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ABSTRACT

In recent years, there has been a decrease in the minimum feature size of the transistors
in integrated circuits. As a result, the vulnerability of CPU components has increased.
An increasing rate of defects are present, causing transient faults and permanent faults.
These faults, at some point in the execution, manifest into errors that interfere with the
correctness of the execution. Thus, new ways need to be explored to (1) detect these
defects (2) correct the resulting errors or prevent the execution from being affected by
them (e.g., stopping the execution).

To this end, we studied the vulnerability of the TLB (Translation Lookaside Buffer) hier-
archy in both the ARM and x86 ISA using the ACE (Architecturally Correct Execution)
methodology which applies to transient errors. We chose this component due to its crit-
icality in the correctness of the execution (it is vital for ensuring process isolation and
security) and its frequent use, as it is responsible for caching virtual to physical transla-
tions and is accessed on every memory reference. The ACE methodology calculates the
AVF (Architectural Vulnerability Factor) of an array-based component, focusing on all of
its bits and being more pessimistic than fault injection (its alternative and standard in the
field). We conducted this study using the gem5 micro-architectural simulator. We cal-
culated the results using benchmarks from the MiBench suite and custom stress marks.
We observed that for the x86 ISA, the average TLB hierarchy AVF from our workloads is
30.49% and the average FIT (Failures in Time) rate is 0.0226. For the ARM ISA, the aver-
age TLB hierarchy AVF from our workloads is 5.07% and the average FIT rate is 0.0414.
The differences between the two ISAs can be attributed to the L2 TLB in the case of the
ARM ISA, which drastically decreases the overall AVF but hinders the overall FIT rate due
to its size. Finally, the results reveal the pessimistic nature of the ACE methodology.

SUBJECT AREA: Computer Architecture

KEYWORDS: soft errors, vulnerability measurements, ACE, gem5, simulation, TLB



ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια, το ελάχιστο μέγεθος των χαρακτηριστικών στα ολοκληρωμένα κυκλώ-
ματα έχει μειωθεί. Ως αποτέλεσμα, η ευπάθεια των εξαρτημάτων της κεντρικής μονάδας
επεξεργασίας έχει αυξηθεί. Παρατηρούμε οτι ο ρυθμός των ατελειών αυξάνεται, δημιουρ-
γώντας προσωρινά και μόνιμα ελαττώματα. Αυτά τα ελαττώματα, σε κάποιο σημείο της
εκτέλεσης φανερώνονται με τη μορφή σφαλμάτων τα οποία επηρεάζουν την εκτέλεση. Για
αυτό το λόγο, πρέπει να ερευνήσουμε τρόπους για να (1) ανιχνεύσουμε αυτές τις ατέλειες,
(2) λύσουμε τα σφάλματα που προκύπτουν ή να αποτρέψουμε την εκτέλεση από το να
επηρεαστεί από αυτά (π.χ να σταματήσουμε την εκτέλεση).
Αφορμώμενοι από αυτό, μελετήσαμε την ευπάθεια της ιεραρχίας TLB στα σύνολα εντολών
ARM και x86 χρησιμοποιώντας την ACE μεθοδολογία. Διαλέξαμε τα συγκεκριμένα εξαρτή-
ματα λόγο της κρισιμότητα τους στην ορθότητα της εκτέλεσης (είναι σημαντικά εξαρτήματα
για την ασφάλεια και τις προσβάσεις στη μνήμη) και τη συχνή του χρήση. Η ACE μεθοδολο-
γία, χρησιμοποιείται για να υπολογίσουμε το AVF κάθε εξαρτήματος βασιζόμενο σε λίστα,
η οποία επικεντρώνεται σε όλα τα bit του και είναι πεσιμιστική σε σύγκριση με την ένεση
λαθών (η εναλλακτική και πρότυπη μεθοδολογία). Για αυτή τη μελέτη χρησιμοποιήσαμε
τον μικροαρχιτεκτονικό προσομοιωτή gem5 [7]. Υπολογίσαμε τα αποτελέσματα χρησιμο-
ποιώντας προγράμματα από την σουίτα MiBench καθώς και δικά μας προγράμματα για
έλεγχο αντοχής. Παρατηρήσαμε ότι για το σύνολο εντολών x86 το μέσο AVF της ιεραρχίας
των TLB είναι 30.49% και ο μέσος ρυθμός FIT είναι 0.0226. Οι διαφορές ανάμεσα στα
δύο σύνολα εντολών οφείλονται στην ύπαρξη του L2 TLB, στην περίπτωση του συνόλου
εντολών ARM, το οποίο μειώνει το AVF αλλά αυξάνει δραστικά το FIT λόγο του μεγέθους
του. Για το σύνολο εντολών ARM το μέσο AVF της ιεραρχίας των TLB είναι 5.07% και ο
μέσος ρυθμός FIT είναι 0.0414. Τέλος, τα αποτελέσματα επιβεβαιώνουν την πεσιμιστική
φύση της ACE μεθοδολογίας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αρχιτεκτονική υπολογιστών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: παροδικά σφάλματα, ευπάθεια, ACE, gem5, προσομοίωση, TLB
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Soft Error Rate Measurements through ACE Analysis in TLB Structures of CPUs

1. INTRODUCTION

In recent years, transistors become smaller and smaller due to advances in their man-
ufacturing process. The physical laws are now the biggest obstacles to shrinking down
these devices further, and thus our scaling rate has decreased (Moore’s law [27] is now
not applicable). There are three reasons for manufacturing smaller devices:

(1) Transistor density, which gives us the ability to create more complicated designs in
general purpose CPUs, SIMD (Single Instruction, Multiple Data) and GPU systems, and
smaller devices in general. Design goals vary in different systems and include speed
and energy efficiency.

(2) Due to the smaller bridge length of the transistors, the raw speed of the device has
increased.

(3) Finally, smaller transistor plates lead to reduced voltage needs and thus energy effi-
ciency.

Despite making great strides in these goals, the scaling comes at a cost. There has been
an increase in the vulnerability of integrated circuits [2, 14, 19]. The problem is only tackled
in specialized applications (e.g., space computing [26, 21, 48, 41]) but in commercial and
cloud devices the problem becomes more and more prominent [20, 16]. Furthermore,
current measurement methods often lead to misleading results [35].

During the execution of a workload, there is a chance that a fault will occur inside the
computational or memory units (their causes are mentioned in Section 2.1). These faults
can be split into two categories, transient faults and permanent faults. With this realiza-
tion, in this work, we study the first category of faults. Specifically, we are interested in
transient faults in the TLB (Translation Lookaside Buffer) structures of the CPU. The TLB
is the structure responsible for buffering virtual to physical address translations (as well
as required metadata e.g. process identifiers). The choice of component is based on its
criticality in the correct execution of the program.

There have been some previous works that study the reliability of the address transla-
tion structures and the address translation subsystem. First of all there have been some
approaches that focus on the validation of address translation structures [34, 33, 39].
Moreover there are works that focus on adding protection mechanisms in the address
translation structures [12, 46]. Finally there are also approaches that tackle memory con-
sistency taking into account the virtual memory address space [42].

To understand how vulnerable these components are, we use the ACE methodology
[8, 28], which calculates the Architectural Vulnerability Factor (AVF)[29] of different com-
ponents. The AVF is a metric that shows the probability of a fault in a specific component
affecting the result of the execution. During the study, we explore the advantages and
disadvantages of this methodology. The ACE methodology is used to calculate reliability
metrics through simulation by taking into account every bit of the array (more about the
ACE methodology in Section 2.5).

For all the simulations, we employ the gem5 microarchitectural simulator [7]. We conduc-
ted the study both in the ARM and the x86 ISA’s TLB hierarchies, due to the diversity of
fault behavior in different ISAs [15, 13]. We used various workloads from the MiBench
suite as well as some stress marks that we created. We observed that for the x86 ISA,

K. M. Sgouras 13
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the average TLB hierarchy AVF from our workloads is 30.49% and the average FIT (Fail-
ures in Time) rate is 0.0226. For the ARM ISA, the average TLB hierarchy AVF from our
workloads is 5.07% and the average FIT rate is 0.0414.

K. M. Sgouras 14
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2. BACKGROUND

As mentioned before, our goal is to use the ACE methodology to measure the reliability of
the TLB hierarchy to soft errors. To proceed, we need to understand these vulnerabilities,
how we can express them in a metric, the methodologies used to calculate these metrics,
the role of the TLBs and why we study them.

2.1 Faults and Errors

First, we need to define what reliability problem computers are facing. During the execu-
tion of a program, there is a possibility of a fault happening. Faults are not user-visible.
Some of their causes include manufacturing defects, hardware bugs or bit-flips. They are
split into three categories based on their persistence: permanent, intermittent or transient.
Permanent faults are always present (e.g., oxide wearout). Intermittent faults frequently
appear and disappear. Usually, they are early forms of permanent faults (e.g., partial wear
out). Transient faults are temporary errors, mostly bit flips or gate malfunctions caused by
alpha particle strikes, neutron strikes, or electromagnetic effects.

Although faults are invisible to the user, they usually cause a user-visible error. The defin-
ition of user-visible in the context of a program execution is an alternation of its result.
There are two types of errors regarding their persistence: (1) soft errors (temporary) and
(2) hard errors (permanent). In this study, we are focusing on soft errors [9, 10].

Soft errors can also be categorized based on the user’s knowledge of their existence.
There have been proposed mechanisms which can detect (Error Correction Code - ECC)
and correct a fault (e.g., Single-bit Error Correction - SEC). The Single-bit Error Correc-
tion, Double-bit Error Detection (SECDED) is the error correcting code used for standard
ECC protected SDRAM [18]. If a fault is detected but not corrected, it is called Detec-
ted Unrecoverable Error (DUE). If the error detection happens at the software level (e.g.
Segmentation Fault), it is called a crash. If a soft error is not detected but still affects the
execution, it is called silent data corruption (SDC). SDCs are far more dangerous than
crashes because the user does not know their existence. The user trusts the result of an
integrated circuit, which turns out wrong, with no sign of malfunction [38, 40, 43, 17].

2.2 Mean Time To Failure and Failures In Time

To study how the faults affect the execution, we need to use a metric that defines how
often they occur. The first metric is Mean Time To Failure (MTTF), which expresses the
mean time elapsed between two individual faults. A similar metric is the Failures In Time
(FIT), which expresses how many errors happen in a system in (109) hours. The FIT met-
ric has an additive nature when it comes to calculating the FIT of a system using the FIT
of its components; thus it is preferred by engineers.

FITratesystem =
n∑

i=0

FITratei

K. M. Sgouras 15
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2.3 Architectural Vulnerability Factor

In this study, we focus on the vulnerability of array-based components. These compon-
ents contain many storage cells; thus we focus on their bit-flips (faults on storage cells).
To calculate the FIT of user-visible errors in storage cells there are three factors we need
to take into account: (1) The chance a bit-flip will happen in a specific time period (in-
trinsic FIT), (2) the fraction of this time period that the component is vulnerable to bit-flips
(Timing Vulnerability Factor or TVF), (3) the probability that a bit-flip will result in a user-
visible error. The first two factors can be calculated by physical experiments taking into
account the chip technology, its packaging and the environment in which it is functioning.
It is worth mentioning, that a typical intrinsic FIT rate for an SRAM array bit ranges from
10−6 to 10−5 (for our calculations, we will use an intrinsic FIT rate of 5 ∗ 10−6). The last
factor is calculated using a metric called Architectural Vulnerability Factor (AVF). Due to
the addictive nature of the intrinsic rate we can calculate the total intrinsic FIT rate of a
component using the equation:

FIT intrinsicsystem =
n∑

i=0

FIT intrinsici = FIT intrinsicbit ∗ TotalNumberofBits

Finally, the FIT formula that includes the intrinsic FIT rate and the AVF is:

FITrate = FIT intrinsicbit ∗ TotalNumberofBits ∗ AV F

As mentioned before, AVF expresses the possibility that a bit-flip in a storage cell res-
ults in a user-visible error. The calculation of this metric is very complicated due to the
interactions of many architectural and micro-architectural components. Thus, simulation
software is used to calculate it. Furthermore, it can be split into two categories: (1) SDC
AVF and (2) DUE AVF. In this study, our goal is to calculate this metric for different virtual
translation components to make observations about the vulnerability. We will be using the
combined SDC and DUE AVF. Finally, there are two methodologies that are widely used
to acquire the AVF of a component using simulation: (1) Statistical Fault Injection and (2)
Architecturally Correct Execution (ACE).

2.4 Statistical Fault Injection

The first methodology used to compute the AVF of a specific component is called Stat-
istical Fault Injection (SFI) [25]. In this methodology, many simulations of the execution
of a particular program take place. In each execution using a statistical model, a fault is
injected (either in a storage cell or in an RTL component). At the end of the execution, the
correctness of its result is assessed (compared with an execution with no injected faults).
If the result is not correct, then an error is considered detected. Then, the AVF is calcu-
lated using the expression:

K. M. Sgouras 16
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AV F =
ErrorsDetected

FaultsInjected

SFI is the most accurate way to calculate the AVF of a component. The main issue is
the time required to simulate all these executions. First, the execution needs to finish
observing an outcome. Then, to have a statistically correct result, many repetitions are
necessary. This creates a lengthy simulation for RTL (Register-Transfer Level) and mi-
croarchitectural simulators using performance models (which are magnitudes faster). The
poor performance of this methodology leads to long AVF calculations for new components,
although some works aim to reduce this latency [37]. Moreover, SFI may not consider
every single bit of an array-based component (given its statistical nature). The calculation
solely considers the random bits that were injected at the cycle they were chosen to be in-
jected. Thus, despite examining the outcome of some faults until the end of the execution,
some potentially hurtful faults may be omitted. To this end, the amount and the distribution
of faults are of paramount importance for high statistical significance of the final measured
AVF [25, 36].

2.5 ACE Methodology

The second methodology is called ACE because it uses Architecturally Correct Execution
(ACE) [8, 28] principles to compute per-structure AVF. To explain the methodology, we
need to define what ACE and un-ACE terms are.

2.5.1 ACE and un-ACE bits

A storage cell is considered ACE in every cycle in which a change in the storage cell’s
state will result in a user-visible error. During every other cycle of the execution, the bit is
considered un-ACE (a visual representation of the characterization of a bit’s cycles in the
ACE methodology can be found in Figure 2.1). For example, let us consider an execution
that lasts 10 million cycles. If, during the first 2 million cycles, a change in the storage
cell’s value results in a user-visible error, the bit will be labeled as ACE for these 2 million
cycles. If, during the other 8 million cycles, the change in its value does not affect the
execution, then the bit will be labeled as un-ACE for these 8 million cycles. The formula
to calculate the AVF for this specific bit using this information is straightforward:

AV F =
ACECycles

TotalCycles

In our example, the AVF of the bit is 0.2 or 20%. This definition of the ACE bit creates a
problem. In which cycles will the bit in question be labeled ACE, when its effect on the
execution’s outcome is unknown? To solve this problem, the ACEmethodology employs a
pessimistic approach to reduce the simulation’s length. It assumes that a bit is ACE when
it can potentially create a user-visible error in the future. The methodology examines each
stage of the ”path” in the bit’s ”journey” separately, thus adopting a pessimistic approach
and labeling every potential error-prone bit as ACE. Finally, the AVF calculation, despite
taking into account every bit in a component, is less accurate (pessimistic) compared to
Fault Injection.

K. M. Sgouras 17
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2.5.2 AVF calculation of storage-based component

The AVF calculation of a storage-based, using the ACE methodology, is an additive ver-
sion of the single bit’s expression. First, we simulate each cycle, labeling every bit of the
structure as ACE or un-ACE. It is important to note that the distinction happens based on
the current stage of the bits datapath, i.e., we consider only the propagation of a potential
fault. Then, we use the following expression to calculate the AVF:

AV F =
TotalACECycles

NumberOfBits ∗ TotalSimulationCycles

During this study, we also utilize an expression that uses the number of un-ACE cycles
because it is sometimes easier to label a bit as un-ACE rather than ACE:

AV F = 1− TotalUnACECycles

NumberOfBits ∗ TotalSimulationCycles

Execution Duration

unACE Cycles ACE Cycles

Figure 2.1: ACE and unACE cycles in the ACE methodology

2.6 TLB Hierarchy

In this study, we calculate the AVF of the components in the TLB Hierarchy. The Transla-
tion Lookaside Buffer (TLB) is a component that stores virtual to physical address transla-
tions as TLB entries. It contains two arrays: (1) a data array and (2) a tag array. The data
array stores the physical frame to which the associated virtual page points. The tag array
stores the entire Virtual Page Number (VPN) or part of it (depending on the associativity
of the TLB) , a subset of the virtual address that is used to match with the given virtual
address to determine whether the translation is in the buffer.
In a TLB, because of the common virtual address space between processes, we need to
be able to differentiate between the processes’ translations. So there are two ways to dis-
tinguish the processes’ translations: (1) either to concatenate the identifier of the process
in the TLB’s tag (e.g Address Space Identifier [11], Process Context Identifier [23] ) or (2)
flush each time the OS performs a context switch. In either of these techniques, the TLB
plays a critical role in keeping each process’ data separate. A TLB can be fully associat-
ive, n-way associative or directly mapped (usually fully associative or n-way associative).
It is worth mentioning that there are two TLBs in a modern system: (1) a data TLB and (2)
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an instruction TLB. Finally, the TLB’s purpose is to make the virtual address translation
process faster.

So, what is the process of virtual translation? When a virtual address has to be translated,
the hardware first checks the TLB for a potential match using the VPN. In the case it
matches, the corresponding physical frame number (PFN) is used. In the case of a miss,
the OS (operating system) or the hardware performs a page table walk (PTW). Its result is
cached in the TLB. In modern systems, a hierarchy of TLBs is used (similar to the cache
hierarchy) to avoid even more virtual address translations (usually, a shared L2 TLB is
used for both instructions and data as shown in Figure 2.2). //The page table walk is a
latency-inducing process. Thus here are two approaches to reduce its impact on system
performance: (1) increasing the reach of the TLB by increasing the page size [22, 47] or
by using range translations [31, 32] and (2) reducing the latency of the TLB misses by
faster PTWs [44, 45] and caching mechanisms such as Page Walk Caches (PWC) [4].

Data TLB Instruction TLB

L2 Shared TLB

Figure 2.2: Example TLB hierarchy

Another characteristic of the TLB is its safety-critical role. If a fault were to occur in the
TLB, a process could access or change the data of a different process. That has potential
correctness issues for the entire system as a whole (not as a single entity running by itself
as mentioned in the bibliography) and also possible security threats if these vulnerabilities
are used maliciously (an example of an attack using bit flips in the TLB entries using the
RowHammer attack [24] has been discovered in [49]).
Finally, it is worth mentioning that there is another type of TLB called nested TLBs [3, 6]
that are used to cache the translations of virtual machines in a system. The focus of this
thesis is to evaluate the vulnerability of the TLBs in native execution, i.e., a non-virtualized
system.
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3. METHODOLOGY

To calculate the AVF of a variety of TLB hierarchies we needed to make a few choices:
(1) what simulator to use, (2) the characteristics of the simulated system and (3) what
benchmarks to use. First, the simulator used in this study is the gem5 microarchitectural
simulator (version 22.1.0.0). We used a default full-system simulation and a customizable
TLB hierarchy. We use the ACEmethodology [8, 28] applied to the TLBs. Finally, we used
the MiBench benchmark suite and created our customizable stressmark to test the limits
of our methodology.

3.1 The gem5 simulator

The gem5 simulator is a micro-architectural simulator that can execute full-system sim-
ulations [7]. It offers the ability to run the entire Linux kernel and a chosen Linux image
and to be accessed by attaching a terminal (telnet). This simulation is called Full System
simulation (FS) and is the one we are using for this study. Also, we used two of the ISAs
provided: (1) x86 and (2) ARM. We wanted to measure the vulnerability of the TLB hier-
archy in systems with different ISAs, so we used the two most commercially used. Since
the gem5 code for TLBs is ISA-specific, we needed to add the ACE methodology to every
ISA’s code separately.

3.2 x86 ISA

Our goal is to calculate the AVF of the data and the tag array (for both instruction and data
TLBs) separately and combine them later (we will present the computation formula of their
combined AVF later).

3.2.1 Data Array AVF

To implement the ACE methodology in the data array, we needed: (1) to change the
simulation’s TLB entry to store some extra variables and to create a way for the TLB to
keep track of every un-ACE bit. We decided to count all the un-ACE cycles instead of the
ACE cycles because they were a minority and had a more defined definition, thus making
them easier to detect.

The entries of the TLB required an extra field while the simulation occurred. So, for every
TLB entry, we tracked the clock cycle in which they were last accessed. Next, we need
to create a cycle pool. We use an un-ACE cycles pool because they are the minority and
easier to calculate. It is important to mention that when we add cycles in the un-ACE pool,
we add them on a per-entry basis rather than per bit. Later, we will explain how the AVF
computation happens using this counter. This variable is updated in these cases:

1. During the initialization of the TLB. This initialization is redundant, since we will set
the beginning of the simulation in the following case.

2. When the simulation starts. Specifically, we consider this point the first time a virtual
translation happens (the first time the TLB is accessed).
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3. When an LRU eviction occurs, the last accessed time of the invalidated entry is
the clock cycle of the eviction (we will use this functionality in the un-ACE cycle
calculation).

4. When an insert happens, the ”last accessed time” of the inserted entry is the clock
cycle of its insertion.

5. When a lookup happens, if there is a hit in an entry, this entry’s last accessed time
is updated. So every time a TLB entry is accessed, then its last time of access is
the clock cycle of the access.

6. When a global flush happens, the ”last time of access” of the invalidated entries is
when the global flush occurred.

7. When a non-global flush happens, the last time of access of the invalidated entries
is the time the non-global flush occurred.

8. When a demap happens, the last time of access of the invalidated entry is when the
demap happened.

Furthermore, we tracked the number of memory accesses that hit that specific entry (we
used this metric for debugging).

Then we implemented the counting of the un-ACE cycles. To detect which cycles would
be considered un-ACE, we needed to define several rules. It is worth mentioning that
when we add cycles in the un-ACE pool, we add them on a per-entry basis rather than
per bit. Later, we will explain how the AVF computation happens using this counter:

1. During the period between the last accessed time of an entry and its LRU eviction,
any fault on any bit of the entry would not propagate through the execution. During
the LRU eviction, the entry would be deleted (or replaced) and thus its contents
would be irrelevant. So every time an LRU eviction occurs, we add the cycles from
the last accessed time of the entry to the eviction cycle in the un-ACE cycles pool.

2. During the period between an LRU eviction and the insertion of an entry, any fault that
occurs on the bits of the entry cannot propagate. This period’s cycles are irrelevant
because the entry is invalid during this period and is re-validated during the insert.
This case, in the gem5, does not usually happen because the LRU eviction occurs
only when an entry is about to be inserted in a full TLB, but we add the functionality
for the case of a newly flushed TLB. So, the cycles from an LRU eviction to an
insertion of a new valid entry in the same slot are added to the un-ACE cycles pool.

3. When a global flush happens, for every entry, the cycles between their last accessed
time and the flashed clock cycle are irrelevant (any fault during these cycles would be
flushed). It is important to note that this happens for every entry (it will be important
in the calculation later). So for every entry we add in the un-ACE pool, the cycles
from the clock cycle it was last accessed to the clock cycle the global flush happens.

4. When a non-global flush happens, for every entry, the cycles between their last ac-
cessed time and the flashed clock cycle are irrelevant (any fault during these cycles
would be flushed). It is important to note that this happens for every entry (it will be
important in the calculation later). So for every entry we add in the un-ACE pool,
the cycles from the clock cycle it was last accessed to the clock cycle the non-global
flush happens.
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5. During the period between the last accessed time of an entry and its demap, any
fault on any bit of the entry would not propagate through the execution. During the
demap, the entry would be deleted and thus its contents are irrelevant. So every
time a demap occurs, we add the cycles from the last accessed time of the entry to
the demap cycle in the un-ACE cycles pool.

6. At the end of the execution, for every entry, the cycles from the last accessed time
of the entry to the end of the execution. These bits are un-ACE because they will
not be used again. So, for every entry, we add to the un-ACE cycle pool the entries
from their last accessed time to the end of the execution.

Next, we need to calculate the data array AVF. Considering we have a per-entry counter,
the calculation happens slightly differently. First, let’s look at the original formula:

AV F = 1− TotalUnACECycles

NumberOfBits ∗ TotalSimulationCycles

In this formula, we observe it includes the total number of bits and un-ACE cycles. First,
let’s expand the formula for our case:

AV F = 1− TotalUnACECycles

NumberOfEntries ∗BitsPerEntry ∗ TotalSimulationCycles

Then, we need to break down the total un-ACE cycles in per entry cycles:

AV F = 1− PerEntryUnACECycles ∗BitsPerEntry

NumberOfEntries ∗BitsPerEntry ∗ TotalSimulationCycles

This modification is possible because we consider the entire entry as one unit. This sim-
plification is valid unless we consider the effect of the altered pointer in that clock cycle’s
memory snapshot. Because this calculation is outside of this study’s scope, the simplific-
ation is valid. We further simplify the equation to have the final formula we used for our
calculation:

AV F = 1− PerEntryUnACECycles

NumberOfEntries ∗ TotalSimulationCycles

We can observe that the size of the entry is missing for the formula. Every part of the
formula has already been calculated throughout the execution.

3.2.2 Tag Array AVF

Next, we need to calculate the AVF of the tag array. We first need to keep track of when
the TLB was last accessed. So, at the beginning of the simulation (in the first TLB access)
and for every access since, we register the clock cycle that the access happens. To make
the calculation, we need to count either the un-ACE or the ACE cycles. In this situation,
we will count the ACE cycles because they are the minority and are easier to count. It is
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important to mention that we will count cycles on a per-bit basis.

Next, we need to understand when a bit is considered ACE. Each time an access happens,
we compare the virtual page’s number (VPN) to every entry in the tag array. There are
two cases in which a fault can affect the execution:

1. If the translation is available in the TLB and there is a fault in the corresponding
tag entry, we are guaranteed to have a mismatch. Despite having a miss when the
intended result should have been a miss this case cannot be classified as an error.
After the miss, the execution will proceed with the page table walk. The resulting
translation will be correct despite costing many more cycles compared to a TLB hit,
and the execution will be flawless. Thus, the fault only contributed to the latency of
the execution and did not affect its correctness.

2. The second case is a tag entry mismatch. Assuming only a single bit of a tag entry
has changed, we need to check whether any possibly faulty entries are a match
for our desired VPN. To make this comparison, we calculate the Hamming distance
(how many bits need to change for the tags to be the same) between any tag entry
of the TLB and the desired VPN. If the Hamming distance is 1, a single bit out of
the entry was characterized as ACE since the last TLB access. Thus, we add the
cycles since the last translation clock cycle to the ACE-cycles pool. This process is
repeated for every entry in the tag array, so for each translation, we can contribute
to the ACE-cycles pool more than once.

Now that we have calculated the ACE cycles, we need to calculate the AVF. This time,
the original formula using the ACE bits is:

AV F =
TotalACECycles

NumberOfBits ∗ TotalSimulationCycles

This time, we need to take the entry’s length into account. Each tag entry is the same
size as the VPN. The VPN is the entire Virtual Address without the bits used to access
the physical page (offset). In the x86 architecture, the offset is 12, and the size of the
Virtual Address is 64. The VPN size is V PN_Size = V irtualAdressSize−OffsetSize =
64− 12 = 52. Making the alterations in our formula, we have:

AV F =
TotalACECycles

NumberOfEntries ∗ EntrySize ∗ TotalSimulationCycles

Substituting the entry size:

AV F =
TotalACECycles

NumberOfEntries ∗ 52 ∗ TotalSimulationCycles

Finally, this computation happens at the end of every execution.

3.3 ARM ISA

As mentioned in the x86 ISA, we need to calculate the Data Array and Tag Array AVF
separately for the entire TLB hierarchy.
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3.3.1 Data Array AVF

First, we will calculate the AVF of the data array. Again, we will implement the same TLB
entry attribute we created in the x86 version. The attribute marks for every entry the last
time (clock cycle) it was accessed. To create this attribute, we need to set some cases in
which we will update it:

1. First of all, when the first translation happens, we update every entry’s ”last accessed
time” to the first lookup clock cycle.

2. If in a TLB lookup, we have a match, we note the matched entries ”last accessed
time” to be equal to the lookup access time.

3. In the case of an insert, we set the inserted entry’s ”last accessed time” to be equal
to the insert clock cycle.

4. When a flush of a TLB entry happens, we set the entry’s ”last access time” to be
equal to the flush clock cycle.

5. When a flush of all the TLB entries happens, we set all the entries’ ”last access time”
to the flush clock cycle.

Next, we need to create a cycle pool. As with the x86 data array case, we use an un-ACE
cycles pool because they are the minority and easier to calculate. It is important to note
that we will add the cycles on a per-entry basis (the reason will become apparent in the
AVF calculation formula). We put cycles in this pool based on the following rules:

1. When a new entry is inserted, the period between the last time the empty entry was
accessed (which is known as its eviction time) and the time of insertion is known
as un-ACE because any fault that may occur during this time does not affect the
execution, since it is masked. Subsequently, we add to the un-ACE cycles pool the
cycles between the eviction of the empty entry and the insert of the new entry.

2. When a flush on all entries happens, for every entry the time since it was last ac-
cessed, can be considered un-ACE because the entry is wiped during the flush.
Any fault happening during that period will not propagate to become an error. So,
for every entry, we add the cycles between the time the entry was last accessed and
the flush clock cycle to the un-ACE pool.

3. When a flush on a single entry happens, the time since it was last accessed, can be
considered un-ACE because the entry is wiped during the flush. Any fault happening
during that period will not propagate to become an error. So we add the cycles
between the time the entry was last accessed and the flush clock cycle to the un-
ACE pool.

Finally, we need to proceed with the AVF calculation. Because we have a per-entry un-
ACE cycles pool, we need to make some alterations to the formula (the same as with the
x86 case). First, let’s see the original formula:

AV F = 1− TotalUnACECycles

NumberOfBits ∗ TotalSimulationCycles
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Then, let’s expand the formula for our case:

AV F = 1− TotalUnACECycles

NumberOfEntries ∗BitsPerEntry ∗ TotalSimulationCycles

Then, we need to take into account the per-entry nature of our un-ACE cycles pool:

AV F = 1− PerEntryUnACECycles ∗BitsPerEntry

NumberOfEntries ∗BitsPerEntry ∗ TotalSimulationCycles

As mentioned in the x86 case, this modification is possible because we consider the en-
tire entry one unit. This simplification is valid unless we consider the effect of the altered
pointer in that clock cycle’s memory snapshot, but this calculation is outside this study’s
scope. We further simplify the equation to have the final formula we used for our calcula-
tion:

AV F = 1− PerEntryUnACECycles

NumberOfEntries ∗ TotalSimulationCycles

Finally, at the end of the execution, we calculate the AVF of the data array.

3.3.2 Tag Array AVF

Next, we need to calculate the AVF of the tag array. We first need to keep track of when
the TLB was last accessed. So, at the beginning of the simulation (in the first TLB access)
and for every access since, we register the clock cycle that the access happens. To make
the calculation, we need to count either the un-ACE or the ACE cycles. In this situation,
we will count the ACE cycles because they are the minority and are easier to count. It is
important to mention that we will count cycles on a per-bit basis.
Next, we need to understand when a bit is considered ACE. Each time an access happens,
we compare the virtual page’s VPN (Virtual Page Number) to every entry in the tag array.
There are two cases in which a fault can affect the execution:

1. If the translation is available in the TLB and there is a fault in the corresponding
tag entry, we are guaranteed to have a mismatch. Despite having a miss when the
intended result should have been a miss this case cannot be classified as an error.
After the miss, the execution will proceed with the page table walk. The resulting
translation will be correct despite costing many more cycles compared to a TLB hit,
and the execution will be flawless. Thus, the fault only contributed to the latency of
the execution and did not affect its correctness.

2. The second case is a tag entry mismatch. Assuming only a single bit of a tag entry
has changed, we need to check whether any possibly faulty entries are a match
for our desired VPN. To make this comparison, we calculate the Hamming distance
(how many bits need to change for the tags to be the same) between any tag entry
of the TLB and the desired VPN. If the Hamming distance is 1, a single bit out of
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the entry was characterized as ACE since the last TLB access. Thus, we add the
cycles since the last translation clock cycle to the ACE-cycles pool. This process is
repeated for every entry in the tag array, so for each translation we can contribute
to the ACE-cycles pool more than once.

Now that we have calculated the ACE cycles, we need to calculate the AVF. This time,
the original formula using the ACE bits is:

AV F =
TotalACECycles

NumberOfBits ∗ TotalSimulationCycles

This time, we need to take the entry’s length into account. Each tag entry is the same
size as the VPN. The VPN is the entire Virtual Address without the bits used to access
the physical page (offset). In the ARM architecture, the offset is 12, and the size of the
Virtual Address is 64. The VPN size is V PN_Size = V irtualAdressSize−OffsetSize =
64− 12 = 52. Making the alterations in our formula, we have:

AV F =
TotalACECycles

NumberOfEntries ∗ EntrySize ∗ TotalSimulationCycles

Substituting the entry size:

AV F =
TotalACECycles

NumberOfEntries ∗ 52 ∗ TotalSimulationCycles

Finally, this computation happens at the end of every execution.

3.4 Stressmark

We decided to create a stressmark for two reasons:

1. First, we needed to evaluate the correctness of our implementation. A reliable and
controllable stressmark is vital because we can compare the simulation results with
our expected results.

2. We needed to check the extremes of the methodology. Our workloads are not going
to express the maximum or minimum TLB vulnerability. That is why we need to
fabricate a way to test the extremes and see which is the maximum (or minimum)
vulnerability factor that the TLB can have.

The stressmark is a simple program that allocates M number of pages and then accesses
them sequentially, for N times (we provide M, N as arguments). The pseudocode for the
stressmark can be found in Algorithm 1. Through this stressmark, we are implementing
the most efficient user space program for controlling the TLB entries. We will use this
stressmark to allocate different numbers of pages and to understand the condition in which
the TLB is most vulnerable.
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Algorithm 1 Stressmark Pseudocode
1: procedure Stressmark(Pages,WarmupRepeats, ROIRepeats)
2: PageSize← GetPageSize();
3: memory ← mmap(PageSize ∗ Pages);
4: for i← 0,WarmupRepeats do ▷ Used to warmup the TLBs
5: memory[(i mod PageSize) ∗ PageSize] = RandomCharacter;
6: end for
7: StartROI();
8: for i← 0, Repeats do
9: memory[(i mod PageSize) ∗ PageSize] = RandomCharacter;
10: end for
11: EndROI();
12: return
13: end procedure

3.5 Automation Scripts

We also implemented several automation scripts to automate the simulation process. The
gem5 full-system simulation uses a telnet terminal to connect to the simulated terminal.
To make an accurate simulation, we need to gather several gem5 checkpoints from the
beginning of our region of interest (ROI) in our workloads and separately run the instruc-
tions from the checkpoint to the end of our ROI. So, we created automation scripts to
gather the necessary checkpoints (both for the stressmark and the workloads) and run
the experiments. We then gathered the results and presented them.

3.6 Experimental Methodology

The x86 ISA in gem5 has a small degree of configurability. We created a single level of
TLBs with seperate ITLB and DTLB. We chose a size of 64 entries (standard for modern
systems). In the ARM ISA, the gem5 simulator offered larger configurability. It has a
hierarchy of TLBs, both shared and dedicated (data and instruction). We chose a two-
level hierarchy with 64 entry L1 TLBs for data and instructions and a shared L2 TLB with
1280 entries. It is worth mentioning that the ARM ISA offers a different kind of TLB called
nested TLBs (in the ARM ISA context, they are called stage 2 TLBs) used for virtualized
environment translations. Our methodology is functional in these TLBs, but we do not use
any virtualized workloads, so we do not present AVF calculations for these components.
The simulation configuration for each ISA can be found in Table 3.1 and Table 3.2.
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Table 3.1: x86 Simulation Configuration

x86 Simulation Configuration
TLB Hierarchy

ITLB 64 entry, fully-assocative, LRU replacement policy
DTLB 64 entry, fully-associative, LRU replacement policy

Cache Hierarchy
L1 Data 32kB, 4-way associative, LRU Replacement Policy

L1 Instruction 32kB, 2-way associative, LRU Replacement Policy
L2 Shared 1024kB, 16-way associative, LRU Replacement Policy

Core Characteristics
Type BaseO3CPU (Out Of Order CPU)

Branch Predictor Tournament Branch Predictor
Memory

Size 512MB
Linux Kernel Info

Version Version 5.4.49
Gem5 Characteristics

Version Version 22.1.0.0
Simulation Type Full-System Simulation

Table 3.2: ARM Simulation Configuration

TLB Hierarchy
L1 ITLB 64 entry, fully-assocative, LRU replacement policy
L1 DTLB 64 entry, fully-associative, LRU replacement policy

L2 Shared TLB 1280 entry, fully-associative, LRU replacement policy
Stage 2 ITLB 64 entry, fully-associative, LRU replacement policy
Stage 2 DTLB 64 entry, fully-associative, LRU replacement policy

Cache Hierarchy
L1 Data 32kB, 4-way associative, LRU Replacement Policy

L1 Instruction 32kB, 2-way associative, LRU Replacement Policy
L2 Shared 1024kB, 16-way associative, LRU Replacement Policy

Core Characteristics
Type BaseO3CPU (Out Of Order CPU)

Branch Predictor Tournament Branch Predictor
Memory

Size 512MB
Linux Kernel Info

Version Version 3.16.0-rc6
Gem5 Characteristics

Version Version 22.1.0.0
Simulation Type Full-System Simulation

We used workloads from the MiBench [5] suite. To better understand the nature of our
workloads, we measured their memory footprint using Valgrind [1, 30] and the Massif
toolset. In Tables 3.3 and 3.4, we can see information about the workloads we will use for
the x86 and ARM experiments. All the stressmarks executed 10000 repeats and accessed
a unique number of 4KB pages each. Specifically, for the x86 ISA, we used 1, 32, 64, 128,
63 number of pages. For the ARM ISA, we used 1, 4, 16, 32, 48, 60, 64, 128, 256, 512,
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Table 3.3: Workloads x86 ISA

Name Peak Memory Usage
basicmath_small 1.1MiB
basicmath_large 1.1MiB
bitcount_small 988 KiB
bitcount_large 988 KiB
qsort_small 1.1 MiB
qsort_large 2.2 MiB
susan_small 1 MiB
susan_large 1.3 MiB
jpeg_small 4.8 MiB
jpeg_large 5.5 MiB

dijkstra_small 1.1 MiB
dijkstra_large 1.1 MiB
patricia_small 2.2 MiB
patricia_large 7.8 MiB
sha_small 4.6 MiB
sha_large 4.6 MiB

Table 3.4: Workloads ARM ISA

Workload Name Peak Memory Usage
susan_c_small 1.0 MiB
susan_c_large 1.9 MiB
basicmath_large 1.1MiB

qsort_large 2.2 MiB
susan_e_large 1.7 MiB
susan_s_small 1 MiB
bitcount_large 988 KiB
basicmath_small 1.1MiB
susan_s_large 1.3 MiB
qsort_small 1.1 MiB

susan_e_small 1.0 MiB
bitcount_small 988 KiB

and 1024 number of pages. We conducted more stressmark experiments on the ARM
ISA to test our methodology for our multilevel TLB hierarchy.
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4. EXPERIMENTAL RESULTS

After explaining how the simulation and methodology work, we present and examine our
results. First, we evaluate our methodology and find the best and worst-case vulnerab-
ility scenarios using our stressmark. Then, we analyse the workload-based results and
evaluate them.

4.1 Stressmarks Results

First, we are going to take a look at the Stressmark results. For each ISA, we will (1)
Evaluate the correctness of our methodology and (2) examine the extreme case scenarios
for the AVF of each TLB. We created the stressmark to test the data array portion of our
methodology, so we will not include a total AVF calculation.

4.1.1 x86 Stressmark Results

In our simulation, the current implementation of gem5 for the x86 ISA supports only a
single-level TLB. As is the state-of-practice, we use separate data and instruction TLBs.
We separate each TLB into its Data Array and its Tag Array. Then, we calculate their AVF.
Finally, we combine them to calculate the total AVF of each component.

First, we need to understand what we expect from the simulation. In Section 3.2.1, we
discuss that the deletion and insertion of new entries in the TLB, generate un-ACE cycles.
If we have several pages that are constantly reused, there will not be as many un-ACE
cycles. As a result, we will have a larger AVF. So, let’s look at the case that the pages
used do not fill the entire TLB (remember the TLB size is 64 entries). In this case, we
expect a linear increase in the AVF as the number of pages increases until we reach the
63rd page (the 64th page is allocated regardless of data outside the heap). If we look at
the data from Table 4.1, the results seem to be the same as our prediction. In the case
of the ITLB (Instruction TLB), we only use a single page of instructions. Thus, the AVF is
around 7-9%. In the case of the DTLB (the component that the stressmark tests), we see
a linear increase in the AVF from 26.14% when 1 page is used (2 with the page used for
data outside the heap) up to 99.49% when we use the entirety of the TLB.
Next, let’s see what happens when we use more than 63 pages. As we employ a sequen-
tial access pattern, we constantly evict the LRU page. Thus, most of the execution cycles
are labeled as un-ACE. So, we observe that the AVF drops significantly. It is important to
note that the length of the simulation plays a part in this result because the potential ACE
cycles of the bonus page (caused by its reuse) become irrelevant compared to the total
number of cycles. In Table 4.1, we also include the total number of simulation cycles to
illustrate this point.
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Table 4.1: Stressmark Results for x86 ISA

Pages Used AVF_DTLB AVF_ITLB Simulation Cycles
1 26.14% 8.31% 817,857,000
32 84.45% 7.72% 38,639,666,500
63 99.49% 9.17% 139,252,445,000
64 1.71% 7.86% 7,266,505,000
128 1.70% 7.79% 154,523,141,000

4.1.2 ARM Stressmark Results

For the ARM ISA, we are using a multilevel TLB hierarchy. For this reason, we are con-
ducting more experiments. Our expected data array AVF follows the same rules as the
x86 case. In Table 4.2, we observe the same linearity in the L1 DTLB AVF from 3.49% up
to 95.19% for the 60-page experiment. For more than 60 pages, we observe an average
AVF of 1.8%. The L1 ITLB AVF ranges from 1.61% to 6.23%. That happens because we
use a small number of pages.

The intriguing feature of the ARM ISA simulation is the shared L2 TLB. As mentioned in
Section 3.3, the L2 shared TLB has 1280 entries. So, we expect the AVF to increase
linearly as the number of pages increases. Subsequently, the AVF should become relat-
ively benign. In Table 4.2, we validate these assumptions as the AVF linearly increases
from 0.005% up to 80.28% for the 1024-page experiment. Finally, in the 2048-page ex-
periment, the AVF drops to 0.07%. To better portray the AVF linearity, we created Figure
4.1.

Table 4.2: Stressmark Results for ARM ISA

Pages Used L1 DTLB L1 ITLB L2 SHARED TLB
1 3.4936% 1.7806% 0.0050%
4 7.9346% 1.6619% 0.0019%
16 26.5521% 1.6290% 0.0011%
32 51.4068% 1.6303% 0.0011%
48 76.3206% 1.6102% 0.0008%
60 95.1920% 2.7167% 1.3041%
64 1.8032% 1.6279% 4.9647%
128 1.7828% 3.4996% 10.2860%
256 1.7622% 4.8583% 20.5193%
512 1.7521% 5.6636% 40.5342%
1024 1.7490% 6.1218% 80.2886%
2048 1.7412% 6.2308% 0.0786%
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Figure 4.1: Stressmark Results for ARM ISA

4.2 x86 MiBench Results

4.2.1 AVF calculation

Next, we need to analyze the workload results. First, we will take a look at the x86 TLB
hierarchy. We will examine the data array results, then the tag array results and finally,
we will calculate the total AVF for each TLB and the entire TLB hierarchy.

Let us first analyze the vulnerability of the data array. In Figure 4.2, we see the AVF of
the DTLB and ITLB for all our workloads. For the DTLB, we observe larger AVF values
than the ITLB. There are many reasons why this could be the case. As shown in 3.3, our
workloads contain enough data to fill the DTLB. Subsequently, as the AVF is 70.36% on
average, we assume there is enough TLB entry reuse so that a significant percentage of
the cycles are labeled as ACE. On the contrary, in the ITLB, we observe 45.76% AVF on
average. That can be caused either (1) by a partially empty TLB (around half) that the
bits of the invalidated entries are considered un-ACE throughout the execution or (2) by a
lower page reuse compared to the DTLB.
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Figure 4.2: Workloads AVF for Data Array (x86 ISA)

Next, we will examine the vulnerability of the tag array of the two TLBs. First, in Figure
4.3 we notice that the AVF of the tag array is tiny compared to the one on the data array
for both components. That makes sense because the probability of a tag array bit being
ACE is much lower compared to a data array bit because (1) there is a low probability that
a hamming distance one match exists during a TLB access and (2) even if that is the case
only one bit in the entire tag is considered ACE (as opposed to the per entry nature of
the data array). All in all, the DTLB has an average tag array AVF of 0.04% and the ITLB
has an average tag array AVF of 0.09% (the linearity of the instructions’ accesses causes
slightly more hamming distance one matches).

The next step is to calculate the total vulnerability of each of the two TLBs. To calculate
the total AVF, we multiply each array’s AVF by the percentage of its bits out of the total
bits of the component. We can achieve that using this formula:

AV Ftotal = AV FDataArray ∗
DataArrayBits

TotalBits
+ AV FTagArray ∗

TagArrayBits

TotalBits

AV Ftotal = AV FDataArray ∗
DataArrayBits

DataArrayBits+ TagArrayBits

+AV FTagArray ∗
TagArrayBits

DataArrayBits+ TagArrayBits

We then simplify the formula, trying to eliminate the number of entries of the TLB (this will
be useful for the ARM ISA L2 TLB later).
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Figure 4.3: Workloads AVF for Tag Array (x86 ISA)

AV Ftotal = AV FDataArray ∗
DataSize ∗ TLB_Entries

DataSize ∗ TLB_Entries+ TagSize ∗ TLB_Entries

+AV FTagArray ∗
TagSize ∗ TLB_Entries

DataSize ∗ TLB_Entries+ TagSize ∗ TLB_Entries

AV Ftotal = AV FDataArray ∗
DataSize ∗ TLB_Entries

(DataSize+ TagSize) ∗ TLB_Entries

+AV FTagArray ∗
TagSize ∗ TLB_Entries

(DataSize+ TagSize) ∗ TLB_Entries

Finally, with some simplifications:

AV Ftotal = AV FDataArray ∗
DataSize

DataSize+ TagSize
+ AV FTagArray ∗

TagSize

DataSize+ TagSize

Specifically, in the x86 ISA, we have a 52-bit tag and a 64-bit data entry:

AV Ftotal = AV FDataArray ∗
64

52 + 64
+ AV FTagArray ∗

52

52 + 64

AV Ftotal = AV FDataArray ∗
64

116
+ AV FTagArray ∗

52

116
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Next, we apply this formula for the DTLB and ITLB. Also, we calculate the total AVF for
all workloads and the average. We plot it in Figures 4.4 and 4.5. The low tag array AVF
brings the total AVF lower for both components. For the DTLB, the total average AVF is
36.94%. For the ITLB, the total average AVF is 24.05%.

Finally, we will calculate the average AVF for the entire TLB hierarchy. To make this cal-
culation, we need to take into consideration the AVF of each TLB proportionally to each
size. Because both TLBs have the same size each AVF will be multiplied with a factor of
0.5 as so:

AV Fhierarchy = 36.94 ∗ DTLBsize

Totalsize
+ 24.05 ∗ ITLBsize

Totalsize
= 36.94 ∗ 0.5 + 24.05 ∗ 0.5 = 30.495%

Thus, the AVF of the entire TLB hierarchy is 30.495%.

4.2.2 FIT rate calculation

Next, we will calculate the FIT rate for the entire TLB hierarchy. We will be utilizing the
formulas and the intrinsic FIT rate an SRAM array bit (5 ∗ 10−6) mentioned in Section 2.2
and Section 2.3 respectively. Due to the additive nature of the FIT rate (and thus the
intrinsic FIT rate), we can calculate the intrinsic FIT rate of the entire TLB hierarchy.

FIT intrinsicsystem =
n∑

i=0

FIT intrinsici

The number of bits of the entire TLB hierarchy are the bits of the ITLB and the DTLB
combined. Both TLBs have 116 bits per entry (64 bits of data and 52 bits of tag) and 64
entries. Thus the entire TLB hierarchy has 116 ∗ 64 ∗ 2 = 14848bits

Next, we calculate the FIT rate considering the components are constantly fault-prone:

FITratehierarchy = FIT intrinsicbit ∗ TotalNumberofBits ∗ AV Fhierarchy

FITratehierarchy = 5 ∗ 10−6 ∗ 14848 ∗ 0.30495 = 0.0226

Finally, the FIT rate for the entire TLB hierarchy is 0.0226. Consequently, 0.0226 errors
will occur in a period of (109) hours on average.
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Figure 4.4: DTLB AVF for x86 ISA
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Figure 4.5: ITLB AVF for x86 ISA
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4.3 ARM MiBench Results

4.3.1 AVF calculation

The ARM ISA has a more complicated TLB hierarchy. This time, we need to analyze the
results for the L1 DTLB, L1 ITLB and the L2 Shared TLB. First, we will examine the data
arrays, the tag arrays and the total AVF of each TLB and the entire TLB hierarchy.

Let us first analyze the vulnerability of the data array. In Figure 4.6, we can find the results
for all three components. First, the DTLB has an average AVF of 48.5%. It is not as large
as the DTLB in the x86 ISA but still the largest compared to the other two TLBs. The
ITLB has an average AVF of 38.21%. That is closer to the x86 case because, despite
being different architectures, we are using the same workloads and the same number of
instructions. Finally, the L2 shared TLB has an average AVF of 6.3%. The AVF is smaller
because the L2 TLB is never through the execution filled with entries (it contains 1280
entries). We can observe that in the workloads that utilize more memory (qsort_large,
susan_c_large), the AVF is larger. That follows the pattern mentioned in Section 4.2.
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Figure 4.6: Data Array AVF ARM ISA

Next, we need to examine the tag array AVF results. In Figure 4.7 we can see that for all
three components, the tag array AVF is tiny compared to the data array AVF. The reason
is the scarcity of the ACE bits (the scarcity of hamming distance one matches) in the tag
array through the execution. Only the ITLB has a slightly larger AVF due to the linearity
of its pages. The average tag array AVF of the DTLB, ITLB and L2 shared TLB is 0.04%,
0.07% and 0.002% respectively.

Next, we need to calculate the total AVF of each of the three components. We can use
the formula we calculated in the previous section:
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Figure 4.7: Tag Array AVF ARM ISA

AV Ftotal = AV FDataArray ∗
DataSize

DataSize+ TagSize
+ AV FTagArray ∗

TagSize

DataSize+ TagSize

Specifically, in the ARM ISA, we have a 52-bit tag and a 64-bit data entry:

AV Ftotal = AV FDataArray ∗
64

52 + 64
+ AV FTagArray ∗

52

52 + 64

AV Ftotal = AV FDataArray ∗
64

116
+ AV FTagArray ∗

52

116

We used the final form of this formula to calculate the total AVF for each component. The
results, can be found in Figure 4.8. The total AVF for the DTLB, ITLB and L2 shared TLB
is 25.46%, 20.08% and 3.31%, respectively. It is worth mentioning that the total AVF of
each component is smaller than the AVF of its data array because of the tiny tag array
AVF.

Finally, we will calculate the AVF of the entire TLB hierarchy. We can calculate this by
proportionally weighting the AVF of each TLB to their sizes as so:

AV Fhierarchy = AV FDTLB ∗
DTLBsize

TotalHierarchySize
+ AV FITLB ∗

ITLBsize

TotalHierarchySize
+
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AV FL2TLB ∗
L2TLBsize

TotalHierarchySize

Next, we will calculate the total hierarchy bits. For all TLBs, the entry size is 116 (64-
bit data 52-bit tag). The total number of entries is 64 + 64 + 1280 = 1408. Thus, the total
hierarchy size is 116∗1408 = 163328 (L1 TLB: 64∗116 = 7424, L2 TLB: 1280∗116 = 148480).
Finally, the total AVF of the hierarchy is:

AV Fhierarchy = 0.2546 ∗ 7424

163328
+ 0.2008 ∗ 7424

163328
+ 0.0331 ∗ 148480

163328
= 5.07%

Consequently, the AVF of the entire ARM TLB hierarchy is 5.07%.

4.3.2 FIT rate calculation

Next, we will calculate the FIT rate for the entire TLB hierarchy. We will be utilizing the
formulas and the intrinsic FIT rate an SRAM array bit (5 ∗ 10−6) mentioned in Section 2.2
and Section 2.3 respectively. Due to the additive nature of the FIT rate (and thus the
intrinsic FIT rate), we can calculate the intrinsic FIT rate of the entire TLB hierarchy.

FIT intrinsicsystem =
n∑

i=0

FIT intrinsici

The number of bits of the entire TLB hierarchy is 163,328. Next, we calculate the FIT rate
considering the components are constantly fault-prone:

FITratehierarchy = FIT instrinsicbit ∗ TotalNumberofBits ∗ AV Fhierarchy

FITratehierarchy = 5 ∗ 10−6 ∗ 163328 ∗ 0.0507 = 0.0414

Finally, the FIT rate for the entire TLB hierarchy is 0.0414. Consequently, 0.0414 errors
will occur in a period of (109) hours on average.
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Figure 4.8: Total Array AVF ARM ISA

4.4 Comparing the ARM and x86 ISAs

Having two different ISAs at our disposal allows us to compare them. Unfortunately, due
to differences in the organization of the TLB hierarchy of the simulated system for each
ISA, we will essentially be comparing the two setups and microarchitectures rather than
the ISAs. Regardless, we can extract some insights.

4.4.1 AVF comparison

We will start by comparing the ITLBs and DTLBs. In both cases, the AVFs in the x86 ISA
are higher compared to the ARM ISA. This difference is attributed to different hierarchy
parameters, such as the associativity and the existence of a second-level TLB. Next, we
can examine the AVF of the entire TLB hierarchy. Again, the AVF in the case of the ARM
ISA is lower compared to the x86 results. This is heavily attributed to the existence of
a huge L2 TLB that has a small AVF (due to the limited size of the workloads), which
significantly lowers the total AVF.

4.4.2 FIT rate comparison

Finally, we will examine the total FIT rates of each ISA’s TLB hierarchies. This time, the
x86 ISA has the lower FIT rate. For this calculation, we consider the number of bits of
each TLB hierarchy. In the ARM ISA case, the L2 TLB is huge compared to the entire x86
hierarchy’s size. Intuitively, having a large component by area increases the total number
of bit flips. Consequently, despite having a small AVF value, the errors occurring within a
specific period will be substantial.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this study, we calculated the AVF of the TLB hierarchies of different systems using
the ACE methodology. We used the gem5 simulator to implement the ACE methodology
in the x86 and ARM ISA. The gem5 x86 ISA implementation offered a single-level TLB
hierarchy and the ARM ISA implementation a multilevel TLB hierarchy with an L2 shared
TLB. We also created a stressmark to test our methodology and its limits. Furthermore,
we calculated the AVF using workloads from the MiBench benchmark suite. We observed
that for the x86 ISA, the average AVF from our workloads of the DTLB is 36.94% and for
the ITLB is 24.05%. For the ARM ISA, the average AVF for the L1 ITLB is 20.08%, for the
L1 DTLB is 25.46%, and for the L2 shared TLB is 3.31%.

5.2 Future Work

When we decided which cycles would be considered ACE in the data array, we mentioned
that the calculation would happen on a per-entry basis. There are two ways we could
measure the bits with smaller granularity. The first way is taking into account where the
altered bit leads in the main memory. When a bit does not alter the same process’s pages
it should be considered un-ACE. Taking the calculation a step further, we can count in
a separate cycle pool the ACE bits that alter a memory position belonging to a different
process on the system. This way, we can create a metric that shows the probability that
a fault will become a user-visible error in a different process of the system.
A different way to approach the smaller pool cycle granularity would be to differentiate
between the DUE and SDC AVF. That could be possible by tracking the data array entry’s
path into the system (in the case of a TLB hit) for a small number of instructions. If it is
used in a way that could potentially end the execution (e.g., as a pointer to an error page),
the bit could be classified as DUE AVF instead of simply AVF. The rest of the bits could be
considered ’potentially’ SDC. Finally, due to the critical nature of the TLBs as the systems
protection mechanism, there should be more research on their vulnerability and its effects
on the execution of the entire system.
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ABBREVIATIONS - ACRONYMS

ACE Architecturally Correct Execution

ARM Advansed RISC Machine

AVF Architectural Vulnerability Factor

CPU Central Processing unit

DTLB Data Translation Lookaside Buffer

DUE Detected Unrecoverable Error

ECC Error Corection Code

FIT Failure In Time

ISA Instruction Set Architecture

ITLB Instruction Translation Lookaside Buffer

L1 Level 1

L2 Level 2

LRU Least Recently Used

MTTF Mean Time To Failure

OS Operating System

ROI Region Of Interest

SDC Silent Data Corruption

SECDED Single-bit Error Correction, Double-bit Error Detection

SEC Single-bit Error Correction

SFI Statistical Fault Injection

SIMD Single Instruction Multiple Data

SRAM Static Random-Access memory

TLB Translation Lookaside Buffer

TVF Timing Vulnerability Factor

VPN Virtual Page Number

PFN Physical Frame Number

PWC Page Walk Cache

K. M. Sgouras 42



Soft Error Rate Measurements through ACE Analysis in TLB Structures of CPUs

BIBLIOGRAPHY

[1] Valgrind Toolset. https://valgrind.org/.

[2] Jacob A. Abraham. Cross-layer resilience: are high-level techniques always better? In 2016 IEEE
International High Level Design Validation and Test Workshop (HLDVT), pages 78–78, 2016.

[3] AMD. SEV-SNP (Secure Nested Paging). https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf.

[4] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: skip, don’t walk (the page table).
In Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA ’10, page
48–59, New York, NY, USA, 2010. Association for Computing Machinery.

[5] Jeremy Bennett. MiBench Suite. https://github.com/embecosm/mibench?tab=readme-ov-file.

[6] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-
dimensional page walks for virtualized systems. SIGARCH Comput. Archit. News, 36(1):26–35, mar
2008.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, aug 2011.

[8] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.S. Mukherjee, and R. Rangan. Computing architec-
tural vulnerability factors for address-based structures. In 32nd International Symposium on Computer
Architecture (ISCA’05), pages 532–543, 2005.

[9] Pablo Bodmann, George Papadimitriou, Dimitris Gizopoulos, and Paolo Rech. The impact of soc integ-
ration and os deployment on the reliability of arm processors. In 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 223–225, 2021.

[10] Pablo R. Bodmann, George Papadimitriou, Rubens L. Rech Junior, Dimitris Gizopoulos, and Paolo
Rech. Soft error effects on arm microprocessors: Early estimations versus chip measurements. IEEE
Transactions on Computers, 71(10):2358–2369, 2022.

[11] Spencer W. Ng Bruce Jacob and David T. Wang. Memory Systems, chapter 2, pages 79–115. 2008.

[12] Yaman Cakmakci and Oguz Ergin. Exploiting virtual addressing for increasing reliability. IEEE Com-
puter Architecture Letters, 13(1):29–32, 2014.

[13] Odysseas Chatzopoulos, George Papadimitriou, Vasileios Karakostas, and Dimitris Gizopoulos.
Gem5-marvel: Microarchitecture-level resilience analysis of heterogeneous soc architectures. In 2024
IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 543–559,
2024.

[14] Eric Cheng, ShahrzadMirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyungmin Cho, Kevin Skadron,
Mircea R. Stan, Klas Lilja, Jacob A. Abraham, Pradip Bose, and Subhasish Mitra. Clear: Cross-layer
exploration for architecting resilience: Combining hardware and software techniques to tolerate soft
errors in processor cores. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, 2016.

[15] Nikos Foutris, Dimitris Gizopoulos, Mihalis Psarakis, Xavier Vera, and Antonio Gonzalez. Accelerating
microprocessor silicon validation by exposing isa diversity. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, page 386–397, New York, NY, USA, 2011.
Association for Computing Machinery.

[16] Nikos Foutris, Dimitris Gizopoulos, Xavier Vera, and Antonio Gonzalez. Deconfigurable micropro-
cessor architectures for silicon debug acceleration. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, page 631–642, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[17] Dimitris Gizopoulos, George Papadimitriou, and Odysseas Chatzopoulos. Estimating the failures and
silent errors rates of cpus across isas and microarchitectures. In 2023 IEEE International Test Confer-
ence (ITC), pages 377–382, 2023.

K. M. Sgouras 43



Soft Error Rate Measurements through ACE Analysis in TLB Structures of CPUs

[18] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,
29(2):147–160, 1950.

[19] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad Shafique, Mehdi Tahoori,
and Norbert Wehn. Reliable on-chip systems in the nano-era: Lessons learnt and future trends. In 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–10, 2013.

[20] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govindaraju, Parthasarathy Ranganathan,
David E. Culler, and Amin Vahdat. Cores that don’t count. In Proceedings of theWorkshop on Hot Topics
in Operating Systems, HotOS ’21, page 9–16, New York, NY, USA, 2021. Association for Computing
Machinery.

[21] Adam Jacobs, Grzegorz Cieslewski, Alan D. George, Ann Gordon-Ross, and Herman Lam. Recon-
figurable fault tolerance: A comprehensive framework for reliable and adaptive fpga-based space com-
puting. ACM Trans. Reconfigurable Technol. Syst., 5(4), dec 2012.

[22] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ünsal. Redundant memory mappings for fast access
to large memories. In 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), pages 66–78, 2015.

[23] Linux Kernel. Process Context Identifiers (PCID). https://www.kernel.org/doc/Documentation/x86/pti.txt.

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, ChrisWilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of dram
disturbance errors. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pages 361–372, 2014.

[25] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault injection: Quantified error and
confidence. In 2009 Design, Automation Test in Europe Conference Exhibition, pages 502–506, 2009.

[26] Ian Vince McLoughlin and Timo Rolf Bretschneider. Reliability through redundant parallelism for micro-
satellite computing. ACM Trans. Embed. Comput. Syst., 9(3), mar 2010.

[27] Gordon E. Moore. Cramming more components onto integrated circuits, reprinted from electronics,
volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–
35, 2006.

[28] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. A systematic methodology to
compute the architectural vulnerability factors for a high-performance microprocessor. In Proceedings.
36th Annual IEEE/ACM International Symposium onMicroarchitecture, 2003. MICRO-36., pages 29–40,
2003.

[29] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. Measuring architectural vulner-
ability factors. IEEE Micro, 23(6):70–75, 2003.

[30] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary instru-
mentation. SIGPLAN Not., 42(6):89–100, jun 2007.

[31] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawkeye: Efficient fine-grained os support for huge
pages. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’19, page 347–360, New York, NY, USA, 2019.
Association for Computing Machinery.

[32] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge pages actually useful. SIGPLAN
Not., 53(2):679–692, mar 2018.

[33] George Papadimitriou, Athanasios Chatzidimitriou, Dimitris Gizopoulos, and Ronny Morad. Isa-
independent post-silicon validation for the address translation mechanisms of modern microprocessors.
In 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS),
pages 72–77, 2016.

[34] George Papadimitriou, Athanasios Chatzidimitriou, Dimitris Gizopoulos, and Ronny Morad. An agile
post-silicon validation methodology for the address translation mechanisms of modern microprocessors.
IEEE Transactions on Device and Materials Reliability, 17(1):3–11, 2017.

[35] George Papadimitriou and Dimitris Gizopoulos. Demystifying the system vulnerability stack: transient
fault effects across the layers. In Proceedings of the 48th Annual International Symposium on Computer
Architecture, ISCA ’21, page 902–915. IEEE Press, 2021.

K. M. Sgouras 44



Soft Error Rate Measurements through ACE Analysis in TLB Structures of CPUs

[36] George Papadimitriou and Dimitris Gizopoulos. Anatomy of on-chip memory hardware fault effects
across the layers. IEEE Transactions on Emerging Topics in Computing, 11(2):420–431, 2023.

[37] George Papadimitriou and Dimitris Gizopoulos. Avgi: Microarchitecture-driven, fast and accurate vul-
nerability assessment. In 2023 IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 935–948, 2023.

[38] George Papadimitriou and Dimitris Gizopoulos. Silent data corruptions: Microarchitectural perspect-
ives. IEEE Transactions on Computers, 72(11):3072–3085, 2023.

[39] George Papadimitriou, Dimitris Gizopoulos, Athanasios Chatzidimitriou, Tom Kolan, Anatoly Koyfman,
RonnyMorad, and Vitali Sokhin. Unveiling difficult bugs in address translation caching arrays for effective
post-silicon validation. In 2016 IEEE 34th International Conference on Computer Design (ICCD), pages
544–551, 2016.

[40] George Papadimitriou, Dimitris Gizopoulos, Harish Dattatraya Dixit, and Sriram Sankar. Silent data
corruptions: The stealthy saboteurs of digital integrity. In 2023 IEEE 29th International Symposium on
On-Line Testing and Robust System Design (IOLTS), pages 1–7, 2023.

[41] Noah Perryman, Nicholas Franconi, Gary Crum, Christopher Wilson, and Alan D. George. Spacecube
ghost: A resilient processor for low-power, high-reliability space computing. In 2024 IEEE Aerospace
Conference, pages 1–11, 2024.

[42] Bogdan F. Romanescu, Alvin R. Lebeck, and Daniel J. Sorin. Specifying and dynamically verifying
address translation-aware memory consistency. SIGPLAN Not., 45(3):323–334, mar 2010.

[43] Adit Singh, Sreejit Chakravarty, George Papadimitriou, and Dimitris Gizopoulos. Silent data errors:
Sources, detection, and modeling. In 2023 IEEE 41st VLSI Test Symposium (VTS), pages 1–12, 2023.

[44] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. Elastic cuckoo page tables:
Rethinking virtual memory translation for parallelism. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1093–1108, New York, NY, USA, 2020. Association for Computing Machinery.

[45] Jovan Stojkovic, Namrata Mantri, Dimitrios Skarlatos, Tianyin Xu, and Josep Torrellas. Memory-
efficient hashed page tables. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 1221–1235, 2023.

[46] Alfonso Sánchez-Macián, Luis Alberto Aranda, Pedro Reviriego, Vahdaneh Kiani, and Juan Antonio
Maestro. Enhancing instruction tlb resilience to soft errors. IEEE Transactions on Computers, 68(2):214–
224, 2019.

[47] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas, Nectarios Koziris,
Daniel A. Jiménez, and Marc Casas. Exploiting page table locality for agile tlb prefetching. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages 85–98, 2021.

[48] Christopher Wilson, Alan George, and Ben Klamm. A methodology for estimating reliability of smallsat
computers in radiation environments. In 2016 IEEE Aerospace Conference, pages 1–12, 2016.

[49] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom. Pthammer: Cross-user-kernel-boundary
rowhammer through implicit accesses. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 28–41, Los Alamitos, CA, USA, oct 2020. IEEE Computer Society.

K. M. Sgouras 45


	CONTENTS
	INTRODUCTION
	BACKGROUND
	Faults and Errors
	Mean Time To Failure and Failures In Time
	Architectural Vulnerability Factor
	Statistical Fault Injection
	ACE Methodology
	ACE and un-ACE bits
	AVF calculation of storage-based component

	TLB Hierarchy

	METHODOLOGY
	The gem5 simulator
	x86 ISA
	Data Array AVF
	Tag Array AVF

	ARM ISA
	Data Array AVF
	Tag Array AVF

	Stressmark
	Automation Scripts
	Experimental Methodology

	EXPERIMENTAL RESULTS
	Stressmarks Results
	x86 Stressmark Results
	ARM Stressmark Results

	x86 MiBench Results
	AVF calculation
	FIT rate calculation

	ARM MiBench Results
	AVF calculation
	FIT rate calculation

	Comparing the ARM and x86 ISAs
	AVF comparison
	FIT rate comparison


	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

