewed in [55]), which led to suggestions for lipid-lowering therapies of
COVID-19 patients [56], including the administration of statins [57], that inhibit HMG-
CoA reductase—a rate-limiting enzyme for cholesterol synthesis, to COVID-19 patients.
However, results from clinical trials have been controversial [58–60], and larger studies
are needed to reach safe conclusions. Interestingly, statins have been reported to inhibit
LPA effects on RhoA activation [61], as well as the proliferation of smooth muscle cells and
MCP-1 expression via Rac1 [62].

An additional possible source of serum ATX in disease states, beyond the adipose
tissue, is the liver. Increased ATX expression has been reported in chronic liver diseases of
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different etiologies, associated with shorter overall survival [27], while the genetic deletion
of ATX from hepatocytes [27], or as discussed above adipocytes [51], attenuated liver
steatosis and fibrosis. Therefore, increased levels of serum ATX are expected upon liver
damage, whereas aberrant liver functions have been reported in COVID-19, irrespectively
of pre-existing liver disease [63]. On the other hand, cirrhotic patients have high rates
of liver failure and death from respiratory failure upon CoV-2 infection, attributed to
increased systemic inflammation, immune dysfunction, and vasculopathy [63]. Therefore,
ATX could be also a pathologic link between liver damage and COVID-19.

Plasma ATX levels have been recently reported to correlate with IL-6 levels in severe
ARDS patients [47], as well as acute-on-chronic liver failure (ACLF) patients [64], as shown
here in the serum of ICU COVID-19 patients (Figure 2). Increased serum IL-6 levels have
been reported in COVID-19 patients, correlating with the severity of COVID-19 pneumonia
and mortality risk [65], or respiratory failure and the need for mechanical ventilation [66].
Meta-analyses of published studies on COVID-19 laboratory findings indicated that serum
levels of IL-6 were among the most predictive biomarkers [29,30]. Interestingly, components
of the COVID-19 cytokine storm (IL-6, TNF, and IL-1β) have been suggested to stimulate
ATX expression and/or activity in different cell types, while, vice versa, LPA has been
reported to stimulate TNF and IL-6 expression in different contexts [22], suggesting a
possible interplay of the COVID-19 cytokine storm and the ATX/LPA axis.

Dex treatment, a potent suppressor of systemic inflammation including IL-6, has
been shown to reduce mortality in hospitalized COVID-19 patients under oxygen sup-
plementation treatment or mechanical ventilation [34,35]. Dex treatment has been shown
to decrease ATX (as well as IL-6) levels in the mouse adipose tissue and plasma [67], as
well as in irradiated mammary fat pad [68]. As shown here (Figure 3), Dex treatment of
mechanically ventilated patients drastically reduced their ATX serum levels, indicating that
the therapeutic effects of Dex in COVID-19 include the suppression of ATX serum levels.

An essential role for ATX/LPA in embryonic vasculature has been well established
through genetic studies in both mice [69–71] and zebrafish [72]. In adult mice, ENPP2
has been discovered as a high priority candidate gene for pulmonary hemorrhage upon
SARS/MERS-CoV infection [73,74], while vascular leak has been suggested to be among
the main pathological effects of ATX/LPA in pulmonary pathophysiology and fibrosis in
mice [21,22]. As shown here, ENPP2 mRNA expression in the COVID-19 lung tissue was
detected mainly in artery cells D and Figure S3D), while high ATX expression from ECs
in HEVs in lymph nodes has been previously reported [75]. Moreover, and in the same
context, a plethora of LPA in vitro effects on endothelial cells has been suggested, with
some controversy, including endothelial permeability, leukocyte adhesion, and cytokine
expression, as previously reported in detail [26]. Among them, LPA has been suggested
to stimulate the expression of E-sel from human aortic endothelial cells [76–78], a cell
surface adhesion molecule regulating interaction with leukocytes. As shown here, ATX
serum levels correlated with the corresponding sE-sel and sICAM serum levels (Figure
S2), which has been independently associated, in the same samples, with mortality of
COVID-19 ICU patients [33], suggesting that ATX/LPA effects in COVID-19 may also
include vasculopathy.

IPF macrophages have been previously shown to stain for ATX, and conditional
genetic deletion of ATX from macrophages (LysM+ cells) in mice, reduced BALF ATX
levels and disease severity in modeled pulmonary fibrosis [20]. scRNAseq analysis of
BALF cells from COVID-19 patients, where macrophages predominate, indicated that
ENPP2 mRNA expression was detected in different macrophage subpopulations (Figure
4C/UMAP, S3C/UMAP), pending FACS validation, where it could modulate their matu-
ration in an autocrine mode via LPA [79–81]. LPA has also been suggested to stimulate,
in vitro, the conversion of monocytes to DCs [38,82,83]. Interestingly, ENPP2 mRNA ex-
pression was mainly detected in pDCs among all PBMCs and BALF cells in COVID-19
(Figure 4B,C and Figure S3B,C). pDCs are the principal interferon (IFN) type I producing
cells in the human blood and can be rapidly recruited to inflamed sites [84]. Circulating
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and lung pDCs have been shown to be diminished in COVID-19 [85,86], while IFN type
I responses were highly impaired [87,88]. ENPP2 mRNA expression was found upregu-
lated in circulating pDCs (Figure 5B), and lung DCs (Figure 5E) from COVID-19 patients
in comparison to cells from healthy controls. pDC development and homeostasis are
regulated by the transcription TCF4 [89], which has been reported to be modulated by
LPA in colon cancer cells [90], suggesting that ENPP2 expression from pDCs and the local
production of LPA modulates, in an autocrine manner, pDC development and homeostasis.
The hypothesis is further supported from the genes that have been discovered, pending val-
idation, to be increased in COVID-19 DCs, possibly regulated by ENPP2 (Figure 5E). CD1a
binds and presents to T-cell lipid metabolites and PLA2-synthesised fatty acid neoantigens
and has been found to be expressed in immature DCs in mucosal surfaces, including the
bronchus [39–41]. Tmem176B has also been associated with an immature state of dendritic
cells [42,43], suggesting that ENPP2 expression from COVID-19 pDCs, via LPA, delays their
maturation. Although LPA signals in most cell types are considered pro-inflammatory and
pro-surviving, an anti-inflammatory role of LPA, via LPAR2—the main subtype expressed
in DCs (Figure S4B), has been proposed previously for DCs [38], further supporting a
possible role for ATX/LPA in suppressing DC responses.

Taken together, a role for ATX/LPA in COVID-19 pathogenesis seems likely, possibly
as a component of the cytokine storm perpetuating hyperinflammation and stimulating
endothelial damage, as well as a regulator of the mononuclear phagocyte system and a
suppressor of (p)DCs responses, non-withstanding its established role in fibrosis. Dex
treatment in mechanically ventilated patients decreased ATX levels, indicating that the
therapeutic effects of Dex in COVID-19 include the suppression of the ATX/LPA axis
and that ATX levels can be druggable. More importantly, and given that COVID-19 and
IPF share risk factors for disease severity, such as age/sex and comorbidities, existing
and developing anti-fibrotic therapies have been suggested as additional therapeutic
opportunities in COVID-19 [91–93]. One of the novel candidates target ATX is currently in
clinical trials phase III in IPF [25]. Given the multiple possible roles of ATX in COVID-19,
ATX inhibition could offer additional therapeutic options in COVID-19 management, both
during and after hospitalization.

4. Materials and Methods
4.1. Human Patients and Samples

All studies were performed in accordance with the Helsinki Declaration principles. All
collected data were anonymized in standardized forms, and informed consent was obtained
from all individuals or patients’ next-of-kin for severe cases. All available patient personal,
epidemiological, clinical, and experimental data are summarized in the corresponding
cohorts (Tables 1–3). All three cohorts were completely independent, and there was no
overlap between swab and blood samples.

Cohort 1: Nasopharyngeal swab (NS) samples were collected upon routine diagnosis
from adult patients tested positive in SARS-CoV2 RNA PCR and showing no or mild
COVID-19 clinical symptoms, including cough, sore throat, mild fever below 38 ◦C, and
loss of smell (positive mild group) or being hospitalized in the intensive care unit (ICU)
with severe/critical symptoms, such as respiratory failure, septic shock, acute thrombosis,
and multiorgan dysfunction (positive severe/critical group). The control group consisted
of individuals with a negative SARS-CoV2 RNA PCR.

Cohort 2: Serum samples were collected with standardized procedures from COVID-
19 patients admitted to the specialized COVID-19 WARD or to the intensive care unit
(ICU) of the Evangelismos General Hospital from 24 March to 2 November 2020. SARS-
CoV-2 infection was diagnosed by real-time reverse transcription PCR in nasopharyngeal
swabs. The study was approved by the Evangelismos Hospital Research Ethics Committee
(#170/24-4-2020).

Cohort 3: Serum samples were collected with standardized procedures from COVID-
19 patients admitted to intensive care unit (ICU) of the University Hospital of Patras from
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24 April to 6 December 2020. The study was approved by the University Hospital of Patras
Research Ethics Committee (#216/08-05-2020).

4.2. Enzyme-Linked Immunosorbent Assay (ELISA)

ATX and IL-6 protein levels were quantified with dedicated ELISA kits according to
the manufacturer’s instructions (R&D Systems Inc., Minneapolis, MN, USA, and Invitrogen,
ThermoFisher Scientific, Waltham, MA, USA, respectively). Measurements were performed
in a blinded fashion in triplicate using a Triturus automated analyzer (Grifols, Barcelona,
Spain). The presented results on ELISA quantification of soluble E-selectin (sE-sel) and P-
selectin (sP-sel), ICAM, and ANG2 in the same samples, has been reported previously [33].

4.3. RNA Extraction and Q-RT-PCR

Total RNA extraction from nasopharyngeal swab samples was performed using a
MagNA Pure LC Total Nucleic Acid Isolation Kit using a MagNa Pure LC 2.0 automated
nucleic acid purifier (Roche, Basel, Switzerland), and viral RNA was quantified with a
LightMix Modular SARS-CoV-2 RdRP Kit and a LightCycler Multiplex RNA Virus Master
kit (Roche, Basel, Switzerland). ENPP2 mRNA levels were quantified with Q-RT-PCR
using a SYBR Green-based Luna® Universal qPCR Master Mix (New England Biolabs,
Ipswich, MA, USA) (ENPP2: forward: 5′- ACT CAT GAA GAT GCA CAC AGC -3′;
reverse 5′- CGC TCT CAT ATG TAT GCA GG -3′; product length 131 bp). Normalization
was performed with the house-keeping gene 14-3-3-zeta polypeptide (YWHAZ), and the
relative quantification method 2−∆∆Ct was utilized.

4.4. Bulk/Single Cell RNA-seq Data Analysis and Mining

The available single cell RNA-seq object was mined for each one of the datasets
(Table 1) using Seurat package v3 [94]. Marker selection and DEA were performed using
Wilcoxon Rank Sum test (FC > 1.2; Bonferroni adj. p < 0.05). For identifying pDCs in the
lung dataset of [13], DCs—as initially marked—were isolated, and principal components
were calculated post to variable genes identification and data scaling using default pa-
rameters. The 30 first principal components were used to construct an SNN graph, while
clusters were defined with a resolution of 0.8. pDCs were identified using marker genes
reported in the cell atlas of [95].

Preprocessed read count matrices of [36] found here were analyzed using the metaseq-
R2 package [96]. More specifically, reads were EDASeq normalized, filtered using default
parameters, and then the PANDORA algorithm was used to combine the results of DE-
Seq [97], DESeq2 [98], limma-voom [99], edgeR [100], and ABSSeq [101] methods. DEGs
were defined using a FC > 1.2 and FDR adj. meta p-value < 0.05.

4.5. Statistical Analysis

Statistical significance was assessed with Prism (GraphPad, San Diego, CA, USA)
software with the appropriate test according to the distribution of values and their com-
plexity, as detailed in each figure legend. Statistical tests used include the non-parametric
Mann–Whitney U test, unpaired t-test, Spearman correlation, 2-way ANOVA followed
by Bonferroni post hoc correction, Wilcoxon rank sum test-Bonferroni correction, and
Kruskal–Wallis and Dunn post hoc test.
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Το λυσοφωσφατιδικό οξύ είναι ένα προφλεγμονώδες ερέθισμα των επιθηλιακών κυττάρων 

εσπειραμένων σωληνοειδών 

Ο όρος χρόνια νεφρική νόσος (CKD) αναφέρεται σε ένα φάσμα ασθενειών που 

χαρακτηρίζονται από νεφρική ίνωση, μόνιμες αλλοιώσεις της νεφρικής δομής και χαμηλό 

ρυθμό σπειραματικής διήθησης. H παρατεταμένη καταστροφή του επιθηλίου των 

σωληνοειδών περιλαμβάνει μία σειρά από αλλαγές που εν τέλει οδηγούν σε CKD, 

υπογραμμίζοντας της σημασία του επιθηλίου των σωληνοειδών στην εν λόγω διαδικασία. Το 

λυσοφωσφατιδικό οξύ (LPA) είναι ένα βιοενεργό λιπίδιο που σηματοδοτεί κυρίως μέσω έξι 

συγγενών υποδοχέων και εμπλέκεται σε διάφορες παθολογικές συνθήκες χρόνιας φλεγμονής. 

Σε αυτή την αναφορά ερεθίσαμε ανθρώπινα επιθηλιακά κύτταρα των εγγύς εσπειραμένων 

σωληναρίων (HKC-8) με LPA και άλλους 175 πιθανούς παθολογικούς παράγοντες, ενώ 

ταυτοχρόνως ανιχνεύσαμε τα επίπεδα 27 ενδοκυττάριων φωσφοπρωτεϊνών και 32 

εξωκυττάριως εκκρινόμενων μορίων με μέθοδο πολλαπλής ELISA. Αυτή η ποσοτικοποίηση 

αποκάλυψε μία μεγάλη ποσότητα πληροφοριών σχετικά με την σηματοδότηση και την 

φυσιολογία των HKC-8 κυττάρων, οι οποίες μπορούν να επεκταθούν και σε άλλα επιθηλιακά 

κύτταρα των εγγύς εσπειραμένων σωληναρίων. Οι αποκρίσεις στο LPA ομαδοποιήθηκαν μαζί 

με προφλεγμονώδη ερεθίσματα, όπως αυτό του TNF και της IL-1, προωθώντας τη 

φωσφορυλίωση σημαντικών φλεγμονωδών κόμβων σηματοδότησης, συμπεριλαμβανομένων 

των CREB1, ERK1, JUN, IκBα και MEK1, όπως επίσης και την έκκριση φλεγμονωδών 

παραγόντων κλινικής σημασίας, συμπεριλαμβανομένων των CCL2, CCL3, CXCL10, ICAM1, 

IL-6, and IL-8. Τα περισσότερα εξ αυτών παρατηρήθηκαν για πρώτη φορά στα επιθηλιακά 

κύτταρα των εγγύς εσπειραμένων σωληναρίων. Η επαγωγή μονοπατιών μεταγωγής σήματος 

από το LPA επιβεβαιώθηκε με την χρήση φαρμακολογικών δοκιμασιών. Η ανίχνευση των 

παραπάνω μονοπατιών και η έκκριση φλεγμονωδών παραγόντων προσφέρουν καινοτόμα 

στοιχεία για τον πιθανό ρόλο του LPA στην παθογένεση της CKD. 
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Abstract: Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis,
permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-
tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance
of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals
mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory
pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells
(HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels
of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This
quantification revealed a large amount of information concerning the signaling and the physiology
of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses
clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation
of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκBα, and MEK1, as
well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10,
ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells.
The identified LPA-induced signal-transduction pathways, which were pharmacologically validated,
and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in
CKD pathogenesis.

Keywords: lysophosphatidic acid; inflammation; tubular epithelial cells; cytokines

1. Introduction

Chronic kidney disease (CKD), with a worldwide prevalence of 13.4% [1], refers to
a spectrum of diseases defined by permanent alterations in kidney structure or function.
The most prominent pathological characteristic of CKD is renal fibrosis, while the gradual
replacement of podocytes (in the glomeruli) and the tubulointerstitium with an extracellular
matrix (ECM) leads to irreversible nephron loss [2,3]. Renal tubular epithelial cells (TECs)
are the cells lining the nephrons, and the ones responsible for the selective transport of
minerals, organic compounds, and water into and out of the tubular fluid of the nephrons,
however, they are vulnerable to injuries. An injury can cause the loss of epithelial-cell po-
larization and intercellular contacts, epithelial to mesenchymal transition (EMT), cell death
and, finally, abrogation of the tubular function [3]. The initial injury is followed by repair
mechanisms and epithelial regeneration; but, depending on the severity and frequency of
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the initial injuries, these repair mechanisms may become maladaptive and the epithelial
damage may progress to CKD [3–5]. Prolonged epithelial-tubular damage involves cell
death, mitochondrial dysfunction, metabolic disturbance, oxidative stress, cell-cycle arrest
and senescence, partial EMT, epigenomic modifications, and proinflammatory mediators’
secretion [3,5–8], with the latter further fueling the tubular injury [9]. Damaged TECs ex-
press CCL2/ MCP1 (monocyte chemoattractant protein-1) and CCL5/RANTES (regulated
on activation, normal T cell expressed and secreted), thus mobilizing macrophages and den-
dritic cells to the site of the injury, a factor associated with CKD [10]. Macrophages, on their
part, secrete a number of factors that further activate inflammation and fibrosis, although
their functions vary depending on their polarization [8]. Furthermore, during the transition
to CKD and the phenotypical changes of epithelial cells, the tubular basement membrane
may be disrupted by activated matrix metalloproteinases allowing myofibroblast intrusion
in the interstitium and, thus, promoting tubulointerstitial fibrosis and CKD progression [3].
All the above highlight the importance of TECs as initiators of tubulointerstitial fibrosis [8].

Apart from fibrosis, the progression of CKD has been shown to lead to inflammation
and oxidative stress, suggesting that CKD is a low-grade inflammatory process [11,12].
Indeed, the lower GFR and the higher albuminuria of CKD patients are associated with
higher levels of inflammatory cytokines, such as IL-1β and IL-6 in their plasma [13]. This
upsurge is partly owed to the prolonged half-life of cytokines due to the impaired excretory
renal function but also to increased tissue production. Subsequently, this amplified chronic
inflammation may lead to high mortality in CKD patients [13].

Lysophosphatidic acid (LPA) is a lysophospholipid present in most biological flu-
ids. LPA is actually a mixture of species carrying various saturated or unsaturated fatty
acids. LPA presents many functions due to its signaling through at least six cognate
receptors (LPAR1-6), which are further coupled with G proteins, activating numerous
signal-transduction pathways [14]. LPA signaling is implicated in several chronic inflam-
matory or fibrotic diseases, such as rheumatoid arthritis (RA), cardiovascular diseases,
pulmonary and liver fibrosis, and others [14]. Additionally, LPA and its receptors are also
involved in CKD. As early as 1998, LPA levels in the plasma of patients with renal failure
on hemodialysis were found to be higher compared to healthy controls [15]. Two LPA
species (16:0 and 18:2) were among a panel of seven metabolites that discriminated the sera
of patients with CKD of diverse aetiologies from the sera of healthy subjects [16]. Moreover,
LPA 16:0 and LPA 20:4 were found to have risen in the urine of type II diabetes patients
with nephropathy compared to type II diabetes patients without nephropathy, probably
due to higher local production [17]. Furthermore, the LPA-producing enzyme, Autotaxin
(ATX), and LPAR1 and LPAR3 were found to have increased in diabetic human kidneys
compared to healthy kidneys [18]. Concerning TECs, LPA promotes the expression or
activation of profibrotic molecules [19]. Specifically, LPA induces integrin αvβ6-mediated
latent transforming growth factor beta (TGFβ) activation, which leads to the increase in
connective tissue growth factor (CTGF) and platelet-derived growth factor (PDGFB) mRNA
and protein expression in a TGFβ-dependent fashion in several TEC cell lines and primary
cultures [19]. Additionally, LPA treatment on mouse renal TECs induces TGFβ mRNA
expression [20,21]. The above conclude that LPA has an effect in the secretory pattern of
fibrosis-related factors from TECs.

In an effort to expand our knowledge on TECs’ signaling and secretion of proinflamma-
tory/profibrotic factors, we exposed the kidney proximal tubular epithelial cell line HKC-8,
which derives from the normal kidney cortex [22], to 175 inflammatory-immunological
stimuli and measured the levels of 27 intracellular phosphoproteins as well as 32 extracel-
lular secreted mediators upon each one of the stimuli employing custom multiplex ELISA.
Furthermore, we exposed HKC-8 to three different species of LPA in order to investigate
the effect of LPA on TECs. According to our findings, LPA induced the phosphorylation
of CREB1, ERK1, IκBα, JUN, and MEK1 and the secretion of proinflammatory molecules
CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8.
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2. Results
2.1. Exposure of HKC-8 Cells to LPA and 175 Other Stimuli

In an attempt to shed light on the signaling of TECs, we employed the human re-
nal proximal tubular epithelial cell line HKC-8 and exposed it to LPA and 175 other
inflammatory-immunological stimuli. Stimuli comprised toll-like receptor (TLR) ligands,
cytokines, chemokines, growth factors and drugs (Tables S1 and S2). The experimentation
included two sub-experiments. In the first sub-experiment, cells were exposed to the
stimuli for 24 h and supernatants were collected, while in the second sub-experiment the
exposure lasted for 5 or 25 min and cell lysates were collected. Subsequently, we measured
the levels of 32 extracellular secreted factors in the supernatants and the levels of 27 intra-
cellular phosphoproteins in the lysates upon each one of the stimuli employing custom
multiplex ELISA. This method is based on the usage of magnetic beads of unique spectral
signatures, conjugated with antibodies against each of the analytes. Recognition is achieved
with biotinylated detection antibodies and streptavidin conjugated with R-Phycoerythrin
(Figure 1). For each stimulus, the levels of the analytes at the stimulated state were divided
with the levels of the analytes at the unstimulated state (median of the control wells) and
the emerging ratios (fold-changes, FCs) correspond to the normalized responses. The re-
sponses to the different stimuli are depicted as FCs in the heatmap plots of Figures 2 and 3.
These plots show in detail the activations (or not) of each analyte upon each stimulus. The
color code indicates the level of response, with light blue referring to low or no response
and dark red referring to a high response/ activation. A response was considered active
when the expression of an analyte upon a stimulus was higher than 1.5 FCs, which was
set as the threshold in our analysis. The selection of the threshold was made based on the
sensitivity analysis of Supplementary Figure S1, where it can be seen that at a threshold
equal to 1.5, the number of activations is rather stable and also high enough to allow for the
subsequent analysis. Regarding the phosphoproteins’ sub-experiment, which was done at
two time points (5′ and 25′), the heatmap depicts an active response when the FC is above
the threshold at at least one time point.
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Figure 1. Multiplex ELISA for the detection of secreted factors and signaling molecules phosphory-
lation. Human kidney proximal tubular epithelial cells, HKC-8, were stimulated with 176 stimuli.
Supernatants were collected at 24 h and cell lysates at 5 and 25 min post stimulation. Supernatants or
cell lysates were added to a mix containing magnetic beads internally dyed with precise proportions
of red and infrared fluorophores, thus, rendering unique spectral signature microspheres. Each
unique microsphere-bead was conjugated with a distinct monoclonal antibody against a secreted
factor or a phosphoprotein. Biotinylated detection antibodies were added to the mix, followed
by a streptavidin-R-Phycoerythrin complex. This process allows the simultaneous recognition of
32 secreted factors or 27 phosphoproteins in one sample. Created with BioRender.com, accessed on
1 June 2022.
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factor (HGF) was the stimulus that evoked the most active responses (18 secreted factors, 
0 phosphoproteins), followed by interleukin 1β (13 secreted factors, 4 phosphoproteins), 

Figure 2. Differential expression of 32 secreted biological factors in the supernatants of human kidney
proximal tubular epithelial cells (HKC-8) upon the stimulation with LPA (18:1) and 175 disparate
biological stimuli. The expression was assessed with multiplex ELISA employing microbeads of
unique spectral signatures conjugated with monoclonal antibodies specific for each of the 32 secreted
factors. Red indicates active signals (FC ≥ 1.5). See also Figure S1.
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Figure 3. Phosphorylation of 27 major hubs in intracellular signaling pathways of human kidney
proximal tubular epithelial cells (HKC-8) upon the stimulation with LPA (18:1) and 175 disparate bio-
logical stimuli. The expression was assessed with multiplex ELISA employing microbeads of unique
spectral signatures conjugated with monoclonal antibodies specific for each of the 27 phosphoproteins.
Red indicates active signals (FC ≥ 1.5). See also Figure S1.

Among the 176 stimuli tested, 108 were the active ones at either sub-experiment. In
total, 76 stimuli gave an active response in the secreted factors sub-experiment (Figure 2)
and 71 in the phosphoproteins sub-experiment (Figure 3). Collectively, hepatocyte growth
factor (HGF) was the stimulus that evoked the most active responses (18 secreted factors,
0 phosphoproteins), followed by interleukin 1β (13 secreted factors, 4 phosphoproteins), the
synthetic TLR2/TLR6 ligand FSL1 (10 secreted factors, 3 phosphoproteins), Tumor-necrosis
factor alpha or TNFα (9 secreted factors, 3 phosphoproteins), phorbol 12-myristate 13-
acetate or PMA (6 secreted factors, 6 phosphoproteins), angiopoietin or ANG1 (11 secreted
factors), digoxin (11 secreted factors), and others. Among the secreted factors, chemokine
CXCL10 was the most common active responder (34 hits), followed by CCL3 (30 hits), while,
among the signaling phosphoproteins, JUN was the molecule with the most activations
(29 hits).
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2.2. LPA Is a Proinflammatory Stimulus

One of the 176 stimuli to which HKC-8 cells were exposed was LPA 18:1, which led to
several activations. Concerning the secreted factors, it induced the secretion of interleukin
6 (IL-6), interleukin 8 (IL-8), and chemokines CCL2, CCL3, and CXCL10 (Figure 2). With
regard to the phosphoproteins, LPA 18:1 induced the phosphorylation of JUN, IκBα, ERK1,
and CREB1 (Figure 3). Subsequently, in an effort to verify the LPA results, we performed
a second experiment using two more LPA species, LPA 16:0 and 20:4, on top of LPA
18:1. This experiment was done in triplicates, thus allowing statistical analysis. With a
threshold of FC ≥ 1.5, a number of active signals was detected upon the three LPA species
(Figures 4 and 5). Most of the responses were shared between them, but some differences
exist, which, however, need further exploration. Regarding the secreted factors, CCL3,
IL-6, and IL-8 were expressed statistically significantly higher than the medium upon all
three species (Figure 4). CCL2 was expressed at levels higher than the medium upon them
as well, however, not statistically significantly. Soluble Intercellular Adhesion Molecule 1
(sICAM1) was also induced upon all three species statistically significantly, however, only
upon LPA 16:0 and 20:4 above the FC = 1.5 (Figure 4). LPA 18:1 also triggered the expression
of CXCL10 statistically significantly.
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different LPA species (16:0, 20:4, 18:1) at 10 μM for 24 h. Statistical significance was assessed with 
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Figure 4. LPA stimulates the secretion of CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8 from human
kidney proximal tubular epithelial cells (HKC-8). Multiplex ELISA quantifying the expression of
the indicated secreted factors in the supernatants from HKC-8 cells upon the stimulation with three
different LPA species (16:0, 20:4, 18:1) at 10 µM for 24 h. Statistical significance was assessed with
Brown–Forsythe’s and Welch’s ANOVA followed by Dunnett’s post hoc test in the case of normal
distribution or with Kruskal–Wallis test in the case of non-normal distribution; * p < 0.05, ** p < 0.01,
*** p < 0.001. Circles correspond to control values, squares correspond to LPA 16:0 values, upward
triangles correspond to LPA 20:4 values and downward triangles correspond to LPA 18:1 values.

Pertaining to the signaling phosphorylations, components that were phosphorylated
above the threshold upon the three LPA species were IKBα (25′) and CREB1 (25′), with a
statistical significance for LPA 20:4 (Figure 5). JUN (25′) was phosphorylated by all three
species with statistically significant phosphorylation upon LPA 16:0 (although below the
FC = 1.5) and 20:4. JUN (25′) gave an active signal upon LPA 18:1 too, albeit not statistically
significantly. Moreover, LPA 18:1 statistically significantly induced the phosphorylation of
MEK1 (5′) and CREB1 (5′) (Figure 5). Finally, ERK1 (5′) was phosphorylated upon LPA 18:1
and ERK1 (25′) upon LPA 20:4, but not statistically significantly.

2.3. Clustering and Responses of Other Stimuli

Trying to identify stimuli that affect the same kidney processes, we initially trans-
formed absolute Luminex data into fold-change values, with respect to the median value of
medium-treated cells, separately for secreted factors (Figure 2) and phosphoproteins plates
(Figure 3). Subsequently, we concatenated all plates and focused on 108 stimuli that caused
at least one activation event (activation threshold FC≥ 1.5). After removing non-responsive
signals, 46 signals remained. Their respective values were binary transformed (1: activation;
0: non-activation) and used for stimuli unsupervised clustering (Gower’s metric; divisive
clustering), which led to the definition of three clusters (Figure 6).
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Figure 5. LPA stimulates the phosphorylation of JUN, IκBα, MEK1, ERK1, and CREB1 in human
kidney proximal tubular epithelial cells (HKC-8). Cells were incubated with three different LPA
species (16:0, 20:4, 18:1) at 10 µM for 5 (A) or 25 min (B), and the phosphorylation was assessed
with multiplex ELISA in triplicates. Circles correspond to control values, squares correspond to LPA
16:0 values, upward triangles correspond to LPA 20:4 values and downward triangles correspond to
LPA 18:1 values. Statistical significance was assessed with Brown–Forsythe’s and Welch’s ANOVA
followed by Dunnett’s post hoc test in the case of normal distribution or with Kruskal–Wallis test in
the case of non-normal distribution. * p < 0.05, ** p < 0.01.

As shown in Figure 6, LPA falls into the same cluster (cluster 2) as PMA, which
is a PKC activator and a T-cell activator; IL-1α, IL-1β, IL-17α, and TNFα, which are
proinflammatory cytokines; FSL1, a lipoprotein derived from Mycoplasma salivarium and
a TLR ligand; PolyIC, a synthetic analogue of double-stranded RNA and a TLR3 ligand;
promethazine, an antihistamine drug; TNFSF12/TWEAK, which is a TNF family member;
and CXCL14/BRAK that is a breast and kidney-expressed chemokine activating B cells and
monocytes. Between LPA and the aforementioned molecules of its cluster, many similarities
appear in the secreted factors pattern induction; IL-6, IL-8 and CCL3 are induced by all
11 members of the cluster, while CCL2 and CXCL10 are induced by most of them. The
results of the phosphoproteins also indicate the signaling convergence between LPA and
the other molecules of cluster 2, as most of them induce the phosphorylation of JUN and
IκBα. Promethazine, PMA and IL-1β also lead to the phosphorylation of CREB1, like
LPA does.

Another cluster that emerges is the cluster 1, which includes angiopoietin 1 (ANG1),
HGF, platelet-derived growth factor AB (PDGFAB), PDGFBB, digoxin, bone morphogenetic
protein 2 (BMP2), brain-derived neurotrophic factor (BDNF), and IL-10. These stimuli
induce a series of secreted cytokines such as Prokineticin 1 (PROK1), Ciliary Neurotrophic
Factor (CNTF), TNF family members, IL-3, CXCL11, and others. ANG1, which triggered
the secretion of several factors (IL-3, TNFα, TNF10, PROK1, CNTF, TNF12, VEGFB, CXL11,
IL-5, CXCL10, CCL5, IL-3), is thought to be protective in models of renal injury [23], while
BMP2, which induced TSLP, IL-3, TNFα, TNF10, PROK1, and IL-5, has been found to
induce the commitment of adult renal progenitor cells (ARPCs) toward a myofibroblastic
phenotype [24].
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The rest of the 108 active stimuli, out of the 176 used in our experiments, form cluster 3.
Here, we are mentioning some of these stimuli that have also been linked with renal
fibrosis. For example, the proinflammatory cysteine-rich protein 61 (Cyr61), which is
increased in a mouse model of renal fibrosis [25], induced the phosphorylation of IκBα and
GSK3B in our experimental setup. Activin A, which activates renal interstitial fibroblasts
during the fibrotic processes of the kidney [26], also triggered the phosphorylation of many
intracellular components (GSK3B, KS6B1, RS6, JUN, IκBα) and the secretion of chemokines
CCL3, CXCL10, and CCL2 in HKC-8 cells. WNT1-inducible-signaling pathway protein 1
(WISP1), which has been found to regulate kidney fibrosis through TGFβ [27] and whose
serum levels are elevated in CKD patients [28], promoted the secretion of many factors too
(CCL2, CCL5, CXCL10, TNF10, PROK1, IL-3). It would, therefore, be interesting to attempt
to find a connection between some of the observed responses and renal pathology.
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2.4. Pathway-Enrichment Analysis, Microarray, and Single-Cell Analysis in Relation to Cluster 2

To better characterize cluster 2, we performed pathway-enrichment analysis against
both GO and KEGG libraries (see Section 4). For this purpose, we maintained the gene-
coded stimuli triggering at least one response, as well as the signals responding to at least
one stimulus (Supplementary Figure S2A). Top enriched terms of all GO categories and
KEGG database suggest that cluster 2 is functionally related with inflammatory processes
and responses to pathogen invasion (Supplementary Figure S2B,C).

Next, to prioritize some of the cluster 2 features, we re-analyzed two microarray
datasets containing control as well as CKD, focal segmental glomerulosclerosis, and im-
munoglobulin A nephropathy samples. The differentially expressed genes identified
(pathology vs. steady-state condition) include genes encoding four cluster 2-induced
molecules: TNFSF12, IL-1β, ICAM1, and CCL5 (Supplementary Figure S3). In fact, ICAM1
is upregulated upon kidney disease in all three groups of nephropathy samples, underscor-
ing its importance in the context of kidney disease. Interestingly, according to our results,
ICAM1 is activated, among others, by LPA, indicating potentially common mechanisms
between LPA effects and kidney pathologies.

To examine cluster 2 features’ cell specificity, we have re-analyzed a single-cell RNA-
seq dataset with kidney samples from CKD and control individuals [29]. Five cytokine
genes induced by cluster 2 molecules were identified as marker genes of CD10− proximal
tubule epithelial cells (PT-neg), CCL2, CCL3, CCL5, CXCL8 (the gene encoding IL-8), and
IL-1β, while VEGFB was marking CD10+ proximal tubule epithelial cells (PT-pos) (Supple-
mentary Figure S4A). Marker features did not overlap between the two PT clusters. The
aforementioned results suggest that PT cells can indeed in vivo produce cluster 2-induced
cytokines, several of them being responsive to LPA treatment (CCL2, CCL3, IL-8). Last,
we performed a ligand-receptor (cell-to-cell) analysis, so as to identify the final recipient
cells of these secreted cytokines. The SingleCellSignalR ligand-receptor database was
enriched with specific interactions from CellTalkDB. All cells were grouped per population
(epithelial, endothelial, mesenchymal, neuronal, immune) with the exception of the two
PT cells’ sub-clusters, which remained intact. Focus on PT-marker cytokines suggests that
PT cells could establish both autocrine as well as paracrine communications with all other
cell populations, such as epithelial, mesenchymal, and endothelial cells, through specific
ligand–receptor interactions (Supplementary Figure S4B).

2.5. LPA Induces the Expression of the Secreted Factors CCL2, CCL3, CXCL10, ICAM1, IL-6, and
IL-8 at the mRNA Level in HKC-8 Cells

In order to verify the expression of the observed secreted factors upon LPA, we studied
their mRNA expression. To this end, we stimulated HKC-8 cells with LPA 18:1, collected
the cells, and completed the RNA extraction. Initially, we stimulated them for different
time periods (0, 1, 4, 12, and 24 h). According to Figure 7A, all the analyzed secreted
molecules were maximally induced at 4 h; therefore, we chose this time point for our
subsequent experiments. Next, we stimulated HKC-8 cells with different concentrations of
LPA (0, 2.5, 5, and 10 µM) for 4 h and observed a dose-dependent induction of the indicated
molecules with a maximum effect at 10 µM (Figure 7B). Both the time-dependent and
dose-dependent experiments verified a strong induction of CCL2, CCL3, CXCL8, ICAM1,
and IL-6 by LPA 18:1, with CXCL8 transcription being activated over a hundred times.
CXCL10 was only marginally induced by LPA at a concentration of 2.5 µM. Finally, we
analyzed the expression of LPARs in HKC-8 cells and found that LPAR2 is the highest
expressed LPAR in these cells, followed by LPAR6, with no significant alterations of the
LPARs pattern upon LPA stimulation (Supplementary Figure S5).
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Figure 7. LPA stimulates the expression of CCL2, CCL3, CXCL8, CXCL10, ICAM1, and IL6 from
human kidney proximal tubular epithelial cells (HKC-8). (A,B) HKC-8 cells were incubated for
1, 4, 12, and 24 h with 10 µM of LPA (A), and with 2.5, 5, and 10 µM LPA for 4 h (B). Control
cells were stimulated with the equivalent volume of chloroform (VHC). mRNA-expression levels
of the indicated secreted factors were quantified with RT-qPCR. The Cq values of each gene were
normalized against the Cq values of B2M. The results represent the findings of two (A) and three (B)
separate experiments. In (A) circles, upward triangles, downward triangles and diamonds refer to 1,
4, 12 and 24 hours of incubation with LPA, respectively. In (B) circles, upward triangles, downward
triangles and diamonds refer to incubation with 0, 2.5, 5 and 10 µM LPA, respectively. Statistical
significance was assessed in (A) with 2-way ANOVA and Tukey’s post hoc test and in (B) with
Brown-Forsythe’s and Welch’s test or the Kruskal–Wallis test depending on the normality status of
the data; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. See also Figure S5.

2.6. LPA-Induced Cellular Signaling Pathways

In order to elucidate which LPARs and signaling pathways are implicated in the
LPA-mediated induction of the secreted factors, we employed several LPARs and signaling
pathway inhibitors (based on the proteins that were found phosphorylated upon LPA) and
checked the expression of the secreted factors, apart from the low-expressed CXCL10, in
their presence. We identified LPAR1/3 as the receptors responsible for the LPA-induced
CCL3, CXCL8, and IL-6 transcription, while LPAR2 was responsible for the IL-6 transcription
as well (Supplementary Figure S6). In the absence of inhibitors for other LPARs, we cannot
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exclude that signaling through LPAR6 or the other LPARs is participating in the regulation
of the LPA-induced secreted factors. Regarding the phosphoproteins, we found that
SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, inhibits the expression of CCL3 and
ICAM1 (Figure 8). Furthermore, in the presence of PD98059, a MEK/ERK inhibitor; JSH23,
an NFκB inhibitor; and 666-15, a Creb inhibitor, CCL2, CCL3, CXCL8, and ICAM1 expression
was diminished (Figure 8). Our results suggest that the JNK/c-JUN, MEK/ERK, NFκB,
and CREB pathways are implicated in the induction of some of the LPA-mediated secreted
factors. In fact, CCL2, CCL3, CXCL8, and ICAM1 are coregulated by these pathways
simultaneously, as shown in Figure 9.
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Figure 8. Pharmacologic dissection of LPA-induced cellular signaling pathways. HKC-8 cells were
pretreated for 1 h with 666-15 (CREB1 inhibitor) 10 µM in (A), JSH23 (NFκB inhibitor) 100 µM in (B),
PD98059 (MEK/ERK inhibitor) 50 µM in (C), or SP600125 (JNK inhibitor) 50 µM in (D) and then
activated with LPA at a final concentration of 10 µM for 4 h. mRNA-expression levels of the indicated
secreted factors were quantified with RT-qPCR. The Cq values of each gene were normalized against
the Cq values of B2M. Statistical analysis was performed with unpaired t-test or Welch’s test in the
case of normal data and with Mann–Whitney in the case of non-normal data. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001. See also Figure S6.
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Figure 9. Graphical depiction of the LPA-induced signaling pathways in HKC-8 cells. LPA binds
to the LPARs, which activate G proteins and the signal progresses to secondary signaling hubs,
such as MEK/ERK or transcription factors c-JUN, CREB1, and NFκB. MEK/ERK, CREB1, and NFκB
co-activate CCL2, CCL3, CXCL8 (IL-8), and ICAM1 expression. C-JUN activates only CCL3 and ICAM1
expression. Solid colored lines show connections that are derived from our results. Connections
depicted with dashed lines are drawn from the literature and are not verified from our data. Created
with BioRender.com, accessed on 1 June 2022.

3. Discussion

In this study, we have performed custom multiplex ELISA in HKC-8 cells, a cell line
of proximal tubular epithelial cells, which in vivo constitute an abundant cell population
of the kidney. We have stimulated these cells with LPA and 175 immunological stimuli and
monitored the phosphorylations of signaling molecules and the secretion of immune-related
factors, such as cytokines, chemokines, and adhesion molecules. Out of the 176 stimuli,
108 were the active ones, with HGF evoking the most responses. Chemokine CXCL10 was
the most common active responder among the secreted factors, while JUN was the signaling
molecule with the most activations. Regarding LPA, which is our molecule of interest, it
induced the phosphorylation of JUN, IκBa, MEK1, CREB1, and, marginally, ERK1 and the
secretion of CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, as observed with the usage of
three different LPA species. In the context of verifying the LPA-induced expression of the
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six secreted factors at the mRNA level, we investigated the levels of the various LPARs
in the HKC-8 cell line and found that the most prominent receptor is LPAR2, followed by
LPAR6. The prevalence of LPAR2 in HKC-8 cells is corroborated by other investigations
studying the presence of LPARs in mouse renal TEC cell lines [19–21]. Subsequently, we
verified the LPA-induced transcription of CCL2, CCL3, CXCL8 (the gene encoding IL-8),
ICAM1, IL-6, and, marginally, CXCL10 in these cells.

TECs are known sources of CCL chemokines [30]. These molecules have a critical
role in progressive renal injury, as suggested by functional blocking studies, including
treatment with neutralizing antibodies to CCL chemokines or their receptors, truncated
chemokines, or small molecule-receptor antagonists [30]. They are important regula-
tors of leukocyte recruitment during renal injury. Both CCL2, also known as monocyte
chemoattractant protein 1 (MCP-1), and CCL3, also known as macrophage inflammatory
protein-1α (MIP-1α), which are induced by LPA, form gradients that drive infiltration of
monocytes/macrophages, T cells, and B cells to the sites of injury [31]. More specifically,
CCL2 is released by TECs after renal injury, inducing the influx of CCL2 receptor, CCR2-
positive cells such as monocytes, dendritic cells, T cells, and fibrocytes [31]. Monocytes
differentiate in M1/M2 macrophages, with M1 producing proinflammatory cytokines,
such as TNFα, IL-1β, IL-6 and CCL2 and with M2 promoting wound healing and leading
to TGF-β and anti-inflammatory cytokines’ expression [31]. CCL2 is implicated in the
pathogenesis of several diseases with a strong monocytic component. In the context of renal
pathophysiology, CCL2 participates in glomerulonephritis (GN) [32,33], DN [34,35], and
the CKD model of unilateral ureter obstruction (UUO) [36]. Chemical or genetic ablation of
CCR2 reduces renal fibrosis, TGFβ production, and macrophage accumulation in several
models of CKD [31]. Additionally, antagonism of CCR2 has positive effects in patients with
type 2 DN [37]. LPA has been found to induce CCL2 production in mesangial cells and
proximal tubular epithelial cells HK2 in vitro [38,39], corroborating the ability of LPA to
promote CCL2 expression.

Regarding CCL3, this is a chemokine involved in the acute inflammatory state in the
recruitment and activation of polymorphonuclear leukocytes. Elevated levels of CCL3
and its receptors CCR1 and CCR5 have been found upon UUO [36]. A chemical blockade
of CCR1 reduces inflammation and interstitial fibrosis in CKD murine models, such as
adriamycin-induced nephropathy and UUO [40,41]. To our knowledge, the induction of
CCL3 by LPA has not been shown before.

CXCL10, also known as the 10-kDa interferon-inducible protein (IP-10), is a proinflam-
matory chemokine, as it is involved in the chemoattraction of monocytes, macrophages, T
cells, and natural killer (NK) cells [42]. High CXCL10 levels have been detected in kidney
biopsy specimens from patients with mesangial proliferative GN, where CXCL10 can di-
rectly contribute to mesangial cell proliferation [43]. CXCL10 levels are increased in the
course of the UUO model [36]. Cxcl10−/− mice exhibit decreased proliferation with less
ECM deposition and fewer cells in the glomeruli compared to wild-type mice [43]. On the
contrary, recombinant murine CXCL10 reduces many indices of CKD in diabetic mice [44]
and blocking CXCL10 promotes progressive renal fibrosis [45]. Therefore, more studies are
needed to elucidate the role of CXCL10 in chronic renal disease.

ICAM1 or CD54 are also amplified by LPA in our experimental setup. LPA has
been shown before to induce ICAM1 expression in epithelial ovarian cancer cells [46].
ICAM1 is a cell-surface glycoprotein that binds to integrins and participates in intercellular
communication. Typically, it is expressed on endothelial and immune-system cells. ICAM1
is a ligand of lymphocyte-function-associated antigen-1 (LFA-1), which is a member of
the integrin family found on leukocytes [47]. Via the ICAM1/LFA-1 interaction, ICAM1
stabilizes cell–cell interactions and facilitates the endothelial transmigration of leukocytes
from the circulation to the sites of inflammation. ICAM1 is not detected in the TECs
of healthy kidneys, whereas it is expressed in these cells upon GN [48]. Similarly, it is
expressed in primary glomerulosclerosis compared to healthy renal regions, which do
not express it [49]. Accordingly, the tubulointerstitial expression of ICAM1 has been
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suggested as a marker of injury in IgA nephropathy [50]. The levels of serum ICAM1
are increased in diabetes and its expression has been associated with DN [51]. Based on
our analysis, ICAM1 is found upregulated in microarrays from kidneys of patients with
CKD, focal segmental glomerulosclerosis, and IgA nephropathy compared to controls, thus
underscoring its importance in all these situations. Other cluster 2-induced molecules
that are found upregulated in these microarrays are TNFSF12/TWEAK, CCL5, and IL-1β,
however, only ICAM1 is induced by LPA.

IL-6 is an interleukin that acts both as a proinflammatory cytokine and an anti-
inflammatory myokine. When secreted by T cells and macrophages, it stimulates immune
responses that lead to inflammation, e.g., during infection or trauma [52]. IL-6 signaling
promotes T cell proliferation and apoptosis resistance; it is implicated in CD4+ T cell dif-
ferentiation and plays a key role in the T-cell-mediated immune response, whereas it is
indirectly involved in B cell-induced inflammation [53]. Therefore, IL-6 stimulates the
inflammatory and auto-immune processes in many diseases. In the context of the kidney,
the serum levels of IL-6 are significantly higher in CKD patients compared to healthy
subjects [54] and numerous kidney resident cells, such as endothelial cells, mesangial cells,
podocytes, and TECs can secrete it [53]. Several stimuli, such as glomerular injury, can in-
duce IL-6 production from renal TECs, thus promoting a TEC–glomeruli crosstalk [53]. LPA
has been shown before to induce IL-6 production in human bronchial epithelial cells [55],
keratinocytes [56], and mesangial cells [38]. Exposure of mesangial cells to IL-6 and its
soluble receptor (sIL-6R) together promotes the synthesis and secretion of CCL2/MCP1
and subsequently enhances monocyte recruitment [57]. Furthermore, IL-6 is implicated in
fibrosis, as it can stimulate collagen I expression from TECs in vitro, while chronic adminis-
tration of IL-6 enhances ischemia-reperfusion-induced fibrosis in vivo [58]. Interestingly,
the blockade of IL-6 trans-signaling attenuates renal fibrosis and inflammation in the UUO
model of kidney fibrosis [59].

IL-8, which is the molecule most prominently induced by LPA at the mRNA level, is
a key mediator associated with inflammation as it causes the activation and chemotaxis
of neutrophils, leading them towards the site of inflammation [60]. LPA has been shown
to induce IL-8 production before, in the bronchial epithelial cells of the lungs [55,61,62],
keratinocytes [56], and epithelial ovarian cancer cells [46]. In the kidney, human renal
cortical epithelial cells express IL-8 upon incubation with IL-1β, TNF, or LPS [63]. Moreover,
proximal and distal TECs are strongly positive for IL-8 in renal biopsies from patients
with acute allograft rejection [63], and serum IL-8 levels are exacerbated in children with
CKD [64]. In the kidneys of patients with T2 diabetes (T2D), glomerular IL-8 expression has
been found to increase compared to controls [65]. Moreover, blockade of the IL-8-CXCR1/2
axis decreases diabetic-kidney-disease progression in mice [65].

Apart from CCL2, the rest of the secreted factors that we describe are shown for the first
time to be LPA-induced in proximal TECs, and this may have an impact on several kidney
pathologies. Given that all of the aforementioned molecules are proinflammatory, the LPA-
induced secretome from TECs is characterized as proinflammatory and perhaps senescent
too; five out of the six secreted factors are senescence-associated secretory phenotype
proteins (SASP) [66,67]. Furthermore, the clustering of LPA with proinflammatory stimuli
such as PMA, IL-1α, IL-1β, TNFα, IL-17α, TWEAK/TNFSF12, and FSL1 further enhances
its proinflammatory characterization. Therefore, LPA is suggested to participate in the
pathology of CKD.

With regard to the phosphorylated signaling proteins, LPA promoted phosphorylation
of JUN, IκBA, CREB1, and, marginally, MEK1 and ERK. MEK1 is a signaling kinase up-
stream of ERK, which is an extracellular signal-regulated kinase that has been shown before
to be phosphorylated in the presence of LPA in lung epithelial cells [61,68]. The three other
proteins activated by LPA are transcription factors. JUN, in combination with FOS, forms
the AP-1 early-response transcription factor. It is activated through double phosphorylation
by the JNK pathway and is involved in cell-cycle progression and cancer. AP-1 transcribes
numerous genes related to the inflammatory response, including cytokines (e.g., TNFα),
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chemokines (e.g., CCL2), and leukocyte-adhesion molecules (e.g., VCAM-1) [69]. A study
has illustrated before an LPA-induced phosphorylation of JUN in human bronchial epithe-
lial cells [61]. CREB1, cAMP-responsive element-binding protein 1, is a transcription factor
that binds to the cAMP-response element, a DNA nucleotide sequence present in many
immune-related genes, including IL-6 [70]. LPA has been shown to induce CREB signaling
in lung epithelial cells, and the conditioned medium from these cells evokes profibrotic
changes in lung fibroblasts [68]. IκBα is the well-known inhibitor of NFκB transcription
factor, which by default sequesters NFκB in the cytoplasm but, upon stimulation, becomes
phosphorylated and allows the release of NFκB, a central mediator of the human immune
response. NFκB, in the context of chronic inflammatory and autoimmune diseases, is acti-
vated by proinflammatory cytokines and drives proinflammatory cytokine, chemokine, and
adhesion molecules’ production as well [71,72]. Our Luminex results indicated activation of
the NFκB pathway in the presence of LPA. LPA treatment has been shown before to induce
NFκB in many other circumstances [73]. In the kidney, LPA increases phosphorylation
of NFκBp65, and the LPAR1 inhibitor AM095 suppresses their activation in mesangial
cells [38]. Apart from ERK, it is the first time that the aforementioned signaling molecules
are found to be phosphorylated upon LPA in renal TECs.

The expression of the secreted molecules identified upon LPA stimulation could be
mediated through the phosphorylated signaling hub proteins we detected. All the se-
creted molecules that were induced by LPA (CCL2, CCL3, CXCL8, CXCL10, ICAM1, IL-6)
are among the known target genes of NFκB [74] and, hence, their LPA induction could
be mediated through it. Indeed, by using an NFκB-specific inhibitor, we showed that
LPA induces CCL2, CCL3, CXCL-8, and ICAM1 genes through NFκB. The CXCL8 (IL-8)
transcription via NFκB has been previously shown in many cell types [62,75–79]; in fact,
the IL-8 induction from NFκB in human bronchial epithelial cells is initiated by LPA [62].
Increased expression of CCL2, at least in the context of pulmonary fibrosis, is induced by
NFκB (and AP-1 subunit c-JUN) [80]. According to other studies, IL-6 is one of the highest
induced NFκB-dependent cytokines in various cell types [78,81,82], however we did not
observe such a regulation in the HKC-8 cell line. Concerning human primary proximal
TECs, they are a potential source of IL-6, IL-8, and CCL2 in response to various proin-
flammatory cytokines, such as IL-1α and TNFα [72,83], which is validated by our results.
Moreover, the IL-1 stimulation of IL-6, IL-8, and CCL2 in primary human PTECs and HK2
TECs is NFκB-dependent [72,84]. Additionally, NFκB induces the expression of molecules
related to leukocyte recruitment/adhesion such as ICAM1 [85–87]. CCL2-mediated ICAM1
expression in human TECs is predominantly dependent on NFκB activation [88], while
TNFα-induced activation of the ICAM1 promoter in human endothelial cells depends on
NFκB as well [89,90]. Furthermore, oxidized LDL promotes the recruitment of NFκB/p65
to the ICAM1 promoter in endothelial cells [91].

We detected a regulation of ICAM1 and CCL3 through JNK, which is the kinase up-
stream of c-JUN. ICAM1 is, indeed, regulated by c-JUN in IL-1-stimulated human primary
fibroblasts [92] and TNFα-stimulated retinal-pigment epithelial cells [93]. Concerning
CCL3, there are indications that it is expressed by palmitate and TNFα through JUN-
involved signaling in THP-1 monocytic cells [94]. Even though it has been reported in the
literature that CCL2 and CXCL8 are target genes of c-JUN, we did not verify this exper-
imentally. Concerning CREB1, we found that it affects the transcription of CCL2, CCL3,
CXCL8, and ICAM1. CREB1 is, indeed, required for the inducible transcription of CXCL8 in
monocytic cell lines [95]. Furthermore, it shows enriched binding to the promoter of CCL2
in peripheral blood mononuclear cells [96]. LPA mediates CREB phosphorylation through
mitogen- and stress-activated protein kinases, resulting in CXCL8 and CCL2 transcription
in fibroblast-like synoviocytes [97]. CREB1 is involved in the expression of CXCL8 and
CCL3 in neutrophils, too [98].

Apart from transcription factors, MAPK signaling is also implicated in the expression
of the aforementioned secreted factors. Our results show that the expression of CCL2, CCL3,
CXCL8, and ICAM1 is MEK/ERK-dependent. Several publications are indicating the role
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of MEK/ERK signaling in CXCL8 expression [99–101]. The MEK/ERK pathway has also
been shown to mediate CCL expression. IL-13-induced CCL3 expression is dependent
on ERK1/2 signaling in vivo [102]. LPS treatment augments CCL3 transcription in vitro
in bone-marrow-derived dendritic cells [103] and in vivo in the rat brain in a MEK/ERK-
dependent fashion [102,104]. Moreover, TNFα or IL-1β induction of CCL3 mRNA in
rat-nucleus pulposus cells is p38- and ERK-dependent [105]. Regarding IL-6, we did not
observe a MEK/ERK effect on its transcription, although several pieces of data indicate such
a regulation [106–108]. However, corroborating our results, LPA-mediated IL-6 expression
is not affected by a MEK inhibitor in microglia [109]. MEK proteins also seem to control
CXCL10 expression [42,109], although we did not test this.

However, several genes encoding cytokines are simultaneously regulated by mul-
tiple signaling pathways and transcription factors. We found that CXCL8 is regulated
by MEK/ERK, NFκB, and CREB. Indeed, CREB and NFκB are among the transcription
factors that are cooperatively activated for CXCL8 transcription in human bronchial ep-
ithelial cells [77]. MEK/ERK and transcription factors AP-1 and NFκB are all involved in
CXCL8 upregulation by IL-1β in gastric-carcinoma cells [99] and by CD40 in human fetal
microglia [100]. Moreover, the P. aeruginosa-dependent transcription of CXCL8 in human
bronchial epithelial cells is mediated by ERK signaling and a multitude of transcription
factors, such as NFκB, AP-1, and CREB [77]. ICAM1 expression is controlled both by
NFκB and c-JUN, upon PMA or TNFα, in endothelial cells [110]. As other studies suggest,
ICAM1 expression is also regulated by both NFκB and CREB [111]. Both NFκB and ERK1/2
mediate CCL3/MIP-1a expression in the brain [104], something that we also verify in the
HKC-8 cell line along with co-regulation by the JNK/JUN and CREB pathways. CCL2
and CCL3, among other chemokines, are induced by H2O2 through ERK and the nuclear
translocation of NFkB, AP-1 and CREB in macrophages [112]. We also show that CCL3 is
co-regulated by MEK/ERK, JNK/JUN, NFκB, and CREB in the HKC-8 cells, whereas CCL2
is activated by MEK/ERK, NFκB, and CREB.

Employing divisive clustering for all the tested stimuli, LPA congregates with IL-1α, IL-
1β, IL-17α, TNFα, TNFSF12/TWEAK, and CXCL14/BRAK, which are endogenous stimuli
in the human body, and promethazine, PMA, FSL1, and PolyIC, which are exogenous
stimuli. All the aforementioned endogenous stimuli are implicated in CKD. High levels
of IL-1α are detected in renal TECs in biopsies from DN patients, while in vitro IL-1α
provokes the deposition of ECM proteins [113]. IL-1β mRNA is also detected in biopsies
of DN patients [114]. IL-1β contributes to systemic inflammation and the progression of
modeled CKD, either type 2 diabetes-induced or adenine diet-induced, as shown by studies
utilizing monoclonal anti-IL-1β in mice [114,115]. Il-1β is also produced by several cell
types during IgA nephropathy and promotes inflammation and disease progression [116].
Besides, activation of the inflammasome in immune cells during kidney injury causes the
secretion of IL-1α and IL-1β, which then promote cytokine and chemokine release through
the IL-1 receptor (IL-1R), resulting in the further recruitment of immune cells [117]; thus,
these two cytokines are important in the inflammatory component of kidney disease [118].
It is, therefore, well expected that the deletion of type I IL-1R ameliorates the early renal
fibrosis induced by ureter obstruction in mice [119].

IL-17α levels are increased in the kidneys of diabetic mice compared to control kidneys,
and treatment with anti-IL-17α antibody ameliorates renal dysfunction and disease [120].
Additionally, IL-17α positive cells have been detected in renal biopsies of hypertensive
nephroangiosclerosis and kidneys of experimental hypertensive mice, while mice infused
with IL-17α show higher inflammatory cell infiltration in the kidneys, with a simultaneous
elevated CCL2 and CCL5 gene expression [121]. Moreover, it is postulated that IL-17α
promotes the AKI-to-CKD transition [122]. However, studies claiming an antifibrotic role
of IL-17α also exist [123,124].

TNFSF12/TWEAK is another molecule that clusters with LPA. TNFSF12/TWEAK
was found to induce the secretion of CCL2, CCL3, CCL5, IL-6, IL-8, and CXCL10. Three
of these molecules (CCL2, CCL5, and IL-6) have been previously shown to increase upon
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TNFSF12/TWEAK treatment in renal tubular cells [125], thus corroborating our results.
TNFSF12/TWEAK is also implicated in renal injury [126–128]. Although its expression is
rather low in normal kidneys, it becomes significant during tissue damage in diverse forms
of AKI and CKD [129]. Increased protein expression of TNFSF12/TWEAK is detected in
the renal cortex of patients with lupus nephritis (LN) and treatment of mesangial cells with
TNFSF12/TWEAK promotes macrophage chemotaxis, probably through the chemotactic
factors that TNFSF12/TWEAK induces [130]. Indeed, TNFSF12/TWEAK promotes the
NFκB-mediated expression of proinflammatory cytokines, such as CCL2 and CCL5, in
human glomerular mesangial cells [127]. Inhibiting TNFSF12/TWEAK in vivo reduces
tubular chemokine expression and macrophage infiltration [125]. Blocking or deleting
TNFSF12/TWEAK or its receptor induces a drop in inflammation and an improvement of
renal function in several experimental models of renal disease [129,131]. On the contrary,
in vivo TNFSF12/TWEAK administration leads to NFκB activation in the whole kidney
and expression of chemokines from tubular cells [132]. Moreover, the development of
anti-TWEAK therapies against inflammatory diseases such as RA is in progress [129].

TNFα is also implicated in renal function, as it directly affects the hemodynamic and
excretory function of the kidney [133]. It is a potent proinflammatory cytokine, which,
however, also has an immunosuppressive effect. In healthy kidneys, the levels of TNFα
are very low, whereas they increase in many kidney diseases upon leukocyte infiltration,
as activated monocytes and macrophages are its primary source [134]. In terms of its
expression, TNFα is not only expressed by the infiltrating macrophages but also by resident
kidney cells such as mesangial, podocytes, and TECs [134]. TNFα can regulate proliferation
and apoptosis in renal cells, but it can elicit a local proinflammatory cytokine cascade, too.
In UUO, renal TNF production is increased after ureter obstruction and is implicated in
tubular-cell apoptosis and interstitial fibrosis [134]. Additionally, TNFα is increased in
patients with acute allograft rejection and chronic allograft nephropathy [135]. Intriguingly,
in RA, TNFα has been found to induce ATX expression from synovial fibroblasts (SFs),
while it induces SF activation and effector functions in synergy with LPA [136], thus
proposing a possible synergism of TNFα with LPA in CKD, too.

CXCL14/BRAK promotes chemotaxis of immature dendritic cells, neutrophils, mono-
cytes, activated human NK cells, and others [137]. CXCL14 has been detected in kidney
specimens, however, it has not been extensively investigated, except for a study where
CXCL14 overexpression mitigates sepsis-induced AKI, probably through the regulation of
the M1/M2 macrophage ratio and the downregulation of cytokine production [138].

As most stimuli in the LPA-including cluster 2 promote CKD, we assume that LPA has
a negative impact on CKD as well. Indeed, the role of LPA in CKD has been established
by several studies on the mouse models of various renal pathologies. LPA is significantly
increased in the urine of mice subjected to the CKD model of nephrectomy [139]. Upon
UUO, LPA production from kidney explants is enhanced and LPAR1 is found to be upregu-
lated (although LPAR2 and LPAR6 are, by default, the highest expressed LPA receptors
in the kidney) [20,21]. Importantly, genetic deletion or pharmacological suppression of
LPAR1 reduces tubulointerstitial fibrotic and inflammatory markers in mice subjected to
UUO [20,21,140]. LPAR1 ablation decreases the number of proliferating fibroblasts and
accumulating myofibroblasts induced by UUO [21]. In vitro, LPA is shown to induce
CTGF expression in mouse primary proximal TECs through LPAR1 and LPAR2; CTGF
then stimulates fibroblast proliferation and their differentiation to myofibroblasts, thus
promoting epithelial–fibroblast communication [21].

DN is another manifestation of CKD, where LPA and the ATX/LPA/LPAR axis are
implicated. LPA and LPC are significantly increased in the renal glomeruli of eNOS(−/−)
db/db mice, a robust model of DN [141]. In the same model, LPAR1, LPAR3, and ATX-
expression levels are upregulated upon disease; administration of the LPAR1/LPAR3
antagonist BMS002 ameliorates glomerular filtration and renal fibrosis, while it reduces
macrophage infiltration and podocyte loss [18]. In a similar db/db model of T2D, both ATX
and LPAR1 are overexpressed in the kidney cortex compared to control mice [142]. Simulta-
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neously, another inhibitor of LPAR1/LPAR3 ameliorates albuminuria and glomerulosclero-
sis, the main pathological feature of type 2 DN [142]. Similarly, an LPAR1 inhibitor, AM095,
inhibits the expression of proinflammatory cytokines and fibrotic factors in the kidney,
reduces glomerular matrix expansion, and improves kidney function in a streptozotocin-
induced type 1 diabetic model [38]. In a mesangial cell line, LPA significantly increases
the expression of proinflammatory cytokines TNFα, IL-1β, IL-6, and CCL2/MCP-1 and
promotes phosphorylation of NFκB and JNK [38], while at the same time it induces the
profibrotic factors TGFβ1 and fibronectin in a glycogen synthase kinase (GSK)3B and sterol
regulatory element-binding protein (SREBP1)-mediated fashion [142]. In our study, we
have gone one step further, showing that LPA promotes the expression of proinflammatory
molecules in TECs as well.

Beyond cluster 2, the stimulus with the most responders was HGF, which belongs to
cluster 1. Intriguingly, HGF seems to suppress chronic renal failure, and administration of
HGF improves renal fibrosis [143]. Another molecule of interest is one of the most common
secreted factors identified in our experiments, TNFSF10/TRAIL. Experimental and clinical
studies have illustrated that TNFSF10/TRAIL is up-regulated in different kidney diseases,
both in DN and in non-diabetic conditions such as LN, rejected kidney transplant, AKI,
and others [129]. The TNFSF10/TRAIL receptor, TRAIL-R2, has been pointed out as the
protein most strongly associated with the decline of kidney function [129].

Finally, apart from the previously mentioned instances, a number of our results can be
verified by the existing data in the literature. According to a study, the addition of LPA in
HKC-8 cells induces ERK1/2 phosphorylation in these cells [144], corroborating our results
where LPA 18:1 induced phosphorylation of MEK, of the kinase upstream of ERK, and of
ERK, albeit not statistically significantly. Other studies also support our results, as HKC-8
cells have been found to respond to BMP-7 by reversing TGFβ1-induced EMT [145,146].
In our assay, HKC-8 cells also respond to BMP-7 by inducing phosphorylation of GSK3B.
In an in vitro model studying kidney fibrosis, it has been found that upon injury with
cisplatin, HKC-8 cells secrete CCL5 and IL-6 [147]. Our Luminex data indeed show that
HKC-8 cells are able to secrete these cytokines, as both CCL5 and IL-6 were induced upon
a series of stimuli. In another setup, EGF activated EGFR, p38 MAPK, NFκBp65, and
STAT3, leading to inducible nitric oxide synthase expression in HKC-8 cells [148]. In our
experiment, human EGF drove many protein phosphorylations, including EGFR, JUN,
MEK1, ERK1, and others. However, it did not activate STAT3 or MK12 (p38γ).

Conclusively, in this report, we have identified the responses of human renal proximal
TECs to a series of 176 immunological stimuli. The subsequent quantification of the levels
of 27 intracellular phosphoproteins and 32 extracellular molecules with multiplex ELISA
reveals a large amount of information concerning the signaling and physiology of renal
proximal tubular epithelial cells and their possible interaction with resident stromal cells.
Among the 176 stimuli, LPA stands out as a proinflammatory stimulus promoting the phos-
phorylation of important signaling hubs and the secretion of factors of clinical relevance
concerning CKD. Finally, our results offer some mechanistic insight into the contribution
of LPA to kidney-related chronic inflammation and further pinpoint the ATX/LPA axis as
crucial in the development of renal pathology and as a possible therapeutic target.

Limitations of the Study

Among the limitations of the study is the fact that the main multiple ELISA experiment
with the 176 stimuli was performed in single wells, instead of triplicates, however, this was
a high-throughput experiment that would be difficult to have been performed in triplicates.
Moreover, the data of the LPA response and the response on some other stimuli have been
verified with further experiments done in triplicate wells. Another limitation is the fact that
the inhibitors used against LPARs or signaling molecules may have been added in excess,
despite our efforts to adhere to concentrations used in several other publications. Finally, we
realize that our experiments were done in vitro, and, therefore, in an artificial environment
deprived of the extracellular matrix and neighboring cells, which poses another limitation.
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4. Materials and Methods
4.1. Cell Culture and Cell Stimulation with 176 Immune Molecules

HKC-8 cells, provided by Roche, were grown in DMEM:F12, glutamine 2 mM, insulin-
transferrin-selenium (ITS) supplement 1×, FBS 2.5%, penicillin 100 u/mL, streptomycin
100 µg/mL, and amphotericin B 2.5 µg/mL. They were seeded at a cell density of 24,000 cells/
well in 96-well plates and left to attach overnight. Starvation followed next day with
DMEM:F12, glutamine 2 mM, ITS supplement 1×, BSA 0.2%, penicillin 100 u/mL, and
streptomycin 100 µg/mL for 3 h. The medium was replaced (again with starvation medium)
and the addition of multiple stimuli followed, as shown in the Supplementary Materials.
Two experiments took place. The first experiment was designed to measure the intracellular
phosphorylation events; hence, we used cell lysates. The second experiment was designed
to measure secreted factors such as cytokines; therefore, we used cell supernatants. The
phosphorylation events were tested at two time points, meaning that this experiment
involved two sub-experiments.

The stimuli were added at the same concentrations between the two experiments but
at different volumes. In total, 5 µL of diluted stimuli were added in 20 µL of medium
in each well of the phosphoprotein plates, and 20 µL of stimuli were added in 80 µL of
medium in each well of the secreted factors’ plates. In total, 175 stimuli were added apart
from LPA and the controls. For each experiment (phosphoproteins/secreted factors), the
175 stimuli and LPA 18:1 were added in single wells, while medium (as control) was added
in 5 wells separated in the 2 plates. For the repetition of LPA stimulation, three LPA species
were used, each of them added in triplicate wells and chloroform (LPA’s solvent) again in
triplicate wells. Before the addition, LPA and chloroform were heated so as to be easily
diluted in the cell medium.

Between the phosphoprotein and secreted-factors experiments, the incubation time
with the stimuli differed: 5 min for one set of plates for the phosphoprotein experiment,
25 min for another set of plates for the phosphoprotein experiment, and 24 h for the secreted
factors experiment. The different incubation times reflect the different times necessary for
phosphorylation events and expression (transcription and translation) to take place.

4.2. Multiplex ELISA
4.2.1. Phosphoprotein Experiment

After the 5 or 25-min incubation period, each plate was placed on an ice pack in order
to stop the reactions in all wells simultaneously, and cells were lysed by adding 40 µL
of lysis buffer mix in each well. The lysis buffer mix contained a ProtATonce custom-
made lysis buffer and phosphatase inhibitors, a protease inhibitors cocktail, and extra
phenylmethylsulfonyl fluoride (PMSF). Lysis took place by shaking the plate at 4 ◦C for
20 min while keeping it continuously on the ice pack. The plates with the lysates were
stored at −20 ◦C, covered with aluminum plate sealers. Prior to the Luminex assay, the
lysates were thawed and sonicated (4 times, 10 s each) and the plates were spun down
at 2700 g for 20 min. The top 50 µL of the samples were transferred into flat-bottom 96-
well plates containing 50 µL of bead mix per well, pre-washed with Assay Buffer (PBS
with 1% BSA, pH 7.4). The bead mix contained magnetic beads internally dyed with
precise proportions of red and infrared fluorophores. The differing proportions of the red
and infrared fluorophores result in unique spectral signature microspheres. Each unique
microsphere-bead was conjugated with a distinct mAb against a phosphoprotein, thus
allowing simultaneous recognition of 27 phosphoproteins in one sample.

Each plate, covered with a sealer, was shaken at maximum speed for 90 min and then
placed on a magnetic separator that keeps the magnetic beads down and allows discarding
of the supernatant. The bead–sample mix was washed twice with the assay buffer in this
manner and the biotinylated second/detection antibody was added in all wells. Incubation
with the second antibody lasted 90 min, with the sealed plates shaking at maximum speed.
Extra assay buffer was added and the beads were washed twice in order to remove the
excess antibody. A Streptavidin and R-Phycoerythrin Conjugate mix diluted in assay buffer
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was used at 5 µg/mL, and a volume of 50 µL was added per well. Following a 15 min
shaking incubation, the supernatant was discarded, the beads were washed with assay
buffer, and, finally, 130 µL of assay buffer was added per well prior to the measurement.

4.2.2. Secreted-Factors Experiment

After the 24-h incubation, the plates were spun down (200 g for 5 min) and the
supernatants were transferred into new plates, covered with an aluminum plate sealer and
stored at −20 ◦C. On the day of the Luminex assay, 50 µL of the samples were transferred
into flat-bottom 96-well plates, containing the bead mix conjugated with mAbs against
32 secreted factors. The same process followed as described for the phosphoproteins.

All measurements were taken in a Flexmap 3D of Luminex corporation. Significant
effort was devoted to maximizing the number of measurements that could be obtained
from each sample of cells: a 96-well plate assayed for 27 phosphoproteins yielded 2592 mea-
surements, and a plate assayed for 32 secreted factors yielded 3072 measurements.

4.3. Bioinformatic Analysis
4.3.1. Luminex-Data Preprocessing

Independent analysis was done for the phosphoprotein experiment and the secreted
factors experiment. In both experiments, the control wells, treated with plain medium, were
distributed between the different plates and the median of the multiple control wells was
calculated. The response to the plain medium (control wells) was considered as the unstim-
ulated state, whereas the response to a stimulus was considered as the stimulated state. For
each phosphoprotein or secreted factor induced by a certain stimulus, the measurement at
the stimulated state (usually a single measurement or the median value in case of replicates,
e.g., the triplicate LPA wells for each LPA species) was divided with the measurement at
the unstimulated state (median of the control wells). The emerging ratio corresponds to
the fold-change in the response of each measured component (phosphoprotein/ secreted
factor) to the specific stimulus, compared to the response to plain medium. The distribution
of the fold changes seen in the responses is depicted in Supplementary Figure S1A.

In order to call a signal (the ratio of stimulated to unstimulated state) active or not,
we used a threshold of fold change at 1.5. The choice of threshold was made through a
sensitivity analysis on the effect of the threshold on the signals dataset. In particular, the
percentage of activations was recorded at several thresholds. At low thresholds, slight
changes in the threshold greatly affected the number of activations, whereas, at higher
thresholds, the dataset was rather insensitive to threshold changes. Therefore, we decided
to set the threshold at 1.5, where the number of activations is rather stable, but there are
also enough activations for the subsequent analysis (Supplementary Figure S1B).

All the responses were processed using the open-access MATLAB-based software
DataRail (http://code.google.com/p/sbpipeline/wiki/DataRail (version v1.3, accessed on
1 June 2014)).

4.3.2. Clustering

Phosphoprotein and secreted factors fold changes were combined and stimuli not
causing any signal activation were removed, along with globally non-responsive signals.
Gower’s metric was used to define pairwise-stimuli distances post fold change to binary
values’ transformation (1: activated; 0: non-activated). Divisive clustering was performed
based on the calculated distance matrix. Gower’s distance was calculated using the proxy
R package, while divisive clustering was performed using cluster R package functions.

4.3.3. Pathway Analysis

Cluster 2 stimuli causing at least one activation event and signals responding at least
once were concatenated. Elements not being coded by a gene were filtered out, with the
exception of LPA 18:1, which was replaced by ENPP2. ClusterProfiler R package [149]
was used for over-representation analysis of both GO terms and KEGG pathways using

http://code.google.com/p/sbpipeline/wiki/DataRail
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default parameters. An FDR-corrected p-value threshold of at least 0.05 was applied to
define significantly enriched terms.

4.3.4. Microarray-Data Re-Analysis

Raw microarray data were fetched from GEO series GSE66494 (Agilent 4x44K G4112F)
and GSE104066 (Affymetrix HuGene-2_1-st) using the GEOquery R package [150]. Agilent
microarrays were background corrected using the normexp method with a 50 offset, as
suggested by limma package authors [151], and then quantile normalized between ar-
rays. Affymetrix data were background corrected and RMA normalized using the oligo R
package [152]. Both datasets were quality-controlled post normalization, using arrayQuali-
tyMetrics R package [153] and Principal Component Analysis (PCA). One (GSM1623315)
and two (GSM3904846, GSM2788881) outlier samples were filtered from GSE66494 and
GSE104066, respectively. Control probes and probes matching to either no or multiple
HGNC gene symbols were not considered for downstream analysis, along with those
having intensity values close to the background. Agilent probes with a high cross-linking
potential were not maintained either. Probe-intensity values were summarized at the gene
level, and weighted mean value was calculated in one:many gene:probe relationships.
Differential-expression analysis was performed using an empirical Bayes statistic as imple-
mented in limma package. Absolute fold change ≥ 1.2 and FDR corrected p-value < 0.05
were set as differential expression thresholds.

4.3.5. Single-Cell Data Analysis

Single-cell data were downloaded from zenodo (https://doi.org/10.5281/zenodo.
4059315 (accessed on 15 November 2021)). Pre-processed CD10+ and CD10− objects
were log-normalized and integrated using Seurat package v4.0.5 using a pre-computed
AnchorSet based on 2000 features [154]. Biological annotation of the original publication
was maintained. Marker genes and differential expression analysis was performed using
FindMarkers function under default parameters on the RNA assay of the integrated object.
Absolute fold change ≥ 1.2 and adjusted p-value < 0.05 were set as significance thresholds.

Cell-to-cell analysis was performed by SingelCellSignalR package v1.4.0 [155]. Cells
were grouped per cellular population, except for proximal tubule positive (PT-pos; CD10+)
and proximal tubule negative (PT-neg; CD10−) cells. SingleCellSignalR default-ligand-
receptor database was extended to include some interactions of interest, as described in
CellTalkDB v0.0.1 [156]. Circos plots were visualized using circlize package v0.4.13 [157].

4.4. RNA Analysis
4.4.1. LPA Stimulation—RNA Isolation—Reverse Transcription—RT-qPCR

HKC-8 cells were seeded in 6-well plates at a density equal to 300,000 cells/well
with a subsequent overnight starvation (medium with 0.2% BSA and no FBS). Cells were
stimulated with 2.5, 5, or 10 µM LPA 18:1 (Avanti Lipids, Sigma-Aldrich, Merck, St Louis,
MO, USA), dissolved in starvation medium. As a control, plain starvation medium or
starvation medium with the LPA’s solvent, chloroform, was used. Cells were incubated
at 37 ◦C and 5% CO2 for 1, 4, 12, or 24 h prior to RNA extraction. RNA extraction
was done with TRI Reagent (TR118, MRC, Cincinnati, OH, USA) in accordance with the
instructions of the manufacturer, with a slight modification at the RNA-precipitation stage,
where glycogen was added. The RNA concentration and purity were determined with
NanoDrop® ND-1000 UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA), calculating the optical density ratio at wavelengths of 260/280 nm and 260/230 nm.
Samples were placed at−80 ◦C until further use. First-strand cDNA was generated with the
Moloney murine leukemia virus reverse transcriptase (28025-013, Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA) using 2 µg of RNA and according to the reagent’s protocol.
Real-time PCR was performed on a BioRad CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA), using SYBR Select Master Mix (4472913, Thermo
Fisher Scientific, Waltham, MA, USA), 25 ng of each cDNA per reaction, and primers that
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are listed in Table S3. The thermal-cycling conditions for 40-cycles amplification were at
95 ◦C for 10 s and 58, 59, or 60 ◦C for 45 s. Normalization of the Ct values was done against
the reference gene B2M. The relative quantification of the target-gene expression was done
using the Livak (2−∆∆Cq) method and presented as fold change of each normalized target
gene in the LPA-treated samples relative to control samples. The statistical analysis between
groups of the dose-response study was performed using Brown–Forsythe’s and Welch’s
ANOVA tests or the Kruskal–Wallis test in case of non-normal distribution. Two-way-
ANOVA was performed for the time-course experiments. Finally, in the case of LPARs
expression, the 2−∆Cq formula was used in order to compare the levels of the different
LPARs. Statistical analysis was done with GraphPad.

4.4.2. Experiments with LPAR or Phosphoprotein Inhibitors

HKC-8 cells were seeded and starved as above and pretreated with inhibitors for one
hour. LPAR1/3 inhibitor (Ki16425, Cat. no: HY-13285, MedChemExpress, Monmouth
Junction, NJ, USA) was added at 10 µM; LPAR2 inhibitor (H2L5186303, Cat. no: 10-1452,
Focus Biomolecules, Plymouth Meeting, PA, USA) was added at 10 µM; CREB inhibitor
(666-15, Cat. no: A616443, Toronto Research Chemicals, North York, ON, Canada) was
added at 10 µM; JNK inhibitor (SP600125, Cat. no: 420119, Calbiochem, San Diego, CA,
USA) was added at 50 µM; NFκB inhibitor (JSH-23, Cat. no: HY-13982, MedChemExpress,
Monmouth Junction, NJ, USA) was added at 100 µM; and MEK/ERK inhibitor (PD98059,
Cat. no: 513000, Calbiochem, San Diego, CA, USA) was added at 50 µM. As controls, some
wells were treated with plain medium or with an equivalent volume of DMSO, the solvent
of the inhibitors. After 1 h, and without removing the inhibitor or DMSO, LPA was added
to the experimental wells to a final concentration of 10 µM for 4 h. RNA isolation, reverse
transcription, and RT-qPCR were performed as above. The statistical analysis was done
with unpaired t-test or Welch’s t-test, depending on the equality of standard deviation
between the different groups, or Mann–Whitney in the case of non-normal data. Statistical
analysis was done with GraphPad.

4.5. Image Creation

Images of Figures 1 and 9 were created with BioRender.com, with agreement numbers
OH23ZPFMT5 and CX23ZPEU47, respectively. BioRender.com was accessed on 1 June 2022.
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Abbreviations

ANG1: angiopoietin; ARPCs, adult renal progenitor cells; ATX, autotaxin; BDNF, brain-derived
neurotrophic factor; BMP2, bone morphogenetic protein 2; CKD, chronic kidney disease; CNTF,
Ciliary Neurotrophic Factor; CREB1, cAMP responsive element binding protein 1; CTGF, connective
tissue growth factor; DN, diabetic nephropathy; ECM, extracellular matrix; EMT, epithelial to mes-
enchymal transition; FC, fold change; GFR, glomerular-filtration rate; GN, glomerulonephritis; GSK,
glycogen synthase kinase; HGF, hepatocyte growth factor; ICAM1, Intercellular Adhesion Molecule
1; IL, interleukin; IP-10, 10-kDa interferon-inducible protein; ITS, insulin-transferrin-selenium; JNK,
c-Jun N-terminal kinase; LFA1, lymphocyte-function-associated antigen-1; LN, lupus nephritis; LPA,
lysophosphatidic acid; LPAR, LPA receptor; MCP1, monocyte chemoattractant protein-1; MIP-1α,
macrophage inflammatory protein-1α; NK, natural killer; PDGFB, platelet-derived growth factor;
PMA, phorbol 12-myristate 13-acetate; PROK1, Prokineticin 1; PT, proximal tubule; RA, rheumatoid
arthritis; RANTES, regulated on activation, normal T cell expressed and secreted; SASP, senescence-
associated secretory phenotype proteins; SFs, synovial fibroblasts; SREBP1, sterol regulatory element-
binding protein; T2D, type 2 diabetes; TECs, tubular epithelial cells; TGFβ, transforming growth
factor beta; TLR, toll-like receptor; TNFα, tumor necrosis factor alpha; TSLP, thymic stromal lym-
phopoietin; UUO, unilateral ureter obstruction; WISP1, WNT1-inducible-signaling pathway protein 1.

References
1. Lv, J.C.; Zhang, L.X. Prevalence and Disease Burden of Chronic Kidney Disease. Adv. Exp. Med. Biol. 2019, 1165, 3–15. [CrossRef]

[PubMed]
2. Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.J. Chronic kidney

disease. Nat. Rev. Dis. Primers 2017, 3, 17088. [CrossRef]
3. Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney

disease. Nat. Rev. Nephrol. 2020, 16, 269–288. [CrossRef]
4. Takaori, K.; Nakamura, J.; Yamamoto, S.; Nakata, H.; Sato, Y.; Takase, M.; Nameta, M.; Yamamoto, T.; Economides, A.N.; Kohno,

K.; et al. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis. J. Am. Soc. Nephrol. 2016, 27, 2393–2406.
[CrossRef] [PubMed]

5. Ferenbach, D.A.; Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat.
Rev. Nephrol. 2015, 11, 264–276. [CrossRef] [PubMed]

6. Zeisberg, M.; Neilson, E.G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 2010, 21, 1819–1834. [CrossRef]
7. Yang, L.; Besschetnova, T.Y.; Brooks, C.R.; Shah, J.V.; Bonventre, J.V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis

after injury. Nat. Med. 2010, 16, 535–543. [CrossRef]
8. Qi, R.; Yang, C. Renal tubular epithelial cells: The neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018,

9, 1126. [CrossRef]
9. Breda, P.C.; Wiech, T.; Meyer-Schwesinger, C.; Grahammer, F.; Huber, T.; Panzer, U.; Tiegs, G.; Neumann, K. Renal proximal

tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4+ T cell responses. Am. J. Physiol. 2019,
317, F77–F89. [CrossRef]

10. Gewin, L.; Zent, R.; Pozzi, A. Progression of chronic kidney disease: Too much cellular talk causes damage. Kidney Int. 2017, 91,
552–560. [CrossRef]

11. Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and Oxidative Stress in Chronic Kidney
Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2019, 21, 263. [CrossRef]
[PubMed]

12. Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubina, P.; Lahera, V.; Luno, J. Oxidative stress and inflammation, a link between
chronic kidney disease and cardiovascular disease. Kidney Int. 2008, 74, S4–S9. [CrossRef] [PubMed]

13. Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.;
et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc.
Nephrol. 2012, 7, 1938–1946. [CrossRef] [PubMed]

14. Magkrioti, C.; Galaris, A.; Kanellopoulou, P.; Stylianaki, E.A.; Kaffe, E.; Aidinis, V. Autotaxin and chronic inflammatory diseases.
J. Autoimmun. 2019, 104, 102327. [CrossRef] [PubMed]

15. Sasagawa, T.; Suzuki, K.; Shiota, T.; Kondo, T.; Okita, M. The significance of plasma lysophospholipids in patients with renal
failure on hemodialysis. J. Nutr. Sci. Vitaminol. 1998, 44, 809–818. [CrossRef]

16. Zhang, Z.H.; Chen, H.; Vaziri, N.D.; Mao, J.R.; Zhang, L.; Bai, X.; Zhao, Y.Y. Metabolomic Signatures of Chronic Kidney Disease of
Diverse Etiologies in the Rats and Humans. J. Proteome Res. 2016, 15, 3802–3812. [CrossRef]

http://doi.org/10.1007/978-981-13-8871-2_1
http://www.ncbi.nlm.nih.gov/pubmed/31399958
http://doi.org/10.1038/nrdp.2017.88
http://doi.org/10.1038/s41581-019-0248-y
http://doi.org/10.1681/ASN.2015060647
http://www.ncbi.nlm.nih.gov/pubmed/26701981
http://doi.org/10.1038/nrneph.2015.3
http://www.ncbi.nlm.nih.gov/pubmed/25643664
http://doi.org/10.1681/ASN.2010080793
http://doi.org/10.1038/nm.2144
http://doi.org/10.1038/s41419-018-1157-x
http://doi.org/10.1152/ajprenal.00427.2018
http://doi.org/10.1016/j.kint.2016.08.025
http://doi.org/10.3390/ijms21010263
http://www.ncbi.nlm.nih.gov/pubmed/31906008
http://doi.org/10.1038/ki.2008.516
http://www.ncbi.nlm.nih.gov/pubmed/19034325
http://doi.org/10.2215/CJN.03500412
http://www.ncbi.nlm.nih.gov/pubmed/23024164
http://doi.org/10.1016/j.jaut.2019.102327
http://www.ncbi.nlm.nih.gov/pubmed/31471142
http://doi.org/10.3177/jnsv.44.809
http://doi.org/10.1021/acs.jproteome.6b00583


Int. J. Mol. Sci. 2022, 23, 7452 24 of 29

17. Saulnier-Blache, J.S.; Feigerlova, E.; Halimi, J.M.; Gourdy, P.; Roussel, R.; Guerci, B.; Dupuy, A.; Bertrand-Michel, J.; Bascands, J.L.;
Hadjadj, S.; et al. Urinary lysophopholipids are increased in diabetic patients with nephropathy. J. Diabetes Its Complicat. 2017, 31,
1103–1108. [CrossRef] [PubMed]

18. Zhang, M.Z.; Wang, X.; Yang, H.; Fogo, A.B.; Murphy, B.J.; Kaltenbach, R.; Cheng, P.; Zinker, B.; Harris, R.C. Lysophosphatidic
Acid Receptor Antagonism Protects against Diabetic Nephropathy in a Type 2 Diabetic Model. J. Am. Soc. Nephrol. 2017, 28,
3300–3311. [CrossRef]

19. Geng, H.; Lan, R.; Singha, P.K.; Gilchrist, A.; Weinreb, P.H.; Violette, S.M.; Weinberg, J.M.; Saikumar, P.; Venkatachalam, M.A.
Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2-
and Galphaq-mediated Rho and alphavbeta6 integrin-dependent activation of TGF-beta. Am. J. Pathol. 2012, 181, 1236–1249.
[CrossRef]

20. Pradere, J.P.; Klein, J.; Gres, S.; Guigne, C.; Neau, E.; Valet, P.; Calise, D.; Chun, J.; Bascands, J.L.; Saulnier-Blache, J.S.; et al. LPA1
receptor activation promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 2007, 18, 3110–3118. [CrossRef]

21. Sakai, N.; Chun, J.; Duffield, J.S.; Lagares, D.; Wada, T.; Luster, A.D.; Tager, A.M. Lysophosphatidic acid signaling through its
receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth
factor. Kidney Int. 2017, 91, 628–641. [CrossRef] [PubMed]

22. Racusen, L.C.; Monteil, C.; Sgrignoli, A.; Lucskay, M.; Marouillat, S.; Rhim, J.G.; Morin, J.P. Cell lines with extended in vitro
growth potential from human renal proximal tubule: Characterization, response to inducers, and comparison with established
cell lines. J. Lab. Clin. Med. 1997, 129, 318–329. [CrossRef]

23. He, F.F.; Zhang, D.; Chen, Q.; Zhao, Y.; Wu, L.; Li, Z.Q.; Zhang, C.; Jiang, Z.H.; Wang, Y.M. Angiopoietin-Tie signaling in kidney
diseases: An updated review. FEBS Lett. 2019, 593, 2706–2715. [CrossRef] [PubMed]

24. Simone, S.; Cosola, C.; Loverre, A.; Cariello, M.; Sallustio, F.; Rascio, F.; Gesualdo, L.; Schena, F.P.; Grandaliano, G.; Pertosa, G.
BMP-2 induces a profibrotic phenotype in adult renal progenitor cells through Nox4 activation. Am. J. Physiol. 2012, 303, F23–F34.
[CrossRef] [PubMed]

25. Lai, C.F.; Chen, Y.M.; Chiang, W.C.; Lin, S.L.; Kuo, M.L.; Tsai, T.J. Cysteine-rich protein 61 plays a proinflammatory role in
obstructive kidney fibrosis. PLoS ONE 2013, 8, e56481. [CrossRef]

26. Yamashita, S.; Maeshima, A.; Kojima, I.; Nojima, Y. Activin A is a potent activator of renal interstitial fibroblasts. J. Am. Soc.
Nephrol. 2004, 15, 91–101. [CrossRef]

27. Wang, B.; Ding, X.; Ding, C.; Tesch, G.; Zheng, J.; Tian, P.; Ricardo, S.; Shen, H.H.; Xue, W. WNT1-inducible-signaling pathway
protein 1 regulates the development of kidney fibrosis through the TGF-beta1 pathway. FASEB J. 2020, 34, 14507–14520. [CrossRef]

28. Zhong, X.; Tu, Y.J.; Li, Y.; Zhang, P.; Wang, W.; Chen, S.S.; Li, L.; Chung, A.C.; Lan, H.Y.; Chen, H.Y.; et al. Serum levels of
WNT1-inducible signaling pathway protein-1 (WISP-1): A noninvasive biomarker of renal fibrosis in subjects with chronic kidney
disease. Am. J. Transl. Res. 2017, 9, 2920–2932.

29. Kuppe, C.; Ibrahim, M.M.; Kranz, J.; Zhang, X.; Ziegler, S.; Perales-Patón, J.; Jansen, J.; Reimer, K.C.; Smith, J.R.; Dobie, R.; et al.
Decoding myofibroblast origins in human kidney fibrosis. Nature 2021, 589, 281–286. [CrossRef]

30. Chung, A.C.; Lan, H.Y. Chemokines in renal injury. J. Am. Soc. Nephrol. 2011, 22, 802–809. [CrossRef]
31. Lv, W.; Booz, G.W.; Wang, Y.; Fan, F.; Roman, R.J. Inflammation and renal fibrosis: Recent developments on key signaling

molecules as potential therapeutic targets. Eur. J. Pharmacol. 2018, 820, 65–76. [CrossRef] [PubMed]
32. Lloyd, C.M.; Minto, A.W.; Dorf, M.E.; Proudfoot, A.; Wells, T.N.; Salant, D.J.; Gutierrez-Ramos, J.C. RANTES and monocyte

chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is
involved in crescent formation and interstitial fibrosis. J. Exp. Med. 1997, 185, 1371–1380. [CrossRef] [PubMed]

33. Wada, T.; Yokoyama, H.; Furuichi, K.; Kobayashi, K.I.; Harada, K.; Naruto, M.; Su, S.B.; Akiyama, M.; Mukaida, N.; Matsushima,
K. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1).
FASEB J. 1996, 10, 1418–1425. [CrossRef] [PubMed]

34. Lee, S.Y.; Kim, S.I.; Choi, M.E. Therapeutic targets for treating fibrotic kidney diseases. Transl. Res. 2015, 165, 512–530. [CrossRef]
[PubMed]

35. Chow, F.Y.; Nikolic-Paterson, D.J.; Ozols, E.; Atkins, R.C.; Rollin, B.J.; Tesch, G.H. Monocyte chemoattractant protein-1 promotes
the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006, 69, 73–80. [CrossRef]

36. Vielhauer, V.; Anders, H.J.; Mack, M.; Cihak, J.; Strutz, F.; Stangassinger, M.; Luckow, B.; Grone, H.J.; Schlondorff, D. Obstructive
nephropathy in the mouse: Progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC
chemokine receptor 2- and 5-positive leukocytes. J. Am. Soc. Nephrol. 2001, 12, 1173–1187. [CrossRef]

37. De Zeeuw, D.; Bekker, P.; Henkel, E.; Hasslacher, C.; Gouni-Berthold, I.; Mehling, H.; Potarca, A.; Tesar, V.; Heerspink, H.J.; Schall,
T.J.; et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: A
randomised trial. Lancet. Diabetes Endocrinol. 2015, 3, 687–696. [CrossRef]

38. Lee, J.H.; Sarker, M.K.; Choi, H.; Shin, D.; Kim, D.; Jun, H.S. Lysophosphatidic acid receptor 1 inhibitor, AM095, attenuates
diabetic nephropathy in mice by downregulation of TLR4/NF-kappaB signaling and NADPH oxidase. Biochim. Biophys. Acta
Mol. Basis Dis. 2019, 1865, 1332–1340. [CrossRef]

39. Zheng, Z.; Li, C.; Shao, G.; Li, J.; Xu, K.; Zhao, Z.; Zhang, Z.; Liu, J.; Wu, H. Hippo-YAP/MCP-1 mediated tubular maladaptive
repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death Dis. 2021, 12, 754. [CrossRef]

http://doi.org/10.1016/j.jdiacomp.2017.04.024
http://www.ncbi.nlm.nih.gov/pubmed/28506691
http://doi.org/10.1681/ASN.2017010107
http://doi.org/10.1016/j.ajpath.2012.06.035
http://doi.org/10.1681/ASN.2007020196
http://doi.org/10.1016/j.kint.2016.09.030
http://www.ncbi.nlm.nih.gov/pubmed/27927603
http://doi.org/10.1016/S0022-2143(97)90180-3
http://doi.org/10.1002/1873-3468.13568
http://www.ncbi.nlm.nih.gov/pubmed/31380564
http://doi.org/10.1152/ajprenal.00328.2011
http://www.ncbi.nlm.nih.gov/pubmed/22496405
http://doi.org/10.1371/journal.pone.0056481
http://doi.org/10.1097/01.ASN.0000103225.68136.E6
http://doi.org/10.1096/fj.202000953R
http://doi.org/10.1038/s41586-020-2941-1
http://doi.org/10.1681/ASN.2010050510
http://doi.org/10.1016/j.ejphar.2017.12.016
http://www.ncbi.nlm.nih.gov/pubmed/29229532
http://doi.org/10.1084/jem.185.7.1371
http://www.ncbi.nlm.nih.gov/pubmed/9104823
http://doi.org/10.1096/fasebj.10.12.8903512
http://www.ncbi.nlm.nih.gov/pubmed/8903512
http://doi.org/10.1016/j.trsl.2014.07.010
http://www.ncbi.nlm.nih.gov/pubmed/25176603
http://doi.org/10.1038/sj.ki.5000014
http://doi.org/10.1681/ASN.V1261173
http://doi.org/10.1016/S2213-8587(15)00261-2
http://doi.org/10.1016/j.bbadis.2019.02.001
http://doi.org/10.1038/s41419-021-04041-8


Int. J. Mol. Sci. 2022, 23, 7452 25 of 29

40. Anders, H.J.; Vielhauer, V.; Frink, M.; Linde, Y.; Cohen, C.D.; Blattner, S.M.; Kretzler, M.; Strutz, F.; Mack, M.; Grone, H.J.; et al. A
chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Investig. 2002, 109, 251–259.
[CrossRef]

41. Vielhauer, V.; Berning, E.; Eis, V.; Kretzler, M.; Segerer, S.; Strutz, F.; Horuk, R.; Grone, H.J.; Schlondorff, D.; Anders, H.J. CCR1
blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 2004,
66, 2264–2278. [CrossRef] [PubMed]

42. Vazirinejad, R.; Ahmadi, Z.; Kazemi Arababadi, M.; Hassanshahi, G.; Kennedy, D. The biological functions, structure and sources
of CXCL10 and its outstanding part in the pathophysiology of multiple sclerosis. Neuroimmunomodulation 2014, 21, 322–330.
[CrossRef] [PubMed]

43. Gao, J.; Wu, L.; Wang, S.; Chen, X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediat. Inflamm.
2020, 2020, 6194864. [CrossRef] [PubMed]

44. Zhang, Y.; Thai, K.; Kepecs, D.M.; Winer, D.; Gilbert, R.E. Reversing CXCL10 Deficiency Ameliorates Kidney Disease in Diabetic
Mice. Am. J. Pathol. 2018, 188, 2763–2773. [CrossRef] [PubMed]

45. Nakaya, I.; Wada, T.; Furuichi, K.; Sakai, N.; Kitagawa, K.; Yokoyama, H.; Ishida, Y.; Kondo, T.; Sugaya, T.; Kawachi, H.; et al.
Blockade of IP-10/CXCR3 promotes progressive renal fibrosis. Nephron. Exp. Nephrol. 2007, 107, e12–e21. [CrossRef]

46. Dutta, S.; Wang, F.Q.; Wu, H.S.; Mukherjee, T.J.; Fishman, D.A. The NF-kappaB pathway mediates lysophosphatidic acid
(LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecol. Oncol. 2011, 123, 129–137. [CrossRef]

47. Staunton, D.E.; Marlin, S.D.; Stratowa, C.; Dustin, M.L.; Springer, T.A. Primary structure of ICAM-1 demonstrates interaction
between members of the immunoglobulin and integrin supergene families. Cell 1988, 52, 925–933. [CrossRef]

48. Muller, G.A.; Markovic-Lipkovski, J.; Muller, C.A. Intercellular adhesion molecule-1 expression in human kidneys with glomeru-
lonephritis. Clin. Nephrol. 1991, 36, 203–208.

49. Dal Canton, A.; Fuiano, G.; Sepe, V.; Caglioti, A.; Ferrone, S. Mesangial expression of intercellular adhesion molecule-1 in primary
glomerulosclerosis. Kidney Int. 1992, 41, 951–955. [CrossRef]

50. Arrizabalaga, P.; Sole, M.; Abellana, R.; de las Cuevas, X.; Soler, J.; Pascual, J.; Ascaso, C. Tubular and interstitial expression of
ICAM-1 as a marker of renal injury in IgA nephropathy. Am. J. Nephrol. 2003, 23, 121–128. [CrossRef]

51. Gu, H.F.; Ma, J.; Gu, K.T.; Brismar, K. Association of intercellular adhesion molecule 1 (ICAM1) with diabetes and diabetic
nephropathy. Front. Endocrinol. 2012, 3, 179. [CrossRef] [PubMed]

52. Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88,
1379–1406. [CrossRef] [PubMed]

53. Su, H.; Lei, C.T.; Zhang, C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front. Immunol. 2017, 8,
405. [CrossRef] [PubMed]

54. Oh, D.J.; Kim, H.R.; Lee, M.K.; Woo, Y.S. Profile of human beta-defensins 1,2 and proinflammatory cytokines (TNF-alpha, IL-6) in
patients with chronic kidney disease. Kidney Blood Press. Res. 2013, 37, 602–610. [CrossRef]

55. Barekzi, E.; Roman, J.; Hise, K.; Georas, S.; Steinke, J.W. Lysophosphatidic acid stimulates inflammatory cascade in airway
epithelial cells. Prostagland. Leukot. Essent. Fat. Acids 2006, 74, 357–363. [CrossRef]

56. Thorlakson, H.H.; Engen, S.A.; Schreurs, O.; Schenck, K.; Blix, I.J.S. Lysophosphatidic acid induces expression of genes in human
oral keratinocytes involved in wound healing. Arch. Oral Biol. 2017, 80, 153–159. [CrossRef]

57. Coletta, I.; Soldo, L.; Polentarutti, N.; Mancini, F.; Guglielmotti, A.; Pinza, M.; Mantovani, A.; Milanese, C. Selective induction of
MCP-1 in human mesangial cells by the IL-6/sIL-6R complex. Exp. Nephrol. 2000, 8, 37–43. [CrossRef]

58. Ranganathan, P.; Jayakumar, C.; Ramesh, G. Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-
induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am. J. Physiol. 2013, 304,
F1054–F1065. [CrossRef]

59. Chen, W.; Yuan, H.; Cao, W.; Wang, T.; Chen, W.; Yu, H.; Fu, Y.; Jiang, B.; Zhou, H.; Guo, H.; et al. Blocking interleukin-6
trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics 2019, 9, 3980–3991. [CrossRef]

60. Bernhard, S.; Hug, S.; Stratmann, A.E.P.; Erber, M.; Vidoni, L.; Knapp, C.L.; Thomass, B.D.; Fauler, M.; Nilsson, B.; Nilsson Ekdahl,
K.; et al. Interleukin 8 Elicits Rapid Physiological Changes in Neutrophils That Are Altered by Inflammatory Conditions. J. Innate
Immun. 2021, 13, 225–241. [CrossRef]

61. Saatian, B.; Zhao, Y.; He, D.; Georas, S.N.; Watkins, T.; Spannhake, E.W.; Natarajan, V. Transcriptional regulation of lysophospha-
tidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem. J.
2006, 393, 657–668. [CrossRef] [PubMed]

62. Cummings, R.; Zhao, Y.; Jacoby, D.; Spannhake, E.W.; Ohba, M.; Garcia, J.G.; Watkins, T.; He, D.; Saatian, B.; Natarajan, V. Protein
kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial
epithelial cells. J. Biol. Chem. 2004, 279, 41085–41094. [CrossRef] [PubMed]

63. Schmouder, R.L.; Strieter, R.M.; Wiggins, R.C.; Chensue, S.W.; Kunkel, S.L. In vitro and in vivo interleukin-8 production in human
renal cortical epithelia. Kidney Int. 1992, 41, 191–198. [CrossRef] [PubMed]

64. Tuncay, S.C.; Dogan, E.; Hakverdi, G.; Tutar, Z.U.; Mir, S. Interleukin-8 is increased in chronic kidney disease in children, but not
related to cardiovascular disease. Braz. J. Nephrol. 2021, 43, 359–364. [CrossRef]

65. Loretelli, C.; Rocchio, F.; D’Addio, F.; Ben Nasr, M.; Castillo-Leon, E.; Dellepiane, S.; Vergani, A.; Abdelsalam, A.; Assi, E.;
Maestroni, A.; et al. The IL-8-CXCR1/2 axis contributes to diabetic kidney disease. Metabolism 2021, 121, 154804. [CrossRef]

http://doi.org/10.1172/JCI0214040
http://doi.org/10.1111/j.1523-1755.2004.66038.x
http://www.ncbi.nlm.nih.gov/pubmed/15569315
http://doi.org/10.1159/000357780
http://www.ncbi.nlm.nih.gov/pubmed/24642726
http://doi.org/10.1155/2020/6194864
http://www.ncbi.nlm.nih.gov/pubmed/32089645
http://doi.org/10.1016/j.ajpath.2018.08.017
http://www.ncbi.nlm.nih.gov/pubmed/30273603
http://doi.org/10.1159/000106505
http://doi.org/10.1016/j.ygyno.2011.06.006
http://doi.org/10.1016/0092-8674(88)90434-5
http://doi.org/10.1038/ki.1992.145
http://doi.org/10.1159/000068920
http://doi.org/10.3389/fendo.2012.00179
http://www.ncbi.nlm.nih.gov/pubmed/23346076
http://doi.org/10.1152/physrev.90100.2007
http://www.ncbi.nlm.nih.gov/pubmed/18923185
http://doi.org/10.3389/fimmu.2017.00405
http://www.ncbi.nlm.nih.gov/pubmed/28484449
http://doi.org/10.1159/000355740
http://doi.org/10.1016/j.plefa.2006.03.004
http://doi.org/10.1016/j.archoralbio.2017.04.008
http://doi.org/10.1159/000059327
http://doi.org/10.1152/ajprenal.00650.2012
http://doi.org/10.7150/thno.32352
http://doi.org/10.1159/000514885
http://doi.org/10.1042/BJ20050791
http://www.ncbi.nlm.nih.gov/pubmed/16197369
http://doi.org/10.1074/jbc.M404045200
http://www.ncbi.nlm.nih.gov/pubmed/15280372
http://doi.org/10.1038/ki.1992.26
http://www.ncbi.nlm.nih.gov/pubmed/1593855
http://doi.org/10.1590/2175-8239-jbn-2020-0225
http://doi.org/10.1016/j.metabol.2021.154804


Int. J. Mol. Sci. 2022, 23, 7452 26 of 29

66. Malaquin, N.; Martinez, A.; Rodier, F. Keeping the senescence secretome under control: Molecular reins on the senescence-
associated secretory phenotype. Exp. Gerontol. 2016, 82, 39–49. [CrossRef]

67. Schafer, M.J.; Zhang, X.; Kumar, A.; Atkinson, E.J.; Zhu, Y.; Jachim, S.; Mazula, D.L.; Brown, A.K.; Berning, M.; Aversa, Z.; et al.
The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 2020, 5, e133668. [CrossRef]

68. Nathan, S.; Zhang, H.; Andreoli, M.; Leopold, P.L.; Crystal, R.G. CREB-dependent LPA-induced signaling initiates a pro-fibrotic
feedback loop between small airway basal cells and fibroblasts. Respir. Res. 2021, 22, 97. [CrossRef]

69. Grynberg, K.; Ma, F.Y.; Nikolic-Paterson, D.J. The JNK Signaling Pathway in Renal Fibrosis. Front. Physiol. 2017, 8, 829. [CrossRef]
70. Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010, 185,

6413–6419. [CrossRef]
71. Hayden, M.S.; Ghosh, S. NF-kappaB, the first quarter-century: Remarkable progress and outstanding questions. Genes Dev. 2012,

26, 203–234. [CrossRef] [PubMed]
72. De Haij, S.; Woltman, A.M.; Bakker, A.C.; Daha, M.R.; van Kooten, C. Production of inflammatory mediators by renal epithelial

cells is insensitive to glucocorticoids. Br. J. Pharmacol. 2002, 137, 197–204. [CrossRef] [PubMed]
73. Sun, W.; Yang, J. Molecular basis of lysophosphatidic acid-induced NF-kappaB activation. Cell. Signal. 2010, 22, 1799–1803.

[CrossRef]
74. Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18, 6853–6866. [CrossRef]

[PubMed]
75. Simone, R.E.; Russo, M.; Catalano, A.; Monego, G.; Froehlich, K.; Boehm, V.; Palozza, P. Lycopene inhibits NF-kB-mediated

IL-8 expression and changes redox and PPARgamma signalling in cigarette smoke-stimulated macrophages. PLoS ONE 2011, 6,
e19652. [CrossRef] [PubMed]

76. Al-Mohanna, F.; Saleh, S.; Parhar, R.S.; Collison, K. IL-12-dependent nuclear factor-kappaB activation leads to de novo synthesis
and release of IL-8 and TNF-alpha in human neutrophils. J. Leukoc. Biol. 2002, 72, 995–1002. [PubMed]

77. Bezzerri, V.; Borgatti, M.; Finotti, A.; Tamanini, A.; Gambari, R.; Cabrini, G. Mapping the transcriptional machinery of the IL-8
gene in human bronchial epithelial cells. J. Immunol. 2011, 187, 6069–6081. [CrossRef]

78. Georganas, C.; Liu, H.; Perlman, H.; Hoffmann, A.; Thimmapaya, B.; Pope, R.M. Regulation of IL-6 and IL-8 expression in
rheumatoid arthritis synovial fibroblasts: The dominant role for NF-kappa B but not C/EBP beta or c-Jun. J. Immunol. 2000, 165,
7199–7206. [CrossRef]

79. Elliott, C.L.; Allport, V.C.; Loudon, J.A.; Wu, G.D.; Bennett, P.R. Nuclear factor-kappa B is essential for up-regulation of
interleukin-8 expression in human amnion and cervical epithelial cells. Mol. Hum. Reprod. 2001, 7, 787–790. [CrossRef]

80. Deng, X.; Xu, M.; Yuan, C.; Yin, L.; Chen, X.; Zhou, X.; Li, G.; Fu, Y.; Feghali-Bostwick, C.A.; Pang, L. Transcriptional regulation of
increased CCL2 expression in pulmonary fibrosis involves nuclear factor-kappaB and activator protein-1. Int. J. Biochem. Cell Biol.
2013, 45, 1366–1376. [CrossRef]

81. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [CrossRef]
[PubMed]

82. Vanden Berghe, W.; Plaisance, S.; Boone, E.; De Bosscher, K.; Schmitz, M.L.; Fiers, W.; Haegeman, G. p38 and extracellular
signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation
mediated by tumor necrosis factor. J. Biol. Chem. 1998, 273, 3285–3290. [CrossRef] [PubMed]

83. Gerritsma, J.S.; Hiemstra, P.S.; Gerritsen, A.F.; Prodjosudjadi, W.; Verweij, C.L.; Van Es, L.A.; Daha, M.R. Regulation and
production of IL-8 by human proximal tubular epithelial cells in vitro. Clin. Exp. Immunol. 1996, 103, 289–294. [CrossRef]
[PubMed]

84. De Haij, S.; Bakker, A.C.; van der Geest, R.N.; Haegeman, G.; Vanden Berghe, W.; Aarbiou, J.; Daha, M.R.; van Kooten, C.
NF-kappaB mediated IL-6 production by renal epithelial cells is regulated by c-jun NH2-terminal kinase. J. Am. Soc. Nephrol.
2005, 16, 1603–1611. [CrossRef] [PubMed]

85. Brasier, A.R. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc. Res. 2010,
86, 211–218. [CrossRef]

86. Xue, J.; Thippegowda, P.B.; Hu, G.; Bachmaier, K.; Christman, J.W.; Malik, A.B.; Tiruppathi, C. NF-kappaB regulates thrombin-
induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappaB site in the ICAM-1 gene.
Physiol. Genom. 2009, 38, 42–53. [CrossRef]

87. Melotti, P.; Nicolis, E.; Tamanini, A.; Rolfini, R.; Pavirani, A.; Cabrini, G. Activation of NF-kB mediates ICAM-1 induction in
respiratory cells exposed to an adenovirus-derived vector. Gene Ther. 2001, 8, 1436–1442. [CrossRef]

88. Viedt, C.; Orth, S.R. Monocyte chemoattractant protein-1 (MCP-1) in the kidney: Does it more than simply attract monocytes?
Nephrol. Dial. Transplant. 2002, 17, 2043–2047. [CrossRef]

89. Ledebur, H.C.; Parks, T.P. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines
in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J. Biol. Chem. 1995, 270, 933–943.
[CrossRef]

90. Zhou, Z.; Connell, M.C.; MacEwan, D.J. TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates
TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell. Signal. 2007, 19, 1238–1248. [CrossRef]

91. Li, N.; Liu, H.; Xue, Y.; Chen, J.; Kong, X.; Zhang, Y. Upregulation of Neogenin-1 by a CREB1-BAF47 Complex in Vascular
Endothelial Cells is Implicated in Atherogenesis. Front. Cell Dev. Biol. 2022, 10, 803029. [CrossRef] [PubMed]

http://doi.org/10.1016/j.exger.2016.05.010
http://doi.org/10.1172/jci.insight.133668
http://doi.org/10.1186/s12931-021-01677-0
http://doi.org/10.3389/fphys.2017.00829
http://doi.org/10.4049/jimmunol.1001829
http://doi.org/10.1101/gad.183434.111
http://www.ncbi.nlm.nih.gov/pubmed/22302935
http://doi.org/10.1038/sj.bjp.0704866
http://www.ncbi.nlm.nih.gov/pubmed/12208776
http://doi.org/10.1016/j.cellsig.2010.05.007
http://doi.org/10.1038/sj.onc.1203239
http://www.ncbi.nlm.nih.gov/pubmed/10602461
http://doi.org/10.1371/journal.pone.0019652
http://www.ncbi.nlm.nih.gov/pubmed/21625550
http://www.ncbi.nlm.nih.gov/pubmed/12429722
http://doi.org/10.4049/jimmunol.1100821
http://doi.org/10.4049/jimmunol.165.12.7199
http://doi.org/10.1093/molehr/7.8.787
http://doi.org/10.1016/j.biocel.2013.04.003
http://doi.org/10.1038/sigtrans.2017.23
http://www.ncbi.nlm.nih.gov/pubmed/29158945
http://doi.org/10.1074/jbc.273.6.3285
http://www.ncbi.nlm.nih.gov/pubmed/9452444
http://doi.org/10.1046/j.1365-2249.1996.d01-617.x
http://www.ncbi.nlm.nih.gov/pubmed/8565314
http://doi.org/10.1681/ASN.2004090781
http://www.ncbi.nlm.nih.gov/pubmed/15843470
http://doi.org/10.1093/cvr/cvq076
http://doi.org/10.1152/physiolgenomics.00012.2009
http://doi.org/10.1038/sj.gt.3301533
http://doi.org/10.1093/ndt/17.12.2043
http://doi.org/10.1074/jbc.270.2.933
http://doi.org/10.1016/j.cellsig.2006.12.013
http://doi.org/10.3389/fcell.2022.803029
http://www.ncbi.nlm.nih.gov/pubmed/35186922


Int. J. Mol. Sci. 2022, 23, 7452 27 of 29

92. Holzberg, D.; Knight, C.G.; Dittrich-Breiholz, O.; Schneider, H.; Dorrie, A.; Hoffmann, E.; Resch, K.; Kracht, M. Disruption of the
c-JUN-JNK complex by a cell-permeable peptide containing the c-JUN delta domain induces apoptosis and affects a distinct set
of interleukin-1-induced inflammatory genes. J. Biol. Chem. 2003, 278, 40213–40223. [CrossRef] [PubMed]

93. Lee, I.T.; Liu, S.W.; Chi, P.L.; Lin, C.C.; Hsiao, L.D.; Yang, C.M. TNF-alpha mediates PKCdelta/JNK1/2/c-Jun-dependent
monocyte adhesion via ICAM-1 induction in human retinal pigment epithelial cells. PLoS ONE 2015, 10, e0117911. [CrossRef]

94. Sindhu, S.; Akhter, N.; Wilson, A.; Thomas, R.; Arefanian, H.; Al Madhoun, A.; Al-Mulla, F.; Ahmad, R. MIP-1alpha Expression
Induced by Co-Stimulation of Human Monocytic Cells with Palmitate and TNF-alpha Involves the TLR4-IRF3 Pathway and Is
Amplified by Oxidative Stress. Cells 2020, 9, 1799. [CrossRef] [PubMed]

95. Koga, Y.; Tsurumaki, H.; Aoki-Saito, H.; Sato, M.; Yatomi, M.; Takehara, K.; Hisada, T. Roles of Cyclic AMP Response Element
Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System,
Osteoclast Differentiation and Mucin and Cytokine Production. Int. J. Mol. Sci. 2019, 20, 1346. [CrossRef]

96. Tomalka, J.A.; Pelletier, A.N.; Fourati, S.; Latif, M.B.; Sharma, A.; Furr, K.; Carlson, K.; Lifton, M.; Gonzalez, A.; Wilkinson, P.; et al.
The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC
vaccination. Nat. Immunol. 2021, 22, 1294–1305. [CrossRef]

97. Zhao, C.; Hui, W.; Fernandes, M.J.; Poubelle, P.E.; Bourgoin, S.G. Lysophosphatidic acid-induced IL-8 secretion involves MSK1
and MSK2 mediated activation of CREB1 in human fibroblast-like synoviocytes. Biochem. Pharmacol. 2014, 90, 62–72. [CrossRef]

98. Mayer, T.Z.; Simard, F.A.; Cloutier, A.; Vardhan, H.; Dubois, C.M.; McDonald, P.P. The p38-MSK1 signaling cascade influences
cytokine production through CREB and C/EBP factors in human neutrophils. J. Immunol. 2013, 191, 4299–4307. [CrossRef]

99. Hwang, Y.S.; Jeong, M.; Park, J.S.; Kim, M.H.; Lee, D.B.; Shin, B.A.; Mukaida, N.; Ellis, L.M.; Kim, H.R.; Ahn, B.W.; et al.
Interleukin-1beta stimulates IL-8 expression through MAP kinase and ROS signaling in human gastric carcinoma cells. Oncogene
2004, 23, 6603–6611. [CrossRef]

100. D’Aversa, T.G.; Eugenin, E.A.; Berman, J.W. CD40-CD40 ligand interactions in human microglia induce CXCL8 (interleukin-8)
secretion by a mechanism dependent on activation of ERK1/2 and nuclear translocation of nuclear factor-kappaB (NFkappaB)
and activator protein-1 (AP-1). J. Neurosci. Res. 2008, 86, 630–639. [CrossRef]

101. Namba, S.; Nakano, R.; Kitanaka, T.; Kitanaka, N.; Nakayama, T.; Sugiya, H. ERK2 and JNK1 contribute to TNF-alpha-induced
IL-8 expression in synovial fibroblasts. PLoS ONE 2017, 12, e0182923. [CrossRef] [PubMed]

102. Lee, P.J.; Zhang, X.; Shan, P.; Ma, B.; Lee, C.G.; Homer, R.J.; Zhu, Z.; Rincon, M.; Mossman, B.T.; Elias, J.A. ERK1/2 mitogen-
activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J. Clin. Investig. 2006, 116,
163–173. [CrossRef] [PubMed]

103. Jing, H.; Yen, J.H.; Ganea, D. A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2. J.
Biol. Chem. 2004, 279, 55176–55186. [CrossRef] [PubMed]

104. Zhu, X.; Wei, D.; Chen, O.; Zhang, Z.; Xue, J.; Huang, S.; Zhu, W.; Wang, Y. Upregulation of CCL3/MIP-1alpha regulated by
MAPKs and NF-kappaB mediates microglial inflammatory response in LPS-induced brain injury. Acta Neurobiol. Exp. 2016, 76,
304–317. [CrossRef]

105. Wang, J.; Tian, Y.; Phillips, K.L.; Chiverton, N.; Haddock, G.; Bunning, R.A.; Cross, A.K.; Shapiro, I.M.; Le Maitre, C.L.; Risbud,
M.V. Tumor necrosis factor alpha- and interleukin-1beta-dependent induction of CCL3 expression by nucleus pulposus cells
promotes macrophage migration through CCR1. Arthritis Rheum. 2013, 65, 832–842. [CrossRef]

106. Kitanaka, N.; Nakano, R.; Sugiura, K.; Kitanaka, T.; Namba, S.; Konno, T.; Nakayama, T.; Sugiya, H. Interleukin-1beta promotes
interleulin-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts. PLoS ONE 2019, 14, e0220262. [CrossRef]

107. Hu, S.L.; Huang, C.C.; Tzeng, T.T.; Liu, S.C.; Tsai, C.H.; Fong, Y.C.; Tang, C.H. S1P promotes IL-6 expression in osteoblasts through
the PI3K, MEK/ERK and NF-kappaB signaling pathways. Int. J. Med. Sci. 2020, 17, 1207–1214. [CrossRef]

108. Klemm, C.; Bruchhagen, C.; van Kruchten, A.; Niemann, S.; Loffler, B.; Peters, G.; Ludwig, S.; Ehrhardt, C. Mitogen-activated
protein kinases (MAPKs) regulate IL-6 over-production during concomitant influenza virus and Staphylococcus aureus infection.
Sci. Rep. 2017, 7, 42473. [CrossRef]

109. Plastira, I.; Bernhart, E.; Joshi, L.; Koyani, C.N.; Strohmaier, H.; Reicher, H.; Malle, E.; Sattler, W. MAPK signaling determines
lysophosphatidic acid (LPA)-induced inflammation in microglia. J. Neuroinflamm. 2020, 17, 127. [CrossRef]

110. Kojima, R.; Kawachi, M.; Ito, M. Butein suppresses ICAM-1 expression through the inhibition of IkappaBalpha and c-Jun
phosphorylation in TNF-alpha- and PMA-treated HUVECs. Int. Immunopharmacol. 2015, 24, 267–275. [CrossRef]

111. Hadad, N.; Tuval, L.; Elgazar-Carmom, V.; Levy, R.; Levy, R. Endothelial ICAM-1 protein induction is regulated by cytosolic
phospholipase A2alpha via both NF-kappaB and CREB transcription factors. J. Immunol. 2011, 186, 1816–1827. [CrossRef]
[PubMed]

112. Jaramillo, M.; Olivier, M. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular
signal-regulated kinase- and cyclic adenosine 5′-monophosphate (cAMP)-dependent pathways: Involvement of NF-kappa B,
activator protein 1, and cAMP response element binding protein. J. Immunol. 2002, 169, 7026–7038. [CrossRef] [PubMed]

113. Salti, T.; Khazim, K.; Haddad, R.; Campisi-Pinto, S.; Bar-Sela, G.; Cohen, I. Glucose Induces IL-1alpha-Dependent Inflammation
and Extracellular Matrix Proteins Expression and Deposition in Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Front.
Immunol. 2020, 11, 1270. [CrossRef] [PubMed]

114. Lei, Y.; Devarapu, S.K.; Motrapu, M.; Cohen, C.D.; Lindenmeyer, M.T.; Moll, S.; Kumar, S.V.; Anders, H.J. Interleukin-1beta
Inhibition for Chronic Kidney Disease in Obese Mice With Type 2 Diabetes. Front. Immunol. 2019, 10, 1223. [CrossRef]

http://doi.org/10.1074/jbc.M304058200
http://www.ncbi.nlm.nih.gov/pubmed/12832416
http://doi.org/10.1371/journal.pone.0117911
http://doi.org/10.3390/cells9081799
http://www.ncbi.nlm.nih.gov/pubmed/32751118
http://doi.org/10.3390/ijms20061346
http://doi.org/10.1038/s41590-021-01026-9
http://doi.org/10.1016/j.bcp.2014.04.012
http://doi.org/10.4049/jimmunol.1301117
http://doi.org/10.1038/sj.onc.1207867
http://doi.org/10.1002/jnr.21525
http://doi.org/10.1371/journal.pone.0182923
http://www.ncbi.nlm.nih.gov/pubmed/28806729
http://doi.org/10.1172/JCI25711
http://www.ncbi.nlm.nih.gov/pubmed/16374521
http://doi.org/10.1074/jbc.M409816200
http://www.ncbi.nlm.nih.gov/pubmed/15498767
http://doi.org/10.21307/ane-2017-029
http://doi.org/10.1002/art.37819
http://doi.org/10.1371/journal.pone.0220262
http://doi.org/10.7150/ijms.44612
http://doi.org/10.1038/srep42473
http://doi.org/10.1186/s12974-020-01809-1
http://doi.org/10.1016/j.intimp.2014.12.016
http://doi.org/10.4049/jimmunol.1000193
http://www.ncbi.nlm.nih.gov/pubmed/21199900
http://doi.org/10.4049/jimmunol.169.12.7026
http://www.ncbi.nlm.nih.gov/pubmed/12471138
http://doi.org/10.3389/fimmu.2020.01270
http://www.ncbi.nlm.nih.gov/pubmed/32733443
http://doi.org/10.3389/fimmu.2019.01223


Int. J. Mol. Sci. 2022, 23, 7452 28 of 29

115. Bandach, I.; Segev, Y.; Landau, D. Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease
progression and anemia. Sci. Rep. 2021, 11, 6288. [CrossRef]

116. Stangou, M.; Papagianni, A.; Bantis, C.; Moisiadis, D.; Kasimatis, S.; Spartalis, M.; Pantzaki, A.; Efstratiadis, G.; Memmos, D.
Up-regulation of urinary markers predict outcome in IgA nephropathy but their predictive value is influenced by treatment with
steroids and azathioprine. Clin. Nephrol. 2013, 80, 203–210. [CrossRef]

117. Anders, H.J. Of Inflammasomes and Alarmins: IL-1beta and IL-1alpha in Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 2564–2575.
[CrossRef]

118. Privratsky, J.R.; Zhang, J.; Lu, X.; Rudemiller, N.; Wei, Q.; Yu, Y.R.; Gunn, M.D.; Crowley, S.D. Interleukin 1 receptor (IL-1R1)
activation exacerbates toxin-induced acute kidney injury. Am. J. Physiol. 2018, 315, F682–F691. [CrossRef]

119. Jones, L.K.; O’Sullivan, K.M.; Semple, T.; Kuligowski, M.P.; Fukami, K.; Ma, F.Y.; Nikolic-Paterson, D.J.; Holdsworth, S.R.;
Kitching, A.R. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol. Dial. Transplant. 2009, 24,
3024–3032. [CrossRef]

120. Lavoz, C.; Matus, Y.S.; Orejudo, M.; Carpio, J.D.; Droguett, A.; Egido, J.; Mezzano, S.; Ruiz-Ortega, M. Interleukin-17A blockade
reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 2019, 95, 1418–1432.
[CrossRef]

121. Orejudo, M.; Rodrigues-Diez, R.R.; Rodrigues-Diez, R.; Garcia-Redondo, A.; Santos-Sanchez, L.; Randez-Garbayo, J.; Cannata-
Ortiz, P.; Ramos, A.M.; Ortiz, A.; Selgas, R.; et al. Interleukin 17A Participates in Renal Inflammation Associated to Experimental
and Human Hypertension. Front. Pharmacol. 2019, 10, 1015. [CrossRef] [PubMed]

122. Mehrotra, P.; Collett, J.A.; McKinney, S.D.; Stevens, J.; Ivancic, C.M.; Basile, D.P. IL-17 mediates neutrophil infiltration and renal
fibrosis following recovery from ischemia reperfusion: Compensatory role of natural killer cells in athymic rats. Am. J. Physiol.
2017, 312, F385–F397. [CrossRef] [PubMed]

123. Sun, B.; Wang, H.; Zhang, L.; Yang, X.; Zhang, M.; Zhu, X.; Ji, X.; Wang, H. Role of interleukin 17 in TGF-beta signaling-mediated
renal interstitial fibrosis. Cytokine 2018, 106, 80–88. [CrossRef] [PubMed]

124. Ramani, K.; Tan, R.J.; Zhou, D.; Coleman, B.M.; Jawale, C.V.; Liu, Y.; Biswas, P.S. IL-17 Receptor Signaling Negatively Regulates
the Development of Tubulointerstitial Fibrosis in the Kidney. Mediat. Inflamm. 2018, 2018, 5103672. [CrossRef] [PubMed]

125. Sanz, A.B.; Justo, P.; Sanchez-Nino, M.D.; Blanco-Colio, L.M.; Winkles, J.A.; Kreztler, M.; Jakubowski, A.; Blanco, J.; Egido, J.;
Ruiz-Ortega, M.; et al. The cytokine TWEAK modulates renal tubulointerstitial inflammation. J. Am. Soc. Nephrol. 2008, 19,
695–703. [CrossRef]

126. Ortiz, A.; Sanz, A.B.; Munoz Garcia, B.; Moreno, J.A.; Sanchez Nino, M.D.; Martin-Ventura, J.L.; Egido, J.; Blanco-Colio, L.M.
Considering TWEAK as a target for therapy in renal and vascular injury. Cytokine Growth Factor Rev. 2009, 20, 251–258. [CrossRef]

127. Sanz, A.B.; Izquierdo, M.C.; Sanchez-Nino, M.D.; Ucero, A.C.; Egido, J.; Ruiz-Ortega, M.; Ramos, A.M.; Putterman, C.; Ortiz,
A. TWEAK and the progression of renal disease: Clinical translation. Nephrol. Dial. Transplant. 2014, 29 (Suppl. S1), i54–i62.
[CrossRef]

128. Ucero, A.C.; Benito-Martin, A.; Fuentes-Calvo, I.; Santamaria, B.; Blanco, J.; Lopez-Novoa, J.M.; Ruiz-Ortega, M.; Egido, J.; Burkly,
L.C.; Martinez-Salgado, C.; et al. TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent
proliferation of cultured renal fibroblast. Biochim. Biophys. Acta 2013, 1832, 1744–1755. [CrossRef]

129. Bernardi, S.; Voltan, R.; Rimondi, E.; Melloni, E.; Milani, D.; Cervellati, C.; Gemmati, D.; Celeghini, C.; Secchiero, P.; Zauli, G.; et al.
TRAIL, OPG, and TWEAK in kidney disease: Biomarkers or therapeutic targets? Clin. Sci. 2019, 133, 1145–1166. [CrossRef]

130. Sun, F.; Teng, J.; Yu, P.; Li, W.; Chang, J.; Xu, H. Involvement of TWEAK and the NF-kappaB signaling pathway in lupus nephritis.
Exp. Ther. Med. 2018, 15, 2611–2619. [CrossRef]

131. Poveda, J.; Tabara, L.C.; Fernandez-Fernandez, B.; Martin-Cleary, C.; Sanz, A.B.; Selgas, R.; Ortiz, A.; Sanchez-Nino, M.D.
TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Front. Immunol. 2013, 4, 447. [CrossRef] [PubMed]

132. Sanz, A.B.; Sanchez-Nino, M.D.; Ortiz, A. TWEAK, a multifunctional cytokine in kidney injury. Kidney Int. 2011, 80, 708–718.
[CrossRef] [PubMed]

133. Mehaffey, E.; Majid, D.S.A. Tumor necrosis factor-alpha, kidney function, and hypertension. Am. J. Physiol. 2017, 313, F1005–F1008.
[CrossRef]

134. Vielhauer, V.; Mayadas, T.N. Functions of TNF and its receptors in renal disease: Distinct roles in inflammatory tissue injury and
immune regulation. Semin. Nephrol. 2007, 27, 286–308. [CrossRef] [PubMed]

135. Ernandez, T.; Mayadas, T.N. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int. 2009, 76, 262–276.
[CrossRef]

136. Nikitopoulou, I.; Oikonomou, N.; Karouzakis, E.; Sevastou, I.; Nikolaidou-Katsaridou, N.; Zhao, Z.; Mersinias, V.; Armaka, M.;
Xu, Y.; Masu, M.; et al. Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. J. Exp.
Med. 2012, 209, 925–933. [CrossRef]

137. Lu, J.; Chatterjee, M.; Schmid, H.; Beck, S.; Gawaz, M. CXCL14 as an emerging immune and inflammatory modulator. J. Inflamm.
2016, 13, 1. [CrossRef]

138. Lv, J.; Wu, Z.L.; Gan, Z.; Gui, P.; Yao, S.L. CXCL14 Overexpression Attenuates Sepsis-Associated Acute Kidney Injury by Inhibiting
Proinflammatory Cytokine Production. Mediat. Inflamm. 2020, 2020, 2431705. [CrossRef]

http://doi.org/10.1038/s41598-021-85778-2
http://doi.org/10.5414/CN107836
http://doi.org/10.1681/ASN.2016020177
http://doi.org/10.1152/ajprenal.00104.2018
http://doi.org/10.1093/ndt/gfp214
http://doi.org/10.1016/j.kint.2018.12.031
http://doi.org/10.3389/fphar.2019.01015
http://www.ncbi.nlm.nih.gov/pubmed/31572188
http://doi.org/10.1152/ajprenal.00462.2016
http://www.ncbi.nlm.nih.gov/pubmed/27852609
http://doi.org/10.1016/j.cyto.2017.10.015
http://www.ncbi.nlm.nih.gov/pubmed/29111086
http://doi.org/10.1155/2018/5103672
http://www.ncbi.nlm.nih.gov/pubmed/30405320
http://doi.org/10.1681/ASN.2007050577
http://doi.org/10.1016/j.cytogfr.2009.05.002
http://doi.org/10.1093/ndt/gft342
http://doi.org/10.1016/j.bbadis.2013.05.032
http://doi.org/10.1042/CS20181116
http://doi.org/10.3892/etm.2018.5711
http://doi.org/10.3389/fimmu.2013.00447
http://www.ncbi.nlm.nih.gov/pubmed/24339827
http://doi.org/10.1038/ki.2011.180
http://www.ncbi.nlm.nih.gov/pubmed/21697814
http://doi.org/10.1152/ajprenal.00535.2016
http://doi.org/10.1016/j.semnephrol.2007.02.004
http://www.ncbi.nlm.nih.gov/pubmed/17533007
http://doi.org/10.1038/ki.2009.142
http://doi.org/10.1084/jem.20112012
http://doi.org/10.1186/s12950-015-0109-9
http://doi.org/10.1155/2020/2431705


Int. J. Mol. Sci. 2022, 23, 7452 29 of 29

139. Mirzoyan, K.; Baiotto, A.; Dupuy, A.; Marsal, D.; Denis, C.; Vinel, C.; Sicard, P.; Bertrand-Michel, J.; Bascands, J.L.; Schanstra, J.P.;
et al. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: Potential involvement in chronic kidney
disease. J. Physiol. Biochem. 2016, 72, 803–812. [CrossRef]

140. Swaney, J.S.; Chapman, C.; Correa, L.D.; Stebbins, K.J.; Broadhead, A.R.; Bain, G.; Santini, A.M.; Darlington, J.; King, C.D.; Baccei,
C.S.; et al. Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective
antagonist. J. Pharmacol. Exp. Ther. 2011, 336, 693–700. [CrossRef]

141. Grove, K.J.; Voziyan, P.A.; Spraggins, J.M.; Wang, S.; Paueksakon, P.; Harris, R.C.; Hudson, B.G.; Caprioli, R.M. Diabetic
nephropathy induces alterations in the glomerular and tubule lipid profiles. J. Lipid Res. 2014, 55, 1375–1385. [CrossRef] [PubMed]

142. Li, H.Y.; Oh, Y.S.; Choi, J.W.; Jung, J.Y.; Jun, H.S. Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy
in db/db mice. Kidney Int. 2017, 91, 1362–1373. [CrossRef] [PubMed]

143. Mizuno, S.; Matsumoto, K.; Nakamura, T. HGF as a renotrophic and anti-fibrotic regulator in chronic renal disease. Front. Biosci.
2008, 13, 7072–7086. [CrossRef] [PubMed]

144. Nishino, T.; Pusey, C.D.; Domin, J. Elevated Akt phosphorylation as an indicator of renal tubular epithelial cell stress. J. Biol.
Chem. 2002, 277, 33943–33949. [CrossRef]

145. Veerasamy, M.; Nguyen, T.Q.; Motazed, R.; Pearson, A.L.; Goldschmeding, R.; Dockrell, M.E. Differential regulation of E-cadherin
and alpha-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis. Am.
J. Physiol. 2009, 297, F1238–F1248. [CrossRef]

146. Zeisberg, M.; Hanai, J.; Sugimoto, H.; Mammoto, T.; Charytan, D.; Strutz, F.; Kalluri, R. BMP-7 counteracts TGF-beta1-induced
epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003, 9, 964–968. [CrossRef]

147. Moll, S.; Ebeling, M.; Weibel, F.; Farina, A.; Araujo Del Rosario, A.; Hoflack, J.C.; Pomposiello, S.; Prunotto, M. Epithelial cells as
active player in fibrosis: Findings from an in vitro model. PLoS ONE 2013, 8, e56575. [CrossRef]

148. Broadbelt, N.V.; Chen, J.; Silver, R.B.; Poppas, D.P.; Felsen, D. Pressure activates epidermal growth factor receptor leading to the
induction of iNOS via NFkappaB and STAT3 in human proximal tubule cells. Am. J. Physiol. 2009, 297, F114–F124. [CrossRef]

149. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters.
OMICS A J. Integr. Biol. 2012, 16, 284–287. [CrossRef]

150. Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007,
23, 1846–1847. [CrossRef]

151. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef] [PubMed]

152. Carvalho, B.S.; Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26, 2363–2367.
[CrossRef] [PubMed]

153. Kauffmann, A.; Gentleman, R.; Huber, W. arrayQualityMetrics—A bioconductor package for quality assessment of microarray
data. Bioinformatics 2009, 25, 415–416. [CrossRef] [PubMed]

154. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R.
Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e1821. [CrossRef] [PubMed]

155. Cabello-Aguilar, S.; Alame, M.; Kon-Sun-Tack, F.; Fau, C.; Lacroix, M.; Colinge, J. SingleCellSignalR: Inference of intercellular
networks from single-cell transcriptomics. Nucleic Acids Res. 2020, 48, e55. [CrossRef] [PubMed]

156. Shao, X.; Liao, J.; Li, C.; Lu, X.; Cheng, J.; Fan, X. CellTalkDB: A manually curated database of ligand–receptor interactions in
humans and mice. Brief. Bioinform. 2021, 22, bbaa269. [CrossRef] [PubMed]

157. Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30,
2811–2812. [CrossRef]

http://doi.org/10.1007/s13105-016-0518-0
http://doi.org/10.1124/jpet.110.175901
http://doi.org/10.1194/jlr.M049189
http://www.ncbi.nlm.nih.gov/pubmed/24864273
http://doi.org/10.1016/j.kint.2016.11.010
http://www.ncbi.nlm.nih.gov/pubmed/28111010
http://doi.org/10.2741/3211
http://www.ncbi.nlm.nih.gov/pubmed/18508717
http://doi.org/10.1074/jbc.M201338200
http://doi.org/10.1152/ajprenal.90539.2008
http://doi.org/10.1038/nm888
http://doi.org/10.1371/journal.pone.0056575
http://doi.org/10.1152/ajprenal.90752.2008
http://doi.org/10.1089/omi.2011.0118
http://doi.org/10.1093/bioinformatics/btm254
http://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://doi.org/10.1093/bioinformatics/btq431
http://www.ncbi.nlm.nih.gov/pubmed/20688976
http://doi.org/10.1093/bioinformatics/btn647
http://www.ncbi.nlm.nih.gov/pubmed/19106121
http://doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
http://doi.org/10.1093/nar/gkaa183
http://www.ncbi.nlm.nih.gov/pubmed/32196115
http://doi.org/10.1093/bib/bbaa269
http://www.ncbi.nlm.nih.gov/pubmed/33147626
http://doi.org/10.1093/bioinformatics/btu393

